Sample records for coal oil sands

  1. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    PubMed

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands. PMID:22329146

  2. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect

    Trudell, L.G.

    1985-02-01

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  3. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  4. Investigation of tar sand and heavy oil deposits of Utah for underground coal gasification applications

    SciTech Connect

    Trudell, L.G.

    1985-12-01

    A literature review was conducted to determine spatial and geological relationships between Utah's tar sand or heavy oil deposits and coal deposits, and to evaluate these relationships in terms of suitability for underground coal gasification (UCG) applications. The investigation was undertaken as part of a Department of Energy-sponsored project to find new uses for UCG technology by utilizing process heat or combustible gases from UCG in thermal recovery of oil from unconventional sources. Fifteen of Utah's tar sand or heavy oil deposits are located within 5 miles of suitable coal deposits, which is the maximum distance considered economically practical for transport of UCG gases. Six of these deposits may be suitable for on-site development, where UCG could be conducted in coal beds directly under the oil reservoirs. Substantial portions of four major tar sand or heavy oil deposits are included in the resources suitable for UCG applications, i.e., Sunnyside, Asphalt Ridge, Ashphalt Ridge Northwest, and Raven Ridge. However, total resources cannot be calculated directly from published data. 31 refs., 9 figs., 2 tabs.

  5. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  6. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  7. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  8. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  9. Oil sands fulfill their promise

    Microsoft Academic Search

    Chaapel

    2009-01-01

    The Great Canadian Oil Sands plant, a $300 million investment for Sun Oil Co., is the first commercial facility to wrest oil from the Alberta tar sands. Energy companies are poised to invest more than $3 billion in oil sands development in the next several years. Construction already underway, planning for projects to come, and the widening scope of oil

  10. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  11. Possible New Coal and Bitumen Transportation Options for the Further Development of the Oil Sands Industry of Alberta

    Microsoft Academic Search

    John H. Walsh

    The great size of the potential resource of the oil sands of Alberta (traditionally placed at the equivalent of a very large 310 gigabarrels of recoverable oil) has long been a tantalizing option for the energy economy of Canada, especially now that the production of conventional light oil from the mature Western Canada Sedimentary Basin is declining at about four

  12. Trace impurities in Canadian oil-sands, coals and petroleum products and their fate during extraction, up-grading and combustion

    Microsoft Academic Search

    R. E. Jervis; K.-L. Richard Ho; B. Tiefenbach

    1982-01-01

    National energy programs for the next two decades entail increased total consumption of fossil fuels in general and, in particular\\u000a of portable fuels extracted from oil sands and shales and from lower quality coals. Improved fuel-upgrading and combustion\\u000a technologies are recognized to be vital for minimizing environmental degradation caused by continental and global acid-rain\\u000a precipitation from fossil-fuel impurities. A further

  13. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  14. New production techniques for alberta oil sands.

    PubMed

    Carrigy, M A

    1986-12-19

    Low world oil prices represent a serious threat to expanded commercial development of the Canadian oil sands in the near term, as they do to all of the higher cost alternatives to crude oil such as oil shales and coal liquefaction. Nonetheless, research and field testing of new technology for production of oil from oil sands are being pursued by industry and government in Alberta. New production technology is being developed in Canada to produce synthetic oil from the vast resources of bitumen trapped in the oil sands and bituminous carbonates of northern Alberta. This technology includes improved methods of mining, extraction, and upgrading of bitumen from near-surface deposits as well as new drilling and production techniques for thermal production of bitumen from the more deeply buried reservoirs. Of particular interest are the cluster drilling methods designed to reduce surface disturbance and the techniques for horizontal drilling of wells from underground tunnels to increase the contact of injection fluids with the reservoir. PMID:17816505

  15. Recovery of heavy oil and tar sands using a high-temperature nuclear steam supply

    SciTech Connect

    Quade, R.N.; Rao, R.

    1984-04-01

    In this paper, the application of the HTGR to enhanced oil recovery is explored using a typical California heavy oil field (Midway-Sunset) and a tar sands field (Maverick County, Texas) as two examples. Cost comparisons are made with available alternates, centralized coal, jumbo boilers for heavy oil, and an atmospheric fluidized bed (AFB) for tar sands. 10 references, 7 figures, 5 tables.

  16. Recovery of heavy oil and tar sands using a high-temperature nuclear steam supply

    Microsoft Academic Search

    R. N. Quade; R. Rao

    1984-01-01

    In this paper, the application of the HTGR to enhanced oil recovery is explored using a typical California heavy oil field (Midway-Sunset) and a tar sands field (Maverick County, Texas) as two examples. Cost comparisons are made with available alternates, centralized coal, jumbo boilers for heavy oil, and an atmospheric fluidized bed (AFB) for tar sands. 10 references, 7 figures,

  17. Recovery of heavy oil and tar sands using a high-temperature nuclear steam supply

    Microsoft Academic Search

    R. N. Quade; R. Rao

    1984-01-01

    In this paper, the application of the HTGR to enhanced oil recovery is explored using a typical California heavy oil field (Midway-Sunset) and a tar sands field (Maverick County, Texas) as two examples. Cost comparisons are made with available alternates, centralized coal, jumbo boilers for heavy oil, and an atmospheric fluidized bed (AFB) for tar sands.

  18. Recovery of heavy oil and tar sands using a high-temperature nuclear steam supply

    SciTech Connect

    Quade, R.N.; Rao, R.

    1984-08-01

    In this paper, the application of the HTGR to enhanced oil recovery is explored using a typical California heavy oil field (Midway-Sunset) and a tar sands field (Maverick County, Texas) as two examples. Cost comparisons are made with available alternates, centralized coal, jumbo boilers for heavy oil, and an atmospheric fluidized bed (AFB) for tar sands.

  19. On the nature of Athabasca Oil Sands.

    PubMed

    Czarnecki, Jan; Radoev, Boryan; Schramm, Laurier L; Slavchev, Radomir

    2005-06-30

    The existence of a thin aqueous film, separating bitumen (a form of heavy oil) from inorganic solids in Athabasca Oil Sands, is analysed based on "first principles". There is a general consensus in the literature on the hydrophilic character of the solids in oil sands. However, a review of the references cited in support of the solids being encapsulated in thin water envelopes produced a surprising lack of evidence. A theoretical analysis indicates that a water film separating clean, hydrophilic quartz and bitumen is stable under most conditions, and unstable for acidic oil sand ores. The existence of water-wet solids in the Athabasca Oil Sands remains a reasonable yet unproven postulate. It could therefore be dangerous to accept the water-wet solids postulate and then use it to interpret other phenomena. PMID:15936283

  20. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  1. 1 INTRODUCTION Oil sand has unique properties exhibits performance

    E-print Network

    Joseph, Tim Grain

    1 INTRODUCTION Oil sand has unique properties exhibits performance akin to sandstone in winter seated on oil sand can sink after a number of cycles with ground softening oc- curring rapidly due true for unconsolidated sands such as oil sand. 2 ASSUMPTIONS Following the work of Sharif-Abadi (2006

  2. Coal coprocessing with used oil

    SciTech Connect

    Mulgaonkar, M.; Kuo, C.H.; Tarrer, A.R. [Auburn Univ., AL (United States). Dept. of Chemical Engineering

    1994-12-31

    Waste oil coprocessing with coal appears to be an alternative to both conventional oil disposal and coal liquefaction using hydrogen donor solvents. Coprocessing experiments carried out in tubing bombs yielded coal conversions of up to 90% at temperatures from 400--450 C, at cold H{sub 2} pressures of 800--1,250 psig, and at reaction times of 15--60 minutes with and without iron-based catalyst. The effect of different coal loadings on conversion and selectivity was also investigated. The highest conversions were obtained for a coal loading on oil of about 20% w/w. The effect of ionic and non-ionic surfactants on coal liquefaction were studied with pure aliphatic compounds such as eicosane and octadecane as well as with mineral oil. A general increase in coal conversion and selectivity was observed with an increase in surfactant concentrations up to a limit for most surfactants. Hydropyrolysis of the used oil also occurs simultaneously, as indicated by the drop in oil viscosity. It was also found that up to 90% ash and 40% sulfur reductions in the oils may be due to metals deposition on to the solid coal residues and gas formation which occur respectively during liquefaction. These findings indicate that a once-through process could be possible if no solvent has to be separated, hydrogenated and recycled to the reactor. this could reduce the equipment and operating costs considerably. The amount of aromatics in the product stream is also greatly reduced as compared to conventional liquefaction, making it environmentally more acceptable.

  3. Thermally Induced Wettability Change During SAGD for Oil Sand Extraction

    E-print Network

    Unal, Yasin

    2014-08-20

    appreciated. vi NOMENCLATURE 2D two-dimensional AOSTRA Alberta Oil Sands Technology and Research Authority BDNS barium dinonyl naphthalene sulfonate BIC Brookhaven Instruments Corporation CMG Computer Modelling Group Ltd. CSS cyclic steam....) is from oil sands. Most of these oil sands are located in Alberta. A typical oil sand is composed of approximately 83% sand, 14% bitumen, and 3% water by weight, and almost 90% of the solid matrix is quartz, with the rest being silt and clay (Nasr...

  4. An overview of Canadian oil sand mega projects

    Microsoft Academic Search

    R. Paes; M. Throckmorton

    2008-01-01

    There are currently a number of existing oil sand Mega-Projects as well as many other related projects planned and under construction in the Alberta oil sands region. There are many challenges facing the oil sands. The demanding climate conditions cost of extraction, environmental, energy constraints as well as the rising construction costs are examples. To develop this huge petroleum reserve,

  5. Getty mines oil sands in California

    SciTech Connect

    Rintoul, B.

    1983-11-01

    A large deposit of oil-laden diatomaceous earth in the McKittrick oil field 40 miles west of Bakersfield, California, has resisted all efforts at production by standard means. Getty Oil Co. is in the pilot phase of a project to recover the Diatomite's oil by an open pit mining operation. It also could have significant implications for other California oil fields, possibly setting the stage for the mining of oil sands in shallow fields like Kern River, S. Belridge, and Lost Hills to maximize oil recovery. A report on the project is summarized. The Diatomite is estimated to have 500 million bbl of oil in reserves, of which 380 million bbl are recoverable. The estimated amount of recoverable oil exceeds the McKittrick field's cumulative production of 240 million bbl. A pilot plant was built to test solvent extraction method of recovering heavy oil. The multistep process involves a series of 6 extractors. The Lurgi retorting plant employs a 2-step heating process to separate hydrocarbons from crushed ore.

  6. Canadian oil sands development: a blueprint for synthetic fuels commercialization

    Microsoft Academic Search

    Sen

    1979-01-01

    Four major oil sands deposits in Alberta hold an estimated trillion barrels of oil, nearly 200 billion of which are thought to be recoverable by known technologies. Oil sands will help Canada meet its goals of reducing imports in the face of dwindling oil field reserves if in-situ recovery technology can be brought to commercialization. Major environmental, economic, and institutional

  7. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  8. Thermally Induced Wettability Change During SAGD for Oil Sand Extraction 

    E-print Network

    Unal, Yasin

    2014-08-20

    Steam-assisted gravity drainage (SAGD) is an in-situ bitumen extraction technique that significantly increases ultimate oil recovery from oil sand reservoirs. Because SAGD is one of the newest proven thermal oil recovery techniques, laboratory test...

  9. Policy Analysis of the Canadian Oil Sands Experience

    SciTech Connect

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  10. Borehole mining oil sands is compatible with environment

    SciTech Connect

    Not Available

    1981-05-01

    The US Bureau of Mines borehole mining system for oil sands is discussed. The object of the program was to develop an environmentally feasible method of mining shallow oil sands without removing the overburden. The method entails extracting oil sands through a single borehole by cutting into the sands around the borehole with a high pressure water jet, and pumping the resulting slurry to the surface. The system was successfully field tested at a site in the Midway-Sunset Oil Field near Taft, in Kern County, California. During the two-month period during and following mining operations, no significant ground surface subsidence of ground water pollution was detected. (JMT)

  11. Industrial Utilization of Coal-Oil Mixtures

    E-print Network

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  12. Industrial Utilization of Coal-Oil Mixtures 

    E-print Network

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  13. Numerical Modeling of Hydraulic Fracturing in Oil Sands

    E-print Network

    2008-11-16

    Hydraulic fracturing is a widely used and e cient technique for enhancing oil extraction from heavy oil sands deposits. ..... displacements, resulted in less oscillation in the analysis ...... simulation of geothermal reservoir formation induced.

  14. Tar sand and heavy oil resources and technology

    Microsoft Academic Search

    1972-01-01

    Tar-sand resources in the U.S. are not as concentrated as the Canadian Athabasca deposits, but they are significant; the amount recoverable is estimated to be 25 to 35 billion barrels. Some of the characteristics of tar sands and heavy oil sands and their occurrence are discussed. The single large-scale production of bitumen from tar sands is the operation of Great

  15. Microstructural characterization of a Canadian oil sand

    E-print Network

    Dinh, Hong Doan; Nauroy, Jean-François; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

    2013-01-01

    The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

  16. Oil from tar sands--a significant new plant

    Microsoft Academic Search

    Uhl

    1967-01-01

    The first synthetic crude oil from Canada's Athabasca tar sands has been in commercial production since October, when the new 45,000 b\\/cd (design capacity) installation of Great Canadian Oil Sands Ltd. at Fort McMurray, Alberta, began operations. Besides the oil, the plant is designed to produce about 2,600 tons\\/cd of petroleum coke, for use as plant fuel, and 314 tons\\/cd

  17. Process and apparatus for recovery of oil from tar sands

    SciTech Connect

    Brewer, J.C.

    1982-11-30

    A crude oil product is extracted from a tar sand by first crushing the tar sand as mined and then fine grinding the crushed material in a grinding mill in the presence of a cleansing liquid, such as an aqueous solution of a caustic. The resulting slurry is passed into suitable extractor-classifier equipment, such as that shown in U.S. Pat. No. 3,814,336, in which a body of cleansing liquid is maintained. Agitation of the slurry in such maintained body of cleansing liquid substantially completes removal of the bituminous matter from the sand, and the resulting crude oil and cleansing liquid phase is discharged separately from the sand solid phase. The liquid phase is treated for the removal of residual sand particles and for the separation of residual cleansing liquid from the crude oil. The cleansing liquid so recovered is recycled and the crude oil is passed to further processing or for use as such.

  18. Sand control in horizontal wells in heavy-oil reservoirs

    SciTech Connect

    Islam, M.R. (Nova Husky Research Corp. (CA)); George, A.E. (Energy, Mines, and Resources (CA))

    1991-07-01

    Recent advances in horizontal-well technology has greatly improved the potential for heavy oil recovery. Such recovery may be hampered, however, by sanding problems associated with most heavy-oil reservoirs. These reservoir sands are mostly unconsolidated and may lead to severe productivity-loss problems if produced freely. This paper offers recommendations for sand control in three Canadian heavy-oil reservoirs. Experimental evidence has shown that minimizing the annular space between the casing and the open hole is important, especially in the case of smaller wire space, lower oil viscosity, and thinner pay zone. Several types of wire-wrapped screens and flexible liners were tested for sand control. Only flexible liners reduced sand production to a negligible amount.

  19. Oil sand hydrotransport tests at Syncrude Canada Ltd.

    SciTech Connect

    Cymerman, G.; Leung, A.; Maciejewski, W.; Spence, J.; McDonell, B.

    1993-12-31

    In the Athabasca region of Northern Alberta there are major deposits of oil sands. Two large scale commercial plants are involved in mining oil sands and production of synthetic crude oil. Suncor (previously Great Canadian Oil Sands or GCOS) has been in operation since 1968 and currently produces over 25 M barrels of oil per year. Syncrude Canada Ltd. plant started operation in 1978 and currently produces over 65 M barrels (10.4 {times} 10{sup 3} m{sup 3}) of light sweet synthetic crude oil per year. Together the two operations provide 16 % of Canada`s oil output The plant located 50 km north of Fort McMurray, Alberta, is a joint venture of 9 participants. The oil sand typically contains 9 to 12 % bitumen, up to 30 % clay and 5 % water. The remainder is silica sand, finer than 150 {mu}m. Properties of oil sand are described in detail by Nonth, Ruhl and Tissot. The bulk of the plant feed is in the form of lumps ranging in size from several mm to 10 cm. It also includes lenses of soft clays and large rocks. The material is difficult to handle; sticky in summer and hard in winter. It requires special materials and design considerations for belt conveyors, transfer points, feeders etc..

  20. Fuel Oil Prepared by Blending Heavy Oil and Coal Tar

    Microsoft Academic Search

    Guojie Zhang; Xiaojie Guo; Yongfa Zhang; Yaling Sun; Bo Tian; Qidian Liu

    2009-01-01

    The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ration from 2:1 to 7:1. It shows that the viscosity decrease rate can be divided into two sections with temperature

  1. Great Canadian Oil Sands experience in the commercial processing of Athabasca Tar Sands

    Microsoft Academic Search

    G. F. Andrews; H. M. Lewis; E. W. Dobson

    1968-01-01

    A brief review is given of the history of the Great Canadian Oil Sands (G.C.O.S.) project to recover 45,000 bpd of synthetic crude oil from the Athabasca Tar Sands by open pit mining, hot water extraction, coking, and hydrorefining. This paper then discusses the startup and initial operation of the G.C.O.S. plant. Emphasis is directed toward actual vs. design performance

  2. Reclamation of disturbed land at Great Canadian Oil Sands

    Microsoft Academic Search

    T. D. Shopik; W. L. Cary

    1977-01-01

    Practical application of reclamation methods developed over 6 yr at an operating oil-sands plant is described. The details of numerous successes and failures in developing this methodology for overburden and tailings sand dikes in a northern boreal forest ecology are given. Seed-bed preparations, seeding methods, and follow up treatments are described. Unique equipment problems were encountered on the slopes of

  3. Combustion characteristics of Occidental coal-oil mixtures

    Microsoft Academic Search

    E. W. Knell; M. N. Mansour

    1983-01-01

    Occidental Petroleum Corporation developed coal-oil mixture (COM) as a means for partial conversion of oil-burning equipment to coal. Subscale combustion tests were performed by KVB to determine the effect of COM compositional variables and firing parameters on combustion performance. COM compositional variables examined included coal and oil type, coal\\/oil ratio, coal grind size, and COM water and stabilizing additive content.

  4. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  5. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  6. Coal-sand attrition system and its' importance in fine coal cleaning

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1992-01-01

    The primary objective of this project is geared toward the substitution of steel media by fracturing silica sand as a grinding media for ultraline coal grinding. The project has been divided into four subgroups for bookkeeping purposes and possible ease of execution. Some of the tasks would be executed simultaneously as overlapping is inevitable. The grouping is as follows: (1) sample procurement, preparation, and characterization; (2) batch grinding tests; (3) continuous grinding tests; and, (4) fracture mechanics. The hardgrove indices for the four coals employed in this work have finally been determined by the personnel at the R and D Center of Drummond Coal Company using 14 [times] 28 mesh feed size materials. The values obtained for the respective coals are given in Table 1.

  7. Plant response to aqueous effluents derived from in-situ fossil-fuel processing. Part III. Three grass species and their response to Omega 9 and to five produced retort waters: oil shale, tar sands and underground coal gasification. [Basin wildrye; western wheatgrass; alkali sacaton

    SciTech Connect

    Skinner, Q.D.

    1981-12-01

    In situ produced waters collected from retorting oil shale and tar sands to produce oil and in-situ coal gasification to produce gas were tested for their effect on plant growth. Three native grass plant species were utilized for monitoring growth response. Root weight, shoot weight, total dry weight, leaf area, root/shoot ratio and shoot/leaf area ratio were parameters measured. All experiments were conducted under greenhouse conditions using hydroponic techniques and commercial grade perlite as support systems. Measurements were collected after a 10-week growth period. The hypothesis tested was, there is a difference between produced waters diluted by ground water and those where dilution is non-existent and their effect on plant growth. Results indicated that retort water diluted by ground water has a less toxic effect on plant species tested.

  8. Plant response to aqueous effluents derived from in-situ fossil-fuel processing. Part II. Five grass plant species and their response to five produced retort waters: oil shale, tar sands, and underground coal gasification. [Wildrye; wheatgrass; alkali sacaton; alkaligrass

    SciTech Connect

    Skinner, Q.D.

    1981-11-01

    In situ produced waters collected from retorting oil shale and tar sands to produce oil and in-situ coal gasification to produce gas were tested for their effect on plant growth. Five native grass plant species were utilized for monitoring growth response. Root weight, shoot weight, total dry weight, leaf area, root/shoot ratio and shoot/leaf area ratio were parameters measured. All experiments were conducted under greenhouse conditions using hydroponic techniques and commercial grade perlite as support systems. Measurements were collected after a 10 week growth period. Hypotheses tested were: (a) there is a difference between in situ produced waters, and (b) plant species respond differently to various retort waters. Results indicated that the stated hypotheses were true.

  9. Evaluation of bioremediation effectiveness on crude oil-contaminated sand.

    PubMed

    Kim, Sang-Jin; Choi, Dong Hyuk; Sim, Doo Suep; Oh, Young-Sook

    2005-05-01

    A treatability study was conducted using sea sand spiked with 3% or 6% (w/w) of Arabian light crude oil to determine the most effective bioremediation strategies for different levels of contamination. The sea sand used in the study was composed of gravel (0.1%), sand (89.0%), and silt and clay (10.9%). The water content of the sea sand was adjusted to 12.6% (w/w) for the study. Different combinations of the following treatments were applied to the sand in biometer flasks: the concentration of oil (3% or 6%), the concentration of a mixture of three oil-degrading microorganisms (Corynebacterium sp. IC-10, Sphingomonas sp. KH3-2 and Yarrowia sp. 180, 1x10(6) or 1x10(8) cells g-1 sand), the concentration of the surfactant Tween 80 (1 or 10 times the critical micelle concentration), and the addition of SRIF in a C:N:P ratio of 100:10:3. Three biometer flasks per combination of experimental conditions were incubated, and the performance of each treatment was examined by monitoring CO2 evolution, microbial activity, and oil degradation rate. The results suggest that the addition of inorganic nutrients accelerated the rate of CO2 evolution by a factor of 10. The application of oil-degrading microorganisms in a concentration greater than that of the indigenous population clearly increased biodegradation efficiency. The application of surfactant slightly enhanced the oil degradation rate in the contaminated sand treated with the higher concentration of oil-degrading microorganisms. The initial CO2 evolution rate was shown to efficiently evaluate the treatability test by providing significant data within a short period, which is critical for the rapid determination of the appropriate bioremediation approach. The measurements of microbial activity and crude oil degradation also confirmed the validity of the CO2 evolution rate as an appropriate criterion. PMID:15811413

  10. Preliminary investigation of the applicability of underground coal gasification technology for the production of oil from oil shale deposits and residual oil fields. [Near

    SciTech Connect

    Trudell, L.G.

    1986-07-01

    A preliminary investigation was conducted to find fossil fuel resources, other than tar sands and heavy oil deposits, that are suitably associated with coal for potential application of underground coal gasification (UCG) technology to provide heat for production of liquid hydrocarbons. Preliminary evaluations of UCG applications for in situ retorting of oil shale and for thermal enhanced oil recovery (EOR) from abandoned oil fields indicate large areas where deposits may be suitably associated. Major resources of Devonian-Mississippian black shales and Carboniferous coal occur in the same regions in the Appalachian Basin, Michigan Basin, Eastern Interior Basin (Illinois Basin), and possibly in eastern Oklahoma. Possibilities for UCG applications to Green River oil shales are limited to a few localities on the flanks of the Rock Springs uplift and Wamsutter arch in Wyoming and on the west edge of the Piceance Basin in Colorado. Because conventional primary and secondary oil recovery processes leave 30% to 60% of the oil in the ground, all oil fields that are suitable for thermal EOR processes and are close enough to coal deposits are potential candidates for use of UCG combustible gas and sensible heat. Such relationships are likely to occur in any of the major coal-bearing regions of the eastern United States and in many of the sedimentary basins of the Rocky Mountain coal province. Oil fields and lignite deposits may occur close together in the Gulf Coastal Plains and northern Great Plains. 19 refs., 2 figs.

  11. Getty mines oil sands in California

    Microsoft Academic Search

    Rintoul

    1983-01-01

    A large deposit of oil-laden diatomaceous earth in the McKittrick oil field 40 miles west of Bakersfield, California, has resisted all efforts at production by standard means. Getty Oil Co. is in the pilot phase of a project to recover the Diatomite's oil by an open pit mining operation. It also could have significant implications for other California oil fields,

  12. Rheology, flow and atomization of coal-oil mixtures

    Microsoft Academic Search

    M. R. Ghassemzadeh

    1980-01-01

    Samples of stable coal oil slurries have been prepared, with coal concentrations ranging from 30-50% by weight. Extensive rheological data was obtained using capillary and cone-plate viscometers for samples of coal-oil mixtures and number 6 fuel oil which served as a reference fluid. Viscosity measurements show coal oil mixtures to be shear thinning suspensions, i.e., the viscosity decreases moderately with

  13. Apparatus for separating sand and oil from a waste water stream

    Microsoft Academic Search

    C. P. Senyard; T. J. Senyard

    1986-01-01

    An apparatus is described for separating oil, gas, and sand from a waste water stream and for separating oil from oily sand in the waste water stream comprising: a. upper oil manager means for removing low pressure gas and at the same time collecting and conveying any oil separated from the waste water stream; b. sand helix means connected to

  14. Apparatus for separating sand and oil from a waste water stream

    Microsoft Academic Search

    C. P. Sr. Senyard; C. P. Jr. Senyard; T. J. Senyard

    1988-01-01

    An apparatus for separating oil, gas, and sand from a waste water stream and for separating oil from oily sand in the waste water stream is described comprising: a. upper oil manager means for removing low pressure gas and at the same time collecting and conveying any oil separated from the waste water stream; b. sand helix means connected to

  15. Flocculation of lime-treated oil sands tailings

    Microsoft Academic Search

    H. A. Hamza; D. J. Stanonik; Michael A. Kessick

    1996-01-01

    Whole oil sands tailings resulting from water-based bitumen extraction processes can be co-flocculated, after treatment with slaked lime, with low dosages of a high molecular weight anionic polyacrylamide. The resulting composite sand-clay particles settle and dewater rapidly to a stackable product that can be hand-squeezed to 40–83 wt% solids. The final solids content depends on the initial bitumen extraction process

  16. Outlook for Canadian oil sands development

    Microsoft Academic Search

    J. D. Harvie; J. H. Nichols; A. G. Winstock

    1973-01-01

    In terms of oil-in-place, the heavy oil deposits of N. Alberta rank as one of the world's great accumulations. Reserves of oil-in-place for all deposits at 800 billion bbl represents a tremendous challenge to technology. The recovery factor for the minable portion has been reasonably demonstrated while that for in situ reserves has not. Given a successful demonstration plant in

  17. Application of Rule Based Expert System to Sand Control in Oil Fields

    Microsoft Academic Search

    Lai NanjunDong; Dong Wan; Wang Jie; Xiao Xia; Lai Junhui

    2012-01-01

    The rule based expert system model, structure and sand prevention method, sand control design, the evaluation of sand control in detail, and the expert system based on rule and sand control technology of combining rule based expert system, puts forward the comprehensive analysis and evaluation of sand control system, and successfully applied in some oil field.

  18. The effects of oil sands wetlands on wood frogs (Rana sylvatica)

    Microsoft Academic Search

    Blair D. Hersikorn; Jan J. C. Ciborowski; Judit E. G. Smits

    2010-01-01

    Extraction of crude oil from oil sand produces solid (sand) and liquid (water with suspended fine particles) tailings materials, called oil sands process-affected materials (OSPM). These waste materials are stored on the mine site due to a “zero discharge” policy and must be reclaimed when operations end. The liquid tailings materials are known to contain naphthenic acids and polycyclic aromatic

  19. Microstructural characterization of a Canadian oil sand D.H., Delage2

    E-print Network

    Paris-Sud XI, Université de

    1 Microstructural characterization of a Canadian oil sand Doan1,3 D.H., Delage2 P., Nauroy1 J. Microstructural characterization of a Canadian oil sand. Canadian Geotechnical Journal, 49 (10), 1212-1220, doi:10: The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation

  20. Characterization of heavy minerals in the Athabasca oil sands

    Microsoft Academic Search

    Heather A. W. Kaminsky; Thomas H. Etsell; Douglas G. Ivey; Oladipo Omotoso

    2008-01-01

    Heavy minerals such as zircon, rutile, and ilmenite, have been observed to concentrate in the froth during the extraction of bitumen from oil sands. Consequently, the waste solids from this process are a rich source of both zirconium and titanium. While most of the zircon occurs as discrete particles, attempts at generating a high end concentrate of rutile have met

  1. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery

    Microsoft Academic Search

    N. K. Harner; T. L. Richardson; K. A. Thompson; R. J. Best; A. S. Best; J. T. Trevors

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km2 of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water\\u000a availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may\\u000a aid in our understanding of how

  2. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  3. Regional development of Canada`s oil sands

    SciTech Connect

    Hyndman, A.W. [Syncrude Canada Ltd., Alberta (Canada)

    1995-12-31

    Canada`s oil sands deposits, located in northern Alberta, are the largest heavy oil deposits in North America. The Athabasca deposit is the largest single oil deposit in the world. Production from the oil sands now totals over 425,000 barrels per day of bitumen. More than two-thirds of the total is produced from surface mining operations in the Athabasca deposit. These operations upgrade the production into light, low sulfur, partially refined, residue-free blends. Bitumen produced in situ from the other deposits is blended with condensate for pipeline shipment to refineries. In addition to the surface mining, in situ, and upgrading facilities, the substantial production base in place includes refineries, pipelines, and community infrastructure in the production areas, as well as extensive research and development programs focused on economic production from these unique resources. This infrastructure positions the oil sands for production growth with sustainable supply through the 21 century. A regional development approach will see new mines and in situ fields brought on line sequentially to replace depleted mining areas, supplying existing upgrading capacity as well as added capacity. In this way, supplies of light, low sulfur crudes and heavy sour blends can be increased, with the potential to produce a greater variety of custom blends ranging from high quality light, low sulfur, residuum free blends, to intermediate and heavy sour blends. Further development of this vast resource will ensure that Canadian petroleum supplies remain available in coming decades as conventional light oil supplies in North America continue to decline.

  4. Recent coal-oil mixture combustion tests at PETC

    SciTech Connect

    Pan, Y. S.; Bellas, G. T.; Mathur, M. P.; Joubert, J. I.; Bienstock, D.

    1980-06-01

    Coal-oil mixture combustion tests with coal concentrations of up to 50 percent were successfully conducted in a 700 horsepower watertube boiler designed originally for oil firing. A 500-h duration test with coal-oil mixture containing 40 percent coal has also been completed. No derating of the boiler occurred, carbon-conversion efficiencies were above 98 percent, and boiler efficiencies were the same as when firing No. 6 fuel oil. All combustion tests were conducted with No. 6 fuel oil mixed with Pittsburgh Seam coal pulverized to a coal particle size of 90 percent minus 200 mesh. Test results relating to boiler performance, pollutant emissions, ash deposition, and corrosion, erosion, and fouling behavior are presented.

  5. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    NASA Astrophysics Data System (ADS)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  6. Physical and biological studies of coal and oil fly ash.

    PubMed

    Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R

    1983-09-01

    Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. PMID:6641653

  7. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    PubMed Central

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the ?13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470

  8. The extraction of bitumen from western oil sands: Volume 2. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  9. The extraction of bitumen from western oil sands: Volume 1. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  10. Determination of sulfur heterocycles in coal liquids and shale oils

    Microsoft Academic Search

    Cherylyn. Willey; Masatomo. Iwao; Raymond N. Castle; Milton L. Lee

    1981-01-01

    Sulfur heterocycles are found in low concentrations in most coal-derived liquids and shale oils, and therefore, isolation of the heterocyclic sulfur fraction is necessary for individual compound identification. A new methodology for the isolation and subsequent separation and identification of sulfur heterocycles is described and applied to selected coal liquids and shale oils. Identification was accomplished by sulfur-selective flame photometric

  11. Zebra processes of oil recovery using fireflood and waterflood in alternate sands in a multi-sand environment

    SciTech Connect

    Chu, C. [Texaco, Inc., Houston, TX (United States)

    1995-12-31

    This paper presents a new process of oil recovery, namely, the zebra process, which is specifically advantageous to use in heavy oil reservoirs that exist in multiple sands. This process uses firefloods and waterfloods in alternate sands. The firefloods serve as formation preheaters which reduce the oil viscosities in the neighboring sands so that these sands, normally not amenable to waterfloods because of high viscosity, can be waterflooded with ease. The exciting news is that the air compression cost in firefloods can be reduced by a factor of three with a proper application of the zebra process. This great savings in air compression cost is possible because the heat that is normally lost to the overburden and underburden in firefloods is now being put to good use, by preheating the neighboring sands. Examples are given on zebraing several idealized sand-shale sequences involving three-, five-, six-, and seven-sand reservoirs, and also zebraing two actual sand-shale sequences, both involving five-sand reservoirs.

  12. Coal-sand attrition system and its` importance in fine coal cleaning. Eighth quarterly report, June 1, 1992--August 31, 1993

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1993-08-26

    The research efforts on the importance of a coal-sand attrition continued with work in four categories: Continuous grinding tests using steel media; fracture tests on coal samples compacted at different pressure; SEM-Image analysis of feed and ground product coal samples; zeta potential measurements of coal samples ground by different media, and flotation test of coal samples ground by different media. Results are described.

  13. Oil and coal price shocks and coal industry returns: international evidence

    Microsoft Academic Search

    Ronald A Ratti; Mohammad Zahidul Hasan

    2011-01-01

    This paper examines the effect of energy price shocks on coal sector stock returns and supplements studies evaluating the effect of oil prices on the stock price of oil and gas companies. A 1% increase in coal price return raises coal sector returns by between 0.22% and 0.30%. This result is robust across developed, emerging and differing groups of Asia-Pacific

  14. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  15. Cheap oil cools interest in coal-water fuel

    SciTech Connect

    Smock, R.

    1986-02-01

    Plummeting oil prices have put coal-water fuels on the utility industry's shelf. East coast utilities that have evaluated coal-water fuel (CWF) as a replacement for oil say it looks great on all counts except cost. SWF technology has been under development for the last decade as a method for switching to coal in older power plants unable to convert to direct coal burning because they have small boilers designed to burn oil. It finally appears to be ready for commercial application, but the market has lost interest. The few utilities still burning any appreciable amounts of oil see no economic incentive over the near term to incur the costs of switching to a coal-water mixture.

  16. Coal-sand attrition system and its` importance in fine coal cleaning. Quarterly report, May 31, 1991--August 31, 1992

    SciTech Connect

    Mehta, R.K.; Schultz, C.W.

    1992-12-01

    The primary objective of this project is geared toward the substitution of steel media by fracturing silica sand as a grinding media for ultraline coal grinding. The project has been divided into four subgroups for bookkeeping purposes and possible ease of execution. Some of the tasks would be executed simultaneously as overlapping is inevitable. The grouping is as follows: (1) sample procurement, preparation, and characterization; (2) batch grinding tests; (3) continuous grinding tests; and, (4) fracture mechanics. The hardgrove indices for the four coals employed in this work have finally been determined by the personnel at the R and D Center of Drummond Coal Company using 14 {times} 28 mesh feed size materials. The values obtained for the respective coals are given in Table 1.

  17. Development and evaluation of highly-loaded coal slurries. [Coal-fuel oils, coal-fuel oils-water and coal-water

    SciTech Connect

    McHale, E.T.

    1980-05-01

    For the past two and one-half years Atlantic Research has been conducting a research program which involved development and combustion of slurries of coal in oil and in water. In Phase II good candidate slurries chosen from Phase I were burned in an experimental furnace and their combustion performance evaluated. Two slurry fuels were chosen for the combustion study. One consisted of a 50/40/10 (weight) coal/oil/water mixture, and the other was a 65/35 coal/water slurry stabilized with modified corn starch. The emphasis was placed on the coal/water slurry. Firings were conducted in a one MMBTUH experimental furnace constructed and instrumented for the purpose. A specially designed swirl burner/atomizer was developed for use with the coal/water slurry. Both slurries were burned successfully. Numerous firings were performed of up to one-half duration each. In the case of the coal/water slurry a small amount of gas assist was usually used, although this was eliminated in several shorter duration tests. Thermochemical calculations for coal/water slurries are presented. The presence of water in the slurry represents a relatively small energy penalty. A slurry made from a good coal will have a calorific value in the range of 10,000 Btu/lb. The heat required to vaporize the water of a 70/30 mixture is only about 300 Btu/lb slurry, or about 3 percent. Analysis of the results led to the conclusion that significant improvement in the burning maybe achievable, possibly to the point where combustion rates would be comparable to those of heavy oil. Because of the availability of coal, its cost advantage relative to oil, and especially because of the ease of handling of a liquid fuel, coal/water slurry appears to have considerable potential as a future fuel.

  18. Nuclear Technology and Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    Microsoft Academic Search

    A. E. FINAN; K. MIU; A. C. KADAK

    2006-01-01

    This report analyzes the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed for a Canadian oil sands extraction facility using Steam-Assisted Gravity Drainage (SAGD) technology. The energy from the nuclear reactor would replace the energy supplied by natural gas, which is currently burned at these facilities. There are a number of concerns surrounding the

  19. Microbial methanogenesis in subsurface oil and coal.

    PubMed

    Meslé, Margaux; Dromart, Gilles; Oger, Philippe

    2013-11-01

    It is now clear that active methanogens are present in the deep-subsurface. This paper reviews microbial population structures and the biodegradation of organic compounds to methane in situ within oil reservoirs and coal deposits. It summarizes our current knowledge of methanogenes and methanogenesis, fermenters, synthrophs and microbial metabolism of complex organic compounds in these two widely occurring organic-rich subsurface environments. This review is not intended to be an exhaustive report of microbial diversity. Rather, it illustrates the similarities and differences between the two environments with specific examples, from the nature of the organic molecules to the methanogenic metabolic pathways and the structure of the microbial populations to demonstrate that widely diverging microbial populations show surprisingly similar metabolic capabilities. PMID:23872511

  20. Photoacoustic infrared spectroscopy of Syncrude post-extraction oil sand.

    PubMed

    Michaelian, Kirk H; Hall, Robert H; Kenny, Kimberly I

    2006-06-01

    Rapid- and step-scan photoacoustic (PA) infrared spectra of three fractions of a Syncrude post-extraction oil sand were analyzed in detail in this work. The rapid-scan spectra showed that the samples were comprised primarily of kaolinite, quartz, silica, siderite, and residual hydrocarbons, and that the proportions of these constituents were different for each fraction. Depth profiling of the three post-extraction oil sands was accomplished using both rapid- and step-scan PA infrared spectroscopy. The results confirmed that kaolinite is more abundant in the near-surface region, whereas quartz and hydrocarbons are concentrated at greater depths. The modulation frequency dependence of the PA intensities for all three fractions was consistent with a model in which the samples are thermally thick; in other words, the thermal diffusion length (roughly equal to the sampling depth) was less than the particle sizes of all three samples. The results of this study are consistent with published reports on the PA infrared spectra of fine tailings generated during bitumen extraction and the spectroscopic and thermophysical characterization of clay soils and an appropriate model clay. PMID:16388979

  1. Processing of Arroyo Grande tar sand using the Recycle Oil Pyrolysis and Extraction (ROPE copyright ) process

    SciTech Connect

    King, S.B.

    1989-12-01

    The objectives of this study are to (1) evaluate the applications of the ROPE{copyright} process to a California tar sand using the screw pyrolysis reactor-process development unit (SPR-PDU) reactor, (2) produce kinetics data for the recycle product oil-spent sand interaction, and (3) produce oil for end-use evaluation. 6 refs., 1 fig., 23 tabs.

  2. Ensemble-approaches for clustering health status of oil sand pumps F. Di Maio a

    E-print Network

    Paris-Sud XI, Université de

    1 Ensemble-approaches for clustering health status of oil sand pumps F. Di Maio a , J. Hu b , P are widely used in the oil sand industry, mining, ore processing, waste treatment, cement production, 1999; Hancock et al., 2006]. This work evolved from a particular need in industry to monitor the health

  3. Phytotoxicity of oil sands naphthenic acids and dissipation from systems planted with emergent aquatic macrophytes

    Microsoft Academic Search

    Sarah A. Armstrong; John V. Headley; Kerry M. Peru; James J. Germida

    2007-01-01

    Differences in dissipation and phytotoxicity were measured for two naphthenic acid mixtures in hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus). One of the naphthenic acid (NA) mixtures was extracted from tailings pond water of an oil sands operation in Fort McMurray, Alberta, Canada. The other mixture was a commercially available NA mixture. While the oil sands

  4. Ozonation of oil sands process water removes naphthenic acids and toxicity

    Microsoft Academic Search

    Angela C. Scott; Warren Zubot; Michael D. MacKinnon; Daniel W. Smith; Phillip M. Fedorak

    2008-01-01

    Naphthenic acids are naturally-occurring, aliphatic or alicyclic carboxylic acids found in petroleum. Water used to extract bitumen from the Athabasca oil sands becomes toxic to various organisms due to the presence of naphthenic acids released from the bitumen. Natural biodegradation was expected to be the most cost-effective method for reducing the toxicity of the oil sands process water (OSPW). However,

  5. Fathead minnow ( Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters

    Microsoft Academic Search

    Richard J. Kavanagh; Richard A. Frank; Ken D. Oakes; Mark R. Servos; Rozlyn F. Young; Phillip M. Fedorak; Mike D. MacKinnon; Keith R. Solomon; D. George Dixon; Glen Van Der Kraak

    2011-01-01

    Large volumes of fluid tailings are generated during the extraction of bitumen from oil sands. As part of their reclamation plan, oil sands operators in Alberta propose to transfer these fluid tailings to end pit lakes and, over time, these are expected to develop lake habitats with productive capabilities comparable to natural lakes in the region. This study evaluates the

  6. Heterotrophic Potentials and Hydrocarbon Biodegradation Potentials of Sediment Microorganisms Within the Athabasca Oil Sands Deposit

    PubMed Central

    Wyndham, R. C.; Costerton, J. W.

    1981-01-01

    Techniques for the enumeration and the determination of the potential activity of disturbed sediment mixed populations at control sites and sites within the Athabasca oil sands formation were applied to August and December samples. These techniques included the determination of general heterotrophic potential for the assimilation and respiration of glutamate, which indicated no oil sand-related changes in the sediments but which indicated a significant seasonal change. Enumeration by epifluorescence direct counts, oil sand hydrocarbon plate counts, and most-probable-number determinations of [14C]hexadecane and [14C]-naphthalene degraders indicated that only the plate count was sensitive to increased numbers of oil sand-related hydrocarbon-oxidizing microorganisms within the oil sands deposit. Unlike the most probable number determinations of [14C]hexadecane and [14C]naphthalene degraders, however, the biodegradation potential results of these substrates indicated a significant increase in activity at oil sands sites. These biodegradation potentials also showed a marked seasonal fluctuation. Although the biodegradation potentials and the endogenous hydrocarbon plate counts indicated an oil sand-adapted mixed sediment population, the results of these techniques did not correlate well with the concentrations of bituminous hydrocarbons in the sediments. The results suggest that a general capability for hydrocarbon oxidation exists in the Athabasca River system and that this capability is enhanced within the natural bounds of the Athabasca oil sands. Images PMID:16345737

  7. Effect of Salt on the Flocculation Behavior of Nano Particles in Oil Sands Fine Tailings

    Microsoft Academic Search

    L. S. Kotylar; B. D. SPARKS; R. SCHUTFE

    1996-01-01

    Currently, two commercial plants, operating in the Athabasca region of Alberta, produce approximately 20 percent of Canada's petroleum requirements from oil sands. Surface mined oil sand is treated in a water based separation process that yields large volumes of clay tailings with poor settling and compaction characteristics. Clay particles, suspended in the pond water, interact with salts, dissolved from the

  8. Effects of wastewater from an oil-sand-refining operation on survival, hematology, gill histology,

    E-print Network

    Farrell, Anthony P.

    Effects of wastewater from an oil-sand-refining operation on survival, hematology, gill histology the effects of various types of wastewater produced in oil-sand-refining on the survival, hematology, gill. In con- trast, all fish did not survive a 28-day period in any of the wastewaters tested and, in some

  9. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins

    Microsoft Academic Search

    A. U Crowe; B Han; A. R Kermode; L. I Bendell-Young; A. L Plant

    2001-01-01

    The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to

  10. Sand-wear resistance of brush electroplated nanocomposite coating in oil and its application to remanufacturing

    Microsoft Academic Search

    Shi-yun Dong; Bin-shi Xu; Ling-zhong Du; Hua Yang

    2005-01-01

    Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3\\/Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant, comparing\\u000a with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn\\u000a volume of the three materials, and also coating surface roughness on

  11. Alberta bound : the interface between Alberta's environmental policies and the environmental management of three Albertan oil sands companies

    E-print Network

    Lemphers, Nathan C

    2009-01-01

    The Athabasca Oil Sands, located in northeastern Alberta, Canada, were for many years anomalous. Two oil sands operators developed their extraction techniques for 30 years, refining their technology before production became ...

  12. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 m) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand fluxes in the experimental plots under different wind speeds (5 to 9 m s-2) showed significant differences in favor of the treatment of coal fly-ash + biocrusts inoculum, compared to the controls (sand, sand + biocrusts and sand + coal fly-ash).

  13. Research of Coal Substituting Oil (Natural Gas) in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng

    The complexion that coal gives priority to others resource is decided by the energy production and consume structure. It is difficult to change in the future. With the economy growth, the energy demand is increasing, especially the oil and natural gas. But the resource condition of oil and natural gas are not optimism, domestic production is satisfy to the energy demand difficultly, the direct way is by the import. However the import is affected by the international energy subsituation, and it can affect the energy safety. Whereas the abundant coal resource, the coal can substitute the oil(natural gas).It not only cuts down the dependence on the overseas energy, but also builds up the safety. So, applying the trans-log production function, the text analyses the substitution among capital, coal, oil and natural gas in China.

  14. Resource development in Alberta: Opportunities, impediments, and strategies for oil sands

    SciTech Connect

    Yildirim, E. [Alberta Chamber of Resources, Edmonton (Canada)

    1995-12-31

    Alberta Chamber of Resources has represented the private sector resource interests of the Province of Alberta for almost 60 years. In the early 1980s, the Chamber identified Alberta`s oil sands as the priority mineral resource for further development during that decade. Towards this end, a Task Force of industry and government representatives was set up in 1984 to promote oil sands development. One objective of the Task Force was to identify and publicize the social and economic benefits of oil sands operations. During the last ten years, the Chamber has proposed new approaches to oil sands development, including the {open_quotes}Concept of a Regional Upgrader and Satellite Production Facilities,{close_quotes} initiated detailed studies, and published reports and position papers. More recently, the Chamber has focused on technology requirements for oil sands which have led to the development of viable strategies. Since then, the R&D strategies for oil sands have been an area of serious programs and initiatives which have been directed towards the formation of an R&D network and strategic alliances in Alberta. In 1993, a {open_quotes}National Task Force on Oil Sands Strategies{close_quotes} was formed by the Alberta Chamber of Resources, on behalf of both the government and the private sector. The Task Force`s objective is to act as a catalyst for the further development of Canada`s immense oil sands resources. This paper summarizes briefly the various initiatives and programs for the promotion of oil sands and oil sands technologies, outlines the formation and the mission of the National Task Force, and focuses on impediments and opportunities for development and offers strategies and recommendations for the future.

  15. Nuclear Technology and Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    SciTech Connect

    FINAN, A.E.; MIU, K.; KADAK, A.C. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering 77 Massachusetts Avenue, 24-105 Cambridge, MA 02139-4307 (United States)

    2006-07-01

    This report analyzes the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed for a Canadian oil sands extraction facility using Steam-Assisted Gravity Drainage (SAGD) technology. The energy from the nuclear reactor would replace the energy supplied by natural gas, which is currently burned at these facilities. There are a number of concerns surrounding the continued use of natural gas, including carbon dioxide emissions and increasing gas prices. Three scenarios for the use of the reactor are analyzed:(1) using the reactor to produce only the steam needed for the SAGD process; (2) using the reactor to produce steam as well as electricity for the oil sands facility; and (3) using the reactor to produce steam, electricity, and hydrogen for upgrading the bitumen from the oil sands to syncrude, a material similar to conventional crude oil. Three reactor designs were down-selected from available options to meet the expected mission demands and siting requirements. These include the Canadian ACR- 700, Westinghouse's AP 600 and the Pebble Bed Modular Reactor (PBMR). The report shows that nuclear energy would be feasible, practical, and economical for use at an oil sands facility. Nuclear energy is two to three times cheaper than natural gas for each of the three scenarios analyzed. Also, by using nuclear energy instead of natural gas, a plant producing 100,000 barrels of bitumen per day would prevent up to 100 mega-tonnes of CO{sub 2} per year from being released into the atmosphere. (authors)

  16. Nearshore dynamics of artificial sand and oil agglomerates.

    PubMed

    Dalyander, P Soupy; Plant, Nathaniel G; Long, Joseph W; McLaughlin, Molly

    2015-07-15

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles. PMID:25956438

  17. Pretreatment of coal and recycle oil for direct liquefaction

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Robbins, G.A.; Burke, F.P. [CONSOL, Inc., Library, PA (United States); Kottenstette, R.J.; Stephens, H.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-07-01

    A research and development program is being conducted by the University of Kentucky/Center for Applied Energy Research, Sandia National Laboratories, LDP Associates and CONSOL Inc. to improve current coal liquefaction technology by physical and chemical pretreatments of the coal and recycle oil. These pretreatment steps include: (1) agglomeration of the coal with ash-containing recycle oil to simultaneously reject coal ash and recycle-oil ash, (2) fluid coking of the distillation bottoms (ash-purge) stream and recycle of the coker overhead, (3) dewaxing of the distillate portion of the recycle oil, and (4) low-severity hydrotreatment of the coker overhead and dewaxed oil using hydrogen from an in-situ water-gas shift reaction. These pretreatment steps will remove the ash and unconverted coal, reducing the ash load in the system and simultaneously recovering the maximum amount of organics. Dewaxing and hydrotreatment will yield a high-quality recycle oil distillate. These pretreatment steps are being evaluated technically and economically to develop an improved conceptual liquefaction process. The baseline process to which the improved process will be compared is the Two-Stage Liquefaction Process as it was practiced at the Wilsonville, AL, USA Advanced Coal Liquefaction Test Facility.

  18. Disease and Gill Lesions in Yellow Perch ( Perca flavescens) Exposed to Oil Sands Mining-Associated Waters

    Microsoft Academic Search

    M. R. van den Heuvel; M. Power; J. Richards; M. MacKinnon; D. G. Dixon

    2000-01-01

    Adult yellow perch were stocked into experimental ponds designed to test the biological effects of aquatic reclamation alternatives currently being pursued by the oil sands mining industry. Water-quality characteristics of oil sands-influenced water in the experimental ponds included increased salinity and elevated trace organics associated with raw oil sands (bitumen). After 3 and 10 months of exposure to affected waters,

  19. Liptinite in coal and oil source rocks in northern Thailand

    NASA Astrophysics Data System (ADS)

    Ratanasthien, Benjavun; Kandharosa, Withaya; Chompusri, Sujintana; Chartprasert, Siraprapa

    1999-04-01

    Palynological study of northern Thailand coal and oil deposits indicates a similar palynological association to that of the Borneo region. Coal petrographic studies of these deposits show variations in the liptinite macerals, especially alginite types. The oldest of these coal and oil deposits, which are of Late Oligocene to Early Miocene age, are dominated by Botryococcus sp. or Botryococcus-related algae. Thick-walled lamaginites and spores and pollen of temperate affinity, are found in some areas. By contrast, thin-walled lamaginite is dominant in late Middle Miocene time. Resinite, suberinite, and cutinite are dominant in forest swamp coal deposits whereas alginite, cutinite and lycopodium spores are dominant in lacustrine environments. Exsudatinite is common even at early levels of maturation. These liptinite macerals can be major sources of oil and gas.

  20. Physical and biological studies of coal and oil fly ash.

    PubMed Central

    Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R

    1983-01-01

    Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. Images FIGURE 2. A FIGURE 2. B FIGURE 2. C FIGURE 2. D PMID:6641653

  1. 1170-MW(t) HTGR-PS/C plant application study report: tar sands oil recovery application

    SciTech Connect

    Rao, R.; McMain, Jr., A. T.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to tar sands oil recovery and upgrading. The raw product recovered from the sands is a heavy, sour bitumen; upgrading, which involves coking and hydrodesulfurization, produces a synthetic crude (refinable by current technology) and petroleum coke. Steam and electric power are required for the recovery and upgrading process. Proposed and commercial plants would purchase electric power from local utilities and obtain from boilers fired with coal and with by-product fuels produced by the upgrading. This study shows that an HTGR-PS/C represents a more economical source of steam and electric power.

  2. The regeneration of waste foundry sand and residue stabilization using coal refuse.

    PubMed

    Park, Chong-Lyuck; Kim, Byoung-Gon; Yu, Youngchul

    2012-02-15

    The processes for recycling waste foundry sand are divided between regeneration and beneficial reuse, and the potential for regeneration is higher than that of reuse. In this study, two processes for the recycling and residue stabilization of waste foundry sands were considered. One is the dry mechanical process for recycling, and the other is the stabilization process for powdered residue. The dry mechanical process of regeneration consists of crushing, grinding, separation, and classification. To stabilize the residues that were generated through the regeneration process, powdered residues were pelletized by a high-shear pelletizer, and the surfaces of the pellets were subsequently coated with coal refuse powders that contained sodium silicate as a binder. Coated pellets were sintered by a self-propagating combustion method. The refractory index of the recycled sands, as measured by the Seger cone method, was over -34, and their SiO(2) contents of 94% was similar to that of green sand. The general conclusion that coal refuse and sodium silicate stabilize heavy metals better than other processes may lead to the development of a cost-effective solution for stabilizing heavy metals in residues. PMID:22197564

  3. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.

    PubMed

    Noah, Mareike; Lappé, Michael; Schneider, Beate; Vieth-Hillebrand, Andrea; Wilkes, Heinz; Kallmeyer, Jens

    2014-11-15

    Recultivation of disturbed oil sand mining areas is an issue of increasing importance. Nevertheless only little is known about the fate of organic matter, cell abundances and microbial community structures during oil sand processing, tailings management and initial soil development on reclamation sites. Thus the focus of this work is on biogeochemical changes of mined oil sands through the entire process chain until its use as substratum for newly developing soils on reclamation sites. Therefore, oil sand, mature fine tailings (MFTs) from tailings ponds and drying cells and tailings sand covered with peat-mineral mix (PMM) as part of land reclamation were analyzed. The sample set was selected to address the question whether changes in the above-mentioned biogeochemical parameters can be related to oil sand processing or biological processes and how these changes influence microbial activities and soil development. GC-MS analyses of oil-derived biomarkers reveal that these compounds remain unaffected by oil sand processing and biological activity. In contrast, changes in polycyclic aromatic hydrocarbon (PAH) abundance and pattern can be observed along the process chain. Especially naphthalenes, phenanthrenes and chrysenes are altered or absent on reclamation sites. Furthermore, root-bearing horizons on reclamation sites exhibit cell abundances at least ten times higher (10(8) to 10(9) cells g(-1)) than in oil sand and MFT samples (10(7) cells g(-1)) and show a higher diversity in their microbial community structure. Nitrate in the pore water and roots derived from the PMM seem to be the most important stimulants for microbial growth. The combined data show that the observed compositional changes are mostly related to biological activity and the addition of exogenous organic components (PMM), whereas oil extraction, tailings dewatering and compaction do not have significant influences on the evaluated compounds. Microbial community composition remains relatively stable through the entire process chain. PMID:25201817

  4. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment

    PubMed Central

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R.; Pardue, John H.

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents <2% and molar C:N ratios from 131–323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2–8 year?1) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture, salinity, terminal electron acceptors, nutrient, and oil composition) due, in part, to their location on the landscape. PMID:24782849

  5. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  6. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  7. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-print Network

    Lacombe, Romain H.

    2007-01-01

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  8. Method for Extraction and Multielement Analysis of Hypogymnia Physodes Samples from the Athabasca Oil Sands Region

    EPA Science Inventory

    A microwave-assisted digestion technique followed by ICPMS (inductively coupled plasma-mass spectrometry) analysis was used to measure concentrations of 43 elements in Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canad...

  9. Oil's new rival - coal-water slurry for utility boilers

    Microsoft Academic Search

    T. Moore; R. Manfred

    2009-01-01

    Coal-water slurries (CWS), composed of about 70-75% coal, 24-29% water, and 1% chemical additives, offer utilities an alternative to burning oil for power generation. The CWS process has advanced through the pilot plant stage in a little over five years, and now needs a utility demonstration to show that stable combustion flame can be maintained at full and partial loads,

  10. Oil from sand: an alternate energy source begins to pay off

    Microsoft Academic Search

    Markun

    2009-01-01

    Progress on the mining of 7000 acres of oil-impregnated sand by Syncrude Canada Ltd. in Alberta is reported. The project is on schedule presently, timewise and moneywise. The completion date is set for mid-1978. The cost is expected to be $2.4 billion, including an attendant utilities plant. A neighboring plant, the Great Canadian Oil Sands Ltd., has been operating since

  11. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  12. Sand pack residual oil saturations as affected by extraction with various solvents

    E-print Network

    Murray, Clarence

    1958-01-01

    LIBRARY S 4 M COLLEGE OF TEXAS SAND PACK RESIDUAL OIL SATURATIONS AS AFFECTED BY EXTRACTION WITH VARIOUS SOLVENTS A Thesis CLARENCE MURRAY, JR. Submitted to the Graduate School of The Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August, I958 Major Subject: Petroleum Engineering SAND PACK RESIDUAL OIL SAT URATIONS AS AFFECTED BY EXTRACTION WITH VARIOUS SOLVENTS A Thesis By CLARENCE MURRAY, JR. Approved...

  13. Ecohydrology applications to ecosystem reconstruction after oil-sand mining

    NASA Astrophysics Data System (ADS)

    Mendoza, Carl; Devito, Kevin

    2014-05-01

    Oil-sand deposits in northeast Alberta, Canada comprise some of the world's largest oil reserves. Open-pit mining of these resources leads to waste-rock piles, tailings ponds and open pits that must be reclaimed to "equivalent landscape capability", with viable forests and wetlands, using only native vegetation. Understanding ecohydrological processes in natural systems is critical for designing the necessary landforms and landscapes. A challenge is the cold, sub-humid climate, with highly variable precipitation. Furthermore, there are competing demands, needs or uses for water, in both quantity and quality, for reclamation and sustainability of forestlands, wetlands and end-pit lakes. On average there is a potential water deficit in the region, yet wetlands cover half of the undisturbed environment. Water budget analyses demonstrate that, although somewhat unpredictable and uncontrollable, the magnitude and timing of water delivery largely control water storage and conservation within the landscape. The opportunity is to design and manipulate these reconstructed landscapes so that water is stored and conserved, and water quality is naturally managed. Heterogeneous geologic materials can be arranged and layered, and landforms sculpted, to minimize runoff, enhance infiltration, and promote surface and subsurface storage. Similarly, discharge of poor quality water can be minimized or focused. And, appropriate vegetation choices are necessary to conserve water on the landscape. To achieve these ends, careful attention must be paid to the entire water budget, the variability in its components, interconnections between hydrologic units, in both space and time, and coupled vegetation processes. To date our knowledge is guided primarily by natural analogues. To move forward, it is apparent that numerous priorities and constraints, which are potentially competing, must be addressed. These include geotechnical and operational requirements, material limitations or excesses, time, money and performance expectations. Careful landform design and integration of ecohydrological principles can be used to address some of these issues.

  14. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-01

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (?35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air. PMID:25844542

  15. The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California

    E-print Network

    Washburn, Libe

    pollution sources. A field of strong hydrocarbon seepage offshore of Coal Oil Point near Santa Barbara in the Coal Oil Point field to measure directly the atmospheric gas flux from three seeps of varying size the Coal Oil Point field based on estimates from previous studies. q 2005 Elsevier Ltd. All rights reserved

  16. Draft Genome Sequences for Oil-Degrading Bacterial Strains from Beach Sands Impacted by the Deepwater Horizon Oil Spill

    PubMed Central

    Overholt, Will A.; Green, Stefan J.; Marks, Kala P.; Venkatraman, Raghavee; Prakash, Om

    2013-01-01

    We report the draft genome sequences of 10 proteobacterial strains isolated from beach sands contaminated with crude oil discharged from the Deepwater Horizon spill, which were cultivated under aerobic and anaerobic conditions with crude oil as the sole carbon source. All strains contain multiple putative genes belonging to hydrocarbon degradation pathways. PMID:24356826

  17. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  18. Polymerization in narrow fractions of coal tar wash-oil

    SciTech Connect

    Volkov, E.L.; Akulov, P.V.; Zhilyaev, Yu. A.; Samarkina, A.A.

    1981-01-01

    Certain changes take place in coal tar wash-oil as it is circulated through the benzol hydrocarbons recovery and distillation cycle. It undergoes condensation, loses much of its light distillates content and attains a higher cp. One major problem with coal tar wash-oil is its tendency to form polymers as it circulates through the processing cycle and comes into contact with coke-oven gas. The polymerization rate is affected by a number of factors relating to the composition of the wash-oil, the concentrations in the coke-oven gas of components capable of promoting condensation and the operating conditions in the processing cycle. It has been shown that H/sub 2/S and O/sub 2/ in the coke-oven gas greatly accelerate polymerization processes in the wash-oil. Cyanide compounds and oxides of nitrogen also impair the quality of coal tar wash-oil.The deterioration of wash-oil in circulation leads to a serious rise in its cp and the rapid build-up of deposits on the scrubber packings, with serious effects on the performances of the benzol recovery and distillation sections. We have attempted to evaluate the polymerization tendencies of individual narrow wash-oil fractions. The tests were planned to simulate the conditions under which wash-oil can condense and polymerize. The results show that polymerization proceeds most rapidly in the fractions boiling at 280 to 285 and 285 to 295/sup 0/C. They rapidly increase in density and viscosity and lower the quality of the entire oil. The most stable fractions in respect of polymerization are those boiling up to 270/sup 0/C and up to 280/sup 0/C. These tests have shown that wash-oil boiling up to 280/sup 0/C is the least liable to polymerization; its processing quality is superior and the specific consumption can thus be reduced.

  19. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  20. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  1. Evolution of gas, oil and coal

    SciTech Connect

    Scarbourough, A.

    1983-12-01

    The Fossil Fuels Theory was conceived in the 1830's by William E. Logan. Under each of nearly 100 coal seams, he observed a bed of bleached clay that contained a tangled mass of long, fibrous casts ''with a thin coating of carbonaceous matter.'' Plant fossils and imprints were found throughout the coal. His conclusion that plants turned into coal seemed logical. In the 1920's, a biochemist, J.B.S. Haldane added to this concept by theorizing that petroleum was created from tiny marine organisms. It was then logical to conclude that natural gas was a product of decomposition of plants and animals. Over the years, a significant amount of subtle, yet distinct, evidence that argues against the validity of the FFT has accumulated in the literature. These arguments have been condensed into six critical points in this presentation. For example, the FFT is based on the supposition that plants died and became a mass of compacted, decayed vegetable matter during the initial stages of coal formation. If this were true, the original structural integrity of the plants' imprints could not have been preserved as they were in the coal.

  2. Coal and oil mixture injection into blast furnace

    Microsoft Academic Search

    S. Yabe; I. Kurashige; T. Miyazaki; T. Iba; M. Kojima; Y. Shoji; Y. Kamei

    1981-01-01

    The results of the transportation loop tests indicate that the pressure drop of coal oil mixture (COM) in the pipe can be precisely estimated under the condition that the rheological characteristics of COM are determined by a pseudo-plastic fluid model and the apparent viscosity is measured by the cone and plate viscometer. Through the COM combustion test by LBF it

  3. Integration of nuclear power with oil sands extraction projects in Canada

    E-print Network

    Finan, Ashley (Ashley E.)

    2007-01-01

    One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

  4. Do Massive Oil Sands Developments in a Northern Watershed Lead to an Impending Crisis?

    Microsoft Academic Search

    S. W. Kienzle; J. Byrne; D. Schindler; P. Komers

    2005-01-01

    Oil sands developments in northern Alberta are land disruptions of massive proportions, with potentially major impacts on watersheds. Alberta has one of the largest known oil reserves in the world, and developments have about 25,000 sqkm of lease areas, and have approvals for plants to develop over half a million ha (or 54 townships). This is 91% the size of

  5. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles). PMID:24632369

  6. Suspensions in the hot water flotation process for Canadian oil sands

    SciTech Connect

    Shaw, R.C.; Czarnecki, J. [Edmonton Research Centre, Alberta (Canada); Schramm, L.L. [Petroleum Recovery Inst., Calgary, Alberta (Canada)

    1996-12-31

    Suspensions are created and must be processed during the application of the hot water flotation process to Canada`s Athabasca oil sands, a large-scale commercial application of mined oil sands technology. These suspensions are more than just two-phase dispersions, being comprised of not only solids and water but also dispersed oil and gas. As such, they form interesting petroleum industry suspensions. A review of the hot water flotation process is presented with an emphasis on the occurrence, nature, and properties of suspensions. 94 refs., 25 figs., 1 tab.

  7. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?

    PubMed

    Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee

    2014-06-15

    The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region. PMID:24694323

  8. Sand pack residual oil saturations as affected by extraction with various solvents 

    E-print Network

    Murray, Clarence

    1958-01-01

    included kerosene, East Texas Crude and Sradford Crude as saturat- ing oOs and pyridine, acetone, liquid butane? toluene, carbon tetra chlorides carbon bisulfMe, chloroform and petroleum ether as solvents . Results of waterflooding tests indicated..., and air pressure was main tained on the supply reservoirs for a minimum time. Tbe fluids used to saturate the sand packs were tap water, kerosene, Sradford crude and topped East Texas crude oil, Organic solvents used to extract the sand packs were...

  9. Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas).

    PubMed

    Colavecchia, Maria V; Backus, Sean M; Hodson, Peter V; Parrott, Joanne L

    2004-07-01

    The present study examines the effects of exposure to oil sands on the early life stages (ELS) of fathead minnows (Pimephales promelas). Sediments within and outside natural oil sand deposits were collected from sites along the Athabasca River (AB, Canada). The ELS toxicity tests were conducted with control water, natural oil sands, reference sediments, and oil-refining wastewater pond sediments. Eggs and larvae were exposed to 0.05 to 25.0 g sediment/L and observed for mortality, hatching, malformations, growth, and cytochrome P4501A induction as measured by immunohistochemistry. Natural bitumen and wastewater pond sediments caused significant hatching alterations and exposure-related increases in ELS mortality, malformations, and reduced size. Larval deformities included edemas, hemorrhages, and spinal malformations. Exposure to reference sediments and controls showed negligible embryo mortality and malformations and excellent larval survival. Sediment analyses using gas chromatography-mass spectrometry revealed high concentrations of alkyl-substituted polyaromatic hydrocarbons (PAHs) compared to unsubstituted PAHs in natural oil sands (220-360 microg/g) and oil-mining wastewater pond sediments (1,300 microg/g). The ELS sediment toxicity tests are rapid and sensitive bioassays that are useful in the assessment of petroleum toxicity to aquatic organisms. PMID:15230323

  10. Instantaneous stabilization of floating oils by surface application of natural granular materials (beach sand and limestone).

    PubMed

    Boglaienko, Daria; Tansel, Berrin

    2015-02-15

    When granular materials are applied to hydrophobic liquids floating over another liquid (i.e., water), particles form aggregates which can be separated from the floating phase. This concept can be used for controlling mobility of floating oils, especially after oil spills near coastal areas. The objectives of this research were to characterize oil capture efficiency and determine effectiveness of particles for converting the floating phase to a heavier phase for effective separation. Experiments were conducted with South Louisiana crude oil contaminated salt water, limestone and quartz sand. Although the oil removal efficiency increased with the increasing amount of granular material applied, it did not increase linearly. About 50% of the floating oil was removed by aggregates, regardless of the material used, when granular material to floating oil ratio was about 1 g/g. The aggregates separated had higher amounts of oil content when smaller amounts of granular materials were added. PMID:25555617

  11. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  12. Investigation of the ROPE copyright (Recycle Oil Pyrolysis and Extraction) process performance on Sunnyside tar sand

    SciTech Connect

    Cha, C.Y.; Johnson, L.A. Jr.; Guffey, F.D.

    1990-07-01

    The main objectives of this research were to determine the optimum pyrolysis temperature for Sunnyside tar sand and to verify the operability and efficiency of the ROPE process at steady-state conditions for production of feedstock materials. The experiments were conducted in the 2-inch screw pyrolysis reactor (SPR). Four 24-hour tests and one 105-hour test were performed in the 2-inch SPR using Sunnyside tar sand. The 24-hour tests were designed to predict the optimum pyrolysis temperature for oil yield. The 105-hour test was conducted to confirm the optimum pyrolysis temperature with sufficient operating time to reach steady-state conditions with respect to product compositions. The following conclusions can be drawn from the Sunnyside tar sand 2-inch SPR tests: (1) Sunnyside tar sand can be processed without any major operational difficulty by the ROPE process. (2) Oil yields greater than Fischer assay were obtained during the 2-inch SPR tests. Oil yield greater than 80 wt % of the bitumen was obtained from the 105-hr test. (3) The ratio of heavy oil to light product oil is strongly dependent upon the pyrolysis temperature and increases with a decrease in the reaction temperature. The gas yield increases with the increase in pyrolysis temperature but the residual carbon in the spent sand decreases with the increase in pyrolysis temperature, reaches the minimum at 675{degrees}F, and then increases with further increase in the pyrolysis temperature. ROPE process product oils from Sunnyside tar sand have market application as blending stocks for the production of diesel fuels, but they are not suited for the production of unleaded gasoline or high-density aviation turbine fuels. 3 refs., 3 figs., 17 tabs.

  13. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins.

    PubMed

    Crowe, A U; Han, B; Kermode, A R; Bendell-Young, L I; Plant, A L

    2001-01-01

    The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to consider wetlands as part of their reclamation strategy. However, to ensure long-term viability of such wetlands, the response of the flora to the industrial effluent needed to be determined. To this end, apparent photosynthesis (APS), the level of ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit, dehydrin-related polypeptides, and protein disulphide isomerase (PDI) were evaluated in cattail and alsike clover plants (Trifolium hybridum L.) exposed to the oil sands effluent. APS measured in plants impacted by oil sands effluent was significantly higher than that of plants in the non-impacted off-site location. Among the on-site locations, plants growing in the natural wetlands site had higher APS compared to all other sites. The level of RuBisCo was not increased in cattail or clover growing in effluent-contaminated sites indicating that enhanced photosynthesis was not due to greater levels of this enzyme. Dehydrin-related polypeptides were detected only in the roots of cattail and were absent in clover. The polypeptide profile was altered in cattail exposed to oil sands effluent indicating that they were responding to an osmotic stress. The level of PDI was unaffected in the leaves of cattail regardless of the nature of the effluent to which they were exposed. Overall, the data indicate that cattail and clover are adapted to the oil sands effluent, although further studies are needed to assess their long-term ability to survive in the presence of this anthropogenic stress. PMID:11428139

  14. The immunological effects of oil sands surface waters and naphthenic acids on rainbow trout (Oncorhynchus mykiss).

    PubMed

    Leclair, Liane A; MacDonald, Gillian Z; Phalen, Laura J; Köllner, Bernd; Hogan, Natacha S; van den Heuvel, Michael R

    2013-10-15

    There is concern surrounding the immunotoxic potential of naphthenic acids (NAs), a major organic constituent in waters influenced by oil sands contamination. To assess the immunological response to NAs, rainbow trout (Oncorhynchus mykiss) waterborne exposures were conducted with oil sands-influenced waters, NAs extracted and purified from oil sands tailings waters, and benzo[a]pyrene (BaP) as a positive control. After a 7d exposure, blood, spleen, head kidney, and gill samples were removed from a subset of fish in order to evaluate the distribution of thrombocytes, B-lymphocytes, myeloid cells, and T-lymphocytes using fluorescent antibodies specific for those cell types coupled with flow cytometry. The remaining trout in each experimental tank were injected with inactivated Aeromonas salmonicida and held in laboratory water for 21 d and subjected to similar lymphatic cell evaluation in addition to evaluation of antibody production. Fluorescent metabolites in bile as well as liver CYP1A induction were also determined after the 7 and 21 d exposure. Oil sands waters and extracted NAs exposures resulted in an increase in bile fluorescence at phenanthrene wavelengths, though liver CYP1A was not induced in those treatments as it was with the BaP positive control. Trout in the oil sands-influenced water exposure showed a decrease in B- and T-lymphocytes in blood as well as B-lymphocytes and myeloid cells in spleen and an increase in B-lymphocytes in head kidney. The extracted NAs exposure showed a decrease in thrombocytes in spleen at 8 mg/L and an increase in T-lymphocytes at 1mg/L in head kidney after 7d. There was a significant decrease in antibody production against A. salmonicida in both oil sands-influenced water exposures. Because oil sands-influenced waters affected multiple immune parameters, while extracted NAs impacts were limited, the NAs tested here are likely not the cause of immunotoxicity found in the oil sands-influenced water. PMID:24036435

  15. Effects of Exposure to Naphthenic Acids in Tree Swallows (Tachycineta bicolor) on the Athabasca Oil Sands, Alberta, Canada

    Microsoft Academic Search

    Marie-Line Gentes; Cheryl Waldner; Zsuzsanna Papp; Judit E. G. Smits

    2007-01-01

    Naphthenic acids (NAs) are a group of carboxylic acids that are of particular concern to the steadily growing oil sands mining industry of Alberta, Canada, because they become highly concentrated in the water used for oil sands extraction and are toxic to aquatic biota and mammals. Upon mine closure, vast amounts of process-affected water will need to be reclaimed and

  16. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water

    Microsoft Academic Search

    R. F. Young; E. A. Orr; G. G. Goss; P. M. Fedorak

    2007-01-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected

  17. Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line

    Microsoft Academic Search

    Yuhe He; Steve B. Wiseman; Xiaowei Zhang; Markus Hecker; Paul D. Jones; Mohamed Gamal El-Din; Jonathan W. Martin; John P. Giesy

    2010-01-01

    There is concern regarding oil sands process water (OSPW) produced by the oil sands industry in Alberta, Canada. Little is known about the potential for OSPW, and naphthenic acids (NAs), which are the primary persistent and toxic constituents of OSPW, to affect endocrine systems. Although ozonation significantly reduces concentrations of NAs and OSPW toxicity, it was hypothesized that oxidation of

  18. The effects of pretreatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water

    Microsoft Academic Search

    Eun-Sik Kim; Yang Liu; Mohamed Gamal El-Din

    2011-01-01

    Oil sands process-affected water (OSPW) is largely produced from the oil sands operational process and requires the removal of toxicants for reuse. Nanofiltration (NF) and reverse osmosis (RO) membrane applications can be used to remove salt ions from OSPW. However, membrane treatments of OSPW are impeded by membrane fouling due to suspended solids; therefore, feed water must be pretreated to

  19. ECONOMIC EVALUATION OF OIL AGGLOMERATION FOR RECOVERY OF FINE COAL REFUSE

    EPA Science Inventory

    The report gives results of an evaluation of the economics of an oil-agglomeration process (with and without an oil recovery system) for recovering coal fines from a fine refuse stream of 105 ton/hr from a coal preparation plant. The two base case processes studied are oil-agglom...

  20. Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California

    E-print Network

    Luyendyk, Bruce

    Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar from and Synthesis, University of California, Santa Barbara, CA 93101, USA Abstract A new field method for tar

  1. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-print Network

    Luyendyk, Bruce

    ORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

  2. 80 FR 607 - Consolidated Federal Oil & Gas and Federal & Indian Coal Valuation Reform

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-01-06

    ...Parts 1202 and 1206 Consolidated Federal Oil & Gas and Federal & Indian Coal Valuation...ONRR-2012-0004] RIN 1012-AA13 Consolidated Federal Oil & Gas and Federal & Indian Coal Valuation...governing valuation for royalty purposes of oil and gas produced from Federal onshore...

  3. Oil to Coal Conversion of Power and Industrial Facilities in the Dominican Republic 

    E-print Network

    Causilla, H.; Acosta, J. R.

    1982-01-01

    and economic feasibility of converting power plants and cement plants from oil to coal. The summary results and conclusions are presented and include coal conversion capital costs, cost savings, and program overall schedule. The intent of the authors...

  4. Co-combustion of waste from olive oil production with coal in a fluidised bed.

    PubMed

    Cliffe, K R; Patumsawad, S

    2001-01-01

    Waste from olive oil production was co-fired with coal in a fluidised bed combustor to study the feasibility of using this waste as an energy source. The combustion efficiency and CO emission were investigated and compared to those of burning 100% of coal. Olive oil waste with up to 20% mass concentration can be co-fired with coal in a fluidised bed combustor designed for coal combustion with a maximum drop of efficiency of 5%. A 10% olive oil waste concentration gave a lower CO emission than 100% coal firing due to improved combustion in the freeboard region. A 20% olive oil waste mixture gave a higher CO emission than both 100% coal firing and 10% olive oil waste mixture, but the combustion efficiency was higher than the 10% olive oil waste mixture due to lower elutriation from the bed. PMID:11150132

  5. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    SciTech Connect

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.; Koudsi, H.; Taylor, L.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively to compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.

  6. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    PubMed

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity. PMID:24054134

  7. Post-Secondary Learning Priorities of Workers in an Oil Sands Camp in Northern Alberta

    ERIC Educational Resources Information Center

    Fahy, Patrick J.; Steel, Nancy

    2008-01-01

    This paper reports results to date of a three-year project by Athabasca University, intended to determine the education and training needs and interests of employees in a work camp in northern Alberta's oil sands. (Future reports will address results of efforts to provide programming suiting the needs identified, and the uptake, satisfaction,…

  8. The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region

    Microsoft Academic Search

    Sherwin S. Leung; Mike D. MacKinnon; Ralph E. H. Smith

    2003-01-01

    To better elucidate the ecological effects of naphthenic acids and major ions liberated in oil sands development, the summer-time composition of phytoplankton communities in ten water bodies near Fort McMurray (northeastern Alberta) was studied in 1997. The water bodies varied in degree of process water influence, and in age, size and ancillary chemical characteristics. Community biomass of phytoplankton was not

  9. Factors that affect the degradation of naphthenic acids in oil sands wastewater by indigenous microbial communities

    Microsoft Academic Search

    June W. S. Lai; Linda J. Pinto; Eberhard Kiehlmann; Leah I. Bendell-Young

    1996-01-01

    The acute toxicity of wastewater generated during the extraction of bitumen from oil sands is believed to be due to naphthenic acids (NAs). To determine the factors that affect the rate of degradation of representative NAs in microcosms containing wastewater and the acute toxicity of treated and untreated wastewater, the effects of temperature, dissolved oxygen concentration, and phosphate addition on

  10. Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water

    Microsoft Academic Search

    Vincent V. Rogers; Karsten Liber; Michael D. MacKinnon

    2002-01-01

    A laboratory bench procedure was developed to efficiently extract naphthenic acids from bulk volumes of Athabasca oil sands tailings pond water (TPW) for use in mammalian oral toxicity testing. This solvent-based procedure involved low solvent losses and a good extraction yield with low levels of impurities. Importantly, labour-intensive centrifugation of source water to remove solids was avoided, allowing processing of

  11. Acute and Subchronic Mammalian Toxicity of Naphthenic Acids from Oil Sands Tailings

    Microsoft Academic Search

    Vincent V. Rogers; Mark Wickstrom; Karsten Liber; Michael D. MacKinnon

    2002-01-01

    deposits. In this study, a mixture of naphthenic acids isolated from Athabasca oil sands (AOS) tailings pond water was used in acute and subchronic toxicity tests with rodents, in order to assess potential risks posed to terrestrial wildlife. Dosages were chosen to bracket worst-case environmental exposure scenarios. In acute tests, adult female Wistar rats were given single po dosages of

  12. Early performance of native shrubs and trees planted on amended Athabasca oil sand tailings

    Microsoft Academic Search

    A. W. Fedkenheuer; H. M. Heacock; D. L. Lewis

    1980-01-01

    The present accepted end land uses for land disturbed by surface mining in the Athabasca oil sands deposit are forestry, wildlife and recreation, in that order of priority. Consistent with government requirements, the main objective of the reclamation program is the establishment of a system at least equal to the predisturbed state in terms of ecological productivity. This system should

  13. Characterization of Athabasca oil sands froth treatment tailings for heavy mineral recovery

    Microsoft Academic Search

    Q. Liu; Z. Cui; T. H. Etsell

    2006-01-01

    Titanium (Ti) and zirconium (Zr) minerals (heavy minerals) in the Athabasca oil sands are concentrated in the bitumen froth treatment tailings during the hot water bitumen extraction operations. Recovery processes for these minerals have been explored since the 1970s, yet there is still no established process flowsheet to economically recover these minerals. We recently carried out a research project based

  14. Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen

    SciTech Connect

    Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-12-31

    Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

  15. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Headley, John V

    2014-08-19

    The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. PMID:25036898

  16. Stable nitrogen isotopes of nestling tree swallows indicate exposure to different types of oil sands reclamation.

    PubMed

    Farwell, A J; Harms, N J; Smits, J E G; Dixon, D G

    2014-01-01

    Tree swallows (Tachycineta bicolor) inhabiting reclaimed wetlands on the oil sands in northern Alberta are potentially exposed to elevated levels of oil sands constituents such as polycyclic aromatic compounds (PAC) through diet. While increased detoxification enzyme activity as measured using 7-ethoxyresorufin O-deethylase in nestlings is a generally accepted indicator of exposure to oil sands constituents, there is no apparent method to detect dietary exposure specific to oil sands processed material (OSPM). In this study, stable C and N isotopes were analyzed from muscle and feathers of nestling tree swallows (15 d old) to distinguish dietary exposure of birds near reference and OSPM wetlands. High ?¹?N and low ?¹³C values in the nestling tissues differentiated those from the OSPM wetlands and reference sites. Lower ?¹?N values of nestlings compared to the ?¹?N values of larval chironomids from an earlier study suggested that the majority of the diet of the nestlings was derived from non-OSPM sources, despite residence near and on the OSPM wetlands. Our finding of limited utilization of OSPM resources by tree swallows indicates either low abundance or diversity of dietary items emerging from OSPM wetlands, or sensory avoidance of prey from those wetlands. Minimal consumption of OSPM-derived dietary sources may be attributed to published findings of limited adverse effects on tree swallow reproduction, or growth and development for these same nestlings. This study demonstrated that stable isotope analysis, particularly for N isotopes, may serve as a useful tool to trace dietary exposure to OSPM constituents as part of avian ecotoxicology assessments of reclaimed wetlands on the oil sands. PMID:24627996

  17. Rapid assessment of the toxicity of oil sands process-affected waters using fish cell lines.

    PubMed

    Sansom, Bryan; Vo, Nguyen T K; Kavanagh, Richard; Hanner, Robert; Mackinnon, Michael; Dixon, D George; Lee, Lucy E J

    2013-01-01

    Rapid and reliable toxicity assessment of oil sands process-affected waters (OSPW) is needed to support oil sands reclamation projects. Conventional toxicity tests using whole animals are relatively slow, costly, and often subjective, while at the same time requiring the sacrifice of test organisms as is the case with lethal dosage/concentration assays. A nonlethal alternative, using fish cell lines, has been developed for its potential use in supporting oil sands reclamation planning and to help predict the viability of aquatic reclamation models such as end-pit lakes. This study employed six fish cell lines (WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHML, FHMT) in 24 h viability assays for rapid fluorometric assessment of cellular integrity and functionality. Forty-nine test water samples collected from the surface of oil sands developments in the Athabasca Oil Sands deposit, north of Fort McMurray, Alberta, Canada, were evaluated in blind. Small subsample volumes (8 ml) were mixed with 2 ml of 5× concentrated exposure media and used for direct cell exposures. All cell line responses in terms of viability as measured by Alamar blue assay, correlated well with the naphthenic acids (NA) content in the samples (R (2) between 0.4519 and 0.6171; p<0.0001) when data comparisons were performed after the bioassays. NA or total acid-extractable organics group has been shown to be responsible for most of the acute toxicity of OSPW and our results further corroborate this. The multifish cell line bioassay provides a strong degree of reproducibility among tested cell lines and good relative sensitivity of the cell line bioassay as compared to available in vivo data that could lead to cost effective, high-throughput screening assays. PMID:23263937

  18. An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; Freitag, S.; McNaughton, C. S.; Kapustin, V.; Brekovskikh, V.; Jimenez, J.-L.; Cubison, M. J.

    2014-05-01

    During the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign, two NASA research aircraft, a DC-8 and a P-3B, were outfitted with extensive trace gas (the DC-8) and aerosol (both aircraft) instrumentation. Each aircraft spent about a half hour sampling air around the oil sands mining and upgrading facilities near Ft. McMurray, Alberta, Canada. The DC-8 circled the area, while the P-3B flew directly over the upgrading plants, sampling close to the exhaust stacks, then headed downwind to monitor the aerosol as it aged. At short range, the plume from the oil sands is a complex mosaic of freshly nucleated ultrafine particles from a SO2- and NO2-rich plume, soot and possibly fly ash from industrial processes, and dust from dirt roads and mining operations. Shortly downwind, organic aerosol appears in quantities that rival SO4, either as volatile organic vapors condense or as they react with the H2SO4. The DC-8 pattern allowed us to integrate total flux from the oil sands facilities within about a factor of 2 uncertainty that spanned values consistent with 2008 estimates from reported SO2 and NO2 emissions, though there is no reason to expect one flyby to represent average conditions. In contrast, CO fluxes exceeded reported regional emissions, due either to variability in production or sources missing from the emissions inventory. The conversion rate of SO2 to aerosol SO4 of ~6% per hour is consistent with earlier reports, though OH concentrations are insufficient to accomplish this. Other oxidation pathways must be active. Altogether, organic aerosol and black carbon emissions from the oil sands operations are small compared with annual forest fire emissions in Canada. The oil sands do contribute significant sulfate and exceed fire production of SO2 by an order of magnitude.

  19. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone.

    PubMed

    Dalyander, P Soupy; Long, Joseph W; Plant, Nathaniel G; Thompson, David M

    2014-03-15

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these "surface residual balls" (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results. PMID:24503377

  20. Mutagenicity in emissions from coal- and oil-fired boilers.

    PubMed Central

    Alfheim, I; Bergström, J G; Jenssen, D; Møller, M

    1983-01-01

    The mutagenicity of emission samples from three oil-fired and four coal-fired boilers have been compared by using the Salmonella/microsome assay. Very little or no mutagenic activity was observed in samples from five of these boilers. The sample from one oil-fired boiler showed mutagenic activity of about 500 revertants/MJ, and the sample from a coal-fired fluidized bed combustor had an activity of 58,000 revertants/MJ measured with strain TA 98 in the absence of metabolic activation. All samples contained substances that were cytotoxic to the test bacteria, thus making it difficult to obtain linear dose-response curves. Mutagenic activity at low levels may remain undetected due to this toxicity of the samples. Samples with mutagenic activity below the detection limit in the Salmonella test have also been tested for forward mutations at the HGPRT locus in V79 hamster cells. Weak mutagenic effects were detected in two of the samples, whereas the sample from one oil-fired boiler remained negative. In this test, as well as in the Salmonella test, a strong cytotoxic effect could be observed with all samples. PMID:6825617

  1. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters.

    PubMed

    van den Heuvel, Michael R; Hogan, Natacha S; MacDonald, Gillian Z; Berrue, Fabrice; Young, Rozlyn F; Arens, Collin J; Kerr, Russell G; Fedorak, Phillip M

    2014-01-01

    Naphthenic acids are known to be the most prevalent group of organic compounds in oil sands tailings-associated waters. Yellow perch (Perca flavescens) were exposed for four months to oil sands-influenced waters in two experimental systems located on an oil sands lease 30 km north of Fort McMurray Alberta: the Demonstration Pond, containing oil sands tailings capped with natural surface water, and the South Bison Pond, integrating lean oil sands. Yellow perch were also sampled from three lakes: Mildred Lake that receives water from the Athabasca River, Sucker Lake, at the edge of oil sands extraction activity, and Kimowin Lake, a distant reference site. Naphthenic acids were measured in perch muscle tissue using gas chromatography-mass spectrometry (GC-MS). Bile metabolites were measured by GC-MS techniques and by high performance liquid chromatography (HPLC) with fluorescence detection at phenanthrene wavelengths. A method was developed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to evaluate naphthenic acids in bile. Tissue analysis did not show a pattern of naphthenic acids accumulation in muscle tissue consistent with known concentrations in exposed waters. Bile fluorescence and LC-HRMS methods were capable of statistically distinguishing samples originating from oil sands-influenced waters versus reference lakes. Although the GC-MS and HPLC fluorescence methods were correlated, there were no significant correlations of these methods and the LC-HRMS method. In yellow perch, naphthenic acids from oil sands sources do not concentrate in tissue at a measurable amount and are excreted through a biliary route. LC-HRMS was shown to be a highly sensitive, selective and promising technique as an indicator of exposure of biota to oil sands-derived naphthenic acids. PMID:24182406

  2. Tar sands development

    Microsoft Academic Search

    1973-01-01

    Tar sands (also known as oil sands and bituminous sands) are sand deposits which are impregnated with dense viscous petroleum. Ultimate world reserves of bitumen in tar sands are about equal to ultimate reserves of crude oil in the U.S. However, the only tar-sand deposit of present commercial importance is in the Athabasca area of Alberta, Canada. The pioneer venture

  3. Heavy and tar sand oil deposits of Europe

    SciTech Connect

    Cornelius, C.D.

    1984-09-01

    Several hundred heavy and extra-heavy oil and natural bitumen occurrences from 26 European countries (including European Turkey and the western borderlands of the USSR) were compiled. The definitions used for heavy crude oils and natural bitumens, as proposed by or prepared with the UNITAR/UNDP information center, were applied. Information on stratigraphy, lithology, and depth as well as on gravity, viscosity, and gas and water content, is given. Deposits are characteristically distributed along the flanks of the basins or within the separating uplifts. Nevertheless, they are found from the surface down to depths of 3000 m (9800 ft). Up to now, big accumulations have been exploited in Albania and Sicily, but they have been discovered also in the British North Sea, France, Spain, and West Germany. In carbonates, they were mostly encountered in fractures of synsedimentary or tectonic origin. The accumulations are the result of either intrusion of immature heavy oil from a source rock or of the immigration of mature oil, which was biodegraded afterward. In many cases, there have been at least two separate migration/accumulation events. In some cases paleoseepages did supply a source rock with asphaltic material or became an effective seal of a later hydrocarbon accumulation.

  4. Volatile Organic Compound Observations near Oil Sands Mining, Upgrading and Refining Facilities in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Marrero, J.; Meinardi, S.; Barletta, B.; Krogh, E.; Blake, D. R.

    2012-12-01

    The oil sands of Alberta are the world's third-largest proven oil reserve. Even though the expansion of the oil sands industry has led to concerns about its impact on air quality, water quality and human health, emissions from the oil sands industry are very poorly characterized in the literature. During 2008-2012 our group collected 398 whole air samples downwind of (1) oil sands surface mining and upgrading facilities north of Fort McMurray, Alberta, and (2) chemical, petrochemical, and oil and gas facilities in the "Industrial Heartland" region of Fort Saskatchewan, Alberta. These high-precision measurements were made primarily in July 2008, August 2010, and July 2012 using canister sampling followed by multi-column gas chromatography analysis for 80 speciated volatile organic compounds (VOCs), with ppt-level detection limits. Strong VOC enhancements were measured downwind of upgrading operations near Fort McMurray, especially alkanes, aromatics and solvents. For example, maximum concentrations of 2,3-dimethylbutane, p-xylene and n-octane were 800-2400× the local background value (LBV), and the industrial solvent trichloroethene was up to 260× the LBV. We measured only small VOC enhancements at sites of naturally exposed oil sands, confirming that degraded air quality results from industrial activity rather than emission from natural sources. Remarkably strong VOC enhancements were detected in the Industrial Heartland, which is the largest hydrocarbon processing region in Canada. Some of the largest VOC excesses were measured in samples designated as "no smell", showing that absence of odor is not necessarily an indicator of good air quality. The maximum concentrations of methyl tert-butyl ether and ethylbenzene were 6200× the LBV, and concentrations of 1,3-butadiene, a known carcinogen, were 2400× the LBV. Thirty VOCs were present at levels above 1 ppbv, and maximum propene and i-pentane levels exceeded 100 ppbv. Remarkably, the maximum propene concentration was almost double that measured in the Houston area, even though Houston is the largest petrochemical manufacturing center in the United States. Together, propene and acetaldehyde contributed 40% of the OH reactivity in the most strongly polluted plumes, based on the VOCs that we measured. We recommend systematic, independent monitoring in this region because of the strong impact of industrial emissions on local air quality and potentially on human health.

  5. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  6. The Significance of Tax Incentives in Attracting Foreign Investment: Lessons from the Canadian Oil Sands Project

    NASA Astrophysics Data System (ADS)

    Febriana, Restika

    Tax incentives have been used by countries to stimulate foreign investment. Few countries doubt the effectiveness of tax incentives. Canada and Indonesia are among the many countries that offer tax incentives to attract investors. While Canada has a long history of using tax incentives to foster the development of the Alberta oil sands, Indonesia is just embarking on this strategy, especially in promoting foreign investment in remote areas. Drawing on the Canadian development of the Alberta oil sands, this thesis asks what lessons Indonesia can learn from that experience in relying on tax incentives to develop the industry. This thesis acknowledges that there are many important differences between Canada and Indonesia. Since most countries speak of using tax incentives to finance their petroleum industries, it is worth examining at least one instance of that strategy and see whether Indonesia can extract any thing of value from this examination.

  7. The Bitumount Co-Production Project (The next generation in oil sands technology)

    SciTech Connect

    Lane, S.J.; Logwinuk, A.; Ahghar, M. [Solv-Ex Corp., Albuquerque, NM (United States)

    1995-12-31

    Solv-Ex Corporation, which owns Lease No. 5 in the Athabasca oil sands area, is planning to build a facility that will produce 10,000 BPCD (1,587 m{sup 3}/d) of crude oil with co-production of 64,000 metric tons per year of alumina. As the Co-production name implies, the operations result in more than just a crude oil product. The facility coproduces alumina and additional inorganic chemicals and could recover several precious metal values. However, crude oil markets are still the major factor in the Solv-Ex approach to the project. The strategy of producing a minimally upgraded (23{degrees}API) tar sands bitumen is primarily a response to a growing demand, especially in U.S. PADD II, for the minimum product improvement/cost to achieve a {open_quotes}Pipelineable Crude Oil{close_quotes} (PCO{reg_sign}). PCO{reg_sign} is of keen interest to refiners not only as a straight run feedstock (with no resid fraction), but as a pipeline diluent for Canadian bitumen and heavy crude oils. Solv-Ex intends to use this product characteristic to advantage in future expansion plans. The proposed technology features: (1) no H{sub 2} addition, (2) higher liquid yields than visbreaking or coking, (3) pitch product suitable for pelletizing, (4) continuous operation, (5) bottomless PCO{reg_sign}. The ramifications of the two latest process developments (patents pending) in tar sands bitumen extraction and aluminum production will also be discussed briefly.

  8. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred J.

    2003-02-07

    Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  9. Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry

    Microsoft Academic Search

    Fervone M Holowenko; Michael D MacKinnon; Phillip M Fedorak

    2002-01-01

    The water produced during the extraction of bitumen from oil sands is toxic to aquatic organisms due largely to a group of naturally occurring organic acids, naphthenic acids (NAs), that are solubilized from the bitumen during processing. NAs are a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula CnH2n+ZO2, where n is the carbon

  10. A Laboratory Evaluation of the Sorption of Oil Sands Naphthenic Acids on Organic Rich Soils

    Microsoft Academic Search

    ARASH JANFADA; JOHN V. HEADLEY; KERRY M. PERU; S. L. BARBOUR

    2006-01-01

    The adsorption characteristics of oil sands tailings pond water (OSTPW)-derived naphthenic acids on soils was determined using a batch partitioning method. The adsorption isotherms were found to be linear in all cases. All tests were conducted at 4°C, and at a pH of 8.0 ± 0.4, which reflects the pH of a tailings settling facility near Fort McMurray, AB. The

  11. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems.

    PubMed

    Kurek, Joshua; Kirk, Jane L; Muir, Derek C G; Wang, Xiaowa; Evans, Marlene S; Smol, John P

    2013-01-29

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth's largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ?50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4-alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ?90 km northwest of the major development area, are now ?2.5-23 times greater than ?1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ?1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  12. Application of thermal techniques in the recovery of heavy minerals from oil-sand tailings

    Microsoft Academic Search

    Shaheer A. Mikhail; Anne-Marie Turcotte; Colin A. Hamer

    1996-01-01

    Thermal techniques, namely, thermogravimetry (TG), simultaneous thermogravimetry-differential thermal analysis-Fourier transform infrared spectroscopy (TG-DTA-FTIR) and thermomagnetometry, were used to examine the thermal behaviour of heavy-mineral tailings generated in oil-sand steam processing operations. The results will be used in the selection and optimization of a thermal process to remove residual bitumen in the tailings and recover the contained titanium and zirconium values.

  13. Analysis and numerical modeling of hydraulic fracturing during cyclic steam stimulation in oil sands

    SciTech Connect

    Settari, A.; Raisbeck, J.M.

    1981-11-01

    Cyclic steam stimulation in oil sands above fracturing pressure is analyzed by numerical modeling. A numerical model is formulated that simultaneously describes the fracturing process and reservoir behavior for different types of fracture geometry. The model is used to study the differences in performance expected for different fracture types. The comparison of model results with the data from a first-cycle cyclic steam operation shows good agreement for single vertical fracture configuration. 21 refs.

  14. Successful sand oil fracturing in the Sespe field, Ventura County, California

    Microsoft Academic Search

    1970-01-01

    Sand-oil fracturing has been used since 1948 mainly in the Mid-Continent-Rocky Mt. areas. This method of well stimulation has increased the rate of flow and increased the producible reserves many-fold over other methods of stimulation. Due to the nature of most California producing formations, the fracturing process has had limited application in California. The Sespe field has demonstrated it can

  15. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO?3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  16. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO product over Alberta.

  17. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  18. Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC\\/HRMS

    Microsoft Academic Search

    Xiumei Han; Michael D. MacKinnon; Jonathan W. Martin

    2009-01-01

    The oil sands industry in Northern Alberta produces large volumes of oil sands process water (OSPW) containing high concentrations of persistent naphthenic acids (NAs; CnH2n+ZO2). Due to the growing volumes of OSPW that need to be reclaimed, it is important to understand the fate of NAs in aquatic systems. A recent laboratory study revealed several potential markers of microbial biodegradation

  19. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    PubMed

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-03-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system. PMID:24446583

  20. Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds

    NASA Astrophysics Data System (ADS)

    Galarneau, Elisabeth; Hollebone, Bruce P.; Yang, Zeyu; Schuster, Jasmin

    2014-11-01

    Tailings ponds in the oil sands region (OSR) of western Canada are suspected sources of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere. In the absence of detailed characterization or direct flux measurements, we present preliminary measurement-based estimates of the emissions of thirteen priority PAHs from the ponds. Using air concentrations measured under the Joint Canada-Alberta Oil Sands Monitoring Plan and water concentrations from a small sampling campaign in 2013, the total flux of 13 US EPA priority PAHs (fluorene to benzo[ghi]perylene) was estimated to be upward from water to air and to total 1069 kg y-1 for the region as a whole. By comparison, the most recent air emissions reported to Canada's National Pollutant Release Inventory (NPRI) from oil sands facilities totalled 231 kg y-1. Exchange fluxes for the three remaining priority PAHs (naphthalene, acenaphthylene and acenaphthene) could not be quantified but evidence suggests that they are also upward from water to air. These results indicate that tailings ponds may be an important PAH source to the atmosphere that is missing from current inventories in the OSR. Uncertainty and sensitivity analyses lend confidence to the estimated direction of air-water exchange being upward from water to air. However, more detailed characterization of ponds at other facilities and direct flux measurements are needed to confirm the quantitative results presented herein.

  1. Plastic liners extended with sand and other fillers for use in coal mines. Final report, 18 June 1971--1 June 1972

    Microsoft Academic Search

    J. L. Schwendeman; S. M. Sun; I. O. Salyer

    1972-01-01

    The research was to show the feasibility of using plastic liners containing sand and other fillers as a means of roof support in coal and other mines. Phase I, directed toward determining which state-of-the-art resin systems might have utility as a means of roof support in a coal mine, consisted of a canvass of resin manufacturers to learn which resins

  2. Slagging and fouling by coal-oil mixture in a utility boiler. Final report

    Microsoft Academic Search

    1982-01-01

    A two-day steady state firing test was conducted in New England Power Company's Salem Harbor No. 1 boiler with each of the following fuels: (a) No. 6 oil containing 0.05 wt% of a magnesium antifouling additive, (b) coal-oil mixture (COM) containing 32 wt% coal, 68 wt% No. 6 oil with magnesium additive, and (c) COM without additive. The objective of

  3. PAH concentration gradients and fluxes through sand cap test cells installed in situ over river sediments containing coal tar.

    PubMed

    Kim, Yong Sang; Nyberg, Leila M; Jenkinson, Byron; Jafvert, Chad T

    2013-08-01

    Short-term performance of permeable sand cap test cells, installed over sediment containing liquid coal tar was monitored on the Grand Calumet River (Hammond, Indiana, USA). The sand cap test cells included two sand-only cells, two test cells containing a sand/peat mixed layer, two test cells containing a sand/organoclay mixed layer, and two sediment control cells. In each test cell, six monocyclic and twelve polycyclic aromatic hydrocarbons (MAHs and PAHs) were monitored over an 18 month period, and interfacial water flow was monitored periodically. Seepage velocities ranged from 3.8 cm per day into the sediments to 3.2 cm per day out of the sediments, with discharge out of the sediments being observed more often. A ferric iron test indicated that stratified oxic-anaerobic layers were formed in the caps. Within the sand caps, concentrations of MAHs and PAHs fluctuated with time, and this fluctuation was more significant near the bottom. Near the top, most of the MAHs and PAHs were attenuated above 95% in the first year of the study, but their attenuation rates decreased in the second year due to recontamination of the surface of the caps by the surrounding sediments. Functional genes involved in PAH degradation were detected by polymerase chain reaction (PCR) in upper and lower sections of the caps for each of the three treatments. Bacterial communities were characterized by PCR amplification of 16s rRNA genes and denaturing gradient gel electrophoresis (DGGE). The results indicate that the rate and direction of sediment porewater flow is an important factor for properly designing any remedial sand cap, and that biodegradation of many of the MAH and PAH compounds was likely a major removal mechanism leading to attenuation through the test cells. PMID:23817437

  4. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  5. Improving the Efficiencies of Insitu Energy Production from the Oil Sands and Did the Formation of the Oil Sands Contribute to Global Warming at the Paleocene\\/Eocene Thermal Maximum 55Ma ago?

    Microsoft Academic Search

    S. Larter; Jennifer Adams; Ian Gates

    HOTS (heavy oil and tar sands) oils and bitumens dominate the world petroleum inventory and are becoming significant in world and Canadian production yet current employed recovery technologies (Cyclic Steam Stimulation-CSS, Steam Assisted Gravity Drainage-SAGD, mining) are inefficient in terms of recovery, energy and water intensity and cost to the environment. Much of the worlds' and most of the Canadian

  6. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems. PMID:21824242

  7. Coal-liquid mixture combustion tests in oil-designed boilers

    Microsoft Academic Search

    J. L. Joubert; G. T. Bellas

    1982-01-01

    Several coal-liquid mixture fuels have been evaluated in oil-designed boilers at the Pittsburgh Energy Technology Center (PETC). A comprehensive coal-oil mixture combustion program was successfully completed in a 700-hp (6.87-MW) watertube boiler. Coal-water mixtures have been burned recently in a 100-hp (0.98-MW) firetube boiler and the 700-hp (6.87-MW) watertube boiler. Coal-methanol mixtures have also been burned in the 100-hp (0.98-MW)

  8. In Situ Bioremediation of Naphthenic Acids Contaminated Tailing Pond Waters in the Athabasca Oil Sands Region—Demonstrated Field Studies and Plausible Options: A Review

    Microsoft Academic Search

    E. K. Quagraine; H. G. Peterson; J. V. Headley

    2005-01-01

    Currently, there are three industrial plants that recover oil from the lower Athabasca oil sands area, and there are plans in the future for several additional mines. The extraction procedures produce large volumes of slurry wastes contaminated with naphthenic acids (NAs). Because of a “zero discharge” policy the oil sands companies do not release any extraction wastes from their leases.

  9. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    PubMed

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems. PMID:19469588

  10. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. PMID:23149182

  11. Early performance of native shrubs and trees planted on amended Athabasca oil sand tailings

    SciTech Connect

    Fedkenheuer, A.W.; Heacock, H.M.; Lewis, D.L.

    1980-01-01

    The present accepted end land uses for land disturbed by surface mining in the Athabasca oil sands deposit are forestry, wildlife and recreation, in that order of priority. Consistent with government requirements, the main objective of the reclamation program is the establishment of a system at least equal to the predisturbed state in terms of ecological productivity. This system should be consistent with the regional surface hydrology, the natural vegetation and the land use for forestry, wildlife and recreation. In addition, the plant communities in these systems will be permanent, self-supporting and maintenance free. The lack of available information regarding the procedures necessary to permanently reclaim the tailings sand left after extraction of the oil prompted Syncrude to initiate this study in 1977. Four replicated soil amendment treatments were established on a one meter deep experimental area of tailings sand located on the lease area. The plots were subsequently seeded with a grass-legume mix in July 1977. Trees and shrubs were planted in August 1977 and June 1978. Results to date indicate over-winter survival was very satisfactory with most plant species. A dry spell during the 1978 growing season had a pronounced effect on the survival of some of the tree and shrub seedlings. Those species which had the highest survival rates over the range of treatments were Amelanchier alnifolia, Pinus banksiana, Pinus contorta, Potentilla fruticosa, Shepherdia canadensis and Symphoricarpos albus. Performance of the other trees and shrubs was fair to poor, depending on the species and the treatment.

  12. Is Biodegradation of Bitumen a Source of Recalcitrant Naphthenic Acid Mixtures in Oil Sands Tailing Pond Waters?

    Microsoft Academic Search

    E. K. Quagraine; J. V. Headley; H. G. Peterson

    2005-01-01

    Carboxylic acids are transient metabolites during the mineralization of petroleum hydrocarbons. Crude oils, however, vary in their proportion of the hydrocarbon components. Depending on structure, some carboxylic acid metabolites resist further biodegradation and persist in aquatic systems. During the extraction of oil sands bitumen, recalcitrant carboxylic acid mixtures, collectively referred to as naphthenic acids (NAs), are released into the wastewaters.

  13. Variation in toxicity response of Ceriodaphnia dubia to Athabasca oil sands coke leachates.

    PubMed

    Puttaswamy, Naveen; Turcotte, Dominique; Liber, Karsten

    2010-07-01

    Coke from the Athabasca (Alberta, Canada) oil sands operations may someday be integrated into reclamation landscapes. It is hypothesized that the metals associated with the solid coke may leach into the surrounding environment. Therefore, the main objectives of this study were to characterize the toxicity and chemistry of coke leachates collected from two field lysimeters (i.e. shallow lysimeter and deep lysimeter) over a period of 20months, as well as from other oil sands coke storage sites. In addition, a batch renewal leaching of coke was conducted to examine the rate of metals release. Chronic toxicity of key metals (e.g. Al, Mn, Ni and V) found in lysimeter coke leachate was evaluated separately. Toxicity test results revealed that whole coke leachates (100% v/v) were acutely toxic to Ceriodaphnia dubia; the 7-day LC50 values were always <25% v/v coke leachate. The deep lysimeter leachate was generally more toxic than the shallow lysimeter leachate, likely because of significantly higher concentrations of vanadium (V) found in the deep lysimeter leachate at all sampling times. Vanadium concentrations were higher than all other metals found in the leachate from both lysimeters, and in the batch renewal leaching study. Furthermore, V found in leachates collected from other oil sands field sites showed a concentration-response relationship with C. dubia survival. Mass balance calculations indicated that 94-98% of potentially leachable V fraction was still present in the coke from two field lysimeters. Evidence gathered from these assessments, including toxic unit (TU) calculations for the elements of concern, suggests that V was the likely cause of toxicity of the deep lysimeter leachate, whereas in the shallow lysimeter leachate both Ni and V could be responsible for the observed toxicity. PMID:20553931

  14. Reproductive development of yellow perch (Perca flavescens) exposed to oil sands-affected waters.

    PubMed

    Heuvel, Michael R van den; Hogan, Natacha S; Roloson, Scott D; Kraak, Glen J Van Der

    2012-03-01

    In similar experiments conducted in 1996 and 2009, yellow perch (Perca flavescens) were stocked into two experimental systems: a demonstration lake where oil sands fine tailings were capped with natural water and a lake in a watershed containing bitumen-bearing sodic clays. In both experiments, yellow perch were captured in May from a nearby reservoir and released into the experimental ponds. Perch were recaptured in the experimental systems, the source lake, and two reference lakes in late September and lethally sampled to examine reproductive parameters. In the 1996 experiment, gonad size and steroid hormones were not affected in either pond environment. In the 2009 experiment, male perch in the water-capped tailings pond showed a significant reduction in the testicular development and reductions in circulating testosterone and 11-ketotestosterone, while no reductions were seen in the second experimental pond. No changes were observed in ovarian size or circulating steroid levels in female perch. In the pond containing tailings, the release of water from underlying tailings caused approximately a twofold increase in salinity, alkalinity, and naphthenic acids, and a pH increase from 8.4 to 9.4 over the 13-year period of the study. In the pond influenced by unextracted oil sands materials, total dissolved solids, major ions, and pH did not change substantially. However, naphthenic acids in this system dropped more than twofold post-watershed reclamation. Because the selective reproductive effect observed in male perch in the experimental end-pit lake were accompanied by increases in naphthenic acids, alkalinity, and pH, a specific cause cannot be determined. The present study adds to the evidence, suggesting the presence of endocrine-disrupting substances in oil sands. PMID:22189895

  15. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

    2003-02-07

    This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

  16. The role of recycle oil in direct coal liquefaction process development

    SciTech Connect

    Burke, F.P.

    1995-08-01

    It has long been recognized that use of a recycle oil is a convenient and perhaps necessary feature of a practical direct coal liquefaction process. The recycle oil performs a number of important functions. It serves as a vehicle to convey coal into the liquefaction reactor and products from the reactor. It is a medium for mass and heat transfer among the solid, liquid, and gaseous components of the reactor inventory. It can act as a reactant or intermediate in the liquefaction process. Therefore, the nature of the recycle oil can have a determining effect on process configuration and performance, and the characterization of recycle oil composition and chemistry has been the subject of considerable interest. This paper discusses recycle oil characterization and its influence on the industrial development of coal liquefaction technology,

  17. Oil sands fine tailings - a resource material for potentially marketable products

    SciTech Connect

    Majid, A.; Sparks, B.D.; Coleman, R.D. [National Research Council, Ottawa, Ontario (Canada)] [and others

    1995-12-31

    Oil sands fine tailings is a complex mixture of components each having specific physical or chemical characteristics. Studies on the fundamental properties of fine tailings have resulted in the development of methods to fractionate the tailings into products with market potential. These include: bitumen, for production of synthetic crude oil or as an ancillary fuel; clean kaolin for fine paper coating; a gelling agent for drilling mud formulation; emulsifying solids, for surfactant replacement; and a mineral fraction, for heavy metal recovery. In this investigation we have attempted to evaluate the economic potential of fine tailings as a resource material by determining the amount and value of these products; the prime objective was to determine the economic feasibility of a tailings treatment scheme.

  18. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun; Shi, Feng; Gholson, K.L.; Ho, K.K.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During this second quarter working with IBC-108 coal (2.3% organic S. 0.4% pyrite S), the effects of different ratios of oil:coal, different extraction solvents, and different temperatures were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 1OO{degree}C. BTU loses can be kept to a minimum of 3% with proper use of solvents.

  19. Health of domestic mallards (Anas platyrhynchos domestica) following exposure to oil sands process-affected water.

    PubMed

    Beck, Elizabeth M; Smits, Judit E G; St Clair, Colleen Cassady

    2014-01-01

    Bitumen extraction from the oil sands of northern Alberta produces large volumes of process-affected water that contains substances toxic to wildlife. Recent monitoring has shown that tens of thousands of birds land on ponds containing this water annually, creating an urgent need to understand its effects on bird health. We emulated the repeated, short-term exposures that migrating water birds are thought to experience by exposing pekin ducks (Anas platyrhynchos domestica) to recycled oil sands process-affected water (OSPW). As indicators of health, we measured a series of physiological (electrolytes, metabolites, enzymes, hormones, and blood cells) and toxicological (metals and minerals) variables. Relative to controls, juvenile birds exposed to OSPW had higher potassium following the final exposure, and males had a higher thyroid hormone ratio (T3/T4). In adults, exposed birds had higher vanadium, and, following the final exposure, higher bicarbonate. Exposed females had higher bile acid, globulin, and molybdenum levels, and males, higher corticosterone. However, with the exception of the metals, none of these measures varied from available reference ranges for ducks, suggesting OSPW is not toxic to juvenile or adult birds after three and six weekly, 1 h exposures, but more studies are needed to know the generality of this result. PMID:25003652

  20. Power generation and oil sands process-affected water treatment in microbial fuel cells.

    PubMed

    Choi, Jeongdong; Liu, Yang

    2014-10-01

    Oil sands process-affected water (OSPW), a product of bitumen isolation in the oil sands industry, is a source of pollution if not properly treated. In present study, OSPW treatment and voltage generation were examined in a single chamber air-cathode microbial fuel cell (MFC) under the effect of inoculated carbon source and temperature. OSPW treatment with an anaerobic sludge-inoculated MFC (AS-MFC) generated 0.55 ± 0.025 V, whereas an MFC inoculated with mature-fine tailings (MFT-MFC) generated 0.41 ± 0.01 V. An additional carbon source (acetate) significantly improved generated voltage. The voltage detected increased to 20-23% in MFCs when the condition was switched from ambient to mesophilic. The mesophilic condition increased OSPW treatment efficiency in terms of lowering the chemical oxygen demand and acid-extractable organics. Pyrosequencing analysis of microbial consortia revealed that Proteobacteria were the most abundant in MFCs and microbial communities in the AS-MFC were more diverse than those in the MFT-MFC. PMID:25103035

  1. Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor.

    PubMed

    McKenzie, Natalie; Yue, Siqing; Liu, Xudong; Ramsay, Bruce A; Ramsay, Juliana A

    2014-08-01

    Aqueous extraction of bitumen in the Alberta oil sands industry produces large volumes of oil sands process water (OSPW) containing naphthenic acids (NAs), a complex mixture of carboxylic acids that are acutely toxic to aquatic organisms. Although aerobic biodegradation reduces NA concentrations and OSPW toxicity, treatment times are long, however, immobilized cell reactors have the potential to improve NA removal rates. In this study, two immobilized soil/sediment bioreactors (ISBRs) operating in series were evaluated for treatment of NAs in OSPW. A biofilm was established from microorganisms associated with sediment particles from an OSPW contaminated wetland on a non-woven textile. At 16 months of continuous operation with OSPW as the sole source of carbon and energy, 38±7% NA removal was consistently achieved at a residence time of 160 h at a removal rate of 2.32 mg NAs L(-1)d(-1). The change in NA profile measured by gas chromatography-mass spectrometry indicated that biodegradability decreased with increasing cyclicity. These results indicate that such treatment can significantly reduce NA removal rates compared to most studies, and the treatment of native process water in a bioreactor has been demonstrated. Amplification of bacterial 16S rRNA genes and sequencing using Ion Torrent sequencing characterized the reactors' biofilm populations and found as many as 235 and 198 distinct genera in the first and second bioreactor, respectively, with significant populations of ammonium- and nitrite-oxidizers. PMID:24602345

  2. Factors that affect the degradation of naphthenic acids in oil sands wastewater by indigenous microbial communities

    SciTech Connect

    Lai, J.W.S.; Pinto, L.J.; Kiehlmann, E.; Bendell-Young, L.I.; Moore, M.M. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

    1996-09-01

    The acute toxicity of wastewater generated during the extraction of bitumen from oil sands is believed to be due to naphthenic acids (NAs). To determine the factors that affect the rate of degradation of representative NAs in microcosms containing wastewater and the acute toxicity of treated and untreated wastewater, the effects of temperature, dissolved oxygen concentration, and phosphate addition on the rate of {sup 14}CO{sub 2} release form two representative naphthenic acid substrates, (linear) U-{sup 14}C-palmitic acid (PA) and (bicyclic) decahydro-2-naphthoic acid-8-{sup 14}C (DHNA), were monitored. Tailings pond water (TPW) contained microorganisms well adapted to mineralizing both PA and DHNA:PA was degraded more quickly (10--15% in 4 weeks) compared to DHNA (2--4% in 8 weeks). On addition of phosphate, the rate of NA degradation increased up to twofold in the first 4 weeks, with a concurrent increase in the rate of oxygen consumption by oil sands TPW. The degradation rate then declined to levels equivalent to those measured in flasks without phosphate. The observed plateau was not due to phosphate limitation. Decreases in either the dissolved oxygen concentration or the temperature reduced the rate. Phosphate addition also significantly decreased the acute toxicity of TPW to fathead minnows. In contrast, Microtox{reg_sign} analyses showed no reduction in the toxicity of treated or untreated TPW after incubation for up to 8 weeks at 15 C.

  3. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (?-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  4. Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells.

    PubMed

    Jiang, Yaxin; Ulrich, Ania C; Liu, Yang

    2013-07-01

    In this study, four dual-chambered microbial fuel cells (MFC1-4) were constructed and filled with different ratios of mature fine tailings and oil sands process-affected water to test the feasibility of MFCs to simultaneously generate electricity and treat oil sands tailings. After 800 h of operation, the maximum voltage was observed in MFC4 at 0.726 V with 1.2k? external resistance loaded. The maximum power density reached 392 ± 15 mW/m(2) during the 1,700 h of MFC4 operation. With continuous electricity generation, MFC4 removed 27.8% of the total COD, 81.8% of the soluble COD and 32.9% of the total acid extractable organics. Moreover, effective removal of eight heavy metals, includes 97.8% of (78)Se, 96.8% of Ba, 94.7% of (88)Sr, 81.3% for (66)Zn, 77.1% of (95)Mo, 66.9% of (63)Cu, 44.9% of (53)Cr and 32.5% of Pb, was achieved. PMID:23669071

  5. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. PMID:22575375

  6. Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids.

    PubMed

    Frank, Richard A; Fischer, Katharina; Kavanagh, Richard; Burnison, B Kent; Arsenault, Gilles; Headley, John V; Peru, Kerry M; Van Der Kraak, Glen; Solomon, Keith R

    2009-01-15

    Fractions of methylated naphthenic acids (NAs) isolated from oil sands process-affected waterwere collected utilizing Kugelrohr distillation and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. 1H NMR analysis revealed that the ratio of methyl ester hydrogen atoms to remaining aliphatic hydrogen atoms increased from 0.130 to 0.214, from the lowest to the greatest molecular weight (MW) fractions, respectively, indicating that the carboxylic acid content increased with greater MW. Acute toxicity assays with exposure to monocarboxyl NA-like surrogates demonstrated that toxicity increased with increasing MW (D. magna LC50 values of 10 +/- 1.3 mM and 0.59 +/- 0.20 mM for the respective lowest and highest MW NA-like surrogates); however, with the addition of a second carboxylic acid moiety, the toxicity was significantly reduced (D. magna LC50 values of 10 +/- 1.3 mM and 27 +/- 2.2 mM forthe respective monocarboxyl and dicarboxyl NA-like surrogates of similar MW). Increased carboxylic acid content within NA structures of higher MW decreases hydrophobicity and, consequently, offers a plausible explanation as to why lower MW NAs in oil sands process-affected water are more toxic than the greater MW NAs. PMID:19238950

  7. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT (1:1).

  8. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    SciTech Connect

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  9. Using Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Landis, M.; Graney, J. R.; Pancras, P.; Krupa, S.; Edgerton, E.; Puckett, K.; Percy, K.

    2013-12-01

    The Wood Buffalo Environmental Association (WBEA) conducted studies to document the geographic patterns of atmospheric deposition of sulfur (S) and nitrogen (N) in the Athabasca Oil Sands Region (AOSR) using epiphytic lichens as bioindicators of atmospheric pollution. Epiphytic lichen samples (Hypogymnia physodes) were collected from 44 locations in 2002, 359 locations in 2008, and 21 locations in 2011 within the AOSR. A subset of samples from 2002 (15) and 2008 (121); and all the samples from 2011 were microwave extracted and analyzed for a comprehensive suite of trace elements using DRC-ICPMS. In addition, source profiles were developed for samples from a variety of available process stacks, heavy duty diesel fleet vehicles, bulk materials representing the various stages of oil sands processing operations, and forest fires. The lichen monitoring and source profile information were integrated into a receptor modeling framework to elucidate the relative importance of natural and anthropogenic sources to the observed atmospheric deposition of S and N in the AOSR. U.S. EPA implemented statistical receptor models utilized included Positive Matrix Factorization (PMF), Unmix, and Chemical Mass Balance (CMB). The sources uniquely identified that significantly contributed to concentrations of elements in the lichen tissue include: fugitive dust from haul roads, tailing sand, and oil sand mining; oil sand processing; combustion processes; and a general urban regional source. The spatial patterns of CMB, PMF, and Unmix receptor model estimated source impacts on the Hypogymnia physodes tissue concentrations from the oil sand processing and fugitive dust sources had a significant association with the distance from the primary oil sands surface mining operations and related production facilities. The spatial extent of the fugitive dust impact was limited to an approximately 20 km radius around the major mining and oil production facilities, indicative of ground level coarse particulate fugitive emissions from these sources. The impact of the general urban source was found to be enhanced in the southern portion of the sampling domain in the vicinity of the Fort McMurray urban area. The receptor model results also indicated lower Mn concentrations in lichen tissues near oil sands production operations suggesting a biogeochemical response. Overall the largest impact on elemental concentrations of Hypogymnia physodes tissue in the AOSR was related to fugitive dust, suggesting that implementation of a fugitive dust abatement strategy could minimize the near-field impact of future mining related production activities.

  10. Lessons in microbial geochemistry from the Coal Oil Point seep field: progress as prospects

    Microsoft Academic Search

    D. L. Valentine; F. Kinnaman; G. Wardlaw; M. Redmond; H. Ding; J. Kimball; L. Busso; A. Larson

    2005-01-01

    The hydrocarbon seeps located offshore Coal Oil Point, Santa Barbara, CA, are estimated to emit 1010 grams of methane and 50 thousand barrels of oil annually, and are among the most prolific in the world. The seep field spans a range of shelf depths and many of the seeps are accessible by SCUBA, making this an ideal location to investigate

  11. Odor detection thresholds of naphthenic acids from commercial sources and oil sands process-affected water.

    PubMed

    Edge, Kristyn; Barona, Brenda; Young, Rozlyn F; Fedorak, Phillip M; Wismer, Wendy V

    2010-11-01

    Naphthenic acids (NAs) occur naturally in various petroleums and in oil sands tailings waters and have been implicated as potential fish tainting compounds. In this study, trained sensory panels and the general population from a university were used to determine the odor detection thresholds of two commercial NAs preparations (Acros and Merichem) and of NAs extracted from an oil sands experimental reclamation pond (Pond 9). Using the three-alternative forced choice method, a concentration series of NAs were presented to the sensory panels in phosphate buffer (pH 8) and in steamed fish (Sander vitreus). In buffer, the odor detection thresholds of Acros, Merichem and Pond 9 NAs, as evaluated by the trained panelists, were 1.5, 0.04, and 1.0 mg L(-1), respectively. Only the detection threshold for the Merichem NAs was significantly different (p<0.01) than the other two sources. Based on the general population assessments, all three odor detection thresholds were significantly different from one another; 4.8, 0.2, and 2.5 mg L(-1) for Acros, Merichem, and Pond 9 NAs, respectively (p<0.01). The odor detection thresholds of Merichem and Pond 9 NAs in steamed fish were 0.6 and 12 mg kg(-1), respectively and were significantly different from each other (p<0.01). The detection threshold of Acros NAs was estimated to be >21 mg kg(-1). For the steamed fish evaluations, the odor descriptors of all three of the NAs preparations was given as chemical in nature (Acros: oil, plastic; Merichem: gasoline; Pond 9: gasoline, tar). Exposure of live rainbow trout to a non-lethal concentration of Merichem NAs (3 mg L(-1) for 10 d) imparted an odor to the fish flesh. Analyses of the three NAs preparations by gas chromatography-mass spectrometry showed that each had a unique distribution of acids. We conclude that the source of the NAs is important when interpreting odor threshold data and that the two commercial preparations of NAs that were tested do not represent oil sands waters' tainting potential. PMID:20801486

  12. Microbial turnover and incorporation of organic compounds in oil sand mining reclamation sites

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Kallmeyer, J.

    2013-12-01

    Microorganisms play an important role in the development of new soils and in the reclamation of disturbed landscapes. Especially in hydrocarbon-contaminated soils their ability to degrade organic matter and pollutants makes them essential to re-establish full ecosystem functionality. Microbes are also involved in the mobilization of nutrients for plant growth and in the production of greenhouse gases. Reclamation sites from oil sand mining activities in Alberta, Canada, contain residual bitumen as well as other hydrocarbons. So, these areas provide a great opportunity to study microbial degradation of residual contaminants from oil sand. To get an impression of degradation rates as well as metabolic pathways, incubation experiments were performed in the lab. We measured microbial turnover (catabolic metabolism) and incorporation (anabolic metabolism) rates of different common organic compounds in samples from differently treated reclamation sites - with plant cover and without plant cover. About 10 g of sample material was suspended in 10 mL of a solution that mimics the in-situ concentration of dissolved ions. Radioactively labelled 14C-acetate was added as a common substrate, whereas 14C-naphthenic acid was chosen to investigate the microbial community's capability to utilize a typical hydrocarbon pollutant in oil sand tailings as a nutrient source. To test for the influence of fertilizers on microbial activity, phosphate, nitrate and potassium were added to some samples in different combinations. Incubations were run over two different time periods (7 and 14 days). At the end of each incubation experiment, the amount of produced 14CO2, 14C incorporated into the cells and the remaining unreacted 14C in the slurry were measured. First results show that most of the added 14C-acetate is used for respiration as it is mostly released as 14CO2. In upper soil layers only about 3% of 14C is incorporated into cells, whereas in deeper horizons with lower cell abundances about 14% of 14C is used to build up biomass. The results also show that microorganisms use 14C-naphthenic acid as a carbon source, but at a lower rate. About half of the degraded naphthenic acid is incorporated into cells; the other half is released as 14CO2. The results give an impression of how fast and to what amount microorganisms can degrade residual oil compounds. Additionally, our study allows for rough estimates of greenhouse gas emissions of reclamation areas.

  13. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows ( Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada

    Microsoft Academic Search

    N. Jane Harms; Graham D. Fairhurst; Gary R. Bortolotti; Judit. E. G. Smits

    2010-01-01

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined

  14. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.

    PubMed

    Cai, Hao; Brandt, Adam R; Yeh, Sonia; Englander, Jacob G; Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael Q

    2015-07-01

    Greenhouse gas (GHG) regulations affecting U.S. transportation fuels require holistic examination of the life-cycle emissions of U.S. petroleum feedstocks. With an expanded system boundary that included land disturbance-induced GHG emissions, we estimated well-to-wheels (WTW) GHG emissions of U.S. production of gasoline and diesel sourced from Canadian oil sands. Our analysis was based on detailed characterization of the energy intensities of 27 oil sands projects, representing industrial practices and technological advances since 2008. Four major oil sands production pathways were examined, including bitumen and synthetic crude oil (SCO) from both surface mining and in situ projects. Pathway-average GHG emissions from oil sands extraction, separation, and upgrading ranged from ?6.1 to ?27.3 g CO2 equivalents per megajoule (in lower heating value, CO2e/MJ). This range can be compared to ?4.4 g CO2e/MJ for U.S. conventional crude oil recovery. Depending on the extraction technology and product type output of oil sands projects, the WTW GHG emissions for gasoline and diesel produced from bitumen and SCO in U.S. refineries were in the range of 100-115 and 99-117 g CO2e/MJ, respectively, representing, on average, about 18% and 21% higher emissions than those derived from U.S. conventional crudes. WTW GHG emissions of gasoline and diesel derived from diluted bitumen ranged from 97 to 103 and 96 to 104 g CO2e/MJ, respectively, showing the effect of diluent use on fuel emissions. PMID:26054375

  15. Increased thyroid hormone levels in tree swallows (Tachycineta bicolor) on reclaimed wetlands of the athabasca oil sands.

    PubMed

    Gentes, Marie-Line; McNabb, Anne; Waldner, Cheryl; Smits, Judit E G

    2007-08-01

    The oil sands of Alberta, Canada are one of the world's largest reserves of crude oil. Oil sands mining companies are now investigating the ecological impacts of reclamation strategies in which wetlands are used for the bioremediation of waste materials. To examine the endocrine disrupting potential of chemicals in Oil Sands Process Materials (OSPM), thyroid hormone concentrations were measured in plasma and thyroid glands of nestling tree swallows (Tachycineta bicolor) from wetlands partly filled with mine tailings. Plasma triiodothyronine (T(3)) concentrations and thyroxine (T(4)) content within thyroid glands were elevated in nestlings from OSPM sites compared to those from the reference site. Results suggested enhanced hormone synthesis by the thyroid glands independently of activation of the pituitary-thyroid axis, as well as increased deiodination of T(4) into T(3) in peripheral tissues. This might have resulted from exposure to oil sands associated chemicals such as polycyclic aromatic hydrocarbons and from environmental factors such as food availability. Modulation of thyroid function might have negative effects on metabolism, behavior, feather development, and molt, which could compromise postfledging survival. PMID:17549538

  16. Dependence of Waterflood Remaining Oil Saturation on Relative Permeability, Capillary Pressure, and Reservoir Parameters in Mixed-Wet Turbidite Sands

    Microsoft Academic Search

    G. J. Hirasaki

    1996-01-01

    The dependence of waterflood oil recovery on relative permeability, capillary pressure, and reservoir parameters was investigated by numerical simulation. The relative permeability and capillary pressure curves were based on laboratory measurements on unconsolidated sands. The water-wet case is based on the assumption that the system is water-wet and measurements were made with refined oil. The mixed-wet case assumed that the

  17. Phytotoxicity and naphthenic acid dissipation from oil sands fine tailings treatments planted with the emergent macrophyte Phragmites australis

    Microsoft Academic Search

    Sarah A. Armstrong; John V. Headley; Kerry M. Peru; Randy J. Mikula; James J. Germida

    2010-01-01

    During reclamation the water associated with the runoff or groundwater flushing from dry stackable tailings technologies may become available to the reclaimed environment within an oil sands lease. Here we evaluate the performance of the emergent macrophyte, common reed (Phragmites australis), grown in chemically amended mature fine tailings (MFT) and simulated runoff\\/seepage water from different MFT drying treatments. The present

  18. Century-Long Source Apportionment of PAHs in Athabasca Oil Sands Region Lakes Using Diagnostic Ratios and Compound-Specific

    E-print Network

    Beaudoin, Georges

    Century-Long Source Apportionment of PAHs in Athabasca Oil Sands Region Lakes Using Diagnostic a century- long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both

  19. The fine sand Abra alba community of the bay of morlaix twenty years after the Amoco Cadiz oil spill

    Microsoft Academic Search

    J-C Dauvin

    1998-01-01

    The fine sand Abra alba community from the Bay of Morlaix (western English Channel) was strongly affected by the Amoco Cadiz oil spill of April 1978. The long term changes in the community (1977–1996) show that reconstitution of this community is slow (over 10 yr). A progressive recolonization by amphipod Ampelisca populations constituting the dominant species is observed. The results

  20. The influence of solvent and demulsifier additions on nascent froth formation during flotation recovery of Bitumen from Athabasca oil sands

    Microsoft Academic Search

    Elaine N. Stasiuk; Laurier L. Schramm

    2001-01-01

    In the commercial slurry conditioning and flotation process applied to Athabasca oil sands the primary bituminous froth can contain significant amounts of emulsified water and suspended solids. Previous work [Fuel Process. Technol. 56 (1998) 243] has shown that a small chemical addition during the nascent froth process can yield froth of higher quality, without sacrificing bitumen recovery or increasing tight

  1. Dry mature fine tailings as oil sands reclamation substrates for three native grasses.

    PubMed

    Luna Wolter, Gabriela L; Naeth, M Anne

    2014-07-01

    Mature fine tailings (MFT) are a by-product of oil sands mining that must be reclaimed through capping or use as a reclamation substrate. Some chemical and physical properties of MFT make it inhospitable for plant growth, such as high concentrations of sodium, sulfate, chloride, and hydrocarbons. A greenhouse study assessed whether substrates of various mixes of dry MFT, overburden sand, and peat mineral soil mix (PMM) and caps of forest floor organic material (LFH) and PMM would support the emergence and growth of three native grass species commonly used in land reclamation. Select vegetation properties were monitored for 16 wk in the greenhouse; select chemical and physical substrate properties were determined in the laboratory. was more tolerant of dry MFT than and . Mean aboveground and belowground biomass were more than twice as high on substrates with <60% MFT than on 100% MFT. Aboveground biomass was two to four times greater with capping than without and 30% greater on LFH than PMM caps. Cover and density followed similar trends. Belowground biomass on capped substrates was at least double that on uncapped substrates. Aboveground biomass was almost doubled with the use of fertilizer. High concentrations of hydrocarbons and exchangeable ions were associated with reduced plant growth and health. Results from this study show that capping, amendments, and fertilizer may improve the reclamation potential of dry MFT. PMID:25603099

  2. Numerical simulation of combined reverse combustion and steamflooding for oil recovery in a Utah tar sand

    SciTech Connect

    Lasaki, G.O.; Fahy, L.J.; Martel, R.

    1985-04-01

    This paper presents the design of the U.S. DOE Laramie Energy Technology Center's (LETC) Project TS-4, which involves numerical simulation of both in-situ reverse combustion and steamflooding. The simulator showed that the combustion could be limited and contained in a middle 10-ft (3-m) interval with a correlatable high-permeability streak within the 65-ft (20-m) pay zone of the upper Rimrock tar sand formation in Northwest Asphalt Ridge, Uintah County, UT. A high-transmissibility path was necessary to obtain adequate injectivity and sustain a stable reverse combustion. Combustion ''echoes'' developed and the front changed into a forward mode as the formation pressure increased and at very low air-injection rates. Oil recovery by steam injection was accelerated in a formation preheated by a reverse combustion.

  3. A relevance vector machine-based approach with application to oil sand pump prognostics.

    PubMed

    Hu, Jinfei; Tse, Peter W

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  4. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-01

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ?PAHs, ?alkylated PAHs and ?DBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ?PAHs/?Alkylated PAHs = ?0.2 and ?PAHs/?DBTs = ?5. PMID:25602941

  5. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 ?gm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ?OA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  6. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout.

    PubMed

    MacDonald, Gillian Z; Hogan, Natacha S; Köllner, Bernd; Thorpe, Karen L; Phalen, Laura J; Wagner, Brian D; van den Heuvel, Michael R

    2013-01-15

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose × A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells. PMID:23159729

  7. Determining the ecological viability of constructed wetlands for the treatment of oil sands wastewater

    SciTech Connect

    Lai, J.; Kiehlmann, E.; Pinto, L.; Bendell-Young, L.; Moore, M. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Nix, P. [EVS Environment Consultants, North Vancouver, British Columbia (Canada)

    1995-12-31

    To determine the conditions for optimal degradation of naphthenic acids (C{sub n}H{sub 2n+z}O{sub 2}), the most toxic component of oil sands wastewater, the authors have monitored the mineralization of 2 representative naphthenic acids (NA), U-{sup 14}C-palmitic acid (linear, Z = 0) and 8-{sup 14}C-decahydro-2-naphthoic acid (bicyclic, Z = {minus}4) under varying conditions of temperature, phosphate and oxygen. The radiolabeled NA was added to biometer flasks containing wastewater {+-} amendments and evolved {sup 14}C-CO{sub 2} was trapped in a side arm and counted by LSC. The results indicate that low temperature (5 C) and anaerobiasis greatly inhibited NA degradation over the four week incubation period. Addition of phosphate (as buffered KP{sub i}) significantly increased {sup 14}C-CO{sub 2} production for both Z = 0 and Z = {minus}4 compounds; however, the subsequent high microbial growth rates also decreased PO{sub 2} which limited NA mineralization. Effluent toxicity was monitored at week 0 and week 4 using Microtox and fathead minnow tests. Although there was increased survival of fathead minnows in the phosphate-amended effluent, the IC{sub 20} values of the Microtox assay showed no improvement in either the phosphate-treated or untreated effluents. These results show that naphthenic acid analogues are readily degraded by indigenous microorganisms in oil sands wastewater and that phosphate addition accelerated the mineralization of these compounds if PO{sub 2} remained high.

  8. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry.

    PubMed

    Pereira, Alberto S; Bhattacharjee, Subir; Martin, Jonathan W

    2013-05-21

    Recovery of bitumen from oil sands in northern Alberta, Canada, occurs by surface mining or in situ thermal recovery, and both methods produce toxic oil sands process-affected water (OSPW). A new characterization strategy for surface mining OSPW (sm-OSPW) and in situ OSPW (is-OSPW) was achieved by combining liquid chromatography with orbitrap mass spectrometry (MS). In electrospray positive and negative ionization modes (ESI(+)/ESI(-)), mass spectral data were acquired with high resolving power (RP > 100,000-190,000) and mass accuracy (<2 ppm). The additional chromatographic resolution allowed for separation of various isomers and interference-free MS(n) experiments. Overall, ?3000 elemental compositions were revealed in each OSPW sample, corresponding to a range of heteroatom-containing homologue classes: Ox (where x = 1-6), NOx (where x = 1-4), SOx (where x = 1-4), NO?S, N, and S. Despite similarities between the OSPW samples at the level of heteroatom class, the two samples were very different when considering isomer patterns and double-bond equivalent profiles. The chromatographic separations also allowed for confirmation that, in both OSPW samples, the O? species detected in ESI(-) (i.e., naphthenic acids) were chemically distinct from the corresponding O? species detected in ESI(+). In comparison to model compounds, tandem MS spectra of these new O? species suggested a group of non-acidic compounds with dihydroxy, diketo, or ketohydroxy functionality. In light of the known endocrine-disrupting potential of sm-OSPW, the toxicity of these O? species deserves attention and the method should be further applied to environmental forensic analysis of water in the region. PMID:23607765

  9. Mercury trends in colonial waterbird eggs downstream of the oil sands region of Alberta, Canada.

    PubMed

    Hebert, Craig E; Campbell, David; Kindopp, Rhona; MacMillan, Stuart; Martin, Pamela; Neugebauer, Ewa; Patterson, Lucy; Shatford, Jeff

    2013-10-15

    Mercury levels were measured in colonial waterbird eggs collected from two sites in northern Alberta and one site in southern Alberta, Canada. Northern sites in the Peace-Athabasca Delta and Lake Athabasca were located in receiving waters of the Athabasca River which drains the oil sands industrial region north of Fort McMurray, Alberta. Temporal trends in egg mercury (Hg) levels were assessed as were egg stable nitrogen isotope values as an indicator of dietary change. In northern Alberta, California and Ring-billed Gulls exhibited statistically significant increases in egg Hg concentrations in 2012 compared to data from the earliest year of sampling. Hg levels in Caspian and Common Tern eggs showed a nonstatistically significant increase. In southern Alberta, Hg concentrations in California Gull eggs declined significantly through time. Bird dietary change was not responsible for any of these trends. Neither were egg Hg trends related to recent forest fires. Differences in egg Hg temporal trends between northern and southern Alberta combined with greater Hg levels in eggs from northern Alberta identified the likely importance of local Hg sources in regulating regional Hg trends. Hg concentrations in gull and Common Tern eggs were generally below generic thresholds associated with toxic effects in birds. However, in 2012, Hg levels in the majority of Caspian Tern eggs exceeded the lower toxicity threshold. Increasing Hg levels in eggs of multiple species nesting downstream of the oil sands region of northern Alberta warrant continued monitoring and research to further evaluate Hg trends and to conclusively identify sources. PMID:24070029

  10. Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2011-11-01

    A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p???0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes. PMID:21898553

  11. Reduction in natural hydrocarbon seepage from the offshore south Ellwood field near Coal Oil Point, California, due to oil production

    Microsoft Academic Search

    J. S. Hornafius; B. P. Luyendyk; D. Quigley; A. Trial

    1996-01-01

    Prolific natural gas seepage, a significant air pollution source in Santa Barbara County, occurs offshore from Coal Oil Point, near Santa Barbara. Seepage rates are quantified by measuring the acoustic return of sonar sources from the gas bubbles rising through the water column, and by measuring the dissolved concentrations of hydrocarbons downcurrent from the gas seep vents. In 1995 we

  12. EFFECT OF IRON CATALYST ON THE COMPOSITION OF OIL FROM COAL LIQUEFACTION

    Microsoft Academic Search

    Yoshiki Sato; Keiji Miki; Toshio Yamakawa; Ryohei Minami

    1987-01-01

    The effect of two iron catalysts, red mud and CGS S-G, as well as C0-Mo\\/AI2O3 and Ni-Mo\\/Al203 commercial catalysts on the composition of oil derived from the liquefaction of Japanese subbituminous coal have been investigated comparatively by conventional autoclave experiments at 440 and 450C under initial hydrogen pressure of 85kg\\/cm G with tetralin to coal weight ratio of 3. From

  13. Special report: Athabasca tar sands

    Microsoft Academic Search

    W. A. Bachman; D. H. Stormont

    1967-01-01

    A synthetic crude oil is being produced from the Athabasca oil sands region of northeastern Alberta. The Athabasca operations are broken down into 3 divisions: mining, extraction of oil from the sand, and pipelining to market. The entire project, operated by Great Canadian Oil Sands, Ltd., an affiliate of Sun Oil Co., is self-sufficient except for the water supply. By-

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  15. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  16. Application of solid state silicone-29 and carbon-13 nuclear magnetic resonance spectroscopy to the characterization of inorganic matter-humic complexes in Athabasca oil sands

    SciTech Connect

    Kotlyar, L.S.; Ripmeester, J.A.

    1988-06-01

    The ease of bitumen recovery from oil sand by hot or cold water separation techniques depends upon the surface properties of the components, especially water wet character of the clay and sand particles. Oil wetting of some of the oils and sand solids is believed to be caused by the presence of humic matter-non-crystalline inorganic complexes. Characterization of these complexes using solid state carbon-13 and silicon-29 magic spinning angle (MAS) NMR spectroscopy was the purpose of the present work.

  17. Coal oxidation and its effect on oil agglomeration

    SciTech Connect

    Qiu, X.; Wheelock, T.D. [Ames Lab., IA (United States); [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1991-12-31

    Small particles of high volatile bituminous coal from two different sources were oxidized by air at 150 C for up to 72 hrs. As the treatment progressed, samples of coal were recovered and characterized by measuring the heat of immersion of the particles in water and determining the agglomerability of the material with heptane while suspended in water. As oxidation proceeded, the heat of immersion increased and the agglomerability decreased, and a direct relationship between the two was observed.

  18. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    Microsoft Academic Search

    Ira Leifer; Marc J. Kamerling; Bruce P. Luyendyk; Douglas S. Wilson

    2010-01-01

    High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation\\u000a of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field,\\u000a one of the world’s largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir\\u000a near Santa Barbara, California. In

  19. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    Microsoft Academic Search

    Ira Leifer; Marc J. Kamerling; Bruce P. Luyendyk; Douglas S. Wilson

    2010-01-01

    High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir near Santa Barbara, California. In

  20. Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California

    Microsoft Academic Search

    Tonya S. Del Sontro; Ira Leifer; Bruce P. Luyendyk; Bernardo R. Broitman

    2007-01-01

    A new field method for tar quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil\\/tar from the nearby COP natural marine hydrocarbon seep field. This method segregates tar pieces into six size classes and assigns them an average mass based on laboratory or direct field measurements. Tar accumulation on the 19,927m2 survey area was

  1. Investigation of the absorption and polymerization capacity of coal wash oils

    SciTech Connect

    Gogoleva, T.Ya.; Kovalev, E.T.; Butsinskaya, L.I.; Golovina, G.G.

    1981-01-01

    The absorption and polymerization capacity of coal gas wash oils is important when they are used as an absorber to recover benzol from coke-oven gas. The absorption capacity characterizes the property of the oil for dissolving benzol at normal temperature and a high benzol concentration in the coke-oven gas and for easily separating the benzol on heating. The polymerization capacity of the oil characterizes its property of forming polymer products, usually dissolving in the oil and intensifying its color, under the influence of temperature. The acceleration of polymerization processing of individual components of the oil is affected by its repeated heating to 130 to 140/sup 0/C during distillation of the benzol. The accumulation of polymer products in the oil impairs its quality: for example, the density increases (to 1.1 g/cm/sup 3/), the molecular weight and viscosity increase and the absorption capacity decreases. Investigations permitted more precise determination of the most characteristic temperature interval for determination and evaluation of the absorption capacity of the oils, determination of the components which largely determine the formation of polymer products in the oil and determination of certain functions for the absorption and polymerization properties of various wash oils. The principal specifications were determined for oil with sufficient absorption capacity and low polymerization capacity: density at 20/sup 0/C of not over 1.047 g/cm/sup 3/, not less than 95% distillation in the 230 to 280/sup 0/C range, concentration, wt %: naphthalene not over 10%, monomethylnaphthalenes not less than 25%, high-boiling compounds (acenaphthene, diphenylene oxide and fluorene) not over 25%; no precipitation at 5/sup 0/C. Oil of this quality may be obtained by additional purification of the standard industrial coal wash oil.

  2. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method is being investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. During the first quarter the selection of base fro pretreatment and extraction was completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. During the second quarter the effectiveness of linseed oil and NaOH for sulfur removal from IBC-108 coal was further tested by pretreating the coal with two base concentrations at four different times followed by treatment with linseed oil at 125{degrees}C for three different times and finally washing with 5% Na{sub 2}CO{sub 3} and methanol. During this third quarter more experimental parameters were systematically varied in order to study the effectiveness of linseed oil and NaOH for sulfur removal from IBC- 108 coal.

  3. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    This volume describes emission results from sampling of flue gas from a firetube boiler burning a coal/oil/water (COW) mixture and COW with soda ash added (COW+SA) to control SO2 emissions. Measurements included: continuous monitoring of flue gas emissions; source assessment samp...

  4. Coal-Oil Mixtures - A U. S. State of the Art Review

    E-print Network

    Kapp, G. S.

    1982-01-01

    Since the successful Coal-Oil Mixture tests carried out by G-M from 1975 to 1977, COM is rapidly maturing into a commercially available alternative fuel which is presently being produced and combusted by various companies in the United States. Long...

  5. The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California

    Microsoft Academic Search

    Libe Washburn; Jordan F. Clark; Phaedon Kyriakidis

    2005-01-01

    Natural hydrocarbon seepage from marine environments is an important source of methane and other gases to the atmosphere. Quantifying this flux is necessary for constraining global budgets and understanding local air pollution sources. A field of strong hydrocarbon seepage offshore of Coal Oil Point near Santa Barbara, California produces extensive areas of bursting bubbles at the sea surface. An instrumented

  6. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO2 sorbent. The test data inc...

  7. SUMMER 2012 9 Abstract: As a state with no coal, oil, or

    E-print Network

    Levinson, David M.

    SUMMER 2012 9 Abstract: As a state with no coal, oil, or natural gas production, the development of renewable energy is vital to Minnesota's future. Forest biomass used for heating, elec- tricity, and biofuel of biomass, which can serve as a significant source of renewable energy. Forest biomass-- which includes

  8. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  9. VEGETATIVE REHABILITATION OF ARID LAND DISTURBED IN THE DEVELOPMENT OF OIL SHALE AND COAL

    EPA Science Inventory

    Field experiments were established on sites disturbed by exploratory drilling in the oil shale region of northeastern Utah and on disturbed sites on a potential coal mine in south central Utah. Concurrently, greenhouse studies were carried out using soil samples from disturbed si...

  10. Assessing the potential environmental impact of Athabasca oil sands development in lakes across Northwest Saskatchewan

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Cumming, B. F.; Das, B.; Sanei, H.

    2011-12-01

    The continued development of Canada's Athabasca oil sands poses a significant environmental challenge. Low buffered boreal lakes located downwind of the prevailing eastward wind direction may be threatened by acidification and elevated inputs of airborne contaminants such as polycyclic aromatic hydrocarbons (PAHs). An accurate assessment of the impact that increased levels of bitumen production may have on lakes in the region requires an understanding of the historic variability within these systems prior to at least the past several decades. Here we report concentrations of PAHs, ?13C and ?15N of organic matter (OM), Rock-Eval pyrolysis analyses, and distributions of n-alkanes in dated sediment cores from ten lakes located across NW Saskatchewan. Concentrations of PAHs were relatively low (< 100 ng/g for ? 16 EPA Priority PAHs at each lake) and in general showed no substantial increases over the past 30 years. Retene, which is often associated with the combustion of coniferous wood, was generally the most abundant PAH amongst those reported, demonstrating the importance of forest fires as a principal PAH source. Plots of Hydrogen Index (HI) versus Oxygen Index (OI) fell within a relatively narrow range typical for sediments containing a high content of algal-derived OM. Relatively lower C/N ratios and higher abundances of C17 n-alkane in more recent sediments pointed to an increasingly larger component of algal-derived OM. In all ten lakes ?13C showed gradual upcore depletions that fell within the expected range for fossil fuel combustion (i.e., Suess effect), although this alone may not explain the up to ~3% depletion observed in several of the lakes. In conjunction with the other upcore trends these data may suggest a possible increase in primary productivity over the past several decades in many of the lakes studied. ?15N signatures were more variable, showing upcore increases in some lakes and upcore depletions in others. The increasingly lighter values observed in more recent sediments in some lakes suggest a potential input of depleted bioavailable nitrogen, as might be expected from anthropogenic NOx emissions. This study implies that thus far it appears that oil sands industry related emissions have had only a minor environmental impact on lakes in NW Saskatchewan.

  11. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    NASA Astrophysics Data System (ADS)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 ?m and a 1 ?m mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume often exceeds the detection limit. There is a rough correlation between NO2 and aerosol, so it may be possible to indirectly monitor aerosol production.

  12. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  13. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    SciTech Connect

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  14. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  15. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    EPA Science Inventory

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  16. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    PubMed

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. PMID:22944493

  17. Environmental, health, safety, and socioeconomic concerns associated with oil recovery from US tar-sand deposits: state-of-knowledge

    SciTech Connect

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1982-01-08

    Tar-sand petroleum-extraction procedures undergoing field testing for possible commercial application in the US include both surface (above-ground) and in situ (underground) procedures. The surface tar-sand systems currently being field tested in the US are thermal decomposition processes (retorting), and suspension methods (solvent extraction). Underground bitumen extraction procedures that are also being field tested domestically are in situ combustion and steam-injection. Environmental, health, safety, and socioeconomic concerns associated with construction and operation of 20,000-bbl/d commercial tar-sand surface and in situ facilities have been estimated and are summarized in this report. The principal regulations that commercial tar-sand facilities will need to address are also discussed, and environmental control technologies are summarized and wherever possible, projected costs of emission controls are stated. Finally, the likelihood-of-occurrence of potential environmental, health, and safety problems that have been determined are reviewed, and from this information inference is made as to the environmental acceptability of technologically feasible 20,000-bbl/d commercial tar-sand oil-extraction procedures.

  18. Reproductive and stress hormone levels in goldfish ( Carassius auratus) exposed to oil sands process-affected water

    Microsoft Academic Search

    A. Lister; V. Nero; A. Farwell; D. G. Dixon; G. Van Der Kraak

    2008-01-01

    Athabasca oil sands mining in northern Alberta produces process-affected waters that are characterized by the presence of naphthenic acids, polycyclic aromatic hydrocarbons, and high salinity. The purpose of this study was to examine the impact of these process-affected waters on reproductive and stress related endpoints in mature goldfish, Carassius auratus. In two separate studies, testosterone and 17?-estradiol levels in the

  19. Effects of wastewater from an oil-sand-refining operation on survival, hematology, gill histology, and swimming of fathead minnows

    Microsoft Academic Search

    A. P. Farrell; C. J. Kennedy; A. Kolok

    2004-01-01

    This study examined the effects of various types of wastewater produced in oil-sand-refining on the survival, hematology, gill morphology, and swimming of caged fathead minnows (Pimephales promelas Rafinesque, 1820). At the reference site, all fish survived a 28-day exposure with unchanged hematocrit, leucocrit, and gill histology. In con- trast, all fish did not survive a 28-day period in any of

  20. Effects of oil sands tailings compounds and harsh weather on mortality rates, growth and detoxification efforts in nestling tree swallows ( Tachycineta bicolor)

    Microsoft Academic Search

    Marie-Line Gentes; Cheryl Waldner; Zsuzsanna Papp; Judit E. G. Smits

    2006-01-01

    Oil sands mining companies in Alberta, Canada, are evaluating the feasibility of using wetlands to detoxify oil sands process material (OSPM) as a reclamation strategy. Reproductive success, nestling growth, survival and ethoxyresorufin-o-deethylase (EROD) activity were measured in tree swallows (Tachycineta bicolor) on experimental wetlands. In 2003, harsh weather triggered a widespread nestling die-off. Mortality rates on the control site reached

  1. Characterization and pattern recognition of oil–sand naphthenic acids using comprehensive two-dimensional gas chromatography\\/time-of-flight mass spectrometry

    Microsoft Academic Search

    Chunyan Hao; John V. Headley; Kerry M. Peru; Richard Frank; Paul Yang; Keith R. Solomon

    2005-01-01

    Oil–sand naphthenic acids (NAs) are organic wastes produced during the oil–sand digestion and extraction processes and are very difficult to separate and analyze as individual components due to their complex compositions. A comprehensive two-dimensional gas chromatography\\/time of flight mass spectrometry (GC×GC\\/TOF–MS) system was applied for the characterization of two commercial mixtures of naphthenic acids (Fluka and Acros) and a naphthenic

  2. Effects of exposure to naphthenic acids in tree swallows (Tachycineta bicolor) on the Athabasca oil sands, Alberta, Canada.

    PubMed

    Gentes, Marie-Line; Waldner, Cheryl; Papp, Zsuzsanna; Smits, Judit E G

    2007-07-01

    Naphthenic acids (NAs) are a group of carboxylic acids that are of particular concern to the steadily growing oil sands mining industry of Alberta, Canada, because they become highly concentrated in the water used for oil sands extraction and are toxic to aquatic biota and mammals. Upon mine closure, vast amounts of process-affected water will need to be reclaimed and proven safe for wildlife colonizing reclaimed areas. The effects of exposure to NAs have not been investigated in avian species. To address this void, tree swallow (Tachycineta bicolor) nestlings were dosed with NAs while being reared normally by their free-ranging parents on a site in the vicinity of the oil sands. Nestlings received 1.5 mg NAs/day (approximately 0.075 g/kg body mass) from d 7 to d 13 of age, which represented a 10-fold "worst exposure" scenario. Nestling growth, hematocrit, blood biochemistry, organ weights, and ethoxyresorufin O-deethylase (EROD) activity were unaffected by NAs. The only change detected on histopathological evaluation of major organs was an increase in extramedullary erythropoiesis in the liver. These findings indicate that nestling tree swallows can successfully tolerate short-term exposures to environmentally realistic concentrations of NAs. However, this study did not investigate the chronic or reproductive toxicity of NAs. More research needs to be conducted to complete this initial assessment, to determine environmental risks on reclaimed areas where birds will be breeding and where their exposure to NAs could extend for several weeks. PMID:17573632

  3. Characterization and quantification of mining-related "naphthenic acids" in groundwater near a major oil sands tailings pond.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Calderhead, Angus I; Gammon, Paul R; Rivera, Alfonso; Peru, Kerry M; Headley, John V

    2013-05-21

    The high levels of acid extractable organics (AEOs) containing naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) are a growing concern in monitoring studies of aquatic ecosystems in the Athabasca oil sands region. The complexity of these compounds has substantially hindered their accurate analysis and quantification. Using a recently developed technique which determines the intramolecular carbon isotope signature of AEOs generated by online pyrolysis (?(13)Cpyr), natural abundance radiocarbon, and high resolution Orbitrap mass spectrometry analyses, we evaluated the sources of AEOs along a groundwater flow path from a major oil sands tailings pond to the Athabasca River. OSPW was characterized by a ?(13)Cpyr value of approximately -21‰ and relatively high proportions of O? and O?S species classes. In contrast, AEO samples located furthest down-gradient from the tailings pond and from the Athabasca River were characterized by a ?(13)Cpyr value of around -29‰, a greater proportion of highly oxygenated and N-containing compound classes, and a significant component of nonfossil and, hence, non-bitumen-derived carbon. The groundwater concentrations of mining-related AEOs determined using a two end-member isotopic mass balance were between 1.6 and 9.3 mg/L lower than total AEO concentrations, implying that a less discriminating approach to quantification would have overestimated subsurface levels of OSPW. This research highlights the need for accurate characterization of "naphthenic acids" in order to quantify potential seepage from tailings ponds. PMID:23607666

  4. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.

    PubMed

    Brandt, Adam R

    2012-01-17

    Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed. PMID:22191713

  5. Monitoring the Effects of Oil Sands Process-Affected Water (OSPW) on Thecamoebian Assemblages: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Christie, D. G.; McCarthy, F. F.; Penner, T.; MacKinnon, M. M.

    2009-05-01

    Thecamoebian (testate amoeba) assemblages have been shown to respond over short time periods to environmental conditions in aquatic reclamation options under development at oil sands operations in northeastern Alberta. This makes them a useful bio-monitoring tool for assessing reclamation success. Thecamoebian responses to Oil Sands Process Water (OSPW) have been monitored in the field at lacustrine and wetland test sites established by Syncrude Canada Ltd. and Suncor Energy Ltd. These field studies have confirmed that the generation times of testate amoebas is sufficiently rapid to permit the construction of a controlled laboratory experiment to be completed within one year, where controlled exposures of a natural assemblage of thecamoebians to OSPW can be undertaken to better understand the community responses to stressors We intend to culture these protists in the lab and monitor their response to different concentrations of OSPW in a controlled environment. Survival and changes in relative community composition (difflugiids vs. centropyxids) will be used to establish the dilution of OSPW in which thecameobians can survive and examine how a natural assemblage changes over time in response to increased concentrations of OSPW. This will assist in reclamation management in the Oil Sands region of Alberta.

  6. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHD?) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. PMID:25828413

  7. Achieving conservation when opportunity costs are high: optimizing reserve design in Alberta's oil sands region.

    PubMed

    Schneider, Richard R; Hauer, Grant; Farr, Dan; Adamowicz, W L; Boutin, Stan

    2011-01-01

    Recent studies have shown that conservation gains can be achieved when the spatial distributions of biological benefits and economic costs are incorporated in the conservation planning process. Using Alberta, Canada, as a case study we apply these techniques in the context of coarse-filter reserve design. Because targets for ecosystem representation and other coarse-filter design elements are difficult to define objectively we use a trade-off analysis to systematically explore the relationship between conservation targets and economic opportunity costs. We use the Marxan conservation planning software to generate reserve designs at each level of conservation target to ensure that our quantification of conservation and economic outcomes represents the optimal allocation of resources in each case. Opportunity cost is most affected by the ecological representation target and this relationship is nonlinear. Although petroleum resources are present throughout most of Alberta, and include highly valuable oil sands deposits, our analysis indicates that over 30% of public lands could be protected while maintaining access to more than 97% of the value of the region's resources. Our case study demonstrates that optimal resource allocation can be usefully employed to support strategic decision making in the context of land-use planning, even when conservation targets are not well defined. PMID:21858046

  8. Woody plant establishment in grassed reclamation areas of the Athabasca oil sands

    SciTech Connect

    Fedkenheuer, A.W.

    1980-12-01

    The primary end land use for areas disturbed by the Syncrude Canada Ltd. oil sands surface mining venture is forest cover. Short term erosion control is of concern, however, and this results in the early establishment of a grass and legume cover. Problems have subsequently been encountered in attempts to establish woody plants in the grass and legume cover. Vegetation competition for soil moisture and nutrients and rodent damage to woody seedlings have been the major problem areas. A study was initiated in 1978 to evaluate methods of manipulating the grass and legume cover sufficiently to improve success rates in establishing a variety of shrubs and trees. Five replicated treatments using the chemical herbicide glyphosate, soil scarification and fire alone plus soil scarification were established on an area seeded to grass and legumes in spring 1976. Woody plant survival and rodent damage, populations and distribution are being assessed annually in spring and fall. Rodent damage to woody seedlings was heavy in fall 1978 with 80 percent of the deciduous seedlings on non-scarified plots being damaged. In June 1979, 98 percent of the deciduous plants on the control and herbicide treatment areas were damaged. Damage to conifers was approximately 30 percent less during this time. Prescribed burning and mechanical scarification substantially reduced rodent damage. Seedling survival was variable with Amelanchier alnifolia, Pinus contorta and Populus tremuloides consistently exhibiting the highest survival rates.

  9. Assessment of fish health effects resulting from exposure to oil sands wastewater

    SciTech Connect

    Balch, G.C.; Goudey, J.S. [HydroQual Labs. Ltd., Calgary, Alberta (Canada); Birkholtz, D. [EnviroTest Labs. Ltd., Edmonton, Alberta (Canada); Van Meer, T.; MacKinnon, M. [Syncrude Canada Ltd., Fort McMurray, Alberta (Canada)

    1995-12-31

    The objective of this study was to determine if oil sands wastewater had an effect on the general health and condition of hatchery raised rainbow trout (200 to 400 g). Effects were assessed based on a battery of physiological and biochemical indices and the physical condition of the fish. The trout were exposed to tailings water in the field and in a flow through system under laboratory conditions. The field tests were conducted in 1992 and 1993 in experimental ponds at Syncrude which contained fine tails covered with surface water, fine tails covered with tailings water, and a surface water control pond. The laboratory treatments included Mildred Lake tailings water, dyke drainage water, fractionated tailings pond water (acid fraction containing naphthenic acids), sodium naphthenate, recycle water from Suncor`s tailings pond, and a laboratory control. All body condition factors and blood parameters were normal in the field and laboratory exposed fish and there were no apparent differences between the fish exposed to the tailings water and controls.

  10. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    PubMed

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application. PMID:25225922

  11. Achieving Conservation when Opportunity Costs Are High: Optimizing Reserve Design in Alberta's Oil Sands Region

    PubMed Central

    Schneider, Richard R.; Hauer, Grant; Farr, Dan; Adamowicz, W. L.; Boutin, Stan

    2011-01-01

    Recent studies have shown that conservation gains can be achieved when the spatial distributions of biological benefits and economic costs are incorporated in the conservation planning process. Using Alberta, Canada, as a case study we apply these techniques in the context of coarse-filter reserve design. Because targets for ecosystem representation and other coarse-filter design elements are difficult to define objectively we use a trade-off analysis to systematically explore the relationship between conservation targets and economic opportunity costs. We use the Marxan conservation planning software to generate reserve designs at each level of conservation target to ensure that our quantification of conservation and economic outcomes represents the optimal allocation of resources in each case. Opportunity cost is most affected by the ecological representation target and this relationship is nonlinear. Although petroleum resources are present throughout most of Alberta, and include highly valuable oil sands deposits, our analysis indicates that over 30% of public lands could be protected while maintaining access to more than 97% of the value of the region's resources. Our case study demonstrates that optimal resource allocation can be usefully employed to support strategic decision making in the context of land-use planning, even when conservation targets are not well defined. PMID:21858046

  12. Pipe and fittings for steam distribution systems in oil sands' development

    SciTech Connect

    Ishimoto, K.; Kawasaki, H.; Ueno, K.; Sato, S.

    1983-01-01

    Oil sands development by the steam injection method requires a pipe material with high strength at the design temperature and good field weldability for the steam distribution system. Considering the the design temperature is moderate and field weldability is indispensable, it seems most proper to apply a quenched and tempered steel to the steam distribution system. Therefore, quenched and tempered low C-Mo-V seamless pipe and fittings (KSC-X65M) were developed for this purpose and their properties were studied. Strengths of the pipe and fittings satisfied the specifications both at room temperature and 350C. The tensile strength of the girth-welded joint is almost as high as that of the parent metal, both at room temperature and 350C. The steel has good weldability and can be field- welded with cellulosic electrodes. The results of creep rupture tests for the pipe and the girth weld show that the creep effect is almost negligible at the design temperature. Sixty-seven percent of the 105 hr rupture stress at 350C is sufficiently higher than one third of the tensile strength and, therefore, the allowable stress is determined simply by the tensile strength.

  13. Predicting project environmental performance under market uncertainties: case study of oil sands coke.

    PubMed

    McKellar, Jennifer M; Bergerson, Joule A; Kettunen, Janne; MacLean, Heather L

    2013-06-01

    A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is likely to be financially preferred initially, but eventually hydrogen production in Alberta is likely to be preferred. Compared to the results of a previous study that used life cycle costing to identify the financially preferred alternative, the inclusion of real options analysis adds value as it accounts for flexibility in decision-making (e.g., to delay investment), increasing the project's expected net present value by 25% and decreasing the expected life cycle greenhouse gas emissions by 11%. Different formulations of the carbon pricing policy or changes to the natural gas price forecast alter these findings. The combined LCA/real options method provides researchers and decision-makers with more comprehensive information than can be provided by either technique alone. PMID:23675646

  14. Mixed-species biofilms cultured from an oil sand tailings pond can biomineralize metals.

    PubMed

    Golby, Susanne; Ceri, Howard; Marques, Lyriam L R; Turner, Raymond J

    2014-07-01

    Here, we used an in vitro biofilm approach to study metal resistance and/or tolerance of mixed-species biofilms grown from an oil sand tailings pond in northern Alberta, Canada. Metals can be inhibitory to microbial hydrocarbon degradation. If microorganisms are exposed to metal concentrations above their resistance levels, metabolic activities and hydrocarbon degradation can be slowed significantly, if not inhibited completely. For this reason, bioremediation strategies may be most effective if metal-resistant microorganisms are used. Viability was measured after exposure to a range of concentrations of ions of Cu, Ag, Pb, Ni, Zn, V, Cr, and Sr. Mixed-species biofilms were found to be extremely metal resistant; up to 20 mg/L of Pb, 16 mg/L of Zn, 1,000 mg/L of Sr, and 3.2 mg/L of Ni. Metal mineralization was observed by visualization with scanning electron microscopy with metal crystals of Cu, Ag, Pb, and Sr exuding from the biofilms. Following metal exposure, the mixed-species biofilms were analyzed by molecular methods and were found to maintain high levels of species complexity. A single species isolated from the community (Rhodococcus erythropolis) was used as a comparison against the mixed-community biofilm and was seen to be much less tolerant to metal stress than the community and did not biomineralize the metals. PMID:24281733

  15. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  16. Chemical compositions and sources of atmospheric PM10 in heating, non-heating and sand periods at a coal-based city in northeastern China.

    PubMed

    Kong, Shaofei; Ji, Yaqin; Lu, Bing; Bai, Zhipeng; Chen, Li; Han, Bin; Li, Zhiyong

    2012-03-01

    Mass concentrations and chemical components (18 elements, 9 ions, organic carbon [OC] and elemental carbon [EC]) in atmospheric PM(10) were measured at five sites in Fushun during heating, non-heating and sand periods in 2006-2007. PM(10) mass concentrations varied from 62.0 to 226.3 ?g m(-3), with 21% of the total samples' mass concentrations exceeding the Chinese national secondary standard value of 150 ?g m(-3), mainly concentrated in heating and sand periods. Crustal elements, trace elements, water-soluble ions, OC and EC represented 20-47%, 2-9%, 13-34%, 15-34% and 13-25% of the particulate matter mass concentrations, respectively. OC and crustal elements exhibited the highest mass percentages, at 27-34% and 30-47% during heating and sand period. Local agricultural residuals burning may contribute to EC and ion concentrations, as shown by ion temporal variation and OC and EC correlation analysis. Heavy metals (Cr, Ni, Zn, Cu and Mn) from coal combustion and industrial processes should be paid attention to in heating and sand periods. The anion/cation ratios exhibited their highest values for the background site with the influence of stationary sources on its upper wind direction during the sand period. Secondary organic carbon were 1.6-21.7, 1.5-23.0, 0.4-17.0, 0.2-33.0 and 0.2-21.1 ?g m(-3), accounting for 20-77%, 44-88%, 4-77%, 8-69% and 4-73% of OC for the five sampling sites ZQ, DZ, XH, WH and SK, respectively. From the temporal and spatial variation analysis of major species, coal combustion, agricultural residual burning and industrial emission including dust re-suspended from raw material storage piles were important sources for atmospheric PM(10) in Fushun at heating, non-heating and sand periods, respectively. It was confirmed by principal component analysis that coal combustion, vehicle emission, industrial activities, soil dust, cement and construction dust and biomass burning were the main sources for PM(10) in this coal-based city. PMID:22252430

  17. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    NONE

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  18. Advanced Oil and Gas Recovery Technologies; (USA)

    Microsoft Academic Search

    A. T. Tamura; S. C. Hicks

    1991-01-01

    This publication Advanced Oil and Gas Recovery Technologies (OGT), announces on a monthly basis the current worldwide information available on all aspects of enhanced and unconventional recovery of petroleum and natural gas. This includes information on oil shales and tar sands, as well as natural gas production from coal mines, gas hydrates, and geopressured systems. This publication contains the abstracts

  19. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that reclamation layers for oil sands mining sites in Alberta, Canada have the potential to oxidize on-site produced methane emissions to the less harmful greenhouse gas carbon dioxide. Such oxidation might mitigate impacts of methane production from these sites.

  20. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of a comparative multimedia assessment of coal versus oil firing in a controlled industrial boiler. Relative environmental, energy, economic, and societal impacts were identified. Comprehensive sampling and analyses of gaseous, liquid, and solid emissions...

  1. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME II. COMPARATIVE ASSESSMENT

    EPA Science Inventory

    A comparative multimedia assessment of coal firing and oil firing in an industrial boiler was conducted. The assessment consists of several parts. First, comprehensive emissions assessments of each fuel were conducted. These comprehensive emissions assessments were used to develo...

  2. Pooling tree-ring samples for determining Zn isotopic signatures in the Athabasca oil sands region

    NASA Astrophysics Data System (ADS)

    Dinis, L.; Savard, M. M.; Bégin, C.; Gammon, P.; Girard, I.

    2013-12-01

    The sampling protocols for trees are primarily determined by the aim of the study and the expected concentrations of targeted elements. For site-specific environmental investigations using C and O stable isotopes, it is common to pool temporally-equivalent samples from different trees to obtain a representative signature for a given site. Furthermore, non-traditional stable isotopic analyses can require significant sample weights due to low elemental concentrations, which can force researchers to pool samples. However, it is unclear whether or not pooling will produce isotopic results representative of a site for elemental distribution of metals within trees. Therefore, this study investigates the validity of pooling sub-samples from several trees to obtain site-averaged Zn-isotopic analyses. We have investigated four white spruce trees from one site about 42 km east of the mining center of the Athabasca oil sands region (Alberta, Canada), and characterized their ring Zn-isotopes. Our specific goal here was to determine if individual determination and/or pooling sub-samples could detect temporal variations in Zn characteristics. We collected and analyzed nine sub-samples per tree, at a resolution of 4 and 2 years, and distributed over a 130 year period (1878-2009) using an ICP-MS. It turned out that the tree rings have very low Zn concentrations (3.8 to 7.6 ppm). The segmented tree-ring series were subsequently analyzed both for ?66Zn values in individual tree samples and pooled samples with equally weighted aliquots (total of 45 samples), using a MC-ICP-MS and a standard sample bracketing correction reported against NIST683. The ?66Zn results ranged between 0.30 and 0.74‰ ×0.05 (2 SD) for individual samples, and, 0.35 and 0.66‰ ×0.07, for the pooled sample set. As expected, all trees at the investigated site responded similarly, and the weighted average ?66Zn value of the individual series closely compared to the ?66Zn signature of the pooled sample (r2 = 0.8). For any single pooled versus individual trees comparative data point the ?66Zn results are bracketed within 0.2‰ with minimal scatter (generally < 0.1‰), suggesting that at the investigated site the sampling of individual or pooled series gives essentially the same result, and that the pooling technique may be suitable for understanding environmental processes through time. It seems overall that this method has the potential to differentiate Zn sources and emissions, and help understanding local Zn cycling and processes leading to Zn uptake by trees. In order to assess this potential for the oil sands region, we are currently analyzing Zn isotopes for the series from the first investigated site and from a second site, as well as their soil profiles (total of 150 tree and soil samples). Comparison of tree results with the soil Zn-isotopic signatures will help assess the use of tree-ring Zn-isotopes as an environmental tool, as well as the fractionation processes that may be operating at the two sites.

  3. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  4. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  5. Investigation of zinc additives in coliquefaction of waste lubricating oil and a bituminous coal

    SciTech Connect

    Huggins, F.E.; Zhao, J.; Huffman, G.P. [Univ. of Kentucky,Lexington, KY (United States); Kuo, C.H.; Tarrer, A.R. [Auburn Univ., AL (United States)

    1996-08-01

    The behavior and fate of a zinc additive to lubricating oil in the coliquefaction of waste lubricating oil and a bituminous coal have been investigated by means of X-ray absorption fine structure (XAFS)spectroscopy. Although the zinc additive appears to remain largely unaltered during use as zinc dialkyldithiophosphate (ZDDP), it is readily converted to solid zinc sulfide and effectively separated from the desired liquid hydrocarbon products during the coliquefaction process. It is anticipated that similar behavior will be shown by most other environmentally important elements. 8 refs., 4 figs., 3 tabs.

  6. Design of a field experiment for air-steam co-injection for oil recovery in a Utah Tar Sand

    SciTech Connect

    Laski, G.O.; Fahy, L.J.; Martel, R.

    1982-09-01

    This paper presents the design of the US-DOE Laramie Energy Technology Center's projects TS-4 which involves both in-situ reverse combustion and steamflooding, using a numerical simulator. The simulator showed that the combustion could be limited and contained in a middle 10-foot interval with a correlatable high permeability streak within the 65-foot pay zone of the upper Rimrock tar sand formation in Northwest Asphalt Ridge, Uintah County, Utah. A high transmissibility path was assumed to obtain adequate injectivity and sustain a stable reverse combustion. Combustion 'echoes' developed and the front changed into a forward mode as the formation pressure increased and at very low air-injection rates. Oil recovery was accelerated by pre-heating the formation with the combustion before steamflooding the entire sand.

  7. Fly ash characteristics in co-combustion of wood with coal, oil or peat

    Microsoft Academic Search

    B. M. Steenari; O. Lindqvist

    1999-01-01

    Co-firing of bio fuels with fossil fuels is often applied for environmental, technical and economic reasons. The properties of the solid residues produced from such fuel combinations cannot be predicted based on the properties of the ash from each fuel. In this work, fly ash materials from combustion of wood\\/oil, wood\\/coal and wood\\/peat combinations were characterized. Elemental compositions, mineralogical speciation

  8. A Landfarming Application Technique Used as Environmental Remediation for Coal Oil Pollution

    Microsoft Academic Search

    Concetta I. Giasi; Annalisa Morelli

    2003-01-01

    Since the massive exploitation of the Val d'Agri (Basilicata-Italy) oilfield has started, a lot of environmental pollution accidents have occurred in the same region. This research takes as starting point the heavy accident occurred in the year 2000, when 15,150 kg of coal oil were spilt all over the Agri river bed and the surrounding fields. In that particular case, the

  9. Formation of seep bubble plumes in the Coal Oil Point seep field

    Microsoft Academic Search

    Ira Leifer; Daniel Culling

    2010-01-01

    The fate of marine seep gases (transport to the atmosphere or dissolution, and either bacterial oxidation or diffusion to\\u000a the atmosphere) is intimately connected with bubble and bubble-plume processes, which are strongly size-dependent. Based on\\u000a measurements with a video bubble measurement system in the Coal Oil Point seep field in the Santa Barbara Channel, California,\\u000a which recorded the bubble-emission size

  10. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    PubMed

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts. PMID:23031586

  11. Reservoir characteristics of two minter oil sands based on continuous core, E-logs, and geochemical data: Bee Brake field, East-Central Louisiana

    SciTech Connect

    Echols, J.B.; Goddard, D.A.; Bouma, A. (Louisiana State Univ., Baton Rouge, LA (United States))

    1993-09-01

    The Bee Brake field area, located in township 4N/6E and 4N/7E in Concordia Parish, has been one of the more prolific oil-producing areas in east-central Louisiana. Production decline in various fields, however, has sparked interest in the economic feasibility of locating and producing the remaining bypassed oil in the lower Wilcox. For this purpose, the Angelina BBF No. 1 well was drilled, and a 500-ft conventional core and a complete suite of state-of-the-are wireline logs were recovered. Production tests were run on the Minter interval of interest. The 16-ft Minter interval (6742-6758 ft depth), bounded at its top and base by lignite seams, consists of an upper 4-ft oil sand (Bee Brake) and a lower 3-ft oil sand (Angelina). The oil sands are separated by approximately 5 ft of thinly laminated silty shale and 4 ft of very fine-grained silty sandstone. Detailed sedimentologic and petrographic descriptions of the Minter interval provide accurate facies determinations of this lower delta-plain sequence. Petrophysical evaluation, combining core plug and modern electric-log data show differences between reservoir quality of the Bee Brake and Angelina sands. This data will also be useful for correlating and interpolating old electric logs. Organic geochemistry of the oil, lignites, and shales provides insight as to the source of the Minter oils and the sourcing potential of the lignites.

  12. Some features of the process of structure formation in coal-oil conglomerates formed on the dewatering of the slurries of pipeline hydraulic transport systems

    Microsoft Academic Search

    Elishevich

    1983-01-01

    The theoretical prerequisites of the structure formation of anhydrous coal-oil conglomerates obtained from the slurries of pipeline hydraulic transport systems are discussed. A hypothesis is put forward of a stepwise-successive mechanism of conglomeration based on the reductive hydrophobization of the coal slurry, the filling of an apolar low-viscosity hydrocarbon amalgam with the disperse coal phase, the appearance of elementary coal-oil

  13. Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitized by the bird blow fly Protocalliphora spp.

    PubMed

    Gentes, Marie-Line; Whitworth, Terry L; Waldner, Cheryl; Fenton, Heather; Smits, Judit E

    2007-04-01

    Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site. Nestlings on reclaimed sites suffered mean parasitic burdens about twice that of those on the reference site; and for comparable parasitic load, they exhibited greater pathologic effects (e.g., decreased body mass) than control nestlings. The heavy blow fly infestation on oil sands-impacted wetlands suggests that oil sands mining disturbs several components of the local ecosystem, including habitat characteristics, blow fly predators, and host resistance to parasites. PMID:17495301

  14. Interaction of oil sands tailings particles with polymers and microbial cells: First steps toward reclamation to soil.

    PubMed

    Voordouw, Gerrit

    2013-04-01

    Production of bitumen by surface mining of Alberta's oil sands has given rise to tailings ponds, containing large volumes of finely dispersed clays (10(8) m(3) ), which settle only slowly. The mature fine tailings (MFT) in these ponds are operationally defined as consisting of particles smaller than 44 ?m with a solids content in excess of 30% (w/w). Increasing the rate of densification of MFT is a rate-limiting step in tailings pond reclamation. Accelerated densification has been achieved through mixing of MFT with sand in the presence of calcium sulfate as a binding agent to generate consolidated tailings. Addition of negatively charged polymer, together with either calcium or magnesium ions, is similarly effective. Although toxic to higher aquatic life, tailings ponds harbour a wide variety of mainly anaerobic microbes. These convert residual hydrocarbon, causing methane emissions of up to 10(4) m(3) day(-1) . Interestingly, anaerobic microbial activity also accelerates tailings pond densification. Hence, many technologies designed to accelerate densification move tailings, at least conceptually, towards soil in which sand and clay particles are linked by large amounts of humic and fulvic acid polymers supporting large numbers of microbes in a mechanically stable structure. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 257-262, 2013. PMID:23348673

  15. Detection of residual oil-sand-derived organic material in developing soils of reclamation sites by ultra-high-resolution mass spectrometry.

    PubMed

    Noah, Mareike; Poetz, Stefanie; Vieth-Hillebrand, Andrea; Wilkes, Heinz

    2015-06-01

    The reconstruction of disturbed landscapes back to working ecosystems is an issue of increasing importance for the oil sand areas in Alberta, Canada. In this context, the fate of oil-sand-derived organic material in the tailings sands used for reclamation is of utmost environmental importance. Here we use electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of maltene fractions to identify compositional variations over a complete oil sand mining and recultivation process chain. On the basis of bulk compound class distributions and percentages of unique elemental compositions, we identify specific compositional features that are related to the different steps of the process chain. The double bond equivalent and carbon number distributions of the N1 and S1O2 classes are almost invariant along the process chain, despite a significant decrease in overall abundance. We thus suggest that these oil-sand-derived components can be used as sensitive tracers of residual bitumen, even in soils from relatively old reclamation sites. The patterns of the O2, O3, and O4 classes may be applied to assess process-chain-related changes in organic matter composition, including the formation of plant-derived soil organic matter on the reclamation sites. The N1O2 species appear to be related to unidentified processes in the tailings ponds but do not represent products of aerobic biodegradation of pyrrolic nitrogen compounds. PMID:25961672

  16. Solute movement through unsaturated fen peat: Lab and greenhouse experiments for transport study of contaminants from Athabasca oil sands tailing pond water

    NASA Astrophysics Data System (ADS)

    Price, J. S.; Rezanezhad, F.; Graf, M.; Rochefort, L.

    2009-12-01

    In the Athabasca oil sands region, wetlands specially peatland dominate the landscape. Processing oil sands produces large volumes of wet material called oil sands tailing water. Discharge of organic liquid contaminants such as Naphthenic Acids (NA) and Sodium (Na) from tailing waters have a toxic effect on plants in this region. One of the greatest barriers to peatland creation will be the elevated amount of toxins (naphthenic acid, metals and salinity) present in the post-mined landscapes. Variability in solute transport properties in the unsaturated zone is of growing concern due to environmental hazards and there are no many scientific challenges in the field of organic liquid contaminants transport through the unsaturated peat soils. The attenuation, degradation and transport of NA and Na in peat are essentially unknown. The ionizable nature of NA and Na along with the complex structure of peat soils poses challenges to characterizing the transport properties of NA and Na in the filed and laboratory. In this experimental research project, we examine the plant responses in 64 greenhouse tubs filled with peat and process-water; and study the transport and attenuation processes of NA and Na through peat in a series of laboratory column experiments. We developed an analytical method for evaluating the transport and adsorption characteristics of NA and Na to derive a clear understanding of the transport, sorption mechanisms and desorption behaviour of NA and Na with temporal evolution of the solute concentration distribution from groundwater to fen plants. The goal of this research project is to investigate how oil sands process-affected waters will affect peatland vegetation, specifically fen vegetation. In particular, we would like to know how contaminants present in oil sand process affected water will be transported through peat and how typical fen vegetation will react to a realistic contamination scenario in a controlled macrocosm environment? Research that responds to the above-mentioned questions will be taking a clear step towards addressing the future outcomes of oil sand affected landscapes.

  17. Yellow perch embryo-larval survival and growth in surface waters associated with oil-sands mining

    SciTech Connect

    Peters, L.E.; Heuvel, M.R. van den; Dixon, D.G. [Univ. of Waterloo, Ontario (Canada); Power, M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Boerger, H.; MacKinnon, M.D.; Meer, T. Van [Syncrude Canada, Fort McMurray, Alberta (Canada)

    1995-12-31

    As part of their land reclamation strategy, Syncrude Canada Ltd. is currently developing environmentally acceptable tailings disposal methods. Fine tailings, a suspension of clay and residual bitumen, is the waste product from oil sands extraction. Fine-tailings contain naphthenic acids, a group of saturated aliphatic and alicyclic carboxylic acids, which occur naturally in petroleum and are partly responsible for the toxicity of process water. The wet landscape method involves covering fine tails with a layer of water such that a self-sustaining ecosystem can be established. A 5 ha demonstration pond with a bottom of fine-tailings was constructed and stocked with yellow perch for experimental purposes. Two other reclaimed ponds formed with oil-sands overburden material were also stocked with perch. Adult perch sampled in the fall of 1995 from the experimental and reclaimed ponds exhibited a 2-fold induction of MFO activity compared to the source lake; indicating organic compound exposure. Perch from one of the reclaimed ponds showed significantly reduced circulating reproductive hormone levels, gonad size and smaller ovarian follicles. Reproductive parameters were not different between the source lake and the remaining ponds. Paired lab and field experiments were conducted to determine if contaminants present would be detrimental to egg viability and development of larvae either through direct exposure of spawned eggs or indirectly by effecting oogenesis. An early life stage toxicity test was also performed using commercially available naphthenic acid standard. Endpoints measured were percent fertilization, percent hatch, mortality, deformities, timing of developmental periods and larval growth.

  18. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. PMID:24112657

  19. Influence of O2 and H2O on carbothermal reduction of SO2 by oil-sand fluid coke.

    PubMed

    Feng, Wenguo; Jia, Charles Q

    2005-12-15

    To develop a new process for removing high-concentration SO2 from industrial flue gases, the carbothermal reduction of SO2 by oil-sand fluid coke at 700 degrees C was investigated by varying the inlet concentration of either O2 or H2O. Concentrations of O2 and H2O ranged from 0 to 20% and from 0 to 30%, respectively, in a stream of SO2 (18%) with the balance helium. Addition of O2 and H2O was found to enhance SO2 reduction. The enhancement was attributed to the reducing gases, CO and H2, produced by solid-gas reactions between carbon and O2 or H2O. The effects of O2 and H2O on sulfur yield, however, were bifacial: adding O2 and/or H2O increased the sulfur yield when SO2 conversion was incomplete, otherwise, it decreased the sulfur yield through the formation of sulfides such as H2S. The results of a thermodynamic analysis were in a good agreementwith the experimental results, suggesting that gas-solid reactions were slow enough to allow gas-phase equilibrium. This study indicates that carbon, such as oil-sand fluid coke, can be utilized to remove SO2 in flue gases containing O2/H2O and to convert it to elemental sulfur. PMID:16475356

  20. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors. PMID:23736740

  1. Quantification of changes in oil sands mining infrastructure land based on RapidEye and SPOT5

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Shipman, Todd; Chao, Dennis; Raymond, Don

    2013-10-01

    Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in-situ extraction, were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of these two sites have different footprints linked with their differing oil sands production processes. Pixeland object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, other than fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, the land surface changes by re-growth of vegetation and the capability for natural restoration on the mining sites have been assessed.

  2. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. PMID:25617868

  3. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment.

    PubMed

    Liu, Ji; Sui, Guoliang; He, Yongzhou; Liu, Dongjie; Yan, Jing; Liu, Shuxiang; Qin, Wen

    2014-04-01

    Wilt and rot occur readily during storage of baby ginger because of its tender skin and high moisture content (MC). A storage medium, which consisted of sand, 20% water, and 3.75% super absorbent polymers delayed weight loss and loss of firmness at 12 °C and 90% relative humidity. Microorganisms were isolated and purified from decayed rhizomes; among these, 3 fungi were identified as pathogens. The results of 18S rDNA sequence analysis showed that these fungi belonged to Penicillium, Fusarium, and Mortierella genera. The use of essential oil for controlling these pathogens was then investigated in vitro. Essential oils extracted from Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) completely inhibited the growth of all of the above pathogens at a concentration of 2000 ppm. Cinnamon oil showed higher antifungal activity in the drug sensitivity test with minimal fungicidal concentration (<500 ppm against all pathogens). In the in vivo test, cinnamon fumigation at a concentration of 500 ppm reduced infection rates of Penicillium, Fusarium, and Mortierella by 50.3%, 54.3%, and 60.7%, respectively. We recommended cinnamon oil fumigation combined with medium storage at 12 °C as an integrated approach to baby ginger storage. PMID:24547773

  4. Development of a correlation between slurry oil composition and process performance. Topical report 2. Analyses of slurry recycle oils from H-Coal PDU Run 8

    SciTech Connect

    Burke, F. P.; Winschel, R. A.; Pochapsky, T. C.

    1980-08-01

    Daily samples of the slurry recycle oils from H-Coal PDU Run 8 (Illinois 6 coal, Fuel Oil and Interdediate modes) were analyzed by /sup 1/H-NMR spectroscopy, GC/MS, and liquid chromatographic techniques. The residual recycle material (975/sup 0/F/sup +/, THF soluble) is much higher in preasphaltenes than corresponding material from the Syncrude mode with the same coal. This may have caused, or been caused by operability problems in PDU 8, many of which involved plugging at various points in the PDU. In any case, the combination of high preasphaltenes and operability problems can combine to significantly accelerate catalyst deactivation. Because of these factors, and the segmented nature of PDU Run 8 it is not possible to make any statement regarding the attainment of steady-state in either the Fuel Oil or Intermediate modes.

  5. Spatial Distribution of Lead Isotope Ratios and Inorganic Element Concentrations in Epiphytic Lichens from the Athabasca Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Graney, J. R.; Landis, M. S.; Puckett, K.; Edgerton, E.; Krupa, S.; Percy, K.

    2013-12-01

    Coupled studies of inorganic element concentrations and lead (Pb) isotope ratios have been conducted on Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) in Alberta, Canada in 2002, 2008, and 2011. To investigate the spatial extent of air emissions, the lichens were collected from sites as far as 160 km from the mining and processing operations. 30 milligram sub-samples of the lichens were microwave digested, and the extracts were analyzed using DRC-ICPMS to determine elemental concentrations, and sector field ICPMS to measure Pb isotope ratios. Concentrations of elements in the lichens were found to reflect proximity to mining and oil processing sites as well as topography, ecosystem differences, and the metabolic biogeochemistry of the lichens. An exponential decrease in concentration of metals associated with fugitive dust (aluminum and others) versus distance from the mining sites, suggests elevated coarse particle emissions associated with mining operations. Near source concentrations of metals with an oil signature (vanadium and others) are less enhanced and more homogeneous than the metals in the fugitive dust, reflecting emission and deposition of smaller diameter particles at greater distances from oil processing sources. The mining and oil processing signatures are superimposed over elemental concentrations that reflect the nutrient needs of the lichens. These findings are being confirmed through ongoing studies using dichot samplers to collect coarse and fine particulate aerosol samples. The lichen samples collected beyond 50 km from the mining and processing sites cluster into a Pb isotope grouping with a 207Pb / 206Pb ratio of 0.8650 and a 208Pb / 206Pb ratio near 2.095. This grouping likely reflects the regional background Pb isotope ratio signature. 207Pb / 206Pb and 208Pb / 206Pb ratios decrease as one nears the mining and processing operations. This indicates that other Pb source(s), (e.g. Pb in the bitumen from the oil sands), are contributing to the Pb accumulated by the lichens. The Pb isotope ratios are a better indicator of the spatial distribution resulting from atmospheric deposition than the Pb concentrations because the Pb isotope ratios are not affected by the potential for canopy interactions or preferential metabolic processing of elements by the lichens.

  6. Tertiary development of heavy oil sands through thermal stimulation in the Wilmington Oil Field, California: A geological perspective

    Microsoft Academic Search

    D. D. Clarke; M. J. Henry; R. W. Strehle

    1996-01-01

    In 1995, a DOE cost share project was initiated to extend thermal recovery in the Tar Zone, Fault Block 11 of the West Wilmington Oil Field, California. The project involved the collection of old oil well data and the construction of a modern digital data base in order to develop a deterministic geological model. The plan was to rigorously define

  7. Erosion-corrosion in carbon dioxide saturated systems in presence of sand, inhibitor, oil, and high concentration of salt

    NASA Astrophysics Data System (ADS)

    Hassani, Shokrollah

    Oil and gas production is usually accompanied by formation water which typically contains high levels of chloride. Some effects of chloride concentration on corrosion are not widely known in the literature, and this can result in misleading conclusions. One goal of this research was to contribute to a better understanding of the effects of chloride concentration in CO2 corrosion. Experimental and theoretical studies conducted in the present work have shown that increasing the NaCl concentration in solution has three important effects on corrosion results. First, standard pH meter readings in high NaCl concentration solutions require corrections. Second, increasing the NaCl concentration decreases the CO2 concentration in solution and therefore contributes to a decrease in the corrosion rate. Third, increasing the NaCl concentration increases the solubility of FeCO3 and therefore reduces the likelihood of forming an iron carbonate scale. High NaCl concentration also decreases the sand erosion rate of the metal slightly by increasing the density and viscosity of the liquid. There are two main contributions of this research. The first contribution is the experimental characterization of inhibited erosion-corrosion behavior of mild steel under CO2-saturated conditions with a high salt concentration. Chemical inhibition is one the most important techniques for controlling erosion-corrosion in offshore mild steel pipelines, tubing and pipe fittings in oil and gas industry. The second contribution is the introduction of a new approach for predicting inhibited erosion-corrosion in mild steel pipes including the effects of flow and environmental conditions, sand production, and an oil phase. Sand erosion can decrease the efficiency of corrosion protection systems including iron-carbonate scale formation and chemical inhibition. The need to be able to predict inhibitor performance under sand production conditions is particularly acute when the wells are deep or off-shore because of the difficulty in running coupon tests. Research reported in this dissertation is aimed at providing producers with information that will help them make decisions about the design of a well given advanced knowledge of the inhibition options and their predicted effectiveness under sand production conditions. Frumkin isotherms modified to handle effects of erosivity, temperature, and oil phase were successfully fitted to erosion-corrosion data. Inhibitor adsorption isotherms were integrated into a mechanistic model for prediction of CO2 corrosion rates as a function of inhibitor concentration and good results were obtained as compared with data. A computer program was also developed to predict the inhibited erosion-corrosion rate as a function of corrosivity of the system (temperature, pH, CO 2 pressure, and other factors) and erosivity of the system (particle size, particle rate, material type, pipe diameter, and other factors).

  8. The Morwell interseam “sands

    Microsoft Academic Search

    C. M. Barton

    1971-01-01

    Interseam “sands” of Morwell form part of a sequence of brown?coal seams, sediments and volcanic rocks which, together, make up the Tertiary Latrobe Valley Coal Measures. A detailed investigation and computer analysis of the “sands” show that they are fluviatile deposits which accumulated within the tectonically stable Latrobe Valley Depression.On an inclusive?graphic comparative scale, particle?size analyses show that the sediments

  9. Mechanisms of fatigue in AISI 304 and 316 stainless steels under viscous oil environments, including a coal-process solvent

    SciTech Connect

    Bae, K.S.

    1986-01-01

    The fatigue behavior of smooth and pre-cracked specimens of 304 and 316 stainless steels was investigated at 300 K in four environments, namely ambient air, silicone oil, silicon oil + 5 vol.% naphthenic acid, and a coal process solvent. The fatigue life of smooth specimens was enhanced by the three oils in the low cycle regime (<10/sup 5/ cycles) and by the silicone-oil-based environments further in the high cycle regime (>10/sup 5/ cycles), but degraded by the coal process solvent in the high cycle regime. The increased fatigue life in the oils was attributed to an increase in the initiation lifetime for Stage II macrocrack growth. This in turn was related to the smaller slip line spacing in the oils compared to air. The decreased high cycle fatigue life in the coal process solvent was attributed to the formation of coarse slip bands, leading to the crack initiation, which did not occur in air. This is turn was considered to be related to the corrosive attack of aggressive constituents in the coal process solvent. The effect of the oil environments on fatigue crack growth rate (FCGR) of pre-cracked specimens depended on the magnitude of the stress intensity range ..delta..K. For low ..delta..K values the FCGR was relatively little influenced by the three oil environments compared to air. For high ..delta..K values the FCGR was significantly less in the oils than that in air. The shielding from moisture-induced chemical interactions was considered to be a principal factor for retarding the FCGR in the oil at low ..delta..K values. Additional contributions are considered to stem from the greater crack tortuosity, slip reversibility, and the crack tip geometry change.

  10. PAH refractory index as a source discriminant of hydrocarbon input from crude oil and coal in Prince William Sound, Alaska

    USGS Publications Warehouse

    Hostettler, F.D.; Rosenbauer, R.J.; Kvenvolden, K.A.

    1999-01-01

    Geochemical correlation and differentiation of hydrocarbons from crude oils and coals is difficult. The complex mixture of the hydrocarbon constituents and the dynamic nature of these constituents in the environment as they weather contribute to this difficulty A new parameter, the polycyclic aromatic hydrocarbon (PAH) refractory index, is defined here to help in this correlation. The PAH refractory index is a ratio of two of the most refractory constituents of most crude oils, namely triaromatic steranes and monomethylchrysenes. These are among the most persistent compounds in oil after deposition in the environment and thus retain reliably the signature of the original petroleum input. This index is utilized in Prince William Sound (PWS) to differentiate three different oils, as well as to provide evidence that coal, not oil, is the dominant source of the PAHs which are prominent constituents of marine sediments from PWS and the Gulf of Alaska.Geochemical correlation and differentiation of hydrocarbons from crude oils and coals is difficult. The complex mixture of the hydrocarbon constituents and the dynamic nature of these constituents in the environment as they weather contribute to this difficulty. A new parameter, the polycyclic aromatic hydrocarbon (PAH) refractory index, is defined here to help in this correlation. The PAH refractory index is a ratio of two of the most refractory constituents of most crude oils, namely triaromatic steranes and monomethylchrysenes. These are among the most persistent compounds in oil after deposition in the environment and thus retain reliably the signature of the original petroleum input. This index is utilized in Prince William Sound (PWS) to differentiate three different oils, as well as to provide evidence that coal, not oil, is the dominant source of the PAHs which are prominent constituents of marine sediments from PWS and the Gulf of Alaska.

  11. The displacement of oil from unconsolidated sands by high temperature fluid injection 

    E-print Network

    Hossain, A. K. M. Sakhawat

    1965-01-01

    curve indicates signifi- cant diffsrencesr 0, 8 o. 4 0 ~ 2 / // // / /// // // // // // I / / / / / // / // ~ Run // / // // 0 Run I // / O Run / // // / // // & Run // / / Q Run No. 10, Temp. 72 F No. 9, Temp. 150oF No, 11, Temp... Schematic Diagram of Core 3'older ~. , Viscosity ef Dead cetus oil vs, Temperature Viscosity cf Saturated Water vs Temperature 6. . Density . of' Dead oil vs. . Temperature /. Cumulative Oil Produced vs. Cumulativ'e W'ster Injected fol Ruu Me. 11 - Run...

  12. Effects of oil pollution at Kuwait's Greater Al-Burgan oil field on the timing of morning emergence, basking and foraging behaviors by the sand lizard Acanthodactylus scutellatus.

    PubMed

    Al-Hashem, M Abdulla; Brain, P F; Omar, S Ahmad

    2008-02-15

    An attempt was made to study the effects of oil pollution in a desert location (the Greater Al-Burgan oil fields, an area damaged in the second Gulf War) in Kuwait on the behaviour of the Sand lizard A. scutellatus. Polluted sites with apparently different degrees of contamination (namely tar mat, soot and clear sites) were compared with control areas outside this region. Between 2002 and 2003, ten lizards (5 of each sex) on each polluted and each control site were observed in the field at a time of the year when they were highly active. Air, substrate and burrow temperatures were recorded and lizards were monitored for their morning emergence times, as well as their basking and foraging activities. The present study confirmed that the morning emergence times and the basking behavior varied in sand lizards among the different pollution site categories. Physical changes in the tar mat sites caused the substrate temperatures in these locations to rise more quickly in the morning in response to solar gain than was the case in the other sites. This gives lizards in these locations the opportunity to emerge earlier and to start eating more quickly, giving them an energetic advantage (perhaps, in turn, influencing their rates of growth and fecundity). The clear sites had the next earliest emergence and were the next hottest but it is difficult to account for this in terms of the physical characteristics of this site. The basking times were clearly shorter on the dark soot and tar mat sites that appeared to have higher solar gain than control or clear sites. There did not appear to be any obvious differences in foraging activity of lizards in the different locations. It appears that some aspects of simple behaviour in these lizards provides a reliable, noninvasive indices for assessing oil pollution in desert locations. The precise impact of these changes in these reptiles on their long-term viability needs to be evaluated. PMID:18817131

  13. Effects of chronic exposure to coal-derived oil on freshwater ecosystems. I. Microcosms

    SciTech Connect

    Franco, P.J.; Giddings, J.M.; Herbes, S.E.; Hook, L.A.; Newbold, J.D.; Roy, W.K.; Southworth, G.R.; Stewart, A.J.

    1984-01-01

    Sixteen 67-liter freshwater microcosms were treated for 8 weeks with an unrefined coal-oil in amounts ranging from 0.03 to 7 ml per week. Phenols make up 95% of the water-soluble compounds in this oil, and dissolved phenol concentrations averaged < 0.01 mg L/sup -1/ in the lowest dose and 10 mg L/sup -1/ in the highest. The microcosms were severely damaged at the highest treatment level; macrophytes, zooplankton and insects were eliminated, and the ecosystems became anaerobic. Microcosms did not recover to pretreatment conditions within 5 months. At lower dosages there were temporary effects on ecosystem metabolism, water chemistry and community structure. The most sensitive indices, community respiration, production/respiration ratio, pH and cladoceran zooplankton numbers, were affected at phenol concentrations below the lowest observable effect concentration of a chronic Daphnia magna bioassay.

  14. Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California.

    PubMed

    Del Sontro, Tonya S; Leifer, Ira; Luyendyk, Bruce P; Broitman, Bernardo R

    2007-09-01

    A new field method for tar quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar from the nearby COP natural marine hydrocarbon seep field. This method segregates tar pieces into six size classes and assigns them an average mass based on laboratory or direct field measurements. Tar accumulation on the 19,927m(2) survey area was well resolved spatially by recording tar mass along twelve transects segmented into 4-m(2) blocks and then integrating over the survey area. A seasonal trend was apparent in total tar in which summer accumulations were an order of magnitude higher than winter accumulations. Based on multiple regression analyses between environmental data and tar accumulation, 34% of tar variability is explained by a combination of onshore advection via wind and low swell height inhibiting slick dispersion. PMID:17631358

  15. Dispersants as Used in Response to the MC252-Spill Lead to Higher Mobility of Polycyclic Aromatic Hydrocarbons in Oil-Contaminated Gulf of Mexico Sand

    PubMed Central

    Zuijdgeest, Alissa; Huettel, Markus

    2012-01-01

    After the explosion of the Deepwater Horizon oil rig, large volumes of crude oil were washed onto and embedded in the sandy beaches and sublittoral sands of the Northern Gulf of Mexico. Some of this oil was mechanically or chemically dispersed before reaching the shore. With a set of laboratory-column experiments we show that the addition of chemical dispersants (Corexit 9500A) increases the mobility of polycyclic aromatic hydrocarbons (PAHs) in saturated permeable sediments by up to two orders of magnitude. Distribution and concentrations of PAHs, measured in the solid phase and effluent water of the columns using GC/MS, revealed that the mobility of the PAHs depended on their hydrophobicity and was species specific also in the presence of dispersant. Deepest penetration was observed for acenaphthylene and phenanthrene. Flushing of the columns with seawater after percolation of the oiled water resulted in enhanced movement by remobilization of retained PAHs. An in-situ benthic chamber experiment demonstrated that aromatic hydrocarbons are transported into permeable sublittoral sediment, emphasizing the relevance of our laboratory column experiments in natural settings. We conclude that the addition of dispersants permits crude oil components to penetrate faster and deeper into permeable saturated sands, where anaerobic conditions may slow degradation of these compounds, thus extending the persistence of potentially harmful PAHs in the marine environment. Application of dispersants in nearshore oil spills should take into account enhanced penetration depths into saturated sands as this may entail potential threats to the groundwater. PMID:23209777

  16. New Oil Gelling Systems Prevent Damage in Water-Sensitive Sands

    Microsoft Academic Search

    C. H. Kucera; C. F. Smith; F. H. Braunlich

    1971-01-01

    Development of viscous fracturing fluids has renewed interest in fracturing with oil-base materials. Oil, once the primary frac fluid, was displaced when aqueous systems allowed more flexibility and safety. Water-sensitive and some other easily damaged formations were victims of this change, since most of the new developments in fracturing technology could not be applied. Recent developments have led to gelled

  17. Desalination of oil sands process-affected water and basal depressurization water in Fort McMurray, Alberta, Canada: application of electrodialysis.

    PubMed

    Kim, Eun-Sik; Dong, Shimiao; Liu, Yang; Gamal El-Din, Mohamed

    2013-01-01

    The high content of inorganic species in water used to extract bitumen from the Alberta oil sands and in the groundwater below the oil sands is an increasing environmental concern. These water matrices require treatment before they can be reused or safely discharged. Desalination of the oil sands process-affected water (OSPW) and groundwater, or basal depressurization water (BDW), can be accomplished with deionization techniques such as electrodialysis (ED). In order to achieve the effective ED treatment, OSPW and BDW were pretreated with coagulation-flocculation-sedimentation to remove solid species and turbidity. We demonstrated that a conductivity range for industrial reuse of OSPW and BDW can be achieved with the ED treatment and showed the possibility of applying ED in the oil sands industry. A continuous ED system that reuses the diluate stream as a source for the concentrate stream was designed. The cost of a hypothetical ED water treatment plant in Fort McMurray, Alberta, was estimated to be C$10.71 per cubic meter of treated water. PMID:24355856

  18. Estimation of dynamic petrophysical properties of water-bearing sands invaded with oil-base mud from multi-physics borehole geophysical measurements

    E-print Network

    Torres-Verdín, Carlos

    -miscible fluid displacement between OBM filtrate and water wherein resistivity logs are only affected by water of water with OBM- filtrate will result in shallow, deep, sharp and/or spatially smooth radial frontsEstimation of dynamic petrophysical properties of water-bearing sands invaded with oil-base mud

  19. TREE SWALLOWS (TACHYCINETA BICOLOR) NESTING ON WETLANDS IMPACTED BY OIL SANDS MINING ARE HIGHLY PARASITIZED BY THE BIRD BLOW FLY PROTOCALLIPHORA SPP

    Microsoft Academic Search

    Marie-Line Gentes; Terry L. Whitworth; Cheryl Waldner; Heather Fenton; Judit E. Smits

    2007-01-01

    Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach,

  20. Effects of oil sands process-affected waters and naphthenic acids on yellow perch ( Perca flavescens) and Japanese medaka ( Orizias latipes) embryonic development

    Microsoft Academic Search

    Lisa E. Peters; M. MacKinnon; T. Van Meer; M. R. van den Heuvel; D. G. Dixon

    2007-01-01

    Syncrude Canada Ltd. is currently developing environmentally acceptable oil sands process-affected water management methods as part of their land reclamation strategy. Surface waters of the “wet landscape” reclamation option characteristically have elevated concentrations of sodium sulphate and naphthenic acids (NAs), with low levels of PAHs. The following experiment compared early-life stage responses of yellow perch (Perca flavescens) to those of

  1. Coupling lead isotopes and element concentrations in epiphytic lichens to track sources of air emissions in the Alberta Oil Sands Region

    EPA Science Inventory

    A study was conducted that coupled use of element concentrations and lead (Pb) isotope ratios in the lichen Hypogymnia physodes collected during 2002 and 2008, to assess the impacts of air emissions from the Alberta Oil Sands Region (AOSR, Canada) mining and processing operations...

  2. Fate and transport of oil sand process-affected water into the underlying clay till: A field study

    NASA Astrophysics Data System (ADS)

    Abolfazlzadehdoshanbehbazari, Mostafa; Birks, S. Jean; Moncur, Michael C.; Ulrich, Ania C.

    2013-08-01

    The South Tailings Pond (STP) is a ~ 2300-ha tailing pond operated by Suncor Energy Inc. that has received oil sand process-affected (PA) water and mature fine tailings since 2006. The STP is underlain by a clay till, which is in turn underlain by the Wood Creek Sand Channel (WCSC). The sandy deposits of the WCSC provide greater geotechnical stability but could act as a potential flow pathway for PA water to migrate off site and into the Athabasca River. Preliminary modeling of the STP suggests that PA water from the pond will infiltrate into the underlying sand channel, but the extent and development of this impact is still poorly understood. Suncor Energy Inc. built interception wells and a cut-off-wall to control any potential seepage. Here we present the results of an investigation of the fate and transport of PA water in clay till underlying a 10 m × 10 m infiltration pond that was constructed on the southeastern portion of the STP. The geochemistry of pore water in the till underlying the infiltration pond was determined prior to filling with process-affected water (2008) and two years after the infiltration pond was filled with PA waters (2010). Pore water was analyzed for metals, cations, anions, and isotopes (2H and 18O). The distribution of conservative tracers (18O and chloride) indicated migration of the PA waters to approximately 0.9 m, but the migrations of major ions and metals were significantly delayed relative to this depth. Uptake of Na and Mo and release of Ca, Mg, Mn, Ba, and Sr suggest that adsorption and ion exchange reactions are the foremost attenuation processes controlling inorganic solutes transport.

  3. Fate and transport of oil sand process-affected water into the underlying clay till: a field study.

    PubMed

    Abolfazlzadehdoshanbehbazari, Mostafa; Birks, S Jean; Moncur, Michael C; Ulrich, Ania C

    2013-08-01

    The South Tailings Pond (STP) is a ~2300-ha tailing pond operated by Suncor Energy Inc. that has received oil sand process-affected (PA) water and mature fine tailings since 2006. The STP is underlain by a clay till, which is in turn underlain by the Wood Creek Sand Channel (WCSC). The sandy deposits of the WCSC provide greater geotechnical stability but could act as a potential flow pathway for PA water to migrate off site and into the Athabasca River. Preliminary modeling of the STP suggests that PA water from the pond will infiltrate into the underlying sand channel, but the extent and development of this impact is still poorly understood. Suncor Energy Inc. built interception wells and a cut-off-wall to control any potential seepage. Here we present the results of an investigation of the fate and transport of PA water in clay till underlying a 10 m × 10 m infiltration pond that was constructed on the southeastern portion of the STP. The geochemistry of pore water in the till underlying the infiltration pond was determined prior to filling with process-affected water (2008) and two years after the infiltration pond was filled with PA waters (2010). Pore water was analyzed for metals, cations, anions, and isotopes ((2)H and (18)O). The distribution of conservative tracers ((18)O and chloride) indicated migration of the PA waters to approximately 0.9 m, but the migrations of major ions and metals were significantly delayed relative to this depth. Uptake of Na and Mo and release of Ca, Mg, Mn, Ba, and Sr suggest that adsorption and ion exchange reactions are the foremost attenuation processes controlling inorganic solutes transport. PMID:23752067

  4. Mass spectrometric and toxicological assays of Athabasca oil sands naphthenic acids

    Microsoft Academic Search

    Chun Chi Lo; Brian G. Brownlee; Nigel J. Bunce

    2006-01-01

    This work concerns the analysis of model naphthenic acids and authentic naphthenic acids from the tailings ponds of the Athabasca tar sands. A first objective was to compare atmospheric pressure chemical ionization mass spectrometry (APCI–MS) with the previously studied electrospray mass spectrometry (ESI–MS) in this analysis. APCI–MS had a wider range of quantitation than ESI–MS, but its detection limit was

  5. Process and apparatus to produce crude oil from tar sands. Final report

    Microsoft Academic Search

    J. D. Seader; L. M. Smart

    1984-01-01

    A two-staged fluidized-bed reactor for the energy-efficient, thermal recovery of bitumen from Utah tar sands has been constructed. This reactor is a scaled-up version of an earlier system investigated at the University of Utah, and involves the use of three liquid-potassium heat pipes which thermally couple an upper pyrolysis bed with a lower combustion bed. The reactor has been studied

  6. Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants

    SciTech Connect

    Persson, S.A.; Ahlberg, M.; Berghem, L.; Koenberg, E.N.; Nordberg, G.F.; Bergman, F.

    1988-04-01

    Male Syrian golden hamsters were given 15 weekly intratracheal instillations with suspensions of coal fly ash or oil fly ash. Controls were instilled with saline containing gelatine (0.5 g/100 mL) or to check particle effects with suspensions of hematite (Fe/sub 2/O/sub 3/). The common weekly dose was 4.5 mg/hamster. In addition, one subgroup of hamsters was treated with oil fly ash at a weekly dose of 3.0 mg/hamster and another with coal fly ash at a weekly dose of 6.0 mg/hamster. Other groups of hamsters were treated with suspensions of benzo(a)pyrene (BaP) or with suspensions on coal fly ash, oil fly ash, or Fe/sub 2/O/sub 3/ coated with BaP. The mass median aerodynamic diameters of the coal and oil fly ashes were 4.4 microns and 28 microns, respectively. Hamsters treated with oil fly ash showed a higher frequency of bronchiolar-alveolar hyperplasia than hamsters in the other treatment groups. Squamous dysplasia and squamous metaplasia were most frequent in animals treated with suspensions of BaP or BaP-coated particles. The earliest appearance of a tumor, the highest incidence of tumors, and the highest incidence of malignant tumors were observed in hamsters treated with oil fly ash coated with BaP. Squamous cell carcinoma and adenosquamous carcinoma were the most frequent malignant tumors. No malignant tumors and only few benign tumors were observed in hamsters instilled with suspensions of fly ash not coated with BaP. The present study gives no indication that coal fly ash could create more serious health problems than oil fly ash.

  7. Molecular Size and Weight of Asphaltene and Asphaltene Solubility Fractions from Coals, Crude Oils and Bitumen

    SciTech Connect

    Badre,S.; Goncalves, C.; Norinaga, K.; Gustavson, G.; Mullins, O.

    2005-01-01

    The molecular weight of asphaltenes has been a controversy for several decades. In recent years, several techniques have converged on the size of the fused ring system; indicating that chromophores in virgin crude oil asphaltenes typically have 4-10 fused rings. Consequently, the molecular weight debate is equivalent to determining whether asphaltenes are monomeric (one fused-ring system per molecule) or whether they are polymeric. Time-resolved fluorescence depolarization (FD) is employed here to interrogate the absolute size of asphaltene molecules and to determine the relation of the size of the fused ring system to that of the corresponding molecule. Coal, petroleum and bitumen asphaltenes are compared. Molecular size of coal asphaltenes obtained here by FD-determined rotational diffusion match closely with Taylor-dispersion-derived translational diffusion measurements with UV absorption. Coal asphaltenes are smaller than petroleum asphaltenes. N-methyl pyrrolidinone (NMP) soluble and insoluble fractions are examined. NMP soluble and insoluble fractions of asphaltenes are monomeric. It is suggested that the 'giant' asphaltene molecules reported from SEC studies using NMP as the eluting solvent may actually be the expected flocs of asphaltene which are not soluble in NMP. Data is presented that intramolecular electronic relaxation in asphaltenes does not perturb FD results.

  8. The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors.

    PubMed

    Hwang, Geelsu; Dong, Tao; Islam, Md Sahinoor; Sheng, Zhiya; Pérez-Estrada, Leónidas A; Liu, Yang; Gamal El-Din, Mohamed

    2013-02-01

    To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors. Without ozonation, the bioreactor (using endogenous microorganisms) removed 13.8% of the total acid-extractable organics (TAO) and 18.5% of the parent naphthenic acids (NAs) from fresh OSPW. The combined ozonation and biodegradation process removed 87.2% of the OSPW TAO and over 99% of the OSPW parent NAs. Further UPLC/HRMS analysis showed that NA biodegradability decreased as the NA cyclization number increased. Microbial biofilm formation was found to depend on the biofilm substrate type. PMID:23313671

  9. Monitoring population abundance of the sand lizard Acanthodactylus scutellatus and their ant prey in oil polluted soils at Kuwait's greater Al-Burgan oil field.

    PubMed

    Al-Hashem, M

    2009-11-01

    Desert ecosystems in Al-Burgan oil fields of Kuwait were contaminated by heavy metals and petroleum hydrocarbons due to oil spill generated by the Gulf War in 1990. Studying sand lizard (Acanthodactylus scutellatus) population and their ant prey in the years 2002 and 2003 to detect the effects of oil pollution is now a focus of study. Polluted sites with apparently different degrees of pollution (namely tar mat, soot and clear sites) were compared with control sites outside this region. Total lizard numbers were recorded by using transect method. Number of ants was recorded by walking the transects and counting ants present. The results showed no difference in lizard population between the different study sites in 2002 and 2003 by applying the transect method. No difference in ant populations between the different study sites in 2002 and 2003. Although, the mean estimated lizard numbers were lower at the tar mat sites, the ant number in this location was greatest, meaning that food availability was highest at these sites. This suggests any reduction in the numbers of lizards is unrelated to low resource availability. The lizard numbers at the tar mat sites could be depressed by some property of the pollutants. PMID:20128514

  10. Crude oil in a shallow sand and gravel aquifer-II. Organic geochemistry

    USGS Publications Warehouse

    Eganhouse, R.P.; Baedecker, M.J.; Cozzarelli, I.M.; Aiken, G.R.; Thorn, K.A.; Dorsey, T.F.

    1993-01-01

    Crude oil spilled from a pipeline break in a remote area of north-central Minnesota has contaminated a shallow glacial outwash aquifer. Part of the oil was sprayed over a large area to the west of the pipeline and part of it accumulated in an oil body that floats at the water table to the east of the point of discharge. Total dissolved organic carbon (TDOC) concentrations in shallow groundwater collected in the oil spray area reach 16 mg/l. This is nearly an order of magnitude higher than the TDOC concentrations of native groundwater (???2-3 mg/l). The additional TDOC derives from the partial degradation of petroleum residues deposited at the land surface and transported to the aquifer by vertical recharge. In the vicinity of the oil body, TDOC concentrations in groundwater are 48 mg/l, 58% of the TDOC being composed of non-volatile organic C. The majority of the volatile DOC (63%) is a mixture of low-molecular-weight saturated, aromatic and alicyclic hydrocarbons derived from the oil. Downgradient from the oil body along the direction of groundwater flow, concentrations of all measured constituents of the TDOC pool decrease. Concentrations begin to decline most rapidly, however, in the zone where dissolved O2 concentrations begin to increase, ???50 m downgradient from the leading edge of the oil. Within the anoxic zone near the oil body, removal rates of isometric monoaromatic hydrocarbons vary widely. This indicates that the removal processes are mediated mainly by microbiological activity. Molecular and spectroscopic characterization of the TDOC and its spatial and temporal variation provide evidence of the importance of biogeochemical processes in attenuating petroleum contaminants in this perturbed subsurface environment. ?? 1993.

  11. LIDAR vertical profiles over the Oil Sands Region: an important tool in understanding atmospheric particulate matter transport, mixing and transformation

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2013-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model verification and validation. In recent years, Environment Canada has designed an autonomous aerosol LIDAR system that can be deployed to remote areas such as the oil sands. Currently two autonomous LIDAR systems are making measurements in the oil sands region, one since December, 2012 and the other since July, 2013. The LIDAR transmitter emits two wavelengths (1064nm and 532nm) and the detector assembly collects four channels (1064nm backscatter, 532nm backscatter and 532nm depolarization, 607 nm nitrogen channel). Aerosol profiles from near ground to 20 km are collected every 10-60 s providing sufficient resolution to probe atmospheric dynamics, mixing and transport. The depolarization channel provides key information in identifying and discriminating the various aerosol layers aloft such as dust, forest fire plumes, industrial plume sources or ice crystals. The vertical resolution of the LIDAR can determine whether industrial plumes remain aloft or mix down to the surface and also provide estimates as to the concentration of the particulate at various altitudes. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. An intensive measurement campaign will be carried out in August and September of 2013 and will provide coincident airborne and ground-based measurements for the two LIDAR systems. The first results from this field study will be presented as well as some statistics on the frequency and evolution of plume events that were detected by the LIDARs.

  12. Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.

    PubMed

    Onwuchekwa, Nnenna E; Zwiazek, Janusz J; Quoreshi, Ali; Khasa, Damase P

    2014-08-01

    The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75% higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains. PMID:24424508

  13. Critical loads and H+ budgets of forest soils affected by air pollution from oil sands mining in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Jung, Kangho; Chang, Scott X.; Ok, Yong Sik; Arshad, M. A.

    2013-04-01

    We investigated the critical load (CL) and exceedance (EX) of sulfur (S) deposition, temporal changes in soil chemistry, and H+ budget of soils in plots dominated by Pinus banksiana (jack pine) or Populus tremuloides (trembling aspen, aspen) in two acid-sensitive watersheds to assess the risk of soil acidification by S emissions from oil sands mining in the Athabasca oil sands region (AOSR), Canada. The CLs and EXs were determined by two methods: one was based on bulk deposition and the other based on total deposition (as a sum of bulk deposition and interception deposition). The CLs ranged from 223 to 711 molc ha-1 yr-1 based on bulk deposition. Those values were similar to that obtained based on total deposition. However, EXs based on bulk deposition were significantly lower (p < 0.001) than those based on total deposition due to the relative increase of SO concentrations in interception deposition, indicating that EXs based on bulk deposition only could underestimate the risk of soil acidification in the AOSR. The S deposition did not exceed CLs in the long-term for both methods. The pH in the forest floor increased and available SO (as the sum of soluble and adsorbed SO) in the forest floor and surface mineral soils increased in both jack pine and aspen stands between 2005 and 2010. The H+ budget ranged from -289 to -130 molc ha-1 yr-1 in jack pine stands and from -510 to -371 molc ha-1 yr-1 in aspen stands. Our results suggest that 1) soils in the studied forest stands have recovered from acidification based on the increasing soil pH over time and the negative H+ budget, and 2) the risk of soil acidification should be assessed by CL and EX calculated based on total deposition.

  14. Interactions between nitrifying bacteria and hydrocarbon-degrading bacteria during detoxification of oil sands process affected water

    SciTech Connect

    Sobolewski, A. [Microbial Technologies, Vancouver, British Columbia (Canada); MacKinnon, M. [Syncrude Research, Edmonton, Alberta (Canada)

    1995-12-31

    Large quantities of process water are produced during the extraction of bitumen from oil sands by the Syncrude and Suncor operations in northern Alberta. Freshly produced tailings water is acutely toxic, but it has been shown to slowly detoxify over time. As detoxification proceeds, there is also a precipitous decrease in ammonia concentrations. The present study examines these two microbially-mediated processes in relation to levels of bacteria and toxicants in mixtures of fresh and aged (detoxified) tailings water. Detoxification of tailings water was greatly accelerated when equal volumes of fresh and detoxified (natural aging for one year) tailings water were mixed. Addition of phosphorus further stimulated detoxification, causing levels of ammonia and naphthenic acids (toxic organic acids leached during bitumen extraction) to decrease to those of detoxified water within two months. Such changes were not observed when phosphorus was not added, or when it was added to less diluted (10-.1 or 3-.1) fresh tailings water. Populations of nitrifying bacteria and naphthenic acid degraders increased markedly in the phosphorus-amended mixtures, but not in its absence. Addition of CS{sub 2} (a specific inhibitor of nitrification) to these mixtures prevented ammonia oxidation. Surprisingly, it also prevented the increase in naphthenic acid-degraders and retarded the loss of naphthenic acids. These results suggest the existence of interactions in fresh tailings water between nitrifying bacteria, naphthenic acid degraders and toxicants. The activity of naphthenic acid-degraders apparently remains low until ammonia is oxidized, whereas that of nitrifying bacteria remains low until concentrations of naphthenic acids or other toxicants decrease below some threshold level. Understanding these interactions may lead to more efficient and effective processes to detoxify oil sands process water.

  15. The effect of oil sands process-affected water and naphthenic acids on the germination and development of Arabidopsis.

    PubMed

    Leishman, Chelsea; Widdup, Ellen E; Quesnel, Dean M; Chua, Gordon; Gieg, Lisa M; Samuel, Marcus A; Muench, Douglas G

    2013-09-01

    Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50mgL(-1) AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10mgL(-1), whereas inhibition of germination by the diamondoid model NA was observed only at 50mgL(-1). Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10mgL(-1) severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50mgL(-1). At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation. PMID:23746390

  16. Reproductive and stress hormone levels in goldfish (Carassius auratus) exposed to oil sands process-affected water.

    PubMed

    Lister, A; Nero, V; Farwell, A; Dixon, D G; Van Der Kraak, G

    2008-05-01

    Athabasca oil sands mining in northern Alberta produces process-affected waters that are characterized by the presence of naphthenic acids, polycyclic aromatic hydrocarbons, and high salinity. The purpose of this study was to examine the impact of these process-affected waters on reproductive and stress related endpoints in mature goldfish, Carassius auratus. In two separate studies, testosterone and 17beta-estradiol levels in the plasma were significantly reduced in both male and female goldfish caged for 19 days in process-affected waters relative to controls. This effect was most pronounced in goldfish caged at a site containing mature fine tailing and tailings pond water (P5). Ovarian and testicular tissues from fish in the caging studies were incubated in vitro to evaluate potential differences in basal steroid production levels and responsiveness to human chorionic gonadotropin (hCG). Basal levels of testosterone were reduced significantly in males and females from P5 compared with the control pond (P1) demonstrating that the gonads from exposed fish had a diminished steroidogenic capacity. Gonadal tissues of fish from all ponds responded similarly to hCG suggesting that the steroid biosynthetic pathway remained functionally intact. Plasma cortisol levels were significantly higher in male goldfish caged in a pond containing mature fine tailings and capped with uncontaminated water (P3) and in P5 compared with P1. Collectively, these studies suggest that waste products of oil sands mining have the potential to disrupt the normal endocrine functioning in exposed fish through alterations to both reproductive and glucocorticoid hormone biosynthesis. In additional laboratory studies, exposure of goldfish to a naphthenic acid extract for 7 days failed to replicate the effects of processes-affected waters on plasma steroid levels and the causative agent(s) responsible for the effects on steroid biosynthesis remains to be identified. PMID:18336931

  17. Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line.

    PubMed

    He, Yuhe; Wiseman, Steve B; Zhang, Xiaowei; Hecker, Markus; Jones, Paul D; El-Din, Mohamed Gamal; Martin, Jonathan W; Giesy, John P

    2010-07-01

    There is concern regarding oil sands process water (OSPW) produced by the oil sands industry in Alberta, Canada. Little is known about the potential for OSPW, and naphthenic acids (NAs), which are the primary persistent and toxic constituents of OSPW, to affect endocrine systems. Although ozonation significantly reduces concentrations of NAs and OSPW toxicity, it was hypothesized that oxidation of OSPW might produce hydroxylated products with steroidogenic activity. Therefore, untreated and ozone treated OSPW were examined for effects on sex steroid production using the H295R Steroidogenesis Assay. Untreated OSPW significantly decreased testosterone (T) and increased 17beta-estradiol (E2) concentrations at OSPW dilutions greater or equal to 10-fold. This effect was mainly due to decreased E2 metabolism. Analysis of CYP19A (aromatase) mRNA abundance and enzyme activity suggested that induction of this enzyme activity may have also contributed to these effects. Reduction of parent NA concentrations by 24% or 85% decreased the effect of OSPW on E2 production. Although T production remained significantly reduced in cells exposed to ozone treated OSPW, the effect was diminished. Aromatase mRNA abundance and enzyme activity were significantly greater in cells exposed to ozone treated OSPW, however the magnitude was less than in cells exposed to untreated OSPW. No change of E2 metabolism was observed in cells exposed to ozone treated OSPW, which may account for recovery of E2 levels. The results indicate that OSPW exposure can decrease E2 and T production, but ozonation is an effective treatment to reduce NA concentrations in OSPW without increasing affects on steroidogenesis. PMID:20466405

  18. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water.

    PubMed

    Gamal El-Din, Mohamed; Fu, Hongjing; Wang, Nan; Chelme-Ayala, Pamela; Pérez-Estrada, Leonidas; Drzewicz, Przemys?aw; Martin, Jonathan W; Zubot, Warren; Smith, Daniel W

    2011-11-01

    The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW. PMID:21907388

  19. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    PubMed Central

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  20. Quantification of anthropogenic and natural changes in oil sands mining infrastructure land based on RapidEye and SPOT5

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Guindon, Bert; Lantz, Nicholas; Shipman, Todd; Chao, Dennis; Raymond, Don

    2014-06-01

    Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located in the Western Boreal Plains near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in situ extraction, were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of these two sites have different footprints linked with their differing oil sands production processes. Pixel- and object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, except for those fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, a new landscape index, entitled the Re-growth Index, has been formulated at single object level specifically to monitor restoration of these features to their natural state. It is found that the temporal behaviour of the Re-growth Index in an individual patch varies depending on the type of natural land cover. In addition, the Re-growth Index is also useful for assessing the detectability of disturbed sites.

  1. Evidence of hepatotoxicity in the sand lizard Acanthodactylus scutellatus from Kuwait's Greater Al-Burgan oil field.

    PubMed

    Al-Hashem, Mona A

    2011-07-01

    The purpose of this study was to investigate the impact of oil pollution in a desert location (the Greater Al-Burgan oil fields, an area damaged in the Gulf War in 1991) in Kuwait on the hepatotoxicity of the Sand lizard Acanthodactylus scutellatus (A. scutellatus). Twenty lizards (10 of each sex) from each polluted and each control sites were collected. Livers were removed from dissected animals and ready for fixation by Bouin's solution and formal-saline. Twenty sections (10 from males and 10 from females) from each tar mat (polluted) and control sites were prepared and examined for cell diameter and nuclear measurements using Cell Analysis Systems. The cytology of hepatocytes showed normal appearance in samples from the control sites. Dead cells were abundant in the sections of lizard livers from the tar mat sites and occurred in notably greater numbers than the sections of livers of animals from the control sites. Examinations of the data confirm that the cell and nuclear diameters in liver samples of males collected from polluted sites were generally greater than those of corresponding females. The liver sections obtained from animals in the tar mat site had greater cellular diameters than counterparts from control sites. Females from the polluted sites were also affected by oil pollution by having larger hepatocyte diameters and their nuclei were also affected, being larger than female nuclei from the control sites. The most remarkable feature observed in hepatocytes of lizards collected from the tar mat sites were swelling of hepatocytes, ballooning degeneration of hepatic cytoplasm and cell death. This study confirmed that the prolonged exposure to oil pollution may result in increased accumulation of contaminants and may cause severe liver pathology in a range of wild organisms such as A. scutellatus. PMID:21411141

  2. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions

    Microsoft Academic Search

    J. Scott Hornafius; Derek Quigley; Bruce P. Luyendyk

    1999-01-01

    We used 50 kHz sonar data to estimate natural hydrocarbon emission rates from the 18 km2 marine seep field offshore from Coal Oil Point, Santa Barbara, California. The hydrocarbon gas emission rate is 1.7+\\/-0.3×105m3d-1 (including gas captured by a subsea seep containment device) and the associated oil emission rate is 1.6+\\/-0.2×104Ld-1 (100 barrels d-1). The nonmethane hydrocarbon emission rate from

  3. Factors Affecting the Temporal and Spatial Variability and Characteristics of Marine Hydrocarbon Seepage, Coal Oil Point, CA

    Microsoft Academic Search

    T. S. del Sontro; I. Leifer; B. Luyendyk

    2004-01-01

    The Coal Oil Point (COP) natural marine hydrocarbon (HC) seep field of the Santa Barbara Channel is one of the largest and most intensively studied marine HC seepage regions. Daily oil emissions were estimated at ˜100 barrels, while total gas emissions reach ˜100,000 m3day-1. The COP seep field consists of several intense areas of seepage that are each made up

  4. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred J.

    2001-11-29

    The first twelve months of the project focused on collecting data for characterization and modeling. In addition, data from Coalinga Field was analyzed to define the fractal structure present in the data set. The following sections of the report parallel the first four subtasks of the investigation were: (1) Collect and Load Property Data from Temblor Outcrops in California, (2) Collect and Load Property Data from Temblor Reservoir Sands, West Coalinga Field, California, (3) Collect and Load Property Data from Continuous Upper Cretaceous Outcrops in Utah, and (4) Define Fractal Structure in the Data Sets and Apply to Generating Property Representations.

  5. Coal desulfurization during the combustion of coal\\/oil\\/water emulsions: an economic alternative liquid fuel. Final quarterly report, January 1, 1981March 31, 1981

    Microsoft Academic Search

    Dooher

    1981-01-01

    Combustion tests were performed using a Cleaver-Brooks 350 hp fire-tube boiler-furnace to determine the efficiency of sulfur dioxide removal using soda ash and micronized additives. A high sulfur, 4.7% Ohio bituminous coal, ground to 92% through 200 mesh, was mixed with medium weight No. 4 oil and water to form the emulsions. Soda ash and micronized dolomite were added to

  6. Advanced methods of oil and gas production from fossil fuels. Subpanel report VII used in preparing the AEC Chairman's report to the President

    Microsoft Academic Search

    1973-01-01

    The program recommended by the subpanel consisted of six subprograms. ; In order to meet the 0 million program level recommended by the Overview ; Panel, the subprograms for in situ coal gasiftcation and recovery of oil and gas ; from tar sands and heavy oils were eliminated. The remaining four subprograms ; and objectives are: (1) oil recovery from

  7. Use of tracers in laboratory and field tests of underground coal gasification and oil shale retorting. [35 references

    Microsoft Academic Search

    R. W. Lyczkowski; C. B. Thorsness; R. J. Cena

    1978-01-01

    Tracers have recently been suggested for laboratory and field experiments of simulated and actual underground retorting of coal and oil shale. The intended use of laboratory and field retort testing is examined and found to be mainly for estimation of properties of the flow field. The field implementation, data reduction procedure and preliminary results of helium tracer work at Hoe

  8. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California

    Microsoft Academic Search

    Susan Mau; David L. Valentine; Jordan F. Clark; Justin Reed; Richard Camilli; Libe Washburn

    2007-01-01

    Large quantities of natural gas are emitted from the seafloor into the stratified coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down current surface water at 79 stations in a 280 km2 study area. The methane plume spread over an area of ?70 km2 and emitted on the order of 5 × 104

  9. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California

    Microsoft Academic Search

    Susan Mau; David L. Valentine; Jordan F. Clark; Justin Reed; Richard Camilli; Libe Washburn

    2007-01-01

    Large quantities of natural gas are emitted from the seafloor into the stratified coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down current surface water at 79 stations in a 280 km2 study area. The methane plume spread over an area of ~70 km2 and emitted on the order of 5 × 104

  10. BURNER CRITERIA FOR NOX CONTROL. VOLUME 3. HEAVY-OIL AND COAL-FIRED FURNACES AND FURTHER FURNACE INVESTIGATIONS

    EPA Science Inventory

    The report describes the third phase of a research program with the overall objective of specifying burner design criteria for minimum pollutant emissions from both pulverized-coal- and residual-fuel-oil-fired combustors. A distributed mixing burner was developed, and its potenti...

  11. Effects of Building a Sand Barrier Berm to Mitigate the Effects of the Deepwater Horizon Oil Spill on Louisiana Marshes

    USGS Publications Warehouse

    Lavoie, Dawn; Flocks, James G.; Kindinger, Jack L.; Sallenger, A.H., Jr.; Twichell, David C.

    2010-01-01

    The State of Louisiana requested emergency authorization on May 11, 2010, to perform spill mitigation work on the Chandeleur Islands and on all the barrier islands from Grand Terre Island eastward to Sandy Point to enhance the capability of the islands to reduce the movement of oil from the Deepwater Horizon oil spill to the marshes. The proposed action-building a barrier berm (essentially an artificial island fronting the existing barriers and inlets) seaward of the existing barrier islands and inlets-'restores' the protective function of the islands but does not alter the islands themselves. Building a barrier berm to protect the mainland wetlands from oil is a new strategy and depends on the timeliness of construction to be successful. Prioritizing areas to be bermed, focusing on those areas that are most vulnerable and where construction can be completed most rapidly, may increase chances for success. For example, it may be easier and more efficient to berm the narrow inlets of the coastal section to the west of the Mississippi River Delta rather than the large expanses of open water to the east of the delta in the southern parts of the Breton National Wildlife Refuge (NWR). This document provides information about the potential available sand resources and effects of berm construction on the existing barrier islands. The proposed project originally involved removing sediment from a linear source approximately 1 mile (1.6 km) gulfward of the barrier islands and placing it just seaward of the islands in shallow water (~2-m depth where possible) to form a continuous berm rising approximately 6 feet (~2 m) above sea level (North American Vertical Datum of 1988-NAVD88) with an ~110-yd (~100-m) width at water level and a slope of 25:1 to the seafloor. Discussions within the U.S. Geological Survey (USGS) and with others led to the determination that point-source locations, such as Hewes Point, the St. Bernard Shoals, and Ship Shoal, were more suitable 'borrow' locations because sand content is insufficient along a linear track offshore from most of Louisiana's barrier islands. Further, mining sediment near the toe of the barrier island platform or edge of actively eroding barrier islands could create pits in the seafloor that will capture nearshore sand, thereby enhancing island erosion, and focus incoming waves (for example, through refraction processes) that could yield hotspots of erosion. In the Breton NWR, the proposed berm would be continuous from just south of Hewes Point to Breton Island for approximately 100 km with the exception of several passages for vessel access. Proposed volume estimates by sources outside of the USGS suggest that the structure in the Breton NWR would contain approximately 56 million cubic yards (42.8 m3) of sandy material. In the west, the berm would require approximately 36 million cubic yards (27.5 m3) of sandy material because this area has less open water than the area to the east of the delta. The planned berm is intended to protect the islands and inland areas from oil and would be sacrificial; that is, it will rapidly erode through natural processes. It is not part of the coastal restoration plan long discussed in Louisiana to rebuild barrier islands for hurricane protection of mainland infrastructure and habitat.

  12. Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater

    USGS Publications Warehouse

    Baedecker, M.J.; Cozzarelli, I.M.; Eganhouse, R.P.; Siegel, D.I.; Bennett, P.C.

    1993-01-01

    Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the ??13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction. Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume. ?? 1993.

  13. Next-Generation Sequencing of Microbial Communities in the Athabasca River and Its Tributaries in Relation to Oil Sands Mining Activities

    PubMed Central

    Yergeau, Etienne; Lawrence, John R.; Sanschagrin, Sylvie; Waiser, Marley J.; Korber, Darren R.

    2012-01-01

    The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples. PMID:22923391

  14. Comparative study of the combustion of alternate liquid fuels. [Middle and high boiling SRC-II distillates coal-oil mixtures

    Microsoft Academic Search

    J. M. Ekmann; M. P. Mathur; C. R. McCann; D. Bienstock

    1979-01-01

    Tests were conducted at the Pittsburgh Energy Technology Center on various alternate liquid fuels and then compared to an existing data base on No. 6 oil. The alternate fuels tested included 20% and 30% coal-oil mixture, two types of shale oil, and a blend of middle and high boiling SRC II distillates. The tests were conducted as parts of several

  15. Desulfurization and deashing of Hazro coal by selective oil agglomeration in various water mediums

    SciTech Connect

    Halime Abakay Temel; Fatma Deniz Ayhan [Dicle University, Diyarbakir (Turkey). Department of Mining Engineering

    2006-10-15

    The aim of this study was to study the effects of various water mediums on desulfurization and deashing of Hazro coal by the agglomeration method. For this purpose, three groups of agglomeration experiments were made. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, bridging liquid concentration, and pH, on the agglomeration were investigated in the first group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the second group of experiments. The effects of lake water and sea water on the agglomeration were investigated in the third group of experiments. The influences of the Mediterranean Sea water and Aegean Sea water on the removal of ash and total sulfur were found to be important. 22 refs., 7 figs., 6 tabs.

  16. Economic comparison of nuclear, coal, and oil-fired electric generation in the Chicago area

    SciTech Connect

    Corey, G.R.

    1981-01-01

    The current and historical performances of 17 large nuclear and coal- and oil-fired steam-electric generating units now operated by Commonwealth Edison Company are examined, and the actual busbar costs of electricity generated by these units in recent years are summarized. Cost estimates for future steam-electric units are provided, and attempts are made to deal realistically with the effect of inflation. Social and regulatory constraints are seen to affect the economics of future units and the willingness of the industry to finance them. It is concluded that, given the uncertainties, utility managers have an incentive to diversify their sources of power generation when society seems to discourage such a course of action. 6 refs.

  17. Effects of chronic exposure to coal-derived oil on freshwater ecosystems. II. Experimental ponds

    SciTech Connect

    Giddings, J.M.; Franco, P.J.; Cushman, R.M.; Hook, L.A.; Southworth, G.R.; Stewart, A.J.

    1984-01-01

    Ten 15-m/sup 3/ outdoor ponds were treated daily for 8 weeks with a synthetic coal-derived crude oil; ecological effects were monitored for an additional 52 weeks. The experimental design included two replicate ponds at each of five oil input rates (from 1 to 16 ml/m/sup 3//d) plus two untreated controls. A gradient of responses was observed across the gradient of treatment levels. Cladoceran zooplankton populations and ecosystem metabolism (production/respiration) were affected at the lowest input rate, but the effects disappeared before the end of the oiling period and this exposure level (approximately 3% of the 48-h LC/sub 50/ for Daphnia magna) was considered safe for this ecosystem. At the next higher treatment level, effects on zooplankton and ecosystem metabolism were greater and persisted until the oiling ended; reproduction of mosquitofish (Gambusia affinis) was also impaired. Major changes occurred throughout the ecosystem at higher treatment levels. The two highest treatment levels completely disrupted the pond community. The ponds recovered from the next-to-highest treatment but the effects of the highest treatment persisted for more than a year. Indirect effects occurred at all treatment levels and included changes in water quality, replacement of sensitive taxa by more tolerant competitors and changes in abundance of some species because of increases or decreases in their predators. The results of this experiment were qualitatively and quantitatively similar to those of a parallel experiment in pond-derived microcosms, and thus substantiated the ability of the microcosms to simulate larger, more natural ecosystems.

  18. Development of a correlation between slurry oil composition and process performance. Topical report 1. Analyses of slurry recycle oils from H-Coal PDU Run 5

    SciTech Connect

    Burke, F. P.; Winschel, R. A.; Pochapsky, T. C.

    1980-04-01

    Daily samples of the slurry recycle oil from the 30-day H-Coal PDU Run 5 (Syncrude mode, Illinois 6 coal) were analyzed by /sup 1/H-NMR spectroscopy GS/MS, and liquid chromatographic techniques. The recycle oils composition in PDU Run 5 reached an initial steady-state at about day 12, but this was upset when the hydrogen partial pressure was increased on day 20. The recycle oil composition was again approaching a steady-state by the end of the run. The distillates increased in aromaticity during the first 12 days of the run, as catalyst activity declined. The more aromatic distillates are better liquefaction media. Therefore, the solvent quality of the recycle distillates improved as the run progressed. The recycle distillates boiling below phenanthrene consist largely of cracking and isomerization products of hydrophenanthrenes. The relative ratios of reactants and products may be useful in establishing catalyst activity during the run. The start-up solvent had little effect on the run, because it was rapidly replaced by coal-derived recycle oils. The molecular weight distribution of the recycle resid (975/sup 0/F/sup +/, THF soluble) was relatively unchanged during the run although the ratio of benzene solubles to insolubles first decreased as catalyst activity declined, then increased with the increased hydrogen partial pressure during the last ten days of the run.

  19. Solvent-aided Steam-Assisted Gravity Drainage in thin oil sand reservoirs

    Microsoft Academic Search

    Ian D. Gates

    2010-01-01

    About one-quarter of the 1.7trillion barrels of bitumen resource located in Alberta, Canada is hosted in thin reservoirs with thickness less than about 10m and is at this time considered inaccessible by current commercial recovery processes such as Steam-Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation. SAGD is effective at recovering heavy oil and bitumen in reservoirs greater than about

  20. Effects of oil sands tailings compounds and harsh weather on mortality rates, growth and detoxification efforts in nestling tree swallows (Tachycineta bicolor).

    PubMed

    Gentes, Marie-Line; Waldner, Cheryl; Papp, Zsuzsanna; Smits, Judit E G

    2006-07-01

    Oil sands mining companies in Alberta, Canada, are evaluating the feasibility of using wetlands to detoxify oil sands process material (OSPM) as a reclamation strategy. Reproductive success, nestling growth, survival and ethoxyresorufin-o-deethylase (EROD) activity were measured in tree swallows (Tachycineta bicolor) on experimental wetlands. In 2003, harsh weather triggered a widespread nestling die-off. Mortality rates on the control site reached 48% while they ranged from 59% to 100% on reclaimed wetlands. The odds of dying on the most process-affected sites were more than ten times higher than those on the control site. In 2004, weather was less challenging. Mortality rates were low, but nestlings on reclaimed wetlands weighed less than those on the control site, and had higher EROD activity. These results indicate that compared with reference birds, nestlings from OSPM-impacted wetlands may be less able to withstand additional stressors, which could decrease their chances of survival after fledging. PMID:16297515

  1. Commercial naphthenic acids and the organic fraction of oil sands process water downregulate pro-inflammatory gene expression and macrophage antimicrobial responses

    Microsoft Academic Search

    Erick Garcia-Garcia; Jonathan Pun; Leonidas A. Perez-Estrada; Mohamed Gamal-El Din; Daniel W. Smith; Jonathan W. Martin; Miodrag Belosevic

    2011-01-01

    This is the first report showing that the organic fraction of oil sands process water (OSPW-OF), and commercial naphthenic acids (C-NAs), cause immunotoxicity. The exposure of mouse bone marrow-derived macrophages (BMDM) to different amounts of C-NAs or OSPW-OF, did not affect cell viability in vitro. We examined whether exposure of BMDM to C-NAs or OSPW-OF affected various antimicrobial responses of

  2. Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable

    SciTech Connect

    Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten; Jan Roelof van der Meer; Hauke Harms; Mona Wells; Jeffrey Short [Tennessee Technological University, Cookeville, TN (United States). Department of Chemistry

    2009-08-15

    In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.

  3. Variation in immune function, body condition, and feather corticosterone in nestling tree swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada.

    PubMed

    Harms, N Jane; Fairhurst, Graham D; Bortolotti, Gary R; Smits, Judit E G

    2010-03-01

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. PMID:19850385

  4. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. PMID:26042363

  5. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  6. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation.

    PubMed

    Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal

    2014-08-19

    The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ? 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization. PMID:25051215

  7. Evaluating Function of a Constructed Fen in Alberta's Oil Sands Region Using Dissolved Organic Carbon Concentration and Chemistry

    NASA Astrophysics Data System (ADS)

    Strack, M.; Khadka, B.

    2014-12-01

    Peatlands, mainly fens, account for close to 65% of the landscape in the oil sands region near Fort McMurray, Alberta. Since mine closure plans require landscape reclamation, methods for fen construction are being investigated. As reclamation goals include the return of ecosystem function, criteria for evaluation must be developed. In this study we compare soil concentrations and spectrophometric properties of dissolved organic carbon (DOC) from a constructed fen during its first growing season with that collected from three diverse, undisturbed reference fens in the region. The constructed fen had lower DOC concentration than all the reference fens. Based on E2/E3, E4/E6 and specific UV absorbance of the DOC, the constructed fen had DOC with significantly greater humic content, aromatic nature, and larger molecular size than the reference fens. Results from laboratory DOC production studies indicate that these patterns are likely due to the limited DOC contribution from the newly planted vegetation at the constructed fen, resulting in DOC largely derived from humified peat placed during construction. These preliminary results suggest that DOC concentration and chemistry provide information about the ecological development of the constructed system that could be useful for evaluating reclamation success through time.

  8. Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment.

    PubMed

    Shi, Yijing; Huang, Chunkai; Rocha, Ketley Costa; El-Din, Mohamed Gamal; Liu, Yang

    2015-09-01

    Two moving bed biofilm reactors (MBBRs) were operated to treat raw (untreated) and 30mg/L ozone-treated oil sands process-affected water (OSPW). After 210days, the MBBR process showed 18.3% of acid-extractable fraction (AEF) and 34.8% of naphthenic acids (NAs) removal, while the ozonation combined MBBR process showed higher removal of AEF (41.0%) and NAs (78.8%). Biodegradation of raw and ozone treated OSPW showed similar performance. UPLC/HRMS analysis showed a highest NAs removal efficiency with a carbon number of 14 and a -Z number of 4. Confocal laser scanning microscopy (CLSM) showed thicker biofilms in the raw OSPW MBBR (97±5?m) than in the ozonated OSPW MBBR (71±12?m). Quantitative polymerase chain reaction (q-PCR) results showed higher abundance of gene copies of total bacteria and nitrogen removal relevant bacteria in the ozonated OSPW MBBR, but no significant difference was found. MiSeq sequencing showed Proteobacteria, Nitrospirae, and Acidobacteria were dominant. PMID:26038326

  9. Estimates of Octanol-Water Partitioning for Thousands of Dissolved Organic Species in Oil Sands Process-Affected Water.

    PubMed

    Zhang, Kun; Pereira, Alberto S; Martin, Jonathan W

    2015-07-21

    In this study, the octanol-water distribution ratios (DOW, that is, apparent KOW at pH 8.4) of 2114 organic species in oil sands process-affected water were estimated by partitioning to polydimethylsiloxane (PDMS) coated stir bars and analysis by ultrahigh resolution orbitrap mass spectrometry in electrospray positive ((+)) and negative ((-)) ionization modes. At equilibrium, the majority of species in OSPW showed negligible partitioning to PDMS (i.e., DOW <1), however estimated DOW's for some species ranged up to 100?000. Most organic acids detected in ESI- had negligible partitioning, although some naphthenic acids (O2(-) species) had estimated DOW ranging up to 100. Polar neutral and basic compounds detected in ESI+ generally partitioned to PDMS to a greater extent than organic acids. Among these species, DOW was greatest among 3 groups: up to 1000 for mono-oxygenated species (O(+) species), up to 127?000 for NO(+) species, and up to 203?000 for SO(+) species. A positive relationship was observed between DOW and carbon number, and a negative relationship was observed with the number of double bonds (or rings). The results highlight that nonacidic compounds in OSPW are generally more hydrophobic than naphthenic acids and that some may be highly bioaccumulative and contribute to toxicity. PMID:26098972

  10. Biogeochemical Controls on Biodegradation of MC252 Oil:Sand Aggregates on a Rapidly Eroding Coastal Headland Beach

    NASA Astrophysics Data System (ADS)

    Pardue, J.; Elango, V.; Urbano, M.; Lemelle, K.

    2012-12-01

    The research described below was conducted on Fourchon Beach, a coastal headland consisting of nine miles of fairly pristine sandy beaches and dunes, backed by wetlands and tidal channels, located between Belle Pass tidal inlet on the west and Elmer's Island on the east in Lafourche Parish, Louisiana. MC252 oil first arrived in large quantities on Fourchon Beach on or around May 20, 2010. A unique oil form created under these conditions was an aggregate of sand and emulsified oil, typically 0.1-10 cm in diameter, termed small surface residue balls (SSRBs). The work from this project made critical measurements on the factors controlling biodegradability of these SSRB aggregates. SSRB aggregates were sampled across transects perpendicular to the beach from the intertidal to the supratidal. Areas in the supratidal that were sampled initially were set aside for research purposes and not altered by any clean-up activities. Chemical composition of SSRBs was measured including concentrations of n-alkanes, PAHs, hopanes, nutrients (nitrate, nitrite, ammonium and orthophosphate measured on water extracts of SSRBs), and electron acceptor concentrations (O2 microprofiles measured on intact SSRBs and sulfate). Physical characterization of the SSRBs including length and area dimensions, mass, density, porosity, moisture content, and salinity using standard methods. Microbial characterization of SSRBs was also conducted using denaturing gradient gel electrophoresis and sequencing of dominant bands. SSRBs were sampled from various locations across the beach profile deposited by 2 significant tropical events in 2010; Hurricane Alex and TS Bonnie, and one event in 2011, TS Lee. Sampling focused on comparing and contrasting impacts of biogeochemistry on weathering of oil stranded in three beach microenvironments; supratidal surface; subtidal subsurface which is permanently inundated and intertidal subsurface samples which are intermittently inundated. The three types of oil are dramatically different in appearance and have a distinctive chemical signature indicative of different rates of weathering. Supratidal surface samples were depleted in n-alkanes and lower-molecular weight PAHs. Geochemically, aggregates located in these environments had low salinities (1.3-1.5 ppt), O2 at near saturation throughout the aggregates and nutrient concentrations (N and P) significantly lower than SSRBs deposited in the intertidal and subtidal. Intertidal and subtidal subsurface oil samples were characterized by elevated nutrient concentrations and salinities consistent with regular seawater inundation. Complete inundation leads to O2 consumption in the aggregates after several days. Despite the presence of elevated nutrients, PAHs and n-alkanes were comparatively unweathered in the subtidal subsurface samples consistent with O2 limitations. Sequences of known PAH degraders were isolated from the supratidal and intertidal aggregates. The results to be presented support the hypothesis that SSRBs deposited at different locations on the beach have different biogeochemical characteristics . These characteristics are due, in part, to their location on the landscape.

  11. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993February 15, 1994

    Microsoft Academic Search

    B. G. Miller; J. L. Morrison; R. L. Poe; A. W. Scaroni

    1994-01-01

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1)

  12. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion

    Microsoft Academic Search

    M. Srinivasa Reddy; Shaik Basha; H. V. Joshi; B. Jha

    2005-01-01

    Coal as well as fuel oil combustion generates emissions of potentially toxic trace pollutants including organic and inorganic chemical compounds besides major pollutants. A study on As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, Se, and Zn emissions from a 220MW coal-fired power plant equipped with a electrostatic precipitators (ESPs) and 6MW oil fired-power plant was carried out,

  13. Demonstration program for coal-oil mixture combustion in an electric utility boiler - Category III A. 1978 annual report

    SciTech Connect

    Not Available

    1980-04-01

    The 1978 annual report covers New England Power Service Company's participation in the Department of Energy coal-oil mixture (COM) program. Continued world-wide unrest resulting in an unstable fuel oil supply coupled with rapidly inflating costs have caused continued interest in a demonstrable viable solution. NEPSCO's program, while not attaining all the milestones forecast, has made considerable progress. As of January 31, 1979, ninety-five (95% percent of engineering and design has been completed. Construction of facilities and installation of required equipment was approximately 75% complete and the six-week Feasibility Testing program was expected to commence during April 1979.

  14. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.

    PubMed

    Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Jha, B

    2005-08-31

    Coal as well as fuel oil combustion generates emissions of potentially toxic trace pollutants including organic and inorganic chemical compounds besides major pollutants. A study on As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, Se, and Zn emissions from a 220 MW coal-fired power plant equipped with a electrostatic precipitators (ESPs) and 6 MW oil fired-power plant was carried out, using stack monitoring kit, Envirotech APM 620, which is similar to EPA Method 29. Simultaneous sampling of coal, fuel oil, oil waste, bottom ash, fly ash, flue gases, and particles associated with the gas phase has been performed. This sampling method was used for trace metal sampling. The content of all these metals in coal, oil, oil waste, bottom ash, fly ash have been determined by XRF, whereas their contents in the flue gases, and particles associated with the gas phase has been analyzed with ICP-AES. The mass balances obtained for trace elements were satisfactory in case of fuel oil based power plant, whereas in case of coal fired power plant, the mass balance for all the trace elements were below 50% except for the As, Se, and Hg. The enrichment factors for all trace metals was <1 in both cases. The above sampling method is moderately adequate method for trace element sampling in coal as well as oil fired power plants except for Hg. The results indicate that trace metals emissions were higher in coal-based power plant than the fuel oil-fired power plant. PMID:15916850

  15. Methane budget of the down-current plume from Coal Oil Point seep field, Santa Barbara Channel, California

    Microsoft Academic Search

    S. Mau; M. Heintz; D. L. Valentine

    2008-01-01

    Previous research indicates that 5.5-9.6 x 106 mol\\/d (90-150 t\\/d) of methane are emitted from the seafloor into the coastal ocean near Coal Oil Point (COP), Santa Barbara Channel (SBC), California. Methane concentrations and biologically-mediated oxidation rates were quantified at 12 stations in a 198 km2 area down-current from COP during the SEEPS\\

  16. Preparation of gas turbine engine fuel from synthetic crude oil derived from coal. Final report on Phase 2

    Microsoft Academic Search

    Eisen

    1975-01-01

    A 232 gallon gas turbine fuel sample containing 23 vol.percent aromatics (20-25 vol.percent specification target) was prepared from synthetic crude oil (syncrude) derived from Western Kentucky coal. The seven fuel specifications designated as most important were all met with the exception of smoke point. The following major processing steps were used to prepare the sample: initial distillations (atmospheric distillation of

  17. Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources.

    PubMed

    Chang, M C Oliver; Chow, Judith C; Watson, John G; Hopke, Philip K; Yi, Seung-Muk; England, Glenn C

    2004-12-01

    Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h(-1) and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources. PMID:15648387

  18. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  19. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  20. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    SciTech Connect

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  1. Observational Data Analysis and Numerical Model Assessment of the Seafloor Interaction and Mobility of Sand and Weathered Oil Agglomerates (Surface Residual Balls) in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Long, J.; Plant, N. G.; Penko, A.; Calantoni, J.; Thompson, D.; Mclaughlin, M. K.

    2014-12-01

    When weathered oil is transported ashore, such as during the Deepwater Horizon oil spill, it can mix with suspended sediment in the surf zone to create heavier-than-water sand and oil agglomerates in the form of mats several centimeters thick and tens of meters long. Broken off pieces of these mats and smaller agglomerates formed in situ (called Surface Residual Balls, SRBs) can cause beach re-oiling months to years after the initial spill. The physical dynamics of these SRBs in the nearshore, where they are larger (cm-scale) and less dense than natural sediment, are poorly understood. In the current study, SRB mobility and seafloor interaction is investigated through a combination of laboratory and field experiments with pseudo-SRBs developed to be physically stable proxies for genuine agglomerates. Formulations for mobility prediction based on comparing estimated shear stress to the critical Shields and modified Shields parameters developed for mixed sediment beds are assessed against observations. Processes such as burial, exhumation, and interaction with bedforms (e.g., migrating ripples) are also explored. The observations suggest that incipient motion estimates based on a modified Shields parameter have some skill in predicting SRB movement, but that other forcing mechanisms such as pressure gradients may be important under some conditions. Additionally, burial and exhumation due to the relatively high mobility of sand grains are confirmed as key processes controlling SRB dynamics in the surf zone. This work has broad implications for understanding surf zone sediment transport at the short timescale associated with mobilizing sand grains and SRBs as well as at the longer timescales associated with net transport patterns, sediment budgets, and bed elevation changes.

  2. Evaluation of tubular ceramic heat exchanger materials in acidic coal ash from coal-oil-mixture combustion. [Sialon; alumina; CVD, sintered, and siliconized SiC

    SciTech Connect

    Ferber, M.K.; Tennery, V.J.

    1981-12-01

    Tubes of five ceramic materials were exposed to the hot combustion gases from a coal-oil-mixture (COM) fuel in the Ceramic Recuperator Analysis Facility (CRAF) at about 1200/sup 0/C for about 500 h. Siliconized SiC, sintered ..cap alpha..-SiC, and chemically vapor deposited (CVD) SiC survived the long-term exposure with no major visible degradation. The alumina and sialon tubes were cracked extensively. Acidic coal slag deposited extensively on the upstream surface of all tubes. During cooldown, the slag did not strongly bond to any of the silicon carbide tubes, but a strong bond was developed with the alumina and sialon tubes. The silicon carbides corroded by a micropitting oxidation at the carbide-slag interface. The SiC and Si phases of siliconized SiC corroded at essentially the same rate. Exposure to hot coal slag increased the room-temperature helium permeability of all the SiC-based tubes. For KT and CVD SiC, both upstream and downstream sides exhibited expansion increases up to about 17% at 1000/sup 0/C. Sintered ..cap alpha..-SiC had much smaller increases. Al/sub 2/O/sub 3/ had an expansion increase of about 14% on the upstream side at 1000/sup 0/C but the downstream side was unchanged. 65 figures, 22 tables.

  3. Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water.

    PubMed

    Liang, Xiaoming; Zhu, Xingdong; Butler, Elizabeth C

    2011-06-15

    Four advanced oxidation processes (UV/TiO(2), UV/IO(4)(-), UV/S(2)O(8)(2-), and UV/H(2)O(2)) were tested for their ability to mineralize naphthenic acids to inorganic carbon in a model oil sands process water containing high dissolved and suspended solids at pH values ranging from 8 to 12. A medium pressure mercury (Hg) lamp was used, and a Quartz immersion well surrounded the lamp. The treatment goal of 5mg/L naphthenic acids (3.4 mg/L total organic carbon (TOC)) was achieved under four conditions: UV/S(2)O(8)(2-) (20mM) at pH 8 and 10, and UV/H(2)O(2) (50mM) at pH 8 (all with the Quartz immersion well). Values of electrical energy required to meet the treatment goal were about equal for UV/S(2)O(8)(2-) (20mM) and UV/H(2)O(2) (50mM) at pH 8, but three to four times larger for treatment by UV/S(2)O(8)(2-) (20mM) at pH 10. The treatment goal was also achieved using UV/S(2)O(8)(2-) (20mM) at pH 10 when using a Vycor filter that transmits light primarily in the mid and near UV, suggesting that that treatment of naphthenic acids by UV/S(2)O(8)(2-) using low pressure Hg lamps may be feasible. PMID:21482025

  4. Reproductive and health assessment of fathead minnows (Pimephales promelas) inhabiting a pond containing oil sands process-affected water.

    PubMed

    Kavanagh, Richard J; Frank, Richard A; Solomon, Keith R; Van Der Kraak, Glen

    2013-04-15

    Previous laboratory based studies have shown that oil sands process-affected waters (OSPWs) containing high concentrations of naphthenic acids (>25 mg/l) have adverse effects on the reproductive physiology of fish. The purpose of this study was to assess the reproductive development and health of a wild population of fathead minnows (Pimephales promelas) inhabiting an OSPW pond that has moderate concentrations of naphthenic acids (~10 mg/l). Fathead minnows were collected at various times during the period of 2006 through 2008 from Demonstration Pond (OSPW) located at Syncrude Canada Ltd., and two reference sites, Beaver Creek reservoir and Poplar Creek reservoir, which are all north of Fort McMurray, AB, Canada. Condition factor, gill histopathology, gonadosomatic indices, liver somatic indices, male secondary sexual characteristics, and plasma sex steroids were examined. Depending on the time of year that fathead minnows were collected, there were differences in the condition factor, gonadosomatic indices, liver somatic indices, and secondary sexual characteristics of fathead minnows (in males) from Demonstration Pond when compared to the fathead minnows from the reference sites. In comparison to reference fish, lower concentrations of 11-ketotestosterone were measured in the plasma of male fathead minnows collected from Demonstration Pond in June 2006 and July 2007. Black spot disease and Ligula intestinalis were prevalent in fathead minnows from the reference sites but were not observed in fathead minnows from Demonstration Pond. The opercula of fathead minnows from Demonstration Pond also differed from those of reference fish. An examination of the gills of fathead minnows from Demonstration Pond revealed that were a number of proliferative and degenerative alterations relative to reference fish. Even though the fathead minnow population has been maintained in this OSPW pond since 1993, the results of this study demonstrate that the OSPW continues to affect the reproductive development and health of the fathead minnows compared to fish collected at reference sites. PMID:23416413

  5. Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2013-08-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significant low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional scale (15 km × 15 km resolution) air quality (AQ) model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 from in-situ surface monitors by using the AQ model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in-situ instruments (slopes of 0.7 to 1.0; correlation coefficients of 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  6. Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2014-04-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of >0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  7. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect

    Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

    2012-04-30

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

  8. Microbial Oxidation of Ethane within Seep Sediment at Coal Oil Point, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Duncombe, R.; Scarlett, R. D.; Shaffer, J.; Lensch, S.; Valentine, D. L.

    2013-12-01

    The hydrocarbon seep field at Coal Oil Point (COP), off the coast of Santa Barbara, California, releases more than 10^10 g of thermogenic natural gas each year. Only a fraction of this methane, ethane, propane, and butane reaches the atmosphere, and is instead consumed by marine microbes in both the sediment and water column. Bacterial respiration of these gases has been observed in aerobic and anaerobic conditions, with the exception of ethane (aerobic only) (Kniemeyer et. al 2007). This work seeks to quantify the rate of ethane oxidation (both aerobic and anaerobic) in marine sediment. A series of experiments, to be conducted using COP seep sediment aboard the R/V Atlantis in October 2013, will test how varying oxygen conditions impact ethane oxidation rate. Oxidation rates will be quantified using sensitive 3H-ethane tracers. Preliminary data from Shane's Seep, located within the COP seep field, indicates that ethane oxidation is restricted to the top 6 cm of sediment. This suggests that oxygen is a limiting factor, but further work is needed to establish if ethane oxidation is restricted to exclusively aerobic environments.

  9. Methanotrophic bacteria occupy benthic microbial mats in shallow marine hydrocarbon seeps, Coal Oil Point, California

    NASA Astrophysics Data System (ADS)

    Ding, Haibing; Valentine, David L.

    2008-03-01

    Microbial mats composed of giant sulfur bacteria are observed throughout the benthos along continental margins. These communities serve to oxidize dissolved sulfides to sulfate, and are typically associated with the recent exposure of sulfide-rich sediments. Such mats are also ubiquitous in areas of hydrocarbon seepage, where they are thought to consume sulfide generated in underlying sediment. Despite the high abundance of dissolved methane in hydrocarbon seeps, few studies have considered the importance of methanotrophy in mat communities. To assess the importance of methanotrophs in microbial mats from hydrocarbon seeps, an approach involving lipid biomarkers, stable isotopes and enrichment culturing was applied. Microbial mat samples were collected from benthic surfaces at two hydrocarbon seeps located in the Coal Oil Point seep field, offshore from Goleta, California. Both samples display a high abundance of 16:1 fatty acids, including two isomers specific to type I methanotrophic bacteria, 16:1(?8) and 16:1(?6). Depleted values of ?13C found in 16:1 fatty acids suggests methane assimilation into biomass, whereas three separate investigations of sulfide-oxidizing bacteria yield fractionation factors too small to account for these values. On the basis of these observations and experiments, an isotope mass balance was applied to fatty acids present in the microbial mat samples which indicates methanotrophs contribute up to 46% of total fatty acids. These results implicate methanotrophy as an important function for microbial mats in seep areas, despite the visual appearance of these mats as being composed of giant sulfur bacteria.

  10. Investigation in the use of heavy oils (and derivatives) to process coal

    Microsoft Academic Search

    S. E. Moschopedis; R. W. Hawkins; J. G. Speight

    1981-01-01

    Results of studies to determine the effect of process parameters such as temperature, pressure, and reaction time on the extent of coal conversion and on product distribution are reported. Various solvents, e.g. Athabasca bitumen, were used to solubilize coal, and conversion yields under noncatalytic and catalytic hydrogenation conditions indicated that conversion increased from 10 to 24% in coal solvation to

  11. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    NONE

    1998-01-01

    This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

  12. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil.

    PubMed

    Linak, W P; Miller, C A; Wendt, J O

    2000-08-01

    U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impaction as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments. Experimental results on the mass and compositions of particles between 0.03 and > 20 microns in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-micron aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large. Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM < 2.5 microns without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (approximately 0.1 micron). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM < 2.5 microns and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles. PMID:11002612

  13. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos.

    PubMed

    Marentette, Julie R; Frank, Richard A; Bartlett, Adrienne J; Gillis, Patricia L; Hewitt, L Mark; Peru, Kerry M; Headley, John V; Brunswick, Pamela; Shang, Dayue; Parrott, Joanne L

    2015-07-01

    Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited. PMID:25957715

  14. Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia.

    PubMed

    Puttaswamy, Naveen; Liber, Karsten

    2012-02-01

    In a previous study it was shown that pH significantly influences the release of metals from oil sands coke, particularly Ni and V which were identified as the cause of coke leachate toxicity. Coke comes in contact with oil sands process water (OSPW) during its transport to and long term storage in reclamation landscapes. However, the influence of dominant inorganic anions present in OSPW (i.e. HCO(3)(-), Cl(-) and SO(4)(2-)) on metals release from coke and on speciation and toxicity of Ni and V, has not been characterized before. Coke was subjected to a 15-d batch leaching process at four levels of HCO(3)(-), Cl(-) and SO(4)(2-) to determine the influence on metals release and speciation. Further, the effects of each of the three anions on Ni and V toxicity, as well as the mixture toxicity of Ni and V, were assessed using the three-brood Ceriodaphnia dubia test. Inorganic anions had a significant influence on the type and amount of metals released from coke. Specifically, sulfate increased the mobilization of cationic metals (e.g. Ni, Fe, Mn and Zn), whereas bicarbonate enhanced the release of oxyanion forming metals (e.g. Al, As, Mo and V) from coke. Chloride had no particular effect on the type and amount of metals released. With respect to toxicity, elevated bicarbonate levels decreased the 7-d Ni IC50 from 6.3 to 2.3 ?g L(-1), whereas sulfate showed an ameliorative effect against V toxicity to C. dubia. In combination, Ni and V acted additively at their highest sub-lethal concentrations. Aqueous chemistry and toxicity of Ni and V are discussed with the goal of informing reclamation efforts at the Athabasca oil sands. PMID:22138340

  15. Differential changes in gene expression in rainbow trout hepatocytes exposed to extracts of oil sands process-affected water and the Athabasca River.

    PubMed

    Gagné, F; Douville, M; André, C; Debenest, T; Talbot, A; Sherry, J; Hewitt, L M; Frank, R A; McMaster, M E; Parrott, J; Bickerton, G

    2012-05-01

    The oil sands region of northern Alberta represents the world's largest reserves of bitumen, and the accelerated pace of industrial extraction activity has raised concern about the possible impacts on the Athabasca River and its tributaries. An ecotoxicogenomic study was undertaken on Oncorhynchus mykiss trout hepatocytes exposed to extracts of water samples near the oil sand development area, as well as to oil sands process-affected water (OSPW) extracts using the quantitative reverse transcriptase polymerase chain reaction technique. The expression of the following genes (mRNA) was monitored to track changes in xenobiotic biotransformation (CYP1A1, CYP3A4, glutathione S-transferase, multi-drug resistance transporter), estrogenicity (estrogen receptor and vitellogenin), oxidative stress (superoxide dismutase and metallothionein) and DNA repair activity (DNA ligase). The extent of DNA-aromatic hydrocarbon adducts was also determined in cells by immuno-staining. A comparative analysis of gene expression between the river/lake and OSPW samples revealed that CYP3A4, metallothioneins, DNA ligase and GST genes, were specifically expressed by OSPW. Cells exposed to OSPW, commercial naphthenic acids, and benzo(a)pyrene showed increased polyaromatic hydrocarbon DNA-adducts, as determined by cell immunofluorescence analysis. Other genes were induced by all types of water samples, although the induction potential was stronger in OSPW most of the time (e.g., VTG gene was expressed nearly 15-fold by surface waters from the lake and river samples but increased to a maximum of 31-fold in OSPW). A multivariate discriminant function analysis revealed that the lake and river water samples were well discriminated from the OSPW. The CYP3A4 gene was the most highly expressed gene in cells exposed to OSPW and responded less to the lake or river water in the Athabasca River area. This study identified a suite of gene targets that responded specifically to OSPW extracts, which could serve as toxicogenomic fingerprints of OSPW contamination. PMID:22251623

  16. Coal/water mixtures get commercial tryouts at oil-designed burners in Sweden and the US

    SciTech Connect

    Not Available

    1984-08-13

    Commercial applications of coal/liquid slurry fuels, initiated in January for the coal/oil mixtures, could accelerate this year as two manufacturers introduce commercial coal/water slurries. Svenska Fluidcarbon AB of Malmoe, Sweden, plans startup of a full-scale production plant for its coal/water mixture (CWM) in October. Primary sales of the slurry will be to the city of Lund, for a steam-generating utility boiler. In the US, the Standard Havens Research Corporation of Kansas City, Missouri, plans sales of its CWM technology to hot-mix asphalt plants. The effort in Sweden is relatively standard for the fledgling slurry-fuel industry. The effort by Standard Havens points to a contrasting focus. Standard Havens plans to sell its slurry-fuel technology to small and medium size asphalt plants. Aqua Black is a complete slurry production and combustion system, designed to permit the industrial user to produce fuel for his own operations. In addition, the plant owner may expand the slurry-fuel system and produce fuel for other businesses in his region.

  17. Water, Energy and Carbon Balance Research: Recovery Trajectories For Oil Sands Reclamation and Disturbed Watersheds in the Western Boreal Forest

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Carey, S. K.

    2014-12-01

    The Oil Sand Region (OSR) of North-Central Alberta exists within the sub-humid Boreal Plains (BP) ecozone, with a slight long-term moisture deficit regime. Despite this deficit, the BP is comprised of productive wetland and mixed wood (aspen and conifer dominated) forests. Reclamation activities are now underway at a large number of surface mining operations in the OSR, where target ecosystems are identified, soil prescriptions placed and commercial forest species planted. Some watersheds have been created that now contain wetlands. However, recent work in the BP suggests that over time wetlands supply moisture for the productivity of upland forests. Thus, water use of reclaimed forests is going to be critical in determining the sustainability of these systems and adjacent wetlands, and whether in time, either will achieve some form of equivalent capability that will allow for certification by regulators. A critical component in the success of any reclamation is that sufficient water is available to support target ecosystems through the course of natural climate cycles in the region. Water Use Efficiency (WUE), which links photosynthesis (GEP) with water use (Evapotranspiration (ET)), provides a useful metric to compare ecosystems and evaluate their utilization of resources. In this study, 41 site years of total growing season water and carbon flux data over 8 sites (4 reclamation, 4 regeneration) were evaluated using eddy covariance micrometeorological towers. WUE shows clear discrimination among ecosystem types as aspen stands assimilate more carbon per unit weight of water than conifers. WUEs also change with time as ecosystems become more effective at transpiring water through plant pathways compared with bare-soil evaporation, which allows an assessment of ability to limit water loss without carbon uptake. In addition, clonal rooting systems allow aspen forests to recover quicker after disturbance than reclamation sites in terms of their WUE. For reclamation sites, there is considerable variability in GEP and ET associated with vegetation establishment, with enhanced ET losses over-riding any significant changes in C uptake, suggesting that long-term mine water management must consider ecosystem pathways if down-gradient wetlands and end-pit lakes are to be sustained.

  18. Peroxycarboxylic Nitric Anhydrides as Markers of Anthropogenic and Biogenic VOC Photo-oxidation in the Alberta Oil Sands

    NASA Astrophysics Data System (ADS)

    Osthoff, H. D.; Huo, J. A.; Tokarek, T. W.; Odame-Ankrah, C. A.; Saowapon, M. T.; Chen, X.

    2014-12-01

    The peroxycarboxylic nitric anhydrides (molecular formula RC(O)O2NO2) are well-known byproducts of the photo-oxidation chemistry between NOx and volatile organic compounds (VOCs) that produces ozone (O3) and photochemical smog. More than 43 different PAN species are known; their relative abundances are chemical markers of the types and quantities of the VOCs involved in the O3-formation process. For example, MPAN (R: CH2=C(CH3)-) is primarily derived from isoprene and thus a marker of biogenic VOC oxidation, whereas PPN (R: C2H5-) is a photo-oxidation byproduct of anthropogenic VOCs. In the summer of 2013 an intensive air quality measurement campaign was conducted to investigate the impacts of emissions from the Alberta oil sands mining operations on the chemical composition of ambient air. As part of this effort, several peroxycarboxylic nitric anhydrides, specifically PAN (R: CH3-), PPN, MPAN, APAN (R: CH2=CH-), and PiBN (R: iC3H7-), were quantified by gas chromatography with electron capture detection at the AMS13 ground site near Fort McKay, Alberta. Furthermore, total peroxyacyl nitrates (?PAN) were quantified by thermal dissociation cavity ring-down spectroscopy (TD-CRDS). PAN mixing ratios typically peaked in the mid-afternoon (maximum PAN mixing ratio of 0.85 ppbv), constituting up to 25% of total odd nitrogen (NOy), and were usually below detection limits at night. ?PAN was generally greater than the amount calculated by summation of individually measured PANs (SPANi) suggesting the presence of PAN species not measured by GC. During times of active photo-oxidation chemistry, the PPN:PAN and MPAN:PAN ratios varied considerably between days, depending on air mass origin and VOC composition. A linear combination model (LCM) was used to assess regional O3 production from the oxidation of biogenic hydrocarbons (via MPAN) relative to that of anthropogenic hydrocarbons (via PPN). The relative contribution of anthropogenic VOCs to regional O3 production varied between 20% and 80%. A box model using a subset of the Master Chemical Mechanism was used to investigate how measurements of APAN and PiBN may be incorporated in the LCM framework.

  19. A new twist to a traditional approach to environmental monitoring: differentiation of oil sands process-affected waters and natural systems by comparison of individual organic acids

    NASA Astrophysics Data System (ADS)

    Scarlett, A.; Lengger, S.; West, C.; Rowland, S.

    2013-12-01

    Review panels of both the Canadian Federal and Alberta Provincial governments have recommended a complete overhaul of existing monitoring programs of the Athabasca oil sands industry and have called for a greater understanding of the potential impacts of mining activities to allow for future sustainable development. Due to the no release policy, it is critical that leakages of oil sands process-affected waters (OSPW) from tailings ponds can be differentiated from natural waters flowing through the McMurray formation into the Athabasca river system. Environmental monitoring of oil contamination usually entails profiling of known compounds, e.g. the US EPA list of priority Polycyclic Aromatic Hydrocarbons, but until now a similar approach has not been possible for OSPW due to its extreme complexity. It has been estimated that the number of carboxylic acids, historically referred to as ';naphthenic acids' (NA) in OSPW, to be in excess of 10000 compounds. Until recently, individual structures of these NA were unknown but analyses by tandem gas chromatography mass spectrometry (GCxGC-MS) have now begun to reveal the individual structures of alicyclic, aromatic and sulphur-containing acids within OSPWs stored in tailings ponds. Now that some individual structures present in OSPW are known and standards are available, a methodological approach similar to traditional oil monitoring can be developed using individual diamondoid NA and recently discovered diacids and applied to tailings pond OSPW and environmental waters. One obstacle to understanding whether the NA present in environmental groundwater samples are associated with particular tailings ponds is the lack of knowledge of the variability of OSPW within and between ponds. In the current study, GCxGC-MS analyses have been applied to statistically compare OSPWs of two industries, both temporally and spatially, using specific, known compounds as well as associated isomers. Although variation within individual ponds was observed, there was a significant difference (P < 0.05) between the ponds of the two industries. Having determined the variability in the ponds, further statistical analysis was applied to compare ratios of individual NAs in the ponds with those in groundwaters, near and distant from the ponds, thereby providing a measure of the probability that a particular groundwater sample is associated with a specific tailings pond. We have previously shown that the ability to identify individual chemical structures within these highly complex samples facilitates relevant toxicological testing and modelling. Here, we show it to be of crucial importance for differentiating tailings ponds and natural groundwaters and thus provides a relatively simple and robust means of monitoring anthropogenic impacts on natural systems arising from oil sands mining activities.

  20. Scoping technology options for India's oil security: Part II - Coal to liquids and bio-diesel

    Microsoft Academic Search

    Rahul Tongia

    2007-01-01

    Anshu Bharadwaj*, Rahul Tongia and V. S. Aru nachalam India's diesel consumption is several times that of petrol. In this article, we examine two options for meeting India's diesel demand: coal to liquids and bio-diesel. Coal gasification, followed by Fischer - Tropsch (FT) synthesis offers an opportunity for large-scale production of diesel as proven by South Africa, and now being

  1. SAND REPORT SAND2002xxxx

    E-print Network

    Newman, Alantha

    SAND REPORT SAND2002­xxxx Unlimited Release August 2002 Discrete Optimization Models for Protein://www.ntis.gov/ordering.htm DEPARTMENTOF ENERGY . . UNITED STATES OF AMERICA #12; SAND2002-xxxx Unlimited Release Printed August 2002

  2. Prediction of naphthenic acid species degradation by kinetic and surrogate models during the ozonation of oil sands process-affected water.

    PubMed

    Islam, Md Shahinoor; Moreira, Jesús; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-09-15

    Oil sands process-affected water (OSPW) is a complex mixture of organic and inorganic contaminants, and suspended solids, generated by the oil sands industry during the bitumen extraction process. OSPW contains a large number of structurally diverse organic compounds, and due to variability of the water quality of different OSPW matrices, there is a need to select a group of easily measured surrogate parameters for monitoring and treatment process control. In this study, kinetic and surrogate correlation models were developed to predict the degradation of naphthenic acids (NAs) species during the ozonation of OSPW. Additionally, the speciation and distribution of classical and oxidized NA species in raw and ozonated OSPW were also examined. The structure-reactivity of NA species indicated that the reactivity of individual NA species increased as the carbon and hydrogen deficiency numbers increased. The kinetic parameters obtained in this study allowed calculating the evolution of the concentrations of the acid-extractable fraction (AEF), chemical oxygen demand (COD), and NA distributions for a given ozonation process. High correlations between the AEF and COD and NA species were found, suggesting that AEF and COD can be used as surrogate parameters to predict the degradation of NAs during the ozonation of OSPW. PMID:24951886

  3. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to Vibrio fischeri and mammalian immune system.

    PubMed

    Wang, Nan; Chelme-Ayala, Pamela; Perez-Estrada, Leonidas; Garcia-Garcia, Erick; Pun, Jonathan; Martin, Jonathan W; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2013-06-18

    Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the naphthenic acids (NAs) speciation and acute toxicity were evaluated. Ion-mobility spectrometry (IMS) was used to preliminarily separate isomeric and homologous species. The results showed limited effects of the ozone reactor size on the treatment performance in terms of contaminant removal. In terms of NAs speciation, high reactivity of NAs with higher number of carbons and rings was only observed in a region of high reactivity (i.e., utilized ozone dose lower than 50 mg/L). It was also found that nearly 0.5 mg/L total NAs was oxidized per mg/L of utilized ozone dose, at utilized ozone doses lower than 50 mg/L. IMS showed that ozonation was able to degrade NAs, oxidized NAs, and sulfur/nitrogenated NAs. Complete removal of toxicity toward Vibrio fischeri was achieved after ozonation followed by 28-day biodegradation period. In vitro and in vivo assays indicated that ozonation reduced the OSPW toxicity to mice. PMID:23683033

  4. Use of GCxGC-ToF-MS to Identify and Profile Naphthenic Acid Methyl Esters in Oil Sands Composite Tailings

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Slater, G. F.; Warren, L. A.; McCarry, B. E.

    2013-12-01

    Naphthenic acids are complex mixtures of toxic, water-soluble compounds that are by-products of petroleum and oil sands processing. Naphthenic acids are mono- and dicarboxylic acids that range in carbon number from C5 to about C30 and exist in many structural and isomeric forms for a given elemental composition, resulting in a very large number of possible chemical structures. We have explored the use of comprehensive GCxGC analyses to profile naphthenic acid mixtures and identify new chemical compounds. The primary goal of the work is to determine the changes in naphthenic acid compositional profiles in oil sands composite tailings. Our hypothesis is that naphthenic acids serve as the carbon source for anaerobic bacteria within the composite tailings and that the naphthenic acid profiles will be altered due to microbial action. This profiling method may serve as an indicator of microbial activity within the composite tailings. Here, we will present an analytical method for the identification and characterization of individual naphthenic acids present within the mixtures. The comparative profiles of composite tailings samples from different locations will be discussed.

  5. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.

    PubMed

    Laban, Nidal Abu; Dao, Anh; Foght, Julia

    2015-05-01

    Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction. PMID:25873466

  6. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present results suggest that in addition to the commonly cited naphthenic acids, remediation of OSPW-impacted groundwater will need to address high concentrations of major ions contributing to salinization.

  7. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  8. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  9. Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990

    SciTech Connect

    Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

    1990-04-06

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

  10. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and MeHg results that will be used to assess the evolution of mercury dynamics in the fen as the hydrology and vegetation become established, we are investigating the composition of dissolved organic matter (DOM) using optical techniques in the water flowing through the fen peat and underlying tailing sand aquifer. During 2013, continuous in situ measurements of chromophoric DOM fluorescence (FDOM) were measured at the fen outlet to identify sources of C and their relative contribution to discharge waters. We compare these field measurements to laboratory measurements of FDOM on discrete water samples using a benchtop spectrofluorometer to develop relationships between FDOM, DOC and filtered THg and MeHg. The use of continuous in situ FDOM measurements as a proxy for DOC and mercury concentrations will improve our understanding of the effects of hydrologic management and natural seasonal variations in fen hydrology on DOC and Hg fluxes from different soil layers in the constructed system. Furthermore, we expect that the modeling of excitation-emission matrices using parallel factor analysis on discrete water samples will provide important information on the sources and reactivity of organic carbon being transported through different soil compartments in the fen.

  11. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemys?aw; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. PMID:24681364

  12. Geologic and hydrologic controls on coalbed methane: Sand wash basin, Colorado and Wyoming. Topical report, August 1, 1991-April 30, 1993

    SciTech Connect

    Kaiser, W.R.; Scott, A.R.; Hamilton, D.S.; Tyler, R.; McMurry, R.G.

    1993-08-01

    Contents: tectonic evolution, stratigraphic setting, and coal fracture patterns of the sand wash basin; stratigraphy and coal occurrence of the upper cretaceous mesaverde group, sand wash basin; coal rank, gas content, and composition and origin of coalbed gases, mesaverde group, sand wash basin; hydrologic setting of the upper mesaverde group, sand wash basin; stratigraphy and coal occurrence of the paleocene fort union formation, sand wash basin; coal rank, gas content, and composition and origin of coalbed gases, fort union formation, sand wash basin; hydrologic setting of the fort union formation, sand wash basin; and resources and producibility of coalbed methane in the sand wash basin.

  13. Coal run No. 5 with Kentucky No. 11 coal

    Microsoft Academic Search

    J. A. Morrison; R. F. Bernard

    1981-01-01

    During Run No. 5, Kentucky No. 11 coal was fed from October 24 until November 14 with a number of interruptions in coal feed due to mechanical failures and faulty instrumentation. Oil circulation was maintained during these interruptions in coal feed. A total of 1173 tons of coal were processed. The maximum coal feed rate achieved was 188 T\\/D at

  14. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA

    Microsoft Academic Search

    H. Ding; D. Valentine

    2005-01-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated.

  15. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  16. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  17. Comprehensive analysis of oil sands processed water by direct-infusion Fourier-transform ion cyclotron resonance mass spectrometry with and without offline UHPLC sample prefractionation.

    PubMed

    Nyakas, Adrien; Han, Jun; Peru, Kerry M; Headley, John V; Borchers, Christoph H

    2013-05-01

    Oil sands processed water (OSPW) is the main byproduct of the large-scale bitumen extraction activity in the Athabasca oil sands region (Alberta, Canada). We have investigated the acid-extractable fraction (AEF) of OSPW by extraction-only (EO) direct infusion (DI) negative-ion mode electrospray ionization (ESI) on a 12T-Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS), as well as by offline ultrahigh performance liquid chromatography (UHPLC) followed by DI-FTICR-MS. A preliminary offline UHPLC separation into 8 fractions using a reversed-phase C4 column led to approximately twice as many detected peaks and identified compounds (973 peaks versus 2231 peaks, of which 856 and 1734 peaks, respectively, could be assigned to chemical formulas based on accurate mass measurements). Conversion of these masses to the Kendrick mass scale allowed the straightforward recognition of homologues. Naphthenic (CnH2n+zO2) and oxy-naphthenic (CnH2n+zOx) acids represented the largest group of molecules with assigned formulas (64%), followed by sulfur-containing compounds (23%) and nitrogen-containing compounds (8%). Pooling of corresponding fractions from two consecutive offline UHPLC runs prior to MS analysis resulted in ~50% more assignments than a single injection, resulting in 3-fold increase of identifications compared to EO-DI-FTICR-MS using the same volume of starting material. Liquid-liquid extraction followed by offline UHPLC fractionation thus holds enormous potential for a more comprehensive profiling of OSPW, which may provide a deeper understanding of its chemical nature and environmental impact. PMID:23566025

  18. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller. PMID:26114481

  19. Sand Storage

    USGS Multimedia Gallery

    A sand storage silo at Steamtown National Historic Site. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially when the ra...

  20. Sand Stories

    NSDL National Science Digital Library

    Hilary Christensen

    The objective of this project is to use a sample of sand from a give are to tell its geologic history. Each student is given a 50 mL tube of sand labeled with the latitude and longitude of where it was found. They must then use this information along with analysis of the sand itself to tell the story of its formation.

  1. Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration

    SciTech Connect

    Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

    2009-11-15

    The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

  2. Ground-water contamination at an inactive coal and oil gasification plant site, Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1989-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)

  3. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    SciTech Connect

    Not Available

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  4. SLOW SAND FILTRATIONSLOW SAND FILTRATION

    E-print Network

    SLOW SAND FILTRATIONSLOW SAND FILTRATION:: Timeless Technology and Recent Advances SYSTEMTREATMENT SYSTEM Source Water Collection/ Protection Filtration Treatment Distribution/ Storage PretreatmentSmall Systems Packaged Coagulation TreatmentPackaged Coagulation Treatment SystemsSystems Pressure Filtration

  5. Short-term wearthering rates of buried oils in experimental sand columns over north-temperate temperature range

    SciTech Connect

    Vandermeulen, J.H. (Bedford Institute of Oceanography, Dartmouth, Nova Scotia (Canada)); Thorpe, J.W.; Hellenbrand, K.E. (Nova Scotia Research Foundation, Dartmouth, Nova Scotia (Canada))

    1994-07-01

    Petroleum residues are degraded (weathered) at different rates, depending on various conditions. Degradation in slicks generally has time scales of days to weeks for loss of low molecular weight alkanes and aromatics. This largely involves physical processes of wind-driven evaporation, and dissolution into the water column. Weathering in homogeneously oiled surface sediments, not having the benefit of evaporation, has time scales of months to years. Tidal submergence and temperature can influence this significantly. For example, Prudhoe Bay crude oil in sediments placed in trays on the bottom of a near-arctic bay showed virtually no weathering. Here we report on weathering rates and qualitative changes of oils, buried within constantly submerged and irrigated sandy beach sediments for up to 11 mon. Such conditions occur when coastal stranded oil becomes buried subtidally, or becomes mixed into intertidal beach sediments below the water table. Experimental conditions included continuous sea water irrigation, indigenous microbial populations, and continuous complete submergence. For preliminary microbial incubation and weathering results, see Thorpe et al. (1986). We expected that oil degradation within sandy sediments would be comparatively slow, as organic material and nutrients are more limited, thereby limiting microbial activity. Lower temperatures and submergence also should limit the weathering process.

  6. Discovering Sand and Sand Paintings

    NSDL National Science Digital Library

    John Eichinger

    2009-05-30

    This activity blends social studies and art with math and science. First, students will explore the visible characteristics of sand, and then they will make Navajo-style sand paintings with paper, glue, and colored sand. In the process, they will hone the

  7. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  8. Vertical Profiles of SO2 and NO2 in the Alberta Oil Sands: MAX-DOAS Measurements and Comparison to in-situ Instrumentation

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Lobo, Akshay; McLaren, Robert

    2015-04-01

    Understanding the levels of industrially emitted gas pollutants in the Alberta oil sands is essential to making quality environmental management decisions but is currently limited due to scarcity of top-down quantification studies. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrogen dioxide (NO2) and sulfur dioxide (SO2) , important tropospheric trace gas pollutants, contributes to improved knowledge of these pollutants' levels, vertical distributions and chemical transformations. A mini-MAX-DOAS instrument measured spectra at multiple viewing elevation angles in order to retrieve NO2 and SO2 differential slant column densities (dSCDs) at an Environment Canada research site north of Fort McMurray, Alberta in the fall of 2013. For the first time in the oil sands, tropospheric vertical profiles of NO2 and SO2 were retrieved by applying the optimal estimation technique to the MAX-DOAS measurements. The DOAS fit retrievals of SO2 dSCDs were validated by comparison with retrievals obtained with a quartz calibration cell with known SO2 SCD placed in front of the MAX-DOAS telescope at multiple elevation angles on a clean day. Retrieved SO2 dSCDs varied significantly from the true value depending on the chosen wavelength fitting interval. At the lowest wavelength intervals, interference by stray light and O3 differential structures significantly reduced dSCDs and caused an elevation angle dependence. These results indicate that MAX-DOAS dSCD retrieval settings, particularly for weak absorbers with differential absorption structures in low-intensity spectral regions, must be chosen carefully in order to achieve the most accurate results. Tropospheric vertical column densities (VCDs) and vertical profile retrievals of NO2, SO2 and aerosol extinction during significant pollution events will be illustrated. Trace gas vertical profiles exhibited significant variability between days and at different times of day and were often spatially complex (e.g. elevated layers). Retrieved trace gas vertical profiles were compared with aircraft composite profiles from flights over the site. Trace gas surface retrievals were compared with results from a co-located active-DOAS instrument. The degree of agreement between the DOAS instruments appear to be related to pollution levels and meteorological conditions. Significant observed pollution events were associated with particular meteorological conditions such as South-Westerly winds. Maximum observed SO2 and NO2 retrieved mixing ratios were 250ppb and 60ppb, respectively, at approximately 300m above the surface while maximum surface concentrations measured by the active-DOAS were 77ppb and 20 ppb, respectively. The observed spatial complexity in the trace gas profiles indicates that comprehensive air quality monitoring in the oil sands requires instruments with boundary layer spatial profiling capabilities.

  9. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are: (1) to determine the fate of the plastics feedstocks, relative to coal-only operation; (2) to determine the conversion of the feedstocks; (3) to determine the product streams to which the feedstocks are converted (bottoms vs. distillate); (4) to determine interactions of feedstocks; (5) to determine how use of plastics feedstocks affect product quality; and (6) to determine to what degree property differences reflect feedstock differences vs. other (process) condition changes, such as unit operations, space velocity, and catalyst age.

  10. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.; Lee, Kenneth; Abrams, Stewart; Suidan, Makram

    2015-05-01

    The aerobic biodegradation of oil in tidally influenced beaches was investigated numerically in this work using realistic beach and tide conditions. A numerical model BIOMARUN, coupling a multiple-Monod kinetic model BIOB to a density-dependent variably saturated groundwater flow model 2-D MARUN, was used to simulate the biodegradation of low-solubility hydrocarbon and transport processes of associated solute species (i.e., oxygen and nitrogen) in a tidally influenced beach environment. It was found that different limiting factors affect different portions of the beach. In the upper intertidal zone, where the inland incoming nutrient concentration was large (1.2 mg N/L), oil biodegradation occurred deeper in the beach (i.e., 0.3 m below the surface). In the midintertidal zone, a reversal was noted where the biodegradation was fast at shallow locations (i.e., 0.1 m below the surface), and it was due to the decrease of oxygen with depth due to consumption, which made oxygen the limiting factor for biodegradation. Oxygen concentration in the midintertidal zone exhibited two peaks as a function of time. One peak was associated with the high tide, when dissolved oxygen laden seawater filled the beach and a second oxygen peak was observed during low tides, and it was due to pore oxygen replenishment from the atmosphere. The effect of the capillary fringe (CF) height was investigated, and it was found that there is an optimal CF for the maximum biodegradation of oil in the beach. Too large a CF (i.e., very fine material) would attenuate oxygen replenishment (either from seawater or the atmosphere), while too small a CF (i.e., very coarse material) would reduce the interaction between microorganisms and oil in the upper intertidal zone due to rapid reduction in the soil moisture at low tide. This article was corrected on 22 JUN 2015. See the end of the full text for details.

  11. Supercritical extraction in production and processing of oil, gas, and coal

    Microsoft Academic Search

    M. N. Dadashev; I. M. Abdulagatov

    1993-01-01

    Extraction by means of solvents (fluids) in the supercritical state is a new commercial process based on the phenomenon of abnormally high solubility of substances at near-critical temperatures and pressures. This technology has found extensive applications in various fields of industry. In particular, it offers a means of increasing the recovery of oil from a formation, solving problems in removal

  12. Improved coal-slurry pipeline

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.

    1979-01-01

    High strength steel pipeline carries hot mixture of powdered coal and coal derived oil to electric-power-generating station. Slurry is processed along way to remove sulfur, ash, and nitrogen and to recycle part of oil. System eliminates hazards and limitations associated with anticipated coal/water-slurry pipelines.

  13. Oxygen consumption and filtering rate of Daphnia pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote

    Microsoft Academic Search

    James G. Geiger; Arthur L. Buikema

    1981-01-01

    The effects of short-term exposure to water-soluble fractions (WSF) of naphthalene, phenanthrene, No. 2 fuel oil, and coal-tar creosote upon oxygen consumption and filtering rates of Daphnia pulex are examined. Approximately 60 young Daphnia were exposed to test solutions of LC20 and LC30 concentrations of WSF for at least three molt cycles. Oxygen consumption was determined by the azide modification

  14. Environmental assessment of a firetube boiler firing coal\\/oil\\/water mixtures. Volume 2. Data supplement. Final report, February 1981November 1983

    Microsoft Academic Search

    DeRosier

    1984-01-01

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal\\/oil\\/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SOâ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel

  15. Compositional variability and air-sea flux of ethane and propane in the plume of a large, marine seep field near Coal Oil Point, CA

    Microsoft Academic Search

    Susan Mau; Monica B. Heintz; Franklin S. Kinnaman; David L. Valentine

    2010-01-01

    Large quantities of methane (C1), ethane (C2), and propane (C3) emanate from shallow marine seeps near Coal Oil Point (COP),\\u000a California. Concentrations of these gases were analyzed in the surface water down-current of the seep field over a 15-month\\u000a period. The variable proportions of C1, C2, and C3 analyzed in gas bubbles emitted from 16 distinct seeps in the COP

  16. Preliminary results of field mapping of methane plumes offshore of Coal Oil Point, California with a RESON 7125 multibeam sonar in water-column mode

    Microsoft Academic Search

    D. P. Finlayson; G. Hatcher; T. D. Lorenson; J. Greinert; E. Maillard; M. Weirathmueller; I. Leifer

    2010-01-01

    From June 17 - 23 2010, the U. S. Geological Survey (USGS) in collaboration with the Bureau of Ocean Energy Management Regulation and Enforcement(BOEMRE), the Royal Netherlands Institute for Sea Research (NIOZ) , RESON Inc. and the University of California, Santa Barbara(UCSB) conducted a comprehensive marine-seep gas-plume mapping study offshore of Coal Oil Point, California. The ultimate goal of the

  17. Compositional variability and air-sea flux of ethane and propane in the plume of a large, marine seep field near Coal Oil Point, CA

    Microsoft Academic Search

    Susan Mau; Monica B. Heintz; Franklin S. Kinnaman; David L. Valentine

    2010-01-01

    Large quantities of methane (C1), ethane (C2), and propane (C3) emanate from shallow marine seeps near Coal Oil Point (COP), California. Concentrations of these gases were analyzed in the surface water down-current of the seep field over a 15-month period. The variable proportions of C1, C2, and C3 analyzed in gas bubbles emitted from 16 distinct seeps in the COP

  18. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-04-01

    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  19. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  20. Formation and Growth of Sulfate Aerosols in the Presence of Hydrocarbons: Results from the 2013 Summer Oil Sands FOSSILs Field Campaign, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Ghahremaninezhad, R.; Rempillo, O. T.; Norman, A. L.

    2014-12-01

    Sulfur dioxide oxidation and the effect of oxidation products in formation and growth of aerosols have been studied widely. Despite this, significant gaps still exist in understanding the role of organic matter in SO2 oxidation. Organic molecules, such as Criegee radicals originating from biogenic sources, are expected to be important for SO2 oxidation in addition to organic molecules of anthropogenic origin. A study of SO2 and aerosol sulfate downwind of the oil sands region was conducted as part of the FOSSILS campaign in the summer of 2013 to better understand aerosol growth from SO2 oxidation in the presence of hydrocarbons and the distribution of sulfate in size-segregated aerosols. Hydrocarbons present in the atmosphere during the sampling campaign, collected using evacuated canisters, were characterized using a pre-concentration trap coupled to a GC-FID. The results from this campaign will be explored to determine SO2 oxidation pathways and the effects of oxidation products to aerosol formation and growth.

  1. Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor.

    PubMed

    Islam, Md Shahinoor; Dong, Tao; McPhedran, Kerry N; Sheng, Zhiya; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2014-11-01

    Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp. PMID:25104220

  2. Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1981-12-01

    Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

  3. Short-term in vitro bioassays: applicability to air monitoring in the coal conversion and shale oil industries.

    PubMed

    Daisey, J M; Mukai, F

    1979-09-01

    Short-termbioassays such as that of Ames and co-workers may be a practical method of monitoring industrial environments for the presence of biologically active and potentially hazardous materials. In general, these assays detect agents that cause damage to DNA which may lead to mutations, cancer, birth defects and to other diseases. Used to monitor industrial environments, such tests can indicate the presence of biologically active materials and can detect changes in the levels of these materials in the air. This paper reviews the types of bioassays which are presently available and considers their applicability to evaluation of occupational exposures in the coal conversion and oil shale industries. As no direct assessment of the degree of human health hazard can be made from the results of such tests, the choice of appropriate comparisons, such as ambient air, are discussed. The advantages and limitations of such systems are considered. Some research needs for the application of bioassays to industrial monitoring are also discussed. PMID:517440

  4. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  5. Coal and coal-bearing strata: recent advances

    SciTech Connect

    Scott, A.C. (ed.)

    1987-01-01

    This volume contains keynote papers presented at the International Symposium on Coal and Coal-bearing Strata held at the University of London, April 1986. The authors reviewed progress in their fields over the past 15 years. Nine keynote lectures plus seven other invited contributions by experts in geology, geochemistry, sedimentology and biology are included in the volume. Coal, a major fossil fuel, is of broad interest to geologists and technological professionals alike. Topics in this volume include the formation of peat, coalification, coal geochemistry, palaeobotanical and palynological studies, sedimentology, coal exploration, oil-prone coals, and numerous coal basins. This volume is of interest not only to workers in the coal, oil, and gas industries, but also to survey geologists, lecturers, and students alike who are concerned with recent advances in the study of coal and coal-bearing strata.

  6. Booming Sands

    NSDL National Science Digital Library

    2007-04-19

    This video segment, adapted from NOVA scienceNOW, presents basic concepts of physics behind booming sand dunes. See how surface tension affects potential and kinetic energy and how it all works together to create sound.

  7. Investigations into coal coprocessing and coal liquefaction

    SciTech Connect

    Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

    1994-06-01

    The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

  8. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.

    PubMed

    Wang, Yujue; Cannon, Fred S; Voigt, Robert C; Komarneni, Sridhar; Furness, J C

    2006-05-01

    The effects of advanced oxidation (AO) processing on the properties of green sand were studied via pouring cast iron into green sand molds. Upon cooling, the green sand molds were autopsied at various distances from the metal-sand interface. Autopsy green sand samples collected from a mold that incorporated AO water were characterized and compared to controlled samples collected from a similar autopsied mold made with conventional tap water (TAP). It was found that the AO processing removed a coating of coal pyrolysis products from the clay surface that typically accumulated on the clay surface. As a result, the AO-conditioned green sand retained 10-15% more active clay as measured bythe standard ultrasonic methylene blue titration than did the TAP-conditioned green sand. The AO processing also nearly doubled the generation of activated carbon from the normalized amount of coal composition of the green sand during the casting process. The AO-enhanced activated carbon generation and the AO-incurred clay surface cleaning provided the AO-conditioned green sand with higher normalized pore volume, and thus higher normalized m-xylene adsorption capacity, i.e., relative to before-metal-pouring conditions. Furthermore, mathematical analysis indicated that the AO-conditioned green sand better retained its important properties after pouring than did the TAP-conditioned green sand. Effectively, this meant after metal pouring, the AO-conditioned sample offered about the same net properties as the TAP-conditioned sample, even though the AO-conditioned sample contained less clay and coal before metal pouring. These results conformed to the full-scale foundry empirical finding that when AO is used, foundries need less makeup clay and coal addition through each casting cycle, and they release less air emissions. PMID:16719117

  9. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    PubMed

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  10. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada.

    PubMed

    Rooney, Rebecca C; Bayley, Suzanne E

    2012-01-01

    We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta's oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F(2,59) = 34.7, p = 0.000000000107). PMID:21484300

  11. Modelling Effects of Cover Material and Cover Depth on Hydrological Regime and Salt Redistribution in Reclaimed Oil Sand Landscapes in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Welegedara, N.; Grant, R. F.; Quideau, S.; Lloret, E.

    2014-12-01

    Large-Scale surface mining is continuing in the Athabasca oil sands region in northern Alberta, Canada, causing significant ecosystem disturbances and changes in hydrology. Reclamation efforts in this region require understanding processes that control water, nutrient and salt fluxes through reclaimed landscapes which is critical to restoring their productivity. These processes were tested in a comprehensive mathematical model, ecosys, which was used to determine the effect of different cover thicknesses on water balance, water buffering capacity, salinity and the productivity in the South Bison Hills reclamation site of Syncrude Canada (SCL). This site was constructed in 1999 by capping peat mineral mix and secondary (glacial till) soil over saline sodic overburden. The site was constructed with three different soil cover thicknesses: 35 cm (thin), 50 cm (intermediate) and 100 cm (thick) along a 20% north facing slope. Model outputs were validated with field measured volumetric water content, runoff, snow data, electrical conductivity (EC) and plant productivity data recorded from 1999 to 2013. Model and field results show differences in horizontal and vertical water transport among the three reclaimed prototype covers. Lower water retention capacity in the 35 cm cover compared to the 50 cm and 100 cm covers caused greater soil moisture variation so that permanent wilting point was reached during dry years, decreasing plant growth due to water stress. In addition, the modeled and field-measured EC values indicated some upward salt movement from overburden to cover material over the time. This movement caused higher EC values (6 - 8 dS m-1) to be reached in the shallow rooting zone of the 35 cm and 50 cm covers than of the 100 cm cover several years after the covers were established. The determination of cost effective but ecologically sustainable cover depth is a challenge and will be a focus in future simulations.

  12. Commercial naphthenic acids and the organic fraction of oil sands process water downregulate pro-inflammatory gene expression and macrophage antimicrobial responses.

    PubMed

    Garcia-Garcia, Erick; Pun, Jonathan; Perez-Estrada, Leonidas A; Din, Mohamed Gamal-El; Smith, Daniel W; Martin, Jonathan W; Belosevic, Miodrag

    2011-05-30

    This is the first report showing that the organic fraction of oil sands process water (OSPW-OF), and commercial naphthenic acids (C-NAs), cause immunotoxicity. The exposure of mouse bone marrow-derived macrophages (BMDM) to different amounts of C-NAs or OSPW-OF, did not affect cell viability in vitro. We examined whether exposure of BMDM to C-NAs or OSPW-OF affected various antimicrobial responses of these cells. A dose-dependent decrease in nitric oxide response was observed after treatment of BMDM with OSPW-OF, but not with C-NAs. Although OSPW-OF and C-NAs both down-regulated the respiratory burst response of BMDM, the suppression of the production of reactive oxygen intermediates was more pronounced in cells treated with OSPW-OF. Treatment with OSPW-OF or C-NAs reduced BMDM phagocytosis of zymosan and latex beads. The decrease of BMDM antimicrobial response after exposure to OSPW-OF or C-NAs, was accompanied by decreased pro-inflammatory cytokine gene expression. Oral exposure of mice to OSPW-OF caused down-regulation in the expression of genes encoding pro-inflammatory cytokines IFN?, IL-1? and CSF-1. Our findings indicated that OSPW causes immunotoxic effects that may impair the ability of an exposed host to defend against infectious disease. Furthermore, given the differences between the effects of OSPW-OF and C-NAs, C-NAs should not be assumed to be a direct surrogate for the immunotoxic chemical species in OSPW. PMID:21396992

  13. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal

    2015-03-15

    Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. PMID:25596922

  14. Measurement of polynuclear aromatic hydrocarbons (PAHs) in epiphytic lichens and from PM 2.5 filters for receptor modeling in the Alberta Oil Sands Region (Invited)

    NASA Astrophysics Data System (ADS)

    Studabaker, W. B.; Jayanty, J.; Raymer, J. H.; Krupa, S.

    2013-12-01

    As mining and refinery operations in the Alberta Oil Sands Region (AOSR) have expanded, there has been increasing concern for the impacts of air pollution generated by those operations on both human and ecosystem health. The inaccessibility of much of the AOSR makes it difficult to establish conventional air quality monitoring stations to the extent needed to model long-range impacts of emissions from the AOSR operations. Epiphytic lichens are important markers of ecosystem health, are well-established bioaccumulators of trace metals, and are potentially useful biomonitors of air pollution. However, their ability to take up organic pollutants has not been extensively explored, and only recently have they been used for biomonitoring of pollution by PAHs. Here we describe the determination of polynuclear aromatic hydrocarbons (PAHs) in lichens, collected from sites throughout the AOSR, for modeling emissions associated with mining and oil extraction operations. We also describe preliminary results of the determination of PAHs in PM 2.5 filters from dichotomous samplers stationed in the AOSR, in the context of the biological sample data. Lichens (Hypogymnia physodes) were collected on two separate occasions. During the summer of 2009, single samples were taken from 200 sites in the AOSR; a subset of 20 of these was selected for determination of PAHs. During the summer of 2011, triplicate samples (from separate trees within a site) were collected from 20 sites representing similar locations to the 2008 sites. Lichens were milled in a cryogenic impactor, then were extracted with cyclohexane. Extracts were purified on silica gel using automated solid phase extraction and analyzed by gas chromatography with mass selective detection. Method detection limits for individual PAHs were 2-4 ng/g. Total PAHs in the samples from both collection events ranged from 50 ng/g to 350 ng/g, and declined with increasing distance from the mining and refinery operations. The relative contribution of low ring number PAHs to total PAHs increased with increasing distance. Total PAHs correlated strongly (R2 > 0.80, p < 0.05) with crustal elements, suggesting similar transport mechanisms. Analytical data for PAHs on PM 2.5 filters, including relationships between concentrations, PAH profiles, and distance from the mines, will be presented. The lichen data are consistent with PAH transport close to the mines being more influenced by particulate matter transport mechanisms, whereas PAHs in samples collected from remote areas reflect more of the vapor phase transport mechanisms.

  15. Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, April-June 1984

    SciTech Connect

    Sullivan, R F

    1984-08-01

    This report gives results of our current studies on refining of integrated two-stage liquefaction (ITSL) process product to distillate fuels. The experimental program on ITSL Syncrude derived from Illinois No. 6 Coal is now complete. We studied the effect of ITSL syncrude end point on the severity necessary for hydrotreating to distillate products. Lummus provided Chevron with an additional barrel of ITSL process product (Illinois No. 6, Burning Star Mine) with an end point of about 800/sup 0/F to serve as feed. A 1080-hr pilot plant test was made with this feed and ICR 106 catalyst at 0.5 LHSV and 2300 psia hydrogen partial pressure. The new feed was harder to upgrade than the lower end point feed previously tested, but we were able to make 20 mm smoke point jet fuel at these conditions and 720/sup 0/F catalyst temperature. We made a 2385-hr second-stage hydrocracking pilot plant run in which hydrotreated ITSL oil was cracked to extinction over ICR 202 catalyst. It included series of tests to determine the quantity and quality of products produced at a variety recycle cut points (350/sup 0/F, 400/sup 0/F, 450/sup 0/F, 500/sup 0/F, 525/sup 0/F, and 550/sup 0/F). At 350/sup 0/F, the entire liquid product was naphtha. At higher cut points, products included a combination of naphtha and jet fuel. The smoke point of the jet fuel fraction met the specification of 20 mm at a cut point of 550/sup 0/F. At lower cut points, it exceeded 20 mm. 4 figures, 27 tables.

  16. Defrosting Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    2 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a patch of frost-covered, dark sand that, at the time the picture was acquired in June 2005, had begun to defrost. The frost is carbon dioxide. Dunes and other patches of sand are usually the first polar features to develop dark spots as the frost begins to sublime away.

    Location near: 78.9oS, 80.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. The effect of temperature on a variable permeability, two-stage sand consolidation technique 

    E-print Network

    Barger, Blane Rene

    1985-01-01

    -STAGE, SAND CONSOLIDATION TREATMENTS Page 15 17 17 17 21 27 INTRODUCTION Sand production from unconsolidated formations in oil and gas wells has been a major problem in the petroleum industry for many years. Sand production may result in reduced... Chairman of Advisory Committee: Dr. S. W. Poston The production of sand from oil and gas wells producing from uncon- solidatedd formations has been a major problem in the petroleum industry for many years . One popular method of sand control...

  18. SAND REPORT SAND2003-0799

    E-print Network

    Ho, Cliff

    SAND REPORT SAND2003-0799 Unlimited Release Printed March 2003 Field Demonstrations://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2003-0799 Unlimited Release Printed March 2003 Field Demonstrations

  19. Beach Sand

    NSDL National Science Digital Library

    Francis Eberle

    2005-01-01

    The purpose of this assessment probe is to elicit students' ideas about weathering, erosion, deposition, and landforms. It is designed to determine if students recognize that sand on a beach may have come from distant mountains and landforms as a result of the weathering of rock, subsequent erosion, and deposition.

  20. Ten Years of Growing Season Water, Energy and Carbon Exchange From an Oil sands Reclamation Site, Fort McMurray, Alberta

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Drewitt, G. B.

    2013-12-01

    The oil sands mining industry in Canada has made a commitment to restore disturbed areas to an equivalent capability to that which existed prior to mining. Certification requires successful reclamation, which can in part be evaluated through long-term ecosystem studies. A reclamation site, informally named South Bison Hill (SBH) has had growing season water, energy and carbon fluxes measured via the eddy covariance method for 10 years since establishment. SBH was capped with a 0.2 m peat-glacial till mixture overlying 0.8 m of reworked glacial till soil. The site was seeded to barley cultivar (Hordeum spp.) in the summer of 2002 and later planted to white spruce (Picea glauca) and aspen (Populus spp.) in the summer/fall of 2004. Since 2007, the major species atop SBH has been aspen, and by 2012 was on average ~ 4 m in height. Climatically, mean growing temperature did not vary greatly, yet there was considerable difference in rainfall among years, with 2012 having the greatest rainfall at 321 mm, whereas 2011 and 2007 were notably dry at 180 and 178 mm, respectively. The partitioning of energy varied among years, but the fraction of latent heat as a portion of net radiation increased with the establishment of aspen, along with concomitant increases in LAI and growing season net ecosystem exchange (NEE). Peat growing season ET was smallest in 2004 at 2.3 mm/d and greatest in 2010 at ~3.9 mm/d. ET rates showed a marked increase in 2008 corresponding with the increase in LAI attributed to the aspen cover. Since the establishment of a surface cover and vegetation in 2003, SBH has been a growing season sink for carbon dioxide. Values of NEE follow similar patterns to those of ET, with values gradually becoming more negative (greater carbon uptake) as the aspen forest established. Comparison with other disturbed and undisturbed boreal aspen stands show that SBH exhibits similar water, energy and carbon flux patterns during the growing season.

  1. Characterization of hydrocarbons, halocarbons and alkyl nitrates in the high northern hemisphere during summer: Impact of biomass burning and oil sands during ARCTAS

    NASA Astrophysics Data System (ADS)

    Blake, D. R.; Simpson, I. J.; Meinardi, S.; Barletta, B.; Yang, M. M.; Blake, N. J.; Gorham, K. A.; Rowland, F. S.; Sachse, G. W.; Diskin, G. S.

    2009-12-01

    Boreal regions comprise about 17% of the global land area and they both affect and are affected by climate change. To better understand trace gas emissions from boreal regions during the Arctic summer, UC-Irvine collected 1,110 whole air samples aboard the NASA DC-8 aircraft during summer phase of ARCTAS (flights #17-24, June 29-July 13, 2008). For each sample more than 60 trace gases were identified and quantified at our Irvine laboratory using GC with FID, ECD and MSD, including 16 C2-C10 NMHCs (e.g. ethane, benzene), 22 C1-C2 halocarbons (e.g. CFC-12, HFC-134a), 7 C1-C5 alkyl nitrates (e.g. 2-butyl nitrate), and selected sulfur compounds (e.g. OCS). This suite of compounds allows us to determine the impact of boreal forest fires on Arctic tropospheric composition and chemistry, and to pinpoint the origin and “age” of the sampled air masses. Our results show the predominant influence of the biomass burning source on hydrocarbons sampled during the summer phase of ARCTAS. During flight 17 we used the ratio of daughter alkyl nitrates to parent hydrocarbons to distinguish between fresh Canadian plumes (2-20 hours old) and an aged Siberian plume (2-3 days old). Although the Canadian and Siberian plumes had different characteristics because of their different ages (i.e. short-lived gases such as ethene had become depleted in the Siberian plume by the time it was intercepted by the DC-8), our results show that hydrocarbon emission ratios for longer-lived species such as ethane are similar for Siberian and Canadian biomass burning plumes (see graph). This is consistent with our previous understanding of a typical boreal forest fire emission signature. In addition to biomass burning we also detected some fossil fuel signatures during ARCTAS, including elevated alkane, alkene and aromatic levels during a boundary layer excursion near Fort McMurray, Alberta where oil sands mining occurs. These and other results will be presented and discussed.

  2. The Analysis of Goldfish (Carassius auratus L.) Innate Immune Responses After Acute and Subchronic Exposures to Oil Sands Process-Affected Water

    PubMed Central

    Belosevic, Miodrag

    2014-01-01

    We examined the immunotoxic effects of acute and subchronic exposures of goldfish to aged, fresh, and ozonated oil sands process-affected water (OSPW) using a flow-through exposure apparatus. We measured the expression of proinflammatory cytokine genes, the antimicrobial responses of primary macrophages isolated from OSPW-exposed fish, and the ability of the goldfish to control infection with a protozoan parasite, Trypanosoma carassii. After acute (1 week) exposure to aged OSPW, we observed upregulation in the expression of interferon gamma (IFN-?), tumor necrosis factor alpha-2 (TNF-?2) in the kidney and spleen but not in gills of the fish. After subchronic (12 weeks) exposure to aged OSPW, we observed significant increases in mRNA levels of proinflammatory genes in the gill (IFN-?, interleukin-1 beta 1 [IL1-?1], TNF-?2), kidney (IL1-?1, TNF-?2), and spleen (IL1-?1). An upregulation of immune gene expression in the gill and kidney (IFN-?, IL1-?1, TNF-?2) and spleen (IL1-?1, TNF-?2) was observed after acute exposure of fish to diluted fresh OSPW. Following subchronic exposure to diluted fresh OSPW, we observed high mRNA levels of IL1-?1 in all tissues examined. However, there were significant decreases in the mRNA levels of IFN-? and TNF-?2 in the kidney and spleen and gill and spleen (IL-12p35 and IL-12p40) of exposed fish. There were no changes in the expression of anti-inflammatory cytokine IL-10 after both acute and subchronic exposures to diluted fresh OSPW. In fish exposed to ozonated fresh OSPW, immune gene expression was similar to nonexposed control fish in all organs examined, with exception of IL1-?1. The ability of primary kidney macrophages to generate reactive oxygen and nitrogen intermediates was significantly reduced in fish exposed to fresh OSPW. The enhanced proinflammatory response after acute exposure to diluted fresh OSPW was confirmed by the parasite challenge experiments, where OSPW-exposed fish controlled the infection better than nonexposed fish. PMID:24284786

  3. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  4. Extraction of vanadium from athabasca tar sands fly ash

    Microsoft Academic Search

    C. O. Gomez-Bueno; D. R. Spink; G. L. Rempel

    1981-01-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.---GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it

  5. Crude-Oil-Water Emulsions to Improve Fluid Flow in an Oil Reservoir

    Microsoft Academic Search

    Clayton McAuliffe

    1973-01-01

    An oil-in-water emulsion was injected into water injection wells of a waterflood in progress in the Midway-Sunset oil field near Taft, Calif. The sands under flood were the first and second fingers of the Top Oil sands and the Kinsey sand. The average permeability of these sands is 450 md. The oil gravities are about 20° API for the Top

  6. Defrosting Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    19 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark spots formed in carbon dioxide frost that covers the surfaces of patches of sand in the south polar region. As spring arrived this year in the martian southern hemisphere, so began the annual defrosting process. The fact that sand dunes begin to defrost earlier than other surfaces, and that the defrosting process involves the formation of spots like these, has been known since the earliest days of the MGS mission.

    Location near: 66.8oS, 15.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  7. Oil

    NSDL National Science Digital Library

    Brieske, Joel A.

    2002-01-01

    The first site, offered by the Institute of Petroleum, is called Fossils into Fuel (1). It describes how oil and gas are formed and processed, as well as offering short quizzes on each section. The second site (2) is maintained by the Department of Energy. Visitors can learn about the history of oil use, how itâ??s found and extracted, and more. The next site, called Picture an Oil Well (3), is a one-page illustration and description of the workings of an oil well, offered by the California Department of Conservation. The fourth site, hosted by the Minerals Management Service, is called Stacey Visits an Offshore Oil Rig (4). It tells the story of a girl taking a field trip on an offshore oil rig and what she finds when sheâ??s there. The Especially for Kids Web site (5) is presented by NOAA and explores facts about the effects of oil spills. Kids can do experiments, get help writing a report, find further information on the provided additional links, and more. From the Environmental Protection Agency, the sixth site is called Oil Spill Program (6), and it also delves into the topic of oil spills. It provides information about the EPA's program for preventing, preparing for, and responding to oil spills that occur in and around inland waters of the United States. The next site, offered by How Stuff Works.com, is called How Oil Refining Works (7). Descriptions of crude oil, fractional distillation, chemical processing, and more is presented in a succinct but informative way. The last site is from The Center for Subsurface Modeling (CSM) of the Texas Institute for Computational and Applied Mathematics and is called CSMâ??s Picture Gallery (8). After clicking the Gallery link, visitors will find animations and images that represent CSMâ??s work such as oil spill simulations, discontinuous galerkin, the tyranny of scale, contaminant remediation, etc.

  8. Coal-burning ships return to the high seas

    SciTech Connect

    Not Available

    1983-09-01

    If economics prompts shippers to join utilities in the return to coal, the market for coal could have a major breakthrough. Only one coal-burning ship has been launched, with two conversions and none under construction, but a widening price gap between coal and oil is encouraging oil companies with large coal reserves to look seriously at the coal-fired ships already used by other countries. Modern coal-handling technology requires the same personnel for a coal-fired as an oil-fired ship. (DCK)

  9. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect

    Bellow, E.J. Jr.; Bixel, J.C.; Heaney, W.F.; Yan, T.Y.

    1989-05-09

    A method is described of passivating and cooling heated dried coal comprising: (a) heating particulate coal to a temperature between about 190 and about 230/sup 0/F to dry to the desired level: and (b) coating the resulting heated particulate coal with an aqueous emulsion of a hydrocarbon selected from the group consisting of petroleum resid, light cycle oil, heavy cycle oil, clarified slurry oil, durene, asphaltenes, coal tar and coal tar pitch.

  10. Manufacture of coke from a coal extract

    Microsoft Academic Search

    M. D. Gray; G. M. Kimber; D. E. Shipley

    1976-01-01

    The invention relates to a process for the production of coke having a low mineral matter content, which process comprises digesting coal in a high boiling aromatic oil solvent at a temperature within the range of 350°C to 480°C., separating insoluble matter from the coal digest to give a coal extract and coking the coal extract.

  11. Computational Science Technical Note CSTN-196 Interactive Simulation and Visualisation of Falling Sand Pictures on Tablet

    E-print Network

    Hawick, Ken

    Sand Pictures on Tablet Computers Bradley T. Pearce and K. A. Hawick 2013 Sand pictures are made from a mix of coloured sands and water or oil sandwiched between two sheets of glass are a common desktop construct a lattice-based simulation of a sand picture based around the Kawasaki spin-exchange model

  12. Oil Spill

    NSDL National Science Digital Library

    Lawrence Hall of Science

    2009-01-01

    In this simulation, learners try to clean up an "oil spill" with different items to understand the challenge scientists face in finding the best materials to clean up large oil spills in nature. Learners test cotton balls, dryer lint, sand, and grass to find out which absorbs the most oil. Then, learners submit their findings and comments online. The web page includes a video interview with a NASA environmental engineer and a link to other resources and activities.

  13. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  14. Inputs of Nitrogen to Bogs of Alberta, Canada: the Importance of Biological Nitrogen Fixation VS. Atmospheric Deposition from Oil Sands Mining

    NASA Astrophysics Data System (ADS)

    Prsa, T.; Vile, M. A.; Wieder, R.; Vitt, D. H.

    2010-12-01

    Bogs of Alberta, Canada are peatlands that are both Sphagnum-moss dominated and nutrient limited. Due to their ombrotrophic nature, nitrogen (N) is deposited only via atmospheric deposition (wet/dry) and biological N2 fixation. Historically, bogs of Alberta are unpolluted with low rates of atmospheric N deposition (< 1 kg ha-1 yr-1), as opposed to eastern Canada and western Europe where rates are considerably higher (>15 kg ha-1 yr-1). Due to the extensive rich bitumen deposits under northern Alberta, however, the Oil Sands Mining (OSM) industry has been growing exponentially since the late 1960’s. Bogs situated near OSM, therefore, are likely to experience increased N deposition and the consequences and impacts of such a phenomenon are as yet, unknown. Additional N inputs into these N-limited ecosystems may cause an imbalance in the N-cycle, specifically, biological N2 fixation. Our goal was to quantify inputs of N to the system from both rates of biological N2 fixation and bulk atmospheric deposition. In summer 2010, we used acetylene reduction assay (ARA) to indirectly measure N2 fixation rates in the four most abundant moss species: Sphagnum fuscum, S. capillifolium, S. angustifolium and Pleurozium schreberi at three bog sites varying in proximity to OSM: McMurray, McKay and Utikuma bog (51, 24 and 300 km, respectively) throughout the growing season (May-August comprising 6 sampling efforts). We measured atmospheric N deposition with ion exchange resin columns (10 per site). An ANOVA and subsequent ad hoc test indicated that Utikuma had significantly lower atmospheric N deposition rates (0.130 ± 0.19 mg m-2 d-1; µ ± SE) than both McMurray and McKay (0.337 ± 0.03 and 0.262 ± 0.03 mg m-2 da-1, respectively; F2,24 = 9.04, p<0.0012), demonstrating that sites closest to the OSM region do exhibit higher rates of atmospheric N deposition. Alternatively, for inputs of N via N2 fixation, we found that McMurray (700.6 ± 144.7 µmol m-2 da-1) had significantly higher ARA rates than McKay and Utikuma (205.8 ± 27.9 and 376.7 ± 73.9 µmol m-2 da-1, respectively; F2,264 = 7.60, p<0.0006). A one-way ANOVA showed significant differences in ARA rates among moss species (F2,263 = 7.60, p<0.0006). Duncan’s multiple range test indicated that S. fuscum and S. capillifolium hummocks had significantly higher rates (768.5 ± 138.3 and 495.8 ± 115.5 µmol m-2 da-1, respectively), as compared to S. angustifolium and P. schreberi (284.9 ± 45.5 and 24.9 ± 5.6 µmol m-2 da-1, respectively). Peak rates were recorded in mid-June and early July (678.1 ± 127.2 and 1009.7 ± 263.9 µmol m-2 da-1, respectively) across all the sites (F5,228 = 5.68, p<0.0001). This study is the first to simultaneously examine N2 fixation in a variety of mosses and atmospheric N inputs in Alberta bogs located close to OSM over a growing season. Our results suggest that despite increased N deposition, N2 fixation continues to represent the dominant input of N into Alberta’s bogs. In addition to S. fuscum and S. capillifolium being the prevalent hosts for N2-fixers, these species comprise the highest percent cover of Alberta’s bogs (~80%).

  15. Bio-coal briquette

    SciTech Connect

    Honda, Hiroshi

    1993-12-31

    Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

  16. EFFECTS OF OIL AND GAS WELL-DRILLING FLUIDS ON THE BIOMASS AND COMMUNITY STRUCTURE OF MICROBIOTA THAT COLONIZE SANDS IN RUNNING SEAWATER

    EPA Science Inventory

    Well-drilling fluid and a number of the known components (barite, clay, Aldacide, Surflo, and Dowicide, were tested for effects on the biomass and community structure of the microbiota that colonize marine sands exposed for eight weeks to running ambient seawater. Shading the mic...

  17. Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater

    Microsoft Academic Search

    Glen A. Smith; Janet S. Nickels; Ronald J. Bobbie; Norman L. Richards; David C. White

    1982-01-01

    Well-drilling fluid and a number of the known components (barite, clay, Aldacide®, Surflo®, and Dowicide®, were tested for effects on the biomass and community structure of the microbiota that colonize marine sands exposed for eight weeks to running ambient seawater. Shading the microbiota from light depressed the microflora without a significant effect on the biomass, while well-drilling fluids layered on

  18. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  19. Sand resistance of sunscreens.

    PubMed

    Caswell, Michael; Wood, Caryl; Martinez, Alexa

    2012-01-01

    Like water resistance in sunscreens, sand resistance in sunscreens is the ability of the sunscreen to retain its effectiveness while undergoing sand treatment. The influence of the type of sand on the sand resistance of sunscreens has not been described. The sand resistance of a control standard sunscreen, P2, and data on three grades of Quickrete commercial grade sand, #1961, #1962, and #1152, are described. These sands represent a fine sand, a medium sand, and an all-purpose sand. Using the methodology described in the 2007 proposed amendment of the Final Monograph (1) with one exception, we obtained an SPF of 16.5 (1.6) for the control standard, compared to the expected SPF of 16.3 (3.4). After a five-minute treatment of sand #1961, #1962, or #1151, the SPF of the control standard was 18.3 (1.6), 18.4 (2.0), and 17.5 (2.2), respectively. Thus, all three sands exhibited a similar sand-resistance response. Thus, there was no significant difference in the average SPF with and without sand. The medium grade sand, Quickrete commercial grade #1962, was preferred for sand-resistance testing because the fine sand was difficult to remove from the subject's backs and the coarse sand was unpleasant to the subjects. PMID:23193889

  20. Kinetics of direct liquefaction of coal in the presence of Mo--Fe catalyst

    Microsoft Academic Search

    M. Morita; S. Sato; T. Hashimoto

    1979-01-01

    Effects of various reaction conditions on reaction rate and mechanism of coal liquefaction were investigated. The order of the reaction, reaction rate, oil yield and composition were affected by kinds of pasting oil and ratio of coal to pasting oil. Under same reaction conditions, reaction rate and mechanism of coal liquefaction differ from kinds of coal and catalyst. The reaction

  1. SAND REPORT SAND2005-7937

    E-print Network

    SAND REPORT SAND2005-7937 Unlimited Release Printed January 2006 Agent-Based Control of Distributed@ntis.fedworld.gov Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2005-7937 Unlimited

  2. SAND REPORT SAND2003-0112

    E-print Network

    Fuerschbach, Phillip

    SAND REPORT SAND2003-0112 Unlimited Release Printed January 2003 Cold War Context Statement Sandia://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2003-0112 Unlimited Release Printed January 2003 Cold War Context Statement

  3. Sand particle dislodgement in windblown sand

    NASA Astrophysics Data System (ADS)

    Bo, Tian-Li; Li, Zheng; Zheng, Xiao-Jing

    2014-12-01

    The incipient motion of sand particle from sand bed plays a very important role in the prediction of windblown sand. In this paper, we proposed a new method for predicting the incipient motion of sand particle based on wind speed fluctuation as follows, when the wind speed is larger than the critical wind speed, if the total impulse on sand particle is larger than the critical impulse, incipient motion of sand particle would take place, otherwise if not. Furthermore, from the analysis of entrainment in the rolling and lifting modes, we come to the following conclusion. When the average wind speed is smaller than the critical wind speed, if the average wind speed is used to judge the incipient motion of sand particle, one will underestimate the number of sand particles jumping from the bed, if the instantaneous wind speed is used to judge incipient motion of sand particle, one will overestimate the number of sand particles jumping from the bed; When the average wind speed is larger than the critical wind speed, either the average or the instantaneous wind speeds is used to judge the incipient motion of sand particles, one will overestimate the number of sand particles jumping from the bed.

  4. Reservoir characteristics of two minter oil sands based on continuous core, E-logs, and geochemical data: Bee Brake field, East-Central Louisiana

    Microsoft Academic Search

    J. B. Echols; D. A. Goddard; A. Bouma

    1993-01-01

    The Bee Brake field area, located in township 4N\\/6E and 4N\\/7E in Concordia Parish, has been one of the more prolific oil-producing areas in east-central Louisiana. Production decline in various fields, however, has sparked interest in the economic feasibility of locating and producing the remaining bypassed oil in the lower Wilcox. For this purpose, the Angelina BBF No. 1 well

  5. Process for coal liquefaction

    Microsoft Academic Search

    Q. J. Beukes; L. J. Dry; C. Kleynjan

    1981-01-01

    The invention provides a process for the liquefaction of coal. The comminuted coal is slurried in a solvent or pasting oil and digested, normally under hydrogen pressure, e.g. of 50 to 250 atmospheres partial pressure, under catalytic conditions, at temperatures between about 380 and 500°C., preferably 400 to 470°C. And residence times between about 10 and 100 minutes. Solvent or

  6. The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal

    E-print Network

    Hochberg, Michael

    The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons% of cultivated land algae vats kW-h/m2/day 6 5 4 3 The average U.S. power consumption is 3 terawatts. That's 3, or half of California. The area required for biomass fuel exceeds the total amount of currently cultivated

  7. Wet sand flows better than dry sand

    NASA Astrophysics Data System (ADS)

    Wagner, Christian

    2015-03-01

    Wet sand that does not contain too much water is known to be stiff enough to build sand castles or in physical words has a significant yield stress. However, we could recently show that there are quite a few conditions under which such wet sand opposes less resistant to flow than its dry counterpart. This effect might have been already known to the old Egyptians: The Ancient painting of El Bersheh at the tomb of Tehutihetep shows that there was liquid poured in front of the sledge that was used to transport heavy weight stones and statues. While archeologist have attributed this to a sacral ceremony, our data clearly show that wetting the sand ground drastically decreases the effective sliding friction coefficient. We first study the stress-strain behavior of sand with and without small amounts of liquid under steady and oscillatory shear. Using a technique to quasistatically push the sand through a tube with an enforced parabolic (Poiseuille-like) profile, we minimize the effect of avalanches and shear localization. We observe that the resistance against deformation of the wet (partially saturated) sand is much smaller than that of the dry sand, and that the latter dissipates more energy under flow. Second we show experimentally that the sliding friction on sand is greatly reduced by the addition of some--but not too much--water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding.

  8. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    NASA Astrophysics Data System (ADS)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.

  9. Micronized coal burner facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W. (inventors)

    1984-01-01

    A combustor or burner system in which the ash resulting from burning a coal in oil mixture is of submicron particle size is described. The burner system comprises a burner section, a flame exit nozzle, a fuel nozzle section, and an air tube by which preheated air is directed into the burner section. Regulated air pressure is delivered to a fuel nozzle. Means are provided for directing a mixture of coal particles and oil from a drum to a nozzle at a desired rate and pressure while means returns excess fuel to the fuel drum. Means provide for stable fuel pressure supply from the fuel pump to the fuel nozzle.

  10. Correlation of dynamic relative permeability frontal advance concepts and laboratory data for a system of water displacing oil from a multifluid saturated sand 

    E-print Network

    Mills, George Ernest

    1959-01-01

    DUAL GAS SATURAT I ON OF CORE 1 AS A FUNCTION OF INITIAL GAS SATURATION. . . RESIDUAL GAS SATURATION OF CORE 2 AS A FUNCT ION OF IN I T I AL GAS SATURAT I ON. . . 15 15 70 8. PRODUCT ION RATE AS A FUNCT I ON OF FOR CORE 1 RUN 'I. PRODUCTION... THE DESIRED INITIAL SATURATIONS HAD BE'EN ESTABLISHED THE SYSTEM WAS OIL FLOODED' THE OIL FLOOD 'IVAS COI'ITINUED UNTIL GAS PRODUCTION CEASED& AND AT THIS POINT A WATERFLOOD WAS CONDUCTED' ATTEMPTS TO CALCULATE THE PRO- DUCTION HISTORIES OF THE VARIOUS...

  11. The extraction of bitumen from western tar sands

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  12. The extraction of bitumen from western tar sands. Annual report

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  13. Wet Sand flows better than dry sand

    E-print Network

    Jorge E. Fiscina; Christian Wagner

    2007-11-19

    We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We find that the system starts to flow when a critical shear of the order of one particle diameter is exceeded. In contrast to common believe, we observe that the resistance against the flow of wet sand is much smaller than that of dry sand. For the dissipative flow we propose a non-equilibrium state equation for granular fluids.

  14. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  15. Investigation of the filtration processes of coal hydrogenation slurries and suspensions obtained after the extraction of oils

    SciTech Connect

    Gel'perin, N.I.; Pebalk, V.L.; Shashkova, M.N.; Gorlov, E.G.; Zotova, O.V.

    1987-10-10

    As a result of an investigation of the filtration of slurries and their suspensions in hydrogenates under a pressure difference ..delta..P = 0.03 MPa at t = 25 to 120/sup 8/C on various filtration barriers (the ash content of the filtrates did not exceed 0.1%) it was established that the filtration rate of the slurries and their suspensions in hydrogenates is strongly dependent on the type of coal and the hydrogenation conditions and decreases as the content of solid substances and asphaltenes increases. The rate of filtration of the suspensions of the slurries in the hydrogenates is approximately an order of magnitude greater than that of the original slurries; this is due to the sharp drop in the viscosity of the liquid and the aggregation of the small solid particles when the slurry is mixed with the hydrogenate. The rate of filtration for the slurries can be increased by adding auxiliary substances.

  16. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  17. Extraction of vanadium from athabasca tar sands fly ash

    Microsoft Academic Search

    C. O. Gomez-Bueno; D. R. Spink; G. L. Rempel

    1981-01-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great\\u000a Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts\\u000a of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established\\u000a commercial practice, it

  18. Overview of the influence of syn-sedimentary tectonics and palaeo-fluvial systems on coal seam and sand body characteristics in the Westphalian C strata, Campine Basin, Belgium

    USGS Publications Warehouse

    Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul

    1995-01-01

    The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.

  19. CLEANED COAL

    EPA Science Inventory

    The chapter summarizes information on U.S. coal resources, describes physical coal cleaning technology, and discusses the potential for desulfurizing U.S. coals by physical techniques. It presents the costs of physical coal cleaning, summarizes the amounts of cleaned coals which ...

  20. Canada's First Commercial Tar Sand Development

    Microsoft Academic Search

    E. D. Innes; V Fear

    1967-01-01

    Following a brief introduction to the Great Canadian Oil Sands Limited project, the paper describes the specific technical problems faced in planning for commercial production. An overall plant flow sheet, material balance, and summary of energy requirements are presented. Topics discussed under the heading of mining and solids transport include the geological evaluation program, the overburden removal program, year-round-mining procedures,