Sample records for coal seam fire

  1. Geomorphology of coal seam fires

    Microsoft Academic Search

    Claudia Kuenzer; Glenn B. Stracher

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission

  2. Emergency assessment of potential debris-flow peak discharges, Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.; Rea, Alan H.; Garcia, Steven P.

    2002-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  3. Reservoir engineering in coal seams

    Microsoft Academic Search

    Gray

    1983-01-01

    This study examines the behavior of coal seam gas reservoirs which are found to exhibit significantly different behavior from conventional gas reservoirs. These differences involve the nature of permeability variations and the method of gas storage. The permeability variations appear to be caused primarily by effective stress variations and to a lesser extent to water saturation changes. These effective stress

  4. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  5. Reservoir engineering in coal seams

    SciTech Connect

    Gray, I.

    1983-11-01

    This study examines the behavior of coal seam gas reservoirs which are found to exhibit significantly different behavior from conventional gas reservoirs. These differences involve the nature of permeability variations and the method of gas storage. The permeability variations appear to be caused primarily by effective stress variations and to a lesser extent to water saturation changes. These effective stress changes are brought about both by fluid pressure variations and by coal matrix shrinkage and expansion with changing gas content. Directional permeability with cleat (joint) direction is shown to be important. Experimental work was conducted in underground mines of the Bowen Basin, Queensland, Australia.

  6. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China

    Microsoft Academic Search

    W. Kessels; J. Han; M. Halisch; H. Lindner; H. Rueter; M. W. Wuttke

    2008-01-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire

  7. Locating failure sources in coal seams

    SciTech Connect

    Konstantinova, A.G.

    1988-01-01

    The authors consider the feasibility and conditions for an effective use of the asymptotic method to determine the coordinates of failure sources in a coal seam on an area covering the entire near-face space of a stope. Studies on locating sources of failure in coal seams are helpful in the development and improvement of seismoacoustic methods of forecasting dynamic events in coal seams. Errors in determining the coordinates of a source of elastic pulses depend on the error of determination of the directions at the source, the location of the acoustic base lines, and the position of the elastic pulse source in the near-face zone of the seam.

  8. Cleaning of Croweburg Seam coal to improve boiler performance

    SciTech Connect

    Dospoy, R.L.

    1991-01-01

    Recently an Oklahoma law was enacted that mandates that Oklahoma coal-fired utilities must burn a minimum of ten percent Oklahoma-mined coal. Public Service Company of Oklahoma (PSO), burning raw Croweburg Seam coal from Oklahoma as part of a blend, was interested in determining if cleaning the Croweburg Seam coal could reduce boiler slagging and fouling problems experienced at its Northeastern Station's Units 3 and 4. Studies of the Croweburg Seam coal performed at CQ Inc. in Homer City, Pennsylvania were used to determine the potential of physical cleaning for upgrading this coal. The test program involved commercial-scale cleaning tests with heavy-medium cyclones, two-stage water only cyclones, and froth flotation cells, well as extensive laboratory and pilot-scale tests. The coal evaluated during the test program responded well to cleaning. Results indicate the ash slagging and fouling can be significantly improved by cleaning. Significant reductions in ash, specific ash constituents, and trace element concentrations were also demonstrated along with increased heating value. Finally, although the raw coal tested can be classified as compliance'' prior to cleaning, the cleaning tests show that further reductions in SO{sub 2} emissions potential were possible, along with high energy recoveries and increased heating values and can be beneficial for improved plant performance.

  9. Reservoir engineering in coal seams: Part 2 - Observations of gas movement in coal seams. [Movement of methane flow in coal seams

    Microsoft Academic Search

    Gray

    1987-01-01

    This paper, the second of two concerning the movement of gas in coal seams, covers observations of seam fluid pressures and flows in mines in northern and central Queensland, Australia. Techniques based primarily on underground measurement rather than measurements from surface boreholes were used to gain information on the seams. The techniques used for in-seam studies are described because they

  10. Coal Mining on Pitching Seams

    E-print Network

    Brown, George MacMillan

    1915-01-01

    Alester coal is a good coking coal and coke ovens were operated extensively at Krebs and Alderson. The coke wan snipped to old Mexico chiefly, but exportation wan stopped by a heavy duty imposed. Since then no coke nus been made in this l ield , except... at the plant of the McAlester Gas and Coke Company. In general I believe the Hartshorne coal is considered best for steam purposes, because it does not burn so freely as the KcAlesrter coal. The United States 9 geological survey (a ) give* the following...

  11. Reservoir engineering in coal seams: Part 2 - Observations of gas movement in coal seams. [Movement of methane flow in coal seams

    SciTech Connect

    Gray, I.

    1987-02-01

    This paper, the second of two concerning the movement of gas in coal seams, covers observations of seam fluid pressures and flows in mines in northern and central Queensland, Australia. Techniques based primarily on underground measurement rather than measurements from surface boreholes were used to gain information on the seams. The techniques used for in-seam studies are described because they differ substantially from conventional oil and gas surface borehole techniques. The paper demonstrates the importance of cleats and joints in the control of fluid movement and records flow increases consistent with increasing permeability with production.

  12. Coal cleaning test facility campaign report No. 2: Robinson seam subbituminous coal

    Microsoft Academic Search

    J. W. Parkinson; E. R. Torak

    1985-01-01

    Campaign Report No. 2, issued by EPRI's Coal Cleaning Test Facility (CCTF), presents the cleanability characteristics of Robinson Seam coal. In May, 1983, Central Illinois Light Company (CILCO) donated 300 tons of this Montana subbituminous coal to EPRI. CILCO was burning uncleaned Robinson Seam coal at their E.D. Edwards Station to comply with an Illinois state SOâ emission limit of

  13. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Microsoft Academic Search

    Jianzhong Zhang; Claudia Kuenzer

    2007-01-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to

  14. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that in the United States will be drawn.

  15. THE MINING CHALLENGE OF HANDLING COAL SEAM HYDROGEN SULPHIDE

    Microsoft Academic Search

    ADS Gillies; HW Wu; T Harvey; Anglo Coal

    This study addresses Hydrogen Sulphide (H2S) in coal seams. The objectives of the project were to undertake a comprehensive series of interrelated studies to gain a full understanding of this complex problem. The goal was to understand how, where and why high concentration zones of H2S occur, how does gas release from the coal mass occur, can concentrations be diluted

  16. SOME APPROACHES TO HANDLING HYDROGEN SULPHIDE IN COAL SEAMS

    Microsoft Academic Search

    ADS Gillies; HW Wu; T Harvey

    The study addresses Hydrogen Sulphide (H2S) in coal seams. The objectives of the project were to undertake a comprehensive series of interrelated studies to gain a full understanding of this complex mine production problem. The goal was to understand how, where and why high concentration zones of H2S occur, how does gas release from the coal mass occur, can concentrations

  17. Hydraulic fracturing experiments in the Great Northern Coal seam

    SciTech Connect

    Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

    1994-12-31

    Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

  18. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Occluded natural gas produced from coal seams. 270...Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural gas...

  19. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Occluded natural gas produced from coal seams. 270...Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural gas...

  20. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Occluded natural gas produced from coal seams. 270...Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural gas...

  1. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Occluded natural gas produced from coal seams. 270...Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural gas...

  2. Geology of coal fires: case studies from around the world

    Microsoft Academic Search

    Glenn B. Stracher

    2008-01-01

    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products

  3. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW Turkey

    NASA Astrophysics Data System (ADS)

    Büçkün, Zeynep; ?naner, Hülya; Oskay, Riza Görkem; Christanis, Kimon

    2015-06-01

    The Ören and Yata?an Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays many sharp alternations of matrix lignite beds and inorganic, lacustrine sediment layers. The coal is a medium-to-high ash lignite (10.47-31.16 wt%, on dry basis) with high total sulphur content (up to 10 wt%, on dry, ash-free basis), which makes it prone to self-combustion. The maceral composition indicates that the peat-forming vegetation consisted of both arboreal and herbaceous plants, with the latter being predominant in the upper part of the seam. Mica and feldspars contribute to the low part of the seam; carbonates are dominant in the upper part, whereas quartz and pyrite are present along the entire coal profile. The sudden transitions of the telmatic to the lacustrine regime and reverse is attributed to tectonic movements that controlled water table levels in the palaeomire, which affected surface runoff and hence, clastic deposition.

  4. Development of a Portable Coal Seam Gas Analyser

    Microsoft Academic Search

    M. S. Kizil; A. D. S. Gillies; H. W. Wu

    Gas content and composition are important parameters in predictive models for coal seam gas emission calculations, ventilation requirements and design of mine gas drainage systems. Accurate measurement of gas content is not easy. A number of different methods and approaches have been developed in Europe, the US and Australia. This paper examines various testing methods particularly a recently developed instrument,

  5. Multislice mining for thick Western coal seams. Information Circular/1990

    SciTech Connect

    Hackett, T.D.; Boreck, D.L.; Clarke, D.R.

    1990-01-01

    Multislice mining methods were analyzed by the U.S. Bureau of Mines to determine their application to Western U.S. thick coal seams; ground control, geology and costs were considered. Multislice mining is used in widely varying seam conditions worldwide, including flat seams too thick to mine in a single pass, pitching thick seams, and seams containing a rock parting. Longwall multislice methods predominate, but room-and-pillar variants also exist. The initial use of the method in western seams is planned at a deep Colorado mine, where a rock parting will be used to separate two slices mined by longwall. Ground control and spontaneous combustion are major hazards associated with multislice mining. A well-consolidated upper slice gob can reduce ground control problems and provide a seal against spontaneous combustion. Geologic analysis indicates that the consolidation of the gob depends on the composition of the upper slice roof, the presence of water, and sufficient overburden pressure. A geologically competent intermediate rock parting can also reduce ground control problems and seal against spontaneous combustion.

  6. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  7. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  8. Deep coal seams as a greener energy source: a review

    NASA Astrophysics Data System (ADS)

    Ranathunga, A. S.; Perera, M. S. A.; Ranjith, P. G.

    2014-12-01

    Today, coal and oil are the main energy sources used in the world. However, these sources will last for only a few decades. Hence, the investigation of possible energy sources to meet this crisis has become a crucial task. Coal bed methane (CBM) is a potential energy source which can be used to fulfil the energy demand. Since the amount of carbon dioxide (CO2) emitted to the atmosphere from the use of CBM is comparatively very low compared to conventional energy sources, it is also a potential mitigation option for global warming. This paper reviews CBM recovery techniques with particular emphasis on CO2-enhanced coal bed methane (CO2-ECBM) recovery. The paper reviews (1) conventional CBM recovery techniques and problems associated with them, (2) CBM production-enhancement methods, including hydro-fracturing and enhanced CBM recovery techniques, such as N2-ECBM and CO2-ECBM, (3) the importance of the CO2-ECBM technique compared to other methods and problems with it, (4) the effect of CO2 injection during the CO2-ECBM process on coal seam permeability and strength and (5) current CO2-ECBM field projects and their progress. Although conventional CBM recovery methods are simple (basically related to the drawdown of the reservoir pressure to release methane from it), they are inefficient for the recovery of a commercially viable amount of methane from coal seams. Therefore, to enhance methane production, several methods are used, such as hydro-fracturing and ECBM (N2-ECBM and CO2-ECBM). The CO2-ECBM process has a number of advantages compared to other methane recovery techniques, as it contributes to the mitigation of the atmospheric CO2 level, is safer and more economical. However, as a result of CO2 injection into the coal seam during the CO2-ECBM process, coal mass permeability and strength may be crucially changed, due to the coal matrix swelling associated with CO2 adsorption into the coal matrix. Both injecting CO2 properties (gas type, CO2 phase and pressure) and coal seam properties (coal rank and temperature) affect this swelling. Although there are many related studies, a number of gaps exist, especially in the area of coal rank and how the effect of other factors varies with the rank of the coal seam. To date, there have been few CO2-ECBM field projects in the world. However, the reduction of CO2 injectability after some time of CO2 injection, due to coal matrix swelling near the well bore, is a common problem in the field. Therefore, various permeability-enhancing techniques, such as hydro-fracturing and injection of an inert gas such as N2 or a mixture of inert gases (N2 + CO2) into the seam to recover the swelled areas are under test in the field.

  9. Geology of coal fires: case studies from around the world

    SciTech Connect

    Glenn B. Stracher (ed.)

    2008-01-15

    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures and geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.

  10. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2015-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However as coal seam gas deposits generally occur at shallower depths than shale gas the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be of even greater concern for coal seam gas than for shale gas. In Australia an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice the Australian Government Department of the Environment has implemented a three-year programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the program and results to date can be found at http://www.bioregionalassessments.gov.au. In this presentation the methodology for undertaking bioregional assessments will be described and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Results of the programme to date will be provided (being nearly two years into the three-year study) with a focus on the preliminary results of numerical groundwater modelling. Once completed this modelling will be used to evaluate the impacts of the depressurisation of coal seams on aquifers and associated ecological, economic and socio-cultural water-dependent assets.

  11. Modeling of the occurrence of hydrogen sulfide in coal seams

    SciTech Connect

    Gillies, A.D.S.; Kizil, M.S.; Wu, H.W.; Harvey, T.J.M.

    1999-07-01

    Hydrogen Sulfide (H{sub 2}S) has been encountered within a number of Bowen Basin collieries, Central Queensland, Australia. High concentration occurrence during mining of a longwall panel raises a number of potential problems, which demand greater understanding to allow efficient mining while maintaining safe and healthy environmental conditions. Longwall panels at Mine A and Mine B have recently mined through H{sub 2}S zones. The high H{sub 2}S zone mined through at Mine A was wide and covering the whole length of the face comparing to the narrow H{sub 2}S zone which was cutting the panel at 45{degree} at Mine B. Longwall panels had been sampled for H{sub 2}S in pre-mining phases with vertical and inseam exploration boreholes and rib sampling of gateroad development headings. During mining face coal samples were collected in an intensive program and tested in a drum tumbler to determine an indicated seam concentration level through contouring that could be used to calculate the concentrations of H{sub 2}S liberated to the atmosphere. Data were analyzed to determine a geostatistical method, which would best represent the indicated seam concentration level from the given data and the block dimension of the data set. This study discusses the different sampling methods used, selection of the most suitable geostatistical method and the impact of grid size on results of data analysis. Some general observations are made correlating indicated seam H{sub 2}S concentrations from production face sampling with both predictions made from exploration and liberation rates during mining of the longwall panel.

  12. Factors influencing the determination of coal seam gas content and the role of oxidation

    SciTech Connect

    Saghafi, A.; Williams, D.J.; Carras, J.N. [CSIRO, North Ryde, New South Wales (Australia). Div. of Coal and Energy Technology

    1998-12-31

    Most coal seams and in particular deep coal seams contain gases. The quantity of gas retained by the coal is a function of its affinity for gas and the permeability of the coal seam and neighboring media which influences the degree of further migration. Coal seams contain mainly methane (CH{sub 4}) with a little carbon dioxide (CO{sub 2}). In some locations however, CO{sub 2} may be the dominant species. Other gases found in coal are nitrogen (N{sub 2}), to a lesser extent higher hydrocarbons and sometimes hydrogen sulfide (H{sub 2}S) in very small quantities. Knowledge of coal seam gas content is required by industry as well as government agencies. The information is used for planning of coal production and gas drainage system for safe mining, design of gas recovery and utilization plants and the environmental aspects of the emissions from both mined and unmined seams particularly with regard to greenhouse gas emissions. There are various methods of gas content determination practiced worldwide. However all these method can be put into two categories normally referred to as direct and indirect methods. The direct method measures the gas volume evolved from coal whilst the indirect method measures other quantities related to gas contained in coal. The procedure leading to direct determination of coal gas content may give rise to errors of estimation which in some instances may be significant. A number of parameters can affect the results of the measurements, particularly the composition of the seam gas and amount of air trapped along with the coal sample in container. This paper presents some of the results of a study on factors influencing the results of gas content measurements derived from the direct method and in particular looks at the effect of low temperature oxidation of coal.

  13. Numerical study on the underground coal gasification for inclined seams

    SciTech Connect

    Yang, L.H. [China University of Mining & Technology, Jiangsu (China). College for Resources & Geoscience

    2005-11-01

    According to the characteristics for combustion and gasification reactions occurring in the gasification gallery, the mathematical functional relationship between the chemical reaction rate and every influencing factor is studied. The dynamic nonlinear coupling mathematical models on underground coal gasification of inclined seams are established. The determination methods of major model parameters are introduced. Additionally, the control volume method is adopted to find the numerical solution to the mathematical models. The patterns of development and variation for temperature field, concentration field and pressure field in gasification panel are studied. On the basis of the model test, calculation results are analyzed. From the distribution of temperature field, its calculation value is a little higher than the experimental one, with the relative error of every measuring point virtually within 17%. Research shows that the experiment value of gas heat value and calculated value take on a good conformity; due to the influence of temperature, in the high temperature zone, the change gradient of the experiment value for concentration field of gas compositions is greater than that of the calculation value. The simulated results indicate that the relative error of the pressure field calculation is 4.13%-12.69% and 8.25%-17.47%, respectively, 7 h and 45 h after the ignition. The drop rate for the fluid pressure is 6 01 % and 10. 91 %, respectively. Research shows that the simulated values conform with experimental values comparatively well, which demonstrates that the numerical simulation on the 'three fields' in underground coal gasification is correct.

  14. Upgrading Upper Kittanning Seam coal quality to improve power plant performance: Coal cleaning test facility campaign report No. 6

    Microsoft Academic Search

    R. G Moorhead; E. R. Torak; R. J. Jenko; J. R. Cavalet

    1987-01-01

    A comprehensive Coal Cleanability Characterization to assess the effects of improved coal quality on boiler performance is presented. In 1984, Boston Edison donated Upper Kittanning Seam coal (mined in Nicholas County, West Virginia) for cleaning in commercial-scale equipment at EPRI's Coal Cleaning Test Facility (CCIF). This high volatile A bituminous coal is quite amenable to both water-based and heavy-medium coal

  15. Numerical investigation of coal seam gas detection using airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Abdulla, Mohamed

    The use of airborne electromagnetic (AEM) techniques has been mostly utilized in the mining industry. The various AEM systems enable fast data acquisition to detect zones of interest in exploration and in some cases are used to delineate targets on a production scale. For coal seam gas (CSG) reservoirs, reservoir thickness and the resistivity contrast present a new challenge to the present AEM systems in terms of detectability. Our research question began with the idea of using AEM methods in the detection of thin reservoirs. CSG reservoirs resemble thin reservoirs that have been and are currently being produced. In this thesis we present the results of a feasibility analysis of AEM study on coal seam reservoirs using synthetic models. The aim of the study is to contribute and bridge the gap of the scientific literature on AEM systems in settings such as CSG exploration. In the models we have chosen to simulate both in 1-D and 3-D, the CSG target resistivity was varied from a resistive to a conductive target (4 ohm.m, 150 ohm.m, and 667 ohm.m) to compare the different responses while the target thickness was fixed to resemble a stack of coal seams at that interval. Due to the differences in 1-D and 3-D modelling, we also examine the differences resulting from each modelling set up. The results of the 1-D forward modeling served as a first order understanding of the detection depths by AEM for CSG reservoirs. Three CSG reservoir horizontally layered earth model scenarios were examined, half-space, conductive/resistive and resistive/conductive. The response behavior for each of the three scenarios differs with the differing target resistivities. The 1-D modeling in both the halfspace and conductive/resistive models shows detection at depths beyond 300 m for three cases of target resistivity outlined above. After the 300-m depth, the response falls below the assumed noise floor level of 5% response difference. However, when a resistive layer overlies a conductive host, the resistive/conductive model, the signal is reduced for the resistive target cases, but the response is unchanged for the conductive target layer. For a better understanding of the responses from more complex reservoirs, a 3-D model was developed to incorporate additional geology. The 3-D models were based on the 1-D models and the modeling parameters were not altered except for the finite extent of the layers. The system properties such as the transmitter waveform, moment and time gates did not change. For the 3-D coal seam reservoir models, the same level of response is not observed for the 240 × 240 m areal extent target. For the halfspace and conductive/resistive model, the AEM response is small. Also noticeable is the decreased response below 50-m target depth. For the assumed noise floor level, the different targets would not be detectable in these instances beyond 50-m when compared to detection depths of up to 300-m in the 1-D scenario. If, however, a resistive overburden exists, i.e. the resistive/conductive model scenario, the 3-D response for the conductive case target is strong compared to the other target cases due to the preferential current flow. In this scenario, a conductive target seam can be detected at a depth of 150-m and possibly deeper depending on the thickness of the overburden layer. In contrast, for the case of the resistive targets, the anomalous body would be undetectable beyond 50-m depth. I apply the same modeling techniques to a more complex model adopted from the Queensland Surat Basin CSG reservoir. I simulate responses in both 1-D and 3-D. The 1-D responses show promise for detecting targets at up to 500 m deep. The 3-D models with an embedded a target with an areal extent of 240 × 240m display small responses and indicate shallow detection depths. However when I increased the target's areal extent to 480 × 480 m, a stronger response is observed that is larger then the 5% noise floor level for all three target cases. This is a good indication that the size of the CSG target is important for AEM application. (Abstract sh

  16. Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams

    SciTech Connect

    Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

    2007-11-01

    A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

  17. Numerical simulations for coupled rock deformation and gas leak flow in parallel coal seams

    Microsoft Academic Search

    2004-01-01

    Based on the new viewpoint of interaction mechanics for solid and gas, gas leakage in parallel deformable coal seams can be\\u000a understood. That is, under the action of varied geophysical fields, the methane gas flow in a double deformable coal seam\\u000a can be essentially considered to be compressible with time-dependent and mixed permeation and diffusion through a pore-cleat\\u000a deformable, heterogeneous

  18. Carbon dioxide sorption capacities of gasified coal seams and their surrounding rocks

    NASA Astrophysics Data System (ADS)

    Kempka, T.; Aeckersberg, R.; Li, D.; Kunz, E.; Krooss, B.; Golz, N.; Schlüter, R.; Fernández-Steeger, T.

    2009-04-01

    Underground coal gasification (UCG) is considered a viable approach for the development of deep and structurally complex coal deposits that are not economically extractable by conventional mining techniques. The combination of UCG and the subsequent combustion of the resulting synthesis gas in a combined cycle plant with the storage of carbon dioxide formed during this process could provide a relevant contribution to the so called clean coal technologies. Carbon dioxide captured from the flue gas of the combined cycle plant would be injected into already gasified coal seams using the existing UCG borehole infrastructure. Within the present study different coal seams and their surrounding rocks were sampled in all German hard coal mining districts. The coal samples were treated in a laboratory gasification device to produce combustion residues comparable to those formed in the UCG process. High-pressure carbon dioxide sorption experiments were then conducted on the original coal samples, their gasified residues and the surrounding rocks. The results indicate a significant increase of porosity and carbon dioxide sorption capacity of the residual coal after gasification. Furthermore, notable carbon dioxide sorption capacities were observed for the surrounding rocks. The assessment of the carbon dioxide storage potential in gasified coal seams has to take explicitly into account the newly generated pore space, the increased sorption capacity of the gasified coals and the sorption capacity of the surrounding rocks. Furthermore, the reduction of subsurface void volumes due to mechanical compaction after gasification as well as the resulting enhanced accessibility of adjacent seams have to be equally considered.

  19. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    PubMed Central

    2013-01-01

    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293

  20. The role of interseam strata in the retention of CO 2 and CH 4 in a coal seam gas system

    Microsoft Academic Search

    A. Saghafi; K. Pinetown

    2011-01-01

    Clastic sedimentary rocks associated with coal seams affect the retention of gas and the rate of escape of CO2 and CH4 from a coal seam gas (CSG) system. Quantifying sealing properties using a parameter based on molecular diffusion and permeation of gases through rock and coal matrices allows the effects to be evaluated.Observations made on a CSG system in the

  1. Development of signal processing algorithms for ultrasonic detection of coal seam interfaces

    NASA Technical Reports Server (NTRS)

    Purcell, D. D.; Ben-Bassat, M.

    1976-01-01

    A pattern recognition system is presented for determining the thickness of coal remaining on the roof and floor of a coal seam. The system was developed to recognize reflected pulse echo signals that are generated by an acoustical transducer and reflected from the coal seam interface. The flexibility of the system, however, should enable it to identify pulse-echo signals generated by radar or other techniques. The main difference being the specific features extracted from the recorded data as a basis for pattern recognition.

  2. Cleaning Lower Kittanning Seam coal to increase volatility and decrease SOâ emissions. Coal cleaning test facility campaign report No. 5

    Microsoft Academic Search

    J. R. Bencho; E. R. Torak; J. R. Cavalet; A. K. Bhowmick

    1986-01-01

    Lowering Kittanning Seam coal from Cambria County, Pennsylvania, was characterized at EPRI's 25 ton-per-hour Coal Cleaning Test Facility (CCTF) to estimate the change in combustion characteristics that can be achieved by physical coal cleaning. Major objectives included production of coal that can meet a sulfur dioxide emissions limit of 1.20 lb\\/MBtu while increasing volatile matter content to a value at

  3. Analysis and application of coal-seam seismic waves for detecting abandoned mines

    SciTech Connect

    Yancey, D.J.; Irnhof, M.G.; Feddock, J.E.; Gresham, T. [Virginia Tech., Blacksburg, VA (United States). Dept. of Geoscience

    2007-09-15

    Two in-seam reflection surveys and one transmission survey were acquired at an abandoned underground mine near Hurley, Virginia, to demonstrate the feasibility of detecting abandoned-mine voids utilizing coal-seam seismic waves. Standard, commonly available tools for seismic reflection processing were used. The mine was detected and located by using trapped coal-seam seismic waves observed in both the transmission and reflection data. Detecting the void, however, was not good enough to replace drilling entirely. We conclude that in-seam seismic methods can be used for detection; but if a potential void is detected, focused drilling should be applied for accurate mapping and to circumvent potentially hazardous areas.

  4. Numerical modelling of two phase flow of gas and water during drainage of a coal seam

    Microsoft Academic Search

    A. Basu; M. J. Boyd; P. McConchie

    1988-01-01

    This paper examines two phase flow of methane gas and water during drainage of a coal seam. A computer model is developed\\u000a and applied to a mine at Bulli, N.S.W., Australia. Pressure and flow predictions for the two fluids, methane and water are\\u000a made. For planners the point of interest is the drainage time required to achieve a desired seam

  5. Determination of the limit of oxidation in zones of sub-outcropping Chipanga Coal Seam, Moatize Coal Basin, Mozambique

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Lopo; Chafy, Algy; Xerinda, Leonardo

    2014-11-01

    Moatize Coal Basin (MCB) in Mozambique is a graben with sediments of Karoo age with thick coal seams that are under exploration and exploitation by the Vale Moçambique company. Presently, the exploitation is as an open-pit mine and in the future the works will extend to the area where formerly underground mines were under exploitation. It is well known throughout the World that Moatize basin is a World class deposit for coking and thermal coal and therefore Vale Moçambique is developing studies to rationalize the coal resources of the area. Due to its geological and tectonic story, the general structure of the sedimentary (and coal) layers shows wide open synclines and anticlines, and, as a consequence, in many areas coal seams approach the surface or even outcrop. Therefore, the sub-outcropping/outcropping zones of the seams are subjected directly to the weathering agents, subjecting the coal to oxidation phenomena, which are considered as a factor altering negatively the coking properties of coals. The objective is to study down to which depth the oxidation zone goes, i.e., to trace the Line of Oxidation, also known as LOX. The study deals with Chipanga seam, which is the thickest of all seams and the one with a more wide representation throughout the graben. This seam also sub-outcrops/outcrops in many places, and therefore it is essential to define the LOX. A drilling and coal sampling campaign was then developed along profiles defined according to the seam dip to determine the depth at which the LOX is located. Samples were subjected to washability tests, and the crucible swelling index (CSI) of the Float 1.35 was determined. The study shows a direct relationship between the depth of the Chipanga seam and its degree of oxidation, shown by the sudden decrease of the CSI when the coal seam approaches the surface. The sudden change of CSI generally occurs at a depth of ca. 10 m, with small variations around this value. Therefore it can be said that the depth of the Limit of Oxidation (LOX) is 10 m.

  6. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model

    Microsoft Academic Search

    Hongbin Zhang; Jishan Liu; D. Elsworth

    2008-01-01

    The influence of sorption-induced coal matrix deformation on the evolution of porosity and permeability of fractured coal seams is evaluated, together with its influence on gas recovery rates. The porosity-based model considers factors such as the volume occupied by the free-phase gas, the volume occupied by the adsorbed phase gas, the deformation-induced pore volume change, and the sorption-induced coal pore

  7. Coal-fired ships reappear

    SciTech Connect

    Not Available

    1983-09-01

    Interest in coal-fired ships is re-awakening and six are now under construction in Italy, Japan and Spain. The application of dense-phase pneumatic conveying to handle the coal on-board ship is described with particular reference to the Denseveyor system.

  8. Underground coal gasification field experiment in the high-dipping coal seams

    SciTech Connect

    Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

    2009-07-01

    In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

  9. Treatment of coal seam gas produced water for beneficial use in Australia: A review of best practices

    Microsoft Academic Search

    Long D. Nghiem; Ting Ren; Naj Aziz; Ian Porter; Gyanendra Regmi

    2011-01-01

    There has been an exponential increase in both the production and exploration of coal seam gas (CSG) in Australia and many other regions in the world. A major issue associated with the production of CSG is the management of produced water. CSG is usually mixed with water in the coal seam, to recover the gas, the water must be first

  10. The South Canon Number 1 Coal Mine fire: Glenwood Springs, Colorado

    SciTech Connect

    Glenn B. Stracher; Steven Renner; Gary Colaizzi; Tammy P. Taylor [East Georgia College, Swainsboro, GA (United States). Division of Science and Mathematics

    2004-07-01

    The South Canon Number 1 Coal Mine fire, in South Canyon west of Glenwood Springs, Colorado, is a subsurface fire of unknown origin, burning since 1910. Subsidence features, gas vents, ash, condensates, and red oxidized shales are surface manifestations of the fire. The likely success of conventional fire-containment methodologies in South Canyon is questionable, although drilling data may eventually suggest a useful control procedure. Drill casings in voids in the D coal seam on the western slope trail are useful for collecting gas samples, monitoring the temperature of subsurface burning, and measuring the concentration of gases such as carbon monoxide and carbon dioxide in the field. Coal fire gas and mineral condensates may contribute to the destruction of floral and faunal habitats and be responsible for a variety of human diseases; hence, the study of coal gas and its condensation products may prove useful in understanding environmental pollution created by coal mine fires. The 2002 Coal Seam Fire, which burned over 12,000 acres and destroyed numerous buildings in and around Glenwood Springs, exemplifies the potential danger an underground coal fire poses for igniting a surface fire.

  11. A poromechanical model for coal seams saturated with binary mixtures of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Nikoosokhan, Saeid; Vandamme, Matthieu; Dangla, Patrick

    2014-11-01

    Underground coal bed reservoirs naturally contain methane which can be produced. In parallel of the production of this methane, carbon dioxide can be injected, either to enhance the production of methane, or to have this carbon dioxide stored over geological periods of time. As a prerequisite to any simulation of an Enhanced Coal Bed Methane recovery process (ECBM), we need state equations to model the behavior of the seam when cleats are saturated with a miscible mixture of CH4 and CO2. This paper presents a poromechanical model of coal seams exposed to such binary mixtures filling both the cleats in the seam and the porosity of the coal matrix. This model is an extension of a previous work which dealt with pure fluid. Special care is dedicated to keep the model consistent thermodynamically. The model is fully calibrated with a mix of experimental data and numerical data from molecular simulations. Predicting variations of porosity or permeability requires only calibration based on swelling data. With the calibrated state equations, we predict numerically how porosity, permeability, and adsorbed amounts of fluid vary in a representative volume element of coal seam in isochoric or oedometric conditions, as a function of the pressure and of the composition of the fluid in the cleats.

  12. Coal fires in Indonesia

    Microsoft Academic Search

    Alfred E Whitehouse; Asep A. S Mulyana

    2004-01-01

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests

  13. Coal-fired ships reappear

    SciTech Connect

    Not Available

    1983-09-01

    A situation now exists where, in many countries, coal prices are almost half those of oil, and indications point toward this trend continuing. It is not surprising, therefore, that many shipowners are planning and building the next generation of steamships with coal-fired propulsion units. Six new coal-fired ships, the first for over 25 years, are now being built in Italy, Japan, and Spain. In the forefront in technology and systems for handling coal and ash is the British company Macawber Engineering. It has developed on-board systems responding to the problems created by coal handling on a modern steamship, problems that formed a major reason for the universal changeover to oil firing in the 1950s and 1960s. The traditional method of handling coal uses mechanical systems such as belt and draglink conveyors, and bucket elevators. These methods have disadvantages that make their use on ships far from satisfactory. Pneumatic conveying systems, due to their totally enclosed construction and relative simplicity, overcome these problems. The type of pneumatic system chosen, however, has to accommodate several other constraints imposed by on-board handling of coal. (SC)

  14. Draft Genome Sequence of Clostridium sp. Maddingley, Isolated from Coal-Seam Gas Formation Water.

    PubMed

    Rosewarne, Carly P; Greenfield, Paul; Li, Dongmei; Tran-Dinh, Nai; Bradbury, Mark I; Midgley, David J; Hendry, Philip

    2013-01-01

    Clostridium sp. Maddingley was isolated as an axenic culture from a brown coal-seam formation water sample collected from Victoria, Australia. It lacks the solventogenesis genes found in closely related clostridial strains. Metabolic reconstructions suggest that volatile fatty acids are the main fermentation end products. PMID:23405323

  15. Draft Genome Sequence of Clostridium sp. Maddingley, Isolated from Coal-Seam Gas Formation Water

    PubMed Central

    Greenfield, Paul; Li, Dongmei; Tran-Dinh, Nai; Bradbury, Mark I.; Midgley, David J.; Hendry, Philip

    2013-01-01

    Clostridium sp. Maddingley was isolated as an axenic culture from a brown coal-seam formation water sample collected from Victoria, Australia. It lacks the solventogenesis genes found in closely related clostridial strains. Metabolic reconstructions suggest that volatile fatty acids are the main fermentation end products. PMID:23405323

  16. The increasing signifi cance of coal seam gas in eastern Australia

    Microsoft Academic Search

    G. Baker; S. Slater

    The commercial production of coal seam gas (CSG) in Australia commenced in 1996. Since then its production has ramped up signifi cantly, particularly in the last fi ve years, to become an integral part of the upstream gas industry in eastern Australia. The major growth in both CSG reserves and production has been in the Bowen and Surat basins in

  17. Blast-free mining of coal seams by excavators equipped with rotary dynamic buckets

    SciTech Connect

    Labutin, V.N.; Mattis, A.R.; Zaitseva, A.A. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. for Mining

    2005-04-01

    The necessity to equip cable excavators with rotary buckets is substantiated. The results of graphic-analytical analysis of the rotary bucket operation are presented, and its main advantages are determined in comparison with conventional buckets in mining coal seams of complex structure.

  18. Field results from a linked vertical well UCG test in deep, thin-seam bituminous coal

    Microsoft Academic Search

    J. W. Martin; J. D. McClung; A. J. Liberatore; L. D. Strickland; R. E. Zielinski; P. W. Seabaugh; A. K. Agarwal

    1981-01-01

    For a first in the United States, a 900-ft (275-m) deep, 6-ft (2-m) thick, swelling, eastern bituminous coal has been gasified successfully in situ. Under the direction of Morgantown Energy Technology Center, the relatively small-scale field test, Pricetown I, affected the equivalent of approximately 735 tons (665 t) of a high-sulfur, high-ash section of the Pittsburgh coal seam near Pricetown,

  19. Thermal history and geological controls on the distribution of coal seam gases in the southern Sydney Basin, Australia

    Microsoft Academic Search

    Mohinudeen Mohamed Faiz

    1993-01-01

    Coal seams of the southern Sydney Basin contain large volumes of gas, mainly methane (CH4) and carbon dioxide (C02) with subordinate volumes of longer chain hydrocarbons (C2+) and nitrogen (Nz). Data from exploration boreholes, underground mines and laboratory sorption-desorption tests are used to investigate the composition and distribution of gases in the coal seams. The influences of thermal history, coal

  20. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.

  1. Origin of banded structure and coal lithotype cycles in Kargali coal seam of East Bokaro sub-basin, Jharkhand, India: Environmental implications

    NASA Astrophysics Data System (ADS)

    Tewari, Ram Chandra; Khan, Zahid A.

    2015-04-01

    The Kargali seam of Early Permian Barakar cyclothems of East Bokaro sub-basin of Jharkhand, India is 12-30 m thick, splits into two parts, and extends throughout the length of the basin. It is made up of interbedded sequences and variable proportions of Vitrain, Clarain, Durain and Fusain. Application of embedded Markov chain model rejects the phenomenon of randomness in the repetition of coal lithotypes. The preferential upward transition path for coal lithotypes that can be derived for the Kargali top coal seam is: Vitrain ? Clarain ? Durain ? Fusain ? Vitrain, and for the Kargali bottom coal seam is: Clarain ? Vitrain ? Fusain ? Durain ? Clarain. By and large, the cyclic repetition of coal lithotypes is similar in the Kargali bottom and top seams. Among the noteworthy features are two-way transitions between Durain and Fusian in Kargali top and between Clarain and Vitrain in the case of Kargali bottom coal seam. Entropy analysis corroborates Markov chain and indicates the presence of type A-4 asymmetrical cycles of coal lithotypes. It is suggested that the banded structure of a coal seam is not a random feature and follows a definite cyclic pattern in the occurrence of coal lithotypes in vertical order and is similar to that described in Australian and European coal seams. Asymmetrical cyclic sequences are a normal, rather than an unusual condition, within coal seams. It is visualized that a gradual decline of toxic environment and ground water level resulted in the coal lithotype cycles in the Kargali seam of East Bokaro sub-basin. The close interbedding of Vitrain and Clarain is suggestive of seasonal fluctuation in anaerobic and aerobic conditions during peat formation.

  2. Rock Creek methane from Multiple-Coal-Seams Completion Project. Annual report, January-December 1990. 1. 1. 4 Coalbed-Methane Multiple-Coal-Seam project 305

    SciTech Connect

    Dobscha, F.X.; Durden, A.H.; Robb, J.C.; Saulsberry, J.L.; Spafford, S.D.

    1991-10-01

    The Multiple Coal Seams Completion Project is a joint venture developing drilling, completion, testing, stimulation, and production procedures for economic production of methane from multiple coal seams. During the report period, extensive well testing was conducted. Slug tests and injection tests were performed on Wells P6 and P7 in addition to slug tests on several offsite wells. Wells P6 and P7 were stimulated in the Black Creek Group with cross-linked gel treatments. Production peaked at 175 MCFD and 46 MCFD for Wells P6 and P7, respectively. Pressure has been reduced so much in the project area that production was declining for all of the wells through the later half of 1990. Corehole C4 was completed in June 1990. Desorption tests from cores show that, in an area 500 to 600 feet from production wells, up to 80% of the original methane resource has been recovered. Additional Wells P3A (Pratt), M6 (Mary Lee and Black Creek monitor well), and P8 (originally M8) were drilled and cased. Permeability and compressibility testing will be conducted on these wells in 1991 and Well P3A will be stimulated in the Pratt Coal Group with unconventional treatments. Water, gas analyses, rate, and pressure data for 10 wells and reservoir for 18 monitor wells was recorded and distributed to various project support contractors for analysis.

  3. Methodology to determine the economics of CO 2 storage in coal seams with enhanced coalbed methane recovery

    Microsoft Academic Search

    R. Sander; W. G. Allinson; L. D. Connell; P. R. Neal

    2011-01-01

    This paper describes the methodology used to derive the economics of CO2 storage in coal with enhanced coalbed methane recovery. A significant difference between CO2 storage in coal seams and storage in saline aquifers is that the incrementally recovered natural gas constitutes an additional revenue stream. In the case of CO2 storage in coal it is necessary to distinguish between

  4. Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia

    Microsoft Academic Search

    David J. Midgley; Philip Hendry; Kaydy L. Pinetown; David Fuentes; Se Gong; Danielle L. Mitchell; Mohinudeen Faiz

    2010-01-01

    There is growing interest in optimising biogenic coal seam methane generation; however, relatively little is known about the microbiology of coal. To begin to address this deficiency, the biodiversity of a microbial community within a deep coal gas reservoir was investigated using the Amplified Ribosomal DNA Restriction Analyses (ARDRA) method. Additionally, a cultured subset of organisms from this community was

  5. Geological processes that control lateral and vertical variability in coal seam moisture contents—Latrobe Valley (Gippsland Basin) Australia

    Microsoft Academic Search

    Guy R. Holdgate

    2005-01-01

    A study throughout the Latrobe Valley coal measures of coal moisture distribution using downhole bore data and 3D digital models of large bore data sets indicates lateral and vertical moisture variability is controlled by a number of factors. These include burial, type of overburden, age of the seam, marine influence, coal lithotype and lateral compression on folds and monoclines. The

  6. Organic geochemical study of sequences overlying coal seams; example from the Mansfield Formation (Lower Pennsylvanian), Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Stankiewicz, A.B.; Salmon, G.; Kvale, E.P.; Millard, C.L.

    1997-01-01

    Roof successions above two coal seams from the Mansfield Formation (Lower Pennsylvanian) in the Indiana portion of the Illinois Basin have been studied with regard to sedimentary structures, organic petrology and organic geochemistry. The succession above the Blue Creek Member of the Mansfield Formation is typical of the lithologies covering low-sulphur coals ( 2.%). The transgressive-regressive packages above both seams reflect the periodic inundation of coastal mires by tidal flats and creeks as inferred from bioturbation and sedimentary structures such as tidal rhythmites and clay-draped ripple bedforms. Geochemistry and petrology of organic facies above the Blue Creek coal suggest that tidal flats formed inland in fresh-water environments. These overlying fresh water sediments prevented saline waters from invading the peat, contributing to low-sulphur content in the coal. Above the unnamed coal, trace fossils and geochemical and petrological characteristics of organic facies suggest more unrestricted seaward depositional environment. The absence of saline or typically marine biomarkers above this coal is interpreted as evidence of very short periods of marine transgression, as there was not enough time for establishment of the precursor organisms for marine biomarkers. However, sufficient time passed to raise SO42- concentration in pore waters, resulting in the formation of authigenic pyrite and sulphur incorporation into organic matter.

  7. Rock Creek methane from Multiple Coal Seams Completion Project. Topical report. Rock Creek coalbed methane data summary, December 1990

    SciTech Connect

    Dobscha, F.X.; Headley, A.L.; Lambert, S.W.; Lanier, J.B.; Robb, J.C.

    1990-12-01

    The Multiple Coal Seams Completion Project is a joint venture, investigating the drilling, completion, testing, stimulation, and production procedures for the economic production of methane from multiple coal seams. The report summarizes research conducted at Rock Creek to date. Much geologic and reservoir characterization of the project site has been performed to provide a basis for stimulation design, production analysis and reservoir testing. Geologic characterization included stratigraphic and structural evaluation along with coal cleat, rock joint, seam thickness, coal methane content, coal chemistry and coal petrography studies. Extensive reservoir data has been collected from permeability testing, hydrologic testing, stress testing, production and pressure monitoring, and a gas and water analysis program. Stimulation design and post testment diagnostics have been performed to optimize stimulation designs.

  8. Improving the CO 2 well injectivity and enhanced coalbed methane production performance in coal seams

    Microsoft Academic Search

    Sevket Durucan; Ji-Quan Shi

    2009-01-01

    This paper reports on the performance comparison for different CO2-ECBM schemes in relatively thin unminable seams typical of Northern Appalachian coal basin using a horizontal well configuration. Numerical simulations based upon public-domain coalbed reservoir properties indicated that injection of pure CO2 is likely to result in only limited incremental methane recovery if any over primary recovery, due to the low

  9. Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams

    Microsoft Academic Search

    Cor B. de Boer; Mark J. Dekkers; Ton A. M. van Hoof

    2001-01-01

    The subsurface spontaneous combustion of coal seams in Xinjiang (NW China) during Pleistocene to recent times produced large areas of thermally altered sedimentary rocks with large magnetic moments. The natural remanent magnetization (NRM) and thermoremanent magnetization (TRM) intensities and low-field susceptibilities of such combustion-metamorphic rocks range from 0.1 to 10A\\/m and 100×10?4 to 1000×10?4SI, respectively, which is two to three

  10. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China

    USGS Publications Warehouse

    Liu, Gaisheng; Yang, P.; Peng, Z.; Chou, C.-L.

    2004-01-01

    The Yanzhou mining area in west Shandong Province, China contains coals of Permian and Carboniferous age. The 31 and 32 seams of the Permian Shanxi Formation and seams 6, 15-17 of the Carboniferous Taiyuan Formation were analyzed for coal petrology, mineralogy and geochemical parameters. The parameters indicate that the coal is high volatile bituminous in rank. The coal is characterized by high vitrinite and low to medium inertinite and liptinite contents. These properties may be related to evolution of the coal forming environment from more reducing conditions in a marine influenced lower delta plain environment for the early Taiyuan coals to more oxidizing paleoenvironments in an upper delta plain for the upper Shanxi coal seams. The major mineral phases present in the coal are quartz, kaolinite, pyrite and calcite. Sulfur is one of the hazardous elements in coal. The major forms of sulfur in coal are pyritic, organic and sulfate sulfur. Pyritic and organic sulfur generally account for the bulk of the sulfur in coal. Elemental sulfur also occurs in coal, but only in trace to minor amounts. In this paper, the distribution and concentration of sulfur in the Yanzhou mining district are analyzed, and the forms of sulfur are studied. The sulfur content of the Taiyuan coal seams is considerably higher than that of the Shanxi coals. Organic sulfur content is positively correlated to total and pyritic sulfur. The vertical variation of Cu, Zn, Pb, As, Th, U and sulfur contents in coal seam 3 of the Shanxi Formation in the Xinglongzhuang mine show that all these trace elements, with the exception of Th, are enriched in the top and bottom plies of the seam, and that their concentrations are also relatively high in the dirt bands within the seam. The pyritic sulfur is positively correlated with total sulfur, and both are enriched in the top, bottom and parting plies of the seam. The concentrations of the trace elements are closely related to sulfur and ash contents. Most of the trace elements are correlated with the ash content, and may be associated with the mineral matter in the coal. ?? 2004 Elsevier Ltd. All rights reserved.

  11. Numerical study on 4-1 coal seam of Xiaoming mine in ascending mining.

    PubMed

    Lan, Tianwei; Zhang, Hongwei; Li, Sheng; Han, Jun; Song, Weihua; Batugin, A C; Tang, Guoshui

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  12. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    PubMed Central

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  13. Relations between coal petrology and gas content in the Upper Newlands Seam, Central Queensland, Australia

    USGS Publications Warehouse

    Walker, R.; Glikson, M.; Mastalerz, Maria

    2001-01-01

    The Upper Newlands Seam in the northern Bowen Basin, Queensland Australia consists of six benches (A-F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show a consistent orientation of northeast-southwest for face cleats, and a wide range of orientations for fractures. Cleat systems are well developed in bright bands, with poor continuity in the dull coal. Both maceral content and cleat character are suggested to influence gas drainage in the upper Newlands Seam. A pronounced positive correlation between vitrinite abundance and gas desorption data suggests more efficient drainage from benches with abundant vitrinite. Conversely, inertinite-rich benches are suggested to have less efficient drainage, and possibly retain gas within pore spaces, which could increase the outburst potential of the coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  14. Geochemistry of autochthonous and hypautochthonous siderite-dolomite coal-balls (Foord Seam, Bolsovian, Upper Carboniferous), Nova Scotia, Canada

    USGS Publications Warehouse

    Zodrow, E.L.; Lyons, P.C.; Millay, M.A.

    1996-01-01

    The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.

  15. Coal fire extinguishing and prevention

    SciTech Connect

    Greene, J.S.

    1988-02-16

    This patent describes a formulation for use in extinguishing coal fires, without generation of substantial gases toxic to humans, for metering to the fire at about a 6-10 percent dilution rate to water. The formulation consists essentially of a mixture of: a linear alkylbenzolyate sulfonate, non-ionic detergent and lauric superamide detergent mixture comprising about 50 percent by volume of the formulation; vitamin B-6 in the amount of about 0.5-3 percent by weight of the detergent mixture; bicarbonate of soda in the amount of about 3-18 percent by weight of the detergent mixture; and water comprising about 37-47 percent by volume of the total formulation.

  16. The Centralia partial seam CRIP underground coal gasification experiment. [Controlled retracting injection point

    SciTech Connect

    Stephens, D.R.; Cena, R.J.; Hill, R.W.; Thorsness, C.B.

    1985-01-01

    This report describes the result of the partial seam controlled retracting injection point (CRIP) underground coal gasification (UCG) field experiment carried out at the Washington Irrigation and Development Company (WIDCO) mine near Centralia, Washington, in the fall of 1983. The test was designed to take advantage of the high-wall geometry at the mine and was carried out near the site of the earlier (1981-1982) large-block experiments. The primary goals of the experiment were to test the CRIP concept and to further evaluate the site as a potential for the future development of UCG.

  17. Factors involved in evaluating ground water impacts of deep coal mine drainage. [Pumping tests of wells drilled into the coal seam and development of mathematical models; detailed discussion

    Microsoft Academic Search

    P. R. Davis; W. C. Walton

    1982-01-01

    The determination of probable ground water impacts of proposed deep coal mining is required as part of permit applications. Impact prediction generally involves well production test analysis and modeling of ground water systems associated with coal seams. Well production tests are often complicated due to the relatively low permeabilities of sandstones and shales of ground water systems. The effects of

  18. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  19. Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China

    Microsoft Academic Search

    Guijian Liu; Liugen Zheng; Ying Zhang; Cuicui Qi; Yiwei Chen; Zicheng Peng

    2007-01-01

    The Yanzhou mining area in the west Shandong Province, China contains coals of Permian and Carboniferous age. A total of 21 bench coal samples were collected from coal seam 3 of the Permian Shanxi Formation, Xinglongzhuang coal mine, Yanzhou Coalfield, China. Pyritic and organic sulfur generally account for the bulk of the sulfur in coal. In this paper, the distribution

  20. Risk assessment of underground coal fire development at regional scale

    Microsoft Academic Search

    Jian-jun Wu; Xiao-chen Liu

    2011-01-01

    Underground coal combustion is a phenomenon known worldwide. Coal fire monitoring and risk assessment provide important input data for the delineation of coal fire zones and planning of extinguishing activities. At present, research on coal fire risk focuses mainly on the probability assessment of spontaneous combustion at micro scale, based on laboratory investigations of coal molecular structure and composition, and

  1. Data base for analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, November-January 1981

    SciTech Connect

    Davis, A; Suhr, N H; Spackman, W; Painter, P C; Walker, P L; Given, P H

    1981-04-01

    The basic objectives of this program are, first, to understand the systematic relationships between the properties of coals, and, second, to determine the nature of the lateral and vertical variability in the properties of a single seam. Multivariate statistical analyses applied to the Coal Data Base confirm a number of known trends for coal properties. In addition, nitrogen and some components of the ash analysis bear interesting relationships to rank. The macroscopic petrography of column samples of the Lower Kittanning seam reveals a significant difference between the sample from a marine-influenced environment and those from toward the margins of the basin where conditions were non-marine. The various methods of determining the amount and mineralogy of the inorganic fraction of coals are reviewed. General trends in seam thickness, ash, sulfur, volatile matter yield, and vitrinite reflectance of the Lower Kittanning seam of western Pennsylvania are presented. Controls of sedimentation are discussed in relation to the areal variability which has been observed. Differential subsidence and paleotopography appear to have played a major role during the deposition of the coal. The same controls may have maintained some influence upon the coalification process after deposition, especially along the eastern margin of the Lower Kittanning basin.

  2. Seam profiling of three coals from Upper Cretaceous Menefee formation near Durango, CO

    SciTech Connect

    Pawlewicz, M.J.

    1985-05-01

    Column samples of three separate coal seams from the Upper Cretaceous Menefee Formation near Durango were examined with reflected light and oil immersion to characterize the vertical variation in the coal petrography. In order to interpret the paleoenvironments of the coal, the macerals (microlithotypes) that make up the coal were identified and their association (whether they are in microbands or dispersed throughout), their physical condition (if they show signs of weathering or transportation), and their modal composition were observed. The observed petrography indicates two main environments of deposition. Most of the microlithotypes are rich in vitrinite. This and the association and physical condition of the macerals indicate a terrestrial forest containing mainly woody plants and trees with a slightly fluctuating ground-water level. Less commonly, the microlithotypes have less vitrinite and more mineral matter, suggesting deposition in an open moor or deep water usually inhabited mainly be herbaceous plants. Macerals from both environments are weathered, suggesting infrequent dry periods or periods of lower water-table levels where the peat was exposed to subaerial oxidation.

  3. Thermal characteristics of coal fires 2: Results of measurements on simulated coal fires

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia; Tetzlaff, Anke; Oertel, Dieter; Zhukov, Boris; Wagner, Wolfgang

    2007-12-01

    In this paper we present thermal characteristics of coal fires as measured during simulated fires under an experimental setting in Germany in July 2002. It is thus a continuation of the previously published paper "Thermal surface characteristics of coal fire 1: Results of in-situ measurement", in which we presented temperature measurements of real subsurface coal fires in China [Zhang, J., Kuenzer, C., accepted for publication. Thermal Surface Characteristics of Coal Fires 1: Results of in-situ measurements. Accepted for publication at Journal of Applied Geophysics.]. The focus is on simulated coal fires, which are less complex in nature than fires under natural conditions. In the present study we simulated all the influences usually occurring under natural conditions in a controllable manner (uniform background material of known thermal properties, known ventilation pathways, homogeneous coal substrate), creating two artificial outdoor coal fires under simplified settings. One surface coal fire and one subsurface coal fire were observed over the course of 2 days. The set up of the fires allowed for measurements not always feasible under "real" in-situ conditions: thus compared to the in-situ investigations presented in paper one we could retrieve numerous temperature measurements inside of the fires. Single temperature measurements, diurnal profiles and airborne thermal surveying present the typical temperature patterns of a small surface-and a subsurface fire under undisturbed conditions (easily accessible terrain, 24 hour measurements period, homogeneous materials). We found that the outside air temperature does not influence the fire's surface temperature (up to 900 °C), while fire centre temperatures of up to 1200 °C strongly correlate with surface temperatures of the fire. The fires could heat their surrounding up to a distance of 4.5 m. However, thermal anomalies on the background surface only persist as long as the fire is burning and disappear very fast if the heat source is removed. Furthermore, heat outside of the fires is transported mainly by convection and not by radiation. In spatial thermal line scanner data the diurnal thermal patterns of the coal fire are clearly represented. Our experiments during that data collection also visualize the thermal anomaly differences between covered (underground) and uncovered (surface) coal fires. The latter could not be observed in-situ in a real coal fire area. Sub-surface coal fires express a much weaker signal than open surface fires and contrast only by few degrees against the background. In airborne thermal imaging scanner data the fires are also well represented. Here we could show that the mid-infrared domain (3.8 ?m) is more suitable to pick up very hot anomalies, compared to the common thermal (8.8 ?m) domain. Our results help to understand coal fires and their thermal patterns as well as the limitations occurring during their analysis. We believe that the results presented here can practicably help for the planning of coal fire thermal mapping campaigns — including remote sensing methods and the thermal data can be included into numerical coal fire modelling as initial or boundary conditions.

  4. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  5. Evolution of methane sorption capacity of coal seams as a function of burial history — a case study from the Campine Basin, NE Belgium

    Microsoft Academic Search

    A. Hildenbrand; B. M. Krooss; A. Busch; R. Gaschnitz

    2006-01-01

    Based on extensive data sets of high-pressure sorption isotherms and canister desorption data from two Central European coal basins (Campine and Ruhr basins) a computational scheme has been developed to calculate the maximum coal bed methane (CBM) sorption capacity of coal seams as a function of pressure, temperature and coal rank. In addition, the effects of in situ moisture content

  6. Co-firing of asphalt fired dust in pulverized coal fired boiler

    SciTech Connect

    Kiga, Takashi; Watanabe, Shinjl

    1999-07-01

    In order to make clear whether the dust collected at the electrostatic precipitator (EP) of asphalt fired boilers can be co-fired in pulverized coal fired boilers, laboratory-scale and bench-scale tests have been conducted. Test results showed that although dust from asphalt firing had as only a little amount of volatile matter as semi-anthracite or anthracite had, it revealed burn-out properties like bituminous. When it was co-fired with pulverized coal by 2% by that input, a considerable increase in SO{sub 2} emission was noted, while NOx emission was somewhat decreased compared with coal firing. From these verifications, it was confirmed that the co-firing of dust from asphalt firing in pulverized coal fired boiler was applicable to actual plants so far as the De-SOx system permitted.

  7. Relationship between the geological and working parameters in high productivity longwalls in underground competitive coal mining of very thick seams

    SciTech Connect

    Torano, J.; Rivas, J.M.; Rodriguez, R.; Diego, I.; Pelegry, A. [Oviedo University, Independencia (Spain). School of Mines

    2005-07-01

    Carbonar S.A. is using a high productivity long panel to mine a coal seam that is over 4 meters thick in some places. The equipment comprises a double drum shearer and a powered roof support. Seam thickness, close joint state, and roof load over the support were measured, in situ. Data were collected on both cross and longitudinal sections of the panel. The data are interpreted and related to the longwall advance. The data are being processed using fuzzy logic methods. The results will be applied to remote control automation using virtual reality tools. 7 refs., 27 figs.

  8. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams

    SciTech Connect

    Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

    2005-09-01

    For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

  9. Description and mineralogy of Tertiary volcanic ash partings and their relationship to coal seams, near Homer, Alaska

    SciTech Connect

    Reinink-Smith, L.M.

    1985-04-01

    Outcrops of Tertiary coal-bearing units in sea cliffs of the Kenai Peninsula provide an excellent study area for volcanic ash partings in coals. Twenty mid-to late-Miocene, 50-cm to 3-m thick coal seams exposed in the sea cliffs about 10 km west of Homer contain an average of 10 volcanic ash or lapilli tuff partings each. The bedding relationships of the coal with any one parting cannot be predicted, and the contacts of the partings with the coal range from very sharp to predominantly gradational. These bedding relationships provide clues about the surface on which the ashes fell and on which the coal was accumulating. For example, some ashes fell in standing water, others on irregular subaerial surfaces. The partings are in various stages of alteration to kaolinite and bentonite, and vary in thickness from a few millimeters to about 10 cm. The consistency and texture of the partings depend on the degree of alteration; the less altered partings display visible pumice fragments and euhedral feldspars, commonly within a finer grained matrix. Separate pumice fragments, excluding matrix, can also occur as partings in the coal. The more altered partings may be wet and plastic, or they may be well indurated claystones; the colors range from gray-yellow to dark brown. The indurated prints are more common in older part of the section. The coal seams may be capped by volcanic ash partings and are commonly underlain by a pencil shale of nonvolcanic origin.

  10. Coal petrology and coal seam gas contents of the Walloon Subgroup — Surat Basin, Queensland, Australia

    Microsoft Academic Search

    Steven Scott; Bruce Anderson; Peter Crosdale; Julie Dingwall; Garry Leblang

    2007-01-01

    Core, exploration and appraisal drilling over the last four years have targeted the Juandah (upper) and Taroom (lower) Coal Measures of the Middle Jurassic Walloon Subgroup of the Injune Creek Group. These wells have shown that the high-volatile bituminous, perhydrous coals of the Walloon Subgroup have gas contents of between 1 and 14 m3\\/t and some wells have encountered gas flows

  11. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    SciTech Connect

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  12. Fire-hazard control during coal handling

    SciTech Connect

    McGraw, M.G.

    1984-03-01

    The potential for serious power plant fires and explosions is growing along with the increased use of volatile, low-sulfur coal use and environmental regulations requiring closed conveyor systems for handling coal. The volume of coal handled and the range of physical characteristics in different coals intensifies the problem. Western coal produces more dust because it is more friable than eastern coal and is more prone to sponaneous combustion. Closed storage and handling systems increase the hazards of methane and carbon monoxide. The article described prevention, detection, and firefighting techniques, and notes that a variety of systems is needed to cover all the hazards. Human behavior and coordination are also essential ingredients. ll figures.

  13. Rock creek methane from multiple coal seams completion project: Rock Creek coalbed methane completion project data summary update. Topical report, December 1990-February 1995

    SciTech Connect

    Ellard, J.; Lambert, S.W.; Litzinger, L.A.; Saulsberry, J.L.; Steidl, P.F.

    1995-12-01

    The report provides a summary of the data collected from 12 production wells and 17 monitor wells that were present at the Rock Creek Project. Well testing, reservoir evaluation, experimental fracturing treatments, diagnostic testing, and production testing were conducted to optimize stimulation methods for multiple thin coal seams. Much geologic and reservoir characterization of the project site has been performed to provide a basis for stimulation design, production analysis and reservoir testing. Geologic characterization included stratigraphic and structural evaluation along with coal cleat, rock joint, seam thickness, coal methane content, coal chemistry and coal petrography studies. The report summarizes the data collected over the 10 year life of the project.

  14. Draft Genome Sequence of Methanobacterium sp. Maddingley, Reconstructed from Metagenomic Sequencing of a Methanogenic Microbial Consortium Enriched from Coal-Seam Gas Formation Water.

    PubMed

    Rosewarne, Carly P; Greenfield, Paul; Li, Dongmei; Tran-Dinh, Nai; Midgley, David J; Hendry, Philip

    2013-01-01

    The draft genome of Methanobacterium sp. Maddingley was reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water. It is a hydrogenotrophic methanogen predicted to grow using hydrogen and carbon dioxide. PMID:23405289

  15. Draft Genome Sequence of Methanobacterium sp. Maddingley, Reconstructed from Metagenomic Sequencing of a Methanogenic Microbial Consortium Enriched from Coal-Seam Gas Formation Water

    PubMed Central

    Greenfield, Paul; Li, Dongmei; Tran-Dinh, Nai; Midgley, David J.; Hendry, Philip

    2013-01-01

    The draft genome of Methanobacterium sp. Maddingley was reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water. It is a hydrogenotrophic methanogen predicted to grow using hydrogen and carbon dioxide. PMID:23405289

  16. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  17. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams - article no. B10202

    SciTech Connect

    Cui, X.J.; Bustin, R.M.; Chikatamarla, L. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

    2007-10-15

    Sequestration of CO{sub 2} and H{sub 2}S into deep unminable coal seams is an attractive option to reduce their emission into atmosphere and at the same time displace preadsorbed CH4 which is a clean energy resource. High coal seam permeability is required for efficient and practical sequestration of CO{sub 2} and H{sub 2}S and recovery of CH4. However, adsorption of CO{sub 2} and H{sub 2}S into coals induces strong swelling of the coal matrix (volumetric strain) and thus reduces significantly coal permeability by narrowing and even closing fracture apertures. Our experimental data on three western Canadian coals show that the adsorption-induced volumetric strain is approximately linearly proportional to the volume of adsorbed gas, and for the same gas, different coals have very similar volumetric strain coefficient. Impacts of adsorption-induced swelling on stress and permeability around wellbores were analytically investigated using our developed stress and permeability models. Coal seams may undergo > 10 times enhancement of permeability around CH4-producing wellbores due to a reduction in effective stress as a result of coal shrinking caused by methane desorption accompanying a reduction in reservoir pressure. Injection of H{sub 2}S and CO{sub 2} on the other hand results in strong sorption-induced swelling and a marked increase in effective stress which in turn leads to a reduction of coal seam permeability of up to several orders of magnitude. Because of the marked swelling of coal in the presence of H{sub 2}S, even minor amounts of H{sub 2}S result in a marked reduction in permeability, and hence sequestration of H{sub 2}S in deep coals will be likely impractical. Furthermore, high stresses resulting from sorption of acid gases will potentially cause the coal to yield, fracture or slip, and produce fine particles, which further affect permeability and thus methane production and acid gas sequestration.

  18. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect

    Gary L. Cairns

    2002-04-01

    This is the first Technical Progress report for the subject agreement. During the first six months of the project, progress was made in arranging participation by other CONSOL departments, identifying a prospective site, developing an environmental assessment report, and securing land and coal rights. In addition, correspondences were drafted in response to NETL inquiries. These aspects of the project are discussed in detail in this report.

  19. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S. (Macungie, PA)

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  20. Atmospheric radon, CO2 and CH4 dynamics in an Australian coal seam gas field

    NASA Astrophysics Data System (ADS)

    Tait, D. R.; Santos, I. R.; Maher, D. T.

    2013-12-01

    Atmospheric radon (222Rn), carbon dioxide (CO2), and methane concentrations (CH4) as well as carbon stable isotope ratios (?13C) were used to gain insight into atmospheric chemistry within an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). A˜3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 2 km to 4 km radius of the sampling sites (n = 5 stations; p < 0.05). We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to point sources (well heads, pipelines, etc.) and diffse soil sources due to changes in the soil structural and hydrological characteristics. A rapid qualitative assessment of CH4 and CO2 concentration, and carbon isotopes using a mobile cavity ring-down spectrometer system showed a widespread enrichment of both CH4 and CO2 within the production gas field. Concentrations of CH4 and CO2 were as high as 6.89 ppm and 541 ppm respectively compared average concentrations of 1.78 ppm (CH4) and 388 ppm (CO2) outside the gas field. The ?13C values showed distinct differences between areas inside and outside the production field with the ?13C value of the CH4 source within the field matching that of the methane in the CSG.

  1. Palynology of an Early Permian coal seam from the Karoo Supergroup of Botswana

    NASA Astrophysics Data System (ADS)

    Barbolini, N.; Bamford, M. K.

    2014-12-01

    Two borehole cores from the south-east area of the Mmamantswe coalfield (Mmamabula area), Botswana, provided 124 samples for palynological analysis. The assemblage is dominated by trilete and alete spores, indicating a parent flora of mostly lower order lycopods, sphenophytes and ferns. Distinctive taxa at Mmamantswe include Brevitriletes levis, Cannanoropollis densus, Gondisporites raniganjensis, Platysaccus radialis, Scheuringipollenites ovatus, and Verrucosisporites naumovae. Saccate pollen is less common, suggesting the assemblage reflects the local vegetation of the coal swamp. The Mmamantswe microflora has been sub-divided into two assemblage zones, with the lower Assemblage Zone 1 correlating with Assemblage Zone 1 of Anderson (northern Karoo Basin, South Africa), Biozone B of the Waterberg (South Africa) and the Milorgfjella assemblage (Dronning Maud Land, Antarctica). The upper Assemblage Zone 2 of Mmamantswe is correlated with Assemblage Zone 2 of Anderson (northern Karoo Basin, South Africa), Biozone C of the Waterberg (South Africa), and the No. 2 Seam assemblage (Witbank coalfield, South Africa). On the basis of these correlations the Mmamantswe microfloral assemblage is assigned to the Asselian, Sakmarian and Early Artinskian periods.

  2. Relations between coal petrology and gas content in the Upper Newlands Seam, central Queensland, Australia

    Microsoft Academic Search

    Rachel Walker; Miryam Glikson; Maria Mastalerz

    2001-01-01

    The Upper Newlands Seam in the northern Bowen Basin, Queensland, Australia consists of six benches (A–F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show

  3. Impact of air velocity on the development and detection of small coal fires. Report of investigations\\/1993

    Microsoft Academic Search

    Egan

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations

  4. Sensitivity of detection of fugitive methane emissions from coal seam gas fields

    NASA Astrophysics Data System (ADS)

    Feitz, A. J.; Berko, H.; Wilson, P.; Jenkins, C.; Loh, Z. M.; Etheridge, D.

    2013-12-01

    There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of ?13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and baseline signals were evaluated and statistically compared to test for the presence of fugitive methane emissions. In addition, a time series model of the methane baseline was developed in order to generate alternative realizations of the baseline signal. These were used to provide measures of both the likelihood of detecting fugitive emissions at various emission levels and of the false alarm rate. Results of the statistical analysis and an indicative minimum fugitive methane emission rate that can be detected using a single monitoring station are presented.

  5. EMISSIONS AND EFFICIENCY PERFORMANCE OF INDUSTRIAL COAL STOKER FIRED BOILERS

    EPA Science Inventory

    The report gives results of field measurements of 18 coal stoker-fired boilers including spreader stokers, mass-fired overfeed stokers, and mass-fired underfeed stokers. The test variables included stoker design, heat release rate, excess air, coal analysis and sizing, overfire a...

  6. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  7. Inferring Hydraulic and Fracture Properties of a Fracked Coal Seam Aquifer by Using GLUE Uncertainty Analysis using TOUGH2 reservoir simulator

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Askarimarnani, S. S.

    2014-12-01

    Coal seam gas (also called coal bed methane) is a form of natural gas that occurs in some coal seams. In the coal seam gas industry, hydraulic fracturing is performed to enhance the extraction of the gas from the coal seam. This paper presents flow simulation results for a fractured coal seam and its associate production well, and an investigation of the well piezometric head drawdown curves resulting from hydraulic pumping tests. The aim is to infer the hydraulic and fracture properties of the coal and associated well, such as length, width, conductivity of fractures, and the proportion of the water and gas contained in the coal seam. For this purpose the TOUGH2/EOS7C numerical simulator is applied. It is capable of modelling multiphase flow in fractured and porous system. The EOS7C is an "equation of state" module for TOUGH2 that is used to model the methane dissolved and free gas multiphase component. The Wingridder grid generator has been used to generate the 2D, 3D and MINCE (multiple interacting continua) grids for TOUGH2. The simulation results provide some constraints on hydraulic and fracture properties. However, there is still have significant uncertainty. In order to assess the uncertainty and increase our knowledge of the hydraulic properties, uncertainty analysis using the Generalized Likelihood Uncertainty Estimation (GLUE), which is a Monte-Carlo methodology, is applied. We will discuss how the Monte-Carlo uncertainty analyses is used to infer the properties of a hydraulically fractured well from pump test data. One major outcome of this work will be the development of a fast and routine method for assessing the post-development performance and safety of a production gas well, and to provide reassurance that the fracking that has actually occurred in the field is within design parameters.

  8. Optimized post combustion carbon capturing on coal fired power plants

    Microsoft Academic Search

    Brian Stöver; Christian Bergins; Jürgen Klebes

    2011-01-01

    Worldwide coal contributes to over 40% of the electricity generation today and its share is expected to increase steadily over the coming decades. The continued dominance of coal in global energy structure and the growing concern of climate change necessitate accelerated development and deployment of new technologies for clean and efficient coal utilization. Coal fired power plants with CO2 capture

  9. Diagnostics of sealed coal mine fires. Report of investigations\\/1982

    Microsoft Academic Search

    J. M. Kuchta; A. L. Furno; L. E. Dalverny; M. J. Sapko; C. D. Litton

    1982-01-01

    The Bureau of Mines investigated four simulated coal gob fires to obtain a more reliable data base for defining the state of a sealed mine fire and to evaluate the performance of various fire detectors. The fires were conducted in a multiple-entry section of the Bruceton Experimental Mine by heating 4,000 to 21,000 pounds of rubblized bituminous coal to ignition

  10. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  11. TEST FIRING REFUSE-DERIVED FUEL IN AN INDUSTRIAL COAL-FIRED BOILER

    EPA Science Inventory

    The Research Program entitled, 'Test Firing Refuse Derived Fuel in an Industrial Coal-Fired Boiler' evaluates the performance of an industrial boiler when co-firing coal and RDF. An optimum boiler operating load and RDF feed rate was determined for the boiler tested. Boiler effic...

  12. Data base for the analysis of compositional characteristics of coal seams and macerals. Part 7. Petrographic variation due to depositional setting of the lower Kittanning seam, western Pennsylvania. Final report

    SciTech Connect

    Allshouse, S.D.; Davis, A.

    1984-01-01

    Detailed megascopic and microscopic petrographic analyses were conducted on samples of the Lower Kittanning seam from western Pennsylvania. Relationships were sought between the paleoenvironmental setting of the coal swamp and the vertical and lateral variability of lithotypes, maceral composition and vitrinite types. Megascopically, the four samples collected from the freshwater facies of the seam are similar in appearance and relative lithotype composition, and display no distinct vertical zonations. The sample from the marine-influenced central portion of the basin (PSOC-1340) possesses a marked vertical zonation into a bright lower zone and a dull upper zone. The lower zone is similar in appearance to the freswater samples. Detailed microscopic analyses revealed that the vertical zonation of PSOC-1340 is apparent in both the maceral and vitrinite type composition. No similar zonation is apparent in the microscopic analysis of the four freshwater facies samples. Similarities between the lower zone of PSOC-1340 and the whole seam of the freshwater samples are most apparent in the vitrinite-type analysis. The lower zone of PSOC-1340 and the whole seam from the freshwater facies are considered to be laterally equivalent coal types. The dull upper zone of PSOC-1340 is considered to have formed in response to a major change in the paleoenvironment of the swamp, probably a marine transgression. 49 references, 25 figures, 15 tables.

  13. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  14. JV Task 109 - Risk Assessment and Feasibility of Remedial Alternatives for Coal Seam at Garrison, North Dakota

    SciTech Connect

    Jarda Solc

    2008-01-01

    The Energy & Environmental Research Center (EERC) conducted an evaluation of alternative technologies for remediation of hydrocarbon-contaminated coal seam, including impacted soils and groundwater in Garrison, North Dakota. Geotechnical characteristics of the impacted fractured coal seam provide for rapid off-site contaminant transport, with the currently identified impacted zone covering an area of about 40 acres. Regardless of the exposure mechanism (free, dissolved, or vapor phase), results of laboratory tests confirmed secondary release of gasoline-based compounds from contaminated coal to water reaching concentrations documented from the impacted areas. Coal laboratory tests confirmed low risks associated with spontaneous ignition of gasoline-contaminated coal. High contaminant recovery efficiency for the vacuum-enhanced recovery pilot tests conducted at three selected locations confirmed its feasibility for full-scale remediation. A total of 3500 gallons (13.3 m{sup 3}) of contaminated groundwater and over 430,000 ft{sup 3} (12,200 m{sup 3}) of soil vapor were extracted during vacuum-enhanced recovery testing conducted July 17-24, 2007, resulting in the removal of about 1330 lb (603 kg) of hydrocarbons, an equivalent of about 213 gallons of product. The summary of project activities is as follows: (1) Groundwater and vapor monitoring for existing wells, including domestic wells, conducted on a monthly basis from December 12, 2006, to June 6, 2007. This monitoring activity conducted prior to initiation of the EERC field investigation was requested by NDDH in a letter dated December 1, 2006. (2) Drilling of 20 soil borings, including installation of extraction and monitoring wells conducted April 30-May 4 and May 14-18, 2007. (3) Groundwater sampling and water-table monitoring conducted June 11-13, 2007. (4) Evaluation of the feasibility of using a camera survey for delineation of mining voids conducted May 16 and September 10-11, 2007. (5) Survey of all wells at the site. (6) Laboratory testing of the coal samples conducted from August to October 2007. (7) Vacuum-enhanced pilot tests at three locations: Cenex corner, Tesoro corner, and cavity area, conducted July 17-24, 2007. (8) Verification of plume delineation for a full-scale design and installation of six monitoring wells September 10-13, 2007. (9) Groundwater sampling and monitoring conducted September 11-12, September 26, and October 3, 2007. (10) Feasibility evaluation of alternative technologies/strategies for the subject site.

  15. Energy ecological efficiency of coal fired plant in China

    Microsoft Academic Search

    Boshu He; Changhe Chen

    2002-01-01

    As a kind of primary energy, the main utilization of coal is combustion. Coal combustion is the greatest atmospheric pollution source in China. In this paper, the authors analyze the evolution of the coal fired power plant\\/thermal power plant (CFP\\/TPP, denoted by CFP) in China from the past, when there were no measures taken against pollution, to the present, when

  16. Life Cycle Assessment of Coal-fired Power Production

    SciTech Connect

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  17. Coal-fired ships. [Lack of bunkers off dedicated routes

    SciTech Connect

    Delaney, R.

    1981-09-01

    The reintroduction of coal-firing is an evolution in propulsion rather than a revolution. In fact, the feasibility of coal-fired ships returning to the oceans owes a heavy debt to technology already in place and developed by land-based generating plants. The resurgence of the coal-fired ships does not indicate a dearth of this type of propulsion. There are still coal-fired ore boats working the Great Lakes. Coal-fired boilers will be larger, cycle performance will be lower, and crews may need to be retrained. The ships will be larger for the coal bunkers. The fuel transfer equipment will be new, cumbersome and an array of maintenance nightmares will ensue. Wide tube spacing is necessary to minimize ash buildup and plugging between the tubes. Gas velocities are limited to a maximum 50 to 70 ft per second which is desirable in a boiler fired with solid fuel. It is not uncommon to have gas-side velocities of 100 ft per second in an oil-fired unit. The length of the coal-fired installation is about twice that of the D-Type oil unit, with the conventional orientation of steam drums fore and aft. The furnace volume of a stoker-fired boiler is also approximately three times larger. Nearly all operating parameters are identical to those of the oil-fired plant. The only major exception is the limitation of the final steam temperature to 900F. Overall efficiency of the coal-fired unit is somewhat less due to carbon loss and the 30% excess air normally required for stoker-fired boilers.

  18. Eocene-Miocene carbon-isotope and floral record from brown coal seams in the Gippsland Basin of southeast Australia

    NASA Astrophysics Data System (ADS)

    Holdgate, Guy R.; McGowran, Brian; Fromhold, Tom; Wagstaff, Barbara E.; Gallagher, Stephen J.; Wallace, Malcolm W.; Sluiter, Ian R. K.; Whitelaw, Michael

    2009-01-01

    The carbon-isotope and palynological record through 580 m thick almost continuous brown coal in southeast Australia's Gippsland Basin is a relatively comprehensive southern hemisphere Middle Eocene to Middle Miocene record for terrestrial change. The carbon isotope ? 13C coal values of these coals range from - 27.7‰ to - 23.2. This isotopic variability follows gymnosperm/angiosperm fluctuations, where higher ratios coincide with heavier ?13C values. There is also long-term variability in carbon isotopes through time. From the Eocene greenhouse world of high gymnosperm-heavier ?13C coal values, there is a progressive shift to lighter ?13C coal values that follows the earliest (Oi1?) glacial events around 33 Ma (Early Oligocene). The overlying Oligocene-Early Miocene brown coals have lower gymnosperm abundance, associated with increased % Nothofagus (angiosperm), and lightening of isotopes during Oligocene cooler conditions. The Miocene palynological and carbon-isotope record supports a continuation to the Oligocene trends until around the late Early Miocene (circa 19 Ma) when a warming commenced, followed by an even stronger isotope shift around 16 Ma that peaked in the Middle Miocene when higher gymnosperm abundance and heavier isotopes prevailed. The cycle between the two major warm peaks of Middle Eocene and Middle Miocene was circa 30 Ma long. This change corresponds to a fall in inferred pCO 2 levels for the same period. The Gippsland data suggest a link between gymnosperm abundance, long-term plant ?13C composition, climatic change, and atmospheric pCO 2. Climatic deterioration in the Late Miocene terminated peat accumulation in the Gippsland Basin and no further significant coals formed in southeast Australia. The poor correspondence between this terrestrial isotope data and the marine isotope record is explained by the dominant control on ?13C by the gymnosperm/angiosperm abundance, although in turn this poor correspondence may reflect palaeoclimate control. From the brown coal seam dating, the coal appears to have accumulated during a considerable part of the allocated 30 Ma Cenozoic time period. These brown coal carbon isotope and palynological data appear to record a more gradual atmospheric carbon isotope change compared to the marine record.

  19. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  20. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  1. Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Wang, Xu; Yang, Shiling

    2014-05-01

    A series of transient global warming events between 56 and 50 Ma are characterized by a pronounced negative carbon isotope excursion (CIE). However, the documents of these hyperthermals, such as Eocene Thermal Maximum 2 and H2 events, have come chiefly from marine sediments, and their expression in terrestrial organic carbon is still poorly constrained. Here we yield a high-resolution carbon isotope record of terrestrial organic material from the Fushun Basin, which displays four prominent CIEs with magnitudes larger than 2.5‰. Based on age constraint and comparisons with deep-sea records, our data provide the first evidence of the four hyperthermals in coal seams and suggest a global significance of these events. Moreover, the difference of CIE magnitudes between marine and terrestrial records shows a significant linear correlation with the marine carbonate CIE, implying that these events are likely attributable to recurring injections of 13C-depleted carbon from submarine methane hydrates and/or permafrost.

  2. Fayalite from Fe-rich paralavas of ancient coal fires in the Kuzbass, Russia

    NASA Astrophysics Data System (ADS)

    Novikova, S. A.

    2009-12-01

    Fayalite is a common mineral of Fe-rich paralavas related to spontaneous combustion of coal seams. Fayalite has also been found in parabasalts from burned coal waste piles of the Chelyabinsk coal basin. Among paralavas from different combustion metamorphic (CM) complexes of the world, fayalite is the most widespread in the fused rocks of the Kuznetsk coal basin (Kuzbass) and the Ravat area in Tajikistan. The optimal conditions for fayalite formation as products of coal fires in the Kuzbass and Ravat resulted from a favorable combination of the composition of fused protolith (parental rocks) composed of pelitic and Fe-rich sediments and the redox conditions of the deep subsurface ( f_{O_2 } is lower than the QFM buffer). In the Kuzbass, fayalite is commonly hosted in high-silica aluminous Fe-rich paralavas composed of Fe-cordierite (sekaninaite), tridymite, hercynite-magnetite, cristobalite, aluminous clinoferrosilite, and Al-K silicic glass. The composition of all Kuzbass fayalites is close to the Fe2SiO4 end member. Kuzbass fayalites are characterized by a negligibly low CaO content and higher MnO and P2O5 contents like fayalites from burned rocks of other CM complexes. In Kuzbass paralavas, Fe-olivine is the late phase that crystallized after sekaninaite and tridymite, immediately before melt quenching.

  3. VARIABILITY IN COAL SEAM GAS CONTENTS THAT IMPACTS ON FUGITIVE GAS EMISSIONS ESTIMATIONS FOR AUSTRALIAN BLACK COALS1

    Microsoft Academic Search

    Ray Williams; Renate Sliwa

    This study was prompted by a need to understand the factors influencing estimates of fugitive greenhouse gas emissions generated from black coal as a by-product during the mining process. Although they comprise some 3% of Australia's net greenhouse gas emissions, they will be increasingly significant with the increase in coal production. Fugitive gas emissions from coal mining and handling are

  4. The age, palaeoclimate, palaeovegetation, coal seam architecture/mire types, paleodepositional environments and thermal maturity of syn-collision paralic coal from Mukah, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sia, Say-Gee; Abdullah, Wan Hasiah; Konjing, Zainey; Koraini, Ahmad Munif

    2014-02-01

    The Mukah coal accumulated in the Balingian Formation where the time-stratigraphic position is poorly defined by fauna, though a probable Late Miocene age has always been assigned to this formation. Samples collected in the present study that yielded an abundance of Casuarina pollen associated with occurrences of Dacrydium, Stenochlaena palustris, Florschuetzia levipoli and also Stenochlaena areolaris spores, compare closely to zone PR9 of the palynological zonation of the Malay Basin, and can be tied to depositional sequences of Malay Basin Seismic sequences I2000/I3000, indicating an Early Miocene age for the studied coal. The Early Miocene age shows that the Mukah coal was formed during the collision between Luconia Block-Dangerous Grounds with the Borneo that lasted from Late Eocene to late Early Miocene. The rapid increase of deposition base-level caused by the collision is clearly reflected by the architecture of the Mukah coal seams that were generally thin, and also by the reverse order of the paleo-peat bodies.

  5. Impact of thermal processes on CO2 injectivity into a coal seam

    Microsoft Academic Search

    H Y Qu; J S Liu; Z J Pan; L Connell

    2010-01-01

    The objective of this study is to investigate how thermal gradients, caused by CO2 injection, expansion and adsorption, affect the permeability and adsorption capacity of coal during CO2 sequestration. A new permeability model is developed in which the concept of elastic modulus reduction ratio is introduced to partition the effective strain between coal matrix and fracture. This model is implemented

  6. Exxon Chemical's Coal-Fired Combined Cycle Power Technology 

    E-print Network

    Guide, J. J.

    1985-01-01

    Exxon Chemical's Central Engineering Division has recently developed and patented CAT-PAC for Industrial Cogeneration and Utility Power Plants. It involves the marriage of a conventional direct pulverized coal-fired boiler radiant section with a...

  7. Full-scale co-firing of straw and coal

    Microsoft Academic Search

    Lars Storm Pedersen; Hanne Philbert Nielsen; Søren Kiil; Lone Aslaug Hansen; Kim Dam-Johansen; Finn Kildsig; Jan Christensen; Peer Jespersen

    1996-01-01

    Co-firing of biofuels and coal in power plants is considered by the Danish utilities as a potential tool in reducing CO2 emissions. To test this, full-scale measurements were carried out for 1 week on a 250 MWe pulverized coal fired unit using 10–20% straw (thermal basis). With an increased fraction of straw in the fuel, a net decrease in NOx

  8. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, February-April 1980. [Variability

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-06-01

    The basic objective of this program is to invetigate systematic relationships between the properties of US coals and macerals. Thirty-five samples from the Lower Kittanning seam have been collected to study the vertical and lateral variability of petrographic, chemical, mineralogical and plastic characteristics within a single coal seam. The ratio of aromatic to aliphatic C-H groups as measured by the integrated absorption or peak areas shows a linear relationship with coal rank (reflectance). Uptake of CO/sub 2/ at 25/sup 0/C on -20 mesh sizes of selected coals (PSOC-1166, 1171, 1197, and 1201) has been measured. From Dubinin-Polanyi plots, micropore surface areas and micropore volumes were obtained. Displacement of mercury was used to estimate particle densities for -20 mesh and -100 mesh sizes of coals and vitrinite concentrates. Some uncertainty in this measurement is introduced because of the difficulty of knowing at what pressure filling of voids between particles with mercury is complete. A new helium density apparatus has been constructed which promises to speed up measurements. Two coals from China were found to have very unusual characteristics. The extremely high liptinite (cutinite) content of one would account for its anamolous chemical composition and liquefaction behavior. Several organic and inorganic components of liquefaction residues can be recognized under the microscope. The proportions of these components in residues from experiments performed by PETC appear to be related to process conditions. Major, minor element and mineralogical analyses are reported for up to 21 coals.

  9. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  10. Fire detection in coal mines based on semiconductor gas sensors

    Microsoft Academic Search

    Peter Reimann; Andreas Schütze

    2012-01-01

    Purpose – Due to the environmental conditions, the detection and identification of hazardous situations in coal mines is a challenge. The purpose of this research is to focus on the underground fire detection, especially of smoldering fires, which are characterized by the outgassing of CO and C2H4. Design\\/methodology\\/approach – The study developed a system based on a single semiconductor gas

  11. Mining Through H2S Seam Gas Zones in Underground Coal Mines

    Microsoft Academic Search

    Timothy J. M. Harvey; Sean Cory

    Hydrogen Sulphide (H2S) has been encountered in several collieries in the Bowen Basin coal reserves located in Central Queensland, Australia. Significant occurrences have been found in the underground workings at Collinsville No 2 Mine, Oaky Creek No 1 Mine and Southern Colliery. Longwall panels at Oaky Creek and Southern Colliery have recently mined through H2S zones, and mining will intersect

  12. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams

    Microsoft Academic Search

    W. C. Zhu; J. Liu; J. C. Sheng; D. Elsworth

    2007-01-01

    Coupled gas flow and solid deformation in porous media has received considerable attention because of its importance in pneumatic test analysis, contaminant transport, and gas outbursts during coal mining. Gas flow in porous media is quite different from liquid flow due to the large gas compressibility and pressure-dependent effective permeability. The dependence of gas pressure and gas desorption on gas

  13. Evaluation of data gathered from unminable coal seams. Final report. [Well evaluation, stimulation and resource assessment

    SciTech Connect

    Not Available

    1980-08-01

    The objective of this effort was to provide for the reduction in uncertainties in critical parameters related to the methane exploration and recovery from unminable coals in the United States. The current contract with DOE calls for INTERCOMP to assist in the characterization of unmineable coalbeds with particular emphasis on methane producibility.

  14. Enrichment of Radon and Carbon Dioxide in the Open Atmosphere of an Australian Coal Seam Gas Field

    PubMed Central

    2013-01-01

    Atmospheric radon (222Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). 222Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both 222Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ?390 ppm at the control site to ?467 ppm near the center of the gas field. A ?3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields. PMID:23444905

  15. Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field.

    PubMed

    Tait, Douglas R; Santos, Isaac R; Maher, Damien T; Cyronak, Tyler J; Davis, Rachael J

    2013-04-01

    Atmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ~390 ppm at the control site to ~467 ppm near the center of the gas field. A ~3 fold increase in maximum (222)Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average (222)Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields. PMID:23444905

  16. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2015-01-01

    The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In addition, it was shown that both E-type and the average of realizations that gave the best match for invidual approximated the same properties resonably. Moreover, the determined realization bundle showed that the study field initially had 151.5 million m3 (cubic meter) of gas and 1.04 million m3 water in the coal, corresponding to Q90 of the entire range of probability for gas and close to Q75 for water. In 2013, in-place fluid amounts decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively.

  17. Dual poroelastic response of a coal seam to CO 2 injection

    Microsoft Academic Search

    Yu Wu; Jishan Liu; Derek Elsworth; Zhongwei Chen; Luke Connell; Zhejun Pan

    2010-01-01

    Although the influence of gas sorption-induced coal deformation on porosity and permeability has been widely recognized, prior studies are all under conditions of no change in overburden stress and effective stress-absent where effective stresses scale inversely with applied pore pressures. Here we extend formalism to couple the transport and sorption of a compressible fluid within a dual-porosity medium where the

  18. Mercury emission control for coal fired power plants using coal and biomass 

    E-print Network

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15

    oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used...

  19. Effects of new environmental regulations on coal-fired generation

    SciTech Connect

    LaCount, R.

    1999-07-01

    As restructuring of the electricity industry places downward pressure on power production costs, new environmental regulations are having the opposite effect. Although power plants may be subject to a variety of environmental regulations over the next ten years including reductions in mercury, toxics, and carbon dioxide, new regulations for sulfur dioxide (SO2) and nitrogen oxides (NOX) are poised to impact the electricity industry in the very short term. The cost for coal-fired power plants to comply with these new regulations has the potential to alter their competitive position. January 1, 2000 marks the beginning of Phase II for the Environmental Protection Agency's SO2 allowance market. Starting in January, all coal and oil plants above 25 MW will be required to comply with the federal SO2 provisions. Regulatory deadlines for NOX are also fast approaching; though the ultimate requirements are still subject to change. On May 1, 1999, a NOX allowance market began for states within the Northeast Ozone Transport Commission (OTC). A second phase of this program is scheduled to begin in 2003 that will lower the overall cap for allowable NOX emissions in the participating states. EPA is also working to expand the reach of regional NOX reductions in 2003 through its NOX SIP call. This program, which is currently subject to litigation, would require NOX reductions in 14 states outside of the OTC. A new study by Resource Data International (RDI), Coal-Fired Generation in Competitive Power Markets, assessed the potential impact that the new SO2 and NOX regulations may have on the competitiveness of coal-fired generation. Overall, the study shows that coal-fired generation will continue to grow despite significant environmental costs and competition from natural gas-fired units. The new environmental regulations have the effect of increasing the dispatch cost of coal-fired units from $0.65/MWh on average in the WSCC to $4.14/MWh on average in the MAAC region. The addition of environmental adders for SO2 and NOX pushes some coal-fired units above the fuel cost of combined cycle gas-fired units, especially those coal-fired units with poor heat rates and/or high delivered fuel costs. This presentation will review the current regulatory status of both the new SO2 and NOX regulations and address the key findings from RDI's new study.

  20. Structural characterisation of Middle Jurassic, high-volatile bituminous Walloon Subgroup coals and correlation with the coal seam gas content

    Microsoft Academic Search

    Alan L. Chaffee; Galinda Lay; Marc Marshall; W. Roy Jackson; Yi Fei; T. Vincent Verheyen; Peter J. Cassidy; Steven G. Scott

    2010-01-01

    The structure of a suite of high-volatile, bituminous Surat Basin, Queensland coals has been investigated by a combination of analytical probes. These included elemental analyses, pyrolysis-gas chromatography-mass spectroscopy and Fourier transform infrared spectroscopy, together with a study of their liquefaction products in both tetralin and solvent free-tin catalysed hydrogenations. Samples were gathered across a 300m depth interval intersected by the

  1. Hydrogeology of a coal-seam gas exploration area, southeastern British Columbia, Canada: Part 1. Groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Harrison, S.; Molson, J.; Abercrombie, H.; Barker, J.; Rudolph, D.; Aravena, R.

    2000-12-01

    Discovery of high contents of methane gas in coals of the Mist Mountain Formation in the Elk River valley, southeastern British Columbia, Canada, has led to increased exploration activity for coal-seam gas (CSG). CSG production requires groundwater abstraction to depressurize the coal beds and to facilitate methane flow to the production wells. Groundwater abstraction will have hydrodynamic effects on the flow system, and an understanding of the groundwater flow system is needed to evaluate these effects. The purpose of this paper is to describe the groundwater flow system in the area by means of a groundwater flow model and interpretation of hydrochemical and isotopic analyses of groundwater and surface water. Groundwater flow for the Weary Creek exploration area is modeled in two vertical sections. The model domains, based on classic upland-lowland conceptual flow models, are approximately 10,000 m long and 4,000 m deep. Each consists of a fixed water-table boundary and no-flow boundaries along the traces of major faults. Steady-state groundwater flow is calibrated to hydraulic-head, streamflow, and groundwater-recharge data. Simulated steady-state velocity fields define regional and local flow components consistent with the conceptual model. The results are consistent with regional trends in ?2H, ?18O, tritium, and TDS, which define two distinct groundwater groups (A and B) and a third of intermediate composition. An active, shallow, local flow component (group A) is recharged in beds cropping out along subdued ridges; this component discharges as seeps along lower and mid-slope positions in the southern part of the study area. The waters are tritiated, relatively enriched in ?2H and ?18O, and have low TDS. A deeper regional flow component (group B), which originates at a higher altitude and which discharges to the Elk River valley bottom, is characterized by non-tritiated groundwater with relatively depleted ?2H and ?18O, and higher TDS. Groundwater contributes less than 10% of the total direct flow to the Elk River, as indicated by flow measurements and by the absence of group A and group B characteristics in the river water. Thus it is hypothesized that groundwater extraction during CSG production will have little impact on the river. The groundwater flow model developed in this work is used in a companion paper to further test this hypothesis.

  2. Emissions of Sulfur Trioxide from Coal-Fired Power Plants

    Microsoft Academic Search

    R. K. Srivastava; C. A. Miller; C. Erickson; R. Jambhekar

    2004-01-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a

  3. Economic comparison of nuclear and coal-fired generation. [Monograph

    SciTech Connect

    Corey, G.R.

    1980-01-01

    This paper compares the current and historic operating performance of 12 large nuclear and coal-fired units now operated by Commonwealth Edison Co., and provides specific comparisons of busbar costs of electricity generated by those units in recent years. It also provides cost comparisons for future nuclear and coal-fired units, and attempts to deal realistically with the effect of future inflation upon these comparisons. The paper deals with the problem of uncertainty, the effect of future developments on present-day comparisons, and how published comparisons have varied over the past four or five years. 9 tables.

  4. Algal growth and community structure in a mixed-culture system using coal seam gas water as the water source.

    PubMed

    Buchanan, Jessica J; Slater, Frances R; Bai, Xue; Pratt, Steven

    2013-01-01

    Coal seam gas (CSG) is being touted as a transition fuel as the world moves towards low-carbon economies. However, the development of CSG reserves will generate enormous volumes of saline water. In this work, we investigate the potential of using this saline water to support mass algae production. Water and brine from a CSG water treatment facility (1.6 and 11.6 g total dissolved solids per litre (TDS L(-1)) respectively) were inoculated with algal biomass from freshwater and seawater environments and supplemented with nutrients in open, fed-batch reactors. Significant algal growth was recorded, with maximum specific growth rates in CSG water and CSG brine of 0.20 +/- 0.05 d(-1) and 0.26 +/- 0.04 d(-1) respectively. These maximum specific growth rates were equal to or greater than specific growth rates in deionized water and seawater diluted to the same salinity. However, algal growth lag time in CSG brine was between 7 and 9 times longer than in other waters. Microscopy and terminal-restriction fragment length polymorphism (T-RFLP) were used to monitor community structure in the reactors. The same few algal species dominated all of the reactors, except for the CSG brine reactor at day 15. This result indicates that conditions in CSG brine select for different species of algae compared to seawater of the same salinity and other waters tested. The findings suggest that mass algae production in CSG water is feasible but algae community composition may be a function of CSG water chemistry. This has implications for the downstream use of algae. PMID:23837320

  5. Application of Data Fusion Theory in Coal Gas Fire Prediction System

    Microsoft Academic Search

    Xian-Min Ma

    2008-01-01

    In the coal mining production, the fire catastrophe is very dangerous to mining worker life and the whole coal well when the gas explosion is happening. So it is very important to predict fire happening and emit the alarm. In this paper, a novel coal gas fire prediction system is proposed based on multi-sensor data fusion theory. The four different

  6. INJECTION INTO COAL SEAMS FOR SIMULTANEOUS CO2 MITIGATION AND ENHANCED RECOVERY OF COALBED METHANE

    SciTech Connect

    Francis M. Carlson; Charles G. Mones; Lyle A. Johnson; Floyd A. Barbour; L. John Fahy

    1997-04-01

    Because of confidentiality requirements of this task, this topical report is necessarily brief and is based on quarterly reports that have been previously approved for release by Amoco Production Company (Amoco). More detailed topical reports have been written and will continue to be written as the project proceeds. The US Department of Energy (DOE) has approved that these detailed reports can be held in confidence for a period not to exceed three years from their dates of publication. When this three-year period has transpired, or earlier with Amoco's approval, the more detailed topical reports will be provided to DOE for its discretionary use. Three detailed technical reports have been written that cover the two-well pilot test, the laboratory work, and modeling using a coal reservoir description and Amoco's coalbed methane simulator. The document covering the two-well pilot test elicited many comments from Amoco personnel and a major revision of the document is in progress. The other two documents are essentially complete. History matching of the Allison Unit CO{sub 2} injection project has been completed and long-term performance predictions have been made using the resulting reservoir description. Idealized predictions for a quarter of a five-spot pattern of the process have been made and economics of the process evaluated.

  7. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    SciTech Connect

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties of the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.

  8. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  9. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  10. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir.

    PubMed

    Owen, Daniel D R; Cox, Malcolm E

    2015-08-01

    A combination of multivariate statistical techniques, simple hydrochemical mixing models and inverse geochemical modelling was used to investigate the major hydrochemical evolutionary pathways of a large alluvial aquifer, the upper Condamine River alluvium, south-east Queensland, Australia. Hydrochemical similarities between alluvium and sedimentary bedrock groundwater imply some mixing between alluvial and sedimentary bedrock aquifers, but spatial assessment showed that this was localised around outcrops of sedimentary bedrock in upstream areas. Within the alluvium, a distinct shift towards a low salinity Na-HCO3 water type and a brackish Na-HCO3-Cl water type was obvious in two separate locations. Both of these water types are unique to the alluvium, and inverse modelling shows that they can evolve via a combination of in situ alluvial processes, including diffuse recharge of rainfall or river water or the evolution of basalt-derived groundwater via gypsum dissolution plagioclase weathering, cation exchange and some carbonate precipitation/dissolution. The evolution of these water types is potentially influenced by overlying sodic alkaline soils, and often is associated with a source of sulfate. Evapotranspiration is the dominant salinization process in the alluvium and increases in calcium cations during salinization indicate that brackish Na-HCO3-Cl groundwater in the underlying Walloon Coal Measures are unlikely to have a major influence on salinization in the alluvium. The most saline water types observed were endemic to shallow zones of the alluvium where evapotranspiration is likely. Results demonstrate that a combination of multivariate statistics and inverse geochemical modelling can be successfully used to delineate hydrochemical pathways in complex hydrogeological settings where a range of environmental and anthropogenic factors may be influencing the evolution of water types with similar hydrochemical compositions. PMID:25863513

  11. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  12. Coal-Fired Fluidized Bed Combustion Cogeneration 

    E-print Network

    Thunem, C.; Smith, N.

    1985-01-01

    The availability of an environmentally acceptable multifuel technology, such as fluidized bed combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging...

  13. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    Microsoft Academic Search

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled

  14. Heat pipe technology for coal-fired power systems

    Microsoft Academic Search

    K. L. Uherka; R. E. Holtz; G. A. McLennan; E. R. Koehl

    1985-01-01

    This report summarizes the results of heat pipe R and D activities at Argonne National Laboratory (ANL) during the 1977 to 1984 time period. The heat pipe development efforts were associated with a variety of DOE supported projects involving coal-fired prime movers for stationary power generation. The role of heat pipes for these power systems is in their potential application

  15. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Microsoft Academic Search

    Michael J. Bockelie

    2000-01-01

    This report summarizes the research that has been performed by Reaction Engineering International (REI) during the last three months on demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last six months have been on: (1) Field Tests for RRI at the Conectiv BL

  16. SO2 ABATEMENT FOR COAL-FIRED BOILERS IN JAPAN

    EPA Science Inventory

    The report is a compilation of information on the current status of SO2 abatement technologies for coal-fired boilers in Japan, where strict ambient air quality standards for SO2 and NOx mandate the use of various air pollution control technologies. It focuses on flue gas desulfu...

  17. Wood-Coal Fired "Small" Boiler Case Study 

    E-print Network

    Pincelli, R. D.

    1980-01-01

    Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted...

  18. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. PMID:15242154

  19. Overview of the influence of syn-sedimentary tectonics and palaeo-fluvial systems on coal seam and sand body characteristics in the Westphalian C strata, Campine Basin, Belgium

    USGS Publications Warehouse

    Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul

    1995-01-01

    The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.

  20. Waste generation comparison: Coal-fired versus nuclear power plants

    SciTech Connect

    LaGuardia, T.S.

    1998-12-31

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country`s fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant.

  1. Waste Generation Comparison: Coal-Fired Versus Nuclear Power Plants

    SciTech Connect

    Thomas S. LaGuardia

    1998-12-31

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of our country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of our generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical 1150-MW(electric) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant.

  2. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  3. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Microsoft Academic Search

    Sri Widodo; Wolfgang Oschmann; Achim Bechtel; Reinhard F. Sachsenhofer; Komang Anggayana; Wilhelm Puettmann

    2010-01-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (<1%)

  4. Compacting biomass waste materials for co-firing with coal

    SciTech Connect

    Graham, J.; Kiesler, J.; Morgan, A.; Liu, H.; Marrero, T.R.

    1999-07-01

    The purpose of this study is to develop a process that allows for the optimum compaction of various biomass waste materials to form fuels that can be co-fired with coal in conventional coal-fired power plants. Previous studies have shown that the use of biomass fuels in conjunction with coal in power plants is beneficial for several reasons. The use of biomass fuels reduces the amount of harmful gases that are emitted into the atmosphere by the firing of coal alone. In addition, the biomass used is primarily waste products that would be placed in a municipal landfill. By using this waste material as a fuel, the volume of waste being disposed of in landfills can be decreased significantly. However, in an uncompacted state these biomass wastes are bulky and costly to handle and transport. Compacting the biomass will increase its density and decrease the difficulty in handling and shipping costs. Four biomass products, wood chips, sawdust, low quality waste paper, and tree trimmings were compacted at various pressures into 1.91-inch diameter logs. After compaction, the logs were subjected to ASTM standard tests for unconfined compressive strength and splitting tensile strength. Tumbling tests and drop tests were also performed according to ASTM standards. The logs were also subjected to a water absorption test. Finally, each log will be tested to determine its thermal characteristics, such as the heating value and the gases each log produces when burned.

  5. Potential of Co-firing of Woody Biomass in Coal Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    Taking the distributing woody biomass supply into account, this paper assesses the potential of a co-firing of woody biomass in utility's coal power plant from the both energy-saving and economical view points. Sawmill wastes, trimming wastes from fruit farms and streets, and thinning residues from forests in Aichi Prefecture are taken into account. Even though transportation energy is required, almost all of woody biomass can be more efficiently used in co-firing with coal than in a small-scale fuel cell system with gasification as a distributed utilization. When the capital cost of fuel cell system with 25% of total efficiency, including preprocess, gasification and power generation, is higher than 170× 103yen/kW, almost all of thinning residues can be more economically used in co-firing. The cost of woody biomass used in co-firing is also compared with the transaction cost of renewable power in the current RPS scheme. The result suggests the co-firing of woody biomass in coal fired power plant can be feasible measure for effective utilization of woody biomass.

  6. Western cretaceous coal seam project economic and reserve evaluation of San Juan Basin, fruitland formation coalbed natural gas reservoirs. Topical report, January 1988-December 1991

    SciTech Connect

    Mavor, M.J.

    1991-11-15

    One of the objectives of the Western Cretaceous Coal Seam Project is to investigate and improve formation evaluation techniques for estimating the future performance of Fruitland Formation (Upper Cretaceous) coalbed natural gas reservoirs in the San Juan Basin of Colorado and New Mexico. This information is required to accurately estimate the future fluid production performance. One of the questions that is frequently asked is 'What reservoir properties are required for coalbed methane reservoir development.' An evaluation of the economic results of investment and sales of natural gas is required to fully answer this question. Two papers were prepared to address the methodology of economic evaluation. The first of these papers entitled Evaluation of Fruitland Coal Properties and Development Economics, San Juan Basin, Colorado and New Mexico, is included in Section 1 of this report. The second paper entitled Economic and Reserve Evaluation of Coalbed Methane Reservoirs is included in section 2.

  7. Coal-Fired Fluidized Bed Combustion Cogeneration

    E-print Network

    Thunem, C.; Smith, N.

    , this addition of cogeneration to the fuel conver sion analysis considerably complicates the investi gation. A system design for cogeneration of steam and electricity at a nominal 40,000 pound per hour capacity utilizing fluidized bed combustion... is described. The basic system incorporates silo storage of coal, ash, and limestone with dense phase conveying. The system generates power util izing either a backpressure turbine or a condensing turbine with steam extraction. Three case studies performed...

  8. The effect of fuel form on trace element emissions in an industrial-scale coal fired boiler

    SciTech Connect

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Coal Utilization Lab.

    1998-12-31

    Eleven of the fourteen inorganic hazardous air pollutants identified in Title 3 of the Clean Air Act Amendments of 1990 are present in the flue gas of pulverized coal-fired boilers. The designated elements include: antimony (Sb), beryllium (Be), chlorine (Cl), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorus (P). Determining the risk of these elements in the environment is difficult at best. However, regulating their emission into the environment has some scientific basis and merit. Approximately 137.5 tons of mercury were emitted in the US by combustion sources in 1994--1995, with coal-fired utility boilers accounting for 37.4% (or 51.6 tons) of the total. Control of trace element emissions from coal-fired utility boilers requires an understanding of the manner in which they occur in coal, their behavior during and after combustion and their form in the stack gas. The multimedia behavior of trace elements during combustion can be traced to their volatility within the combustion and post-combustion environment. The temperature distribution within the combustion system, the mechanism of char and ash formation (e.g. duration of char burnout and char and cenosphere morphology) and the combustion efficiency determine the partitioning of trace elements during combustion. These factors can be affected by the form in which a fuel is fired, e.g., pulverized coal (PC) versus coal-water slurry fuel (CWSF). This paper presents preliminary results of emissions testing aimed at determining the effect of fuel form on the penetration and partitioning of trace elements in an industrial-scale boiler. The tests were conducted on a 2 MMBtu/hr research boiler, in which Middle Kittanning Seam coal (hvA bituminous) from Jefferson County, Pennsylvania was burned in pulverized form and as a CWSF. The tests were conducted in accordance with the procedure outlined in EPA Methods 5 and 29 to measure trace elements in the gas and particulate phases of the flue gases generated during coal combustion. Further studies will include analysis of droplet and particle size, char morphology, and the size, distribution and composition of the mineral matter in the two fuels.

  9. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  10. Mutagenicity in emissions from coal- and oil-fired boilers.

    PubMed Central

    Alfheim, I; Bergström, J G; Jenssen, D; Møller, M

    1983-01-01

    The mutagenicity of emission samples from three oil-fired and four coal-fired boilers have been compared by using the Salmonella/microsome assay. Very little or no mutagenic activity was observed in samples from five of these boilers. The sample from one oil-fired boiler showed mutagenic activity of about 500 revertants/MJ, and the sample from a coal-fired fluidized bed combustor had an activity of 58,000 revertants/MJ measured with strain TA 98 in the absence of metabolic activation. All samples contained substances that were cytotoxic to the test bacteria, thus making it difficult to obtain linear dose-response curves. Mutagenic activity at low levels may remain undetected due to this toxicity of the samples. Samples with mutagenic activity below the detection limit in the Salmonella test have also been tested for forward mutations at the HGPRT locus in V79 hamster cells. Weak mutagenic effects were detected in two of the samples, whereas the sample from one oil-fired boiler remained negative. In this test, as well as in the Salmonella test, a strong cytotoxic effect could be observed with all samples. PMID:6825617

  11. The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility

    SciTech Connect

    Evans, B.R.; Washington, E.S.; Sanders, M.E.

    1993-10-01

    A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  12. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  13. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    Microsoft Academic Search

    Stanislav V Vassilev; Christina G Vassileva

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). The highest values in coal ash are displayed by elements such as Rb,

  14. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    Microsoft Academic Search

    Carlos E. Romero; Ying Li; Harun Bilirgen; Nenad Sarunac; Edward K. Levy

    2006-01-01

    US EPA's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction of the anthropogenic emissions of mercury into the atmosphere. Mercury emissions are impacted by factors such as coal type, boiler operation, fly ash characteristics and type of environmental control equipment installed

  15. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash. PMID:21090555

  16. Potential of Co-firing of Woody Biomass in Coal Fired Power Plant

    Microsoft Academic Search

    Yosuke Makino; Takeyoshi Kato; Yasuo Suzuoki

    2005-01-01

    Taking the distributing woody biomass supply into account, this paper assesses the potential of a co-firing of woody biomass in utility's coal power plant from the both energy-saving and economical view points. Sawmill wastes, trimming wastes from fruit farms and streets, and thinning residues from forests in Aichi Prefecture are taken into account. Even though transportation energy is required, almost

  17. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Roy, Priyom; Guha, Arindam; Kumar, K. Vinod

    2015-07-01

    Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.

  18. COAL/D-RDF (DENSIFIED REFUSE DERIVED FUEL) CO-FIRING PROJECT, MILWAUKEE COUNTY, WISCONSIN

    EPA Science Inventory

    A Research and Development Project was carried out to mix a densified refuse derived fuel with coal at the fuel receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to esta...

  19. Aerosol nucleation in coal-fired power-plant plumes

    NASA Astrophysics Data System (ADS)

    Stevens, Robin; Lonsdale, Chantelle; Brock, Charles; Makar, Paul; Knipping, Eladio; Reed, Molly; Crawford, James; Holloway, John; Ryerson, Tim; Huey, L. Greg; Nowak, John; Pierce, Jeffrey

    2013-05-01

    New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations, particularly near source regions, with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes, we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM), a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies, and the model reproduces well the major features of each case. Using this model, we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes, even if emissions are held constant. We subsequently used the model to evaluate the effects of SO2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO2 emissions may increase new-particle formation, due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US, and we found a median decrease of 19% in new-particle formation. However, the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.

  20. NOx Control Options and Integration for US Coal Fired Boilers

    Microsoft Academic Search

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-01-01

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using

  1. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Microsoft Academic Search

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-01-01

    This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1)

  2. Particulate Matter Emissions from a Coal-Fired Power Plant

    Microsoft Academic Search

    Ping Lu; Jiang Wu; Wei-Ping Pan

    2010-01-01

    Particulate matter emissions of filterable particulate matter (FPM), condensible PM (CPM), PM10, and PM2.5 at FGD inlet and stack in a coal-fired power plant were measured by EPA method 201A and method 202. The results indicated that emissions of total particulate matter (TPM) are 40.99mg\\/m3 and 120.58mg\\/m3, and the filterable PMs are the highest emissions at both sampling locations which

  3. Digital bus technology in new coal-fired plants

    SciTech Connect

    Blaney, J.; Murray, J. [Emerson Process Management (United States)

    2007-10-15

    The main issues associated with including digital bus technology such as Foundation fieldbus, Profibus-DP or DeviceNet, in a coal-fired power plant are deciding which systems to install and determining how to implement it. Although still new, digital bus experiences to date have shown that the technology performs solidly and when wiring best practices are followed a significantly shorted commissioning cycle can be achieved. 1 fig., 2 tabs.

  4. Coal-fired high performance power generating system. Final report

    SciTech Connect

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  5. Corrosion in coal-fired boilers

    SciTech Connect

    Vausher, A.L.

    1982-01-01

    The corrosive effect of the flue gas and the fly ash from burning coal on combustion and pollution control equipment has led to extensive research efforts aimed at solving this problem. A wide variety of chemical additives are offered by suppliers to perform corrosion reduction functions when added to the solid or liquid fuel. Protection of equipment by the use of corrosion resistant coatings and improved designs to prevent or reduce slag formation are also well known corrosion reduction techniques. However, the problem facing management is to evaluate the many different alternatives and to define the most effective one for their particular facility. Information gained from previous corrosion reduction attempts, and knowledge of factors which increase the SO/sub 3//SO/sub 2/ ratio in the flue gas have resulted in the investigation of methods of controlling the dew point and therefore, reducing the condensation of sulfuric acid. Various methods of avoiding the formation of acid are being evaluated.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-01-31

    This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1) Completion of a long term field test for Rich Reagent Injection (RRI) at the Conectiv BL England Station Unit No.1, a 130 MW Cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for RRI in PC fired boilers; (3) Design improvements and calibration tests of the corrosion probe; and (4) Investigations on ammonia adsorption mechanisms and removal processes for Fly Ash.

  7. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-print Network

    Sekar, Ram Chandra

    2005-01-01

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  8. Control Strategies of Atmospheric Mercury Emissions from Coal-fired Power Plants in China

    Microsoft Academic Search

    Hezhong Tian; Yan Wang; Ke Cheng; Yiping Qu; Jiming Hao; Zhigang Xue; Fahe Chai

    2012-01-01

    Atmospheric Hg emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of

  9. Modeling arsenic partitioning in coal-fired power plants

    SciTech Connect

    Senior, Constance L.; Lignell, David O.; Sarofim, Adel F. [Reaction Engineering International, 77 West 200 South, Suite 210, Salt Lake City, UT 84101 (United States); Mehta, Arun [EPRI, 3412 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2006-11-15

    Vapor-phase arsenic in coal combustion flue gas causes deactivation of the catalysts used in selective catalytic reduction (SCR) systems for NO{sub x} control. A one-dimensional model has been developed to predict the behavior of arsenic in the postcombustion region of a coal-fired boiler as a function of gas residence time. The purpose of the model is to calculate the partitioning of arsenic between the vapor phase from volatilization and arsenic on the ash particles due to surface reaction and/or condensation at temperatures characteristic of SCR systems. The model accounts for heterogeneous condensation of arsenic on the fly ash, as well as surface reaction for two regimes: (1) the free molecular regime (submicrometer ash particles) and (2) the continuum regime (supermicrometer ash particles). All gas properties are computed as functions of gas temperature, pressure, and composition, which are allowed to vary. The arsenic model can be used to calculate the impact of coal composition on vapor-phase arsenic at SCR inlet temperatures, which will help utilities better manage coal quality and increase catalyst lifetimes on units operating with SCR. The arsenic model has been developed and implemented and was tested against experimental data for several coals. (author)

  10. The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia

    Microsoft Academic Search

    M. Faiz; A. Saghafi; N. Sherwood; I. Wang

    2007-01-01

    Gas content of coals continuously change throughout their burial histories as a result of the changing state of equilibrium of the coal–gas system caused by variations in P–T conditions and coal rank. To fully evaluate the prospectivity of a coalbed methane resource, numerous coal properties, burial history, P–T conditions, hydrology and the likelihood of secondary biogenic gas generation need to

  11. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  12. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  13. At best, Colorado seams unusual

    SciTech Connect

    Jackson, D.

    1983-11-01

    Shaped not unlike a saucer at the Mad Hatter's tea party, the coal deposit now being mined by Walden Coal Co. on the Western Slope of Colorado has provided this small producer with a geologic setting that is allowing the company to register a 42-ton-per-manshift productivity figure in the record book. Contributing to this somewhat Alice-In-Wonderland production figure are the following features: Overburden, interburden and coal need not be blasted, only ripped with dozers. Overburden is removed with two scraper-loaders. A third unit is used during bad weather conditions. The upper seam is 16.5 ft thick, with overburden ranging in thickness from 2 ft to 35 ft. The lower seam is 25.5 ft thick and covered by 80 ft of interburden. Overburden-to-coal ratio averages 41/2:1. Pit haulage for overburden and coal averages 500 ft.

  14. Co-firing coal and municipal solid waste

    SciTech Connect

    Demirbas, A. [Sila Science, Trabzon (Turkey)

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  15. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    SciTech Connect

    Glick, D.C.; Davis, A.

    1984-07-01

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  16. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  17. Mercury control for coal-fired power plants

    SciTech Connect

    Haase, P.

    2005-06-30

    On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

  18. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  19. Engineering Development of Coal-Fired High Performance Power Systems

    SciTech Connect

    None

    2000-12-31

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters

  20. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  1. Biomass cofiring in full-sized coal-fired boilers

    SciTech Connect

    Plasynski, S.I.; Costello, R.; Hughes, E.; Tillman, D.

    1999-07-01

    Biomass cofiring represents one alternative for reducing greenhouse gas emissions of carbon dioxide from fossil sources. Realizing this opportunity, the Federal Energy Technology Center (FETC), a field site of the Department of Energy (DOE), along with the EPRI, initiated a Program around two-years ago to research the feasibility of coal-fired boilers in cofiring of biomass and other waste-derived fuels. The cooperative agreement between FETC and EPRI includes cofiring at six different electric utility sites and one steam generation site. Boilers include wall-fired, tangential, cyclone, and stokers ranging in size from 15 to 500 MWe. Biomass consisting of wood (usually) and switchgrass (in two cases) will be the fuel, and pulp and plastics may be used in some waste-derived fuels cofiring tests. This paper will focus only on the biomass cofired tests in electric utility boilers.

  2. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  3. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    SciTech Connect

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  4. The safety and economics of high ash anthracite fired mixing with petroleum-coke in pulverized coal-fired furnace

    SciTech Connect

    Zhang, Z.; Sun, X.; Li, F. [HuaZhong Univ. of Science and Technology, WuHan HuBei (China)

    1996-12-31

    Petroleum-coke was fired only in CFB because of its content of high S and low volatile matter. It will bring environmental and flame stability problems if petroleum-coke is fired in a pulverized coal-fired furnace. Low rank anthracite is fired in many pulverized coal-fired furnaces without flame stability problems. Here the authors blend high ash anthracite with petroleum-coke as the fuel for a pulverized coal-fired furnace to decrease the ash content in the fuel. Experimental results had shown that in mixing with petroleum-coke, the combustion behavior of the blended fuel was improved and ash deposition characteristic would not change compared with high ash anthracite. Using coal/petroleum-coke as the fuel for furnace can bring great benefits for the environment and furnace. But S content in blended fuel must be controlled under the regulation of S content in coal and the volatile content should not decrease too low for the coal-fired furnace design to avoid the environmental and flame stability problems.

  5. An Analysis of Various Options of Using Biomass in Supercritical Coal Fired Power Plants

    Microsoft Academic Search

    J. KOTOWICZ

    The paper deals with a conception of replacing high-pressure regeneration in a supercritical coal fired power plant by a water boiler combusting biomass. The technology classified as belonging to the group of methods simultaneously co-firing biomass and coal is an alternative of the actually applied direct methods. Five variants of the configuration of replacing three regenerating exchangers have been analyzed.

  6. Burnout control at the Albright coal-waste-bank fire. Rept. of investigations\\/1991

    Microsoft Academic Search

    R. F. Chaiken; L. G. Bayles

    1991-01-01

    Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed

  7. Flexibility of a 300 MW Arch Firing Boiler Burning Low Quality Coals

    Microsoft Academic Search

    Qing-yan FANG; Huai-chun ZHOU; Hua-jian WANG; Bin YAO; Han-cai ZENG

    2007-01-01

    Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported. Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation. The carbon content and the size distributions of the char samples were obtained. The char morphology was

  8. Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers 

    E-print Network

    Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

    2013-01-01

    Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning...

  9. Projected costs of electricity from nuclear and coal-fired power plants. Volume 1

    Microsoft Academic Search

    1982-01-01

    The relative economic merit of nuclear versus coal-fired electricity generation for new plants beginning baseload service in 1995 is discussed. The year 1995 is a focal point because it roughly coincides with the time horizon required to bring a new nuclear plant into operation, starting with an initial investment decision today. It is assumed that nuclear and coal-fired generating plants

  10. Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers

    E-print Network

    Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

    2013-01-01

    Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning...

  11. APPLICABILITY OF THE THERMAL DENOX PROCESS TO COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report gives a projection of the performance and cost of the Exxon Thermal DeNOx Process applied to coal-fired utility boilers. Eight units were selected, representing different boiler manufacturers, sizes, firing methods, and coal types. Thermal DeNOx performance was project...

  12. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO?) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. PMID:25646673

  13. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  14. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  15. Fuel supply system and method for coal-fired prime mover

    DOEpatents

    Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

    1995-01-01

    A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

  16. Particle Characteristics in the Radiant Section of a Coal-fired Utility Boiler

    Microsoft Academic Search

    D. L. BLACK; M. Q. McQUAY

    1998-01-01

    Particle data on a 160 MWe corner-fired, pulverized-coal fired boiler operated by New York State Electric and Gas (NYSEG) were collected as part of a comprehensive series of measurements taken to better understand the complex phenomena involved in pulverized-coal combustion, and to develop information suitable for model validation of comprehensive combustion codes. Changes in operating conditions involved variations in coal

  17. Co-firing wood waste and coal at Naantali-3 power plant

    Microsoft Academic Search

    Kostamo

    1999-01-01

    Co-firing tests with coarse sawdust and Polish coal have been carried out at FORTUM's Naantali-3 CHP power plant (315 MWfuel). Naantali-3 plant is a tangentially fired pulverized coal unit with a Sulzer flow-through boiler that produces 79 MW electricity, 124 MW district heat and 70 MW steam. Naantali-3 is equipped with roller coal mills (Loesche), modern low-NOx-burners (IVO RI-JET), OFA,

  18. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  19. Ash deposition at coal-fired gas turbine conditions; Surface and combustion temperature effects

    Microsoft Academic Search

    G. A. Richards; R. G. Logan; C. T. Meyer; R. J. Anderson

    1992-01-01

    In this paper a study of ash deposition from a cleaned bituminous and conventional bituminous coal is presented. An electrically heated drop tube furnace is used to burn the coal and provide deposition conditions representative of proposed coal-fired gas turbines. Variations in the combustion temperature and deposit surface temperature demonstrate that surface cooling may significantly reduce ash deposition, or may

  20. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  1. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  2. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream reactor was completed during this quarter and shakedown testing was begun at the University of Utah pilot-scale coal furnace. Talks continued with two utilities that have expressed interest in hosting a demonstration.

  3. Co-firing wood waste and coal at Naantali-3 power plant

    SciTech Connect

    Kostamo, J.A.

    1999-07-01

    Co-firing tests with coarse sawdust and Polish coal have been carried out at FORTUM's Naantali-3 CHP power plant (315 MWfuel). Naantali-3 plant is a tangentially fired pulverized coal unit with a Sulzer flow-through boiler that produces 79 MW electricity, 124 MW district heat and 70 MW steam. Naantali-3 is equipped with roller coal mills (Loesche), modern low-NOx-burners (IVO RI-JET), OFA, ESP and FGD. Coal and sawdust were blended in the coal yard, and the mixture was fed into the boiler through coal mills. Performance tests were being conducted over a period of three weeks. A total of 670 tonnes (as received, 38-51% moisture) of pine and spruce sawdust from the sawmill were burned. The first test week was used to define, in the technical sense, the maximum proportion of wood in the blend when the coal/wood waste blend was introduced to one coal mill. Based on these experiments, the coal/sawdust mixture was introduced to all coal mills. During the actual co-firing tests, the proportion of sawdust in the blend varied between 4 and 10 per cent by mass (1 to 4 per cent from the fuel input). The co-firing tests were successful in many ways, but the behavior of the coal mills caused some problems, and therefore the simultaneous feed might not be the solution in a long-term use.

  4. Design and implementation of a dedicated prototype GIS for coal fire investigations in North China

    Microsoft Academic Search

    Anupma Prakash; Zoltán Vekerdy

    2004-01-01

    This paper presents the design architecture and functioning of CoalMan, a tailor made Geographic Information System (GIS) for managing surface and underground fires in coal mining areas. CoalMan is specially designed for and installed in the Rujigou coal field in north-west China. It uses ILWIS as the supporting GIS package. It functions through its database and management tools, processing and

  5. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  6. Coal-fired boiler costs for industrial applications

    SciTech Connect

    Kurzius, S.C.; Barnes, R.W.

    1982-04-01

    Several of the current sources of information provide data on coal-fired steam boiler costs. As published, these data give widely varying and possibly inconsistent conclusions. This study was undertaken to determine the extent to which the differences in the various sets of published data bases could be resolved and, if possible, to arrive at more reliable cost correlations to be used in Oak Ridge Energy Demand Models. Our principal finding is that it is indeed possible to restate the costs within each data base on a more consistent basis. When this is done, reasonable engineering correlations of all the cost data versus steam plant capacity can be made over the 10,000 to 5000,000 lb/hr range.

  7. Pyrometamorphism resulting from in-situ coal fires in nature: A review of the literature. Topical report, March 1987-August 1990

    SciTech Connect

    Daly, D.J.

    1990-08-01

    In situ combustion of coal seams in nature results in the alteration of adjacent noncoal geological materials through pyrometamorphism. A survey of the literature concerning natural coal-combustion pyrometamorphism resulted in the identification and review of more than 70 sources in six categories: (1) General, (2) Mineralogical Characterization, (3) Physical Characterization, (4) Age Dating, (5) Combustion Dynamics, and (6) Environmental Impacts. Natural coal-combustion events, typically associated with low-rank coals, occur above the water table where they are characterized by relatively low rates of combustion under non-uniform conditions. These system produce predominantly low-temperatuare materials. UCG systems, in contrast, are characterized by relatively high rates of combustion under uniform conditions and produce mainly high-temperature materials. However, conditions and products are similar overall, indicating that natural coal fires and accompanying pyrometamorphism constitute the reasonable natural analog of UCG systems. Information from natural systems is contributing to UCG-related research through development of protocols for characterization of altered materials, modeling of thermal transformations, and modeling the potential for impacts on the gasification process and the environment.

  8. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  9. Trace elements in two pulverized coal-fired power stations.

    PubMed

    Sandelin, K; Backman, R

    2001-03-01

    Beside major pollutants (particulates, carbon, sulfur, and nitrogen oxides), coal combustion generates emissions of potentially toxic trace elements. The current work focuses on predicting the fate of eight trace elements (As, Cd, Hg, Ni, Pb, Se, V, and Zn) in power stations that fire pulverized coal and are equipped with flue gas scrubbers. The core of the study is global equilibrium analysis carried out with the aid of three extensive databases. The first set of equilibrium constants describes conditions prevailing in the furnace and the flue gas duct, while the second set describes reactions in the flue gas scrubber. Melting behavior of ash and solubility of trace elements within the slag are described as a third set of data. To test the modeling approach taken in this paper, the predicted overall partitioning of trace elements is compared with measured data from two full-scale facilities. The results of the study indicate that As, Cd, Ni, Pb, V, and Zn are captured in the fly ash, and that the fate of these element correlates with the overall particle capture of the power plants. Calculations for the flue gas scrubber facilities show that nonvolatile trace elements are likely to dissolve in the scrubber solution, and that capture of these elements likewise is correlated with the overall particulate behavior. Theoretical predictions of the melting behavior indicate that As, Ni, Zn, and to some extent Pb are likely to dissolve in the molten ash. PMID:11351523

  10. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  11. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  12. Hydrogeology of a coal-seam gas exploration area, southeastern British Columbia, Canada: Part 2. Modeling potential hydrogeological impacts associated with depressurizing

    NASA Astrophysics Data System (ADS)

    Harrison, S.; Molson, J.; Abercrombie, H.; Barker, J.

    2000-12-01

    A three-dimensional, finite-element flow model was used to assess the hydrogeological effects of depressurizing coalbeds lying in the Weary Creek exploration block, Elk River valley, southeastern British Columbia, Canada. The simulation results permit, at an early stage, assessment of the environmental and economic implications of how the flow system may respond to depressurization. Estimated reservoir conditions for the coal-seam gas targets lying within the Upper Jurassic-Lower Cretaceous Mist Mountain Formation indicate that the coalbeds must be depressurized by up to 350 m to attain the critical gas desorption pressure. The simulations suggest that depressurizing has little effect on groundwater flux to the Elk River. Simulated water production for three depressurizing wells operating under steady-state, single-phase flow for initial reservoir conditions of 13 and 16.5 cm3/g is 645 m3/d (4,057 barrels/d) and 355 m3/d (2,233 barrels/d), respectively. Groundwaters collected from monitoring wells have relatively low salinity, ranging from about 250-1,300 mg/L. The groundwater is supersaturated with respect to Ca-Mg-Fe carbonates (calcite, dolomite, and siderite) and Al-bearing silicates, including kaolinite and illite. Dissolved trace-metal concentrations are low; only Fe, Cd, Cr, and Zn exceed Canadian water-quality guidelines for aquatic life. Groundwaters were devoid of the more soluble monocyclic aromatic organic compounds, including benzene, toluene, ethylbenzene, and polycyclic aromatic compounds, including naphthalene.

  13. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  14. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    NONE

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  15. Control of NO/sub x/ from coal-fired boilers: combustion-modification techniques. [Effect of boiler type, coal type and firing method

    SciTech Connect

    Huang, H.S.

    1981-10-01

    The effectiveness of commercially available combustion-modification (CM) techniques and prospects for seven advanced CM methods now under development are evaluated in terms of controlling NO/sub x/ emissions in coal-fired boilers. Boiler types considered include single-wall-fired and horizontally opposed wall-fired, tangentially fired, and down-fired boilers; underfed, overfed, and spreader stokers; and cyclone units. Significant variations in NO/sub x/ emissions occur with boiler type, coal type, and firing method. Emission-control performance, cost, and operating characteristics are compared for the applicable CM techniques. This study finds off-stoichiometric, or staged, combustion (OSC) and low-excess-air operation to be the most cost-effective methods for existing units, while OSC and low-NO/sub x/ burners are best for new units. Further research is needed to resolve potential corrosion problems associated with low-NO/sub x/ operations. Advanced burner/boiler designs now under active development could lower NO/sub x/ emissions from coal-fired boilers to about 0.2 lb/10/sup 6/ Btu heat input. Present efforts to understand NO formation/destruction mechanisms and their interaction with operating characteristics of these new designs should be accelerated.

  16. SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants 

    E-print Network

    Beene, Jack Stephen

    1995-01-01

    The goal of this research was to determine if S02 emissions from coal-fired power plants could be contributing to the copper deficiency in cattle. Copper deficiency in cattle can result from excessive sulfur intake which ...

  17. MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980

    SciTech Connect

    Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

    1981-03-01

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

  18. Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing 

    E-print Network

    Boushell, C. C.

    1980-01-01

    The purpose of the paper is to disseminate information on the energy savings possible with High Temperature Water (HTW) for heating and industrial process application and to provide information on coal fired HTW generator design and availability....

  19. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  20. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  1. OPERATION AND MAINTENANCE OF PARTICULATE CONTROL DEVICES ON COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report discusses the control of fine particulate from coal-fired utility boilers, using electrostatic precipitators (ESPs), wet scrubbers, and fabric filters. It provides guidelines to utility personnel, responsible for selecting fine particulate control equipment, on signifi...

  2. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-print Network

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  3. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers

    E-print Network

    Miller, B.; Keon, E.

    1980-01-01

    emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been...

  4. SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants

    E-print Network

    Beene, Jack Stephen

    1995-01-01

    The goal of this research was to determine if S02 emissions from coal-fired power plants could be contributing to the copper deficiency in cattle. Copper deficiency in cattle can result from excessive sulfur intake which is attributed...

  5. Using ISC & GIS to predict sulfur deposition from coal-fired power plants

    E-print Network

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  6. The knowledge of underground coal gasification (UCG) applied to coalbed methane extraction (CBM) and natural coal fires (NCF)

    SciTech Connect

    Wolf, K.H.A.A.; Hettema, M.H.H.; Bruining, J.; Schreurs, H.C.E.

    1997-12-31

    This paper will give a general view on the application of underground coal gasification (UCG) for the improvement of coalbed methane (CBM) production enhancement and the utilization of natural coal fires (NCF). In general UCG techniques will improve the opportunities for the enhancement and utilization of potential energy sources. When all options, UCG, CBM and NCF are placed in a Clean Coal Exploitation Program, it can be divided into a ``cold program`` and a ``hot program.`` In a cold program the authors propose the development and exploitation of second generation cold coal-energy, i.e., coal gas extraction (CBM). The hot program considers the activities in which in-situ burning coals make the core issue for exploitation (UCG, NCF). In both programs UCG-technologies could be important tools for energy acquisition and production improvement.

  7. ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS

    Microsoft Academic Search

    T. M. Sullivan; F. D. Lipfert; S. M. Morris; S. Renninger

    The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not

  8. Magnesia scrubbing applied to a coal-fired power plant. Final report August 1973August 1975

    Microsoft Academic Search

    Koehler

    1977-01-01

    The report gives results of a full-size demonstration of the magnesia wet-scrubbing system for flue gas desulfurization (FGD) on a coal-fired utility boiler. The system was designed to desulfurize half the flue gas from a 190-MW rated capacity generating unit firing 3.5% sulfur coal. The FGD installation was equipped with a first-stage wet scrubber for particle emissions control, followed by

  9. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Microsoft Academic Search

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-01-01

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year

  10. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  11. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

  12. Use of multiple opportunity fuels in coal-fired cyclone boilers

    SciTech Connect

    Tillman, D.A.; Hus, P.; Hughes, E.

    1999-07-01

    Northern Indiana Public Service Company (NIPSCO), with support from USDOE-EERE, the USDOE Federal Energy Technology Center, and EPRI, is installing a materials handling system to fire a combination of wood waste and petroleum coke with the base coal in the No.7 boiler of Bailly Generating Station. The No.7 boiler is a 160 MW{sub e} (net) unit fired with four cyclones. It is typically fired with a blend of Illinois coal and Western coal. The gaseous combustion products from this boiler are ducted to a precipitator and then to a Pure Air scrubber for sulfur oxides removal. The Pure Air scrubber converts the SO{sub 2} into artificial gypsum. Typically the unit burns about 70 tons/hr of coal at full load. The Bailly Generating Station program, being implemented by Foster Wheeler Development Corporation, involves blending petroleum coke and wood waste with coal for combination opportunity fuel firing. Multiple fuel firing is intended to capture the advantages of each fuel: high volatility of biofuels and high Btu content of petroleum coke are among these characteristics. The objective of the program, then, is to reduce fuel costs at the station while improving combustion. The program involves constructing a fuel handling and blending system, and then testing the impacts of individual opportunity fuels with coal plus blends of opportunity fuels with coal. This paper reviews the program concept, the combustion modeling, the blending system design, and the results of baseline and laboratory testing to date.

  13. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  14. Development program for MHD direct coal-fired power generation test facility

    Microsoft Academic Search

    J. B. Dicks; Y. C. L. Wu; R. C. Attig

    1979-01-01

    The following program activities are described: vitiation heater\\/combustor development, NO\\/sub x\\/ testing, relative temperature measurement in support of combustion of combustor testing, progress in the design and construction of the coal fired flow facility, and materials experimentation to determine the rate of potassium loss from seeded coal slag at various temperatures.

  15. ENVIRONMENTAL ASSESSMENT OF A WATERTUBE BOILER FIRING A COAL-WATER SLURRY. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue gas emissions; source assessment sampling system (SASS) sampling of the flue gas,...

  16. Geologic history of natural coal-bed fires, Powder River basin, USA

    Microsoft Academic Search

    E. L Heffern; D. A Coates

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the

  17. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978June 1979

    Microsoft Academic Search

    C. E. West; J. E. Hines; D. L. Jr. Stewart; H. Yu

    1979-01-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb\\/h (coal) staged slagging cyclone combustor (SSCC) attached

  18. Isotopic Variations of Mercury Emitted by Coal Fired Power Plant Gases

    Microsoft Academic Search

    S. N. Khawaja; L. Odom; W. Landing

    2010-01-01

    Emission of mercury from the burning of coal is considered one of the important anthropogenic sources of atmospheric mercury. Along with current measurements of the isotopic composition of atmospheric mercury being conducted in our laboratory, we have analyzed mercury emitted from a coal fired power plant. Previously Biswas and others (2008) had reported variations in the isotopic composition of mercury

  19. PARTICULATE COLLECTION EFFICIENCY MEASUREMENTS ON AN ESP INSTALLED ON A COAL-FIRED UTILITY BOILER

    EPA Science Inventory

    The report gives results of fractional and overall collection efficiency measurements of an electrostatic precipitator collecting fly ash from a coal-fired boiler burning high-sulfur coal. The mass median diameter of the particulate entering the collector was approximately 40 mic...

  20. Quasi-constant temperature combustion for improving the overall performance of a coal-fired boiler

    Microsoft Academic Search

    Chen Donglin; Liu Liang; Zheng Chuguang; Zhou Huaichun; Yao Bin

    2003-01-01

    After reviewing the current combustion technologies for burning pulverized coal with frequent and large fluctuations in coal quality and load demand, a new concept of quasi-constant temperature combustion for pulverized coal is proposed. In this method, combustion temperatures near the burners are maintained almost constant using a moveable multilayer heat-insulation device, which is installed on the fire-side of the furnace

  1. Early maturation processes in coal. Part 1: Pyrolysis mass balance and structural evolution of coalified wood from the Morwell Brown Coal seam

    Microsoft Academic Search

    Elodie Salmon; Françoise Behar; François Lorant; Patrick G. Hatcher; Paul-Marie Marquaire

    2009-01-01

    We have developed a theoretical approach for evaluating the maturation of kerogen-like material, involving molecular dynamic reactive modelling with a reactive force field to simulate thermal stress. Morwell Brown Coal was selected to study the thermal evolution of terrestrial organic matter (OM). To achieve this, a structural model is first constructed on the basis of literature models and analytical characterization

  2. Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam

    Microsoft Academic Search

    Elodie Salmon; Françoise Behar; François Lorant; Patrick G. Hatcher; Paul-Marie Marquaire

    2009-01-01

    In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature

  3. Co-firing of biomass waste-derived syngas in coal power boiler

    Microsoft Academic Search

    Sylwester Kalisz; Marek Pronobis; David Baxter

    2008-01-01

    The paper deals with waste gasification as a technology allowing for indirect co-firing of large quantities of biodegradable wastes in coal-fired power boilers. In contrast to common landfilling and direct co-firing, gasification of wastes presents a number of advantages. Problematic species in original feedstocks can be partly safely incinerated in the furnace and partly retained in the gasification residues.The paper

  4. Prediction of the furnace heat absorption by utilizing thermomechanical analysis for various kinds of coal firing

    SciTech Connect

    Ishinomori, T.; Watanabe, S.; Kiga, T.; Wall, T.F.; Gupta, R.P.; Gupta, S.K.

    1999-07-01

    In order to predict the furnace heat absorption, which is sensitive to coal properties, an attempt to make a model universally applicable for any kind of pulverized coal fired boiler is in progress. First of all, the heat absorption rates on to furnace wall were surveyed for 600MWe pulverized coal fired boiler, and they were ranked into four levels by indicating a furnace heat absorption index (FHAI). Some ash composition is relatively well related to the FHAI, while a new index from thermomechanical analysis (TMA) offers a good prediction of the furnace heat absorption.

  5. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants

    E-print Network

    Schwartz, M. H.

    1979-01-01

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  6. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants 

    E-print Network

    Schwartz, M. H.

    1979-01-01

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  7. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia

    SciTech Connect

    Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.M.; Van Dijk, P.; Blake, D. [East Georgia College, Swainsboro, GA (United States). Division for Science & Mathematics

    2005-12-01

    Five unique mineral assemblages that include the sulfates millosevichite, alunogen, anhydrite, tschermigite, coquimbite, voltaite, and godovikovite, as well as the halide salammoniac and an unidentified phase, according to X-ray diffraction and EDS data, were found as encrustations on quartzofeldspathic sand and sandstone adjacent to coal-fire gas vents associated with underground coal fires in the Wuda coalfield of Inner Mongolia. The mineral assemblage of alunogen, coquimbite, voltaite, and the unidentified phase collected front the same gas vent, is documented for the first time. Observations suggest that the sulfates millosevichite, alunogen, coquimbite, voltaite, godovikovite, and the unidentified phase, crystallized in response to a complex sequence of processes that include condensation, hydrothermal alteration, crystallization from solution, fluctuating vent temperatures, boiling, and dehydration reactions, whereas the halide salammoniac crystallized during the sublimation of coal-fire gas. Tschermigite and anhydrite formed by the reaction of coal-fire gas with quartzofelds pathic rock or by hydrothermal alteration of this rock and crystallization from an acid-rich aqueous solution. These minerals have potentially important environmental significance and may be vectors for the transmission of toxins. Coal fires also provide insight for the recognition in the geologic record of preserved mineral assemblages that are diagnostic of ancient fires.

  8. An evaluation of micronized coal reburning for nitrogen oxide emissions reduction in pulverized coal-fired electric utility boilers

    NASA Astrophysics Data System (ADS)

    de Angelo, Joseph Gerard

    Recent increases in the prices of imported fuels and increases in the cost of natural gas have underscored the need to consider other sources of energy for electric production in the United States. Our most abundant fuel source is coal, however the use of coal brings with it a set of environmental problems. This dissertation presents an investigation into the use of micronized coal reburning. This technology may provide a cost-effective solution to the requirements to reduce NOx emissions from pulverized coal-fired electric generating stations. This research effort evaluated the use of micronized coal as a reburning fuel to lower nitrogen oxide emissions from coal-fired boilers. The research effort included: (1) an investigation of all available literature on the subject, (2) planning and supervision of a number of baseline and parametric tests on a full-scale coal fired utility boiler. The testing was carried out on the former NYSEG generating unit, Milliken 1. Milliken Unit 1 is a 150 MW coal-fired electric utility boiler located in Lansing, NY on the eastern shore of Cayuga Lake, (3) development of a model to predict NOx emissions from a coal-fired boiler, and (4) completion of a conceptual design for a micronized coal reburning system. The original plan of the research effort was to include a full-scale micronized coal reburn installation and subsequent modeling and testing. However, in 1998 the deregulation of the electric utility industry in New York caused the focus of the dissertation to be narrowed. The test site, Milliken Station was sold to another entity, and the installation of the micronized coal reburn system was cancelled. The following conclusions were drawn from the research: (1) Testing showed that nitrogen oxide production was significantly influenced by changes in controllable boiler operating parameters. (2) The predictive model for baseline nitrogen oxide production was fairly accurate in estimating NOx emissions. The model had an average error of 10.14%, with about half of the 27 model runs being within 10% accuracy, and only two runs having greater than a 20% error. (3) The conceptual design shows that in most cases, the physical characteristics of existing coal fired boilers, and existing operating methods will allow for installation of micronized coal reburn systems. (4) An estimate of micronized coal reburning performance was made. It is estimated from a review of existing bench and pilot scale tests, modeling, and natural gas reburn projects that nitrogen oxide emissions can be reduced by about 60%, to a level of approximately 0.128 pounds per mmbtu of heat input. (5) Given impending, more stringent NOx regulations, and the high cost of natural gas, which has been demonstrated as a successful reburn fuel, micronized coal reburning is a cost effective alternative to current methods of NO x control.

  9. Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam

    E-print Network

    Salmon, Elodie; Lorant, François; Hatcher, Patrick G; Marquaire, Paul-Marie; 10.1016/j.orggeochem.2009.01.004

    2009-01-01

    In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature and analytical characterization of our samples by modern 1-and 2-D NMR, FTIR, and elemental analysis. Then, artificial maturation of the Morwell coal is performed at low conversions in order to obtain, quantitative and qualitative, detailed evidences of structural evolution of the kerogen upon maturation. The observed chemical changes are a defunctionalization of the carboxyl, carbonyl and methoxy functional groups coupling with an increase of cross linking in the residual mature kerogen. Gaseous and liquids hydrocarbons, essentially CH4, C4H8 and C14+ liquid hydrocarbons, are generated in low amount, merely by clea...

  10. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME II. COMPARATIVE ASSESSMENT

    EPA Science Inventory

    A comparative multimedia assessment of coal firing and oil firing in an industrial boiler was conducted. The assessment consists of several parts. First, comprehensive emissions assessments of each fuel were conducted. These comprehensive emissions assessments were used to develo...

  11. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  12. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-10-24

    This is the ninth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Various subsystems of BYU's Catalyst Characterization System (CCS) were upgraded this quarter. Work on the CCS hardware and software will continue in the coming quarter. A preliminary test matrix of poisoning experiments in the CCS has been drafted that will explore the effects of at least three poisons: sodium, potassium and calcium. During this quarter, we attempted to resolve discrepancies in previous in situ measurements of catalyst sulfation. Modifications were made to the XPS analysis procedure that allowed analyses of uncrushed samples. Although the XPS and FTIR results are now more consistent in that both indicate that the surface is sulfating (unlike the results reported last quarter), they disagree with respect to which species sulfates. The CEM system for the multi-catalyst slipstream reactor arrived this quarter. Minor modifications to the reactor and control system were completed. The reactor will be shipped to AEP Rockport plant next quarter for shakedown and installation. In a parallel effort, we have proposed to make mercury oxidation measurements across the catalysts at the start of the field test. Pending approval from DOE, we will begin the mercury measurements next quarter.

  13. Downstream component corrosion in coal-fired MHD power plants

    SciTech Connect

    White, M. K.

    1980-06-01

    Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.

  14. Fire in the hole - Paging in mines from Pennsylvania to China, coal fires threaten towns, poison air and water, and add to global warming

    SciTech Connect

    Krajick, K.

    2005-05-01

    China has the most coal fires, but India has the largest concentration of them. The effect of coal fires on the once thriving town of Centralia, Pennsylvania is described. There have been eight attempts to put the fire out using different methods (it has been burning for 43 years), but has now been left to burn. It could burn for another 205 years. The population of the town have mostly been relocated.

  15. Particle size and velocity measurements in the radiant section of an industrial-scale, coal-fired boiler: The effect of coal type

    SciTech Connect

    Black, D.L.; McQuay, M.Q. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    1996-12-01

    To improve understanding of the complex phenomena involved in pulverized coal combustion in utility boilers and to develop information suitable for model validation of comprehensive combustion codes, a series of measurements was taken on a 160 MW corner-fired, pulverized-coal fired boiler operated by New York State Electric and Gas. The measurements discussed here include those of particle size, velocity, concentration, and data rate for the full-load, baseline operating condition firing the boiler on different coals. The types of coals used during this test were three bituminous coals, one with a relatively high fixed carbon and low volatiles, labeled coal type B, one with a lower fixed carbon and higher volatiles content, labeled coal type A, and a coal similar to the type A coal in composition, labeled coal type C. Data were collected at four ports in a vertical line along the north wall of the boiler and at one additional port at the nose level of the boiler on the east wall. Significant variations in particle size and velocity were observed due to the change in coal type at the nose of the boiler, while measurements lower in the radiant section showed smaller differences. Vertical trends in the mean particle sizes in the upper part of the radiant section show larger variations when using the type B coal than are seen when the boiler was fired on the type A coal. Profiles of volume mean diameter and velocity taken at the nose of the boiler for all three coals used also show significant differences due to coal type. The maximum values in the rate Probability Density Functions (PDF`s) for the type A coal shows an increase toward higher data rates with increasing vertical location in the boiler, while the maximum value in the PDF`s shows a decrease toward lower rates for the type B coal.

  16. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    PubMed

    Mikul?i?, Hrvoje; von Berg, Eberhard; Vujanovi?, Milan; Dui?, Neven

    2014-06-24

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner. PMID:24963094

  17. Methods and costs of thin-seam mining. Final report, 25 September 1977-24 January 1979. [Thin seam in association with a thick seam

    SciTech Connect

    Finch, T.E.; Fidler, E.L.

    1981-02-01

    This report defines the state of the art (circa 1978) in removing thin coal seams associated with vastly thicker seams found in the surface coal mines of the western United States. New techniques are evaluated and an innovative method and machine is proposed. Western states resource recovery regulations are addressed and representative mining operations are examined. Thin seam recovery is investigated through its effect on (1) overburden removal, (2) conventional seam extraction methods, and (3) innovative techniques. Equations and graphs are used to accommodate the variable stratigraphic positions in the mining sequence on which thin seams occur. Industrial concern and agency regulations provided the impetus for this study of total resource recovery. The results are a compendium of thin seam removal methods and costs. The work explains how the mining industry recovers thin coal seams in western surface mines where extremely thick seams naturally hold the most attention. It explains what new developments imply and where to look for new improvements and their probable adaptability.

  18. Correlates of mental health in nuclear and coal-fired power plant workers.

    PubMed

    Parkinson, D K; Bromet, E J

    1983-08-01

    The mental health of 104 nuclear workers at the Three Mile Island plant was compared with that of 122 workers from another nuclear plant and 151 workers from two coal-fired generating plants. The coal-fired plant workers were somewhat more symptomatic than the nuclear plant workers. Assessments of work environments showed that the coal-fired plant workers perceived less stress but more problems with workplace exposures than the nuclear plant workers. Negative perceptions of work and marital stress were both strongly and independently related to mental distress. Overall, the results suggest that the Three Mile Island accident did not engender long-term psychological difficulties in workers evaluated 2.5 years after the accident. PMID:6635612

  19. Potential of hybrid geothermal/coal fired power plants in Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The City of Burbank and the Ralph M. Parsons Company studies showed several advantages for hybrid geothermal/coal fired power plants, as follows: (1) the estimated cost of producing electricity in hybrid plant is about 18.3 mills/kWh, compared to 19.3 mills/kWh in an all-coal fired power plant; (2) the coal requirements for a given plant can be reduced about 12 to 17%; and (3) the geothermal brines can be used for power plant cooling water, and in some cases, as boiler feedwater. The pertinent results of the City of Burbank studies are summarized and applied to the geothermal and coal resources of Arizona for possible future utilization.

  20. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland [University of California, Berkeley, CA (United States). School of Public Health

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  1. REVIEW OF NEW SOURCE PERFORMANCE STANDARDS FOR COAL-FIRED UTILITY BOILERS. VOLUME II. ECONOMIC AND FINANCIAL IMPACTS

    EPA Science Inventory

    This two volume report summarizes a study of the projected effects of several different revisions to the current New Source Performance Standard (NSPS) for sulfur dioxide (SO2) emissions from coal-fired utility power boilers. The revision is assumed to apply to all coal-fired uni...

  2. A life cycle assessment of biomass cofiring in a coal-fired power plant

    Microsoft Academic Search

    M. K. Mann; P. L. Spath

    2001-01-01

    .   The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment.\\u000a Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any\\u000a discussion of energy and the environment. By cofiring biomass, currently operating coal plants have an opportunity to reduce\\u000a the

  3. Concept for a competitive coal fired integrated gasification combined cycle power plant

    Microsoft Academic Search

    P. E Campbell; J. T McMullan; B. C Williams

    2000-01-01

    The design efficiency for a state-of-the-art supercritical coal fired pulverised fuel (p.f.) power plant (e.g. Nordjyllandsvaerket) is quoted at 47%, compared to 43% for the most advanced existing coal-based integrated gasification combined cycle (IGCC) plants (e.g. Buggenum and Puertollano). Of course, power plant design engineers have the experience of thousands of p.f. plants to guide them, compared with a mere

  4. Computational modeling of furnace sorbent injection for SO 2 removal from coal-fired utility boilers

    Microsoft Academic Search

    Liming Shi; Guisu Liu; Brian S. Higgins; Lewis Benson

    2011-01-01

    Furnace sorbent injection (FSI) is used to remove SO2 formed during coal combustion by injecting sorbent into the high temperature zone of a furnace above the fireball. FSI is cost effective for older coal-fired boilers, especially when space or capital budgets are limited. To optimize the design and performance of FSI, an SO2\\/sorbent modeling scheme that simultaneously considers calcination (or

  5. Solid waste disposal test program for a coal-fired power plant

    Microsoft Academic Search

    C. Behr; L. Holcombe; A. Mann; J. Worley

    1988-01-01

    The St. Johns River Power Park (SJRPP) is a coal-fired power plant located in Jacksonville, Florida. As part of their solid-waste management plan, SJRPP conducted studies to characterize their coal-combustion by-products, and designed a solid-waste test program to monitor the physical and chemical behavior of the by-products in the disposal environment. The objective of these studies and the test program

  6. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    Microsoft Academic Search

    Sung Jun Lee; Yong-Chil Seo; Ha-Na Jang; Kyu-Shik Park; Jeom-In Baek; Hi-Soo An; Kwang-Chul Song

    2006-01-01

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams

  7. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    SciTech Connect

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued an information collection request (ICR). The ICR required all coal-fired utilities to submit the mercury concentrations in their coal for one year quarterly, and 80 coal-fired power plants were selected to do mercury flue gas analysis. It was decided by EPRI and the U.S. Department of Energy (DOE) that this project would be suspended until the results of the ICR were known. This report presents the results that were obtained at the two power plants referred to as Sites 111 and E-29. The EERC teamed with Radian International (now URS Corp.) to do the sampling and analysis at these two power plants.

  8. Fire-Tube Boiler Test Burn on Coal-Water Fuel

    Microsoft Academic Search

    BRADLEY MITCHEL HALE; DAVID W. ARNOLD

    1998-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama (UA) and the Mining Division of Jim Walter Resources, Inc. (JWRI), was awarded a U.S. Department of Energy (DOE) contract to retrofit an existing fire-tube boiler to burn coal-water fuel (CWF) A fire-tube boiler on the UA campus was retrofitted, and the CWF was made from

  9. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    Microsoft Academic Search

    James C. Hower; Kevin Henke; Jennifer M. K. O'Keefe; Mark A. Engle; Donald R. Blake; Glenn B. Stracher

    2009-01-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits,

  10. ECONOMICS OF NITROGEN OXIDES, SULFUR OXIDES, AND ASH CONTROL SYSTEMS FOR COAL-FIRED UTILITY POWER PLANTS

    EPA Science Inventory

    The report gives results of an EPA-sponsored economic evaluation of three processes to reduce NOx, SO2, and ash emissions from coal-fired utility power plants: one based on 3.5% sulfur eastern bituminous coal; and the other, on 0.7% sulfur western subbituminous coal. NOx control ...

  11. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    SciTech Connect

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  12. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    SciTech Connect

    Frandsen, R.B.; Montgomery, M.; Larsen, O.H. [Elsam Engineering, Kolding (Denmark)

    2007-07-01

    In Denmark, straw is utilised for the generation of energy and district heating in power plants. Combustion of straw gives rise to high contents of potassium chloride and some sulphur dioxide in the flue gas. These compounds can lead to deposits with high content of potassium chloride and potassium sulphate on superheater tubes resulting in increased corrosion rates. From field experimental results this paper show, that by co-firing straw with coal, corrosion rates can be brought down to an acceptable level. This paper firstly deals with the results from a demonstration program co-firing coal and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes, the corrosion during these experiments was monitored. Various ferritic and austenitic materials were investigated at steam temperatures ranging from 520 to 580{degree}C and flue gas temperatures ranging from 925 to 1100{degree}C. The results obtained in the demonstration program led to the rebuilding of the 350 MW pulverized coal fired boiler, Studstrup unit 4, into a co-firing boiler with straw in 2002. During the rebuilding, test tube sections of X20CrMoV12 1 and TP347H FG were built into the superheater and the reheater loops. The temperature ranges during these exposures was for the steam from 470 to 575{degree}C and for the flue gas from 1025 to 1300{degree}C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical microscopy and scanning electron microscopy of the corrosion products.

  13. AFBC co-firing of coal and hospital waste

    SciTech Connect

    Coulthard, E.J.; Roy, R.R.

    1992-05-29

    The unit to be installed at Lebanon Veteran's Affairs Medical Center will prove that circulating fluidized bed combustion can provide economically viable and efficient hospital waste destruction and steam generation. The State permitting process is proceeding. The air quality division of the Department of Environmental Resources has requested the use of anthracite coal only. Anthracite has a much lower sulfur content than bituminous coal. The use of the anthracite coal has been approved by the Department of Veteran's Affairs. The DER permit will specify the use of antrhacite coal. The State permitting approval is expected in the near future. Testing with the shredding system at the Donlee Pilot facility has been completed. The results predict the Lebanon VA facility will meet both NSPS regulations and the BAT guidelines proposed by the State of Pennsylvania. There have been no significant problems encountered to date.

  14. COMPOSITION AND MICROSTRUCTURE OF ASH DEPOSITS FROM CO-FIRING BIOMASS AND COAL

    Microsoft Academic Search

    B. M. Jenkins; P. Thy; S. Q. Turn; L. G. Blevins; L. L. Baxter; L. A. Jakeway; R. B. Williams; S. L. Blunk; M. W. Yore; B. C. Wu; C. E. Lesher

    Fireside fouling constitutes a key issue in the adoption of new biomass boiler fuels, especially herbaceous species containing high levels of ash and potassium. Biomass from high-fiber cane is currently being considered as a closed- loop fuel for boilers operated by the Hawaiian Commercial and Sugar Co. Fouling resulting from co-firing fiber cane with coal and sugar cane bagasse was

  15. EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants

    EPA Science Inventory

    There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...

  16. APPLICATION OF THE DUAL ALKALI PROCESS AT A 280 MW COAL-FIRED POWER PLANT

    EPA Science Inventory

    The paper gives results of applying the dual alkali (D/A) flue gas resulfurization (FGD) process to a 280-MW coal-fired power plant. (NOTE: D/A is a generic term applied to FGD systems that use soluble alkali to absorb SO2 and then react the spent scrubber solution with lime and/...

  17. A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS

    EPA Science Inventory

    This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...

  18. FLUE GAS DESULFURIZATION SYSTEM CAPABILITIES FOR COAL-FIRED STEAM GENERATORS. VOLUME II. TECHNICAL REPORT

    EPA Science Inventory

    The report discusses the availability of technology for reducing SO2 emissions from coal-fired steam generators using flue gas desulfurization (FGD) systems. Foreign and domestic lime, limestone, double alkali, magnesium slurry, and Wellman-Lord FGD systems are described, and the...

  19. A mathematical model of slagging of the furnace of the pulverized-coal-firing boiler

    NASA Astrophysics Data System (ADS)

    Chernetskii, M. Yu.; Alekhnovich, A. N.; Dekterev, A. A.

    2012-08-01

    The mathematical model of furnace slagging integrated into the Sigma-Flow program system of computational hydrodynamics has been developed; this system makes it possible to calculate aerodynamics, processes of heat-and-mass exchange, and combustion processes in complex technological facilities, including pulverized-coal-firing furnaces.

  20. EFFECT OF ASH DISPOSAL PONDS ON GROUNDWATER QUALITY AT A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The impact of fly and bottom ash disposal ponds on groundwater quality was investigated at the coal-fired Columbia Power Plant at Portage, WI. Groundwater sampling was conducted utilizing a network of piezometers and multilevel wells located at various cross-sections of the ash d...

  1. MHD coal-fired flow facility. Quarterly technical progress report, July-September 1979

    Microsoft Academic Search

    J. B. Dicks; J. N. Chapman; L. W. Crawford

    1979-01-01

    In this third quarterly report of 1979, the University of Tennessee Space Institute (UTSI) reports on significant activity, project and task status, planned research, testing, and development, and conclusions with respect to the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. This quarter, work on the CFFF progressed with only minor problems. The weather was generally

  2. CHARACTERIZATION OF EMISSIONS OF PAH'S (POLYNUCLEAR AROMATIC HYDROCARBON) FROM RESIDENTIAL COAL-FIRED SPACE HEATERS

    EPA Science Inventory

    The paper gives results of a joint emissions testing and analysis program--the U.S. EPA and the State of Vermont--to determine polynuclear aromatic hydrocarbon (PAH), particulate, sulfur dioxide (SO2), and carbon monoxide (CO) emissions from two coal-fired residential space heate...

  3. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  4. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants

    Microsoft Academic Search

    Jean Bustard; Mike Durham; Travis Starns; Charles Lindsey; Cameron Martin; Richard Schlager; Ken Baldrey

    2004-01-01

    Under a DOE NETL cooperative agreement, ADA-ES is working in partnership with a number of power generators and vendors on a field evaluation program of injecting sorbent, including powdered activated carbon (PAC), upstream of existing particulate control devices. The objective of this program is to obtain the necessary information to assess the costs of controlling mercury from coal-fired plants using

  5. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko [DOE/NETL, Pittsburgh, PA (US)

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  6. Control of Mercury Emissions from Coal-Fired Power Plants: A Preliminary Cost Assessment

    Microsoft Academic Search

    Thomas Brown; William O'Dowd; Robert Reuther; Dennis Smith

    Mercury emissions from coal-fired power plants are currently being evaluated by the Environmental Protection Agency (EPA) for possible regulation. Because of the possibility for such regulation, this paper discusses a preliminary assessment of mercury capture technologies and associated costs based on commercially available technology. Sorbent-based technologies that may be amenable for mercury control include: sorbent injection; sorbent injection with spray

  7. COMBUSTION MODIFICATION NOX CONTROLS FOR UTILITY BOILERS. VOLUME I: TANGENTIAL COAL-FIRED UNIT FIELD TEST

    EPA Science Inventory

    The report gives results of an environmental assessment field testing program on a tangential-coal-fired utility boiler. The aim of the program was to measure multimedia emissions changes as a result of applying combustion modification NOx control. Emissions of trace elements, or...

  8. Control of mercury emissions from coal fired electric uitlity boilers: An update

    EPA Science Inventory

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  9. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  10. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  11. EVALUATION OF NITROGEN OXIDE EMISSIONS DATA FROM TVA COAL-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a study during which nitrogen oxide (NOx) emission rates from 30 boilers at 11 TVA coal-fired plants were calculated and compared with the calculated rate for each boiler type using EPA emission factors (AP-43). urrent AP-42 emission factors for NOx fr...

  12. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  13. Mercury emission and speciation of coal-fired power plants in China

    Microsoft Academic Search

    S. X. Wang; L. Zhang; G. H. Li; Y. Wu; J. M. Hao; N. Pirrone; F. Sprovieri; M. P. Ancora

    2010-01-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP),

  14. Mercury emission and speciation of coal-fired power plants in China

    Microsoft Academic Search

    S. Wang; L. Zhang; G. Li; Y. Wu; J. Hao; N. Pirrone; F. Sprovieri; M. P. Ancora

    2009-01-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP),

  15. Mercury capture by native fly ash carbons in coal-fired power plants

    Microsoft Academic Search

    James C. Hower; Constance L. Senior; Eric M. Suuberg; Robert H. Hurt; Jennifer L. Wilcox; Edwin S. Olson

    2010-01-01

    The control of mercury in the air emissions from coal-fired power plants is an ongoing challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the

  16. FUNDAMENTAL SCIENCE AND ENGINEERING OF MERCURY CONTROL IN COAL-FIRED POWER PLANTS1

    Microsoft Academic Search

    James Kilgroe

    2003-01-01

    Electric utilities must deal with impending regulation of mercury from coal-fired power plants in the most cost-effective manner. Mercury (Hg) can be controlled by existing air pollution control devices or by retrofit technologies. Choosing the best approach for any given unit requires knowledge of the chemistry of mercury in flue gas, including its behavior in existing air pollution control devices

  17. EVALUATION OF LONG-TERM NOX REDUCTION ON PULVERIZED-COAL-FIRED STEAM GENERATORS

    EPA Science Inventory

    The report gives results of analyzing long-term nitrogen oxide (NOx) emission data from eight pulverized-coal-fired steam generators, for the purpose of quantifying the effectiveness of various combustion modifications. All boilers, but one, were modified to reduce NOx emissions....

  18. ANALYSIS OF LOW NOX OPERATION OF TWO PULVERIZED-COAL FIRED UTILITY BOILERS

    EPA Science Inventory

    The report gives results of a review of the operation of two pulverized-coal-fired utility boilers subject to the 1971 New Source Performance Standard, to determine if other boilers could adopt a similar mode of operation to reduce nitrogen oxide (NOx) emissions. These two boiler...

  19. LOW-NOX BURNERS FOR PULVERIZED-COAL-FIRED BOILERS IN JAPAN

    EPA Science Inventory

    The paper describes nitrogen oxide (NOx) abatement by low-NOx burners (LNBs) and combustion modification (CM) for dry-bottom pulverized-coal-fired boilers in Japan. LNBs have been widely used in Japan as a simple way to reduce NOx emissions by 20-50%. NOx abatement by a LNB and C...

  20. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  1. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  2. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  3. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  4. Oxy-fuel combustion technology for coal-fired power generation

    Microsoft Academic Search

    B. J. P. Buhre; L. K. Elliott; C. D. Sheng; R. P. Gupta; T. F. Wall

    2005-01-01

    The awareness of the increase in greenhouse gas emissions has resulted in the development of new technologies with lower emissions and technologies that can accommodate capture and sequestration of carbon dioxide. For existing coal-fired combustion plants there are two main options for CO2 capture: removal of nitrogen from flue gases or removal of nitrogen from air before combustion to obtain

  5. ENVIRONMENTAL ASSESSMENT OF A COAL/WATER SLURRY FIRED INDUSTRIAL BOILER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report gives results of comprehensive emission measurements and analyses for a 7.6 kg/s (60,000 lb/hr) watertube industrial boiler firing a coal/water slurry. Measurements included continuous monitoring of flue gas; quantitation of semivolatile organics and 73 trace elements;...

  6. ENVIRONMENTAL ASSESSMENT OF A COAL/WATER SLURRY FIRED INDUSTRIAL BOILER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of comprehensive emission measurements and analyses for a 7.6 kg/s (60,000 lb/hr) watertube industrial boiler firing a coal/water slurry. Measurements included continuous monitoring of flue gas; quantitation of semivolatile organics and 73 trace elements;...

  7. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Microsoft Academic Search

    1999-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual

  8. Removal of Coal-Fired Pollutants in Wet Electrostatic Precipitators with Flexible Collection Electrodes

    Microsoft Academic Search

    Jingcai Chang; Yong Dong; Peng Wang; Liqiang Zhang; Peng Chen; Chunyuan Ma

    2010-01-01

    Rigorous new regulations in coal-fired pollutants emissions by power plant have caused new demands for electrostatic precipitator (ESP) technology. The study was inspired by the requirement to use cheaper flexible polypropylene fiber and Terylene fabrics as substitutes for typical collection electrodes to save energy and structural materials, and to solve the adverse impacts caused by wet flue gas desulfurization (WFGD)

  9. ESTIMATING PERFORMANCE/COSTS OF RETROFITTING CONTROL TECHNOLOGIES AT 12 COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of estimating performance/costs of retrofitting pollution control technologies at 12 coal-fired power plants. In cooperation with the states of Ohio and Kentucky (in conjunction with EPA's state acid rain program), efforts were undertaken to visit and cond...

  10. [Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants].

    PubMed

    Duan, Lei; Ma, Zi-Zhen; Li, Zhen; Jiang, Jing-Kun; Ye, Zhi-Xiang

    2015-03-01

    Currently, China suffers from serious pollution of fine particulate matter (PM2.5). Coal-fired power plant is one of the most important sources of PM2.5 in the atmosphere. To achieve the national goals of total emission reductions of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) during the 11th and 12th Five-Year Plan, most of coal-fired power plants in China have installed or will install flue gas desulfurization (FGD) and flue gas denitrification (DNO(x)) systems. As a result, the secondary PM2.5, generated from gaseous pollutants in the atmosphere, would be decreased. However, the physical and chemical characteristics of PM2.5 in flue gas would be affected, and the emission of primary PM2.5 might be increased. This paper summarized the size distributions of PM2.5 and its water soluble ions emitted from coal-fired power plants, and highlighted the effects of FGD and DNO(x) on PM2.5 emission, especially on water soluble ions (such as SO4(2-), Ca2+ and NH4+) in PM2.5. Under the current condition of serious PM2.5 pollution and wide application of FGD and DNO(x), quantitative study on the effects of FGD and DNO(x) installation on emission characteristics of PM2.5 from coal-fired power plants is of great necessity. PMID:25929084

  11. REVIEW ARTICLE Mercury policy and regulations for coal-fired power plants

    E-print Network

    Jacob, Daniel J.

    REVIEW ARTICLE Mercury policy and regulations for coal-fired power plants Manuela Rallo & M is a high-priority regulatory concern because of its persistence and bioaccumulation in the environment and elemental mercury are considered to be of the greatest concern from the toxicological point of view (UNEP

  12. ANALYSIS TEST DATA FOR NOX CONTROL IN COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report describes the analyses of a large quantity of emissions, operating conditions, and boiler configuration data from full-scale, multiple-burner, electric-generating boilers firing coal fuel. Objectives of the study include: (1) evaluation of the effects of combustion mod...

  13. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  14. Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station

    Microsoft Academic Search

    Marc A Rosen; Ibrahim Dincer

    2003-01-01

    Several thermodynamic relations between energy and exergy losses and capital costs for thermal systems and equipment are developed and applied to a modern coal fired electrical generating station. Some possible generalizations of the results are also discussed. The application considers the overall station and the following station devices: turbine generators, steam generators, preheating devices and condensers. The data suggest that

  15. SAMPLING AND MODELING OF NON-POINT SOURCES AT A COAL-FIRED UTILITY

    EPA Science Inventory

    The report gives results of a measurement and modeling program for nonpoint sources (NPS) from two coal-fired utility plants, and the impact of NPS on receiving waters. The field measurement survey, performed at two utility plants in Pennsylvania, included measurement of overland...

  16. Operating Experience of a Coal Fired Fluidized Bed at Georgetown University 

    E-print Network

    Lutes, I. G.; Gamble, R. L.

    1980-01-01

    Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion...

  17. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO? allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

  18. Probabilistic methodology for estimating air-pollution health effects from coal-fired power plants

    Microsoft Academic Search

    M. G. Morgan; S. C. Morris; A. K. Meier; D. L. Shenk

    1978-01-01

    Published estimates of the local health impact from sulfur air pollutants released by large coal-fired power plants vary widely, and, as a consequence, provide rather limited guidance for policymakers. Uncertainties are introduced into such estimates through the meteorological and epidemiological models used and through incomplete knowledge of the critical model parameters. Subjective probability distributions reflecting present knowledge of the value

  19. Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant

    Microsoft Academic Search

    Osvalda Senneca

    2008-01-01

    The paper addresses the relationship between the chemico-physical properties and the residual combustion reactivity of fly ashes from a full-scale front fired PF coal boiler. Ashes collected at different rows of electrostatic precipitators (EP) have been characterized for their particle size distribution, morphology, chemical composition and combustion reactivity. The combustion time of carbon in ash has been estimated for a

  20. FIELD STUDY TO OBTAIN TRACE ELEMENT MASS BALANCES AT A COAL-FIRED UTILITY BOILER

    EPA Science Inventory

    The report gives results of a study to identify mass flow rates of minor and trace elements from streams of a coal-fired utility boiler (Colbert Steam Plant Unit No. 1). This information was used to obtain a mass balance for 25 elements. The mass balances used inlet and outlet fl...

  1. Nitrogen oxides emission control options for coal-fired electric utility boilers.

    PubMed

    Srivastava, Ravi K; Hall, Robert E; Khan, Sikander; Culligan, Kevin; Lani, Bruce W

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu. PMID:16259432

  2. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  3. EFFECTS OF A 'CLEAN' COAL-FIRED POWER GENERATING STATION ON FOUR COMMON WISCONSIN LICHEN SPECIES

    EPA Science Inventory

    Algal plasmolysis percentages and other morphological characteristics of Parmelia bolliana, P. caperata, P. rudecta, and Physicia millegrana were compared for specimens growing near to and far from a rural coal-fired generating station in south central Wisconsin. SO2 levels were ...

  4. PATHOLOGIC CHANGES INDUCED BY COAL-FIRED FLY ASH IN HAMSTER TRACHEAL GRAFTS

    EPA Science Inventory

    The toxicity of fly ash from a coal-fired power plant for respiratory tract epithelium was studied in heterotropic tracheal grafts. Hamster tracheal grafts were continuously exposed to beeswax-cholesterol pellets containing 100, 1000 and 5000 micrograms fly ash and evaluated at 1...

  5. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    NONE

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  6. Economic, Environmental, and Job Impacts of Increased Efficiency in Existing Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Bezdek, Roger H.; Wendling, Robert M.

    2013-04-01

    Analyses of the CO2 mitigation potential of increasing the efficiency of existing U.S. coal-fired power plants have indicated that significant CO2 emissions could be avoided if the efficiency of existing plants could be improved. This paper expands the analysis and estimates the potential economic and employment impacts of engaging in an U.S.-wide efficiency improvement program. Specifically, this study: (1) Discusses the factors affecting the operating efficiency of coal-fired power plants; (2) Identifies feasible efficiency improvements to existing coal-fired power plants; (3) Estimates the costs of coal power plant efficiency improvements; (4) Estimates the costs of a widespread coal power plant efficiency improvement (CPPEI) program; (5) Assesses the potential impacts of the CPPEI program, including the annual jobs created by the CPPEI program, the permanent operations and maintenance (O&M) jobs created by the CPPEI program, and the potential occupational impacts; (6) Evaluates the advantages and disadvantages of two CPPEI program options; and (7) Discusses the broader economic and employment implications of the program.

  7. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    SciTech Connect

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  8. Investigation of subsidence event over multiple seam mining area

    SciTech Connect

    Kohli, K.K.

    1999-07-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface.

  9. Emissions of air toxics from coal-fired boilers: Arsenic

    SciTech Connect

    Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

    1994-08-01

    Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

  10. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  11. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3

    SciTech Connect

    Not Available

    1992-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  12. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    PubMed

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction. PMID:20564998

  13. Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China.

    PubMed

    Zhang, Lei; Wang, Shuxiao; Meng, Yang; Hao, Jiming

    2012-06-01

    China is the largest mercury emitter in the world and coal combustion is the most important mercury source in China. This paper updates the coal quality database of China and evaluates the mercury removal efficiency of air pollution control devices (APCDs) based on 112 on-site measurements. A submodel was developed to address the relationship of mercury emission factor to the chlorine content of coal. The mercury emissions from coal-fired power plants (CFPPs) in China were estimated using deterministic mercury emission factor model, nonchlorine-based and chlorine-based probabilistic emission factor models, respectively. The national mercury emission from CFPPs in 2008 was calculated to be 113.3 t using the deterministic model. The nonchlorine-based probabilistic emission factor model, which addresses the log-normal distribution of the mercury content of coal, estimates that the mercury emission from CFPPs is 96.5 t (P50), with a confidence interval of 57.3 t (P10) to 183.0 t (P90). The best estimate by the chlorine-based probabilistic emission factor model is 102.5 t, with a confidence interval of 71.7 to 162.1 t. The chlorine-based model addresses the influence of chlorine and reduces the uncertainties of mercury emission estimates. PMID:22533359

  14. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 ?g Sm -3, 2.4-1.1 ?g Sm -3, 3.1-0.7 ?g Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  15. Mercury emission control for coal fired power plants using coal and biomass

    E-print Network

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15

    Mercury Hg2+ Oxidized Mercury HgP Particulate Mercury HgCl2 Mercuric chloride HCl Hydrogen chloride Sep. Sol. Separated Solids HA High Ash PC Partially Composted DB Dairy Biomass TXL Texas Lignite Coal WYC Wyoming Subbituminous Coal HHV... and mercury for different blends............................................ 43 Figure 5.4 Base case results on elemental and oxidized mercury for coal ....................... 45 Figure 5.5 Elemental Hg for TXL and its blends with Sep. Sol. PC...

  16. COAL BLENDING, ASH SEPARATION, ASH RE INJECTION, ASH CONDITIONING, AND OTHER NOVEL APPROACHES TO ENHANCE HG UPTAKE BY ASH IN COAL-FIRED ELECTRIC POWER STATIONS

    Microsoft Academic Search

    Thomas K. Gale; Randy L. Merritt

    Differences in coal type and pollution control devices make it necessary to develop customized solutions for each utility, which will be most effective and economical for each configuration. In addition, the complicated chemistry and multiple mechanisms governing mercury speciation in coal-fired boilers makes it necessary to investigate Hg emission control technologies at conditions relevant to full-scale units. Experiments were performed

  17. Characterization of air toxics from a laboratory coal-fired combustor

    SciTech Connect

    NONE

    1995-04-03

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  18. Method for extraction of quantitative information using remote sensing data of underground coal fire areas and its application

    NASA Astrophysics Data System (ADS)

    Dang, Fu-xing; Li, Zhi-zhong; Xiong, Sheng-qing; Fang, Hong-bin; Yang, Ri-hong

    2008-11-01

    Underground coal-bed spontaneous combustion is a dynamic process with complex physical, chemical and environmental interaction. The anomalous information on remote sensing spatial, spectral and thermal indexes is very meaningful for detecting underground coal fires and assessing its effects on environment. This paper, based on a series of advanced technical datum in Wu Da coalfield areas located in Inner-Mongolia, such as ground spectral testing, thermal infrared multispectral indexes, and high-spatial resolution images, analyzes the correlation between the underground coal-bed burning conditions and the remote sensing information. Besides, it provides a further discussion on the application potential for quantitative feature extraction of underground coal fire.

  19. Multimedia contaminant environmental exposure assessment (MCEA) methodology for coal-fired power plants. Volume 1

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Cole, C.R.; Davis, W.E.; Whelan, G.

    1982-04-01

    A coal-fired power plant assessment methodology was developed to provide the helpful and moderately accurate prediction of chemical concentrations in the environment at a reasonable cost. The Multimedia Contaminant Environmental Exposure Assessment (MCEA) Methodology was developed to assess exposures of the air, soil, groundwater and surface water to chemicals released from a coal-fired power plant. The MCEA Methodology predicts chemical concentration levels in the environment by simulating dominant mechanisms of chemical migration and fate. The methodology consists of a series of widely used physics-based pathway models to handle four major release modes: stacks, coal-piles and land fills, ash sludge ponds, and direct liquid discharges to surface water. The MCEA Methodology includes the RAPT, ANDEP, STRAM and ISC computer models for the atmospheric pathway; the Agricultural Runoff Management (ARM) model for the overland pathway; the UNSAT, VTT and MMT models for the groundwater pathway; and the TODAM, SERATRA and EXAMS models for the surface water pathway. Although these specific pathway models were selected for the MCEA Methodology, these models can be replaced or supplemented when more appropriate models (such as geochemical models) become available in the future. The MCEA Methodology acts as a framework for the multimedia pathway modeling. The study also applied the surface water portion of the computer model SERATRA to arsenic migration in the Columbia River released from a hypothetical coal-fired power plant.

  20. Multimedia Contaminant Environmental Exposure Assessment (MCEA) Methodology for coal-fired power plants. Volume 2

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Cole, C.R.; Davis, W.E.; Whelan, G.

    1982-04-01

    A coal-fired power plant assessment methodology was developed to provide the helpful and moderately accurate prediction of chemical concentrations in the environment at a reasonable cost. The Multimedia Contaminant Environmental Exposure Assessment (MCEA) Methodology was developed to assess exposures of the air, soil, groundwater and surface water to chemicals released from a coal-fired power plant. The MCEA Methodology predicts chemical concentration levels in the environment by simulating dominant mechanisms of chemical migration and fate. The methodology consists of a series of widely used physics-based pathway models to handle four major release modes: stacks, coal-piles and land fills, ash sludge ponds, and direct liquid discharges to surface water. The MCEA Methodology includes the RAPT, ANDEP, STRAM and ISC computer models for the atmospheric pathway; the Agricultural Runoff Management (ARM) model for the overland pathway; the UNSAT, VTT and MMT models for the ground-water pathway; and the TODAM, SERATRA and EXAMS models for the surface water pathway. Although these specific pathway models were selected for the MCEA Methodology, these models can be replaced or supplemented when more appropriate models (such as geochemical models) become available in the future. The MCEA Methodology acts as a framework for the multimedia pathway modeling. The study also applied the surface water portion of the computer model SERATRA to arsenic migration in the Columbia River released from a hypothetical coal-fired power plant.

  1. Protect personnel from arsenic in coal-fired-boiler deposits

    Microsoft Academic Search

    1986-01-01

    Little information exists in the literature on arsenic levels in p-c-fired boilers and industry awareness of the potential problem is perhaps not as high as it should be. It is worth noting that the problem was identified at this plant because someone reported the presence of arsenic to the Occupational Safety and Health Administration (OSHA), not because the arsenic levels

  2. ENVIRONMENTAL ASSESSMENT OF A COAL-FIRED CONTROLLED UTILITY BOILER

    EPA Science Inventory

    The report gives results of a comprehensive multimedia emissions assessment of the cyclone-fired La Cygne No. 1 boiler, equipped with SO2 and particulate emission controls. Levels 1 and 2 procedures were used to characterize pollutant emissions in gaseous, liquid, and solid proce...

  3. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    1999-01-01

    The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+???REE): total Y+???REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+???REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.

  4. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  5. Controls on deposition of the Pratt seam, Black Warrior Basin, Alabama

    Microsoft Academic Search

    Weisenfluh

    1982-01-01

    The study of regional, subregional and local variations in the Pratt seam of northern Alabama has generated a geological model which depicts the internal and external geometry of the coal seams and adjoining rocks of the Pratt group and suggests the controlling factors for deposistion of thick and thin coal. In addition to primary structural controls of peat accumulation, differential

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  7. Advanced coal-fired glass melting development program

    SciTech Connect

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  8. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    USGS Publications Warehouse

    Hower, J.C.; Henke, K.; O'Keefe, J. M. K.; Engle, M.A.; Blake, D.R.; Stracher, G.B.

    2009-01-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO2 peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety & Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO2 and 50 ppm CO), although the site is not currently mined. Mercury, as Hg0, in excess of 500 and 2100 ??g/m3, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 ??g/m3). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns. Variation in gas temperatures, nearly 300 ??C during the January visit to the fire versus < 50 ??C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases. ?? 2009 Elsevier B.V.

  9. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  10. Feasibility Study for Bioethanol Co-Location with a Coal Fired Power Plant: 29 November 2001--28 July 2002

    SciTech Connect

    Not Available

    2002-12-01

    This study looks at the feasibility of co-locating 30, 50, and 70 million gallon per year bioethanol facilities with coal fired power plants in Indiana and Nebraska. Corn stover is the feedstock for ethanol production in both cases.

  11. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of a comparative multimedia assessment of coal versus oil firing in a controlled industrial boiler. Relative environmental, energy, economic, and societal impacts were identified. Comprehensive sampling and analyses of gaseous, liquid, and solid emissions...

  12. DEVELOPMENT OF COST-EFFECTIVE NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea and active additives such as elemental mercury (Hg0) vapor at coal-fired utility ...

  13. Development of a coal fired pulse combustor for residential space heating. Technical progress report, October--December 1986

    SciTech Connect

    NONE

    1986-12-31

    This progress report presents a detailed description of the background, technology and application, and Statement of Work for the development of a coal-fired pulse combustor for residential space heating.

  14. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-print Network

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  15. New 90,000 PPH Coal Fired Boiler Plant at Liggett & Myers Tobacco Company, Durham North Carolina 

    E-print Network

    Kaskey, G. T.

    1984-01-01

    Liggett & Myers Tobacco Company in Durham, North Carolina is installing a future cogeneration, coal fired boiler system designed and built by Energy Systems (ESI) of Chattanooga, Tennessee. The complete boiler plant is comprised of a 90,000 pph Dorr...

  16. New 90,000 PPH Coal Fired Boiler Plant at Liggett & Myers Tobacco Company, Durham North Carolina

    E-print Network

    Kaskey, G. T.

    1984-01-01

    Liggett & Myers Tobacco Company in Durham, North Carolina is installing a future cogeneration, coal fired boiler system designed and built by Energy Systems (ESI) of Chattanooga, Tennessee. The complete boiler plant is comprised of a 90,000 pph Dorr...

  17. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  18. Pneumatic conveying of coal and ash with particular reference to coal-fired ships

    SciTech Connect

    Westbrook, A.S.

    1981-01-01

    An overview of dense-phase (non-fluidized) pneumatic conveyings of coal and ash is presented. Today, there are over 200 dense-phase coal and ash handling systems in land-based boiler plants. In this system, the volume ratio of air-to-material is 25: 1 or less. The velocities normally range from 5 to 7 in/s for coal and 6 to 7 m/s for boiler ash. A comparison is made with lean-phase (fluidized) and medium-phase (semi-fluidized) conveying. The conveying sequences, maintenance benefits, storage, shipboard applications, and various power plant applications are explained, and illustrated with diagrams.

  19. Uncertainties in estimating mercury emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Streets, D. G.; Wang, S. X.; Hao, J. M.

    2009-11-01

    A detailed multiple-year inventory of mercury emissions from anthropogenic activities in China has been developed. Coal combustion and nonferrous metals production continue to be the two leading mercury sources in China, together contributing ~80% of total mercury emissions. Within our inventory, a new comprehensive sub-module for estimation of mercury emissions from coal-fired power plants in China is constructed for uncertainty case-study. The new sub-module integrates up-to-date information regarding mercury content in coal by province, coal washing and cleaning, coal consumption by province, mercury removal efficiencies by control technology or technology combinations, etc. Based on these detailed data, probability-based distribution functions are built into the sub-module to address the uncertainties of these key parameters. The sub-module incorporates Monte Carlo simulations to take into account the probability distributions of key input parameters and produce the mercury emission results in the form of a statistical distribution. For example, the best estimate for total mercury emissions from coal-fired power plants in China in 2003 is 90.5 Mg, with the uncertainty range from 57.1 Mg (P10) to 154.6 Mg (P90); and the best estimate for elemental mercury emissions is 43.0 Mg, with the uncertainty range from 25.6 Mg (P10) to 75.7 Mg (P90). The results further indicate that the majority of the uncertainty in mercury emission estimation comes from two factors: mercury content in coal and mercury removal efficiency.

  20. Uncertainties in estimating mercury emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Streets, D. G.; Wang, S. X.; Hao, J. M.

    2010-03-01

    A detailed multiple-year inventory of mercury emissions from anthropogenic activities in China has been developed. Coal combustion and nonferrous metals production continue to be the two leading mercury sources in China, together contributing ~80% of total mercury emissions. However, many uncertainties still remain in our knowledge of primary anthropogenic releases of mercury to the atmosphere in China. In situations involving large uncertainties, our previous mercury emission inventory that used a deterministic approach could produce results that might not be a true reflection of reality; and in such cases stochastic simulations incorporating uncertainties need to be performed. Within our inventory, a new comprehensive sub-module for estimation of mercury emissions from coal-fired power plants in China is constructed as an uncertainty case study. The new sub-module integrates up-to-date information regarding mercury content in coal by province, coal washing and cleaning, coal consumption by province, mercury removal efficiencies by control technology or technology combinations, etc. Based on these detailed data, probability-based distribution functions are built into the sub-module to address the uncertainties of these key parameters. The sub-module incorporates Monte Carlo simulations to take into account the probability distributions of key input parameters and produce the mercury emission results in the form of a statistical distribution. For example, the best estimate for total mercury emissions from coal-fired power plants in China in 2003 is 90.5 Mg, with the uncertainty range from 57.1 Mg (P10) to 154.6 Mg (P90); and the best estimate for elemental mercury emissions is 43.0 Mg, with the uncertainty range from 25.6 Mg (P10) to 75.7 Mg (P90). The results further indicate that the majority of the uncertainty in mercury emission estimation comes from two factors: mercury content of coal and mercury removal efficiency.

  1. Recent coal-oil mixture combustion tests at PETC

    SciTech Connect

    Pan, Y. S.; Bellas, G. T.; Mathur, M. P.; Joubert, J. I.; Bienstock, D.

    1980-06-01

    Coal-oil mixture combustion tests with coal concentrations of up to 50 percent were successfully conducted in a 700 horsepower watertube boiler designed originally for oil firing. A 500-h duration test with coal-oil mixture containing 40 percent coal has also been completed. No derating of the boiler occurred, carbon-conversion efficiencies were above 98 percent, and boiler efficiencies were the same as when firing No. 6 fuel oil. All combustion tests were conducted with No. 6 fuel oil mixed with Pittsburgh Seam coal pulverized to a coal particle size of 90 percent minus 200 mesh. Test results relating to boiler performance, pollutant emissions, ash deposition, and corrosion, erosion, and fouling behavior are presented.

  2. Process integration analysis of a brown coal-fired power station with CO 2 capture and storage and lignite drying

    Microsoft Academic Search

    Trent Harkin; Andrew Hoadley; Barry Hooper

    2009-01-01

    Integration of CO2 capture and storage (CCS) into existing and new coal fired power stations is seen as a way of significantly reducing the carbon emissions from stationary sources. A significant proportion of the estimated cost of CCS for post-combustion capture from coal-fired power stations is due to the additional energy expended to capture the CO2 and compress it for

  3. Investigations on fouling rate in convective bundles of coal-fired boilers in relation to optimization of sootblower operation

    Microsoft Academic Search

    Sylwester Kalisz; Marek Pronobis

    2005-01-01

    The article deals with results of full-scale investigations on fouling in convective bundles of chosen types of coal-fired boilers. The boilers tested were: conventional pulverized-coal fired two-pass boilers (two types), a single-pass subcritical (a tower shape) boiler and CFB boiler. Mechanisms of deposit formation and basics of deposit modeling are shortly discussed. An own approach to predict build-up of loose

  4. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants

    Microsoft Academic Search

    Fengqi Si; Carlos E. Romero; Zheng Yao; Zhigao Xu; Robert L. Morey; Barry N. Liebowitz

    2009-01-01

    As a byproduct of the selective catalytic reduction system, ammonium bisulfate could lead to frequent unit outages by forming sticky deposits on the surface of air preheaters and heat rate deterioration in coal-fired power plants. Field tests were carried out to investigate the variation of ammonium bisulfate formation temperature at a coal-fired unit, retrofit with an on-line ammonium bisulfate probe.

  5. Retrofit costs for lime\\/limestone FGD and lime spray drying at coal-fired utility boilers

    Microsoft Academic Search

    T. E. Emmel; J. W. Jones

    1990-01-01

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 controls to existing coal-fired utility boilers. The costs of retrofitting conventional lime\\/limestone wet flue gas desulfurization (L\\/LS FGD) and lime spray drying (LSD) FGD at 100-200 coal-fired power plants are

  6. Characterisation of biomass and coal co-firing on a 3 MWth Combustion Test Facility using flame imaging and gas\\/ash sampling techniques

    Microsoft Academic Search

    Peter Molcan; Gang Lu; Thomas Le Bris; Yong Yan; Benoît Taupin; Sébastien Caillat

    2009-01-01

    Co-firing of biomass with pulverised coal at existing coal power stations remains a practical option available to power plant operators and is being widely adopted as one of the main technologies for reducing greenhouse gas emissions. However, there is a range of technological problems that are not well understood. This paper presents experimental investigations into the co-firing of pulverised coal

  7. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Unknown

    2002-07-01

    Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for different fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.

  8. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  9. European legislation in the United Kingdom: a threat to coal-fired power station product utilization?

    SciTech Connect

    Sear, K.A. [Quality Ash Association (United Kingdom)

    2006-07-01

    The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

  10. Low emission boiler system: Designing the next generation of coal-fired power plants

    SciTech Connect

    Darguzas, J.N.; Sloat, D.G.; Bullock, W.R. [Sargent and Lundy, Chicago, IL (United States)

    1994-12-31

    This paper discusses the advanced pulverized coal power plant design being developed under the US Department of Energy`s (DOE) Low Emission Boiler System (LEBS) program. The primary goal of the LEBS program is to develop the next generation of pulverized coal-fired power systems to meet stringent emission requirements with high energy conversion efficiency. The LEBS concept discussed utilizes a low NO{sub x} slag-tap firing system, an advanced supercritical steam cycle, a once-through Benson boiler, low temperature heat recovery and a regenerable flue gas desulfurization (FGD) system. This paper describes both a 400 MW commercial generating unit (LEBS) design and a proposed 50 MW proof-of-concept (POC) LEBS facility.

  11. Study of coal mine fire in Damodar River basin, India using thermal remote sensing technique

    NASA Astrophysics Data System (ADS)

    Chatterjee, Alokesh; Bhattacharya, Asis; Mukherjee, Amitava; Pramanik, Tanmoy

    Coal mine fires are a serious socio-economic problem because of hazards to health and the environment including toxic fumes, and subsidence of surface infrastructures. Globally, thou-sands of inextinguishable mine fires are burning today, especially in China and India. In India, Damodar River basin is the repository of the 46The entire Damodar River basin exhibits in an almost linear fashion in the central part of the Jharkhand and western part of West Bengal States of India. The coal fields are adjacent to the Damodar River or its tributaries. The general trends of coalfields are nearly east-west and showing gentle dip towards south. The area is bounded within Latitude 2330 -2350N and Longitude 8456 -8648E. Since all the coal deposits of Damodar River basin were formed in almost similar sedimentary environmental condition and are of equivalent geologic age; and the coal grades are more or less comparable, it is highly probable that the other coal fields in this region are also vulnerable to mine fires. Aerial and Space borne Thermal Infra-Red Remote Sensing method has been proved to be the most cost effective and time saving method to find out the thermal anomalies present in an area. Here, an attempt has been made to find out the presence of coalmine fire and their aerial extent in Damodar River basin including the well known Jharia and Raniganj coalfields using Space borne single band thermal IR data of Landsat 7 Enhanced Thematic Mapper (ETM+) sensor. Two daytime Landsat ETM+ images (path / row:140/44), acquired on 07.03.2001 and 24.01.2003, covering visible, one near Infrared (NIR), two short wave infrared (SWIR), one thermal infrared (TIR) and a panchromatic band, were used for the present study. Standard procedure of calculating surface temperature from band 6 of Landsat ETM+ data was followed. These include atmospheric corrections, data normalization for sun elevation angle, conversion of image DN values to spectral radiance and spectral radiance to radiant temperature, and cal-culation of surface temperature from radiant temperature. In the month of late January 2003, day-time temperature of the land surface features like agricultural crops, soil, road, etc. varies in the range of 15-27C. Therefore, the threshold temperature is fixed as 27.5C to delineate fire from background. Moreover, fieldwork has been carried out to validate the present findings and to isolate coal-fire pixels from other non-coal-fire high temperature pixels. The study of thermal data processing reveals that almost all major coalfields of Damodar River basins are affected by severe coalmine fire. Other than Jharia and Raniganj, coalfields of East and West Bokaro, North and South Karanpura are also highly fire affected.

  12. Study of coal mine fire in Damodar River basin,India using thermal remote sensing technique

    NASA Astrophysics Data System (ADS)

    Chatterjee, Alokesh; Bhattacharya, Asis

    Coal mine fires are a serious socio-economic problem because of hazards to health and the environment including toxic fumes, and subsidence of surface infrastructures. Globally, thou-sands of inextinguishable mine fires are burning today, especially in China and India. In India, Damodar River basin is the repository of the 46The entire Damodar River basin exhibits in an almost linear fashion in the central part of the Jharkhand and western part of West Bengal States of India. The coal fields are adjacent to the Damodar River or its tributaries. The general trends of coalfields are nearly east-west and showing gentle dip towards south. The area is bounded within Latitude 2330 -2350N and Longitude 8456 -8648E. Since all the coal deposits of Damodar River basin were formed in almost similar sedimentary environmental condition and are of equivalent geologic age; and the coal grades are more or less comparable, it is highly probable that the other coal fields in this region are also vulnerable to mine fires. Aerial and Space borne Thermal Infra-Red Remote Sensing method has been proved to be the most cost effective and time saving method to find out the thermal anomalies present in an area. Here, an attempt has been made to find out the presence of coalmine fire and their aerial extent in Damodar River basin including the well known Jharia and Raniganj coalfields using Space borne single band thermal IR data of Landsat 7 Enhanced Thematic Mapper (ETM+) sensor. Two daytime Landsat ETM+ images (path / row:140/44), acquired on 07.03.2001 and 24.01.2003, covering visible, one near Infrared (NIR), two short wave infrared (SWIR), one thermal infrared (TIR) and a panchromatic band, were used for the present study. Standard procedure of calculating surface temperature from band 6 of Landsat ETM+ data was followed. These include atmospheric corrections, data normalization for sun elevation angle, conversion of image DN values to spectral radiance and spectral radiance to radiant temperature, and cal-culation of surface temperature from radiant temperature. In the month of late January 2003, day-time temperature of the land surface features like agricultural crops, soil, road, etc. varies in the range of 15-27C. Therefore, the threshold temperature is fixed as 27.5C to delineate fire from background. Moreover, fieldwork has been carried out to validate the present findings and to isolate coal-fire pixels from other non-coal-fire high temperature pixels. The study of thermal data processing reveals that almost all major coalfields of Damodar River basins are affected by severe coalmine fire. Other than Jharia and Raniganj, coalfields of East and West Bokaro, North and South Karanpura are also highly fire affected.

  13. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  14. Flue gas Hg measurements from coal-fired boilers equipped with wet scrubbers

    SciTech Connect

    DeVito, M.S.; Rosenhoover, W.A.

    1999-07-01

    The US EPA has instituted an Information Collection Request{at} to obtain information regarding mercury (Hg) emissions from coal-fired utility boilers. EPA is in the process of collecting information regarding the Hg concentrations of the coals fired in over 1,000 utility boilers, and flue gas Hg emission and speciation data at {approximately}100 utility boilers. EPA will review these data to determine if Hg emission reduction from the utility industry is necessary. Presently, there is no proven mercury-control technology for this source category. Hg removal by carbon injection has been tested at the pilot scale level. The mercury removal costs for this technology is estimated to be $10 million to $40 million per ton of Hg removed. CONSOL Inc. completed flue gas Hg measurements at five coal-fired boilers and one industrial boiler equipped with conventional wet scrubbers for SO{sub 2} control. Based on a minimum of triplicate scrubber inlet and outlet measurements at each site, the Hg removal by the scrubber systems was 54%, with a standard deviation of 7%. Accounting for the Hg collected on the ash particles, the total plant Hg removal was 67 {+-} 6%. These data show that utility boilers equipped with ESP scrubber combinations are removing two-thirds of the Hg in the as-fired coal at no added cost. The Hg speciation data showed that 80% to 95% of the oxidized Hg fraction, as determined from the Ontario Hydro method, was removed by the scrubber. The average Hg material balance closure at the six test sites was 103 {+-} 8%. The Hg removed from the flue gas was accounted for in the scrubber solids. Standard leachate testing conducted on fixated and unfixated scrubber sludge from one test site showed no Hg leaching. Volatility testing conducted by heating this sludge to 140 F for 11 weeks showed no loss of Hg.

  15. Nonlinear modeling and simulation for large scale coal-fired power unit

    Microsoft Academic Search

    Liu Changliang; Liu Jizhen; Niu Yuguang; Jin Xiuzhang

    2004-01-01

    On the basis of analysis to the boiler models that have exist, the modeling method and simulation environment for large-scale coal-fired power unit are discussed. The power unit is divided into many parts; a set of dynamic model library of thermal equipment and subsystem is setup on with modularization modeling method. The simulation environment is selected as MATLAB\\/simulink and S-function

  16. Indirect pulverized-coal fired air heaters for gas turbine service

    SciTech Connect

    Anson, D.; Hazard, H.R.; Flanigan, L.J.

    1982-01-01

    This paper discusses design considerations for pulverized-coal fired indirect heaters for gas turbines and presents results of model studies of flow and mixing for a heater design. Analysis shows that flue-gas recirculation can reduce peak flame temperature without reducing flame stability, leading to smoothing of radiation to gas-cooled furnace walls. This, in turn, results in acceptable tube-metal temperatures. 7 refs.

  17. Combustion monitoring during the controlled burnout of a coal mine fire

    Microsoft Academic Search

    L. E. Dalverny; R. F. Chaiken; K. E. Soroka

    1983-01-01

    The U.S. Bureau of Mines recently (July, 1982) completed a 24 h\\/d, four-month field evaluation of the Burnout Control technique for converting an abandoned coal mine fire to a safe energy resource. The partial vacuum created by a surface exhaust fan draws all gases from underground combustion (accelerated by air drawn through nearby boreholes) to a central refractory-lined exhaust pipe,

  18. Third International Conference on Improved Coal-Fired Power Plants: Proceedings

    Microsoft Academic Search

    S. Pace; G. Poe

    1992-01-01

    EPRI hosted the Third International Conference on Improved Coal-Fired Power Plants (ICPP) from April 2--4, 1991, in San Francisco, California. The more than 130 conference participants included representatives of utilities, steelmakers, equipment fabricators, architect\\/engineering firms, government agencies, and R D organizations. Among the countries represented were the United States, Japan, Great Britain, France, Germany, Switzerland, Denmark, and Israel. This international

  19. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Microsoft Academic Search

    J. A. Withum; S. C. Tseng; J. E. Locke

    2004-01-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program

  20. Optimization of Reburning for Advanced N0x Control on Coal-fired Boilers

    Microsoft Academic Search

    Shih L. Chen; John C. Kramlich; W. Randall Seeker; David W. Pershing

    1989-01-01

    This paper summarizes an experimental study which was conducted to investigate the chemical constraints of the reburning process and identify reburning configurations for optimal NOx reduction in coal-fired boilers. Tests were performed on a bench scale tunnel furnace to characterize and optimize the fuel-rich reburning zone and the fuel-lean burnout zone independently. Detailed measurements ofunburned hydrocarbons, CO, NH3, and HCN

  1. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  2. Automated remote control of fuel supply section for the coal fired power plant

    Microsoft Academic Search

    O. V. Chudin; B. V. Maidan; A. A. Tsymbal

    1996-01-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 Ã 180) electrical and 780 (3 Ã 260) Gkal an hour thermal capacity with steam productivity of 2010 (3

  3. Synergistic Mercury Removal by Conventional Pollutant Control Strategies for Coal-Fired Power Plants in China

    Microsoft Academic Search

    Shuxiao Wang; Lei Zhang; Ye Wu; Maria Pia Ancora; Yu Zhao; Jiming Hao; Dino Musmarra; Paul Funk; Tony Ward; Christopher Palmer; Curtis Noonan; Sally Donovan; Thomas Bateson; Jan Gronow; Nikolaos Voulvoulis; Li-Long Chai; Ji-Qin Ni; Yan Chen; Claude Diehl; Albert Heber; Teng Lim; Yimei Zhang; Guohe Huang; Yan-Min Chen; Yuan-Chung Lin; Tzi-Yi Wu; Guo-Ping Chang-Chien; Wen-Feng Ma; Joao Gomes; Helena Mota; Joao Bordado; Manuela Cadete; Georgina Sarmento; Antonieta Ribeiro; Miguel Baiao; Joao Fernandes; Vasco Pampulim; Maria Custodio; Isabel Veloso; David Brenner

    2010-01-01

    China’s 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the

  4. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Microsoft Academic Search

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-01-01

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop\\/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control

  5. Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers

    Microsoft Academic Search

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-01-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done

  6. Parameters influencing nitrogenous species formation and reaction in stoker coal-fired combustion

    Microsoft Academic Search

    Starley

    1982-01-01

    The purpose of this investigation was to characterize the influence of combustion parameters on NO formation mechanisms in the fuel-bed burning regimes of spreader and mass-burning stokers. The approach utilized an experimental fixed-bed furnace configured to provide specific simulations of either stoker system. In the spreader-stoker configuration, large coal particles were fired in a continuous simulation of bed-phase combustion. In

  7. Use of differential evolution in low NOx combustion optimization of a coal-fired boiler

    Microsoft Academic Search

    Ligang Zheng; Yugui Zhang; Shuijun Yu; Minggao Yu; Junbang Chen

    2010-01-01

    The present work focuses on low NOx emissions combustion modification of a 300MW dual-furnaces coal-fired utility boiler through a combination of support vector regression (SVR) and a novel and modern differential evolution optimization technique (DE). SVR, used as a more versatile type of regression tool, was employed to build a complex model between NOx emissions and operating conditions by using

  8. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested. PMID:17544578

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  10. Development program for MHD direct coal-fired power generation test facility. Quarterly technical progress report, July-September 1977

    Microsoft Academic Search

    J. B. Jr. Dicks; H. P. Markant; R. C. Attig

    1977-01-01

    Tests conducted in the existing MHD facility supported areas critical to the design of components for the new intermediate-size, direct coal-fired MHD development facility. A new combustor design concept was developed and tested. In the coal to oxygen ratio studies, equilibrium combustion calculations of the combustion process were carried out for various values of oxidant ratio. This was done to

  11. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE E

    EPA Science Inventory

    The report gives results of field measurements made on a 180,000 lb/hr coal-fired spreader-stoker boiler. The effects of various parameters on boiler emissions and efficiency were studied. Parameters included overfire air, excess air, boiler load, and coal properties. Measurement...

  12. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE F

    EPA Science Inventory

    The report gives results of field measurements made on an 80,000 lb/hr coal-fired spreader-stoker boiler. The effects of various parameters on boiler emissions and efficiency were studied. Parameters included overfire air, flyash injection, excess air, boiler load, and coal prope...

  13. Full-Scale Evaluation of Carbon Injection for Mercury Control at a Unit Firing High Sulfur Coal

    Microsoft Academic Search

    Sharon M. Sjostrom; Cody Wilson; Jean Bustard; Gary Spitznogle; Aimee Toole; Andrew O'Palko

    Limited field tests to date show that the effectiveness of activated carbon injection for mercury control decreases as the coal sulfur concentration increases. Sorbent vendors are developing activated carbons and other sorbents that are more effective in a high sulfur gas environment. Little data exists for units firing high sulfur bituminous coal. ADA-ES and AEP, with support from DOE NETL,

  14. Land-plan scheme provides cover-up for coal-fired plant. [Belle River power project, Detroit Edison

    Microsoft Academic Search

    Schriveley

    1975-01-01

    The Detroit Edison Company plans to construct a new 1300-MW coal-fired generation facility in St. Clair County, Michigan between Lakes Huron and Erie. It was a major environmental threat until consultants produced a land plan that will reclaim coal storage and ash disposal areas and reduce the visual impact of the station over its operational life. The development of the

  15. DISPOSAL, RECYCLE, AND UTILIZATION OF MODIFIED FLY ASH FROM HYDRATED LIME INJECTION INTO COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The paper gives results of an assessment of the disposal, utilization, and recycle os a modified fly ash from the injection of hydrated lime into a coal-fired utility boiler. The process, developed as a low-cost alternative for achieving moderate degrees of SO2 control at coal-fi...

  16. Review of life cycle assessment studies of coal-fired power plants with carbon capture and storage

    Microsoft Academic Search

    Jingheng Zhang; Lauren Basson; Matthew Leach

    2009-01-01

    Carbon capture and storage (CCS) is one of the principal options for reducing greenhouse gas (GHG) emissions from coal-fired power plants. It involves capturing carbon dioxide from power plants, transporting it and storing it in secure places including former oil and gas fields and marine aquifers. However, the use of coal does not only contribute to the global climate change,

  17. IMPACT OF PRIMARY SULFATE AND NITRATE EMISSIONS FROM SELECTED MAJOR SOURCES. PHASE 1. COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report covers Phase one of a two phase study of the near source impacts of primary sulfate and nitrate emission sources. The phase one portion of the study was an investigation of the impact of a coal fired power plant burning high sulfur coal. The study was designed to measu...

  18. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    SciTech Connect

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  19. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect

    NONE

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  20. Coal-fired high performance power generating system. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This report covers work carried out under Task 2, Concept Definition and Analysis, and Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: > 47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FHTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The cycle optimization effort has brought about several revisions to the system configuration resulting from: (1) the use of Illinois No. 6 coal instead of Utah Blind Canyon; (2) the use of coal rather than methane as a reburn fuel; (3) reducing radiant section outlet temperatures to 1700F (down from 1800F); and (4) the need to use higher performance (higher cost) steam cycles to offset losses introduced as more realistic operating and construction constraints are identified.

  1. Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2010-08-01

    The aim of this work was to apply the LIBS technique for the analysis of fly ash and bottom ash resulting from the coal combustion in a coal fired power plant. The steps of presented LIBS analysis were pelletizing of powdered samples, firing with laser and spectroscopic detection. The analysis "on tape" was presented as an alternative fast sampling approach. This procedure was compared with the usual steps of normalized chemical analysis methods for coal which are coal calcination, fluxing in high temperature plasma, dilution in strong acids and analyzing by means of ICP-OES and/or AAS. First, the single pulse LIBS approach was used for determination and quantification of elemental content in fly ash and bottom ash on the exit of the boiler. For pellet preparation, ash has to be mixed with proper binder to assure the sample resistance. Preparation of the samples (binder selection and pressing/pelletizing conditions) was determined and LIBS experimental conditions optimized. No preparation is necessary in "on tape" sampling. Moreover, double-pulse approach in orthogonal reheating configuration was applied to enhance the repeatability and precision of the LIBS results and to surpass the matrix effect influencing the calibration curves in case of some elements. Obtained results showed that LIBS responses are comparable to the normalized analytical methods. Once optimized the experimental conditions and features, application of LIBS may be a promising technique for combustion process control even in on-line mode.

  2. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M. [Shell Coal International, London (United Kingdom); Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  3. Mercury speciation measurements on a 10 MW{sub e} coal-fired boiler simulator

    SciTech Connect

    Evans, A.P.; Nevitt, K.D.

    1997-06-01

    The current trends towards deregulation of electric utilities, air toxic regulations and stringent fine particulate emissions reflect an increased need for coal-based research. In response, Babcock and Wilcox invested in the state-of-the-art 100 million Btu/hr (10 MW, equivalent) Clean Environment Development Facility (CEDF) located in Alliance, Ohio. The representative combustion conditions, flow patterns and residence times permit direct scale-up of CEDF test results to commercial boilers and pollution control devices. In cooperation with the U.S. Department of Energy and the Ohio Coal Development Office within the Ohio Office of Development, B&W is employing the CEDF to conduct a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants from coal-fired boilers. The project specifically targets the control of mercury, the trace element under close scrutiny by the EPA. Due to the various forms of mercury emissions from coal-fired boilers, accurate mercury speciation measurements are required to develop mercury control strategies. Current uncertainty in the accuracy and mercury speciation capability of mercury sampling methods led B&W to use both EPA Method 29 and the Ontario Hydro procedures to measure mercury emissions from CEDF pollution control devices. A comparison of the speciated mercury emissions is presented.

  4. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  5. Trace elements emission from coal-fired power stations in Mexico

    SciTech Connect

    Altamirano-Bedolla, J.A.; Wong-Moreno, A.; Romo-Millares, C.A.

    1999-07-01

    This paper presents partial results of work currently in progress to determine trace elements emissions associated with the coal combustion from coal-fired power stations in Mexico. It shows the progress of the first year of a five-year project, supported by the Mexican Ministry of Energy with the aim of developing methods to obtain representative samples, perform reliable analysis and produce accurate quantification and classification of these emissions. A description of the sampling procedures and analysis performed to the coal, bottom ash, fly ash and total suspended particles in flue gas are given. Some results are provided and discussed as an example of the large amount of information that will be analyzed in the future to produce conclusions regarding trace elements from coal fired stations in Mexico. Elements such as Mercury, Arsenic, Lead, Nickel, Chromium, Cadmium, Copper, Zinc, Manganese, Cobalt, Selenium, Atimony, Vanadium, Barium, Strontium, Boron and Molybdenum were analyzed by Atomic Absorption Spectroscopy (AAS) using Flame AAS, Hydride Generation AAS and Cold Vapor AAS. Scanning Electron Microscopy and Electron Probe Microanalysis (SEM-EDX) was also used to identify some of the elements.

  6. Fire tests of five-gallon containers used for storage in underground coal mines. Report of Investigations\\/1985

    Microsoft Academic Search

    F. J. Perzak; T. A. Kubala; C. P. Lazzara

    1985-01-01

    The Bureau of Mines conducted a study to develop a standard fire test for 5-gal containers used for storing combustible fluids in underground coal mines. A standard test method was developed which evaluates the performance of the container in a 4-min tray fire. Bureau investigators used the standard test method to evaluate several types of closed 5-gal plastic and metal

  7. Prototype scale testing of limb technology for a pulverized-coal-fired boiler. Final report, May 1986-June 1990

    SciTech Connect

    England, G.C.; Moyeda, D.K.; Nguyen, Q.; Folsom, B.A.

    1996-05-01

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. FSI of lime or moderate SO2 removal was evaluated on the 61-MWe tangentially fired boiler at Richmond Power and Light`s Whitewater Valley station in Richmond, Indiana. A bituminous coal of about 2.5% sulfur was fired. This project, cosponsored by EPRI and the EPA, is one of three projects in the the U.S. that will evaluate calcium-based FSI for SO2 control at utility scale.

  8. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  9. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  10. Deposit growth and property development in coal-fired furnaces

    SciTech Connect

    Baxter, L. [Sandia National Lab., Livermore, CA (United States)

    1995-11-01

    The objectives of this research project are: (1) to provide a self-consistent database of simultaneously measured, time-resolved ash deposit properties in well-controlled and well-defined environments and (2) to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. This project is distinguished from related work being done elsewhere by: (1) the development and deployment of in-situ diagnostics to monitor deposit properties, including heat transfer coefficients, porosity, emissivity, tenacity, strength, density, and viscosity; (2) the time resolution of such properties during deposit growth; (3) simultaneous measurement of structural and composition properties; (4) development of algorithms from a self-consistent, simultaneously measured database that includes the interdependence of properties; and (5) application of the results to technologically relevant environments such as those being planned under Combustion 2000 program. Work completed during FY94 emphasized diagnostic development. During FY95, this development work will be completed and we will emphasize application of the diagnostics to meet the other project objectives. Included in this work are the development and application of two in-situ, real-time diagnostic systems for monitoring the properties of inorganic materials on Heat transfer surfaces and in the gas-phase during controlled combustion of selected coal samples in Sandia`s Multifuel Combustor (MFC). Also, several diagnostics are being incorporated into the MFC that will eventually be used to characterize ash deposit properties.

  11. Residual carbon from pulverized coal fired boilers 1: Size distribution and combustion reactivity

    SciTech Connect

    Hurt, R.H. [Sandia National Labs., Livermore, CA (United States); Gibbins, J.R. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    1994-08-01

    The amount of residual, or unburned, carbon in fly ash is an important concern in the design and operation of pulverized coal-fired boilers. Char oxidation is the slowest step in the coal combustion process, and the rate at which this heterogeneous reaction-proceeds has an important effect on the degree of carbon burnout. There is an extensive literature on char combustion kinetics based on data in the early and intermediate stages of carbon conversion. A critical fundamental question is whether the small fraction of the fuel carbon that passes unreacted through a boiler is representative of the char during the main portion of the combustion process. This article addresses that question through a detailed characterization of eight carbon-containing fly ash samples acquired from commercial-scale combustion systems. The fly ash characterization included measurement-of joint carbon/size distribution and determination.of the combustion reactivity of the residual carbon. To minimize mineral matter interactions in the reactivity tests, the technique of incipient fluidization was developed for separation of carbon-rich extracts from the inorganic portion of the fly ash. Reactivity measurements were made at 1400--1800 K to represent conditions in pulverized coal fired boilers. Measurements were also made at 700--1100 K to. minimize transport effects and isolate the influence of char chemistry and microstructure. In both temperature regimes, the residual carbon extracts. were significantly less reactive than chars extracted from a laboratory-scale laminar flow reactor in the early-to-intermediate stages of combustion. It is concluded that the boiler environment deactivates chars, making high carbon burnout more difficult to achieve than is predicted by existing char combustion kinetic models that were developed from data on the laboratory chars. Finally, the results are used to discuss potential char deactivation mechanisms, both thermal and oxidative, in coal-fired boilers.

  12. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  13. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    SciTech Connect

    Not Available

    1993-02-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

  14. Engineering Development of Coal-Fired High-Performance Power Systems

    SciTech Connect

    J. Shenker

    1997-12-15

    The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel- fired boiler/ air heater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with a more integrated HIPPS arrangement will be tested. The High Performance Power System is a coal- fired, combined cycle power generating system that will have an efficiency of greater than 47 percent (HHV) with NOx and SOx less than 0.025 Kg/ GJ (0.06 lb/ MMBtu). This performance is achieved by combining a coal pyrolyzation process with a High Temperature Advanced Furnace (HITAF). The pyrolyzation process consists of a pressurized fluidized bed reactor which is operated at about 926 o C (1700 o F) at substoichiometric conditions. This process converts the coal into a low- Btu fuel gas and char. These products are then separated. The char is fired in the HITAF where heat is transferred to the gas turbine compressed air and to the steam cycle. The HITAF is fired at atmospheric pressure with pulverized fuel burners. The combustion air is from the gas turbine exhaust stream. The fuel gas from the pyrolyzation process is fired in a Multi- Annular Swirl Burner (MASB) where it further heats the gas turbine air leaving the HITAF. This type of system results in very high efficiency with coal as the only fuel. We are currently in Phase 2 of the project. In Phase 1, a conceptual plant design was developed and analyzed both technically and economically. The design was found to meet the project goals. The purpose of the Phase 2 work is to develop the information needed to design a prototype plant which would be built in Phase 3. In addition to engineering analysis and laboratory testing, the subsystems that are not commercial or being developed on other projects will be tested at pilot plant scale. The FWDC Second- Generation PFB pilot plant in Livingston, NJ, has been modified to test the pyrolyzer subsystem. The FWDC Combustion and Environmental Test Facility (CETF) in Dansville, NY, is being modified to test the char combustion system. When these tests are complete, a more integrated pilot plant will be tested. During this Quarter, some modifications to the Livingston Pyrolyzer Pilot Plant were made and two more test runs were completed. All planned modes of operation with a jetting type of bubbling bed pyrolyzer have been completed. Data reduction for the first two test points is complete, but laboratory analysis for the last two runs is still in progress. The results so far indicate that this type of pyrolyzer will give performance that is acceptable for a HIPPS plant. The bubbling bed pyrolyzer has been run with beds of limestone and alternatively with sand beds. The coal input to the pyrolyzer has been pulverized coal in all cases.

  15. Injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane. Topical report, March 1995--March 1996

    SciTech Connect

    Carlson, F.M.; Mones, C.G.; Johnson, L.A.; Barbour, F.A.; Fahy, L.J.

    1997-09-01

    The overall objective of this task is to test the technical viability of injecting CO{sub 2} into the Fruitland Coal to displace methane from the coal and to mitigate CO{sub 2} emissions that are a consequence of primary coalbed methane production from surrounding wells in the area. To evaluate this technical viability, a field test was conducted and the test is being interpreted using data measured in WRI`s laboratory, as well as using Amoco`s state-of-the-art coalbed methane simulator. Also, a second pilot of the process is being evaluated using the simulator. Ultimately, the technology developed will be applied to a Wyoming coal.

  16. Neural network predictions of slagging and fouling in pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.; Smouse, S.; Chi, R. [Pittsburgh Energy Technology Center, PA (United States)

    1996-12-31

    Feed-forward back-propagation neural networks were trained to relate the occurrence and characteristics of troublesome slagging and fouling deposits in utility boilers to coal properties, boiler design features, and boiler operating conditions. The data used in this effort were from a survey of utility boilers conducted by Battelle Columbus Laboratories in an Electric Power Research Institute project. Two networks were developed in this study, one for slagging and one for fouling, to predict ash deposition in various types of boilers (wall-, opposed wall-, tangentially, and cyclone-fired) that fire bituminous and sub-bituminous coals. Both networks predicted the frequency of deposition problems, physical nature (or state) of the deposit, and the thickness of the deposit. Since deposit characteristics vary with boiler location and operating conditions, the worst documented cases of ash deposition were used to train the neural networks. Comparison of actual and predicted deposition showed very good agreement in general. The relative importance of some of the input variables on the predicted deposit characteristics were assessed in a sensitivity analysis. Also, the slagging and fouling characteristics of a blend of two coals with significant different deposition characteristics were predicted to demonstrate a practical application of developed neural networks.

  17. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  18. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.

  19. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  20. Co-firing of natural gas and coal. Final report, October 1988-March 1993

    SciTech Connect

    Bayless, D.J.; Daves, G.G.; Johnson, D.C.; Olsen, M.G.; Schroeder, A.R.

    1995-08-01

    The effects of co-firing natural gas on coal ignition, burning rate and sulfur emissions were investigated in a Drop Tube Furnace Facility (DTFF). The DTFF provides control over gas temperatures (1200 to 1700 K), residence times (5 msec to 2 sec), gas species concentrations (CH4, O2, CO2, etc.) and heating rates (up to 10(exp 4) K/sec). The DTFF includes a two-color pyrometer for particle temperature measurements, a digital camera and computer imaging analysis system for in situ particle size and morphology determination, and a sampling system for ash collection. Co-firing small amounts of natural gas reduced the ignition delay of low volatile particles to a value typical of high volatile coal due to increased heating of the particle from gas phase combustion. Co-firing increased sulfur capture because the natural gas flame promotes the conversion of SO2 to SO3, which is more reactive with sorbent materials in the ash.

  1. Total integrated NOx compliance for existing pulverized coal-fired units

    SciTech Connect

    Camody, G.; Lewis, R.; Cohen, M.B.; Buschmann, J.; Hilton, R.; Larsson, A.C.; Tobiasz, R.

    1999-07-01

    The EPA Title 1 NOx emission limits along with the corresponding OTR regulations are mandating coal-fired NOx emission levels below 0.15 lb/MBtu. For tangentially fired units, experience has shown that the technology is currently available to achieve these limits. The question for each unit owner-operator becomes; what is the most economical technology or combination of technologies to achieve the required results? This paper provides a brief overview of Combustion Engineering, Inc.'s (ABB C-E) latest NOx control technologies, both in-furnace and post-combustion, for tangential coal-fired steam generators. The paper further reviews options of both stand-alone and combined multiple technologies to achieve the most cost-effective NOx compliance, while maintaining the high levels of unit efficiency and performance that is required to by successful in their deregulated power industry. Current operational data of both in-furnace and SCR NOx reduction systems are presented, as well as the latest historical cost data for the systems.

  2. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada.

    PubMed

    Mazur, Maxwell; Mintz, Rachel; Lapalme, Monique; Wiens, Brian

    2009-12-20

    The Lake Wabamun area, in Alberta, is unique within Canada as there are four coal-fired power plants within a 500 km(2) area. Continuous monitoring of ambient total gaseous mercury (TGM) concentrations in the Lake Wabamun area was undertaken at two sites, Genesee and Meadows. The data were analyzed in order to characterise the effect of the coal-fired power plants on the regional TGM. Mean concentrations of 1.57 ng/m(3) for Genesee and 1.50 ng/m(3) for Meadows were comparable to other Canadian sites. Maximum concentrations of 9.50 ng/m(3) and 4.43 ng/m(3) were comparable to maxima recorded at Canadian sites influenced by anthropogenic sources. The Genesee site was directly affected by the coal-fired power plants with the occurrence of northwest winds, and this was evident by episodes of elevated TGM, NO(x) and SO(2) concentrations. NO(x)/TGM and SO(2)/TGM ratios of 21.71 and 19.98 microg/ng, respectively, were characteristic of the episodic events from the northwest wind direction. AERMOD modeling predicted that coal-fired power plant TGM emissions under normal operating conditions can influence hourly ground-level concentrations by 0.46-1.19 ng/m(3)(.) The effect of changes in coal-fired power plant electricity production on the ambient TGM concentrations was also investigated, and was useful in describing some of the episodes. PMID:19875156

  3. Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia.

    PubMed

    Vockler, Cassandra J; Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J

    2014-01-01

    Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

  4. Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia

    PubMed Central

    Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J.

    2014-01-01

    Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

  5. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  6. Superheater/intermediate temperature airheater tube corrosion tests in the MHD Coal Fired Flow Facility (Eastern Coal Phase)

    SciTech Connect

    White, M.K.

    1993-11-01

    Corrosion data have been obtained for tub is exposed for 1500--2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility to conditions representative of superheater and intermediate temperature air heater (ITAH) components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, were corroded more than in most pulverized coal fired superheater service, but much less than the highly aggressive liquid phase attack encountered in conventional plants with certain coals and temperatures. Results indicated that, with parabolic corrosion kinetics, type 310 and 253MA stainless steels should be usable to 1400F at hot end of ITAH. At final superheater temperatures, 2.25 and 5 Cr steels were indicated to have parabolic corrosion rates generally below a 0.5 mm/yr criterion, based on corrosion scale thickness. However, unknown amounts of scale loss from spallation made this determination uncertain. Stainless steels 304H, 316H, and 321H had parabolic rates variably above the criterion, but may be servicable under less cyclic conditions. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. Implications of results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.

  7. Assessment of energy and economic impacts of particulate control technologies in coal-fired power generation

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Reigel, S.; Gorman, P.; Farber, P. S.; Tisue, M.; Bennett, F. C.

    1980-04-01

    Models were derived which to assess the economic and energy impacts of particulate control systems for coal fired power plants. The models take into account the major functional variables, including plant size and location, coal type, and applicable particulate emission standards. The algorithms obtained predict equipment and installation costs, as well as operating costs (including energy usage), for five control devices: (1) cold side electrostatic precipitators; (2) hot side electrostatic precipitators; (3) reverse flow baghouse; (4) shake baghouses; and (5) wet scrubbers. A stream generator performance model was developed, and the output from this model was used as input for the control device performance models that specify required design and operating parameters for the control systems under study. These parameters were used as inputs to the cost models.

  8. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect

    Brown, T D; Schmidt, C E [USDOE Pittsburgh Energy Technology Center, PA (United States)] [USDOE Pittsburgh Energy Technology Center, PA (United States); Radziwon, A S [Burns and Roe Services Corp., Pittsburgh, PA (United States)] [Burns and Roe Services Corp., Pittsburgh, PA (United States)

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.

  9. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  10. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    PubMed

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies. PMID:19350920

  11. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  12. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  13. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    PubMed

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. PMID:26141885

  14. AFBC co-firing of coal and hospital waste. Fourth quarterly report, 1997

    SciTech Connect

    NONE

    1997-07-01

    The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: Steam =20,000 lb/hr; Temperature = 353 F (saturated); Pressure= 125 psig; Steam quality = 98.5%

  15. Evaluation of electricity generation from underground coal fires and waste banks

    SciTech Connect

    Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E. [Oregon Institute of Technology, Klamath Falls, OR (United States)

    2007-06-15

    A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

  16. Thermochemistry of seed and slag vaporization and condensation in coal-fired MHD

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1980-01-01

    A computer code has been developed that calculates equilibrium compositions of the gas and condensed phases in the coal-fired MHD system. The code, MHD80, is based on the laws of mass action, conservation of mass, and, for the condensate, an assumed ideal solution of stable compounds in two immiscible phases. Potassium activities predicted with the code agree with measurements at MBS on synthetic slags and at Argonne on UTSI slag. The code has been used to determine condensation temperatures, loss of potassium to slag, conditions for removal of sulfur as potassium sulfate, and the chemical form of trace impurities.

  17. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1988-04-01

    The general goals of this research project is to enhance and transfer to DOE a new computer simulation model for analyzing the performance and cost of integrated environmental control (IEC) systems for coal-fired power plants. A unique capability of this model is the probabilistic representation of uncertainty in model parameters. This capability allows performance and cost to be quantified stochastically in comparing conventional technologies with advanced systems offering improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Several pre-combustion and post-combustion processes of interest to DOE have been selected for detailed modeling and analysis as part of this project.

  18. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report

    SciTech Connect

    Rubin, E.S.

    1988-04-01

    The general goals of this research project is to enhance and transfer to DOE a new computer simulation model for analyzing the performance and cost of integrated environmental control (IEC) systems for coal-fired power plants. A unique capability of this model is the probabilistic representation of uncertainty in model parameters. This capability allows performance and cost to be quantified stochastically in comparing conventional technologies with advanced systems offering improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Several pre-combustion and post-combustion processes of interest to DOE have been selected for detailed modeling and analysis as part of this project.

  19. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  20. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect

    Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  1. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, August-October 1980

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1981-02-01

    A total of 69 samples have been obtained from the Lower Kittanning seam in western Pennyslvania and eastern Ohio. The samples were taken from 39 sample sites and consist of 39 channel samples and 30 hand-picked vitrinites. A complex statistical analysis of petrographic, physical and chemical properties of these samples was performed in order to study their relationship with thermoplastic and liquefaction behavior. The parameters of the thermoplastic properties were obtained using a Gieseler plastometer. The liquefaction conversion with tetralin was determined in tubing bomb reactors at 400/sup 0/C for 1 hour. Factor analysis on the whole sample population indicated that both liquefaction conversion and some of the measured thermoplastic properties are significantly related with rank. Temperature of softening and degree of fluidity, however, did not load on the rank component. /sup 13/C nmr spectra were obtained for six of our vitrinite concentrates by the University of Utah. The aromaticities determined for fairly wide rank range of these samples varied only from 0.66 to 0.72. However the series showed progression from highly functional aromatic structure at low rank to one with little functionality at high rank. The spectra show no indication of a consistent loss in aliphatic oxygen. The surface areas and micropore volumes of two fractions, -20 and -100 mesh, of five vitrinite concentrates have been measured from CO/sub 2/ uptake at 25/sup 0/C. An increase in these values is observed with decreasing particle size. Total open pore volumes were calculated from particle and helium densities.

  2. Isotopic Variations of Mercury Emitted by Coal Fired Power Plant Gases

    NASA Astrophysics Data System (ADS)

    Khawaja, S. N.; Odom, L.; Landing, W.

    2010-12-01

    Emission of mercury from the burning of coal is considered one of the important anthropogenic sources of atmospheric mercury. Along with current measurements of the isotopic composition of atmospheric mercury being conducted in our laboratory, we have analyzed mercury emitted from a coal fired power plant. Previously Biswas and others (2008) had reported variations in the isotopic composition of mercury in a number of samples of coal deposits. Since the combustion of coal is expected to release virtually all of its mercury, we anticipated comparable isotopc patterns in coal and total emmited mercury. The emitted mercury exists in various physical and chemical forms, each possessing distinct properties that affect atmospheric transport, and sampling methods. Flue gas has been sampled in the stack of a coal fired electric power plant. The Ontario Hydro method was used to trap mercury in flue gases. The method uses oxidant solutions (KCl, H2O2-HNO3 and KMnO4-H2SO4) in its sampling train. This method is the modification of EPA method 29 with the use of KCl in the sampling train. Hg (II) is captured in the KCl impingers, while Hg (0) is captured in H2O2-HNO3 and KMnO4-H2SO4 impingers that oxidize elemental to Hg (ll) (EPA Draft, 1999). In addition gaseous reactive mercury was sampled downwind in large volume rain samples. Mercury (Hg+2) in sample solutions was reduced with SnCl2, and the generated Hg(0) vapor carried by Ar gas into the source of a NEPTUNE ICPMS-MC. Isotope ratios were measured by standard-sample bracketing and reported as permil deviations from the SRM NIST-3133 values. The measurement shows a small range of values of odd isotopes for mass independent fractionation which is negligible, However it displays the wide range of mass dependent fractionation (?198 Hg -1.239 to 2.294). We found that samples in KCl impingers are light isotope enriched and depleted in heavy isotopes, while in KMnO4 impingers these are reverse.

  3. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    NONE

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  4. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993February 15, 1994

    Microsoft Academic Search

    B. G. Miller; J. L. Morrison; R. L. Poe; A. W. Scaroni

    1994-01-01

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1)

  5. Control of mercury emissions from coal-fired power plants: a preliminary cost assessment and the next steps for accurately assessing control costs

    Microsoft Academic Search

    Thomas D. Brown; Dennis N. Smith; William J. O'Dowd; Richard A. Hargis

    2000-01-01

    Mercury emissions from coal-fired power plants have been extensively evaluated for nearly 10 years to determine possible regulation by the Environmental Protection Agency (EPA). Under a court order, a determination will be made on whether it is appropriate and necessary to regulate toxic air pollutant emissions (focusing on mercury) from coal-fired utility boilers by December 15, 2000. If it is

  6. GUIDELINES FOR NOX CONTROL BY COMBUSTION MODIFICATION FOR COAL-FIRED UTILITY BOILERS. PROCEDURES FOR REDUCTION OF NOX EMISSIONS AND MAXIMIZATION OF BOILER EFFICIENCY

    EPA Science Inventory

    The report, which has been reviewed by industry experts, reflects the experience developed in successfully applying combustion modifications to reduce NOx emissions from coal-fired utility boilers. Although the report emphasizes coal-fired equipment, the same principles can be ap...

  7. CO-COMBUSTION OF PULVERIZED COAL, PINE SHELLS, AND TEXTILE WASTES IN A PROPANE-FIRED FURNACE: MEASUREMENTS AND PREDICTIONS

    Microsoft Academic Search

    T. H. YE; J. AZEVEDO; M. COSTA; V. SEMIAO

    2004-01-01

    This paper describes an experimental and numerical investigation on the co-combustion of propane with pulverized coal, pine shells, and textile wastes. Measurements have been performed in a large-scale laboratory furnace fired by an industrial-type swirl burner. Data are reported for in-flame major gas-phase species concentration, including NOx, in-flame gas temperature, and overall char burnout for three flames: a propane\\/coal flame,

  8. A Review of DOE\\/NETL's Mercury Control Technology R&D Program for Coal-Fired Power Plants

    Microsoft Academic Search

    Thomas J. Feeley; James Murphy; Jeffrey Hoffmann; Scott A. Renninger

    Mercury exists in trace amounts in coal. In the United States, coal-fired power plants emit about 48 tons of mercury and are the largest point source of emissions. The U.S. Environmental Protection Agency has determined the need to control mercury emissions from power plants. In addition, several legislative proposals have been introduced in the 108th Congress to reduce mercury emissions

  9. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility. January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported in developing technology for steam bottoming cycle of the coal-fired MHD Steam Combined Cycle Power Plant. During this period, no testing was scheduled in the DOE Coal-Fired Flow Facility. The report covers facilities modification and maintenance in preparation for a 225 hour POC test that is scheduled for early next quarter. The modifications to the dry ESP to replace the electrodes with smaller diameter wires is discussed. Continued work on the rotary vacuum filter, which is designed to separate the more soluble potassium carbonate from the potassium sulfate and fly ash, is reported. Environmental activities for the quarter are summarized.

  10. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    SciTech Connect

    Stoddard, L.E.; Bary, M.R. [Black and Veatch, Kansas City, MO (United States); Gray, K.M. [Pennsylvania Electric Co., Johnstown, PA (United States); LaHaye, P.G. [Hague International, South Portland, ME (United States)

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  11. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    None

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  12. Engineering development of coal-fired high performance power systems phase 2 and 3

    SciTech Connect

    Unknown

    1999-08-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le}10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; and Task 2.4 Duct Heater and Gas Turbine Integration.

  13. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  14. Coal-fired high performance power generating system. Quarterly progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report covers work carried out under Task 2, Concept Definition and Analysis, Task 3, Preliminary R&D and Task 4, Commercial Generating Plant Design, under Contract AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le}25% NSPS; cost {ge}65% of heat input; all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. A survey of currently available high temperature alloys has been completed and some of their high temperature properties are shown for comparison. Several of the most promising candidates will be selected for testing to determine corrosion resistance and high temperature strength. The corrosion resistance testing of candidate refractory coatings is continuing and some of the recent results are presented. This effort will provide important design information that will ultimately establish the operating ranges of the HITAF.

  15. Dry scrubbing system desulfurizes flue gas from a coal-fired boiler

    SciTech Connect

    Not Available

    1980-06-02

    A dry scrubbing system desulfurizes flue gas from a coal-fired boiler in the first successful commercial application of a technique developed jointly by Rockwell International Corp.'s Energy Systems Group and Wheelabrator-Frye Inc.'s Air Pollution Control Division. According to Rockwell, which is marketing the process, the system has been operating steadily since Feb. 1980 on a coal-fired steam boiler at Celanese Fibers Co.'s Maryland plant and has allowed compliance with EPA's 70 lb/h sulfur dioxide emission limit for that installation. The process is similar to many other desulfurization techniques in that a lime slurry is sprayed into the flue gas stream to remove sulfur dioxide as sulfates and sulfites. The flue gas contacts a 30% solids slurry in a modified spray drier where the hot flue gas completely evaporates the moisture and leaves a dry powder instead of a sludge that would be corrosive and difficult to handle. The powder and any particulates or fly ash are collected in a fabric filter.

  16. Parameters influencing nitrogenous species formation and reaction in stoker coal-fired combustion

    SciTech Connect

    Starley, G.P.

    1982-01-01

    The purpose of this investigation was to characterize the influence of combustion parameters on NO formation mechanisms in the fuel-bed burning regimes of spreader and mass-burning stokers. The approach utilized an experimental fixed-bed furnace configured to provide specific simulations of either stoker system. In the spreader-stoker configuration, large coal particles were fired in a continuous simulation of bed-phase combustion. In the mass-burning stoker configuration, the coal bed was fired in a transient mode to simulate the time/temperature/environmental history of a small segment of a thick fuel bed. First-stage stoichiometry was the primary combustion parameter influencing NO formation in both stoker simulations. Substantial reductions in exhuast NO emissions were achieved under staged combustion conditions. Under fuel-rich conditions, fuel nitrogen speciation favored the formation of reduced intermediates (NH/sub 3/ and HCN). Second-stage conversion of fixed nitrogen species was found to be inversely proportional to concentration and dependent on rich-zone residence time and local stoichiometry. For both stoker simulations, an increase in fuel burning rate resulted in increased NO emissions.

  17. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  18. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    None

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  19. Coal-fired MHD combustor development project: Phase IIIB. First quarterly technical progress report, 13 January-30 April 1982

    SciTech Connect

    none,

    1982-05-20

    The first quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase IIIB) presents the accomplishments during the period 13 January to 30 April, 1982. The scope of work covered by this quarterly report relates to those tasks associated with preparing the TRW 20 MW/sub t/ MHD coal combustor for delivery to AERL for integrated power tests and the work associated with the preliminary design of a 50 MW/sub t/ coal-fired combustor. Progress during this reporting period is described. All new 20 MW/sub t/ hardware was designed and fabricated. Interface coordination meetings were conducted with AERL and DOE. Interface control drawings were completed and a 20 MW/sub t/ coal combustion User's manual was delivered to AERL. The User's manual contained a shipping plan, a crew training plan, an assembly manual, interface documentation and recommended operating procedures. Facility/combustor set-up was completed and the pre-delivery 20 MW/sub t/ coal combustor qualification test series was completed. The 50 MW/sub t/ coal-fired MHD combustor preliminary designs were finalized and the DOE preliminary design review (PDR) was successfully completed.

  20. Application of a boiler performance model to evaluate low-rank coal fired subcritical and supercritical boilers

    SciTech Connect

    Ahn, Y.K.; Buchanan, T.L.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-12-31

    A number of thermal drying processes that could be used to dry and upgrade Low-Rank Coals (LRCs) are under development. G/C evaluated these processes and selected the SynCoal process as the optimum process to dry the LRC. Initially, the evaluation was made on the basis of the cost of dried LRC, delivered to Korea, and later the evaluation was made on a cost-of-electricity (COE) basis. Two cases were evaluated: firing the dried LRC in an existing subcritical PC plant and in a new supercritical boiler. For the existing PC plant, Korea Electric Power Corporation`s (KEPCO`s) 270 MWe Honam plant was selected. A Boiler Performance Model (BPM) was used to evaluate performances of both subcritical and supercritical units for firing various coals. The results showed that upgraded Usibelli coal was marginally competitive due to its high mine-mouth cost, but Rosebud coal was very competitive due to its low mine-mouth cost. In these cases the coals were upgraded by using the SynCoal process. This report investigates the impact of tax incentives resulting from the Energy Policy Act of 1992 on the competitiveness of the upgraded Alaska Usibelli and Montana Rosebud coals for application to PC plants. The SynCoal process has been qualified by the Internal Revenue Service for tax benefits derived from the Energy Policy Act. The economic analyses include costs and sensitivity analyses for alternative ways of selling fines produced during the SynCoal process: briquetting fines and adding them to the finished product, or cooling fines and selling them to users at the same price as SynCoal product in the domestic market. These analyses included the effects of tax incentive when applicable.

  1. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

  2. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  3. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  4. NO/sub x/ emissions from pulverized-coal arch-fired boilers. Final report

    SciTech Connect

    Sonnichsen, T.W.

    1982-12-01

    A study has been conducted to assess the NO/sub x/ emission characteritics of three subbituminous pulverized-coal arch-fired utility boiler configurations. These boiler arrangements are unique in that the coal is introduced downward from the arch into the furnace with the bulk of the combustion air added through the front wall perpendicular to the flame jet. Inherent staged combustion conditions are thereby generated which have been shown to be conducive to low NO/sub x/ emissions. The intent of the program was to evaluate these designs as alternatives to developing low NO/sub x/ combustion systems and, if appropriate, suggest adoption of the combustion conditions in these boilers to the design of modern utility boilers. Field tests were conducted to determine as-found NO/sub x/ emission levels and the influence of combustion modifications on these emissions. NO/sub x/ levels (corrected to 3% O/sup 2/) ranged from 200 ppM to 350 ppM. The lowest emissions were emitted from the largest (275 MW) boiler. Variations in excess air, air flow injection distribution between burner and front wall, burner stoichiometry, and coal properties were shown to reduce NO emissions by 5 to 35%. Analyses of the design parameters of these boilers have been made directed at determining the primary conditions conducive to low NO/sub x/ emission levels. It has been speculated that these include: (1) the near burner mixing patterns generating persistent fuel-rich conditions; (2) the presence of heat absorbing division walls below the arch reducing flame temperatures; and (3) delayed mixing of the front wall air allowing intermediate stage NO reduction. Necessary considerations for the adoption of arch-firing to new designs are presented.

  5. Chemical characteristics of Victorian brown coal

    SciTech Connect

    Perry, G.J.; Allardice, D.J.; Kiss, L.T.

    1983-08-01

    Extensive deposits of soft brown coal exist in Tertiary age sediments in a number of areas in Victoria and the largest single deposit occurs in the Latrobe Valley, about 150 kilometers east of Melbourne. In this region the coal seams often exceed 150 metres in thickness, with an overburden to coal ratio usually better than 1:2 making the coal ideally suited for large-scale open-cut mining. A recent study (1) has estimated the State's brown coal resources to be almost 200,000 million tonnes with approximately 52,000 million tonnes defined as usable reserves. About 85% of this coal is located in the Latrobe Valley. Since 1920 Latrobe Valley brown coal has been developed for power generation. The State Electricity Commission of Victoria (SECV) wins coal from two major open cuts at Yallourn and Morwell and operates coal fired power stations which presently consume approximately 35 million tonnes per annum. In addition to power generation, small quantities of brown coal are used for briquette manufacture and char production. Brown coal accounts for about 95% of Victoria's non-renewable energy reserves and it is now recognized that with suitable up-grading, primarily drying, it has the potential to become the basis of the supply of energy in a variety of forms.

  6. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  7. Health and environmental effects of coal-fired electric power plants

    SciTech Connect

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.

  8. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  9. Impacts of opencast coal mine and mine fire on the trace elements’ content of the surrounding soil vis-à-vis human health risk

    Microsoft Academic Search

    Reginald E. Masto; Lal C. Ram; Joshy George; Vetrivel A. Selvi; Awadhesh K. Sinha; Santosh K. Verma; Tofan K. Rout; Priyadarshini; Pritish Prabal

    2011-01-01

    Coal from its excavation, processing, and utilization creates environmental problems and health hazards. In these processes, the mobilization of potential organic and heavy metal contaminants affects the quality of soil and health of the inhabitants. Soil samples were collected from the nearby areas of an opencast coal mine (OCM) and a coal fire affected area (CFA) located in Jharia coalfield

  10. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    PubMed

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion. PMID:22439940

  11. Tracks 'Seam' Like Airbags

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bearing a striking resemblance to a cluster of paper lanterns, these inflated airbags show a pattern of seams exactly like those left in the martian soil by the Mars Exploration Rover Opportunity during landing at Meridiani Planum, Mars. This image was taken during airbag testing at NASA's Plum Brook Station, located about 50 miles west of Cleveland in Sandusky, Ohio and operated by NASA's Glenn Research Center.

  12. Western cretaceous coal seam project. Summary of the cooperative research well fc federal No. 12 operated by mesa operating limited partnership. Topical report, January 1988-February 1992

    SciTech Connect

    Pratt, T.J.; Close, J.C.; Mavor, M.J.

    1992-02-07

    The FC Federal Number 12 well is located approximately 20 miles south of the high productivity Meridian 400 development of the San Juan Basin Fruitland formation in an area that was believed to have a coal in the high volatile C bituminous area of the basin. The well was cored, logged, and drill stem tested to obtain estimates of reservoir properties. The combination of modest gas content (215 SCF/Ton), low gas diffusion rates, and very low natural fracture system permeability (less than 0.01 md) combined to make the reservoir properties sub-commercial at this location. The results confirmed the predictions made by GRI researchers at the Texas Bureau of Economic Geology. Hydraulic fracture stimulation did not result in commercial gas production rates due to the lack of permeability development.

  13. Coal-fired high performance power generating system. Quarterly progress report

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  14. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    SciTech Connect

    NONE

    1998-11-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. The design of the char burner was completed during this quarter. The burner is designed for arch-firing and has a maximum capacity of 30 MMBtu/hr. This size represents a half scale version of a typical commercial burner. The burner is outfitted with nozzles for separate injection of char, coal, and limestone. Burner performance will be rated according to three criteria, carbon conversion efficiency, NOx generation, and flame stability. If initial testing in the arch configuration proves successful, further tests will be performed in the wall-fired arrangement. A complete set of process and instrumentation drawings (P/ID's) were completed for the Combustion and Environmental Test Facility (CETF) this quarter. These drawings established an ISA approved instrument tagging structure, and provided a coherent database for the development of a data acquisition system. The data acquisition system polls tag information (value, range, engineering units, etc.) from the distributed control system (DCS) highway, and provides a platform for data reduction. The quadrupole mass spectrometer, used during the pyrolyzer tests performed at the pilot plant in Livingston, N.J., has been redesigned for use at the CETF. The mass spectrometer is designed to provide on-line gas analysis by identifying all of the chemical components within the secondary air line, the flue gas recycle line, and the furnace exit ducting. The construction effort at the CETF continued this quarter with the completion of the char storage system, reheat burner, flue gas recycle piping, and the pulverized coal feed system.

  15. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  17. Development of sorbent injection criteria for sulfur oxides control from tangentially fired coal boilers. Final report, July 1985-August 1987

    SciTech Connect

    Koucky, R.W.; Marion, J.L.; Anderson, D.K.

    1988-08-01

    The report describes a program to develop design criteria for injecting dry sorbents into tangentially fired coal furnaces for the control of SOx emissions. The program included aerodynamic cold-flow testing and mathematical modeling of sorbent injection, demonstration testing of SOx emissions control in a 14.7 MW thermal (50 million Btu/hr) tangentially fired Boiler Simulation Facility (BSF), and development of recommendations for sorbent injection in a tangentially fired boiler demonstration of the process. The isothermal flow modeling led to development of sorbent-injection systems for tangentially fired furnaces which provide high levels of sorbent dispersion. A sorbent dispersion mathematical modeling technique was developed to support flow modeling in identifying and optimizing sorbent injection locations and methods. A procedure was developed for specifying sorbent injection locations and methods for a full-scale demonstration of the sorbent injection process in a tangentially fired utility boiler.

  18. Historical Costs of Coal-Fired Electricity and Implications for the Future James McNerney,a,b

    E-print Network

    to forecast that even without carbon capture and storage, and even under an optimistic scenario in which] and almost a quarter of its carbon dioxide emissions [2]. The impact of any market-based effort to reduce carbon emissions will be highly sensitive to future costs of coal- fired electricity in comparison

  19. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE H

    EPA Science Inventory

    The report gives test results on a coal-fired, overfeed, traveling-grate stoker. The boiler tested is rated at 45,000 lb/hr saturated steam at 140 psig. Measurements include gaseous emissions (O2, CO2, CO, NO, NO2, SO3, and HC), uncontrolled particulate mass loading, particle siz...

  20. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE G

    EPA Science Inventory

    The report gives results of field measurements made on a 75,000 lb/hr coal-fired spreader-stoker boiler. The effects of various parameters on boiler emissions and efficiency were studied. Parameters included overfire air, flyash reinjection, excess air, boiler load, and fuel prop...