Science.gov

Sample records for coal seam fire

  1. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.

  2. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Liang, Yanci; Liang, Handong; Zhu, Shuquan

    2014-02-01

    The underground coal seam fire in the Wuda, Inner Mongolia of china is one of the most serious coal fires in the world with a history over 50 years and endangers the neighboring downwind urban area. To investigate the potential mercury emission and migration from the coal seam fire, in situ real-time measurement of total gaseous mercury (TGM) concentration using Lumex RA-915 + mercury analyzer were implemented on the fire zone and the urban area. The results show an average TGM concentration of 464 ng m-3 in the fumes released from surface vents and cracks on the fire zone, which leads to an elevated TGM concentration of 257 ng m-3 (211-375 ng m-3) in the near-surface air at the fire zone and 89 ng m-3 (23-211 ng m-3) at the peripheral area. The average TGM concentration in the adjoining downwind urban area of Wuda is 33 ng m-3. This result suggests that the coal seam fire may not only contribute to the global mercury inventory but also be a novel source for mercury pollution in the urban areas. The scenario of urban areas being adjacent to coal seam fires is not limited to Wuda but relatively common in northern China and elsewhere. Whether there are other cities under influence of coal seam fires merits further investigation.

  3. Emergency assessment of potential debris-flow peak discharges, Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.; Rea, Alan H.; Garcia, Steven P.

    2002-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  4. Gel retarder for fire prevention and extinguishing -- Its application for spontaneous combustion of coal seams

    SciTech Connect

    1998-12-31

    With its unique function, gel retarder has been successfully applied to extinguish fire at coal face, roadways and stop line of upper slice extraction, and a comparably perfect set of fire extinguishing techniques has been developed. The technique gathers together characteristics of water-fixation, leak-blocking, cooling, oxidation-retarding and heat-resisting. A new agglomerating agent without amine and corrosion has been developed to replace amine-salt and acid used in the past. Gel-injection technology cooperating with the grouting system on the ground solves previous problems in which gel-injection velocity was slow and materials transport was difficult. The technique has become the main measure to extinguish spontaneous combustion in coal mines in China. The use of gel retarder as an important means of underground fire prevention will be applied more widely to prevent and extinguish spontaneous fire in coal mines.

  5. Coal Mining on Pitching Seams

    E-print Network

    Brown, George MacMillan

    1915-01-01

    seam and separated by several alternate layers of sand-stone and sandy shale lies the McAlester seara. Several hundred feet above the McAlester seam is found another small seam which, as yet , is unnamed but commonly called the Upper McAlester vein... ) , the Hartshorne coal has the following composition: Moisture 1 . 68 Volatile Combustible Hatter 41 .00 Fixed Carbon 51*91 Ash 5 ^ 1 Sulphur 2*72 Phosphorus #012 The Oklahoma geological survey report for 1914 gives the following analysis of the Hartshorne...

  6. Assessment of potential debris-flow peak discharges from basins burned by the 2002 Coal Seam fire, Colorado

    USGS Publications Warehouse

    Cannon, Susan H.; Michael, John A.; Gartner, Joseph E.

    2003-01-01

    These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Coal Seam fire of June and July 2002, near Glenwood Springs, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could potentially be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and greater than 5,000 ft3/s (>141 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). The 25-year, 1-hour storm of 1.3 inches (33 mm). The 100- year, 1-hour storm of 1.8 inches (46 mm) produced peak discharges between 1 and greater than 8,000 ft3/s (>227 m3/s). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and the planning of evacuation timing and routes.

  7. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A

  8. Cleaning of Croweburg Seam coal to improve boiler performance

    SciTech Connect

    Dospoy, R.L.

    1991-01-01

    Recently an Oklahoma law was enacted that mandates that Oklahoma coal-fired utilities must burn a minimum of ten percent Oklahoma-mined coal. Public Service Company of Oklahoma (PSO), burning raw Croweburg Seam coal from Oklahoma as part of a blend, was interested in determining if cleaning the Croweburg Seam coal could reduce boiler slagging and fouling problems experienced at its Northeastern Station's Units 3 and 4. Studies of the Croweburg Seam coal performed at CQ Inc. in Homer City, Pennsylvania were used to determine the potential of physical cleaning for upgrading this coal. The test program involved commercial-scale cleaning tests with heavy-medium cyclones, two-stage water only cyclones, and froth flotation cells, well as extensive laboratory and pilot-scale tests. The coal evaluated during the test program responded well to cleaning. Results indicate the ash slagging and fouling can be significantly improved by cleaning. Significant reductions in ash, specific ash constituents, and trace element concentrations were also demonstrated along with increased heating value. Finally, although the raw coal tested can be classified as compliance'' prior to cleaning, the cleaning tests show that further reductions in SO{sub 2} emissions potential were possible, along with high energy recoveries and increased heating values and can be beneficial for improved plant performance.

  9. Modeling Coal Seam Damage in Cast Blasting

    SciTech Connect

    Chung, S.H.; Preece, D.S.

    1998-11-23

    A discrete element computer program named DMC_BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece & Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions. DMC_BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Coal seam chilling refers to the shattering of a significant portion of the coal leaving unusable fines. It is also refereed to as coal damage. Chilling is caused during a blast by a combination of explosive shock energy and movement of the adjacent rock. Chilling can be minimized by leaving a buffer zone between the bottom of the blastholes and the coal seam or by changing the blast design to decrease the powder factor or by a combination of both. Blast design in coal mine cast blasting is usually a compromise between coal damage and rock fragmentation and movement (heave). In this paper the damage to coal seams from rock movement is examined using the discrete element computer code DMC_BLAST. A rock material strength option has been incorporated into DMC_BLAST by placing bonds/links between the spherical particles used to model the rock. These bonds tie the particles together but can be broken when the tensile, compressive or shear stress in the bond exceeds the defined strength. This capability has been applied to predict coal seam damage, particularly at the toe of a cast blast where drag forces exerted by movement of the overlying rock can adversely effect the top of the coal at the bench face. A simulation of coal mine cast blasting has been performed with special attention being paid to the strength of the coal and its behavior at t he bench face during movement of the overlying material.

  10. The coal seam as a waveguide

    SciTech Connect

    Major, M.

    1982-04-01

    The speed of elastic waves in coal is often less than on the roof and floor; therefore a coal seam may be a waveguide. This guide is similar to the Sofar channel in the ocean or to the surface waveguides in exploration geophysics. Any perturbation of a waveguide should perturb the seismogram. The objective of current research is to determine how big the geologic perturbation must be to be detected and identified under field conditions.

  11. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. The magnetic mapping with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350 × 300m with 7913 points. The detected anomalies lie in a range between -130 and 176 nT. The maxima are most likely caused by heating of the top sandstones by burning coal, the origin for the high magnetization being the conversion of pyrite and markasit into maghemite, hematite and magnetite. Susceptibility measurements of clinkers in firezone 18 demonstrate this effect. Therefore the identified patches with high magnetic anomalies should have a direct connection to ranges with burning coal within firezone 18. Al the discussed geophysical measurements together allow an integrated interpretation. Each result can be related to the combustion process with a particular likelihood for the vertical projection to the combustion centre. Probability calculations with chosen weight factors for each observation method are discussed. References: Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coalfires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007).

  12. Recovery of stray (thin) seams in Western coal mining

    SciTech Connect

    Finch, T.E.; Fidler, E.L.

    1982-11-01

    This paper argues that the while of thin seams in western Canada can be very profitable and worthwhile. Explains that if the mine can recover a rider seam or thin seam for less than the dragline operating costs per ton, a savings will be realized. By recovering a thin seam or rider seam, the life of an ore body is extended by that amount of coal not thrown away. Cost per ton of land acquisition, associated permits, capital, and reclamation will be reduced as more coal is recovered from a given area.

  13. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...natural gas produced from coal seams. A person seeking...natural gas produced from coal seams must file an application...completion reports. (c) A radioactivity, electric or other log which will define the coal seams. (d)...

  14. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...natural gas produced from coal seams. A person seeking...natural gas produced from coal seams must file an application...completion reports. (c) A radioactivity, electric or other log which will define the coal seams. (d)...

  15. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...natural gas produced from coal seams. A person seeking...natural gas produced from coal seams must file an application...completion reports. (c) A radioactivity, electric or other log which will define the coal seams. (d)...

  16. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  17. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W. (Moraga, CA)

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  18. The geomechanics of gas recovery from coal seams

    NASA Astrophysics Data System (ADS)

    Klimov, D. M.; Karev, V. I.; Kovalenko, Yu. F.

    2015-05-01

    A new approach for the creation of scientific foundations for effective and environmentally safe recovery of methane from coal seams is proposed. A virgin coal seam possesses very low permeability. Free gas is contained in isolated microscopic pores and cracks of the coal seam under a pressure close to the rock pressure. An oriented system of cracks, which forms a coupled system of filtration channels, can be formed by means of directed unloading of the rock pressure from the seam due to expanding gas energy. The parameters of the manufacturing effect on the seam are determined based on physical modeling of actual mechanical and filtration processes using the experimental installation of truly three-axial loading and mathematical modeling.

  19. Shield support selection based on geometric characteristics of coal seam

    SciTech Connect

    K. Goshtasbi; K. Oraee; F. Khakpour-yeganeh

    2006-01-15

    The most initial investment in longwall face equipping is the cost of powered support. Selection of proper shields for powered supports is based on load, geometric characterization of coal seams and economical considerations.

  20. High resolution processing of 3D seismic data for thin coal seam in Guqiao coal mine

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Peng, Suping; Zou, Guangui

    2015-04-01

    Accurate identification of small faults for coal seams is very important for coal-field exploration, which can greatly improve mining efficiency and safety. However, coal seams in China are mostly thin layers, ranging from 2-5 m. Moreover, the shallow coal seam with strong reflection forms a shield underneath thin coal seam which is only about 40 m deeper. This causes great difficulty in seismic processing and interpretation. The primary concern is to obtain high-resolution seismic image of underneath thin coal seam for mining safety. In this paper, field data is carefully analyzed and fit-for-purpose solutions are adopted in order to improve the quality of reprocessed data and resolution of target coal seam. Identification of small faults has been enhanced significantly.

  1. Selective agglomeration of a Pittsburgh Seam coal with isooctane

    SciTech Connect

    Lai, R.; Killmeyer, R.; Utz, B.; Richardson, A.; Sinha, K.

    1992-01-01

    The Pittsburgh Energy Technology Center initiated a research program in 1989 to investigate the fundamentals of selective agglomeration as applied to the cleaning of coals. The results of the initial study with Bruceton mine, Pittsburgh seam coal, using isooctane as an agglomerant, have been published. Subsequent to the successful reduction of the ash content of Bruceton coal to less than 0.9% after two cleaning stages, the study was extended to compare a coal from the same seam, but from Ohio. In the previous parameter optimization tests with Bruceton coal, particle size and slurry pH were found to be important parameters governing coal cleanability. Other researchers have obtained similar conclusions of the effects of particle size and coal slurry pH on the cleanability of various coals. In this study, the effects of these parameters on the cleanability of Powhatan coal were examined. Particle size reduction kinetics was examined first. Effects of size reduction (degree of mineral matter liberation), oil (isooctane)-to-coal ratio, and slurry pH on mineral matter rejection and combustible recovery were also examined. A petrographic comparison was conducted on the Powhatan and Bruceton coals to examine the degree of pyrite liberation as a function of particle size to elucidate why one coal from the same seam can be cleaned significantly better than another. (VC)

  2. Spatial Variation of Selenium in Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.

    2013-12-01

    The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.

  3. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW Turkey

    NASA Astrophysics Data System (ADS)

    Büēkün, Zeynep; ?naner, Hülya; Oskay, Riza Görkem; Christanis, Kimon

    2015-06-01

    The Ören and Yata?an Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays many sharp alternations of matrix lignite beds and inorganic, lacustrine sediment layers. The coal is a medium-to-high ash lignite (10.47-31.16 wt%, on dry basis) with high total sulphur content (up to 10 wt%, on dry, ash-free basis), which makes it prone to self-combustion. The maceral composition indicates that the peat-forming vegetation consisted of both arboreal and herbaceous plants, with the latter being predominant in the upper part of the seam. Mica and feldspars contribute to the low part of the seam; carbonates are dominant in the upper part, whereas quartz and pyrite are present along the entire coal profile. The sudden transitions of the telmatic to the lacustrine regime and reverse is attributed to tectonic movements that controlled water table levels in the palaeomire, which affected surface runoff and hence, clastic deposition.

  4. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...false Occluded natural gas produced from coal seams. 270.302 Section 270.302...302 Occluded natural gas produced from coal seams. A person seeking a determination...gas is occluded natural gas produced from coal seams must file an application with...

  5. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...false Occluded natural gas produced from coal seams. 270.302 Section 270.302...302 Occluded natural gas produced from coal seams. A person seeking a determination...gas is occluded natural gas produced from coal seams must file an application with...

  6. Solution for Coal Seam Deaasi ication Wel s =ducing Under Two-Phase Flow Conditkms

    E-print Network

    Mohaghegh, Shahab

    . `E 22673 7ype-Curve ., Solution for Coal Seam Deaasi ication Wel s =ducing Under Two-Phase Flow the presenceof water in the coal seam and its co- production with gas. The developed type curves are capable dynamics of methane in coal seams. A previously developed numerical model has been instrumental

  7. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  8. Deep coal seams as a greener energy source: a review

    NASA Astrophysics Data System (ADS)

    Ranathunga, A. S.; Perera, M. S. A.; Ranjith, P. G.

    2014-12-01

    Today, coal and oil are the main energy sources used in the world. However, these sources will last for only a few decades. Hence, the investigation of possible energy sources to meet this crisis has become a crucial task. Coal bed methane (CBM) is a potential energy source which can be used to fulfil the energy demand. Since the amount of carbon dioxide (CO2) emitted to the atmosphere from the use of CBM is comparatively very low compared to conventional energy sources, it is also a potential mitigation option for global warming. This paper reviews CBM recovery techniques with particular emphasis on CO2-enhanced coal bed methane (CO2-ECBM) recovery. The paper reviews (1) conventional CBM recovery techniques and problems associated with them, (2) CBM production-enhancement methods, including hydro-fracturing and enhanced CBM recovery techniques, such as N2-ECBM and CO2-ECBM, (3) the importance of the CO2-ECBM technique compared to other methods and problems with it, (4) the effect of CO2 injection during the CO2-ECBM process on coal seam permeability and strength and (5) current CO2-ECBM field projects and their progress. Although conventional CBM recovery methods are simple (basically related to the drawdown of the reservoir pressure to release methane from it), they are inefficient for the recovery of a commercially viable amount of methane from coal seams. Therefore, to enhance methane production, several methods are used, such as hydro-fracturing and ECBM (N2-ECBM and CO2-ECBM). The CO2-ECBM process has a number of advantages compared to other methane recovery techniques, as it contributes to the mitigation of the atmospheric CO2 level, is safer and more economical. However, as a result of CO2 injection into the coal seam during the CO2-ECBM process, coal mass permeability and strength may be crucially changed, due to the coal matrix swelling associated with CO2 adsorption into the coal matrix. Both injecting CO2 properties (gas type, CO2 phase and pressure) and coal seam properties (coal rank and temperature) affect this swelling. Although there are many related studies, a number of gaps exist, especially in the area of coal rank and how the effect of other factors varies with the rank of the coal seam. To date, there have been few CO2-ECBM field projects in the world. However, the reduction of CO2 injectability after some time of CO2 injection, due to coal matrix swelling near the well bore, is a common problem in the field. Therefore, various permeability-enhancing techniques, such as hydro-fracturing and injection of an inert gas such as N2 or a mixture of inert gases (N2 + CO2) into the seam to recover the swelled areas are under test in the field.

  9. Numerical modeling of hydrofracturing in a multilayer coal seam

    SciTech Connect

    Nasedkina, A.A.; Trufanov, V.N.

    2006-01-15

    The mathematical model of the process for hydrodynamic fracturing in a multilayer coal seam is proposed. The model is based on the equation of continuity and Darcy's law. The filtration-temperature analogy allows solving the obtained non-linear, non-stationary problem in an axisymmetric statement for the pressure function as the heat-conductivity problem, by the finite-element method. The calculation results yield estimation of the radius of degassing borehole influence zone.

  10. Mathematical modeling of hydraulic fracturing in coal seams

    SciTech Connect

    Olovyanny, A.G.

    2005-02-01

    Hydraulic fracturing of coal seam is considered as a process of development of discontinuities in rock mass elements due to change in hydrogeomechanical situation on filtration of fluid under pressure. Failure is associated with excess of the effective stresses over the rock tension strength. The problem on filtration and failure of massif is solved by the finite-element method using the procedure of fictitious nodal forces.

  11. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Australian Commonwealth and State Governments. Finally, parallels (and differences) between the expansion of the industry in Australia with that in the United States and Europe will be drawn.

  12. Cogeneration plant works in tandem with coal seam gas processing

    SciTech Connect

    McNeely, M.

    1997-01-01

    When Williams Field Services proposed coal seam gas production in the San Juan Basin of northwestern New Mexico, U.S.A., in 1988, the company began with a modular gathering and processing concept that allowed for future expansion if production levels increased. The modular concept also minimized project risk in the event the reservoirs did not perform as expected. From an original scope of collecting up to 10.2 million m{sup 3}/day of natural gas, to its present operations of roughly 26 million m{sup 3}/day, the company`s Manzanares coal seam gas gathering system has become an example of how natural gas gatherers, equipment suppliers, processors and distributors can work together to bring significant new supplies into the market quickly and efficiently. Williams` Manzanares coal seam gas system consists of three amine processing facilities for CO{sub 2} removal, a 62 MW cogeneration plant, as well as over 150 MW of engine driven compression equipment in the field. This article describes the design and specifications of the plant and equipment. 5 figs.

  13. Measuring Contours of Coal-Seam Cuts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Angle transducers measure angle between track sections as longwall shearer proceeds along coal face. Distance transducer functions in conjunction with angle transducers to obtain relative angles at known positions. When cut is complete, accumulated data are stored on cassette tape, and track profile is computed and displayed. Micro-processor-based instrument integrates small changes in angle and distance.

  14. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    NASA Astrophysics Data System (ADS)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  15. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Permissible electric face equipment; coal seams above water table. 75.501 ...HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General...

  16. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Permissible electric face equipment; coal seams above water table. 75.501 ...HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General...

  17. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1...HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General...

  18. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1...HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General...

  19. Multiple-stage coal seam fracing method

    SciTech Connect

    Perlman, W.

    1987-05-19

    A method is described for fracturing a gas-containing subsurface coal formation penetrated by a well, comprising: providing the well with casing of at least 7 inches in nominal diameter having perforations adjacent the coal formation; injecting a fracing fluid through the perforations into the formation adjacent the well in a multiplicity of stages. The fracing fluid has suspended therein fine proppants with a particle size distribution substantially between 60 and 140 mesh. The fine proppants added to the fluid at a rate ranging from about 2 to about 12 pounds per gallon of the fluid; and injecting an acidizing solution into the formation adjacent the well immediately following each of the fracing fluid injection stages. The injections of fracing fluid and acidizing solution are at a rage of from about 15 to about 35 barrels per minute and continuing until at least 3,000 pounds of the fine proppants have been deposited in the formation fracture per linear vertical foot of the formation.

  20. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam. PMID:26387357

  1. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    NASA Astrophysics Data System (ADS)

    Czaja, Piotr; Kami?ski, Pawe?; Klich, Jerzy; Tajdu?, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.

  2. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... above water table. 75.501 Section 75.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and after... entirely in coal seams located above the water table and which has not been classified under any...

  3. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... above water table. 75.501 Section 75.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and after... entirely in coal seams located above the water table and which has not been classified under any...

  4. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... above water table. 75.501 Section 75.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and after... entirely in coal seams located above the water table and which has not been classified under any...

  5. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... above water table. 75.501 Section 75.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and after... entirely in coal seams located above the water table and which has not been classified under any...

  6. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... above water table. 75.501 Section 75.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and after... entirely in coal seams located above the water table and which has not been classified under any...

  7. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    As used in § 75.501, the phrase “coal seams above the water table” means coal seams in a mine which are located at an elevation above a river or the tributary of a river into which a local surface water system naturally...

  8. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    As used in § 75.501, the phrase “coal seams above the water table” means coal seams in a mine which are located at an elevation above a river or the tributary of a river into which a local surface water system naturally...

  9. Scaling control during membrane distillation of coal seam gas reverse osmosis brine

    E-print Network

    Scaling control during membrane distillation of coal seam gas reverse osmosis brine Hung C. Duong Brine management Membrane distillation (MD) Scaling Chemical cleaning a b s t r a c t We systematically during membrane distillation (MD) of brine from reverse osmosis (RO) treatment of coal seam gas (CSG

  10. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2015-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However as coal seam gas deposits generally occur at shallower depths than shale gas the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be of even greater concern for coal seam gas than for shale gas. In Australia an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice the Australian Government Department of the Environment has implemented a three-year programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the program and results to date can be found at http://www.bioregionalassessments.gov.au. In this presentation the methodology for undertaking bioregional assessments will be described and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Results of the programme to date will be provided (being nearly two years into the three-year study) with a focus on the preliminary results of numerical groundwater modelling. Once completed this modelling will be used to evaluate the impacts of the depressurisation of coal seams on aquifers and associated ecological, economic and socio-cultural water-dependent assets.

  11. Modeling of the occurrence of hydrogen sulfide in coal seams

    SciTech Connect

    Gillies, A.D.S.; Kizil, M.S.; Wu, H.W.; Harvey, T.J.M.

    1999-07-01

    Hydrogen Sulfide (H{sub 2}S) has been encountered within a number of Bowen Basin collieries, Central Queensland, Australia. High concentration occurrence during mining of a longwall panel raises a number of potential problems, which demand greater understanding to allow efficient mining while maintaining safe and healthy environmental conditions. Longwall panels at Mine A and Mine B have recently mined through H{sub 2}S zones. The high H{sub 2}S zone mined through at Mine A was wide and covering the whole length of the face comparing to the narrow H{sub 2}S zone which was cutting the panel at 45{degree} at Mine B. Longwall panels had been sampled for H{sub 2}S in pre-mining phases with vertical and inseam exploration boreholes and rib sampling of gateroad development headings. During mining face coal samples were collected in an intensive program and tested in a drum tumbler to determine an indicated seam concentration level through contouring that could be used to calculate the concentrations of H{sub 2}S liberated to the atmosphere. Data were analyzed to determine a geostatistical method, which would best represent the indicated seam concentration level from the given data and the block dimension of the data set. This study discusses the different sampling methods used, selection of the most suitable geostatistical method and the impact of grid size on results of data analysis. Some general observations are made correlating indicated seam H{sub 2}S concentrations from production face sampling with both predictions made from exploration and liberation rates during mining of the longwall panel.

  12. Numerical Modelling by FLAC on Coal Fires in North China

    NASA Astrophysics Data System (ADS)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the coal mine with the backfill. A smaller fires can also be handled by taking out burning coal by bulldozing techniques described above are applicable to small fires, but they do not work well in extinction of large coal fires. References [1] http://www.coalfire.caf.dlr.de [2] Schalke, H.J.W.G.; Rosema, A.; Van Genderen, J.L. (1993): Environmental monitoring of coal fires in North China. Project Identification Mission Report. Report Remote Sensing Programme Board, Derft, the Netherlands. [3] Zhang, X.; Kroonenberg, S. B.; De Boer, C. B. (2004): Dating of coal fires in Xinjiang, north-west China. Terra Nova. Band 16, No 2, S. 68-74. DOI: 10.1111/j.1365-3121.2004.00532.x [4] Deng Jun, Hou Shuang, Li Huirong, e.t.c (2006): Oxidation Mechanism at Initial Stage of a Simulated Coal Molecule with -CH2O-[J]. Journal of Changchun University of Science and Technology, 29(2), P. 84-87. [5] Deng, Jun (2008): Presentation. Chinese Researches and Practical Experiences on Controlling Underground Coal Fires. The 2nd Australia-China Symposium on Science, Technology and Education. 15-18 October 2008, Courtyard Marriott, Surfers Paradise Beach, Gold Coast, Queensland, Australia. [6] Itasca (2003): FLAC, Fast Lagrangian Analysis of Continua. Itasca Consultants Group, Inc., Minneapolis.

  13. Geology of coal fires: case studies from around the world

    SciTech Connect

    Glenn B. Stracher

    2008-01-15

    Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures and geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.

  14. Defeat the dragon: coal fires between self ignition and fire fighting

    SciTech Connect

    Manfred W. Wuttke; Stefan Wessling; Winfried Kessels

    2007-01-15

    Spontaneous coal fires in near surface coal seams are a worldwide recognized problem. They are destroying coal resources and emit climate relevant gases both in considerable amounts. While the extinction of such fires is a most desirable goal, the estimation of the actual input of greenhouse gases into the atmosphere is of great interest especially in the context of the Kyoto protocol as such values are needed as baseline for the Clean Development Mechanism (CDM) policies. Under the framework of the Sino-German coal-fire research project we are developing numerical models of such coal fires for the operational use in fire fighting campaigns. Based on our understanding of the governing physical and chemical processes that are relevant for the whole combustion process we simulate the coal fire spreading along the seams for typical situations. From these scenario calculations we deduce information needed to support the CDM baseline estimation and to assess the progress of fire extinguishing efforts like water injection and surface covering to dissipate the heat and suffocate the fire. We present case studies using the finite-element-code ROCKFLOW applied to realistic geometries based on field observations in the Shenhua Group Coal Mining Area Wuda (Inner Mongolia, PR China).

  15. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal regime in the coal fire zone 18. The occurrence of various thermal alteration products indicates temperatures in the range of 500-700°C.

  16. Remote-sensing GIS based investigations of coal fires in northern China; global monitoring to support the estimation of CO2 emissions from spontaneous combustion of

    E-print Network

    Remote-sensing GIS based investigations of coal fires in northern China; global monitoring to support the estimation of CO2 emissions from spontaneous combustion of coal Freek van der Meer, Paul van, disaster control, coal fires, China ABSTRACT The uncontrolled fires burning of coal seams, stock piles

  17. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General §...

  18. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General §...

  19. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General §...

  20. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General §...

  1. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General §...

  2. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama

    PubMed Central

    Karacan, C. Özgen

    2015-01-01

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557

  3. Analysis and application of coal-seam seismic waves for detecting abandoned mines

    SciTech Connect

    Yancey, D.J.; Irnhof, M.G.; Feddock, J.E.; Gresham, T.

    2007-09-15

    Two in-seam reflection surveys and one transmission survey were acquired at an abandoned underground mine near Hurley, Virginia, to demonstrate the feasibility of detecting abandoned-mine voids utilizing coal-seam seismic waves. Standard, commonly available tools for seismic reflection processing were used. The mine was detected and located by using trapped coal-seam seismic waves observed in both the transmission and reflection data. Detecting the void, however, was not good enough to replace drilling entirely. We conclude that in-seam seismic methods can be used for detection; but if a potential void is detected, focused drilling should be applied for accurate mapping and to circumvent potentially hazardous areas.

  4. Underground coal gasification field experiment in the high-dipping coal seams

    SciTech Connect

    Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W.

    2009-07-01

    In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

  5. Adult Education and Radical Habitus in an Environmental Campaign: Learning in the Coal Seam Gas Protests in Australia

    ERIC Educational Resources Information Center

    Ollis, Tracey; Hamel-Green, Michael

    2015-01-01

    This paper examines the adult learning dimensions of protestors as they participate in a campaign to stop coal seam gas exploration in Gippsland in Central Victoria, Australia. On a global level, the imposition of coal seam gas exploration by governments and mining companies has been the trigger for movements of resistance from environmental…

  6. Underground Coal-Fires in Xinjiang, China: Assessment of Fire Dynamics from Surface Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.; Zeng, Qiang; Tanner, David C.; Halisch, Matthias; Cai, Zhong-yong; Wang, Chunli

    2013-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. The Xinjiang Coalfield Fire Fighting Bureau (XJCFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. In this contribution we describe the latest results from a new conjoint project between China and Germany where on the basis of field investigations and laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction. For two exemplary fire-locations, coarse digital terrain models have been produced. These models serve as basis for a detailed surface exploration by terrestrial laser scanning which shall deliver a detailed fracture inventory. Samples of rock and coal have been taken in the field and are characterized in LIAG's petrophysical laboratory in terms of transport properties. All these data serve as input for our detailed numerical fire models. Repeated measurements of the surface changes together with thermal images reveal the dynamics of fire propagation. The numerical models are calibrated by such data and can later be used to quantify the emissions from such a fire zone.

  7. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Occluded natural gas... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural...

  8. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Occluded natural gas... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural...

  9. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Occluded natural gas... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural...

  10. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Occluded natural gas produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY PROCEDURES GOVERNING DETERMINATIONS FOR TAX CREDIT PURPOSES DETERMINATION PROCEDURES Requirements...

  11. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Occluded natural gas... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.302 Occluded natural gas produced from coal seams. A person seeking a determination that natural gas is occluded natural...

  12. Analysis of local fractures and crack growth in coal seams under compression

    SciTech Connect

    S.V. Kuznetsov; V.A. Trofimov

    2006-01-15

    An analysis is performed for the effect that a growing rock pressure in stress concentration zones has on development of local fractures of coal due to stratal water, and on closing-up of bedding joints, which confines this process. It is shown that all of unstable cracks in a seam grow dynamically until the related bedding crack closing-up.

  13. Blast-free mining of coal seams by excavators equipped with rotary dynamic buckets

    SciTech Connect

    Labutin, V.N.; Mattis, A.R.; Zaitseva, A.A.

    2005-04-01

    The necessity to equip cable excavators with rotary buckets is substantiated. The results of graphic-analytical analysis of the rotary bucket operation are presented, and its main advantages are determined in comparison with conventional buckets in mining coal seams of complex structure.

  14. Carbon Sequestration in Coal Seams: Defining the Nature of the Interactions Between CO2 and Coal

    SciTech Connect

    Goodman, A.L.; Schroeder, K.T.; Campus, L.M.; Hill, M.M.

    2005-05-01

    The CO2 storage capacity in coal seams is typically estimated from isotherm measurements obtained from manometric techniques. In the calculation of the isotherm, two major parameters must be estimated. First, the compressibility factor must be calculated from an equation of state to account for the non-ideality of CO2 at elevated pressures. Second, the volume change associated with the volume occupied by the sorbed CO2 must be estimated. These two parameters can dramatically affect the shape of the CO2-coal isotherm. Of the few papers that published CO2–coal isotherms at high pressures, a variety of curve shapes have been reported. This lack of agreement reduces the confidence in the accuracy of CO2 storage capacities estimated from volumetric isotherm measurements. In this study, the direct interaction between CO2 and two Argonne premium coals [Pocahontas #3 (low volatile bituminous) and Beulah Zap (lignite)] was probed using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectroscopy at 328 K and pressures up to 8.0 MPa. Sorbed CO2 on Argonne coals was detected at 2335 cm-1 for Buelah Zap coal and 2332 cm-1 for Pocahontas #3 coal. The energy of adsorption (18.8 - 20.5 kJ/mol), estimated using the Langmuir equation, was consistent with physisorption. The spectral data indicated that only one type of site was available for sorption. No evidence could be found for specific interactions between CO2 and oxygen functional groups in the coals. The CO2-coal sorption isotherm was derived without estimating the CO2 compressibility and adsorbed layer density, both of which are needed in manometric techniques. The ATR-FTIR isotherms (units of net absorbance) and manometric isotherms (units mmol/g) compare well below the critical temperature providing some confidence in the values selected for the gas phase density and adsorbed layer density that were used to calculate absolute adsorption from the manometric data. In summary, we find that sorption of CO2 is energetically similar for the two coal types, is due only to London forces and quadrupole interactions, and occurs preferentially on a hydrocarbon site.

  15. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  16. Origin of banded structure and coal lithotype cycles in Kargali coal seam of East Bokaro sub-basin, Jharkhand, India: Environmental implications

    NASA Astrophysics Data System (ADS)

    Tewari, Ram Chandra; Khan, Zahid A.

    2015-04-01

    The Kargali seam of Early Permian Barakar cyclothems of East Bokaro sub-basin of Jharkhand, India is 12-30 m thick, splits into two parts, and extends throughout the length of the basin. It is made up of interbedded sequences and variable proportions of Vitrain, Clarain, Durain and Fusain. Application of embedded Markov chain model rejects the phenomenon of randomness in the repetition of coal lithotypes. The preferential upward transition path for coal lithotypes that can be derived for the Kargali top coal seam is: Vitrain ? Clarain ? Durain ? Fusain ? Vitrain, and for the Kargali bottom coal seam is: Clarain ? Vitrain ? Fusain ? Durain ? Clarain. By and large, the cyclic repetition of coal lithotypes is similar in the Kargali bottom and top seams. Among the noteworthy features are two-way transitions between Durain and Fusian in Kargali top and between Clarain and Vitrain in the case of Kargali bottom coal seam. Entropy analysis corroborates Markov chain and indicates the presence of type A-4 asymmetrical cycles of coal lithotypes. It is suggested that the banded structure of a coal seam is not a random feature and follows a definite cyclic pattern in the occurrence of coal lithotypes in vertical order and is similar to that described in Australian and European coal seams. Asymmetrical cyclic sequences are a normal, rather than an unusual condition, within coal seams. It is visualized that a gradual decline of toxic environment and ground water level resulted in the coal lithotype cycles in the Kargali seam of East Bokaro sub-basin. The close interbedding of Vitrain and Clarain is suggestive of seasonal fluctuation in anaerobic and aerobic conditions during peat formation.

  17. The thick red tape in British coal seams

    SciTech Connect

    Not Available

    1993-04-01

    As the British government slowly drags British Coal towards privatization, it is finding that each step brings new problems. On the assumption that any mines actually survive to the sell-off date, what form will the regulations relating to safety take and how will they affect new operators Before buying into the British industry, operators accustomed to the coal industry elsewhere will be well-advised to take a close look at how health and safety regulations constrain the industry.

  18. Factors involved in evaluating ground water impacts of deep coal mine drainage. [Pumping tests of wells drilled into the coal seam and development of mathematical models; detailed discussion

    SciTech Connect

    Davis, P.R.; Walton, W.C.

    1982-10-01

    The determination of probable ground water impacts of proposed deep coal mining is required as part of permit applications. Impact prediction generally involves well production test analysis and modeling of ground water systems associated with coal seams. Well production tests are often complicated due to the relatively low permeabilities of sandstones and shales of ground water systems. The effects of the release of water stored within finite diameter production wells must be considered. Well storage capacity appreciably affects early well production test time drawdown or time recovery data. Low pumping rates, limited cones of depression, and length of required pumping periods are important well production test design factors. Coal seam ground water system models are usually multilayered and leaky artesian. Mine shafts partially penetrate the ground water system. Simulation of coal mine drainage often involves the horizontal permeability and storage coefficient of the coal seam zone, vertical permeablities of sandstones and shales (aquifer) above and below the coal seam zone, and the hydrologic properties of the source bed above the aquifer overlying the coal seam zone. Ground water level declines in both the coal seam zone and source bed near land surface are necessary factors in impact analysis. An example of evaluation studies in southwest Indiana will illustrate factors involved in deep coal mine drainage modeling efforts.

  19. Quarterly review of methane from coal seams technology, Volume 11, Number 2, December 1993

    SciTech Connect

    Hill, D.G.; Schwochow, S.D.; Stevens, S.H.

    1994-01-01

    Contents: natural gas industry production water and waste survey demographics; gas industry-related produced-water demographics; coalbed methane produced-water treatment and disposal options; discharge of coalbed produced water to surface waters--assessing, predicting, and preventing ecological effects; coal-seam water production and disposal, san juan basin; environmental research at gas industry metering sites; btex/voc sampling and analytical methods and gri-dehy; gri basic research group coalbed methane research; and technical events.

  20. Organic geochemical study of sequences overlying coal seams; example from the Mansfield Formation (Lower Pennsylvanian), Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Stankiewicz, A.B.; Salmon, G.; Kvale, E.P.; Millard, C.L.

    1997-01-01

    Roof successions above two coal seams from the Mansfield Formation (Lower Pennsylvanian) in the Indiana portion of the Illinois Basin have been studied with regard to sedimentary structures, organic petrology and organic geochemistry. The succession above the Blue Creek Member of the Mansfield Formation is typical of the lithologies covering low-sulphur coals ( 2.%). The transgressive-regressive packages above both seams reflect the periodic inundation of coastal mires by tidal flats and creeks as inferred from bioturbation and sedimentary structures such as tidal rhythmites and clay-draped ripple bedforms. Geochemistry and petrology of organic facies above the Blue Creek coal suggest that tidal flats formed inland in fresh-water environments. These overlying fresh water sediments prevented saline waters from invading the peat, contributing to low-sulphur content in the coal. Above the unnamed coal, trace fossils and geochemical and petrological characteristics of organic facies suggest more unrestricted seaward depositional environment. The absence of saline or typically marine biomarkers above this coal is interpreted as evidence of very short periods of marine transgression, as there was not enough time for establishment of the precursor organisms for marine biomarkers. However, sufficient time passed to raise SO42- concentration in pore waters, resulting in the formation of authigenic pyrite and sulphur incorporation into organic matter.

  1. Applications of reflection seismics to mapping coal-seam structure and discontinuities

    SciTech Connect

    Dobecki, T.L.; Bartel, L.C.

    1981-01-01

    As a means of demonstrating the effectiveness of reflection seismology in determining continuity of coal seams, three US field projects are reviewed. The three projects involve coals of varied thickness (2 to 14 m) and age (Pennsylvanian to Eocene) from three coal areas of the US (Pennsylvania, Wyoming, and Washington). Each projet also employed its own particular seismic technique, recording system, and seismic energy source although all are considered state-of-the-art, high resolution, digital seismic surveys. Project 1 (thin, Pennsylvania coal) sought detection of sand channels using dynamite and standard in-line (2-D) seismic technique. Project 2 (thick, Wyoming underground coal gasification) involved a gas-explosion (Dinoseis) source with areal (3-D) acquisition methods. Project 3 (thick Washington underground coal gasification) employed a shotgun-type source and standard in-line methods. Data processing was handled by different contractors for each project. Each project was successful in accomplishing its own particular objective; however, data quality and interpretation seem to be more a function of thickness of the target seam, complexity of the overburden, and processing contractor than a seismic source, acquisition scheme (2-D versus 3-D), or recording instrumentation.

  2. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.

  3. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    PubMed Central

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  4. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China

    NASA Astrophysics Data System (ADS)

    Liu, Guijian; Yang, Pingyue; Peng, Zicheng; Chou, Chen-Lin

    2004-08-01

    The Yanzhou mining area in west Shandong Province, China contains coals of Permian and Carboniferous age. The 3 1 and 3 2 seams of the Permian Shanxi Formation and seams 6, 15-17 of the Carboniferous Taiyuan Formation were analyzed for coal petrology, mineralogy and geochemical parameters. The parameters indicate that the coal is high volatile bituminous in rank. The coal is characterized by high vitrinite and low to medium inertinite and liptinite contents. These properties may be related to evolution of the coal forming environment from more reducing conditions in a marine influenced lower delta plain environment for the early Taiyuan coals to more oxidizing paleoenvironments in an upper delta plain for the upper Shanxi coal seams. The major mineral phases present in the coal are quartz, kaolinite, pyrite and calcite. Sulfur is one of the hazardous elements in coal. The major forms of sulfur in coal are pyritic, organic and sulfate sulfur. Pyritic and organic sulfur generally account for the bulk of the sulfur in coal. Elemental sulfur also occurs in coal, but only in trace to minor amounts. In this paper, the distribution and concentration of sulfur in the Yanzhou mining district are analyzed, and the forms of sulfur are studied. The sulfur content of the Taiyuan coal seams is considerably higher than that of the Shanxi coals. Organic sulfur content is positively correlated to total and pyritic sulfur. The vertical variation of Cu, Zn, Pb, As, Th, U and sulfur contents in coal seam 3 of the Shanxi Formation in the Xinglongzhuang mine show that all these trace elements, with the exception of Th, are enriched in the top and bottom plies of the seam, and that their concentrations are also relatively high in the dirt bands within the seam. The pyritic sulfur is positively correlated with total sulfur, and both are enriched in the top, bottom and parting plies of the seam. The concentrations of the trace elements are closely related to sulfur and ash contents. Most of the trace elements are correlated with the ash content, and may be associated with the mineral matter in the coal.

  5. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China

    USGS Publications Warehouse

    Liu, Gaisheng; Yang, P.; Peng, Z.; Chou, C.-L.

    2004-01-01

    The Yanzhou mining area in west Shandong Province, China contains coals of Permian and Carboniferous age. The 31 and 32 seams of the Permian Shanxi Formation and seams 6, 15-17 of the Carboniferous Taiyuan Formation were analyzed for coal petrology, mineralogy and geochemical parameters. The parameters indicate that the coal is high volatile bituminous in rank. The coal is characterized by high vitrinite and low to medium inertinite and liptinite contents. These properties may be related to evolution of the coal forming environment from more reducing conditions in a marine influenced lower delta plain environment for the early Taiyuan coals to more oxidizing paleoenvironments in an upper delta plain for the upper Shanxi coal seams. The major mineral phases present in the coal are quartz, kaolinite, pyrite and calcite. Sulfur is one of the hazardous elements in coal. The major forms of sulfur in coal are pyritic, organic and sulfate sulfur. Pyritic and organic sulfur generally account for the bulk of the sulfur in coal. Elemental sulfur also occurs in coal, but only in trace to minor amounts. In this paper, the distribution and concentration of sulfur in the Yanzhou mining district are analyzed, and the forms of sulfur are studied. The sulfur content of the Taiyuan coal seams is considerably higher than that of the Shanxi coals. Organic sulfur content is positively correlated to total and pyritic sulfur. The vertical variation of Cu, Zn, Pb, As, Th, U and sulfur contents in coal seam 3 of the Shanxi Formation in the Xinglongzhuang mine show that all these trace elements, with the exception of Th, are enriched in the top and bottom plies of the seam, and that their concentrations are also relatively high in the dirt bands within the seam. The pyritic sulfur is positively correlated with total sulfur, and both are enriched in the top, bottom and parting plies of the seam. The concentrations of the trace elements are closely related to sulfur and ash contents. Most of the trace elements are correlated with the ash content, and may be associated with the mineral matter in the coal. ?? 2004 Elsevier Ltd. All rights reserved.

  6. The influence of seam height on lost-time injury and fatality rates at small underground bituminous coal mines.

    PubMed

    Peters, R H; Fotta, B; Mallett, L G

    2001-11-01

    Due to variations in the thickness of U.S. coal seams, there is great variability in the height of the roof where underground miners work. Restrictions imposed by low seam heights have important safety consequences. As the height of their workplace decreases, miners must stoop, duck walk, or crawl, and their vision, posture, and mobility become increasingly restricted. Low seam height also places important restrictions on the design of mobile equipment and other mining machinery. Using the employment and injury data reported to the Mine Safety and Health Administration (MSHA) from 1990 to 1996, small underground bituminous coal mines with less than 50 employees were stratified by average coal seam height according to the following categories: low (< or =42"), medium (43"-60"), and high (> or =61"). Injury rates for both nonfatal days lost and fatality cases were examined by seam height and leading type of injury incidents. The leading types of incidents associated with fatalities were roof falls and powered haulage equipment. In comparison to high-seam mines, miners working in low or medium seams are at higher risk of being killed by powered haulage equipment, roof bolting machines, and falls of unsupported roof. The leading types of incidents associated with nonfatal injuries were handling materials and powered haulage. As mining height decreases, miners are at increasingly higher risk of having a nonfatal injury from incidents involving roof bolting machines, load-haul-dump equipment, personnel carriers, and powered haulage conveyors. As mining height increases, miners are at increasingly higher risk of having a nonfatal injury from slips and falls and incidents involving shuttle cars and roof and rib falls. Knee injuries are a particularly severe problem in low-seam mines. The rate of injuries to miners while crawling or kneeling is 10 times higher in low seams than in high seams. PMID:11757898

  7. Relations between coal petrology and gas content in the Upper Newlands Seam, Central Queensland, Australia

    USGS Publications Warehouse

    Walker, R.; Glikson, M.; Mastalerz, Maria

    2001-01-01

    The Upper Newlands Seam in the northern Bowen Basin, Queensland Australia consists of six benches (A-F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show a consistent orientation of northeast-southwest for face cleats, and a wide range of orientations for fractures. Cleat systems are well developed in bright bands, with poor continuity in the dull coal. Both maceral content and cleat character are suggested to influence gas drainage in the upper Newlands Seam. A pronounced positive correlation between vitrinite abundance and gas desorption data suggests more efficient drainage from benches with abundant vitrinite. Conversely, inertinite-rich benches are suggested to have less efficient drainage, and possibly retain gas within pore spaces, which could increase the outburst potential of the coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. An analysis of injury claims from low-seam coal mines

    SciTech Connect

    Gallagher, S.; Moore, S.; Dempsey, P.G.

    2009-07-01

    The restricted workspace present in low-seam coal mines forces workers to adopt awkward working postures (kneeling and stooping), which place high physical demands on the knee and lower back. This article provides an analysis of injury claims for eight mining companies operating low-seam coal mines during calendar years 1996-2008. All cost data were normalized using data on the cost of medical care (MPI) as provided by the U.S. Bureau of Labor Statistics. Results of the analysis indicate that the knee was the body part that led in terms of claim cost ($4.2 million), followed by injuries to the lower back ($2.7 million). While the average cost per injury for these body parts was $13,100 and $14,400, respectively (close to the average cost of an injury overall), the high frequency of these injuries resulted in their pre-eminence in terms of cost. Analysis of data from individual mining companies suggest that knee and lower back injuries were a consistent problem across companies, as these injuries were each among the top five most costly part of body for seven out of eight companies studied. Results of this investigation suggest that efforts to reduce the frequency of knee and low back injuries in low-seam mines have the potential to create substantial cost savings.

  9. Evaluation of US coal performance in the Shell Coal Gasification Process (SCGP). Volume 2. Illinois No. 5 seam coal. Final report

    SciTech Connect

    Heitz, W.L.; McCullough, G.R.; Seth, M.; van Kessel, M.M.

    1984-02-01

    The Shell Coal Gasification Process (SCGP) was included in the EPRI evaluation of the more promising gasification technologies. To date, performance data for SCGP have been available mostly for European coals. This report evaluates the performance of an Illinois No. 5 coal in the SCGP. Tests were conducted in the process development unit (6 metric ton per day nominal throughput) at the Shell Internationale Research Maatschappij B.V. Amsterdam laboratory. Shell also has a 150 metric ton per day gasification process development unit at Deutsche Shell's Harburg Refinery, Federal Republic of Germany. A total of 90 metric tons of Illinois No. 5 seam coal was gasified during approximately 390 hours of tests in the SCGP process development unit. Apart from feeding difficulties associated with the first batch of coal, caused by the variability in vendor grinding, the plant operation was normal. Illinois No. 5 seam coal has a gasification and slagging behavior similar to other bituminous coals. Normal carbon conversions of 85 to 99% were obtained for oxygen/MAF coal ratios of 0.90 to 1.04, even with a coal of relatively high moisture content (7 to 12% w). Carbon conversions above 90% were achieved at oxygen/MAF coal ratios of 0.9 and a feed moisture content below 4.8%w. An extensive evaluation of potential environmental problems was conducted. No priority pollutant organics could be detected above 1 ppbw in the aqueous effluent during steady state operation. Electric power generation is a major potential use of medium Btu gas from coal gasification. In order to eliminate the need for gas storage, it is desirable that the gasifier be able to respond rapidly to load changes. To test the transient response, coal throughput was varied by 50% with virtually no effect observed on reactor pressure. Illinois No. 5 seam coal is a good feedstock for the Shell Coal Gasification Process. 35 figures, 24 tables.

  10. Geochemistry of autochthonous and hypautochthonous siderite-dolomite coal-balls (Foord Seam, Bolsovian, Upper Carboniferous), Nova Scotia, Canada

    USGS Publications Warehouse

    Zodrow, E.L.; Lyons, P.C.; Millay, M.A.

    1996-01-01

    The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.

  11. Demonstration of longwall mining in a steeply dipping coal seam. Research report, September 1977-May 1986

    SciTech Connect

    Kennedy, M.R.; Reschke, L.M.

    1987-01-01

    This report describes the demonstration of longwall mining in a seam dipping 27 deg to 34 deg. Equipment was selected on the basis of capability, compatibility, and cost. The longwall equipment operated very well on the steep pitch with an average equipment downtime of 21.9%. Coal handling out by the face was a problem that caused an additional downtime of 19.5%. Development for the panels proved to be the major problem in the economics of longwall mining on a steeply dipping seam. During the first 9 months of operation, the longwall averaged 71.9 tons per man-shift (TPMS) and development averaged 0.6 TPMS. for an overall average of 14.1 TPMS.

  12. Phosphorus minerals in tonstein; coal seam 405 at So?nica-Makoszowy coal mine, Upper Silesia, southern Poland

    NASA Astrophysics Data System (ADS)

    Kokowska-Paw?owska, Magdalena; Nowak, Jacek

    2013-06-01

    Kokowska-Paw?owska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at So?nica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the So?nica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.

  13. Evaluation of data gathered from unmineable coal seams. Final report

    SciTech Connect

    Not Available

    1982-06-01

    As part of the US Department of Energy's (DOE) programs directed at gas recovery from unconventional sources INTERCOMP Resource Development and Engineering, Inc. (INTERCOMP) is under contract to the Morgantown Energy Technology Center (METC) to provide for the reduction of uncertainties in critical parameters related to the methane recovery from unmineable coals in the United States. To accomplish this objective INTERCOMP has assisted in test site selection, planning, and monitoring when requested and evaluated the results of test in terms of methane production potential and economics for selected well sites, geologic settings, and geographical areas. This is a continuation of two earlier contracts in which an optimized test program was specified and in which the results of that program were partially implemented and evaluated. In this report INTERCOMP's effort in assisting the Bureau of Mines to understand the nature of a communication problem between the vertical dewatering hole and the three horizontal degasification legs in the Emerald Mines Horizontal Drilling project is described. Recommendations made by INTERCOMP on how to determine the amount of communication and the answers to several other questions asked are given in the section Assistance in Test Planning. The use of INTERCOMP's numerical simulation model was necessary in this effort. The section entitled Resource Assessment gives the evaluation of each specific well site tested for methane production that furnished to INTERCOMP by METC.

  14. Coal-fired diesel generator

    SciTech Connect

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  15. Coal fired air turbine cogeneration

    NASA Astrophysics Data System (ADS)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  16. Coal fire extinguishing and prevention

    SciTech Connect

    Greene, J.S.

    1988-02-16

    This patent describes a formulation for use in extinguishing coal fires, without generation of substantial gases toxic to humans, for metering to the fire at about a 6-10 percent dilution rate to water. The formulation consists essentially of a mixture of: a linear alkylbenzolyate sulfonate, non-ionic detergent and lauric superamide detergent mixture comprising about 50 percent by volume of the formulation; vitamin B-6 in the amount of about 0.5-3 percent by weight of the detergent mixture; bicarbonate of soda in the amount of about 3-18 percent by weight of the detergent mixture; and water comprising about 37-47 percent by volume of the total formulation.

  17. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  18. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect

    Not Available

    1980-12-01

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  19. CO2 sequestration in deep coal seams: experimental characterization of the fundamental underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Pini, R.; Mazzotti, M.

    2012-04-01

    The process of injecting and storing carbon dioxide (CO2) into suitable deep geological formations, such as saline aquifers, (depleted) oil or gas reservoirs, and unmineable coal seams, is referred to as CO2 sequestration. In little more than a decade, this technology has emerged as one of the most important options for reducing CO2 emissions. Among the different options, unmineable coal seams are not as broadly distributed as saline aquifers or oil/gas reservoirs, but their peculiarity resides in the proven capacity of retaining significant amount of gas (mainly methane, CH4) for a very long time. Additionally, the injection of CO2 into the coal reservoir would enhance the recovery of this natural gas, a source of energy that will most likely play a key role in the power sector over the next 20 years from now. This process is called Enhanced Coal Bed Methane (ECBM) recovery and, as for enhanced oil recovery, it allows in principle offsetting the costs associated to the storage operation. A study was undertaken aimed at the experimental characterization of the fundamental mechanisms that take place during the process of injection and storage in coal reservoirs, namely adsorption and swelling (Pini et al 2010), and of their effects on the coal's permeability (Pini et al. 2009), the property that plays a dominant role in controlling fluid transport in a porous rock. An apparatus has been built that allows measuring the permeability of rock cores under typical reservoir conditions (high pressure and temperature) by the so-called transient step method. For this study, a coal core from the Sulcis coal mine in Sardinia (Italy) has been used. In the experiments, an inert gas (helium) was used to investigate the effects of the effective pressure on the permeability of the coal sample, whereas two adsorbing gases (CO2 and N2) to quantify those of adsorption and swelling. The experiments have been interpreted by a one-dimensional model that describes the fluid transport trough the coal core, thus including mass balances accounting for gas flow, gas sorption and swelling, and mechanical constitutive equations for the description of porosity and permeability changes during injection. The combination of the experimental data with the model predictions allow to successfully relate the dynamics of gas flow to parameters such as the effective pressure on the sample, sorption capacity and swelling, and to estimate important parameters, such as the mass transfer coefficient describing gas diffusion into the porous matrix of the coal. In particular, an increase in permeability is observed with decreasing effective pressure on the sample and, when an adsorbing gas is injected, a reduction in permeability caused by swelling, with CO2 having a much stronger effect as compared to N2. This last observation represents the starting point to the investigation of attractive options aimed at optimizing the ECBM operation, such as the use of CO2/N2 mixtures (flue gas) as a way of keeping the permeability in the reservoir sufficiently high. Acknowledgment Luigi Burlini was at the heart of this co-operation, and made it possible a synergy between engineers and geologists that has been extremely fruitful. With this contribution we would like to acknowledge Luigi's humanity and scientific visions and to remember a friend.

  20. Relationship between the geological and working parameters in high productivity longwalls in underground competitive coal mining of very thick seams

    SciTech Connect

    Torano, J.; Rivas, J.M.; Rodriguez, R.; Diego, I.; Pelegry, A.

    2005-07-01

    Carbonar S.A. is using a high productivity long panel to mine a coal seam that is over 4 meters thick in some places. The equipment comprises a double drum shearer and a powered roof support. Seam thickness, close joint state, and roof load over the support were measured, in situ. Data were collected on both cross and longitudinal sections of the panel. The data are interpreted and related to the longwall advance. The data are being processed using fuzzy logic methods. The results will be applied to remote control automation using virtual reality tools. 7 refs., 27 figs.

  1. A research of some problems of the exploration and exploitation of gas-bearing coal seam in Shanxi Province

    SciTech Connect

    Zhang, H.Y.; Liu Kai

    1997-12-31

    In this paper the author explores the problems concerning the formation of the Shanxi gas-bearing coal bed, its long-range analyses and the exploration and exploitation of the gas-bearing coal bed there. In the section about the formation of Shanxi gas-bearing coal bed and its long-range analyses the authors explain the following problems: coal seam thickness, the permeability of the gas-bearing coal bed, overburden, the structure fracture, the seam mechanism of shear, the geological structure location, etc. The authors point out that the middle section of Hedong Coal Field (HCF), Qingsui Coal Field (QCF) and Xishan Coal Field (XCF) are the most favorable areas. In the section on the exploration and its exploitation the authors point out the chief works in each work stage and the application of the means of exploration and the layout method of the exploration project, thus providing a reliable foundation for the reference of the gas-bearing exploration.

  2. Description and mineralogy of Tertiary volcanic ash partings and their relationship to coal seams, near Homer, Alaska

    SciTech Connect

    Reinink-Smith, L.M.

    1985-04-01

    Outcrops of Tertiary coal-bearing units in sea cliffs of the Kenai Peninsula provide an excellent study area for volcanic ash partings in coals. Twenty mid-to late-Miocene, 50-cm to 3-m thick coal seams exposed in the sea cliffs about 10 km west of Homer contain an average of 10 volcanic ash or lapilli tuff partings each. The bedding relationships of the coal with any one parting cannot be predicted, and the contacts of the partings with the coal range from very sharp to predominantly gradational. These bedding relationships provide clues about the surface on which the ashes fell and on which the coal was accumulating. For example, some ashes fell in standing water, others on irregular subaerial surfaces. The partings are in various stages of alteration to kaolinite and bentonite, and vary in thickness from a few millimeters to about 10 cm. The consistency and texture of the partings depend on the degree of alteration; the less altered partings display visible pumice fragments and euhedral feldspars, commonly within a finer grained matrix. Separate pumice fragments, excluding matrix, can also occur as partings in the coal. The more altered partings may be wet and plastic, or they may be well indurated claystones; the colors range from gray-yellow to dark brown. The indurated prints are more common in older part of the section. The coal seams may be capped by volcanic ash partings and are commonly underlain by a pencil shale of nonvolcanic origin.

  3. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    SciTech Connect

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  4. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  5. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of lithofacies trends along northwest-southeast trends, especially beneath modern valleys where overburden thickness decreases sharply. Differentiating roof falls related to these trends can aid in predicting roof quality in advance of mining.The Pond Creek-Lower Elkhorn seam has been an important exploration target because it typically has very low sulfur contents and ash yields. Geologic research in several large Pond Creek mines suggested variability in roof quality and coal thickness. Due to mine access, geologic problems encountered during mining are documented and described.

  6. Advanced coal-fired power generation systems

    SciTech Connect

    Tagishi, Akinori; Nakamura, Shozo

    1999-07-01

    From a viewpoint of location of power stations, much is expected of thermal power generation systems. At present LNG (liquefied natural gas) is less expensive than coal, hence utilization of coal is not necessarily advantageous. However, diversifying usable fuels is necessary from a viewpoint of energy risk. Consequently, coal is expected to play a major part in the near future. This coal-fired power generation will be supported by the following three key technologies: (1) Pulverized coal-fired power generation with USC (Ultra-Super Critical) steam plants which will continue to be developed as the main coal application technology for 20 or more years. (2) PFBC (Pressurized Fluidized Bed Combustion) power generation emphasizing both sulfur removal from the furnace and improved efficiency. (3) IGCC (Integrated coal Gasification Combined Cycle) power generation for clean coal usage with higher efficiency. Hitachi intends to continue work in these areas in the future Hitachi will strive to realize, as early as possible, practical applications of the advanced technologies on coal-fired power generation systems.

  7. Co-firing of asphalt fired dust in pulverized coal fired boiler

    SciTech Connect

    Kiga, Takashi; Watanabe, Shinjl

    1999-07-01

    In order to make clear whether the dust collected at the electrostatic precipitator (EP) of asphalt fired boilers can be co-fired in pulverized coal fired boilers, laboratory-scale and bench-scale tests have been conducted. Test results showed that although dust from asphalt firing had as only a little amount of volatile matter as semi-anthracite or anthracite had, it revealed burn-out properties like bituminous. When it was co-fired with pulverized coal by 2% by that input, a considerable increase in SO{sub 2} emission was noted, while NOx emission was somewhat decreased compared with coal firing. From these verifications, it was confirmed that the co-firing of dust from asphalt firing in pulverized coal fired boiler was applicable to actual plants so far as the De-SOx system permitted.

  8. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  9. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect

    Gary L. Cairns

    2002-04-01

    This is the first Technical Progress report for the subject agreement. During the first six months of the project, progress was made in arranging participation by other CONSOL departments, identifying a prospective site, developing an environmental assessment report, and securing land and coal rights. In addition, correspondences were drafted in response to NETL inquiries. These aspects of the project are discussed in detail in this report.

  10. Palynology of an Early Permian coal seam from the Karoo Supergroup of Botswana

    NASA Astrophysics Data System (ADS)

    Barbolini, N.; Bamford, M. K.

    2014-12-01

    Two borehole cores from the south-east area of the Mmamantswe coalfield (Mmamabula area), Botswana, provided 124 samples for palynological analysis. The assemblage is dominated by trilete and alete spores, indicating a parent flora of mostly lower order lycopods, sphenophytes and ferns. Distinctive taxa at Mmamantswe include Brevitriletes levis, Cannanoropollis densus, Gondisporites raniganjensis, Platysaccus radialis, Scheuringipollenites ovatus, and Verrucosisporites naumovae. Saccate pollen is less common, suggesting the assemblage reflects the local vegetation of the coal swamp. The Mmamantswe microflora has been sub-divided into two assemblage zones, with the lower Assemblage Zone 1 correlating with Assemblage Zone 1 of Anderson (northern Karoo Basin, South Africa), Biozone B of the Waterberg (South Africa) and the Milorgfjella assemblage (Dronning Maud Land, Antarctica). The upper Assemblage Zone 2 of Mmamantswe is correlated with Assemblage Zone 2 of Anderson (northern Karoo Basin, South Africa), Biozone C of the Waterberg (South Africa), and the No. 2 Seam assemblage (Witbank coalfield, South Africa). On the basis of these correlations the Mmamantswe microfloral assemblage is assigned to the Asselian, Sakmarian and Early Artinskian periods.

  11. Personal equipment for low seam coal miners: Improved knee pads, a modified design

    SciTech Connect

    Sanders, M.S.; Shaw, B.E.

    1986-01-01

    This report describes the development and field test to improve knee protection for underground coal miners working in low seam mines. In a previous phase of this contract (Sanders, 1982), experimental knee pads were developed and field tested. The field test revealed several design deficiencies with the knee pads, and suggestions for improving the design were made. The work summarized in this report, therefore, consists of modifying the design and method of fabrication of the knee pads originally described by Sanders (1982), and of field testing the improved design. The new prototype was shorter and wider than the original design, and used a neoprene pass-through strap design rather than a cloth strap molded into the pad itself. The new prototype was constructed by slush molding a hollow bladder that was then filled with foam. Initial reactions to the pads in the field test were very positive. However, after 2 months, the opinions about the new prototype became less positive. They were judged, generally, to be no better or worse than the pads usually worn by the field-test participants. Problems were encountered in the field with respect to durability. Water seeped into the inner cavity of many of the pads and caused the foam to deteriorate. It was concluded that it would not be cost-effective or feasible to significantly improve upon current commercially available knee pad designs.

  12. West Virginia coal: guide to ash-fusion characteristics

    SciTech Connect

    Not Available

    1986-07-01

    Ash-fusion temperatures for coal affect how efficiently and dependably electricity is generated. The wrong ash fusion could seriously impact the coal-fired utility. This report includes information about the coal-fired utility, the importance of ash-fusion temperatures, and a data base of ash-fusion temperature information for West Virginia coal seams. Maps are included that were developed using the data base, which show the variation of ash-fusion temperatures in the West Virginia coal seams.

  13. Fire-hazard control during coal handling

    SciTech Connect

    McGraw, M.G.

    1984-03-01

    The potential for serious power plant fires and explosions is growing along with the increased use of volatile, low-sulfur coal use and environmental regulations requiring closed conveyor systems for handling coal. The volume of coal handled and the range of physical characteristics in different coals intensifies the problem. Western coal produces more dust because it is more friable than eastern coal and is more prone to sponaneous combustion. Closed storage and handling systems increase the hazards of methane and carbon monoxide. The article described prevention, detection, and firefighting techniques, and notes that a variety of systems is needed to cover all the hazards. Human behavior and coordination are also essential ingredients. ll figures.

  14. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  15. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S. (Macungie, PA)

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  16. Inferring Hydraulic and Fracture Properties of a Fracked Coal Seam Aquifer by Using GLUE Uncertainty Analysis using TOUGH2 reservoir simulator

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Askarimarnani, S. S.

    2014-12-01

    Coal seam gas (also called coal bed methane) is a form of natural gas that occurs in some coal seams. In the coal seam gas industry, hydraulic fracturing is performed to enhance the extraction of the gas from the coal seam. This paper presents flow simulation results for a fractured coal seam and its associate production well, and an investigation of the well piezometric head drawdown curves resulting from hydraulic pumping tests. The aim is to infer the hydraulic and fracture properties of the coal and associated well, such as length, width, conductivity of fractures, and the proportion of the water and gas contained in the coal seam. For this purpose the TOUGH2/EOS7C numerical simulator is applied. It is capable of modelling multiphase flow in fractured and porous system. The EOS7C is an "equation of state" module for TOUGH2 that is used to model the methane dissolved and free gas multiphase component. The Wingridder grid generator has been used to generate the 2D, 3D and MINCE (multiple interacting continua) grids for TOUGH2. The simulation results provide some constraints on hydraulic and fracture properties. However, there is still have significant uncertainty. In order to assess the uncertainty and increase our knowledge of the hydraulic properties, uncertainty analysis using the Generalized Likelihood Uncertainty Estimation (GLUE), which is a Monte-Carlo methodology, is applied. We will discuss how the Monte-Carlo uncertainty analyses is used to infer the properties of a hydraulically fractured well from pump test data. One major outcome of this work will be the development of a fast and routine method for assessing the post-development performance and safety of a production gas well, and to provide reassurance that the fracking that has actually occurred in the field is within design parameters.

  17. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  18. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, May-July 1980

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-10-01

    The basic objectives of this new program are, firstly, to understand the systematic relationships between the properties of coals and macerals, and, secondly, to determine the lateral and vertical variability in the properties of a single seam imposed by varying environmental conditions at the time of coal formation. Thirty-four coal samples were collected during the quarter from Pennsylvania and Illinois. To date, 54 vitrinite concentrates have been hand picked and will be studied by a range of physical and chemical techniques. One hundred and forty coal samples and 53 printouts of coal data were provided on request to the coal research community. The Lower Kittanning seam has been selected for the study of the variability in chemical, petrographic, mineralogic, fluid, and conversion properties of a single seam. A description of the structural and stratigraphic settings of the important coal seam as they relate to this investigation is given. Bivariate plots of data from the Lower Kittanning seam are presented. The fluid temperature range as measured with the Gieseler plastometer reaches a maximum at a reflectance of 1.10 to 1.15% and carbon content of 87 to 88% dmmf. Liquefaction conversion in a tubing-bomb reactor with tetralin shows a linear decrease with rank (reflectance). The problems associated with the application Fourier Transform Infrared Spectroscopy to the characterization of coal structure are critically discussed. The micropore surface areas and micropore volumes of three selected coals and a vitrinite concentrate, as measured from uptake of CO/sub 2/ at 25/sup 0/C, increased with decreasing particle size. Work on measurements of apparent densities and uptake of methanol and water is in progress.

  19. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092?‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment. PMID:26370817

  20. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  1. Data base for the analysis of compositional characteristics of coal seams and macerals. Part 7. Petrographic variation due to depositional setting of the lower Kittanning seam, western Pennsylvania. Final report

    SciTech Connect

    Allshouse, S.D.; Davis, A.

    1984-01-01

    Detailed megascopic and microscopic petrographic analyses were conducted on samples of the Lower Kittanning seam from western Pennsylvania. Relationships were sought between the paleoenvironmental setting of the coal swamp and the vertical and lateral variability of lithotypes, maceral composition and vitrinite types. Megascopically, the four samples collected from the freshwater facies of the seam are similar in appearance and relative lithotype composition, and display no distinct vertical zonations. The sample from the marine-influenced central portion of the basin (PSOC-1340) possesses a marked vertical zonation into a bright lower zone and a dull upper zone. The lower zone is similar in appearance to the freswater samples. Detailed microscopic analyses revealed that the vertical zonation of PSOC-1340 is apparent in both the maceral and vitrinite type composition. No similar zonation is apparent in the microscopic analysis of the four freshwater facies samples. Similarities between the lower zone of PSOC-1340 and the whole seam of the freshwater samples are most apparent in the vitrinite-type analysis. The lower zone of PSOC-1340 and the whole seam from the freshwater facies are considered to be laterally equivalent coal types. The dull upper zone of PSOC-1340 is considered to have formed in response to a major change in the paleoenvironment of the swamp, probably a marine transgression. 49 references, 25 figures, 15 tables.

  2. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  3. EMISSIONS AND EFFICIENCY PERFORMANCE OF INDUSTRIAL COAL STOKER FIRED BOILERS

    EPA Science Inventory

    The report gives results of field measurements of 18 coal stoker-fired boilers including spreader stokers, mass-fired overfeed stokers, and mass-fired underfeed stokers. The test variables included stoker design, heat release rate, excess air, coal analysis and sizing, overfire a...

  4. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  5. The Outburst Risk as a Function of the Methane Capacity and Firmness of a Coal Seam

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Miros?aw; Skoczylas, Norbert

    2014-12-01

    In most coal basins that are currently being exploited, gas and rock outbursts pose a considerable safety threat. The risk of their occurrence is frequently assessed by means of a parameter known as the methane capacity of coal. In a lot of countries, the evaluation of the mechanical properties of coal is conducted by means of another parameter: the firmness of coal. Due to the laboratory investigations and in situ observations carried out by the authors of this paper, it was possible to determine a function space in which the outburst risk can be described as a function of the methane capacity and firmness of a coal seam. This, in turn, made it possible to link the "gas factor" to the "mechanical factor", and thus provide a more comprehensive risk analysis. Wyrzuty gazów i ska? stanowi? du?e zagro?enie w wi?kszo?ci obecnie eksploatowanych zag??bi w?glowych. Bardzo cz?sto wykorzystywanym parametrem oceny stanu zagro?enia wyrzutowego jest zawarto?? metanu w w?glu. W wielu krajach do oceny mechanicznych parametrów w?gla wykorzystuje si? zwi?z?o??. Autorzy przeprowadzili badania laboratoryjne polegaj?ce na prowokacjach wyrzutów w skali laboratoryjnej. Jako materia? badawczy wykorzystane zosta?y brykiety w?glowe. W trakcie bada? wst?pnych ustalona zosta?a zale?no?? pomi?dzy porowato?ci? brykietów, a ich zwi?z?o?ci? f oraz pomi?dzy ci?nieniem nasycania metanem, a wska?nikiem intensywno?ci desorpcji dP. Pozwoli?o to na przygotowywanie eksperymentów o kontrolowanych parametrach gazowych (wska?nik intensywno?ci desorpcji) oraz wytrzyma?o?ciowych (zwi?z?o??). Opracowana zosta?a metoda kontrolowania intensywno?ci prowokacji wyrzutu poprzez okre?lenie tempa spadku ci?nienia gazu przed czo?em brykietu. Dzi?ki temu dla siatki parametrów f-dP mo?liwe by?o poszukiwanie minimalnej, skutecznej intensywno?ci prowokacji wyrzutu. Znormalizowana warto?? sta?ej czasowej spadku ci?nienia przed czo?em brykietu powoduj?cej skuteczn? inicjacj? wyrzutu uznana zosta?a za miar? zagro?enia wyrzutowego dla rozpatrywanych parametrów f-dP. Dysponuj?c warto?ciami tak okre?lonych miar zagro?enia wyrzutowego dla ca?ej siatki parametrów f-dP mo?na wykre?li? przestrze? zagro?enia wyrzutowego w funkcji rozpatrywanych parametrów. Równoleg?a faza bada? dotyczy?a poszukiwania korelacji pomi?dzy wska?nikiem intensywno?ci desorpcji, a zawarto?ci? gazu w w?glu (metanono?no?ci? Mn) na przyk?adzie pomiarów wykonanych w pok?adzie 412 KWK "Zofiówka". W pok?adzie tym zaobserwowano bardzo wyra?n?, liniow? zale?no?? pomi?dzy wska?nikiem intensywno?ci desorpcji, a metanono?no?ci?. Poznanie funkcyjnej zale?no?ci Mn(dP) umo?liwi?o przedstawienie wyników prac laboratoryjnych jako przestrzeni zagro?enia wyrzutowego w funkcji zwi?z?o?ci i metanono?no?ci. Analiza uzyskanej przestrzeni zagro?enia wskazuje na jej zgodno?? zarówno z intuicj?, jak i z kopalnianym do?wiadczeniem. Dla progowej w polskim górnictwie w?glowym warto?ci zwi?z?o?? (f = 0.3) stan zagro?enia wyrzutowego na poziomie 50% wyst?puje przy Mn oko?o 7 m3CH4/Mgcoaldaf. Aby zagwarantowa? podobny stan zagro?enia wyrzutowego dla kryterialnej warto?ci metanono?no?ci na poziomie 8 [m3CH4/Mgcoaldaf] w?giel powinien mie? zwi?z?o?? f powy?ej 0.5. Oczywi?cie warto?? izolinii na poziomie 50% jest umowna, a interpretacji powinny podlega? raczej kszta?ty izolinii, ni? ich warto?ci.

  6. Investigation into the gas-dynamic state of a coal seam under degassing and moistening

    SciTech Connect

    Ruban, A.D.; Zaburdyaev, G.S.; Zaburdyaev, V.S.

    2005-04-01

    Statistics are cited for the violation of gas and dust conditions in mines of Russia and the material damage caused by gas and dust explosions. It is shown that degassing and moistening of a seam is the most efficiently conducted by the hydraulic pulse action.

  7. JV Task 109 - Risk Assessment and Feasibility of Remedial Alternatives for Coal Seam at Garrison, North Dakota

    SciTech Connect

    Jarda Solc

    2008-01-01

    The Energy & Environmental Research Center (EERC) conducted an evaluation of alternative technologies for remediation of hydrocarbon-contaminated coal seam, including impacted soils and groundwater in Garrison, North Dakota. Geotechnical characteristics of the impacted fractured coal seam provide for rapid off-site contaminant transport, with the currently identified impacted zone covering an area of about 40 acres. Regardless of the exposure mechanism (free, dissolved, or vapor phase), results of laboratory tests confirmed secondary release of gasoline-based compounds from contaminated coal to water reaching concentrations documented from the impacted areas. Coal laboratory tests confirmed low risks associated with spontaneous ignition of gasoline-contaminated coal. High contaminant recovery efficiency for the vacuum-enhanced recovery pilot tests conducted at three selected locations confirmed its feasibility for full-scale remediation. A total of 3500 gallons (13.3 m{sup 3}) of contaminated groundwater and over 430,000 ft{sup 3} (12,200 m{sup 3}) of soil vapor were extracted during vacuum-enhanced recovery testing conducted July 17-24, 2007, resulting in the removal of about 1330 lb (603 kg) of hydrocarbons, an equivalent of about 213 gallons of product. The summary of project activities is as follows: (1) Groundwater and vapor monitoring for existing wells, including domestic wells, conducted on a monthly basis from December 12, 2006, to June 6, 2007. This monitoring activity conducted prior to initiation of the EERC field investigation was requested by NDDH in a letter dated December 1, 2006. (2) Drilling of 20 soil borings, including installation of extraction and monitoring wells conducted April 30-May 4 and May 14-18, 2007. (3) Groundwater sampling and water-table monitoring conducted June 11-13, 2007. (4) Evaluation of the feasibility of using a camera survey for delineation of mining voids conducted May 16 and September 10-11, 2007. (5) Survey of all wells at the site. (6) Laboratory testing of the coal samples conducted from August to October 2007. (7) Vacuum-enhanced pilot tests at three locations: Cenex corner, Tesoro corner, and cavity area, conducted July 17-24, 2007. (8) Verification of plume delineation for a full-scale design and installation of six monitoring wells September 10-13, 2007. (9) Groundwater sampling and monitoring conducted September 11-12, September 26, and October 3, 2007. (10) Feasibility evaluation of alternative technologies/strategies for the subject site.

  8. Coal-Fired Fluidized Bed Combustion Cogeneration 

    E-print Network

    Thunem, C.; Smith, N.

    1985-01-01

    with cogeneration. All transformers for connection to the plant power bus and the substation is included. The generator ean operate at 4,160 volts or the .substation voltage. The generator should be equipped with metelr ing, instrumentation, and controls...: Stanley Consultanta Kotea: (I) eao. 1 - Induotr1aI Plant (2) Ceo. 2. - Induotr1al Plant (3) Ceo. 3 - Induotr1al Plant Generation/Condensing System Description Two coal-fired cogeneration methods are investigated - a noncondensing turbine (case 1...

  9. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  10. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  11. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  12. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    PubMed Central

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-01-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (?13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater ?13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity. PMID:26530701

  13. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium.

    PubMed

    Iverach, Charlotte P; Cendón, Dioni I; Hankin, Stuart I; Lowry, David; Fisher, Rebecca E; France, James L; Nisbet, Euan G; Baker, Andy; Kelly, Bryce F J

    2015-01-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (?(13)C-CH4), groundwater tritium ((3)H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater ?(13)C-CH4 versus CH4 concentration, in association with DOC concentration and (3)H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity. PMID:26530701

  14. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    NASA Astrophysics Data System (ADS)

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-11-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (?13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater ?13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity.

  15. Time-lapse analysis of methane quantity in Mary Lee group of coal seams using filter-based multiple-point geostatistical simulation

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    The systematic approach presented in this paper is the first time in literature that history matching, TIs of GIPs and filter simulations are used for degasification performance evaluation and for assessing GIP for mining safety. Results from this study showed that using production history matching of coalbed methane wells to determine time-lapsed reservoir data could be used to compute spatial GIP and representative GIP TIs generated through Voronoi decomposition. Furthermore, performing filter simulations using point-wise data and TIs could be used to predict methane quantity in coal seams subjected to degasification. During the course of the study, it was shown that the material balance of gas produced by wellbores and the GIP reductions in coal seams predicted using filter simulations compared very well, showing the success of filter simulations for continuous variables in this case study. Quantitative results from filter simulations of GIP within the studied area briefly showed that GIP was reduced from an initial ?73 Bcf (median) to ?46 Bcf (2011), representing a 37 % decrease and varying spatially through degasification. It is forecasted that there will be an additional ?2 Bcf reduction in methane quantity between 2011 and 2015. This study and presented results showed that the applied methodology and utilized techniques can be used to map GIP and its change within coal seams after degasification, which can further be used for ventilation design for methane control in coal mines.

  16. Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection

    E-print Network

    Miller, Richard D.; Steeples, Don W.

    1991-01-01

    the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the “room and pillar” mining technique practiced in this area near the turn...

  17. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, February-April 1980. [Variability

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-06-01

    The basic objective of this program is to invetigate systematic relationships between the properties of US coals and macerals. Thirty-five samples from the Lower Kittanning seam have been collected to study the vertical and lateral variability of petrographic, chemical, mineralogical and plastic characteristics within a single coal seam. The ratio of aromatic to aliphatic C-H groups as measured by the integrated absorption or peak areas shows a linear relationship with coal rank (reflectance). Uptake of CO/sub 2/ at 25/sup 0/C on -20 mesh sizes of selected coals (PSOC-1166, 1171, 1197, and 1201) has been measured. From Dubinin-Polanyi plots, micropore surface areas and micropore volumes were obtained. Displacement of mercury was used to estimate particle densities for -20 mesh and -100 mesh sizes of coals and vitrinite concentrates. Some uncertainty in this measurement is introduced because of the difficulty of knowing at what pressure filling of voids between particles with mercury is complete. A new helium density apparatus has been constructed which promises to speed up measurements. Two coals from China were found to have very unusual characteristics. The extremely high liptinite (cutinite) content of one would account for its anamolous chemical composition and liquefaction behavior. Several organic and inorganic components of liquefaction residues can be recognized under the microscope. The proportions of these components in residues from experiments performed by PETC appear to be related to process conditions. Major, minor element and mineralogical analyses are reported for up to 21 coals.

  18. Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor

    E-print Network

    Berning, Torsten

    Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor). Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor. Poster session immediately and investigate your claim. Downloaded from vbn.aau.dk on: juli 05, 2015 #12;C l fi i d biCoal

  19. Application of Paste Backfill in Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  20. Development and evaluation of technology for methane production from a deep coal seam in the Piceance Basin. Final report, April 15, 1983-December 31, 1987

    SciTech Connect

    Jeu, S.J.; Logan, T.L.; Decker, A.D.; Counsil, J.

    1988-09-01

    Deeply buried coals in the Piceance Basin contain more than one-fourth of the in-place coalbed methane resource of the United States. The Gas Research Institute (GRI) developed the Deep Coal Seam Project, a field oriented research and development project. The project objectives are to develop, improve, evaluate and communicate the technology required to commercially produce gas from deeply buried coal seams. The project has conducted research at two sites in the Piceance Basin. At the first project site, the Red Mountain Unit, considerable insight was gained regarding drilling, reservoir testing, core analysis, logging and stimulation of low permeability coal reservoirs. However, reservoir testing at the site indicated that the coal reservoir did not have sufficient permeability to achieve commercial rates. Production testing at the second project site, East Divide Creek Unit, indicated adequate permeability and overpressured conditions. Reservoir modeling suggests that this area could produce at commercial rates, however, it was not possible to fully quantify the productive potential of this area due to the lack of coal core information.

  1. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  2. Availability performance of standardized coal-fired cogeneration plants

    SciTech Connect

    Peedin, J.F.; Freeman, J.E. )

    1990-01-01

    This paper provides background and data on the operational availability of small, coal-fired non-utility generation (NUG) facilities. Reasons for operational performance, and methods utilized for availability calculations are also presented.

  3. Enrichment of Radon and Carbon Dioxide in the Open Atmosphere of an Australian Coal Seam Gas Field

    PubMed Central

    2013-01-01

    Atmospheric radon (222Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). 222Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both 222Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ?390 ppm at the control site to ?467 ppm near the center of the gas field. A ?3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields. PMID:23444905

  4. Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field.

    PubMed

    Tait, Douglas R; Santos, Isaac R; Maher, Damien T; Cyronak, Tyler J; Davis, Rachael J

    2013-04-01

    Atmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ~390 ppm at the control site to ~467 ppm near the center of the gas field. A ~3 fold increase in maximum (222)Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average (222)Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p < 0.05). A positive trend was observed between CO2 concentrations and the number of CSG wells, but the relationship was not statistically significant. We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields. PMID:23444905

  5. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2015-01-01

    The study helped to determine the realization bundle that consisted of the spatial maps of coal properties, which resulted in minimum error. In addition, it was shown that both E-type and the average of realizations that gave the best match for invidual approximated the same properties resonably. Moreover, the determined realization bundle showed that the study field initially had 151.5 million m3 (cubic meter) of gas and 1.04 million m3 water in the coal, corresponding to Q90 of the entire range of probability for gas and close to Q75 for water. In 2013, in-place fluid amounts decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively.

  6. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  7. MAGNESIA SCRUBBING APPLIED TO A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report gives results of a full-size demonstration of the magnesia wet-scrubbing system for flue gas desulfurization (FGD) on a coal-fired utility boiler. The system was designed to desulfurize half the flue gas from a 190-MW rated capacity generating unit firing 3.5% sulfur c...

  8. Modeling of flow and temperature fields in underground coal fires

    SciTech Connect

    Huang Jiejie; Bruining, J.; Wolf, K.H.A.A.

    1997-12-31

    A two dimensional model has been set up to simulate the flow and temperature fields in underground coal fires. This is helpful to find methods of isolating and utilizing the underground coal fires. The model is based on the theory of natural convection in porous media, and numerical methods were used. Temperature fields and profiles along the length or height are calculated. Fractures or higher permeability are necessary to enhance natural convection. The air intrudes in the area behind the fire where many fractures of higher permeability occur because of subsidence. Air flows out from the hot area or cold area in front of the fire. In a shallow depth fire convection plays an important role, whereas in a deep fire convection velocities are smaller. Moreover, secondary combustion of produced gas in a fracture or crack can markedly increase the convection. It is found that the predicted results from the model are in a good agreement with the limited field data.

  9. Coal fired powerhouse wastewater pressure filtration

    SciTech Connect

    Martin, H.L.; Diener, G.A.

    1994-05-01

    The Savannah River Site`s permit for construction of an industrial wastewater treatment facility to remove solids from the boiler blow-down and wet ash scrubber effluent of the A-Area coal fired powerhouse was rejected. Conventional clarification technology would not remove arsenic from the combined effluent sufficient to achieve human health criteria in the small receiving surface stream. Treatability studies demonstrated that an existing facility, which will no longer be needed for metal finishing wastewater, can very efficiently process the powerhouse wastewater to less than 35 {mu}g/L arsenic. Use of cationic and anionic polymers to flocculate both the wastewater and filter aid solids formed a ``bridged cake`` with exceptionally low resistance to flow. This will double the capacity of the Oberlin pressure filters with the Tyvek T-980 sub micron filter media. The affects of high sheer agitation and high temperature in the raw wastewater on the filtration process were also studied and adequate controls were demonstrated.

  10. Nitrogen oxide emissions from coal fired MHD plants

    SciTech Connect

    Chapman, J.N.

    1996-03-01

    In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

  11. Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1

    E-print Network

    Utrecht, Universiteit

    Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1 Salomon B. Kroonenberg2 and Cor, the Netherlands Introduction Coal fires are one of the most serious problems for the Chinese coal indus- try. The estimated annual loss of coal by fires in China ranges from about 10­20 million tonnes (Guan et al., 1998

  12. Modeling and interpretation of two-phase flow and tracer studies from a subbituminous coal seam in the San Juan basin of New Mexico

    SciTech Connect

    Nuttall, H.E.; Travis, B.J.

    1980-01-01

    Field and modeling studies were performed to characterize two-phase flow within the natural cleat structure of an upper Cretaceous subbituminous coal seam. A two borehole pattern with open completion was used in a study of dewatering and tracer residence time distribution. Air was pumped into a five meter thick seam located about 170 meters below the surface. Krypton 85 was used as the airborne tracer. Air inflow and air and water production rates and tracer arrival times were monitored. The field tests were simulated with a two-phase, three component, porous flow code. Results showed that the air inflow and air and water outflow rates and breakthrough times could not be modeled assuming a uniform darcy-type permeability. The use of a pressure dependent permeability did provide, however, a much better match with the field data.

  13. Algal growth and community structure in a mixed-culture system using coal seam gas water as the water source.

    PubMed

    Buchanan, Jessica J; Slater, Frances R; Bai, Xue; Pratt, Steven

    2013-01-01

    Coal seam gas (CSG) is being touted as a transition fuel as the world moves towards low-carbon economies. However, the development of CSG reserves will generate enormous volumes of saline water. In this work, we investigate the potential of using this saline water to support mass algae production. Water and brine from a CSG water treatment facility (1.6 and 11.6 g total dissolved solids per litre (TDS L(-1)) respectively) were inoculated with algal biomass from freshwater and seawater environments and supplemented with nutrients in open, fed-batch reactors. Significant algal growth was recorded, with maximum specific growth rates in CSG water and CSG brine of 0.20 +/- 0.05 d(-1) and 0.26 +/- 0.04 d(-1) respectively. These maximum specific growth rates were equal to or greater than specific growth rates in deionized water and seawater diluted to the same salinity. However, algal growth lag time in CSG brine was between 7 and 9 times longer than in other waters. Microscopy and terminal-restriction fragment length polymorphism (T-RFLP) were used to monitor community structure in the reactors. The same few algal species dominated all of the reactors, except for the CSG brine reactor at day 15. This result indicates that conditions in CSG brine select for different species of algae compared to seawater of the same salinity and other waters tested. The findings suggest that mass algae production in CSG water is feasible but algae community composition may be a function of CSG water chemistry. This has implications for the downstream use of algae. PMID:23837320

  14. Corrosion protection pays off for coal-fired power plants

    SciTech Connect

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  15. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir.

    PubMed

    Owen, Daniel D R; Cox, Malcolm E

    2015-08-01

    A combination of multivariate statistical techniques, simple hydrochemical mixing models and inverse geochemical modelling was used to investigate the major hydrochemical evolutionary pathways of a large alluvial aquifer, the upper Condamine River alluvium, south-east Queensland, Australia. Hydrochemical similarities between alluvium and sedimentary bedrock groundwater imply some mixing between alluvial and sedimentary bedrock aquifers, but spatial assessment showed that this was localised around outcrops of sedimentary bedrock in upstream areas. Within the alluvium, a distinct shift towards a low salinity Na-HCO3 water type and a brackish Na-HCO3-Cl water type was obvious in two separate locations. Both of these water types are unique to the alluvium, and inverse modelling shows that they can evolve via a combination of in situ alluvial processes, including diffuse recharge of rainfall or river water or the evolution of basalt-derived groundwater via gypsum dissolution plagioclase weathering, cation exchange and some carbonate precipitation/dissolution. The evolution of these water types is potentially influenced by overlying sodic alkaline soils, and often is associated with a source of sulfate. Evapotranspiration is the dominant salinization process in the alluvium and increases in calcium cations during salinization indicate that brackish Na-HCO3-Cl groundwater in the underlying Walloon Coal Measures are unlikely to have a major influence on salinization in the alluvium. The most saline water types observed were endemic to shallow zones of the alluvium where evapotranspiration is likely. Results demonstrate that a combination of multivariate statistics and inverse geochemical modelling can be successfully used to delineate hydrochemical pathways in complex hydrogeological settings where a range of environmental and anthropogenic factors may be influencing the evolution of water types with similar hydrochemical compositions. PMID:25863513

  16. Applications of coatings in coal-fired energy systems

    SciTech Connect

    Natesan, K.

    1992-03-01

    Corrosion and erosion of metallic structural materials at elevated temperatures in complex multicomponent gas environments that include particulates are potential problems in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components offers an avenue to minimize material degradation and extend component life. The purpose of this paper is to review the current status of coating performance in environments typical of pulverized-coal-fired boilers, coal gasification, fluidized-bed combustion, and gas turbines. The paper discusses the complexity of environments in different systems and the coating requirements for acceptable performance. Examples illustrate the morphology and corrosion/erosion performance of coating/structural alloy combinations exposed in some of these systems. La addition, future research and development needs are discussed for coating applications in several coal-fired systems.

  17. Repowering a small coal-fired power plant

    SciTech Connect

    Miell, R.

    2007-11-15

    The Arkansas River Power Authority (ARPA) Lamar Repowering Project is moving forward. The new generator, capable of producing 18 MW of electricity, is scheduled to be online in June 2008 bringing the total generation to 43 MW. New coal handling equipment, with infrared fire detectors, is almost complete. The new 18 MW steam turbine will be cooled by an air-cooled condenser. Coal will be delivered in a railroad spur to an unloading site then be unloaded onto a conveyor under the tracks and conveyed to two storage domes each holding 6000 tons of coal. It will be drawn out of these through an underground conveyor system, brought into a crusher, conveyed through overhead conveyors and fed into the new coal- fired fluidized bed boilers. 1 photo.

  18. Fire-fighting resources and fire preparedness for underground coal mines. Information circular/1994

    SciTech Connect

    Conti, R.S.

    1994-01-01

    This U.S. Bureau of Mines report describes various fire fighting resources available to the mining industry and examines the fire preparedness of four western coal mines. The fire fighting resources covered include fire extinguishers, water hoses and nozzles, and fire fighting foam. Information regarding fire fighting equipment indicates that an inadequate maintenance program may cause component failure of fire extinguishers; damage to water hoses is usually a result of improper care; and foam may be a convenient means of conveying water to the fire. One area of particular interest was fire hose water nozzles. Several brands of fire hose nozzles randomly selected, both expensive and inexpensive, were tested at various water pressures. Little difference was found in the maximum throw distance in the fog stream mode. However, dramatic differences were seen among these nozzles when tested for throw distance in the straight stream mode. Performance data relative to water nozzles and specific practices to improve the state of preparedness in many of these areas are discussed. An examination of the mine emergency preparedness of four western coal mines showed state-of-the-art monitoring systems were common at the mine sites. All four mines used carbon monoxide (CO) sensors, and one mine incorporated smoke sensors. Fire safety at all the mine sites was stressed, including early detection and rapid response of the miners to evacuate the mine. However, the mines placed little emphasis on performance of water nozzles, or personal protective clothing for the underground firefighters.

  19. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-print Network

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  20. Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Ram Chandra Sekar

    E-print Network

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar;2 #12;3 Carbon Dioxide Capture in Coal-Fired Power Plants: A Real Options Analysis by Ram Chandra Sekar and Master of Science in Mechanical Engineering ABSTRACT Investments in three coal-fired power generation

  1. Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants

    E-print Network

    Frey, H. Christopher

    1 Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

  2. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  3. Coal fired power plant with pollution control and useful byproducts

    SciTech Connect

    Marten, J.H.; Lloyd, G.M.

    1990-04-17

    This patent describes a coal fired power plant. It comprises: coal gasification means for heating coal in the presence of an oxidant-lean atmosphere under partial coal-gasifying conditions; means for separating sulfur-containing compounds from the crude gas stream; means for converting the sulfur compound containing stream into elemental sulfur; energy-conversion means for burning a portion of the combustible gas stream and a portion of the carbonaceous char; flue gas desulfurization means for contacting the SO{sub 2}-containing flue gas with lime and limestone; gypsum desulfurization means for heating the gypsum and the remaining portion of carbonaceous char under reducing conditions utilizing burning of the remaining portion of the combustible gas stream; means for recycling the SO{sub 2}-containing gas stream to the coal gasification means.

  4. METC research on coal-fired diesels

    SciTech Connect

    McMillian, M.H.; Robey, E.H.; Addis, R.E.

    1993-11-01

    The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

  5. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  6. Wood-Coal Fired "Small" Boiler Case Study 

    E-print Network

    Pincelli, R. D.

    1980-01-01

    Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted...

  7. Controlling mercury emissions from coal-fired power plants

    SciTech Connect

    Chang, R.

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  8. Technical and Economic Aspects of Biomass Co-Firing in Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Dziku?, M.; ?asi?ski, K.

    2014-11-01

    The article presents the analysis of the potential of using biomass and coal co-firing in the Polish electro energetic system and shows the benefits resulting from an increase of biomass amount in electricity production in one of the largest Polish power stations. The paper discusses the most often used technologies for biomass co-firing and the potential of using biomass in electricity production in Poland. It also emphasises the fact that biomass co-firing allows a reduction of greenhouse gases emissions to the atmosphere and helps decrease consumption of energy resources. The article also emphasises the economic meaning of increasing the share of renewable energy resources in energy balance, including biomass, due to costs related to greenhouse gases emissions charges. Finally, conclusions from using biomass and coal co-firing in electricity production are presented

  9. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  10. The coal-fired gas turbine locomotive - A new look

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  11. Biomass Cofiring in Coal-Fired Boilers

    SciTech Connect

    Not Available

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  12. The effect of fuel form on trace element emissions in an industrial-scale coal fired boiler

    SciTech Connect

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-12-31

    Eleven of the fourteen inorganic hazardous air pollutants identified in Title 3 of the Clean Air Act Amendments of 1990 are present in the flue gas of pulverized coal-fired boilers. The designated elements include: antimony (Sb), beryllium (Be), chlorine (Cl), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorus (P). Determining the risk of these elements in the environment is difficult at best. However, regulating their emission into the environment has some scientific basis and merit. Approximately 137.5 tons of mercury were emitted in the US by combustion sources in 1994--1995, with coal-fired utility boilers accounting for 37.4% (or 51.6 tons) of the total. Control of trace element emissions from coal-fired utility boilers requires an understanding of the manner in which they occur in coal, their behavior during and after combustion and their form in the stack gas. The multimedia behavior of trace elements during combustion can be traced to their volatility within the combustion and post-combustion environment. The temperature distribution within the combustion system, the mechanism of char and ash formation (e.g. duration of char burnout and char and cenosphere morphology) and the combustion efficiency determine the partitioning of trace elements during combustion. These factors can be affected by the form in which a fuel is fired, e.g., pulverized coal (PC) versus coal-water slurry fuel (CWSF). This paper presents preliminary results of emissions testing aimed at determining the effect of fuel form on the penetration and partitioning of trace elements in an industrial-scale boiler. The tests were conducted on a 2 MMBtu/hr research boiler, in which Middle Kittanning Seam coal (hvA bituminous) from Jefferson County, Pennsylvania was burned in pulverized form and as a CWSF. The tests were conducted in accordance with the procedure outlined in EPA Methods 5 and 29 to measure trace elements in the gas and particulate phases of the flue gases generated during coal combustion. Further studies will include analysis of droplet and particle size, char morphology, and the size, distribution and composition of the mineral matter in the two fuels.

  13. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  14. The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility

    SciTech Connect

    Evans, B.R.; Washington, E.S.; Sanders, M.E.

    1993-10-01

    A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  15. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  16. The magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect

    Not Available

    1991-07-01

    In this quarterly technical progress report, UTSI summarizes the results of a multi-task research and development project directed toward the development of the technology for the commercialization of the steam bottoming plant for the MHD steam combined cycle power plant. The report covers the final test in a 2000-hour proof-of-concept (POC) test series on eastern coal, the plans and progress for the facility modifications and the conduct of the POC tests to be conducted with western coal. Results summarized in the report include chloride emissions from the particle removal (ESP/BH) processes, nitrogen and sulfur oxide emissions for various tests conditions, measurements of particulate control efficiency and management of the facility holding ponds during testing. Activities relating to corrosion and deposition probe measurements during testing and the fouling of heat transfer tubes and interaction with sootblowing cycles are summarized. The performance of both UTSI and Mississippi State University (MSU) advanced diagnostic systems is reported. Significant administrative and contractual actions are included. 2 refs., 28 figs., 7 tabs.

  17. The high moisture western coal processing system at the UTSI-DOE Coal Fired Flow Facility. Topical report

    SciTech Connect

    Sanders, M.E.

    1996-02-01

    The original eastern coal processing system at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, was modified to pulverize and dry Montana Rosebud, a western coal. Significant modifications to the CFFF coal processing system were required and the equipment selection criteria are reviewed. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  18. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Roy, Priyom; Guha, Arindam; Kumar, K. Vinod

    2015-07-01

    Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.

  19. Aerosol nucleation in coal-fired power-plant plumes

    NASA Astrophysics Data System (ADS)

    Stevens, Robin; Lonsdale, Chantelle; Brock, Charles; Makar, Paul; Knipping, Eladio; Reed, Molly; Crawford, James; Holloway, John; Ryerson, Tim; Huey, L. Greg; Nowak, John; Pierce, Jeffrey

    2013-05-01

    New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations, particularly near source regions, with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes, we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM), a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies, and the model reproduces well the major features of each case. Using this model, we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes, even if emissions are held constant. We subsequently used the model to evaluate the effects of SO2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO2 emissions may increase new-particle formation, due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US, and we found a median decrease of 19% in new-particle formation. However, the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.

  20. Digital bus technology in new coal-fired plants

    SciTech Connect

    Blaney, J.; Murray, J.

    2007-10-15

    The main issues associated with including digital bus technology such as Foundation fieldbus, Profibus-DP or DeviceNet, in a coal-fired power plant are deciding which systems to install and determining how to implement it. Although still new, digital bus experiences to date have shown that the technology performs solidly and when wiring best practices are followed a significantly shorted commissioning cycle can be achieved. 1 fig., 2 tabs.

  1. Second international conference on improved coal-fired power plants

    SciTech Connect

    Armor, A.F.; Bartz, J.A.; Touchton, G.; Valverde A, L.J. Jr.

    1989-01-01

    Research programs, presented at the second international conference on improved coal-fired power plants, are presented. The conference consisted of five sessions: national or institutional programs; power plants; boiler design and materials; turbine design and materials; controls and balance of plant. A combined session on environmental controls was also held. Programs from sessions 4, 5, and environmental controls are presented in this report. Individual projects are processed separately for the data base. (CBS)

  2. Energy 42 (2012) 486-496 Thermoeconomic operation optimization of a coal-fired power plant

    E-print Network

    Luh, Peter

    2012-01-01

    optimization of a coal-fired power plant Jie Xiong a, Haibo Zhao a.*, Chao Zhang a, Chuguang Zheng a, Peter B optimization on a 300 MW coal-fired power plant located in Yiyang (Hunan Province, China) is accomplished based. Luh b aState Key Laboratory of Coal Combustion. Huazhong University ofSdence and Technology. Wuhan

  3. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  4. Sequential simulation approach to modeling of multi-seam coal deposits with an application to the assessment of a Louisiana lignite

    USGS Publications Warehouse

    Olea, Ricardo A.; Luppens, James A.

    2012-01-01

    There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.

  5. Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil

    SciTech Connect

    Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

    2009-05-15

    In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

  6. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    SciTech Connect

    Glick, D.C.; Davis, A.

    1984-07-01

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  7. An evaluation of physical coal cleaning plus FGD for coal fired utility applications

    SciTech Connect

    Newman, J.; Kantesaria, P.; Huettenhain, H.

    1994-12-31

    The Clean Air Act Amendment of 1990 (CAAA) requires utilities to reduce SO{sub 2} emissions from coal-fired power plants in two phases. Phase I takes effect January 1, 1995, requiring utilities to reduce SO{sub 2} emissions to 2.5 lb SO{sub 2}/MMBtu. Phase II becomes effective on January 1, 2000, requiring all plants above 25 MWe in capacity not to exceed SO{sub 2} emissions above 1.2 lb SO{sub 2}/MMBtu. Electric utilities who burn moderately high ash and sulfur bituminous coal and must develop a strategy to comply with the CAAA can choose from numerous options besides simple fuel switching or complete flue gas scrubbing. Below 2% Run of Mine (ROM) coal sulfur Strategy 2, conventional cleaning, provides the lowest cost. Below 4% sulfur in the ROM coal conventional cleaning plus confined zone dispersion (CZD), Strategy 7, is the best choice. The higher cost of advanced coal cleaning, promising an additional 12% SO{sub 2} reduction over the approximately 45% reduction by conventional cleaning, can only be justified for coals between 4 and 6% sulfur in the ROM coal. Strategy 8, advanced cleaning plus CZD has the lowest cost for this sulfur range. Higher sulfur coals require full scrubbing combined with conventional coal cleaning to achieve the lowest compliance cost for Phase I. For Phase II compliance advanced coal cleaning has no advantage over conventional cleaning. Full scrubbing will be required for ROM coals with more than 2% sulfur. Full scrubbing combined with conventional cleaning can achieve the lowest compliance cost compared to the other strategies.

  8. Efficiency and Environmental Impacts of Electricity Restructuring on Coal-fired Power Plants

    E-print Network

    efficiency, cost of coal purchases, and utilization among coal-fired power plants using a panel data set from, input fuel purchasing behavior, and capacity utilization based on a panel data set from 1991 to 2005

  9. Carbon dioxide capture from coal-fired power plants : a real potions analysis

    E-print Network

    Sekar, Ram Chandra

    2005-01-01

    Investments in three coal-fired power generation technologies are valued using the "real options" valuation methodology in an uncertain carbon dioxide (CO2) price environment. The technologies evaluated are pulverized coal ...

  10. Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky Coal Field

    USGS Publications Warehouse

    Eble, C.F.; Hower, J.C.; Andrews, W.M., Jr.

    1994-01-01

    Vertically continuous increment samples of the Fire Clay coal bed (mid-Middle Pennsylvanian, late Westphalian B), collected from a portion of the Central Appalachian Basin, were studied palynologically, petrographically and geochemically in order to partially reconstruct the paleoecology and processes associated with peat formation in the ancient Fire Clay paleomire. Results indicate that four compositional groups can be identified. They are: (1) a Lycospora-vitrinite dominant group, characterized by high percentages of Lycospora and vitrinite macerals and generally low, but variable ash yields and sulfur contents; (2) a mixed palynoflora-high vitrinite group that petrographically is similar to group 1 except that it contains a more diverse palynoflora; (3) a mixed palynoflora-moderate/low vitrinite group characterized by various admixtures of lycopsid, fern and calamite miospores, increased percentages of liptinite and inertinite macerals, and low ash yields and sulfur contents; and (4) a mixed palynoflora-high ash yield group characterized by high percentages of small lycopsid, fern, and occasionally calamite and cordaite miospores, high liptinite and inertinite contents, high ash yields, and moderate to high sulfur contents. The Fire Clay coal bed contains a distinctive flint clay parting of probable volcanic origin that naturally divides the bed into two benches. These two benches, (upper and lower), are highly disparte in occurrence, appearance and composition. In the study area the lower bench generally is thin ( 0.75 m), laterally continous and mainly comprised of bright (mainly clarain) coal lithotypes. Overall ash yields and sulfur contents for this bench are generally low, although vertical variation is apparent. All of the compositional groups occur in the upper bench; in some columns, notably those that are thick and uninterrupted by clastic partings, groups 1 and 4 often occupy basal coal layers and groups 2 and 3 occur in higher layers. Other columns, especially those taken in areas of thin (< 0.5 m) Fire Clay coal, are dominated by groups 1 and 4. ?? 1994.

  11. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  12. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  13. Optical flue gas measurements at the Coal Fired Flow Facility

    SciTech Connect

    Winkleman, B.C.; Giel, T.V. Jr.

    1992-01-01

    Optical sensor flue gas measurement experience at the Coal Fired Flow Facility (CFFF) is summarized. The CFFF is a Department of Energy facility built for experimental research and development of advanced coal utility cycles, most notably the coal-fired magnetohydrodynamic cycle being developed for increased efficiency and decreased environmental impact. Optical diagnostics described include the line reversal measurements for gas temperature, emissivity and gaseous species, luminosity and pyrometry measurements of gas and wall emissions for temperatures and velocities, and light scattering measurements for gas velocity, gas mixing and suspended particle characteristics. Line reversal has proved to be a reliable technique for accurate, relatively high gas temperature ({ge}2100{degrees}F) monitoring where thermocouple measurements, including measurements from aspirated, shielded thermocouples, are unreliable due to radiation losses and ash fouling. Line reversal and luminosity measurements are shown to capably measure not only mean gas and surface temperatures, but also provide evaluations of fluctuating flue gas properties. Finally, optical scattering measurements of particles in the flue gas are shown to be useful for gas velocity and mixing diagnosis (laser velocimetry measurements) as well as continuous, near real-time monitoring of effluent particle loading and size distribution.

  14. Optical flue gas measurements at the Coal Fired Flow Facility

    SciTech Connect

    Winkleman, B.C.; Giel, T.V. Jr.

    1992-08-01

    Optical sensor flue gas measurement experience at the Coal Fired Flow Facility (CFFF) is summarized. The CFFF is a Department of Energy facility built for experimental research and development of advanced coal utility cycles, most notably the coal-fired magnetohydrodynamic cycle being developed for increased efficiency and decreased environmental impact. Optical diagnostics described include the line reversal measurements for gas temperature, emissivity and gaseous species, luminosity and pyrometry measurements of gas and wall emissions for temperatures and velocities, and light scattering measurements for gas velocity, gas mixing and suspended particle characteristics. Line reversal has proved to be a reliable technique for accurate, relatively high gas temperature ({ge}2100{degrees}F) monitoring where thermocouple measurements, including measurements from aspirated, shielded thermocouples, are unreliable due to radiation losses and ash fouling. Line reversal and luminosity measurements are shown to capably measure not only mean gas and surface temperatures, but also provide evaluations of fluctuating flue gas properties. Finally, optical scattering measurements of particles in the flue gas are shown to be useful for gas velocity and mixing diagnosis (laser velocimetry measurements) as well as continuous, near real-time monitoring of effluent particle loading and size distribution.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  16. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J. M. K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  17. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  18. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  19. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  20. Mercury control for coal-fired power plants

    SciTech Connect

    Haase, P.

    2005-06-30

    On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

  1. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  2. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect

    Butcher, T.A.; Litzke, W.

    1994-01-01

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  3. Development of a Software System to Facilitate Implementation of Coal and Wood Co-Fired Bilers 

    E-print Network

    Gopalakrishnan, B.; Gump, C. D.; Gupta, D. P.; Chaudhari, S.

    2013-01-01

    Coal and wood co-fired boiler technology has improved significantly over the years. The term "co-firing", when used by members of the biomass or utility communities, has come to mean mixing a modest amount of clean, dry sawdust with coal and burning...

  4. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO?) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. PMID:25646673

  5. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  6. Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends 

    E-print Network

    Gomez, Patsky O.

    2010-01-16

    The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases...

  7. Radioactivity of coals and ashes from Catala?zi coal-fired power plant in Turkey.

    PubMed

    Aytekin, Hüseyin; Baldik, Ridvan

    2012-04-01

    The Ēatala?z? coal-fired power plant (CFPP) is the Turkish CFPP that uses the hard coals produced in Zonguldak, located in the West Black Sea region of the country. Gamma-ray spectrometry was used to determine (226)Ra, (232)Th and (40)K contents in pulverised coal, bottom ash and fly ash samples. The natural radionuclide concentrations in pulverised coal ranged from 29 to 61 Bq kg(-1) for (226)Ra, from 32 to 55 Bq kg(-1) for (232)Th and from 229 to 414 Bq kg(-1) for (40)K. The fly ash fraction gave concentrations ranging from 80 to 98 Bq kg(-1) for (226)Ra, from 64 to 85 Bq kg(-1) for Th and from 754 to 992 Bq kg(-1) for (40)K, respectively. The enrichment factors from coal to fly ashes are 1.7, 2.24 and 2.6 for (232)Th, (226)Ra and (40)K, respectively. Therefore, it is advisable to monitor the environmental impact of the power plant. PMID:21632583

  8. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  9. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  10. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-07-27

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.

  11. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam...Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam...hazardous air pollutants (NESHAP) from coal- and oil-fired electric utility...

  12. 76 FR 24975 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ...Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam...Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam...hazardous air pollutants (NESHAP) from coal- and oil-fired electric utility...

  13. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-print Network

    Elliott, Emily M.

    Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

  14. Fuel supply system and method for coal-fired prime mover

    DOEpatents

    Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

    1995-01-01

    A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

  15. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  16. Western cretaceous coal seam project evaluation of coalbed natural gas openhole cavity completion productivity. Topical report, November 1990-December 1991

    SciTech Connect

    Mavor, M.J.

    1991-12-06

    The evaluation of the reasons for the observed performance of two wells completed with openhole cavity technology is discussed. The wells are located at the Completion Optimization and Assessment Laboratory (COAL) Site operated by Amoco Production Co. and the Vertical COAL Site operated by Arco Oil Gas Co. Both wells are completed in the Fruitland Formation of the San Juan Basin of Colorado. The following conclusion resulted from the efforts. The cavity completion effectively links the well with the natural fracture system of the reservoir. Increased fluid productivity is due to increased linking rather than enhancement of reservoir properties. The cavity itself accounts for only 60% of the productivity increase and not the seven-fold increase in total fluid productivity.

  17. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  18. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... (Underground Coal Mines) AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for public... (facsimile). SUPPLEMENTARY INFORMATION: I. Background Fire protection standards for underground coal mines....1100 requires that each coal mine be provided with suitable firefighting equipment adapted for the...

  19. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power plants. If a state establishes a new or revised TMDL for one of these pollutants in a water body where a power plant is located, the next renewal of the power plant's National Pollution Discharge Elimination System (NPDES) permit is likely to include more restrictive limits. Power generators may need to modify existing operational and wastewater treatment technologies or employ new ones as TMDLs are revised or new ones are established. The extent to which coal-fired power plants may be impacted by revised and new TMDL development has not been well established. NETL asked Argonne to evaluate how current and potential future TMDLs might influence coal-fired power plant operations and discharges. This information can be used to inform future technology research funded by NETL. The scope of investigation was limited to several eastern U.S. river basins rather than providing a detailed national perspective.

  20. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples, however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis

  1. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  2. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream reactor was completed during this quarter and shakedown testing was begun at the University of Utah pilot-scale coal furnace. Talks continued with two utilities that have expressed interest in hosting a demonstration.

  3. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  4. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.; Jha, M.C.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  5. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  6. Modeling of a coal-fired natural circulation boiler

    SciTech Connect

    Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N.

    2007-06-15

    Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

  7. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2005-03-31

    This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.

  8. Coal-fired boiler costs for industrial applications

    SciTech Connect

    Kurzius, S.C.; Barnes, R.W.

    1982-04-01

    Several of the current sources of information provide data on coal-fired steam boiler costs. As published, these data give widely varying and possibly inconsistent conclusions. This study was undertaken to determine the extent to which the differences in the various sets of published data bases could be resolved and, if possible, to arrive at more reliable cost correlations to be used in Oak Ridge Energy Demand Models. Our principal finding is that it is indeed possible to restate the costs within each data base on a more consistent basis. When this is done, reasonable engineering correlations of all the cost data versus steam plant capacity can be made over the 10,000 to 5000,000 lb/hr range.

  9. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  10. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  11. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. , Inc., Cambridge, MA ); Rao, K.; Schaub, F. ); Kimberley, J. ); Itse, D. )

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  12. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E.; Rao, K.; Schaub, F.; Kimberley, J.; Itse, D.

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  13. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  14. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    SciTech Connect

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS program. The CETF design effort continued through this quarter with the completion of the following systems: 1. Char Storage and Transport System 2. Reheat Burner The char storage system is required for the HIPPS program because the ball mill needs to be de-coupled from the burner. This de-coupling of the mill and the burner allows greater flexibility in changing char particle size distribution ? one of the main test variables under the HIPPS program. The reheat burner is employed to prevent condensation of the flue gas in the baghouse.

  15. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    SciTech Connect

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Preliminary process design was started with respect to the integrated test program at the PSDF. All of the construction tasks at Foster Wheeler's Combustion and Environmental Test Facility (CETF) have been completed in preparation for the char combustion test program, this includes installation of the char burner, and the on-line mass spectrometer. A test matrix has been defined, utilizing a statistical design of experiment (SDOE) methodology, for the char combustion program. The first phase of the CETF shakedown has been completed, and all analog devices (thermocouples, transmitters, etc.) have been calibrated.

  16. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type consisted of geographical areas where specific conditions can generate demand vulnerabilities. These conditions include high projected future water consumption by thermoelectric power plants, high projected future water consumption by all users, high rates of water withdrawal per square mile (mi{sup 2}), high projected population increases, and areas projected to be in a water crisis or conflict by 2025. The second type of demand indicator was plant specific. These indicators were developed for each plant and include annual water consumption and withdrawal rates and intensities, net annual power generation, and carbon dioxide (CO{sub 2}) emissions. The supply indictors, which are also area based, include areas with low precipitation, high temperatures, low streamflow, and drought. The indicator data, which were in various formats (e.g., maps, tables, raw numbers) were converted to a GIS format and stored, along with the individual plant data from the CPPDB, in a single GIS database. The GIS database allowed the indicator data and plant data to be analyzed and visualized in any combination. To determine the extent to which a plant would be considered 'vulnerable' to a given demand or supply concern (i.e., that the plant's operations could be affected by water shortages represented by a potential demand or supply indicator), criteria were developed to categorize vulnerability according to one of three types: major, moderate, or not vulnerable. Plants with at least two major demand indicator values and/or at least four moderate demand indicator values were considered vulnerable to demand concerns. By using this approach, 144 plants were identified as being subject to demand concerns only. Plants with at least one major supply indicator value and/or at least two moderate supply indicator values were considered vulnerable to supply concerns. By using this approach, 64 plants were identified as being subject to supply concerns only. In addition, 139 plants were identified as subject to both demand and supply concerns. Therefore, a total of 347 plants were considere

  17. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations

    NASA Astrophysics Data System (ADS)

    Meij, Ruud; te Winkel, Henk

    Extensive research for establishing the emissions of heavy metals from coal-fired power stations is performed in the Netherlands for the past 25 years. In the Netherlands coal is fired from all over the world. This means that the emissions are established for coal of various origins. In the eighties, the emissions of installations equipped with ESPs (electrostatic precipitators) were measured. In the nineties, the influence of wet FGD (flue gas desulphurisation) on the emissions was studied. The effect of co-combustion of biomass and other secondary fuels is the main item for the last 10 years. Fifty-five elements were measured in the solid state and eight elements in the gaseous phase. It appeared that at low particulate concentration the influence of calcium containing evaporated water droplets downstream the wet FGD on the emissions of heavy metals is bigger than the composition of the coal. Also it appeared that at modern coal-fired power stations the emissions are hardly influenced by co-combustion of biomass. All the results are used for modelling, resulting in the KEMA TRACE MODEL ®, by which the emissions can be predicted. The established emission factors are for most elements in good agreement with literature values for comparable modern installations. Persistence organic pollutants (POPs) that were detected in the flue gases of coal-fired power stations are polycyclic aromatic hydrocarbons (PAH) and dioxins/furans. Measurements during full coal-firing and during co-firing of biomass have indicated that these emissions are negligible.

  18. Coal Seam Methane Pressure as a Parameter Determining the Level of the Outburst Risk - Laboratory and in Situ Research / Ci?nienie Z?o?owe Jako Parametr Okre?laj?cy Stan Zagro?enia Wyrzutami Metanu I Ska? - Badania Laboratoryjne I Kopalniane

    NASA Astrophysics Data System (ADS)

    Skoczylas, Norbert

    2012-12-01

    Scarcity of research focusing on the evaluation of the coal seam methane pressure as a parameter determining the outburst risk makes it difficult to assess the value for which the level of this risk increases considerably. It is obvious that, apart from the gas factor, the evaluation of the threat should also take into account the strength factor. The research presented in this paper attempted at estimating the level of the outburst risk on the basis of the coal seam methane pressure value and firmness of coal. In this work, the author seeks to present both the relevant laboratory research and the measurements carried out in mines.

  19. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  20. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  1. Using ISC & GIS to predict sulfur deposition from coal-fired power plants 

    E-print Network

    Lopez, Jose Ignacio

    1993-01-01

    The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power...

  2. SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants 

    E-print Network

    Beene, Jack Stephen

    1995-01-01

    The goal of this research was to determine if S02 emissions from coal-fired power plants could be contributing to the copper deficiency in cattle. Copper deficiency in cattle can result from excessive sulfur intake which is attributed...

  3. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-print Network

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  4. Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing 

    E-print Network

    Boushell, C. C.

    1980-01-01

    The purpose of the paper is to disseminate information on the energy savings possible with High Temperature Water (HTW) for heating and industrial process application and to provide information on coal fired HTW generator design and availability....

  5. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  6. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  7. Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam

    E-print Network

    Salmon, Elodie; Lorant, Franēois; Hatcher, Patrick G; Marquaire, Paul-Marie; 10.1016/j.orggeochem.2009.01.004

    2009-01-01

    In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature and analytical characterization of our samples by modern 1-and 2-D NMR, FTIR, and elemental analysis. Then, artificial maturation of the Morwell coal is performed at low conversions in order to obtain, quantitative and qualitative, detailed evidences of structural evolution of the kerogen upon maturation. The observed chemical changes are a defunctionalization of the carboxyl, carbonyl and methoxy functional groups coupling with an increase of cross linking in the residual mature kerogen. Gaseous and liquids hydrocarbons, essentially CH4, C4H8 and C14+ liquid hydrocarbons, are generated in low amount, merely by clea...

  8. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  9. Historical Costs of Coal-Fired Electricity and Implications for the Future James McNerney,a,b

    E-print Network

    Historical Costs of Coal-Fired Electricity and Implications for the Future James Mc, Cambridge, MA 02139-4307, USA Abstract We study the costs of coal-fired electricity in the United States construction costs resume their previously decreasing trending behavior, the cost of coal-based electricity

  10. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant

    E-print Network

    Hopkins, William A.

    Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal 2009 Keywords: Corbicula fluminea Coal-fired power plant Selenium Mercury Glutathione Condition index Bioaccumulation a b s t r a c t Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have

  11. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

  12. ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

  13. ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

  14. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  15. Detection, Analysis and Risk Assessment of Coal Fires in Northern China

    NASA Astrophysics Data System (ADS)

    Fischer, Christian; Li, Jing; Wu, Jianjun; Erhler, Christoph; Jiang, Weiguo; Guo, Shan; Yang, Bo

    2013-01-01

    Uncontrolled combustion of coal is a serious problem on a global scale. Since coal can easily be oxidized and often has a prominent “self-heating” capacity, many coal types have a tendency to combust spontaneously once sufficient oxygen is available and natural cooling is prevented. The rapid expansion of uncontrolled small-scale coal mining activities during the last 30-40 years and the increasing amount of not adequate closed down and now abandoned coal mine sites are supposed to have led to an increase of human-induced coal fires. Thus, coalfield fires need to be not only inventoried at regional scales through rapid and cost effective methods, but also assessed, monitored and secured, wherever appropriate. This leads to major research and technological development objectives: Easy-to-use, routine remote and in-situ monitoring techniques, based on airborne and space borne imagery, to become part in an integrated long-term monitoring framework.

  16. ENVIRONMENTAL ASSESSMENT OF A WATERTUBE BOILER FIRING A COAL-WATER SLURRY. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue gas emissions; source assessment sampling system (SASS) sampling of the flue gas,...

  17. The impact of natural radioactivity from a coal-fired power plant.

    PubMed

    Bauman, A; Horvat, D

    1981-01-01

    In a coal-fired power station burning coal which contained between 14--100 ppm U, 210Pb was detected in the urine of an exposed group of individuals. Chromosome aberrations (complex, numerical and the percentage of total aberrations) were also registered. PMID:7209507

  18. Pelletizing/reslurrying as a means of distributing and firing clean coal

    SciTech Connect

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.; Jha, M.C.

    1991-09-20

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be formulated into Coal-Water Fuels (CWFs) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines.

  19. CHARACTERIZATION AND MANAGEMENT OF RESIDUES FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) determined on December 15, 2000, that regulations are needed to control the risks of mercury air emissions from coal-fired power plants. The thrust of these new regulations is to remove mercury from the air stream of fossil-fuel-fire...

  20. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  1. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2001-02-05

    The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies--Task 1; (2) Perform re-burn experiments--Task 2; (3) Fabricate fixed bed gasifier/combustor--Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels--Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.--Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report--Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code.

  2. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  3. Methods and costs of thin-seam mining. Final report, 25 September 1977-24 January 1979. [Thin seam in association with a thick seam

    SciTech Connect

    Finch, T.E.; Fidler, E.L.

    1981-02-01

    This report defines the state of the art (circa 1978) in removing thin coal seams associated with vastly thicker seams found in the surface coal mines of the western United States. New techniques are evaluated and an innovative method and machine is proposed. Western states resource recovery regulations are addressed and representative mining operations are examined. Thin seam recovery is investigated through its effect on (1) overburden removal, (2) conventional seam extraction methods, and (3) innovative techniques. Equations and graphs are used to accommodate the variable stratigraphic positions in the mining sequence on which thin seams occur. Industrial concern and agency regulations provided the impetus for this study of total resource recovery. The results are a compendium of thin seam removal methods and costs. The work explains how the mining industry recovers thin coal seams in western surface mines where extremely thick seams naturally hold the most attention. It explains what new developments imply and where to look for new improvements and their probable adaptability.

  4. Coal-fired power plant and its emission reduction in Indonesia

    SciTech Connect

    Kuntjoro, D.

    1994-12-31

    Power generation availability is one important key to the rapid growth of Indonesia`s industrial sector. To secure future national energy needs, coal-fired power generation has been set up as a primary energy source. There are environmental concerns related to the emission of gases, particulates, and ash resulting from coal combustion. This paper discusses emission controls from burning high calorie, low sulfur coal and the national strategy to reduce emissions.

  5. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  6. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia

    SciTech Connect

    Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.M.; Van Dijk, P.; Blake, D.

    2005-12-01

    Five unique mineral assemblages that include the sulfates millosevichite, alunogen, anhydrite, tschermigite, coquimbite, voltaite, and godovikovite, as well as the halide salammoniac and an unidentified phase, according to X-ray diffraction and EDS data, were found as encrustations on quartzofeldspathic sand and sandstone adjacent to coal-fire gas vents associated with underground coal fires in the Wuda coalfield of Inner Mongolia. The mineral assemblage of alunogen, coquimbite, voltaite, and the unidentified phase collected front the same gas vent, is documented for the first time. Observations suggest that the sulfates millosevichite, alunogen, coquimbite, voltaite, godovikovite, and the unidentified phase, crystallized in response to a complex sequence of processes that include condensation, hydrothermal alteration, crystallization from solution, fluctuating vent temperatures, boiling, and dehydration reactions, whereas the halide salammoniac crystallized during the sublimation of coal-fire gas. Tschermigite and anhydrite formed by the reaction of coal-fire gas with quartzofelds pathic rock or by hydrothermal alteration of this rock and crystallization from an acid-rich aqueous solution. These minerals have potentially important environmental significance and may be vectors for the transmission of toxins. Coal fires also provide insight for the recognition in the geologic record of preserved mineral assemblages that are diagnostic of ancient fires.

  7. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    EPA Science Inventory

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  8. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

  9. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants 

    E-print Network

    Schwartz, M. H.

    1979-01-01

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  10. CHARACTERIZATION OF ASH FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The report summarizes existing data on the chemical and physical characteristics of ashes produced by the burning of coal in steam-electric generating plants. It summarizes several recent coal or ash characterization studies, emphasizing the elemental chemical composition, partic...

  11. Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires

    PubMed Central

    Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was proposed. Overall, the main mechanism of liquid nitrogen fire prevention technology in the coal mine is the creation of an inert and cryogenic atmosphere. Cryogenic nitrogen gas vapor cloud, heavier than the air, would cause the phenomenon of “gravity settling” in porous media firstly. The cryogen could be applicable to diverse types of fires, both in the openings and in the enclosures. Implementation of liquid nitrogen open-injection technique in Yangchangwan colliery achieved the goals of fire prevention and air-cooling. Meanwhile, this study can also provide an essential reference for the research on heat and mass transfer in porous media in the field of thermal physics and engineering. PMID:25054173

  12. Impact of heat and mass transfer during the transport of nitrogen in coal porous media on coal mine fires.

    PubMed

    Shi, Bobo; Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was proposed. Overall, the main mechanism of liquid nitrogen fire prevention technology in the coal mine is the creation of an inert and cryogenic atmosphere. Cryogenic nitrogen gas vapor cloud, heavier than the air, would cause the phenomenon of "gravity settling" in porous media firstly. The cryogen could be applicable to diverse types of fires, both in the openings and in the enclosures. Implementation of liquid nitrogen open-injection technique in Yangchangwan colliery achieved the goals of fire prevention and air-cooling. Meanwhile, this study can also provide an essential reference for the research on heat and mass transfer in porous media in the field of thermal physics and engineering. PMID:25054173

  13. Study of Environmental Impact by Coal-Fired Power Station

    NASA Astrophysics Data System (ADS)

    Yoshizumi, Koji; Ogaki, Mituharu; Motonaka, Junko; Yabutani, Tomoki

    The Tachibana-wan coal-fired power station was constructed on land that was reclaimed using the soil that came from cutting through half of a small island while balancing the amount of soil. The power station has been generating for three years. When the electric utility provider projected the power station, it must have conducted an environmental impact assessment, and studied the environmental preservation measures. Moreover, after the power generation began, an environmental investigation was done as a follow up survey to study the environmental impact by the power station based on its construction and use. To study the environmental impact with smoke, the environmental density of sulfur dioxide around the power station was investigated. It fell below the environmental standards at all the environmental measurement points during this investigation. Moreover, a big difference was not seen before and after the beginning of the power generation and the change in these data was in the normal range. As a result of the environmental impact assessment, the contribution density of the power station was near the quantitative limit and a low value. To study the environmental impact with warm wastewater, the water temperature in the bay was investigated. A big difference was not generally seen before and after the beginning of the power generation though the water temperature slowly rose at the discharge point of the warm wastewater but the change of these data was in the normal range. As for the environmental impact, a clear judgment was difficult only from the environmental investigation. It is necessary to set a new environmental indicator to judge the environmental impact. Moreover, as for a new environmental assessment system, it is necessary to introduce a strategic environmental assessment.

  14. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-10-24

    This is the ninth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Various subsystems of BYU's Catalyst Characterization System (CCS) were upgraded this quarter. Work on the CCS hardware and software will continue in the coming quarter. A preliminary test matrix of poisoning experiments in the CCS has been drafted that will explore the effects of at least three poisons: sodium, potassium and calcium. During this quarter, we attempted to resolve discrepancies in previous in situ measurements of catalyst sulfation. Modifications were made to the XPS analysis procedure that allowed analyses of uncrushed samples. Although the XPS and FTIR results are now more consistent in that both indicate that the surface is sulfating (unlike the results reported last quarter), they disagree with respect to which species sulfates. The CEM system for the multi-catalyst slipstream reactor arrived this quarter. Minor modifications to the reactor and control system were completed. The reactor will be shipped to AEP Rockport plant next quarter for shakedown and installation. In a parallel effort, we have proposed to make mercury oxidation measurements across the catalysts at the start of the field test. Pending approval from DOE, we will begin the mercury measurements next quarter.

  15. Downstream component corrosion in coal-fired MHD power plants

    SciTech Connect

    White, M. K.

    1980-06-01

    Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.

  16. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  17. Ash chemistry aspects of straw and coal-straw co-firing in utility boilers

    SciTech Connect

    Frandsen, F.J.; Nielsen, H.P.; Hansen, L.A.; Hansen, P.F.B.; Andersen, K.H.

    1998-12-31

    Deposits formed in straw-fired grate-boilers showed significant amounts of KCl (40--80% (w/w)) and KCl-coated Ca-Si-rich particles. CFB co-firing of straw and coal caused deposits in the convective pass containing predominantly K{sub 2}SO{sub 4} (50--60% (w/w)) with small amounts of KCl close to the metal surface. In pulverized coal-straw co-fired boilers, deposits almost free of KCl were found. Most of the potassium in these deposits is derived from K-Al-Si-rich fly ash particles and the rest occurs as K{sub 2}SO{sub 4}. The presence of K-Al-Si-rich fly ash particles indicates that solid residue quality and reuse of fly ash in cement and concrete production rather than deposit formation may be of concern when utilizing straw in pulverized fuel boilers. This paper provides a review of Danish experiences with high-temperature ash deposit formation in the following full-scale utility boilers: Slagelse CHP (31 MWth), Haslev CHP (23 MWth) and Rudkoebing CHP (10.7 MWth), all straw-fired grate-boilers; Grenaa CHP (80 MWth), a coal-straw co-fired Circulating Fluidized Bed (CFB) boiler; and the Midtkraft-Studstrup Power Station, Unit 1 (380 MWth), a coal-straw co-fired PF-boiler.

  18. Investigation of subsidence event over multiple seam mining area

    SciTech Connect

    Kohli, K.K.

    1999-07-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface.

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  20. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    PubMed

    Mikul?i?, Hrvoje; von Berg, Eberhard; Vujanovi?, Milan; Dui?, Neven

    2014-06-24

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner. PMID:24963094

  1. Exergy efficiency of small coal-fired power plants as a criterion of their wide applicability

    SciTech Connect

    O.V. Afanas'eva; G.R. Mingaleeva

    2009-02-15

    The applicability of small coal-fired power plants as an independent and reliable power supply source was considered. The advantages of using small thermal power plants were given, and the classification characteristics of small coal-fired power plants were put forward. The exergy method was chosen as a versatility indicator for the operating efficiency of a flowsheet in question. The exergy efficiency factor of the flowsheet was 32%. With the manufacture of by-products, such as activated carbons, the exergy efficiency of the flowsheet increased to 35%. The studies undertaken substantiated the wide applicability of small coal-fired power plants for the development of decentralized power supply. 7 refs., 2 tabs.

  2. Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio

    SciTech Connect

    Lee, S.; Keener, T.C.

    2009-09-15

    Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

  3. Engineering development of advanced coal-fired low-emission boiler system

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  4. Correlates of mental health in nuclear and coal-fired power plant workers.

    PubMed

    Parkinson, D K; Bromet, E J

    1983-08-01

    The mental health of 104 nuclear workers at the Three Mile Island plant was compared with that of 122 workers from another nuclear plant and 151 workers from two coal-fired generating plants. The coal-fired plant workers were somewhat more symptomatic than the nuclear plant workers. Assessments of work environments showed that the coal-fired plant workers perceived less stress but more problems with workplace exposures than the nuclear plant workers. Negative perceptions of work and marital stress were both strongly and independently related to mental distress. Overall, the results suggest that the Three Mile Island accident did not engender long-term psychological difficulties in workers evaluated 2.5 years after the accident. PMID:6635612

  5. Design and implementation of a pulverised coal flow monitoring system for coal-fired power plant applications

    NASA Astrophysics Data System (ADS)

    Qian, Xiangchen; Hu, Yonghui; Huang, Xiaobin; Yan, Yong

    2014-04-01

    On-line continuous monitoring of pulverised coal in fuel injection pipelines will allow power plant operators to understand fuel conveying conditions and ultimately to achieve higher combustion efficiency and lower pollutant emissions. This paper presents the design, implementation and trials of an instrumentation system for on-line non-intrusive measurement of pulverised coal in a power plant environment. An array of three identical electrostatic electrodes is housed in a sensing head to determine multiple measurement results from different electrode pairs. Flow parameters such as flow velocity, relative mass flow rate and fuel distribution between injection pipes can be obtained by fusing the multiple results. On-plant trials on 488 mm bore pneumatic conveying pipelines at a 600 MW coal-fired power plant were undertaken following preliminary system evaluation tests on a 50 mm bore laboratory test rig. Experimental results demonstrate that monitoring of pulverised coal flow is achieved using the developed instrumentation system under real industrial conditions. The developed technology is likely to find immediate applications, leading to improved performance of coal-fired power plants, efficient use of fuel, and subsequent reductions in emissions.

  6. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  7. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers

    PubMed Central

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, KC

    2013-01-01

    Background: Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. Aim: The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. Material and Methods: The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. Result: MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Conclusion: Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities. PMID:24083143

  8. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    E-print Network

    Barlaz, Morton A.

    A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers for pollution abatement using boiler-level data that explicitly accounts for technology cost and performance NOx control configurations on a large subset of the existing coal-fired, utility-owned boilers

  9. REVIEW OF NEW SOURCE PERFORMANCE STANDARDS FOR COAL-FIRED UTILITY BOILERS. VOLUME II. ECONOMIC AND FINANCIAL IMPACTS

    EPA Science Inventory

    This two volume report summarizes a study of the projected effects of several different revisions to the current New Source Performance Standard (NSPS) for sulfur dioxide (SO2) emissions from coal-fired utility power boilers. The revision is assumed to apply to all coal-fired uni...

  10. Longwall mining of thin seams

    SciTech Connect

    Curth, E A

    1981-01-01

    Thin seam operations pose a challenge to the ingenuity of mining engineers to overcome the factor of human inconvenience in the restricted environment and associated high cost production. Surprisingly, low seam longwalls in the Federal Republic of Germany in an average thickness of 35 in. and dipping less than 18/sup 0/ come close to achieving the average production rate of all German longwall operations. They are all plow faces, and a consistent production of 3300 tons per day and a productivity of 40 tons per man shift are reported from one of the thin seam longwalls. These results were attained by reliable high-capacity equipment and roof support by shields that can be collapsed to as low as 22 inches. Maximum mining height for plow operated faces lies at 31.5 inches. Technology for mechanized mining of flat lying coalbeds less than 31.5 inches in thickness without rock cutting is not available, and firmness of coal, undulation of the strata, coalbed thickness variation, and the necessity of cutting rock, particularly through faults, set limits to plow application. The in-web shearer can be used in firm coal to a minimum mining height of 40 inches, and a daily production of 1650 to 2200 tons is reported from a longwall in the Saar district of Germany equipped with such a shearer and shields. Numerous in-web shearers are employed in the United Kingdom; reports as to their success are contradictory. Also, experience in the United States, though limited, has been negative. The steady increase in output from single drum shearer faces in Pennsylvania is a remarkable achievement, and occasional record breaking peaks in production indicate the potential of such mining. Technology development for the future is discussed.

  11. Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Nozdrenko, G. V.; Kuzmin, A. G.

    2009-12-01

    The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure steam-gas generator and continuous flow gasifier at combined production of power, heat, syngas, and hydrogen is considered. The results of investigation are presented. Such CCCP have higher technical and economic efficiency than the pulverized coal cogeneration plant modified by gas-turbine.

  12. Options for reducing a coal-fired plant's carbon footprint, Part II

    SciTech Connect

    Zachary, J.

    2008-07-15

    Part 1 of this article detailed and quantified the impacts of postcoming CO{sub 2} capture on a coal plant's net output and efficiency. Part II deals with four other CO{sub 2} reduction techniques: oxy-fuel combustion, using higher-temperature and higher-pressure boilers, cofiring biomass, and replacing some coal-fired capacity with renewable capacity. 4 figs., 3 tabs.

  13. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    SciTech Connect

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L.

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  14. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Makris, P.; Krecker, J.; Jung, G.; Stubblefield, D.J.

    1998-07-01

    Strategies are being developed at Penn Sate to produce ultralow emissions when firing coal-based fuel, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production, characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  15. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.

    1998-04-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x} fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  16. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways.

    PubMed

    Kabir, Md Ruhul; Kumar, Amit

    2012-11-01

    Life cycle energy and environmental performances of nine different biomass/coal co-firing pathways to power generation were compared. Agricultural residue (AR), forest residue (FR), and whole trees (WT) as feedstock were analyzed for direct (DC) and parallel co-firing (PC) in various forms (e.g., chip, bale and pellet). Biomass co-firing rate lies in the range of 7.53-20.45% (energy basis; rest of the energy comes from coal) for the co-firing pathways, depending on type of feedstock and densification. Net energy ratios (NER) for FR-, WT-, and AR-based co-firing pathways were 0.39-0.42, 0.39-0.41, and 0.37-0.38, greenhouse gas (GHG) emissions were 957-1004, 967-1014, and 1065-1083 kg CO(2eq)/MWh, acid rain precursor (ARP) emissions were 5.16-5.39, 5.18-5.41, and 5.77-5.93 kgSO(2eq)/MWh, and ground level ozone precursor (GOP) emissions were 1.79-1.89, 1.82-1.93, and 1.88-1.91 kg (NO(x)+VOC)/MWh, respectively. Biomass/coal co-firing life cycle results evaluated in this study are relevant for any jurisdiction around the world. PMID:23000720

  17. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  18. ECONOMICS OF NITROGEN OXIDES, SULFUR OXIDES, AND ASH CONTROL SYSTEMS FOR COAL-FIRED UTILITY POWER PLANTS

    EPA Science Inventory

    The report gives results of an EPA-sponsored economic evaluation of three processes to reduce NOx, SO2, and ash emissions from coal-fired utility power plants: one based on 3.5% sulfur eastern bituminous coal; and the other, on 0.7% sulfur western subbituminous coal. NOx control ...

  19. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do not deactivate the catalyst to the extent that these same poisons do in the deliberately wet-impregnated laboratory-prepared samples (1%V{sub 2}O{sub 5}-9%WO{sub 3}/TiO{sub 2}). At least in this case, the fouling deposits generated by field exposure present little if any chemical deactivation or barrier to mass transfer. During this quarter, the slipstream reactor at Rockport operated for 1000 hours on flue gas. Periodic NO{sub x} reduction measurements were made, showing some decrease in activity relative to fresh catalyst samples. Plans are being made to take the reactor out of service at the Rockport plant and move it to Plant Gadsden. At Gadsden, inlet and outlet ports were installed on Unit 1 for the slipstream reactor during an outage.

  20. A comparison between firing coal-water slurry fuel and dry, micronized coal in an oil-designed industrial watertube boiler

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Poe, R.L.; Scaroni, A.W.

    1995-12-31

    Penn State`s Energy and Fuels Research Center is conducting proof of concept demonstrations of firing coal-water slurry fuel (CWSF) and dry, micronized coal in an oil-designed industrial watertube to establish the technical and economic viability of firing coal-based fuels in package watertube boilers designed for fuel oil. Technical aspects of the demonstrations are addressed in this paper, including: evaluating systems for coal storage (hoppers for micronized coal; tanks for CWSF) and handling (conveyors, screw feeders, and pneumatic transport for micronized coal; pumps and piping for CWSF) and their integration with the burner; determining coal combustion and boiler performance; determining rates of ash deposition and erosion; monitoring emissions; and quantifying the level of boiler derating.

  1. Engineering development of a coal-fired high performance power generating system

    SciTech Connect

    Seery, D.J.; Sangiovanni, J.J.; Holowczak, J.; Bornstein, N.

    1995-12-31

    The need for generating electric power with increased efficiency and decreased emissions is widely accepted, especially for coal-burning powerplants. Of all the proposed options for future coal-fired plants, the highest efficiencies can only be achieved by using Brayton cycles (gas turbines) rather than Rankine cycles (steam turbines). The DOE, recognizing this constraint, began the High Performance Power Generating System (HIPPS) program, which utilizes gas turbines but excludes all coal combustion products from contaminating the working fluid. This type of indirect-fired gas turbine thus avoids the expense of hot gas cleanup and/or the corrosion of turbine blades by coal combustion products. The design goals for Phase 1 HIPPS program include a 47% overall thermal efficiency for a plant that controls NO{sub x}, SO{sub x} and particulates to one-quarter of the NSPS. United Technologies Research Center is heading up a team of seven research organizations to develop concepts and evaluate designs for a 300 MWe indirect fired combined cycle plant utilizing a 65% coal, 35% natural gas, fuel mix. The optimized design employs both radiative and convective air beaters to transfer the energy from coal combustion to the gas turbine working fluid. Because of present day materials limits, it is necessary to use a natural gas topping cycle to reach the appropriate turbine temperatures required for high efficiency. One of the goals of the HIPPS designs is to maximize the heat from coal combustion in the gas turbine cycle. In the present configuration, about 50% of the coal combustion energy is so used. In addition, the designs for the air heaters must maximize heat transfer and working lifetimes to offer a practical option for utilities. Several of these design considerations will be presented.

  2. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  3. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  4. Control of mercury emissions from coal fired electric uitlity boilers: An update

    EPA Science Inventory

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  5. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  6. DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING

    E-print Network

    Kusiak, Andrew

    DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK partitioning, parameter reduction, and data mining. Two inde- pendent data mining algorithms have been applied to detect both static and dynamic relationships among the process parameters. The multi-angle data mining

  7. MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  8. ICE FOG ABATEMENT AND POLLUTION REDUCTION AT A SUBARCTIC COAL-FIRED HEATING PLANT

    EPA Science Inventory

    An experimental cooler-condenser system was constructed at the coal-fired heating and electric plant on the Fairbanks campus of the University of Alaska to evaluate its potential to reduce ice fog and other pollutant stack emissions in a subarctic environment. This experiment adv...

  9. APPLICATION OF THE DUAL ALKALI PROCESS AT A 280 MW COAL-FIRED POWER PLANT

    EPA Science Inventory

    The paper gives results of applying the dual alkali (D/A) flue gas resulfurization (FGD) process to a 280-MW coal-fired power plant. (NOTE: D/A is a generic term applied to FGD systems that use soluble alkali to absorb SO2 and then react the spent scrubber solution with lime and/...

  10. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    EPA Science Inventory

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  11. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  12. [Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants].

    PubMed

    Duan, Lei; Ma, Zi-Zhen; Li, Zhen; Jiang, Jing-Kun; Ye, Zhi-Xiang

    2015-03-01

    Currently, China suffers from serious pollution of fine particulate matter (PM2.5). Coal-fired power plant is one of the most important sources of PM2.5 in the atmosphere. To achieve the national goals of total emission reductions of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) during the 11th and 12th Five-Year Plan, most of coal-fired power plants in China have installed or will install flue gas desulfurization (FGD) and flue gas denitrification (DNO(x)) systems. As a result, the secondary PM2.5, generated from gaseous pollutants in the atmosphere, would be decreased. However, the physical and chemical characteristics of PM2.5 in flue gas would be affected, and the emission of primary PM2.5 might be increased. This paper summarized the size distributions of PM2.5 and its water soluble ions emitted from coal-fired power plants, and highlighted the effects of FGD and DNO(x) on PM2.5 emission, especially on water soluble ions (such as SO4(2-), Ca2+ and NH4+) in PM2.5. Under the current condition of serious PM2.5 pollution and wide application of FGD and DNO(x), quantitative study on the effects of FGD and DNO(x) installation on emission characteristics of PM2.5 from coal-fired power plants is of great necessity. PMID:25929084

  13. MERCURY RESIDUES IN SOIL AROUND A LARGE COAL-FIRED POWER PLANT

    EPA Science Inventory

    Seventy soil samples were collected on a radial grid around the Four Corners power plant. The soil samples were analyzed for total mercury using a Zeeman atomic absorption spectrophotometer. Even though the plant emits 1-2% of all the mercury released by U.S. coal-fired utilities...

  14. CHARACTERIZATION OF INDIVIDUAL FLY ASH PARTICLES EMITTED FROM COAL- AND OIL-FIRED POWER PLANTS

    EPA Science Inventory

    Individual particles from coal- and oil-fired power plants were analyzed by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer to investigate the morphology and composition as a function of size. Samples were collected on filters by a dichotomous...

  15. EFFECT OF ASH DISPOSAL PONDS ON GROUNDWATER QUALITY AT A COAL-FIRED POWER PLANT

    EPA Science Inventory

    The impact of fly and bottom ash disposal ponds on groundwater quality was investigated at the coal-fired Columbia Power Plant at Portage, WI. Groundwater sampling was conducted utilizing a network of piezometers and multilevel wells located at various cross-sections of the ash d...

  16. AIR POLLUTION STUDIES NEAR A COAL-FIRED POWER PLANT. WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    Concentrations of dry deposition of sulfur dioxide were investigated near a new 540-MW coal-fired generating station located in a rural area 25 miles north of Madison, Wisconsin. Monitoring data for 2 yr before the start-up in July 1975 and for the year 1976 were used to assess t...

  17. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  18. EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants

    EPA Science Inventory

    There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...

  19. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  20. EFFECTS OF A 'CLEAN' COAL-FIRED POWER GENERATING STATION ON FOUR COMMON WISCONSIN LICHEN SPECIES

    EPA Science Inventory

    Algal plasmolysis percentages and other morphological characteristics of Parmelia bolliana, P. caperata, P. rudecta, and Physicia millegrana were compared for specimens growing near to and far from a rural coal-fired generating station in south central Wisconsin. SO2 levels were ...

  1. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF COAL-FIRED FLUIDIZED-BED COMBUSTION SYSTEMS

    EPA Science Inventory

    The report evaluates potential pollutants which could be generated in coal-fired fluidized-bed combustion (FBC) processes. The primary emphasis is on organic compounds, trace elements, inorganic compounds (other than SO2 and Nox), and particulates. Using available bench scale or ...

  2. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  3. Co-combustion of solid recovered fuels in coal-fired power plants.

    PubMed

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO? allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011. PMID:22143900

  4. SAMPLING AND MODELING OF NON-POINT SOURCES AT A COAL-FIRED UTILITY

    EPA Science Inventory

    The report gives results of a measurement and modeling program for nonpoint sources (NPS) from two coal-fired utility plants, and the impact of NPS on receiving waters. The field measurement survey, performed at two utility plants in Pennsylvania, included measurement of overland...

  5. CAPSULE REPORT: PARTICULATE CONTROL BY FABRIC FILTRATION ON COAL-FIRED INDUSTRIAL BOILERS

    EPA Science Inventory

    Interest in fabric filtration for boiler particulate control has increased due to the conversion of oil- and gas- to coal-fired boilers and the promulgation of more stringent particulate emission regulations. his report describes the theory, applications, performance, and economi...

  6. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  7. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  8. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines 

    E-print Network

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

  9. DEVELOPMENT OF SORBENT INJECTION CRITERIA FOR SULFUR OXIDES CONTROL FROM TANGENTIALLY FIRED COAL BOILERS

    EPA Science Inventory

    The report describes a program to develop design criteria for injecting dry sorbents into tangentially fired coal furnaces for the control of SOx emissions. The program included aerodynamic cold-flow testing and mathematical modeling of sorbent injection, demonstration testing of...

  10. FUNDAMENTAL SCIENCE AND ENGINEERING OF MERCURY CONTROL IN COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses the existing knowledge base applicable to mercury (Hg) control in coal-fired boilers and outlines the gaps in knowledge that can be filled by experimentation and data gathering. Mercury can be controlled by existing air pollution control devices or by retrofit...

  11. ANALYSIS OF LOW NOX OPERATION OF TWO PULVERIZED-COAL FIRED UTILITY BOILERS

    EPA Science Inventory

    The report gives results of a review of the operation of two pulverized-coal-fired utility boilers subject to the 1971 New Source Performance Standard, to determine if other boilers could adopt a similar mode of operation to reduce nitrogen oxide (NOx) emissions. These two boiler...

  12. EVALUATION OF LONG-TERM NOX REDUCTION ON PULVERIZED-COAL-FIRED STEAM GENERATORS

    EPA Science Inventory

    The report gives results of analyzing long-term nitrogen oxide (NOx) emission data from eight pulverized-coal-fired steam generators, for the purpose of quantifying the effectiveness of various combustion modifications. All boilers, but one, were modified to reduce NOx emissions....

  13. THE BIOENVIRONMENTAL IMPACT OF A COAL-FIRED POWER PLANT: FIFTH INTERIM REPORT, COLESTRIP, MONTANA

    EPA Science Inventory

    The US EPA has recognized the need for a rational approach to the incorporation of ecological impact information into power facility siting decisions in the northern great plains. Research funded by the Colstrip, Coal-Fired Power Plant project is a first attempt to generate metho...

  14. ESTIMATING PERFORMANCE/COSTS OF RETROFITTING CONTROL TECHNOLOGIES AT 12 COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of estimating performance/costs of retrofitting pollution control technologies at 12 coal-fired power plants. In cooperation with the states of Ohio and Kentucky (in conjunction with EPA's state acid rain program), efforts were undertaken to visit and cond...

  15. Emissions of air toxics from coal-fired boilers: Arsenic

    SciTech Connect

    Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

    1994-08-01

    Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

  16. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  17. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    SciTech Connect

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  18. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  19. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  20. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3

    SciTech Connect

    Not Available

    1990-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  1. State-of-art technology of SCR system for coal fired boiler

    SciTech Connect

    Nakatani, Hiromi; Kiyosawa, Masashi; Koyanagi; Toshio; Nalto, Osamu

    1999-07-01

    More than 18 years have passed since the first SCR systems for the coal fired plant in the world provided by Mitsubishi was put into commercial operation. During the above period, SCR catalyst has been developed to overcome any difficulties which were experienced, especially because the flue gas contains the large amount of dust compared with gas and oil fired unit. For example, dust plugging, SO{sub 2} oxidation rate, pressure loss and erosion have been the main items to be solved. This paper describes the background of the above items and test results which was conducted before the application to the actual unit to confirm the initial performance and the durability against them. In addition to the above, the efforts to reduce the catalyst volume for coal fired unit by means of the application of smaller pitch catalyst is also presented together with the inspection result of smaller pitch catalyst after the operation.

  2. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    PubMed

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane. PMID:26387296

  3. Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993

    SciTech Connect

    Attig, R.C.; Chapman, J.N.; Johanson, N.R.

    1993-06-01

    Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

  4. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    SciTech Connect

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  5. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 ?g Sm -3, 2.4-1.1 ?g Sm -3, 3.1-0.7 ?g Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  6. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

  7. MERCURY CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    There are many sources of natural and anthropogenic mercury emissions, but combustion of coal is known to be the major anthropogenic source of mercury (Hg) emissions in the U.S. and world wide. To address this, EPA has recently promulgated the Clean Air Mercury Rule to reduce Hg ...

  8. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China

    NASA Astrophysics Data System (ADS)

    Shao, Zhenlu; Wang, Deming; Wang, Yanming; Zhong, Xiaoxing

    2014-05-01

    Coal fires are a major problem throughout the world. They threaten the environment and the health of people living nearby and result in significant economic losses. Efficient and economical control of these fires requires that the extent of the subsurface coal fire be delineated. In this paper, we first present laboratory experiments, revealing that new preferential alignment of magnetic moments, newly formed magnetite and thermoremanent magnetization are the root causes of magnetic anomalies in coal fire area. The redox potential and Thomson potential, which are the basis of the self-potential anomalies, are proposed additionally for application. Then, the geological setting and an overview of the Fifth Fire Area (FFA) of the Heshituoluogai coal fire in Xinjiang are introduced in detail. Finally, the magnetic and self-potential methods are combined to delineate the extent of the fire. Several data processing methods such as diurnal fluctuation rectification, reduction to pole and upward continuation are used to process the data to make the interpretation of results more straight forward. The locations of subsurface fire regions delineated by the magnetic and self-potential methods are consistent with the results of ground surveys, indicating that these two methods can be used effectively as a tool for the detection of coal fires.

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2001-05-10

    The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2 % (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75 % pass through 150 {micro}m sieve while for coal 75 % pass through 60 {micro}m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70--90 % reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH{sub 3}; (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4.

  10. Characterization of air toxics from a laboratory coal-fired combustor

    SciTech Connect

    1995-04-03

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  11. Particulate sampling methods used at the University of Tennessee Space Institute's coal fired magnetohydrodynamic (MHD) facility

    SciTech Connect

    Douglas, J.R. )

    1988-01-01

    The University of Tennessee Space Institute (UTSI), operates a coal-fired magnetohydrodynamic (MHD) research facility with downstream components capable of simulating a steam bottoming plant with particulate control devices. The major downstream components of the coal fired flow facility (CFFF) include a superheater test module (SHTM); an air heater; and three parallel particulate control devices, a baghouse, electrostatic precipitator (ESP), and venturi scrubber/cyclone system. Major differences between MHD and conventional coal fired power plants are higher combustion temperatures of 2760{degrees}C (5000 {degrees} F) and the presence of 1% potassium in the total flow. These high temperatures and the addition of potassium carbonate seed are used to enhance the conductivity of the plasma in the MHD generator. High combustion temperatures cause all of the potassium carbonate and some of the coal ash to vaporize. Upon cooling, they form fly ash and submicron potassium sulfate particles. Mass loading tests were performed to evaluate baghouse, ESP, and venturi/cyclone performance and samples were taken with cascade impactors to determine the particle size distribution.

  12. A comparative overview of coal-water slurry fuels produced from waste coal fines for utility-scale co-firing applications

    SciTech Connect

    Morrison, J.L.; Miller, B.G.; Scaroni, A.W.

    1997-07-01

    The recovery and utilization of coal fines, both impounded and in cleaning plant effluent streams, have received close attention from both coal producers and coal-fixed utilities during the last few years. Many coal producers view impounded fines as an environmental liability and the discarded fines in plant effluent streams as contributing to a loss in Btu recovery. In addition, the rejected coal fines increase the quantity and cost of refuse disposal. The handleability of fine coal has always been a problem. Dewatering cleaned fine coal is costly. Excessive fugitive dust emissions are commonly associated with handling dry fine coal. Wet fine coal sticks to conveyor belts, blocks fuel chutes, and may limit pulverizer capacity. The preparation of coal water slurry fuel (CWSF) from wet coal fines alleviates the necessity of drying while at the same time eliminates the flow problems that wet fine coal poses to the end user. Furthermore, the utilization of CWSF as an opportunity fuel converts coal fines into a revenue source rather than a liability. Several utilities are evaluating the co-firing of low solids, low viscosity CWSF with their normal coal feedstock in an effort to lower fuel cost and/or as a NO{sub x} reduction technique. The utilization of this opportunity fuel is being driven by a changing electric industry in which utilities continually strive to reduce plant emissions while simultaneously reducing their operating costs to become more competitive as the generation side of the industry prepares for deregulation.

  13. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    1999-01-01

    The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+???REE): total Y+???REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+???REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.

  14. Coal-fired CAES system using fluidized bed combustion

    SciTech Connect

    Moskowitz, S.; Schaeffer, R.

    1983-11-01

    Utility requirements for peaking power can be addressed with coal through the unique marriage of the compressed air energy storage and fluidized bed combustion technologies. This paper discusses the results of an evaluation of a pressurized fluidized bed combustion system at air storage pressures from 27 to 68 atm. A conceptual design of the PFBC configuration in a CAES system is presented. Major components of the system are identified as either state-of-the-art or requiring further R and D. The performance of the compressed air energy storage system with an efficiency of 83.4% (based on coal input energy) is presented. The effects of recovery of rejected heat are discussed also.

  15. Advanced coal-fired glass melting development program

    SciTech Connect

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  16. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  17. Economic analysis of coal-fired cogeneration plants for Air Force bases

    SciTech Connect

    Holcomb, R.S.; Griffin, F.P.

    1990-10-01

    The Defense Appropriations Act of 1986 requires the Department of Defense to use an additional 1,600,000 tons/year of coal at their US facilities by 1995 and also states that the most economical fuel should be used at each facility. In a previous study of Air Force heating plants burning gas or oil, Oak Ridge National Laboratory found that only a small fraction of this target 1,600,000 tons/year could be achieved by converting the plants where coal is economically viable. To identify projects that would use greater amounts of coal, the economic benefits of installing coal-fired cogeneration plants at 7 candidate Air Force bases were examined in this study. A life-cycle cost analysis was performed that included two types of financing (Air Force and private) and three levels of energy escalation for a total of six economic scenarios. Hill, McGuire, and Plattsburgh Air Force Bases were identified as the facilities with the best potential for coal-fired cogeneration, but the actual cost savings will depend strongly on how the projects are financed and to a lesser extent on future energy escalation rates. 10 refs., 11 figs., 27 tabs.

  18. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Schobert, H.H.

    1990-09-28

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

  19. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  20. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  1. Radiological characterization around the Afsin-Elbistan coal-fired power plant in Turkey

    SciTech Connect

    Ugur Cevik; Nevzat Damla; Bahadir Koz; Selim Kaya

    2008-01-15

    A radiological characterization of soil samples around the Afsin-Elbistan coal-fired thermal power plant in the Mediterranean region of Turkey was carried out. Moreover, activity concentrations and chemical analyses of coal samples used in this power plant and fly ash and slag samples originating from coal combustion were measured. For this purpose, coal, fly ash, slag, and soil samples were collected from this region. The analysis shows that the samples include relevant natural radionuclides such as {sup 226}Ra, {sup 232}Th and {sup 40}K. The mean activity concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K were 167, 44, and 404 Bq.kg{sup -1}, respectively. Obtained values shows that the average radium equivalent activity, air-absorbed dose rate, annual effective dose, and external hazard index for all samples are 258 Bq.kg{sup -1}, 121 nGy.h{sup -1}, 148 {mu}Sv.y{sup -1}, and 0.7, respectively. The environmental effect of natural radionuclides caused by coal-fired power plants was considered to be negligible because the Ra{sub eq} values of the measured samples are generally lower than the limit value of 370 Bq.kg{sup -1}, equivalent to a gamma dose of 1.5 mSv.y{sup -1}. A comparison of the concentrations obtained in this work with other parts of the world indicates that the radioactivity content of the samples is not significantly different. 20 refs., 1 fig., 5 tabs.

  2. COSTEAM expansion and improvements: design of a coal-fired atmospheric fluidized bed submodel, an oil-fired submodel and input/output improvements

    SciTech Connect

    Reierson, James D.; Rosenberg, Joseph I.; Murphy, Mary B.; Lethi, Minh- Triet

    1980-10-01

    COSTEAM is an interactive computer model designed to estimate the cost of industrial steam produced by various steam plant technologies. At the end of Phase I development, the COSTEAM model included only one submodel to calculate the capital and operating costs of a conventional coal-fired boiler plant with environmental control systems. This report describes the results of Phase II development. Two new submodels are added which calculate costs for steam produced by coal-fired atmospheric fluidized bed boilers and by oil-fired boilers. COSTEAM input/output capabilities are also improved.

  3. Low NO{sub x} bituminous coal firing systems for large steam generators

    SciTech Connect

    Kather, A.; Brueggemann, H.; Epple, B.

    1998-07-01

    The environmental legislation in Germany for large scale coal fired steam generators requires a limit for the NO{sub x} emissions of 200 mg/m{sup 3} [97.56 ppm] (standard temperature and pressure, dry, 6% O{sub 2}). For lignite fired plants this limit can be achieved by pure primary side measures. Bituminous coal fired steam generators, however, have to be equipped with SCR plants in order to reduce the primary NO{sub x} emissions. It is pointed out in this paper that despite the existence of SCR plants, there are economic incentives to reduce further the primary NO{sub x} emissions. Additionally the milestones of the realization of the EVT low NO{sub x} firing system are high-lighted as well. These milestones comprise experiments in an entrained flow reactor, studies in computational reactive fluid dynamics of full scale furnaces, and the operation results after the realization in a power plant with 110 MW{sub el}. Also the scale-up to a steam generator unit with 750 MW{sub el} has been outlined. In the meantime for this plant the EVT low NO{sub x} firing system has been successfully realized and thus the NO{sub x} emissions could be reduced from 415 ppm (before modification) to below the guaranteed value of 170 ppm (s.t.p., dry, 6% O{sub 2}).

  4. CFD evaluation of waterwall wastage in coal-fired utility boilers

    SciTech Connect

    James R. Valentine; Hong-Shig Shim; Kevin A. Davis; Sang-Il Seo; Tae-Hyung Kim

    2007-01-15

    With the advent of substoichiometric low NOx combustion in coal-fired utility boilers during recent years, problems with waterwall corrosion have increased. A predictive tool capable of assessing corrosion potential and aiding in the design of problem solutions could help alleviate the utility downtime and cost associated with waterwall wastage. Waterwall wastage has been associated with various mechanisms, including gaseous phase reducing sulfur species, wall deposition of unoxidized sulfur fuel, and fuel chlorine. Integration of predictive correlations for corrosion into a computational fluid dynamics (CFD) code can provide a framework for evaluation of corrosion potential. In this paper, CFD studies and predictions of corrosion in five utility boilers are examined and compared with observed wastage. The CFD code makes use of approximations of empirically developed corrosion correlations for gaseous phase reducing sulfur species, wall deposition of unoxidized sulfur fuel, and fuel chlorine. Model corrosion predictions are compared with observed or measured wastage in several coal-fired utility boilers, including tangentially fired, wall-fired, and cyclone-fired units. 15 refs., 12 figs.

  5. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  6. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  7. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  8. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-print Network

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has ...

  9. Development of a coal fired pulse combustor for residential space heating. Technical progress report, October--December 1986

    SciTech Connect

    1986-12-31

    This progress report presents a detailed description of the background, technology and application, and Statement of Work for the development of a coal-fired pulse combustor for residential space heating.

  10. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  11. Optimisation and integration of membrane processes in coal-fired power plants with carbon capture and storage 

    E-print Network

    Bocciardo, Davide

    2015-06-29

    This thesis investigates membrane gas separation and its application to post-combustion carbon capture from coal-fired power plants as alternative to the conventional amine absorption technology. The attention is initially ...

  12. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-print Network

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  13. ENVIRONMENTAL ASSESSMENT OF COAL-AND OIL-FIRING IN A CONTROLLED INDUSTRIAL BOILER. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of a comparative multimedia assessment of coal versus oil firing in a controlled industrial boiler. Relative environmental, energy, economic, and societal impacts were identified. Comprehensive sampling and analyses of gaseous, liquid, and solid emissions...

  14. Coal-Fired Power Plants, Greenhouse Gases, and State Statutory Substantial Endangerment Provisions: Climate Change Comes to Kansas

    E-print Network

    Glicksman, Robert L.

    2008-04-01

    economy standards on motor vehicles by states such as California. But the states have also targeted stationary sources of greenhouse gases. In particular, they have sought to minimize carbon dioxide emissions from coal-fired power plants. States have used...

  15. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Unknown

    2002-07-01

    Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for different fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.

  16. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  17. European legislation in the United Kingdom: a threat to coal-fired power station product utilization?

    SciTech Connect

    Sear, K.A.

    2006-07-01

    The author considers that the European Union has not taken the approach adopted in the USA where environmental regulators are keen to promote the use of coal-fired power station ash by-product and recycled materials. The United Kingdom has seen, with some dismay, the effects EU legislation is having on the ash industry. This article outlines only some of the problems being tackled. The Waste Framework Directive is difficult to interpret and fails to define critical aspects of the problem. This directive is discussed at some length in the article. A total of nine directives effect the operation of coal-fired power plant. Many are imprecise and open to interpretation and cause a deal of frustration, delays and confusion to the ash supplier and contractor. This is causing markets to suffer.

  18. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  19. [Determination and Emission of Condensable Particulate Matter from Coal-fired Power Plants].

    PubMed

    Pei, Bing

    2015-05-01

    The sampling-analysis method for CPM of stationary source was established and the sampling device was developed. The determination method was compared with EPA method 202 and applied in real-world test in coal-fired power plants. The result showed the average CPM emission concentration in the coal-fired power plant was (21.2 ± 3.5) mg · m(-3) while the FPM was (20.6 ± 10.0) mg · m(-3) during the same sampling period according to the method in the national standard. The high-efficiency dust removal device could efficiently reduce FPM emission but showed insignificant effect on CPM. The mass contribution of CPM to TPM would rise after high-efficiency dust removal rebuilding project, to which more attention should be paid. The condensate contributed 68% to CPM mass while the filter contributed 32%, and the organic component contributed little to CPM, accounting for only 1%. PMID:26314098

  20. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    SciTech Connect

    Bhattacharya, C.

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  1. High Black Carbon Concentrations and Atmospheric Pollution Around Indian Coal Fired Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Singh, A. K.; Kumar, S.; Takemura, T.

    2013-12-01

    Emissions from coal-fired Thermal Power Plants (TPPs) are among major sources of black carbon (BC) aerosols in the atmosphere and air quality degradation. Knowledge of BC emissions from TPPs is important in characterizing regional carbonaceous particulate emissions, associated with regional climate forcing as well as effects on human health. Furthermore, elevated BC concentrations, over the Indo-Gangetic Plains (IGP) and the Himalayan foothills, has emerged as an important subject to estimate effects of deposition and atmospheric warming of BC on the accelerated melting of snow and glaciers in the Himalaya. For the first time, this study reports BC concentrations and aerosol characterization near coal-fired power plants in the IGP. Coal-fired TPPs are also recognized as major point-sources of other atmospheric pollutants such as high NO2 hotspots in the IGP, as evident from the OMI Aura satellite observations. In-situ measurements were carried out in Kanpur (central IGP) and Singrauli (eastern IGP), during January and March 2013. We show detailed spatial variability of BC within ~10 km from TPPs, that indicate BC variations up to 95 ?g/m3, with strong diurnal variations associated with BC concentration peaks during early morning and evening hours. BC concentrations were measured to be significantly higher in close proximity to the coal-fired TPPs (as high as 200?g/m3), compared to the outside domain of our study region. Co-located ground-based sunphotometer measurements of aerosols also show significant spatial variability around the TPPs, with aerosol optical depth (AOD) in the range 0.38-0.58, and the largest AOD of 0.7 - 0.95 near the TPPs (similar to the peak BC concentrations). Additionally, the Angstrom Exponent was found to be in the range 0.4 - 1.0 (maximum in the morning time) and highest in the vicinity of TPPs (~1.0) suggesting abundance of fine particulates, whereas lowest recorded over the surrounding coal mining fields. We also inter-compare global model simulations of BC over our study region, that indicate substantial underestimate against observations in the IGP. Results from this detailed observational study provide an insight into carbonaceous aerosol characteristics in complex and mesoscale environments of coal-fired TPPs, which are major emission sources in the IGP.

  2. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-print Network

    Miller, B.; Keon, E.

    1980-01-01

    CONDITIONING TO REDUCE PARTICULATE EMISSIONS IN INDUSTRIAL COAL-FIRED BOILERS Barry Miller and Ed Keon Apollo Technologies, Inc. Whippany, New Jersey ABSTRACT Chemical technology has been used successfully to solve many of the operational... the past several years, there has been an increased interest in the use of 'chemical condition 'ing for 'the ,enhancement of mechanical collector and ESP unit efficiency. Generally, the goal has been to meet particulate compliance without the need...

  3. Performance of composite coatings in a coal-fired boiler environment

    SciTech Connect

    Nava, J.C.

    2009-09-15

    Four samples of thermal spray coatings, each made from different core wire consumables by twin wire arc spray, were exposed for 18 months in a coal-fired boiler environment. The tests are described and the performance of each coating is evaluated. Results indicated that the four consumable wire alloys showed remarkable resistance to fly ash erosion and corrosion over the period of the test.

  4. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  5. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  6. The net climate impact of coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.; Faluvegi, G.

    2009-10-01

    Coal-fired power plants influence climate via both the emissions of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. For steadily increasing emissions without substantial pollution controls, we find that the net global mean climate forcing ranges from near zero to a substantial negative value, depending on the magnitude of aerosol indirect effects, due to aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. The long-term forcing from stable (constant) emissions is positive regardless of pollution controls, with larger values in the case of pollutant controls. The results imply that historical emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic carbon dioxide emissions, likely contributed little net global mean climate forcing during that period. Those emissions likely led to weak cooling at Northern Hemisphere mid-latitudes and warming in the Southern Hemisphere, however. Subsequent imposition of pollution controls and the switch to low-sulfur coal in some areas kept global SO2 emissions roughly level from 1970 to 2000. Hence during that period, RF due to emissions during those decades and CO2 emitted previously was strongly positive and likely contributed to rapid global and regional warming. Most recently, construction of coal-fired power plants in China and India has been increasing rapidly with minimal application of pollution controls. Continuation of high-growth rates for another 30 years would lead to near zero to negative global mean climate forcing in the absence of expanded pollution controls, but severely degraded air quality. However, following the Western pattern of high coal usage followed by imposition of pollution controls could lead to accelerated global warming in the future.

  7. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  8. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  9. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  10. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  11. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers A Appendix A to Part...Coal-Fired Utility Units With Group 1 or Cell Burner Boilers Table 1—Phase I Tangentially...Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State...

  12. Development of a coal-fired gas turbine cogeneration system: Status report

    SciTech Connect

    Wilkes, C.; Wenglarz, R.A.; Hart, P.J.; Thomas, W.H.; Rothrock, J.W.; Harris, C.N.; Bourke, R.C.

    1992-01-01

    The Allison Advanced Coal-Fueled Turbine Program is now in the sixth year of a development effort that has led to a POC engine demonstration test on a Coal-Water-Slurry (CWS) fuel. Earlier forecasts by CWS suppliers that suitable CWS fuels would be commercially available at an economic price have not been realized. A program replan has, therefore, been executed that incorporates the use of readily available dry pulverized coal. To support this program, technology issues relating to combustor performance and emission control, hot gas cleanup, and turbine deposition, erosion and corrosion (DEC) have been addressed. In addition, system assessment studies have been performed to evaluate the commercial prospects for small (<8 MWe) coal-fired industrial cogeneration systems and the application of the rich-quench-lean (RQL) coal-combustion technology to larger (> 100 MWe) utility-sized gas turbines. These results are reported by Wenglarz (1992). Combustor and engine tests on dry coal are now planned in preparation for a commercial demonstration that will follow the completion of this program.

  13. Development of a coal-fired gas turbine cogeneration system: Status report

    SciTech Connect

    Wilkes, C.; Wenglarz, R.A.; Hart, P.J.; Thomas, W.H.; Rothrock, J.W.; Harris, C.N.; Bourke, R.C.

    1992-12-01

    The Allison Advanced Coal-Fueled Turbine Program is now in the sixth year of a development effort that has led to a POC engine demonstration test on a Coal-Water-Slurry (CWS) fuel. Earlier forecasts by CWS suppliers that suitable CWS fuels would be commercially available at an economic price have not been realized. A program replan has, therefore, been executed that incorporates the use of readily available dry pulverized coal. To support this program, technology issues relating to combustor performance and emission control, hot gas cleanup, and turbine deposition, erosion and corrosion (DEC) have been addressed. In addition, system assessment studies have been performed to evaluate the commercial prospects for small (<8 MWe) coal-fired industrial cogeneration systems and the application of the rich-quench-lean (RQL) coal-combustion technology to larger (> 100 MWe) utility-sized gas turbines. These results are reported by Wenglarz (1992). Combustor and engine tests on dry coal are now planned in preparation for a commercial demonstration that will follow the completion of this program.

  14. Historical Costs of Coal-Fired Electricity and Implications for the Future

    E-print Network

    McNerney, James; Farmer, J Doyne

    2010-01-01

    We study the costs of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation costs, energy density, thermal efficiency, plant construction cost, interest rate, and capacity factor. The dominant determinants of costs at present are the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 - 1970, increasing from 1970 - 1990, and leveling off or decreasing a little since then. This leads us to forecast that even without carbon capture and storage, and even under an optimistic scenario in which construction costs resume their previously decreasing trending behavior, the cost of coal-based electricity will drop for a while but eventually be determined by the price of coal, which varies stochastically but shows no long term decreasing trends. Our analysis emphasizes the importance of using long time series and compari...

  15. The energy structure and the technology of co-firing biomass and coal in China

    SciTech Connect

    Mao, J.X.

    2004-07-01

    Total reserves of coal in China are 1022.9 billion tons, ranking second in the world. China's total energy consumption in 2000 was 1075.3 Mtce, of which coal accounted for 6.8%. Coal is thus the dominant energy source in China, which fact has led to a serious air pollution problem. It is estimated that the total biomass energy resources in China are some 437 Mtce, of which 240 Mtec of biomass energy resources came from agriculture crop residues in 2000. Biomass is a kind of clean energy, and there is great potential for China to convert biomass resources into energy to mitigate the use of coal, which will help to partially solve China's energy and environmental problems. This article describes in detail China's energy structure; the status of coal in that structure, and the resources of agriculture, forestry, and other biomass. It then introduces a project for co-firing of biomass and coal, which is a specially designed internal circulating fluidized bed (ICFB) boiler with steam capacity of 35 t/h (6 MWE), based on the operation performance of ICFB. The potential and dissemination prospects of this technology for industrial and power applications are also discussed. 7 refs., 2 figs., 8 tabs.

  16. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect

    Larry G. Felix; P. Vann Bush

    2001-07-17

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Three additional biomass co-firing test burns have been conducted. In the first test (Test 3), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through the center of the burner. In the second test (Test 4), 100% Pratt seam coal was burned in a repeat of the initial test condition of Test 1, to reconcile irregularities in the data from the first test. In the third test (Test 5), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through an external pipe directed toward the exit of the burner. Progress has continued in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and Preparations are under way for continued pilot-scale combustion experiments. Finally, a presentation was made at a Biomass Cofiring Project Review Meeting held at the NETL in Pittsburgh, PA on June 20-21.

  17. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    SciTech Connect

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  18. Conceptual design of a coal-fired retrofit liquid-metal MHD power system

    SciTech Connect

    Pierson, E.S.; Herman, H.; Petrick, M.

    1981-01-01

    The desire to develop a coal-fired energy-conversion system with the high efficiencies and moderate temperatures of two-phase-generator liquid-metal MHD (LMMHD) systems led to the open-cycle LMMHD (OC-LMMHD) concept. A liquid metal, most likely copper, that is compatible with combustion gases is used so that the combustion gas can be mixed with the liquid metal to form the two-phase mixture in the LMMHD generator, thereby eliminating the need for a primary heat exchanger. Applications where OC-LMMHD appears to be particularly attractive include central power plants larger than approx. 10 MW(e), retrofit of existing oil- or gas-fired central steam power plants to burn coal, and cogeneration systems requiring high-temperature process heat. The latter two, in particular, benefit from the clean combustion gas stream leaving the copper in the LMMHD system. To explore the technical and economic feasibility of this new LMMHD concept, a conceptual design study of the retrofit of a coal-fired OC-LMMHD topping cycle to a conventional steam plant was selected, and extensive parametric studies carried out to establish the optimum parameter ranges for the retrofit cycle. A conceptual design was developed for the plant and the components with sufficient detail that a cost estimate for the retrofit could be readily made.

  19. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    SciTech Connect

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: ą thermal efficiency (HHV) >47%; ą NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); ą coal providing >65% of heat input; ą all solid wastes benign; ą cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: ą Task 2.2 HITAF Air Heaters; ą Task 6 HIPPS Commercial Plant Design Update.

  20. Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system

    SciTech Connect

    Lu, Xiaoliang

    1996-03-01

    The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

  1. Status of the DOE open-cycle, coal-fired, MHD power generation program

    SciTech Connect

    Carabetta, R.A.; Chambers, H.F. Jr.; Owen, W.R.

    1987-12-01

    The present U.S. Department of Energy (DOE) program for the multiyear development of open-cycle, coal-fired, MHD electric power generation is focused on achievement of integrated, subsystem, proof-of-concept (POC) testing. The POC tests of integrated topping cycle and bottoming-cycle subsystems will be conducted at a size, and for a duration, sufficient to collect data that will enable a completely integrated, prototypic MHD plant to be designed, constructed, and operated. The program also provides for the design, construction, and operation of a separate system to establish the technical and economic feasibility of a seed-regeneration process. Finally, the plan includes the development of a site-specific conceptual design of a coal-fired MHD system retrofit to an existing electric utility plant and requires the establishment of a flexible, cost-sharing arrangement to elicit a commitment from the private sector. The POC testing of the integrated topping-cycle and integrated bottoming-cycle subsystems will be performed at the Government-owned Component Development and Integration Facility (CDIF) in Butte, Montana, and the Coal-Fired Flow Facility (CFFF) in Tullahoma, Tennessee, respectively.

  2. PM1 particles at coal- and gas-fired power plant work areas.

    PubMed

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 ?m) and ultrafine particles (i.e. <0.1 ?m). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung. PMID:22127876

  3. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  5. IMPACT OF PRIMARY SULFATE AND NITRATE EMISSIONS FROM SELECTED MAJOR SOURCES. PHASE 1. COAL-FIRED POWER PLANT

    EPA Science Inventory

    The report covers Phase one of a two phase study of the near source impacts of primary sulfate and nitrate emission sources. The phase one portion of the study was an investigation of the impact of a coal fired power plant burning high sulfur coal. The study was designed to measu...

  6. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE E

    EPA Science Inventory

    The report gives results of field measurements made on a 180,000 lb/hr coal-fired spreader-stoker boiler. The effects of various parameters on boiler emissions and efficiency were studied. Parameters included overfire air, excess air, boiler load, and coal properties. Measurement...

  7. CONTROL OF WASTE AND WATER POLLUTION FROM COAL-FIRED POWER PLANTS: SECOND R AND D REPORT

    EPA Science Inventory

    Flue gas cleaning waste treatment, utilization, and disposal, as well as water reuse technology for coal-fired utility power plants are discussed. Significant areas treated include: coal-pile drainage; ash characterization and disposal; chemical and physical properties and leachi...

  8. FULL-SCALE FIELD EVALUATION OF WASTE DISPOSAL FROM COAL-FIRED ELECTRIC GENERATING PLANTS. VOLUME 5. APPENDIX F

    EPA Science Inventory

    The six-volume report summarizes results of a 3-year study of current coal ash and flue gas desulfurization (FGD) waste disposal practices at coal-fired electric generating plants. The study involved characterization of wastes, environmental data gathering, evaluation of environm...

  9. Effect of Co-Firing Torrefied Woody Biomass with Coal in a 30 kWt Downfired Burner 

    E-print Network

    Thanapal, Siva S

    2014-04-25

    ) were pyrolyzed using TGA under N_(2). The TB fuels were also fired with coal in a 30 kWt downfired burner to study the NOx emission. In addition, tests were also done using raw biomass (RB) (mesquite and juniper) blended with coal and compared...

  10. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    Garcķa Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solķs-Guzmįn, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire. PMID:21511456

  11. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  12. Airbag Seams Leave Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  13. Local deposition of mercury in topsoils around coal-fired power plants: is it always true?

    PubMed

    Rodriguez Martin, José Antonio; Nanos, Nikos; Grigoratos, Theodoros; Carbonell, Gregoria; Samara, Constantini

    2014-09-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani-Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km(2). We were surprised to find a low Hg content in soil (range 1-59 ?g kg(-1)) and 50 % of samples with a concentration lower than 6 ?g kg(-1). The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5-24.5 ?g kg(-1)) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani-Ptolemais basin is present in low concentrations. PMID:24756681

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  15. Retrofit of a coal-fired open-cycle liquid-metal MHD to steam power plants

    SciTech Connect

    Pierson, E.S.; Herman, H.; Petrick, M.; Grammel, S.J.; Dubey, G.

    1981-01-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the net plant efficiency and the cost benefit relative to other options. 7 refs.

  16. 76 FR 23768 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil...- Institutional Steam Generating Units AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric...

  17. Pilot-scale development of a low-NOx coal-fired tangential system

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Brown, R. A.; Chu, E. K.; Wightman, J. B.; Pam, R. L.; Swenson, E. L.; Merrick, E. B.; Busch, C. F.

    1981-08-01

    A 293 kWt (1 million Btu/hr) pilot scale facility is used to develop a low NOx pulverized coal fired tangential system. A burner concept is developed which achieves low NOx by directing the fuel and a fraction of the secondary combustion air into the center of the furnace, with the remaining secondary combustion air directed horizontally and parallel to the furnance walls. Such separation of secondary combustion air creates a fuel rich zone in the center of the furnace where NOx production is minimized. This combustion modification technique lowers NOx 64%, relative to conventional tangential firing, by injecting 85% of the secondary air along the furnace walls. Under these conditions, NO emissions are 180 ppm corrected to 0% 02. Also at these conditions, CO, UHC, and unburned carbon emissions are less than 40 ppm, 3 ppm, and 2.4%, respectively, comparable to conventional tangentially fired pilot scale results.

  18. Application of hybrid coal reburning/SNCR processes for NOx reduction in a coal-fired boiler

    SciTech Connect

    Yang, W.J.; Zhou, Z.J.; Zhou, J.H.; Hongkun, L.V.; Liu, J.Z.; Cen, K.F.

    2009-07-01

    Boilers in Beijing Thermal Power Plant of Zhongdian Guohua Co. in China are coal-fired with natural circulation and tangential fired method, and the economical continuous rate is 410 ton per hour of steam. Hybrid coal reburning/SNCR technology was applied and it successfully reduced NOx to about 170 mg/Nm{sup 3} from about 540 mg/Nm{sup 3}, meanwhile ammonia slip was lower than 10 ppm at 450-210 t/h load and the total reduction efficiency was about 70%. Normal fineness pulverized coal from the bin was chosen as the reburning fuel and the nozzles of the upper primary air were retrofitted to be used as the reburning fuel nozzles. The reducing agent of SNCR was an urea solution, and it was injected by the four layer injectors after online dilution. At 410 t/h load, NOx emission was about 300 mg/Nm{sup 3} when the ratio of reburning fuel to the total fuel was 25.9%-33.4%. Controlling the oxygen content of the gas in the reversal chamber to less than 3.4% resulted in not only low NOx emission but also high combustion efficiency. Ammonia slip distribution in the down gas pass was uneven and ammonia slip was higher in the front of the down gas pass than in the rear of the down gas pass. NSR and NOx reduction were proportional to each other and usually resulted in more ammonia slip with reduction in NOx. About 100 mg/Nm{sup 3} NOx emission could be achieved with about 40 ppm NH{sub 3} slip at 300-450 t/h, and ammonia slip from the SNCR reactions could be used as reducing agent of SCR, which was favorable for the future SCR retrofit.

  19. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    PubMed

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions. PMID:26545153

  20. Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia

    PubMed Central

    Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J.

    2014-01-01

    Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

  1. LOW NOX FIRING SYSTEM FOR TANGENTIALLY COAL-FIRED BOILERS: APPLICATIONS GUIDELINE MANUAL

    EPA Science Inventory

    The manual is a concise user's guide of Combustion Engineering's Low NOx Concentric Firing System. It is based on extensive pilot scale and small and large utility-scale demonstrations, in particular a program completed in May 1984, at Utah Power and Light Company's 400-MWe Hunte...

  2. Radionuclide emissions from a coal-fired power plant.

    PubMed

    Amin, Y M; Khandaker, Mayeen Uddin; Shyen, A K S; Mahat, R H; Nor, R M; Bradley, D A

    2013-10-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of (226)Ra, (232)Th and (40)K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Raeq) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 ?Sv and 220 ?Sv, respectively. PMID:23891979

  3. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    NASA Astrophysics Data System (ADS)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  4. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  5. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  6. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    SciTech Connect

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F.

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  7. A steam-water distribution matrix equation of the whole thermal system for coal-fired power plant and its general construction regulations

    SciTech Connect

    Zhang Chunfa; Yan Shunlin; Fan Hansong; Cao Xianchang; Wu Chunsheng

    1999-07-01

    In this paper the authors provide a steam-water distribution equation of the whole thermal system for coal-fired power plant and its general construction regulations. The use of the equation may simplify traditional thermal calculation of coal-fired power plant. And the equation's analytic character provides a strict base of theory and a new method for energy conservation of coal-fired power plant and especially for the research of local ration analysis for thermal system's energy conservation potential.

  8. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements. PMID:26006077

  9. Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries

    E-print Network

    Subramanian, Venkat

    Topics · Coal and Gas Industries in Australia a. Overview of Australian coal and gas industries b. Resources, market, and utilization of coal and gas c. Coal seam gas industry in Queensland d. Carbon capture

  10. Western Cretaceous Coal Seam Project. Evaluation of the cooperative research well, Colorado 32-7 Number 9. Operated by Mobil Oil Corporation. Topical report, January 1988-December 1989

    SciTech Connect

    Mayor, M.J.; Close, J.C.

    1989-12-01

    Cooperative well research efforts to investigate coalbed methane reservoir characteristics and post-stimulation deliverability is documented. The Colorado 32-7 No. 9 well was drilled in Section 4 of Township 32 North, Range 7 West of LaPlata County Colorado. The report documents the results of geologic, core, wireline log, well test, and stimulation diagnostic analyses. Coal content, gas content, permeability, thickness, pressure, and fracture geometry estimates are presented.

  11. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2004-03-01

    The injection of sorbents upstream of a particulate control device is one of the most promising methods for controlling mercury emissions from coal-fired utility boilers with electrostatic precipitators and fabric filters. Studies carried out at the bench-, pilot-, and full-scale have shown that a wide variety of factors may influence sorbent mercury removal effectiveness. These factors include mercury species, flue gas composition, process conditions, existing pollution control equipment design, and sorbent characteristics. The objective of the program is to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. Prior to injection testing, a number of sorbents were tested in a slipstream fixed-bed device both in the laboratory and at two field sites. Based upon the performance of the sorbents in a fixed-bed device and the estimated cost of mercury control using each sorbent, seventeen sorbents were chosen for screening in a slipstream injection system at a site burning a Western bituminous coal/petcoke blend, five were chosen for screening at a site burning a subbituminous Powder River Basin (PRB) coal, and nineteen sorbents were evaluated at a third site burning a PRB coal. Sorbents evaluated during the program were of various materials, including: activated carbons, treated carbons, other non-activated carbons, and non-carbon material. The economics and performance of the novel sorbents evaluated demonstrate that there are alternatives to the commercial standard. Smaller enterprises may have the opportunity to provide lower price mercury sorbents to power generation customers under the right set of circumstances.

  12. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  13. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.

  14. Baseline industrial-hygiene survey at the Fairchild AFB, Washington coal-fired heating plant. Final report

    SciTech Connect

    Liebhaber, F.B.

    1988-10-01

    This report documents the occupational health conditions and exposure at the Fairchild AFB, WA coal-fired heating plant. The plant contained many traditional industrial-hygiene concerns that were expected and adequately addressed by the base industrial program: Noise, asbestos, welding, lighting, etc. The survey concentrated on the industrial-hygiene problems unique to burning coal. Delivering, transporting, pulverizing, and burning of coal were not problem areas. Coal handling in the coal yard could overexpose the front-end loader operator to coal dust. Ash handling throughout the plant caused problems due to the extremely fine ash that is the end product of burned pulverized coal. Engineering controls and respiratory protection were recommended.

  15. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Drury, K.; Makris; Stubblefield, D.J.

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  16. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  17. Update of operating experience of B and W IR-CFB coal-fired boilers

    SciTech Connect

    Belin, F.; Kavidass, S.; Maryamchik, M.; Walker, D.J.; Mandal, A.K.; Price, C.E.

    1999-07-01

    This paper updates the operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois, USA, and is designed for 35 MW{sub th} output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries in Renukoot, India, and is designed for 81 MW{sub th} output for captive power requirement, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W Ltd., a joint venture company of B and W and Thermax of India. The choice of CFB technology was based on its fuel flexibility, cost effectiveness and environmental benefits for solid fuels. Based on the broad experience in designing utility and industrial boilers for operation worldwide, B and W has developed a cost effective and compact atmospheric pressure IR-CFB boiler. The B and W IR-CFB boiler design is distinctive in its use of U-beam particle separators. Worldwide, B and W offers IF-CFB boilers up to 175 MW{sub th}, both reheat and non-reheat, and is pursuing units up to 350 MW{sub th}. This paper reviews the general description of each IR-CFB boiler, design and performance aspects, as well as overall operating experiences. The boiler availabilities including maintenance aspects and emissions data will be presented.

  18. Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980

    SciTech Connect

    West, C E; Stewart, D L

    1980-08-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

  19. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    SciTech Connect

    Not Available

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  20. Life assessment and emissions monitoring of Indian coal-fired power plants

    SciTech Connect

    Not Available

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  1. Neural network predictions of slagging and fouling in pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.; Smouse, S.; Chi, R.

    1996-12-31

    Feed-forward back-propagation neural networks were trained to relate the occurrence and characteristics of troublesome slagging and fouling deposits in utility boilers to coal properties, boiler design features, and boiler operating conditions. The data used in this effort were from a survey of utility boilers conducted by Battelle Columbus Laboratories in an Electric Power Research Institute project. Two networks were developed in this study, one for slagging and one for fouling, to predict ash deposition in various types of boilers (wall-, opposed wall-, tangentially, and cyclone-fired) that fire bituminous and sub-bituminous coals. Both networks predicted the frequency of deposition problems, physical nature (or state) of the deposit, and the thickness of the deposit. Since deposit characteristics vary with boiler location and operating conditions, the worst documented cases of ash deposition were used to train the neural networks. Comparison of actual and predicted deposition showed very good agreement in general. The relative importance of some of the input variables on the predicted deposit characteristics were assessed in a sensitivity analysis. Also, the slagging and fouling characteristics of a blend of two coals with significant different deposition characteristics were predicted to demonstrate a practical application of developed neural networks.

  2. The fate and behavior of mercury in coal-fired power plants.

    PubMed

    Meij, Ruud; Vredenbregt, Leo H J; te Winkel, Henk

    2002-08-01

    For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%. PMID:12184689

  3. Improvement of cyclic operation on pulverized coal fired boilers by applying wide range burners

    SciTech Connect

    Yamada, Toshihiko; Watanabe, Shinji; Kiga, Takashi; Koyata, Kazuo

    1999-07-01

    There are recently urgent requirements to operate pulverized coal fired power plants as well as oil fired units cyclically or at low loads. In order to cope with this, wide range burners (WRB) were jointly developed to obtain a high turndown operation by the Central Research Institute of Electric Power Industry (CRIEPI) and Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). In accordance with the results of various fundamental researches, including combustion tests with a tunnel furnace of 12 MW[thermal], it was confirmed the stability of the flame and the combustion characteristics at low loads as well as that of ordinary burners. The WRB have been applied to the new actual boilers that are Saijo Power Station NO. 2 unit of Sikoku Electric Power Co., Inc., Nanao-Ota Power Station NO. 2 unit of Hokuriku Electric Power Co., Inc. and Miike Power Station NO. 1 unit of Miike Thermal Power Co., Ltd.. The results of the trial operation have shown that the minimum burner load was below half of that of conventional burners, and accordingly the pulverized coal firing minimum load could be reduced. This paper explains about the cyclic operation of their boilers and the improvement effect by applying WRBs.

  4. Potentials of Biomass Co-Combustion in Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Werther, J.

    The present work provides a survey on the potentials of co-combustion of biomass and biogenic wastes in large-scale coal-fired power plants. This allows an energetic utilization at a high level of efficiency which is not obtainable in small-scale dedicated biomass combustors. Co-firing at low percentages of the thermal power (typically below 5-10 %) avoids the characteristic operating problems of biomass combustion, i.e. ash sintering and fouling of heat transfer surfaces. Co-firing of biogenic wastes is already widely practiced in Germany, non-waste biomass like forest residues are for subsidy reasons combusted in small dedicated mono-combustion plants. A future increase of co-combustion may be associated with the upgrading of biogenic wastes with high water content to biofuels by drying. Such biofuels could substitute more expensive coal and save on CO2 emission certificates. In the more distant future biomass co-combustion may help in the CO2 scrubbing process by lowering the target level of CO2 absorption efficiency.

  5. Total integrated NOx compliance for existing pulverized coal-fired units

    SciTech Connect

    Camody, G.; Lewis, R.; Cohen, M.B.; Buschmann, J.; Hilton, R.; Larsson, A.C.; Tobiasz, R.

    1999-07-01

    The EPA Title 1 NOx emission limits along with the corresponding OTR regulations are mandating coal-fired NOx emission levels below 0.15 lb/MBtu. For tangentially fired units, experience has shown that the technology is currently available to achieve these limits. The question for each unit owner-operator becomes; what is the most economical technology or combination of technologies to achieve the required results? This paper provides a brief overview of Combustion Engineering, Inc.'s (ABB C-E) latest NOx control technologies, both in-furnace and post-combustion, for tangential coal-fired steam generators. The paper further reviews options of both stand-alone and combined multiple technologies to achieve the most cost-effective NOx compliance, while maintaining the high levels of unit efficiency and performance that is required to by successful in their deregulated power industry. Current operational data of both in-furnace and SCR NOx reduction systems are presented, as well as the latest historical cost data for the systems.

  6. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  7. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  8. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect

    Adams, Bradley R; Fry, Andrew R; Senior, Constance L; Shim, Hong Shig; Otten, Brydger Van; Wendt, Jost; Shaddix, Christopher; Tree, Dale

    2010-06-30

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget. Burner Parametric Testing was completed on the University of Utah pilot-scale furnace using the 3.5 MBtu/hr oxy-research burner developed by REI and Siemens Energy. The burner was operated at staged and unstaged conditions under air- and oxy-firing. Video was used to study flame stability. Furnace gas temperature, soot, NOx, radiative heat flux and mercury speciation were measured. Results showed: Ć?Ā¢Ć?Ā?Ć?Ā¢ Matching either the burner primary gas/fuel mass ratio or momentum were the best retrofit options to produce a stable flame. Matching primary velocity under oxy-fired conditions resulted in a detached flame and is likely not a good retrofit strategy. Ć?Ā¢Ć?Ā?Ć?Ā¢ Oxygen injection could be used to stabilize flames when introduced in the boundary layer between the burner primary and secondary. Ć?Ā¢Ć?Ā?Ć?Ā¢ Oxygen injection was not effective when introduced within, or penetrating, the primary. A stable flame could be produced with no O2 enrichment of the primary (3% O2 in the FGR stream). Ć?Ā¢Ć?Ā?Ć?Ā¢ Air infiltration into the furnace under oxy-firing conditions occurred primarily through the primary and secondary air/FGR blowers. This leakage could be controlled tightly by balancing the blower at atmospheric pressure, which was possible when primary gas conditions were constant, resulting in dry CO2 concentrations as high as 94.5%. For the majority of tests the CO2 concentration was between 85% and 90%. Oxy-coal Corrosion Testing was conducted on the University of Utah pilot-scale furnace utilizing electrochemical noise corrosion sensing technology. One waterwall probe employed SA210 low-carbon steel sensor elements and three superheater probes employed T22, P91 and 347H materials, respectively. Baseline conditions were used to determine the difference in corrosion rate between air and oxy-fired conditions while firing three coals - PRB, Utah (Skyline) and Illinois. Test results showed: Ć?Ā¢Ć?Ā?Ć?Ā¢ The three coals produced flue gas SO2 concentrations in the range of 128 to 3,219 ppmv (dry) for airfired conditions and 289 to 17,624 ppmv (dry) for oxy-fired conditions. Removal of gas-phase SO2 occurred and was likely due to capture on coal mineral matter. The capture rate was shown to have linear dependence on the calcium concentration in the ash. Ć?Ā¢Ć?Ā?Ć?Ā¢ Waterwall corrosion rates decreased when converting from air to oxy-firing for all coals. Superheater corrosion rates increased when converting from air- to oxy-firing for all conditions with the exception of the T22 material when firing Illinois coal. Ć?Ā¢Ć?Ā?Ć?Ā¢ Corrosion rates for the lower alloyed materials (SA210, T22) were shown to increase greatly during transients from reducing to oxidizing conditions when air-firing and from oxidizing to reducing conditions when oxy-firing. Such transients will likely contribute to in-plant corrosion rates in nearburner and near-OFA port regions. Such transient effects cannot be identified using coupon tests. Ć?Ā¢Ć?Ā?Ć?Ā¢ The presence of trisulphates strongly increased the corrosion rate of the 347H material under high sulfur and low temperature conditions. It was demonstrated that these species are decomposed by operating at higher material temperatures, reducing the subsequent corrosion rat

  9. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  10. The leaching behavior of cadmium, arsenic, zinc, and chlorine in coal and its ash from coal-fired power plant

    SciTech Connect

    Zhao, F.H.; Peng, S.P.; Zheng, B.S.; Tang, Y.G.; Cong, Z.Y.; Ren, D.Y.

    2006-01-15

    The leaching experiment of feed coal (c) and its laboratory high-temperature ash (HA), fly ash (FA), and bottom ash (BA) from a Chinese coal-fired power plant were carried out using column leaching under different pH conditions (pH = 2.0, 4.0, 6.0, and 7.5, respectively) and different leaching durations (up to 80 h). The leaching behaviors of As, Cd, Zn, and Cl were investigated. The results showed that the elements occurring in water-soluble, ion-exchangeable, and Fe-Mn oxide phases are potentially leachable, whereas those in association with organic matter and silicate are less likely to be leached. The cumulative percent of Zn, As, Cl, and Cd leached from C and ash samples increase with decrease in pH. The leaching rate of As and Cl in C and ash samples are higher in comparison with Zn and Cd. However, the maximum concentrations of Cd in the leachate from C, HA, FA, and BA are in excess of or very close to the maximum standard concentrations permitted in the Chinese Standards for Drinking Water and Surface Water. The ultimate concentrations of As, Cd, and Cl in the leachates did not attain equilibrium after the leaching of 80 h; therefore, longer leaching experiments are necessary to evaluate the impact of these hazardous trace elements on aqueous environment.

  11. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 ?g/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 ?g/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  12. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 ?g/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 ?g/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  13. Industrial wastewater treatment with water reuse at a coal-fired generating station

    SciTech Connect

    Wagner, J.F.; Kertell, C.R.; Strittmatter, T.E.

    1984-08-01

    This is a case history of an industrial wastewater treatment system at a 200 MW coal-fired generating station built in the early 1920's. Wastewater treatment facilities were constructed in 1979 to treat low volume wastes, coal pile runoff, and ash handling wastes to comply with existing and proposed regulatory requirements. A new ash handling system was constructed simultaneously and included fly ash handling, bottom ash dewatering binds, and bottom ash recycling from the waste treatment system effluent. Collecting and combining various wastewater streams and clarifier sludge handling are discussed. The treatment systems include neutralization with lime slurry, polymer addition, and clarification. The treatment system has been operating in compliance with regulatory criteria since September 1980. 4 figures, 4 tables.

  14. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.

  15. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  16. Wasteless combined aggregate-coal-fired steam-generator/melting-converter.

    PubMed

    Pioro, L S; Pioro, I L

    2003-01-01

    A method of reprocessing coal sludge and ash into granulate for the building industry in a combined wasteless aggregate-steam-generator/melting-converter was developed and tested. The method involves melting sludge and ash from coal-fired steam-generators of power plants in a melting-converter installed under the steam-generator, with direct sludge drain from the steam generator combustion chamber. The direct drain of sludge into converter allows burnup of coal with high ash levels in the steam-generator without an additional source of ignition (natural gas, heating oil, etc.). Specific to the melting process is the use of a gas-air mixture with direct combustion inside a melt. This feature provides melt bubbling and helps to achieve maximum heat transfer from combustion products to the melt, to improve mixing, to increase rate of chemical reactions and to improve the conditions for burning the carbon residue from the sludge and ash. The "gross" thermal efficiency of the combined aggregate is about 93% and the converter capacity is about 18 t of melt in 100 min. The experimental data for different aspects of the proposed method are presented. The effective ash/charging materials feeding system is also discussed. The reprocessed coal ash and sludge in the form of granules can be used as fillers for concrete and as additives in the production of cement, bricks and other building materials. PMID:12781221

  17. Conceptual design and economics of coal and gas co-fired PFBC plants

    SciTech Connect

    Horazak, D.A.; White, J.S.; Harbaugh, L.

    1994-06-01

    Advanced 2nd-Generation pressurized fluidized bed (PFBC) cycles are viewed as having increased technological risk related to the pressurized carbonizer systems regardless of their favorable economics and performance. The 1.5-Generation PFBC cycle combines the performance advantages of the 2nd-Generation PFBC plant with the reduced risk of a natural-gas-fired gas turbine. This paper describes the technical and economic evaluation of 246-MW and 111-MW 1.5-Generation PFBC cycles for utility or industrial power generation. Economic evaluation includes sensitivity studies to determine the effects of operating variables and fuel prices on capital cost and COE. The thermal efficiency, capital cost, and cost of electricity of 1.5-Generation PFBC plants are better than pulverized coal plants, and in between 1st- and 2nd-Generation PFBC plants. Plant capacity turndown is expected to range from full-load (design flows of natural gas and coal) down to 38-percent load (zero natural gas and 50-percent coal flow). The plant can be reduced to 76-percent load by reducing natural gas flow without disturbing the coal feed to the rest of the plant, and other cost-effective variations are also possible. The 1.5-Generation PFBC plant is the logical repowering alternative to 1st-Generation PFBC, and provides a reasonable bridge to later conversion to a 2nd-Generation PFBC, thus advancing the adoption of 2nd-Generation PFBCs in the future.

  18. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  19. Effect of deposits on corrosion of materials exposed in the Coal-Fired Flow Facility

    SciTech Connect

    Natesan, K.

    1993-05-01

    Candidate heat exchanger materials tested in the Low Mass Flow train at the Coal-Fired Flow Facility (CFFF) at Tullahoma, TN. were analyzed to evaluate their corrosion performance. Tube specimens obtained at each foot of the 14-ft-long Unbend tubes were analyzed for corrosion-scale morphologies, scale thicknesses, and internal penetration depths. Results developed on 1500- and 2000- h exposed specimens were correlated with exposure temperature. In addition, deposit materials collected at several locations in the CFFF were analyzed in detail to characterize the chemical and physical properties of the deposits and their influence on corrosion performance of tube materials.

  20. Insight into flame blowing out due to slags falling in the pulverized-coal fired boilers

    SciTech Connect

    Yan, W.; Gao, B.

    1999-07-01

    Sudden flame loss caused by an unpredicted fall of large volume slags occurred frequently during normal operation of some utility boilers firing high ash and high volatile coals. It automatically triggered the flame monitoring system and consequently resulted to off load of the unit. The authors propose a model based on possible explosion of combustible gases in the lower part of the boiler furnace, after some other potential factors are excluded. According to this hypothesis and the relevant operating data collected the reason for flame loss is analyzed, the corresponding counter-measures are also suggested.

  1. Effects of a clean coal-fired power generating station on four common Wisconsin lichen species

    SciTech Connect

    Will-Wolf, S.

    1980-01-01

    Algal plasmolysis percentages and other morphological characteristics of Parmelia bolliana Muell. Arg., P. caperata (L.) Ach., P. rudecta Ach., and Physcia millegrana Degel. were compared for specimens growing near to and far from a rural coal-fired generating station in south central Wisconsin. SO/sup 2/ levels were 389 ..mu..g/m/sup 3/, maximum 1 hr level, and 5-9 ..mu..g/m/sup 3/, annual averages. Parmelia bolliana and P. caperata showed evidence of morphological alterations near the station; P. rudecta and Physcia millegrana did not.

  2. CO sub 2 emissions from coal-fired and solar electric power plants

    SciTech Connect

    Keith, F.; Norton, P.; Brown, D.

    1990-05-01

    This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

  3. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  4. ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: ISSUES IN ATMOSPHERIC PROCESSES.

    SciTech Connect

    LIPFERT, F.; SULLIVAN, T.; RENNINGER, S.

    2004-03-28

    The rationale for regulating air emissions of mercury from U.S. coal-fired power plants largely depends on mathematical dispersion modeling, including the atmospheric chemistry processes that affect the partitioning of Hg emissions into elemental (Hg{sub 0}) and the reactive (RGM) forms that may deposit more rapidly near sources. This paper considers and evaluates the empirical support for this paradigm. We consider the extant experimental data at three spatial scales: local (< 30 km), regional (< {approx}300 km), and national (multi-state data). An additional issue involves the finding of excess Hg levels in urban areas.

  5. The Net Climate Impact of Coal-Fired Power Plant Emissions

    NASA Technical Reports Server (NTRS)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.

  6. Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers

    SciTech Connect

    2005-09-01

    Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

  7. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    PubMed

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. PMID:26141885

  8. CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994

    SciTech Connect

    BUTCHER,T.A.

    1994-01-04

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  9. Engineering development of advanced coal-fired low emission boiler systems

    SciTech Connect

    Not Available

    1993-10-01

    Riley Stoker Corporation is leading an R&D program for the expedited development of a new generation of pulverized coal-fired boiler systems. The overall objective is to develop relatively near term technologies to produce Low-Emission coal-fired Boiler Systems (LEBS) ready for full scale commercial generating plants by the end of the decade. The specific goal is to develop a LEBS incorporating an advanced slagging system for improved ash management in addition to meeting the emission and performance goals. This Concept Selection Report documents an evaluation of subsystems and LEBS concepts. Priority was given to the evaluation of the boiler system, steam cycle, and advanced slagging combustor. Some findings are as follows: An ultra supercritical steam cycle is required to meet project efficiency goals. The cost of electricity (COE) for this cycle, at today`s fuel prices, and without externality costs, is slightly higher than a conventional subcritical cycle. The supercritical cycle includes a substantial contingency. Reduction of contingency, escalation of fuel cost, or inclusion of externalities all lead to a lower COE for the supercritical cycle compared to the subcritical cycle. The advanced cycle is selected for inclusion in the LEBS. The advanced slagging combustor (TVC), should it meet the projected performance goals, yields a lower COE than either a dry firing system or a more conventional slagger fitted with post combustion NO{sub x} controls. Verification and development of the advanced slagger performance is the primary focus of this project. A commercial slagging configuration know as U-firing is selected for parallel development and as a platform for adaptation to the TVC.

  10. Fires in Operating or Abandoned Coal Mines or Heaps of Reactive Materials and the Governing Transport and Reaction Processes

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.

    2007-05-01

    Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M. W. Numerical element distinction for reactive transport modeling regarding reaction rate. In Proceedings of MODFLOW and MORE 2006: Managing Groundwater Systems, May 21 - 24, 2006, Golden, CO USA (2006). Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coal fires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007). Wessling, S., Litschke, T., Wiegand, J., Schlömer, S., and Kessels, W. Simulating dynamic subsurface coal fires and its applications. In ERSEC Ecological Book Series - 4 on Coal Fire Reserach (2007). Wessling, S., Kessels, W., Schmidt, M., and Krause, U. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. Int. (submitted).

  11. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  12. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    SciTech Connect

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  13. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    SciTech Connect

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.

  14. Analysis and discussion on formation and control of primary particulate matter generated from coal-fired power plants.

    PubMed

    Lu, Jianyi; Ren, Xudan

    2014-12-01

    Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants. Implications: The analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and high-performances PECDs, especially novel devices, should be used for removing fine PM in flue gas. PMID:25562930

  15. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  16. Prediction of the minimum load of operation and minimum coal quality with stable combustion for utility pulverized-coal-fired boilers

    SciTech Connect

    Zhou, H.C.; Li, J.; Liu, Z.H.; Zheng, C.G.

    1999-07-01

    MLO, the Minimum Load of Operation with stable combustion not supported by firing oil, and MCQ, the Minimum Coal Quality, which gives the lowest heat values of coals with different volatile matter contents, are defined on the basis of CSI, a combustion stability index. In order to predict MLO and MCQ, the simple, chemical reaction system model has been modified by means of the concept of lean flammability of gases. A three-dimensional combustion simulation code integrated with the modified model was used to study the combustion process in a 200MW pulverized coal fired utility boiler. The results showed that as the content of volatile matter increases, the value of CSI under different load levels increases accordingly, and the MLO becomes lower. The prediction of MCQ agreed also well with operational experiences. Much work should be done before the method proposed in this paper can be applied into practice.

  17. Innovative technologies for full utilization of ash generated at coal-fired thermal power stations for producing alumina and construction materials

    NASA Astrophysics Data System (ADS)

    Delitsyn, L. M.; Vlasov, A. S.; Borodina, T. I.; Ezhova, N. N.; Sudareva, S. V.

    2013-04-01

    The possibility of full 100% usage of ash from coal-fired thermal power stations for producing raw materials for the cement and alumina industries is considered, and it is shown that comprehensive processing of ash from coal-fired thermal power stations is required for this purpose.

  18. REVIEW OF NEW SOURCE PERFORMANCE STANDARDS FOR COAL-FIRED UTILITY BOILERS. VOLUME I. EMISSIONS AND NON-AIR QUALITY ENVIRONMENTAL IMPACTS

    EPA Science Inventory

    This two volume report summarizes a study of the projected effects of several different revisions to the current New Source Performance Standard (NSPS) for sulfur dioxide (SO2) emissions from coal-fired utility power boilers. The revision is assumed to apply to all coal-fired uni...

  19. REVIEW OF NEW SOURCE PERFORMANCE STANDARDS FOR COAL-FIRED UTILITY BOILERS, PHASE THREE REPORT, SENSITIVITY STUDIES FOR THE SELECTION OF A REVISED STANDARD

    EPA Science Inventory

    This report summarizes a study of the projected effects of several potential revisions to the current New Source Performance Standards (NSPS) for sulfur dioxide (SO2) emissions from coal-fired electric utility boilers. The revised NSPS (RNSPS) is assumed to apply to all coal-fire...

  20. Modeling of ash deposition in the convective pass of a coal-fired boiler

    SciTech Connect

    Allan, S.E.; Erickson, T.A.; McCollor, D.P.

    1996-12-31

    The Energy and Environmental Research Center (EERC) has developed a personal computer (PC)-based model, FOULER, to predict convective pass fouling deposit formation in coal-fired boilers. This program is used to evaluate the effects of coal quality and operational changes on both high- and low-temperature fouling. In addition, the effects of coal cleaning, blending, and switching options can be evaluated. FOULER will be incorporated in the Coal Quality Expert (CQE) software project. CQE is a comprehensive, PC-based program that can be used to evaluate various potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The model is based on theory and a combination of laboratory-, pilot-, and field-scale test data. The code encompasses the hanging pendant, superheater, reheater, and economizer regions of the convective pass. The code predicts growth and removal of ash deposition through the interaction of several submodels: (1) Deposit Growth, (2) Deposit Strength Development, (3) Thermal Properties, (4) Deposit Removal, and (5) Sootblower Effectiveness. The deposit removal mechanisms included are thermal shock, gravity shedding, and sootblowing. The required inputs for the code include ash size and composition, boiler parameters, and operation conditions. Input parameters can be entered into the code directly or they can be predicted by other codes such as MMT (mineral matter transformation code) and CQE heat-transfer module. The submodels interact to produce outputs, based on a time basis, of the deposit mass, strength, resistivity, and removal rates. This report describes the fouling submodels, the rationale used in these submodels, and a description of how the experimental data were utilized to validate the algorithms.

  1. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    SciTech Connect

    Stoddard, L.E.; Bary, M.R.; Gray, K.M.; LaHaye, P.G.

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  2. Best practices in environmental monitoring for coal-fired power plants: lessons for developing Asian APEC economies

    SciTech Connect

    Holt, N.; Findsen, J.

    2008-11-15

    The report assesses environmental monitoring and reporting by individual coal-fired power plants, makes recommendations regarding how monitoring should be applied, and evaluates the interrelationship of monitoring and regulation in promoting CCTs. Effective monitoring is needed to ensure that power plants are performing as expected, and to confirm that they are complying with applicable environmental regulations. Older coal-fired power plants in APEC economies often have limited monitoring capabilities, making their environmental performance difficult to measure. 585 refs., 5 figs., 85 tabs.

  3. Lessons learned in upgrading and refurbishing older coal-fired power plants - a best practices guide for developing APEC economies

    SciTech Connect

    Lusica, N.; Xie, T.; Lu, Y.

    2008-10-15

    The report reviews upgrading and refurbishment projects recently implemented by coal-fired power plants in developing APEC economies, and includes a Best Practice Guide for 15 classes of upgrade and refurbishment items to aid in decision making. There is an urgent need to optimize the performance of older coal-fired power plants in the Asia Pacific region. Refurbished power plants are more efficient and emit less CO{sub 2}. Plants can also be upgraded with new pollution control equipment to emit less CO{sub 2}, SO{sub 2} NOx, particulates and other emissions, including mercury. 20 figs., 6 tabs., 4 apps.

  4. Results from the Department of Energy`s assessment of air toxic emissions from coal-fired power plants

    SciTech Connect

    Schmidt, C.E.; Brown, T.D.

    1994-12-31

    The Department of Energy has developed a program to assess the toxics emissions from coal-fired power plants. The program involved field testing eight coal-fired utility boilers for the hazardous air pollutants contained in Title III of the Clean Air Act Amendments of 1990. Data are presented on the concentrations of specific trace and minor species in all the major input and output streams of the power plants. Emission factors were determined for some of the hazardous air pollutants emanating from the power plant stacks.

  5. The natural gas cofiring/reburning Module{trademark} for pulverized coal fired plant evaluations and planning

    SciTech Connect

    Pratapas, J.; Pace, S.E.; Dhall, S.; Stenzel, W.C.

    1995-12-31

    The power industry faces many challenges based on increased competition and stringent environmental regulations. Fuel switching options involving coal and natural gas offers economic and environmental benefits when used individually or together. Proper evaluation of the cost impacts involves consideration of the following: seasonal and inflationary effects on fuel prices (coal and gas), alternative gas firing technologies and plant operating philosophy. This paper describes the development of a State of the Art Power Plant (SOAPP) software Module for evaluating gas fired technology options on coal fired units using a personal computer. The Module provides technological process information, computes boiler and plant performance, develops capital and O and M cost estimates and provides overall economics on the various types of coal and natural gas firing technologies. The inputs to the Module include the turbine, boiler, emission control and major balance of plant equipment. Default values are provided for all inputs. The results, displayed in terms of load, coal-to-gas ratios and time duration are sufficiently detailed for conceptual design, performance and overall economic evaluations. Gas Research Institute (GRI) has sponsored the Module development Electric Power Research Institute (EPRI) provided support for the project and Sargent and Lundy is the developer of the Module.

  6. Coal-fired high performance power generating system. Quarterly progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report covers work carried out under Task 2, Concept Definition and Analysis, Task 3, Preliminary R&D and Task 4, Commercial Generating Plant Design, under Contract AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le}25% NSPS; cost {ge}65% of heat input; all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. A survey of currently available high temperature alloys has been completed and some of their high temperature properties are shown for comparison. Several of the most promising candidates will be selected for testing to determine corrosion resistance and high temperature strength. The corrosion resistance testing of candidate refractory coatings is continuing and some of the recent results are presented. This effort will provide important design information that will ultimately establish the operating ranges of the HITAF.

  7. Radiation impact from lignite burning due to 226Ra in Greek coal-fired power plants.

    PubMed

    Papastefanou, C

    1996-02-01

    Lignite contains naturally occurring radionuclides arising from the uranium and thorium series as well as from 40K. Lignite burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides. Emissions from thermal power stations in gaseous and particulate form contain radioisotopes, such as 226Ra, that are discharged into the environment causing radiation exposures to the population. About 11,672 MBq y-1 of 226Ra are discharged into the environment from four coal-fired power plants totalling 3.62 GW electrical energy in the Ptolemais Valley, Northern Greece, in which the combustion of 1.1 x 10(10) kg of lignite is required to produce an electrical energy of 1 GW y. The collective committed equivalent dose to lung tissue per unit power generated resulting from atmospheric releases of 226Ra was estimated to be 1.1 x 10(-2) person Sv (GW y)-1; i.e. more than 15 times higher than the average value for a modern type coal-fired power plant according to the UNSCEAR 1988 data. PMID:8567285

  8. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  9. Engineering development of coal-fired high performance power systems phase 2 and 3

    SciTech Connect

    Unknown

    1999-08-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le}10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; and Task 2.4 Duct Heater and Gas Turbine Integration.

  10. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1998-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard), coal providing {ge} 65% of heat input, all solid wastes benign cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAF Combustor; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  11. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  12. How does particle formation in coal-fired power-plant plumes depend on environmental factors?

    NASA Astrophysics Data System (ADS)

    Pierce, Jeffrey; Stevens, Robin; Brock, Charles

    2010-05-01

    Within the past ten years, global and regional chemical-transport models with online aerosol microphysics have become powerful tools for understanding how humans may be changing aerosols, clouds and climate. However, large uncertainties in processes such as new-particle formation and emissions limit the predictive ability of these models. Related to both of these uncertainties is the question of how to represent sub-grid aerosol processes in large-scale models with grid-box lengths of 10s of km or larger. Sub-grid SO2 oxidation in coal-fired power-plant plumes with condensation of H2SO4 onto newly-formed and existing particles is an important example of these difficult sub-grid aerosol processes. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM)(1), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM), to explore these plumes in detail and develop parameterizations of plume microphysics for global and regional models. We evaluate the model with airborne data obtained in the plumes of various coal-fired power plants (2). Finally, we show how the effective downwind plume aerosol emissions can be greatly modified by both meteorological and background aerosol conditions. (1) Khairoutdinov, M. F., and D.A. Randall,. J. Atmos. Sci., 60, 607-625, 2003. (2) Parrish, D. D., et al., J. Geophys. Res., 11, D00F13, 2009

  13. Engineering development of coal-fired high performance power systems, Phase II and III

    SciTech Connect

    1999-01-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input; all solid wastes benign; cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  14. CO2 post-combustion capture in coal-fired power plants integrated with solar systems

    NASA Astrophysics Data System (ADS)

    Carapellucci, R.; Giordano, L.; Vaccarelli, M.

    2015-11-01

    The majority of the World's primary energy consumption is still based on fossil fuels, representing the largest source of global CO2 emissions. According to the Intergovernmental Panel on Climate Change (IPCC), such emissions must be significantly reduced in order to avoid the dramatic consequences of global warming. A potential way to achieve this ambitious goal is represented by the implementation of CCS (Carbon Capture and Storage) technologies. However, the significant amount of energy required by the CCS systems still represents one the major barriers for their deployment. Focusing on post-combustion capture based on amine absorption, several interesting options have been investigated to compensate the energy losses due to solvent regeneration, also using renewable energy sources. One of the most promising is based on the use of concentrating solar power (CSP), providing a part of the energy requirement of the capture island. In this study the integration of a CSP system into a coal-fired power plant with CO2 postcombustion capture is investigated. Basically, a CSP system is used to support the heat requirement for amine regeneration, by producing saturated steam at low temperature. This allows to reduce or even eliminate the conventional steam extraction from the main power plant, affecting positively net power production and efficiency. The energy analysis of the whole system is carried out using the GateCycle software to simulate the coal-fired power plant and ChemCad platform for the CO2 capture process based on amine absorption.

  15. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  16. Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.

    PubMed

    Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M

    2015-12-15

    Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations. PMID:26554426

  17. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Wang, Siwen; Zhang, Qiang; Martin, Randall V.; Philip, Sajeev; Liu, Fei; Li, Meng; Jiang, Xujia; He, Kebin

    2015-11-01

    To evaluate the real reductions in sulfur dioxide (SO2) emissions from coal-fired power plants in China, Ozone Monitoring Instrument (OMI) remote sensing SO2 columns were used to inversely model the SO2 emission burdens surrounding 26 isolated power plants before and after the effective operation of their flue gas desulfurization (FGD) facilities. An improved two-dimensional Gaussian fitting method was developed to estimate SO2 burdens under complex background conditions, by using the accurate local background columns and the customized fitting domains for each target source. The OMI-derived SO2 burdens before effective FGD operation were correlated well with the bottom-up emission estimates (R = 0.92), showing the reliability of the OMI-derived SO2 burdens as a linear indicator of the associated source strength. OMI observations indicated that the average lag time period between installation and effective operation of FGD facilities at these 26 power plants was around 2 years, and no FGD facilities have actually operated before the year 2008. The OMI estimated average SO2 removal equivalence (56.0%) was substantially lower than the official report (74.6%) for these 26 power plants. Therefore, it has been concluded that the real reductions of SO2 emissions in China associated with the FGD facilities at coal-fired power plants were considerably diminished in the context of the current weak supervision measures.

  18. Methodology Used in the Radiological Assessment of a Coal-Fired Power Plant

    SciTech Connect

    Mora, Juan C.; Robles, Beatriz; Cancio, David; Corbacho, Jose A.; Baeza, Antonio; Suanez, Ana M

    2008-08-07

    A radiological assessment of the workers and the public potentially affected by the operation of the Teruel Coal-fired Power Plant (the UPT Teruel), was performed under realistic assumptions. This assessment is part of a wider study to characterize the potential radiological impact of Naturally Occurring Radioactive Materials (NORM), in which our team, integrated by University of Extremadura and CIEMAT, is carrying out the study on coal-fired power plants sponsored by the Spanish Nuclear Safety Council (CSN). The study comprises the four biggest coal-fired power plants in Spain. Taking into account the working conditions and the plant specifications, six groups of workers were defined, established considering the 17 working tasks that could be of any importance for this assessment. For the public, considering that the area is barely inhabited, two different recreational scenarios were defined. Therefore, in-plant and outside measurements, needed for the assessment of each scenario, were carried out. Where experimental data were not available or measurements ranged within the natural background radiation values, modelling has been used. Every measured or estimated activity concentration in coal and other used materials or in the by-products generated in the power plant, for every radionuclide in the natural chains of {sup 238}U, {sup 232}Th and {sup 40}K, were below 0.32 Bq g{sup -1}. Those values are under the 0.5 Bq g{sup -1} reference value for exemption and clearance of {sup 238}U, {sup 232}Th and {sup 226}Ra and the 5 Bq g{sup -1} for {sup 40}K recommended in Europe. In the dose evaluations for six groups of workers, a maximum of 21 {mu}Sv a{sup -1} was obtained (mainly due to the inhalation of resuspended particles). For both considered scenarios for the public, all the evaluated doses were below 4.3 {mu}Sv a{sup -1}. These results are considered negligible from a radiological point of view. In this work the models and assumptions used for the evaluation of workers and public doses, the assessment, as well as the most relevant experimental results and conclusions are presented.

  19. Methodology Used in the Radiological Assessment of a Coal-Fired Power Plant

    NASA Astrophysics Data System (ADS)

    Mora, Juan C.; Corbacho, Jose A.; Robles, Beatriz; Baeza, Antonio; Cancio, David; Suańez, Ana M.

    2008-08-01

    A radiological assessment of the workers and the public potentially affected by the operation of the Teruel Coal-fired Power Plant (the UPT Teruel), was performed under realistic assumptions. This assessment is part of a wider study to characterize the potential radiological impact of Naturally Occurring Radioactive Materials (NORM), in which our team, integrated by University of Extremadura and CIEMAT, is carrying out the study on coal-fired power plants sponsored by the Spanish Nuclear Safety Council (CSN). The study comprises the four biggest coal-fired power plants in Spain. Taking into account the working conditions and the plant specifications, six groups of workers were defined, established considering the 17 working tasks that could be of any importance for this assessment. For the public, considering that the area is barely inhabited, two different recreational scenarios were defined. Therefore, in-plant and outside measurements, needed for the assessment of each scenario, were carried out. Where experimental data were not available or measurements ranged within the natural background radiation values, modelling has been used. Every measured or estimated activity concentration in coal and other used materials or in the by-products generated in the power plant, for every radionuclide in the natural chains of 238U, 232Th and 40K, were below 0.32 Bq g-1. Those values are under the 0.5 Bq g-1 reference value for exemption and clearance of 238U, 232Th and 226Ra and the 5 Bq g-1 for 40K recommended in Europe. In the dose evaluations for six groups of workers, a maximum of 21 ?Sv a-1 was obtained (mainly due to the inhalation of resuspended particles). For both considered scenarios for the public, all the evaluated doses were below 4.3 ?Sv a-1. These results are considered negligible from a radiological point of view. In this work the models and assumptions used for the evaluation of workers and public doses, the assessment, as well as the most relevant experimental results and conclusions are presented.

  20. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.