Science.gov

Sample records for coal single stage

  1. Ultrafine coal single stage dewatering and briquetting process

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1995-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles are difficult to dewater and create problems in coal transportation, as well as in storage and handling at utility plants. The objective of this research project is to combine the ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale ram extruder. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

  2. Ultrafine coal single stage dewatering and briquetting process

    SciTech Connect

    Wilson, J.W.; Ding, Y.; Tobey, M.

    1995-12-31

    The primary goal of the current physical coal cleaning process is to reduce the ash and sulfur content from the coal, that is, to remove the mineral particles from the coal. In order to separate mineral from coal particles efficiently, the finely disseminated mineral matter must be liberated from the coal matrix with the help of an ultrafine grinding operation. The coal becomes very difficult to dewater because of the small particle size produced. Difficulty in coal transportation as well as in its storage and handling at the utility plants are also problems associated with the small coal particles resulting from ultrafine grinding. During this project, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale hydraulic compacting device. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

  3. Ultrafine coal single stage dewatering and briquetting process. Technical report, September 1--November 30, 1994

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1994-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out in conjunction with a selected hydrophobic binder as the dewatering reagent and an uniaxial hydraulic press. The influence of compaction pressure and binder concentration (2 to 5%) on the performance of coal pellets have been evaluated in terms of their water and wear resistance. A laboratory scale ultrafine coal dewatering and briquetting extruder that can be operated continuously for coal pellets fabrication, has been designed and built, and will be available for testing in the next quarter.

  4. Ultrafine coal single stage dewatering and briquetting process. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Wilson, J.W.

    1996-03-01

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out using Orimulsion as the dewatering reagent. A ram extruder that can be operated continuously is used to fabricate dewatered pellets. The influence of compaction pressure, curing time, binder concentration (2% to 5%), particle size, and compacting time on the performance of coal pellets have been evaluated in terms of their water resistance and wear vulnerability.

  5. Pilot scale single stage fine coal dewatering and briquetting process. Technical report, September 1--November 30, 1995

    SciTech Connect

    Wilson, J.W.; Ding, Y.; Honaker, R.Q.

    1995-12-31

    The primary goal of the current coal preparation research is to reduce the ash and sulfur content from coal, using fine grinding and various coal cleaning processes to separate finely disseminated mineral matter and pyrite from coal. Small coal particles are produced by the grinding operation, thus the ultrafine coal becomes very difficult to dewater. In addition, the ultrafine coal also creates problems during its transportation, storage and handling at utility plants. The current research is seeking to combine ultrafine coal dewatering and briquetting processes into a single stage operation, using hydrophobic binders as coal dewatering and binding reagents with the help of a compaction device. From previous tests, it has been found that coal pellets with a moisture content of less than 15% and good wear and water resistance can be successfully fabricated at pressures of less than 6,000 psi using a lab scale ram extruder. The primary objective of the research described in this quarter has been to extend the lab scale ultrafine coal dewatering and briquetting process into a pilot scale operation, based on the test data obtained from earlier research. A standard roller briquetting machine was used to dewater fine coal-binder mixtures during the briquetting process. The operating parameters, including moisture content of feed, feed rate, and roller speed, were evaluated on the basis of the performance of the briquettes. Briquettes fabricated at rates of up to 108 pellets per minute exhibited satisfactory water and wear resistance, i.e., less than 7.5% cured moisture and less than 8.3% weight loss after 6 min. of tumbling. Also, coal-binder samples with moisture contents of 40 percent have been successfully dewatered and briquetted. Briquetting of fine coal was possible under current feeding conditions, however, a better feeding system must be designed to further improve the quality of dewatered coal briquettes.

  6. Pilot Scale Single Stage Fine Coal Dewatering and Briquetting Process. Technical report, March 1, 1996 - May 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.; Ho, K.

    1996-12-31

    The primary goal for this ICCI coal research project is to effectively liberate coal from fnely disseminated minerals for Illinois Basin coal by using fine grinding and cleaning processes. However, because of the large surface area generated during the cleaning processes, it is difficult and uneconomic for conventional techniques to dewater the coal fines. In addition, these coal fine pose transportation, storage and handling problems at cleaning and utility facilities. The objective of this research is to combine dewatering and briquetting processes into a single stage operation that will solve the problems mentioned above. To build on the promising results obtained from the previous studies, a pilot scale commercial briquetting machine was used to evaluate this technique. The primary objective of the research in this reporting period is to determine the effectiveness of a single stage dewatering and briquetting technique using a commercial briquetting device. Two types of samples were prepared and the results of the -28 x 100 mesh samples are presented in this report. Modifications were made to the machine in an attempt to solve the back drainage problem. A total of six experiments were conducted and the results indicate that water resistance of coal briquettes increased as curing time increased. However, due to a deficiency of fine particles to bridge the gaps between the coarse particles, the wear resistance of the products declined. Also, at high roll speeds and compaction pressures, the coal briquettes produced tended to have higher moisture content and lower strength. On the other hand, at high feed rates, because of the screw extrusion effect, coal briquettes were produced with lower moisture content and higher strengths.

  7. Pilot scale single stage fine coal dewatering and briquetting process. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.

    1997-05-01

    The primary goal of the ongoing ICCI coal preparation research project is to reduce ash and sulfur content in coal by using fine grinding and other coal cleaning processes. The ultrafine coal particles that result from the grinding and cleaning operations are difficult to dewater, and create problems in their storage, handling and transportation. The objective of this research is to combine the dewatering and briquetting processes of fine coal preparation into a single stage operation, thereby enhancing the economic viability of utilizing fine coal. A bitumen based emulsion, Orimulsion, has proven to be an effective hydrophobic binder, which helps not only with the briquetting process but also in the expulsion of water from the coal. Encouraging results from the use of a ram extruder briquetting device led to experimentation in the production of briquettes using a lab scale roll briquetting device. In the first quarter of this reporting year, a commercially available lab scale roll briquetting machine was employed (Komarek B-100). Further testing was conducted for the rest of the year with the use of a pilot scale model (Komarek B220-A). Briquettes were produced and evaluated by comparing results developed by adjusting various parameters of the briquetting machines and feed material. Results further substantiate previous findings that curing time dictates both moisture content and strengths of briquettes, and slower roll speeds produce more robust briquettes. A statistical model was set up to determine the optimal range of operating parameters. The statistical model generated from these results provided basic relationships between the roll speed and briquette form pressure.

  8. Two stage liquefaction of coal

    DOEpatents

    Neuworth, Martin B.

    1981-01-01

    A two stage coal liquefaction process and apparatus comprising hydrogen donor solvent extracting, solvent deashing, and catalytic hydrocracking. Preferrably, the catalytic hydrocracking is performed in an ebullating bed hydrocracker.

  9. Coal workers pneumoconiosis - stage II #2 (image)

    MedlinePlus

    ... distinct light areas. Diseases which may explain these X-ray findings include simple coal workers pneumoconiosis (CWP) - stage II, silico-tuberculosis, disseminated tuberculosis, metastatic lung cancer, and other diffuse infiltrative pulmonary diseases.

  10. Two-stage coal liquefaction process

    DOEpatents

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    An improved SRC-I two-stage coal liquefaction process which improves the product slate is provided. Substantially all of the net yield of 650.degree.-850.degree. F. heavy distillate from the LC-Finer is combined with the SRC process solvent, substantially all of the net 400.degree.-650.degree. F. middle distillate from the SRC section is combined with the hydrocracker solvent in the LC-Finer, and the initial boiling point of the SRC process solvent is increased sufficiently high to produce a net yield of 650.degree.-850.degree. F. heavy distillate of zero for the two-stage liquefaction process.

  11. Rehabilitation using single stage implants

    PubMed Central

    Mohamed, Jumshad B.; Sudarsan, Sabitha; Arun, K. V.; Shivakumar, B.

    2009-01-01

    Implant related prosthesis has become an integral part of rehabilitation of edentulous areas. Single stage implant placement has become popular because of its ease of use and fairly predictable results. In this paper, we present a series of cases of single stage implants being used to rehabilitate different clinical situations. All the implants placed have been successfully restored and followed up for up to one year. PMID:20376239

  12. Method of operating a two-stage coal gasifier

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

  13. Two stage coprocessing of waste tires and coal

    SciTech Connect

    Ying Tang; Curtis, C.W.

    1996-12-31

    Liquefaction of waste (recycled) tire and coal was studied as a two-stage process. Waste tires were liquefied, then the solids and carbon black were removed. In the second stage, the liquefied tire served as the solvent for the coal liquefaction.

  14. Single stage desulfurization of both organic and inorganic sulfur from Midwestern U.S. coals by binary mixtures of supercritical fluids

    SciTech Connect

    Azzam, F.O.; Lee, S.

    1993-12-31

    High sulfur containing Midwestern U.S. coals contain 3-7 percent sulfur by mass, which mainly consists of substantial amounts of organic, pyritic, and sulfatic sulfur forms. In order to meet the strict emission requirements imposed on coal burning utilities by the Clean Air Act Amendments of 1990, coals with high sulfur content must be cleaned before, during, or after combustion. Depending upon the mode of desulfurization, the methods may be classified as precombustion, concurrent, and post-combustion cleaning. The present study deals with a novel, precombustion coal cleaning process that has a unique feature in its process technology. Removal of pyritic sulfur has always been considered successful, since the gravitational separation technique has proven to be quite efficient. Despite the relative success of such operations, however, the efficiency of this type of desulfurization is grossly insufficient for the new compliance coal requirements that mandate SO{sub x} emission to be lower than 1.2 lb per one million BTU. The problem is normally more complicated due to the high abundance of organic sulfur in Midwestern and Eastern U.S. coals. There have been various attempts to selectively remove organic sulfur from coals. They normally involve solvent extraction processes, and once they are found to be successful they are coupled with gravitation separation of pyritic sulfur.

  15. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Smith, T.O.

    1990-09-01

    During the first quarter of 1990, work was carried out in the microautoclave, microreactor, and Bench-Scale units. An economics analysis on sub-bituminous coal processing at two space velocities was also completed. Several supported catalysts and a sample of iron oxide were screened in the microautoclave unsulfided and sulfided with DMDS and TNPS. A second shipment of Black Thunder coal from Wilsonville, oil agglomerated cleaned Illinois {number sign}6 coal from Homer City, OTISCA cleaned coal a New Mexico coal were evaluated for relative conversions with and without catalyst. Results of Bench-Scale developments with cleaned, oil agglomerated, Illinois {number sign}6 coal from Homer City(CC-6), Dispersed Catalyst/Supported Catalyst Two-Stage and reversed sequential operation (CC-7), on Black Thunder Coal (CC-7), and preliminary observations on OTISCA cleaned coal are presented. The oil agglomerated cleaned coal gave higher conversion and distillate production than the OTISCA cleaned coal. The Dispersed/Supported Two-Stage operation yielded higher gas production than the reverse sequence but also showed the higher coal conversion. Economic analysis of sub-bituminous coal processing at two space velocities showed a 3% higher return on investment with a 50% increase in space velocity. 13 tabs.

  16. Single-stage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    President Bush established a three phase Space Exploration Initiative for the future of space exploration. The first phase is the design and construction of Space Station Freedom. The second phase is permanent lunar base. The last phase of the Initiative is the construction of a Mars outpost. The design presented is the concept of a single-stage Mars mission developed by the University of Minnesota Aerospace Design Course. The mission will last approximately 500 days including a 30-60 day stay on Mars.

  17. The single electron chemistry of coals

    SciTech Connect

    Larsen, J.W.; Flowers, R.A. II.

    1990-07-24

    TCNQ Charge Transfer Complexes with Coals. TCNQ can be readily deposited in coals from pyridine solution. IR spectra of TCNQ and TCNQ in Illinois No. 6 coal are shown in Fig. 1. It is clear that the stretching frequency has been shifted by the full 44 cm[sup [minus]1] caused by the transfer of a single electron. Similar behavior has been observed with a variety of coals, including lignites, subbituminous and a range of bituminous coals. There are two possible explanations for the observed shift. The simplest explanation is that there exist in coals structures which are excellent single electron donors capable of transferring an electron to TCNQ in the ground state. All of the TCNQ dissolved in the coal is shifted. No uncomplexed TCNQ remains in the sample, as demonstrated by the absence of the unaltered CN stretch at 2227 cm[sup [minus]1]. The spectrum shown is for TCNQ in coal in a molar concentration equivalent to approximately 20% of the PNA systems in this coal as deduced from the NMR studies of Solum et al. (1989). It is highly unlikely that 20% of the PNA systems in coal are such good electron donors that the charge transfer complex would have an electron transferred in the ground state. The second explanation is that cooperative interactions between the TCNQ and the aromatic systems in coal have led to the formation of an extended valance band structure, that the TCNQ LUMO is part of this band structure, and that the band is half filled.

  18. The single electron chemistry of coals

    SciTech Connect

    Larsen, J.W.; Kaushal, P.

    1991-01-18

    Our work on single election transfer in coals led us to the knowledge that the energetics of bond cleavage in radical cations is 20-40 kcal/mole lower than the corresponding homolytic bond cleavage energies. Having made excellent progress in the other areas covered by this proposal, we are extending our studies to the investigation of the formation and cleavage reaction of radical cations in coals. The formation of a radical cation requires the transfer of an electron from a neutral molecule to an appropriate electron acceptor (oxidant). As a first step, we seek oxidants which will form radical cations from functional groups typical of those in coals. We must also study the decomposition behavior of bonds typical of those found in coals. Alkyl and alkoxy aromatic compounds were chosen as the electron donors because of their common occurrence in coals.

  19. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOEpatents

    MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  20. The single electron chemistry of coals

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-01-31

    Depolymerization of coals at low temperatures may offer advantages over thermal bond cleavage. Because bond cleavage energies of radical cations are lower than the corresponding homolytic bond cleavage energies of the same bond, generation of radical cations in coal may make possible depolymerization at lower temperatures. We seek to investigate the above possibility using single molecules containing functional groups common in coals. Since the generation of a radical cation requires the removal of an electron from a neutral molecule, a primary focus of the study will be finding oxidants that will remove an electron from compounds with structural similarity to those typically found in coals. The study must also be concerned with the decomposition of radical cations and the products formed as a result of the decomposition.

  1. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  2. CHARACTERISTICS OF SINGLE PARTICLE COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the measurement of the burning history of single coal particles, using a two-color optical pyrometer. rom intensity traces at two wavelengths, information on burning times and temperatures, the duration of a volatile flame, and projected areas was obtained for...

  3. A continuous two stage solar coal gasification system

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  4. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  5. Multiple angle single stage scrubber

    SciTech Connect

    Ostlie, L.

    1982-02-02

    A scrubber for cleansing flue gases is disclosed. The scrubber includes a housing which defines a channel. The channel includes a scrubber stage wherein vertically spaced rows of deflecting members of l-shaped cross-section are disposed. In a given row of deflecting members, a plurality of flow paths are defined between horizontally adjacent deflecting members. Each deflecting member has an upper arm and a lower arm. The lowermost edge of the lower arms of the deflecting members in one row are disposed between vertical projections from the uppermost edges of upper arms of deflecting members in a row below the last mentioned row.

  6. The single electron chemistry of coals

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-11-11

    Depolymerization of coals at low temperatures may offer advantages over thermal bond cleavage. Because bond cleavage energies of radical cations are lower than the corresponding homolytic bond cleavage energies of the same bond, generation of radical cations in coal may make possible depolymerization at lower temperatures. We seek to investigate the above possibility using single molecules containing functional groups common in coals. Since the generation of a radical cation requires the removal of an electron from a neutral molecule, a primary focus of the study will be finding oxidants that will remove an electron from compounds with structural similarity to those typically found in coals. The study will also be concerned with the decomposition of radical cations and the products formed as a result of the decomposition. In our last report we described that treatment of bibenzyl and neo-pentylbenzene with Fe(III) (1,10-phenanthroline)[sub 3](ClO[sub 4])[sub 3] (Fe(III)(PHEN)) in refluxing CH[sub 3]CN (82[degrees]C) failed to produce substantial bond cleavage [beta] to the aromatic ring. Because bond cleavage was not observed, we have continued our study by moving to compounds which have lower ionization potentials as well as study other oxidants.

  7. Coal liquefaction laboratory studies. Volume 2. Two-stage variations: subbituminous coal

    SciTech Connect

    Bynum, R.; Carver, J.M.; Gir, S.; Paranjape, A.S.; Rhodes, D.E.

    1985-07-01

    Laboratory studies were made to evaluate the technical feasibility of new process concepts and advanced coal liquefaction processes at the bench-scale level to produce environmentally-acceptable fuel and other useable by-products. This report summarizes the results of batch reactor studies completed during the period of January through July 1983. The laboratory studies covered several wide ranging topics including temperature-staged coal dissolving, co-processing of coal and petroleum, disposable catalysts and heterocyclic solvents. Good coal conversions and distillate yields were obtained from Wyoming subbituminous coal by using temperature-staged dissolving in the presence of iron oxide as a disposable catalyst. Similarly, petroleum-based asphaltenes were successfully co-processed with subbituminous coal in the presence of iron oxide with high coal conversions. Use of heterocyclic compounds as a component of liquefaction solvent resulted in high losses of these compounds to products rather than remain with the recycle solvent. During these laboratory studies, a simple reproducible batch test was developed to provide fast evaluation and screening of different catalysts for hydrotreatment of different resids. 33 refs., 8 figs., 44 tabs.

  8. Combustion of coal-gas fuels in a staged combustor

    SciTech Connect

    Rosfjord, T J; McVey, J B; Sederquist, R A; Schultz, D F

    1982-01-01

    Gaseous fuels produced from coal resources have been considered for use in industrial gas turbines. Such fuels generally have heating values much lower than the typical gaseous fuel, natural gas; the low heating value could result in unstable or inefficient combustion. Additionally, coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable NO/sub x/ exhaust emission levels. Previous investigations have indicated that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low NO/sub x/ emission operation for coal-derived liquid fuels containing up to 0.8-wt % nitrogen. An experimental program has been conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7% ammonia are presented. The test results permit the following conclusions to be drawn: (1) Staged, rich-lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with heating values of 210 kJ/mol (238 Btu/scf) or higher. (2) Lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with low heating values (84 kJ/mol (95 Btu/scf)). (3) Staged combustion has the ability to limit NH/sub 3/ to NO/sub x/ conversion rates to less than 5%. NO/sub x/ emissions below the EPA limit can readily be achieved.

  9. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, T.L.K.; Popper, G.A.; Stalzer, R.H.

    1992-04-01

    This quarterly report covers activities of the Two-Stage, Close- Coupled Catalytic Liquefaction of Coal program during the period January 1,--March 31,1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1988 to September 30, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory Testing, PDU Activities and Administration.

  10. Two-stage coal gasification and desulfurization apparatus

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.

    1991-01-01

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  11. Coal liquefaction laboratory studies. Volume 1. Two-stage variations - bituminous coal

    SciTech Connect

    Bynum, R.; Carver, J.M.; Gir, S.; Paranjape, A.S.; Rhodes, D.E.

    1985-07-01

    Laboratory studies were conducted to provide guidance in the selection of process variable levels for the Liquefaction-section of the continuous coal liquefaction bench-scale unit operated at Kerr-McGee Cimarron Facility. Using the results of batch reactor tests made with Illinois No. 6 coal, an empirical correlation was developed to predict the distillate yield from a thermal-liquefaction at 825/sup 0/F reaction-temperature as a linear function of the reaction-time, recycle resid to MAF coal ratio and the initial hydrogen pressure. Several single-ring and multi-ring organonitrogen compounds were evaluated as liquefaction solvents. Data indicate that basic organonitrogen compounds, saturated or partially saturated, have a more pronounced effect on the conversion results and particularly on toluene-soluble coal conversions, thereby suggesting that the primary driving force for good conversions may be the unshared pair of electrons associated with the nitrogen atom in these compounds. A study of microautoclaves indicated that sufficient mixing of the contents is necessary to obtain good conversions. The THF-soluble coal conversions were studied as a function of the hydrogen donor concentration in the liquid phase. Variations in product work-up procedures could result in significant differences in the observed THF-soluble and/or toluene-soluble results. A direct comparison of data from different sources should be done with caution and should take into consideration the differences between the equipment and product work-up procedures used. 17 figs., 73 tabs.

  12. Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier

    DOEpatents

    Donath, Ernest E.

    1976-01-01

    A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

  13. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    SciTech Connect

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  14. CaO interaction in the staged combustion of coal

    SciTech Connect

    Levy, A.; Merryman, E.L.; Rising, B.W.

    1983-12-19

    The LIMB (limestone injection multi-stage burner) process offers special potential for reducing NO/sub x/ and SO/sub x/ by at least 50 percent in coal combustion. This is to be accomplished by adding limestone with fuel and/or air in a low NO/sub x/ burner. This program has been directed to defining the chemistry and kinetics necessary to optimize sulfur capture in LIMB combustion. More specifically, this program has attempted to clarify the role of calcium sulfide in LIMB chemistry. When limestone is added in a staged burner, there is a strong possibility that under certain circumstances CaS is produced in the reducing (fuel-rich) zone of the burner. Since CaS is more stable than CaSO/sub 4/, this affords the opportunity to (1) operate the burner at a higher temperature, 2200 to 2500 F, (2) pass the CaS rapidly through the high temperature zone (before dissociation), and (3) complete the combustion in a lean (air-rich) region where the sulfur is finally retained in CaSO/sub 4/. For these reasons this program has concentrated on the high temperature chemistry and kinetics of CaS. To achieve the program objective, the program was divided into three tasks. These involved (1) a study of CaS formation, (2) a brief examination of CaS oxidation, and (3) a laboratory examination of the combustion of coal in the presence of CaO under first stage, fuel-rich conditions. In the most general sense, the study has shown that the formation of CaS in the reducing zones of the burner may be restricted by competing kinetics and thermodynamics. The addition of lime in LIMB will require special care to optimize the ability to capture sulfur. 36 references, 44 figures, 10 tables.

  15. Coal-fired generation staging a comeback. 2nd ed.

    SciTech Connect

    2007-07-01

    The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

  16. Single stage rocket concept selection and design

    NASA Astrophysics Data System (ADS)

    Copper, J. A.

    1992-03-01

    The paper compares three concepts of a single-stage rocket for use as a reusable safe and reliable launch system: (1) horizontal takeoff and landing; (2) vertical takeoff and landing (VTOL), and vertical takeoff and horizontal landing. These concepts were evaluated during Phase I using the following ground rules: the 1992 technology availability; 7 d turnaround between flights with 350 man-days servicing; a 400-km polar orbit, 600 fps maneuver capability on orbit; 10,000 lb payload; 1170 nmi crossrange; two-man crew, 4-day duration, 14.7 psi cabin pressure, 1000 cu ft crew volume, 3 g maximum acceleration; winds amounting to 200 fps ascent, 73 fps landing; and return payload to base after single engine failure. On the basis of the comparison (done on the basis of the lowest cost to acquire and operate, the least sensitivity to uncertainties in predicted weight and performance, and the operational flexibility) the VTOL concept with nose-first reentry was chosen.

  17. Multi-stage coal liquefaction and fractionation method

    SciTech Connect

    Gir, S.; Rhodes, D.E.

    1987-05-12

    A method is described of liquefying and fractionating coal comprising: mixing coal with a primary heavy solvent to form a coal-primary heavy solvent slurry; treating the coal-primary heavy solvent slurry under coal-liquefying conditions to form a primary feed solution; introducing at least a portion of the primary feed solution into a first primary separation zone to form a first light primary phase and a first heavy primary phase, separated by a liquid-liquid interface; and processing the separated first light primary phase in at least one primary separation zone successive to the first primary separation zone to separate, in a final successive primary separation zone, a final light primary phase and a final heavy primary phase.

  18. 30 CFR 72.800 - Single, full-shift measurement of respirable coal mine dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mine dust. 72.800 Section 72.800 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.800 Single, full-shift measurement of respirable coal mine dust. The Secretary will use a single,...

  19. Chemical and toxicologic characterization of co-processing and two-stage direct coal liquefaction materials

    SciTech Connect

    Wright, C.W.; Stewart, D.L.; Mahlum, D.D.; Chess, E.K.; Wilson, B.W.

    1986-03-01

    Recent advances in coal liquefaction have included two-stage direct coal liquefaction processes and petroleum resid/coal co-processing technology. Two-stage coal liquefaction processes are generally comprised of a first-stage thermal or liquefaction reactor followed by a second-stage hydrogenation step. Petroleum resids and coal are simultaneously converted to liquefaction products in co-processing technology. The purpose of this paper is to report the prelimianry results of the chemical analysis and toxicological testing of a coal liquefaction co-processing sample set, and to compare these results to those obtained from two-stage coal liquefaction materials. Samples were chemically characterized by chemical class fractionation, gas chromatography, gas chromatography-mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological activity was measured using the standard histidine reversion microbial mutagenicity test and an initiation/promotion assay for mouse skin tumorigenesis. A brief description of these methods are presented and results are discussed. 9 refs., 2 figs., 3 tabs.

  20. Two-stage coal liquefaction without gas-phase hydrogen

    DOEpatents

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  1. The single electron transfer chemistry of coals. Final report

    SciTech Connect

    Larsen, J.W.; Flowers, R.A. II

    1994-12-31

    This research addressed electron donar properties and radical reactions in coal. Solid residues from pyridine Soxhlet extractions of Pocahontas No. 3, Upper Freeport, Pittsburgh No. 8, Illinois No. 6 and Wyodak coals were exposed to 4-vinylpyridine vapors and swelled. All of the 4-vinylpyridine could not be removed under vacuum at 100{degree}C. Diffuse reflectance FTIR revealed the presence of poly-(4-vinylpyridine) in the Illinois No. 6 and Wyodak coals. EPR spectra displayed the loss of inertinite radicals in Upper Freeport, Illinois No. 6 and Wyodak residues after exposure to 4-vinylpyridine. There was little change in the vitrinite radical density or environment. The molecule N,N{prime}-Diphenyl-p-phenylene diamine (DPPD) was exposed to the solid residues from pyridine Soxhlet extractions of the above coals. Diffuse reflectance FTIR failed to detect the imine product from radical reaction with DPPD. EPR spectra displayed the loss of inertinite radicals in Upper Freeport and Wyodak residues. 7,7,8,8-Tetracyanoquinodimethane (TCNQ) and Tetracyanoethylene (TCNE) were deposited into coals in pyridine. FTIR indicated complete conversion of TCNQ to a material with a singly occupied LUMO. In TCNE the LUMO is about 30% occupied. TCNQ and TCNE were deposited into the pyridine extracts and residues of Illinois No. 6 and Pittsburgh No. 8 coals. Only a small amount of the TCNQ and TCNE displayed nitrile shifts in the IR spectrum of a material with an occupied LUMO. It has been concluded that TCNQ must be part of the aromatic stacks in coal and the TCNQ LUMO is part of an extended band.

  2. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOEpatents

    Comolli, Alfred G.

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  3. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  4. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  5. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  6. High speed single- and dual-stage vertical positioners

    NASA Astrophysics Data System (ADS)

    Yong, Yuen K.; Wadikhaye, Sachin P.; Fleming, Andrew J.

    2016-08-01

    This article presents a high-speed single- and dual-stage vertical positioners for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6 μm and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10 μm and a first evident resonance frequency of 130 kHz.

  7. High speed single- and dual-stage vertical positioners.

    PubMed

    Yong, Yuen K; Wadikhaye, Sachin P; Fleming, Andrew J

    2016-08-01

    This article presents a high-speed single- and dual-stage vertical positioners for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6 μm and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10 μm and a first evident resonance frequency of 130 kHz. PMID:27587157

  8. Efficiency of single stage- and two stage pretreatment in biomass with different lignin content.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2016-07-01

    In current study the enzymatic glucose yields of miscanthus and wheat straw were compared after single stage- and two stage pretreatment with dilute sulfuric acid at different pretreatment severities. Glucose yields after two stage pretreatment were higher than after single stage pretreatment in miscanthus. Whereas wheat straw had higher glucose yields after single stage pretreatment. The study shows that two stage pretreatment has a negative effect on glucose yield in biomass with low not-acid-degradable lignin content and a positive one in biomass with high not-acid-degradable lignin content. The not-acid-degradable lignin fraction offers a higher degree of protection of the whole lignin structure against chemical attacks by mineral acids. More severe pretreatment conditions were needed to achieve a sufficient breakup of the lignin structure. But more severe conditions enhance resin formation, leading to lower enzyme activity and reduced carbohydrate yields. PMID:27067673

  9. Single-stage depressed collectors for gyrotrons

    SciTech Connect

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M. |

    1996-06-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive.

  10. Catalytic multi-stage liquefaction of coal. Ninth quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect

    Comolli, A.G.; Johnson, E.S.; Lee, L.K.

    1995-06-01

    This quarterly report covers the activities of Catalytic Multi-Stage Liquefaction of Coal during the Period October 1 - December 31, 1994, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE Contract Period was from December 8, 1992 to December 7, 1994 and has been extended to September 30, 1995. The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  11. The braided single-stage protocol for quantum secure communication

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Verma, Pramode K.

    2014-05-01

    This paper presents the concept and implementation of a Braided Single-stage Protocol for quantum secure communication. The braided single-stage protocol is a multi-photon tolerant secure protocol. This multi-photon tolerant protocol has been implemented in the laboratory using free-space optics technology. The proposed protocol capitalizes on strengths of the three-stage protocol and extends it with a new concept of braiding. This protocol overcomes the limitations associated with the three-stage protocol in the following ways: It uses the transmission channel only once as opposed to three times in the three-stage protocol, and it is invulnerable to man-in-the-middle attack. This paper also presents the error analysis resulting from the misalignment of the devices in the implementation. The experimental results validate the efficient use of transmission resources and improvement in the data transfer rate.

  12. Combustion behavior of single coal-water slurry droplets, Part 1: Experimental techniques

    SciTech Connect

    Levendis, Y.A.; Metghalchi, M.; Wise, D.

    1991-12-31

    Techniques to produce single droplets of coal-water slurries have been developed in order to study the combustion behavior of the slurries. All stages of slurry combustion are of interest to the present study, however, emphasis will be given to the combustion of the solid agglomerate char which remains upon the termination of the water evaporation and the devolatilization periods. An experimental facility is under construction where combustion of coal-water slurries will be monitored in a variety of furnace temperatures and oxidizing atmospheres. The effect of the initial size of the slurry droplet and the solids loading (coal to water ratio) will be investigated. A drop tube, laminar flow furnace coupled to a near-infrared, ratio pyrometer win be used to monitor temperature-time histories of single particles from ignition to extinction. This paper describes the experimental built-up to this date and presents results obtained by numerical analysis that help understanding the convective and radiating environment in the furnace.

  13. Simulating the multistage environment for single-stage compressor experiments

    SciTech Connect

    Place, J.M.M.; Howard, M.A.; Cumpsty, N.A.

    1996-10-01

    The performance of a single-stage low-speed compressor has been measured both before and after the introduction of certain features of the multistage flow environment. The aim is to make the single-stage rig more appropriate for developing design rules for multistage compressors. End-wall blockage was generated by teeth on the hub and casing upstream of the rotor. A grid fitted upstream produced free-stream turbulence at rotor inlet typical of multistage machines and raised stage efficiency by 1.8 percent at the design point. The potential field that would be generated by blade rows downstream of an embedded stage was replicated by introducing a pressure loss screen at stage exit. This reduced the stator hub corner separation and increased the rotor pressure rise at flow rates below design, changing the shape of the pressure-rise characteristic markedly. These results highlight the importance of features of the flow environment that are often omitted from single-stage experiments and offer improved understanding of stage aerodynamics.

  14. Secondary atomization of single coal-water fuel droplets

    SciTech Connect

    Hassel, G.R.; Scaroni, A.W.

    1989-03-01

    The evaporative behavior of single, well characterized droplets of a lignite coal-water slurry fuel (CWSF) and a carbon black in water slurry was studied as a function of heating rate and droplet composition. Induced droplet heating rates were varied from 0 to 10{sup 5} K/s. Droplets studied were between 97 and 170 {mu}m in diameter, with compositions ranging from 25 to 60% solids by weight. The effect of a commercially available surfactant additive package on droplet evaporation rate, explosive boiling energy requirements, and agglomerate formation was assessed. Surfactant concentrations were varied from none to 2 and 4% by weight solution (1.7 and 3.6% by weight of active species on a dry coal basis). The experimental system incorporated an electrodynamic balance to hold single, free droplets, a counterpropagating pulsed laser heating arrangement, and both video and high speed cinematographic recording systems. Data were obtained for ambient droplet evaporation by monitoring the temporal size, weight, and solids concentration changes. 49 refs., 31 figs.

  15. Initial stages of coal slag interaction with high chromia sesquioxide refractories

    SciTech Connect

    Rawers, James C.; Iverson, Larissa; Collins, Wesley K.

    2002-02-01

    Slagging coal gasifiers operate at temperatures as high as 1650◦C in a reducing environment, requiring combustion chambers to be lined with refractories. The liner materials of choice are semi-porous high chromia refractories. Recently, a new series of high-chromia aluminia sesquioxide refractories have been developed. Both long term and short term tests are being conducted to evaluate the performance of these materials. In this study, the initial stage of slag-refractory interactions was analyzed. Samples of gasifier slag were compacted and placed upon the surface of these new chromia refractories and the temperature was raised consistent with start-up operating conditions of commercial gasifiers. The slag was completely molten by the time the furnace achieved a temperature consistent with gasifier operation conditions: 1350◦C. Measurement of the slag contact angle, slag spread along the slag-refractory interface, and the loss of slag due to slag infusion into the refractory were monitored by camera. Analysis suggests a single phenomenon with an activation energy of approximately 54 kcal may be the controlling factor. Cross-section analysis of the sample and analysis of slag chemistry indicate that slag infusion preceded the slag-refractory interface front movement and that the iron component of the slag was becoming concentrated at the slag-refractory interface leading to the formation of a chromium-iron spinel phase. Results of these short term tests are critical in characterizing and understanding the results long term slag-refractory interactions.

  16. Initial stages of coal slag interaction with high chromia sesquioxide refractories

    SciTech Connect

    Rawers, J.C.; Iverson, L.; Collins, W.K.

    2002-02-01

    Slagging coal gasifiers operate at temperatures as high as 1650°C in a reducing environment, requiring combustion chambers to be lined with refractories. The liner materials of choice are semi-porous high chromia refractories. Recently, a new series of high-chromia aluminia sesquioxide refractories have been developed. Both long term and short term tests are being conducted to evaluate the performance of these materials. In this study, the initial stage of slag-refractory interactions was analyzed. Samples of gasifier slag were compacted and placed upon the surface of these new chromia refractories and the temperature was raised consistent with start-up operating conditions of commercial gasifiers. The slag was completely molten by the time the furnace achieved a temperature consistent with gasifier operation conditions: 1350°C. Measurement of the slag contact angle, slag spread along the slag-refractory interface, and the loss of slag due to slag infusion into the refractory were monitored by camera. Analysis suggests a single phenomenon with an activation energy of approximately 54 kcal may be the controlling factor. Cross-section analysis of the sample and analysis of slag chemistry indicate that slag infusion preceded the slag-refractory interface front movement and that the iron component of the slag was becoming concentrated at the slag-refractory interface leading to the formation of a chromium-iron spinel phase. Results of these short term tests are critical in characterizing and understanding the results long term slag-refractory interactions.

  17. Single-Stage Flexor Tendon Grafting: Refining the Steps.

    PubMed

    Fletcher, Derek R; McClinton, Michael A

    2015-07-01

    Single-stage tendon grafting for reconstruction of zone I and II flexor tendon injuries is a challenging procedure in hand surgery. Careful patient selection, strict indications, and adherence to sound surgical principles are mandatory for return of digital motion. PMID:26026357

  18. Management of a Single Species Fishery with Stage Structure

    ERIC Educational Resources Information Center

    Kar, T. K.; Pahari, U. K.; Chaudhuri, K. S.

    2004-01-01

    A dynamic model for a single species fishery with stage structure is proposed using taxation as a control instrument to protect the fish population from overexploitation. Criteria for local stability and global stability of the system are derived. The optimal tax policy is established by using Pontryagin's maximal principle. By numerical…

  19. High density propellant for single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Masters, P. A.

    1976-01-01

    Mixed mode propulsion concepts are studied for advanced, single stage earth orbital transportation systems (SSTO) for use in the post-1990 time period. These propulsion concepts are based on the sequential and/or parallel use of high density impulse and high specific impulse propellants in a single stage to increase vehicle performance and reduce dry weight. Specifically, the mixed mode concept utilizes two propulsion systems with two different fuels (mode 1 and mode 2) with liquid oxygen as a common oxidizer. Mode 1 engines would burn a high bulk density fuel for lift-off and early ascent to minimize performance penalties associated with carrying fuel tankage to orbit. Mode 2 engines will complete orbital injection utilizing liquid hydrogen as the fuel.

  20. A catalyst tackles odors in a single-stage scrubber

    SciTech Connect

    Shelley, S.

    1995-05-01

    Chemical-oxidation systems are widely used to absorb and oxidize odorous organic compounds in industrial and municipal exhaust streams. By combining conventional chemical scrubbers with a proprietary catalytic treatment unit, ICI Katalco (Billingham, England) has produced a single-stage scrubber system that enhances removal efficiency during liquid-phase adsorption, and overcomes many of the process and cost disadvantages of a conventional scrubber. Organic vapors are absorbed by the sodium hypochlorite solution inside the single-column scrubber. The liquid leaving the tower is then passed through the fixed-bed Odorgard reactor, where absorbed organics are catalytically oxidized.

  1. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  2. Single stage earth orbital reusable vehicle. Volume 6: Resources

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a conceptual study of the resource requirements for a single-stage earth-orbital vehicle are presented. All aspects of program costs for the design, manufacture, test, transportation, launch, and facility modifications were considered. The following program costs are discussed: configuration definition, cost groundrules and assumptions, program requirements, work breakdown structure, cost estimation methods, and cost analysis. High cost areas are identified.

  3. Single-stage electronic ballast with high-power factor

    NASA Astrophysics Data System (ADS)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  4. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  5. Siderophile elements, oxygen and single-stage core formation

    NASA Astrophysics Data System (ADS)

    Corgne, A.; Siebert, J.; Badro, J.

    2009-12-01

    The abundances of siderophile elements in the bulk silicate Earth (BSE) indicate that its iron-rich core most probably form at high pressure and high temperature in a magma ocean (e.g. Walker et al. 1993; Hillgren et al. 1994; Thibault & Walter 1995; Li & Agee, 1996). This is consistent with physical models of planetary accretion (Davies 1985; Benz & Cameron 1990; Tonks & Melosh 1993). Metal-silicate partitioning experiments have proposed that the BSE concentrations of several siderophile elements are consistent with a scenario of single-stage equilibration at the base of a deep magma ocean (Li & Agee 1996; Righter et al 1997; Chabot & Agee 2003). More recent models using temperature sensitive partitioning data for V and Nb have casted doubt on the single-stage event hypothesis since the required basal temperature should greatly exceed that of the mantle solidus (Wade & Wood 2005; Corgne et al. 2008; Wood et al. 2008). This temperature mismatch is meaningless in the framework of the magma ocean theory because the temperature at the base of the magma ocean should approximate that of the mantle solidus. To resolve this anomaly, it has been suggested that the building materials of the Earth were initially reduced materials and then became progressively oxidized with time (Wade & Wood 2005; Corgne et al. 2008; Wood et al. 2008). Thus, rather than resulting from a single-stage event at relatively fixed conditions of high pressure and high temperature, the Earth’s core may in fact have formed in a more complex event, imprinted by heterogeneous accretion and the progressive growth of the planet and its magma ocean. Here, we present an alternative to the dynamic model by showing that a single-stage core formation event could explain the mantle contents of the best-constrained siderophile elements (Ni, Co, V, Mn, Cr, Nb) provided that the core contains a few weight percents of oxygen. Our calculations based on partitioning and metallurgy data reveal that V and Nb become

  6. Developments in laser wakefield accelerators: From single-stage to two-stage

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Wang, Wen-Tao; Liu, Jian-Sheng; Wang, Cheng; Zhang, Zhi-Jun; Qi, Rong; Yu, Chang-Hai; Li, Ru-Xin; Xu, Zhi-Zhan

    2015-01-01

    Laser wakefield accelerators (LWFAs) are compact accelerators which can produce femtosecond high-energy electron beams on a much smaller scale than the conventional radiofrequency accelerators. It is attributed to their high acceleration gradient which is about 3 orders of magnitude larger than the traditional ones. The past decade has witnessed the major breakthroughs and progress in developing the laser wakfield accelerators. To achieve the LWFAs suitable for applications, more and more attention has been paid to optimize the LWFAs for high-quality electron beams. A single-staged LWFA does not favor generating controllable electron beams beyond 1 GeV since electron injection and acceleration are coupled and cannot be independently controlled. Staged LWFAs provide a promising route to overcome this disadvantage by decoupling injection from acceleration and thus the electron-beam quality as well as the stability can be greatly improved. This paper provides an overview of the physical conceptions of the LWFA, as well as the major breakthroughs and progress in developing LWFAs from single-stage to two-stage LWFAs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 11425418, and 61221064), the National Basic Research Program of China (Grant No. 2011CB808100), and the Science and Technology Talent Project of Shanghai City, China (Grant Nos. 12XD1405200 and 12ZR1451700).

  7. The single electron chemistry of coals. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Larsen, J.W.; Rothenberg, S.E.

    1994-08-01

    The objective of this work is to investigate and characterize the single electron reactions of alkyl and alkoxy aromatic compounds in order to determine the role these reactions play in the chemistry of coal. The work here is concerned with the interactions of coals, such as Illinois No. 6, with tetracyanoethylene.

  8. The single electron chemistry of coals. Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    Larsen, J.W.; Rothenberg, S.E.

    1994-08-01

    The objective of this work is to investigate and characterize the single electron reactions of alkyl and alkoxy aromatic compounds in order to determine the role these reactions play in the chemistry of coal. The work here is concerned with the interactions of coals, such as Illinois No. 6, with tetracyanoethylene.

  9. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  10. Combustion Stages of a Single Heavy Oil Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Ikegami, M.; Xu, G.; Ikeda, K.; Honma, S.; Nagaishi, H.; Dietrich, D. L.; Struk, P. M.; Takeshita, Y.

    2001-01-01

    Heavy oil is a common fuel for industrial furnaces, boilers, marines and diesel engines. Previous studies showed that the combustion of heavy oil involves not only the complete burning of volatile matters but also the burn-out of coke residues. Detailed knowledge about heavy oil combustion therefore requires an understanding of the different burning stages of heavy oil droplets in the burner. This in turn, demands knowledge about the single droplet evaporation and combustion characteristics. This study measured the temperature and size histories of heavy oil (C glass) droplets burning in microgravity to elucidate the various stages that occur during combustion. The elimination of the gravity-induced gas convection in microgravity allows the droplet combustion to be studied in greater detail. Noting that the compositions of heavy oil are various, we also tested the fuel blends of a diesel light oil (LO) and a heavy oil residue (HOR).

  11. Evaluation of an automated single-channel sleep staging algorithm

    PubMed Central

    Wang, Ying; Loparo, Kenneth A; Kelly, Monica R; Kaplan, Richard F

    2015-01-01

    Background We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM) Sleep, against laboratory polysomnography (PSG) using a consensus of expert visual scorers. Methods Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years), including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2) were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa) and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM, Total Deep Sleep, and Total REM). Results Sensitivities of Z-PLUS compared to the PSG Consensus were 0.84 for Light Sleep, 0.74 for Deep Sleep, and 0.72 for REM. Similarly, positive predictive values were 0.85 for Light Sleep, 0.78 for Deep Sleep, and 0.73 for REM. Overall, kappa agreement of 0

  12. The X-33 Program, Proving Single Stage to Orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.; Rising, Jerry J.

    1998-01-01

    The X-33, NASA's flagship for reusable space plane technology demonstration, is on course to permit a crucial decision for the nation by the end of this decade. Lockheed Martin Skunk Works, NASA's partner in this effort, has led a dedicated and talented industry and government team that have met and solved numerous challenges within the first 26 months. This program began by accepting the mandate that included two unprecedented and highly challenging goals: 1) demonstrate single stage to orbit technologies in flight and ground demonstration in less than 42 months and 2) demonstrate a new government and industry management relationship working together with industry in the lead.

  13. Characterization of Subsystems for a WB-003 Single Stage Shuttle

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Lepsch, Roger A., Jr. (Technical Monitor)

    2002-01-01

    Subsystems for an all oxygen-hydrogen-single-stage shuttle are characterized for a vehicle designated WB-003. Features of the vehicle include all-electric actuation, fiber optics for information circuitry, fuel cells for power generation, and extensive use of composites for structure. The vehicle is sized for the delivery of a 25,000 lb. payload to a space station orbit without crew. When crew are being delivered, they are carried in a module in the payload bay with escape and manual override capabilities. The underlying reason for undertaking this task is to provide a framework for the study of the operations costs of the newer shuttles.

  14. The single electron chemistry of coals, July 1, 1991--September 30, 1991

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1991-12-31

    The objectives of this work are to investigate and characterize the single electron reactions of alkyl and alkoxy aromatic compounds in order to determine the role these reactions play in the chemistry of coal. (1) Attempts will be made to demonstrate that the radicals from inertinite maceral group will initiate the polymerization of 4-vinylpyridine. (2) The molecule, N, N-diphenyl-phenylendiamine, will be deposited in coals to characterize their native free radicals. (3) Tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) will be used to characterize the numbers and strengths of single electron donors in coals.

  15. The single electron chemistry of coals, July 1, 1991--September 30, 1991

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1991-01-01

    The objectives of this work are to investigate and characterize the single electron reactions of alkyl and alkoxy aromatic compounds in order to determine the role these reactions play in the chemistry of coal. (1) Attempts will be made to demonstrate that the radicals from inertinite maceral group will initiate the polymerization of 4-vinylpyridine. (2) The molecule, N, N-diphenyl-phenylendiamine, will be deposited in coals to characterize their native free radicals. (3) Tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) will be used to characterize the numbers and strengths of single electron donors in coals.

  16. The single electron chemistry of coals. [Quarterly] report, January 1--March 31, 1992

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-07-01

    The objectives of this project is to investigate and characterize the single electron reactions of alkyl and alkoxy aromatic compounds in order to determine the role these reactions play in the chemistry of coal. Scope of Work: (1) attempts will be made to demonstrate that the radicals from inertinite maceral group will initiate the polymerization of 4-vinylpyridine; (2) the molecule, N,N-diphenyl-phenylenediamine, will be deposited in coals to characterize their native free radicals; and (3) tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) will be used to characterize the numbers and strengths of single electron donors in coals.

  17. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  18. Single Stage Surgical Outcomes for Large Angle Intermittent Exotropia

    PubMed Central

    Yang, Min; Chen, Jingchang; Shen, Tao; Kang, Ying; Deng, Daming; Lin, Xiaoming; Wu, Heping; Chen, Qiwen; Ye, Xuelian; Li, Jianqun; Yan, Jianhua

    2016-01-01

    Although there were many prior studies about exotropia, few focused on large-angle intermittent exotropia. The goal of this study was to evaluate single-stage surgical outcomes for large-angle intermittent exotropia and analyze risk factors that may affect the success of surgery. Records from intermittent exotropia patients with exodeviations >60 prism diopters(PD) who were surgically treated at the Zhongshan Ophthalmic Center, of Sun Yat-Sen University were reviewed. Included within this review were data on, pre- and post-operative ocular motility, primary alignment, binocular vision and complications. Patients with exodeviations ≤70PD received two-muscle surgery, while those with exodeviations >70PD were subjected to a three-muscle procedure. A total of 40 records were reviewed. The mean exodeviation was 73±9PD at distance and 75±26PD at near. There were 25 patients received two-muscle surgery and 15 the three-muscle procedure. Orthophoria (deviation within 8PD) was obtained in 77.5% of these patients and the ratios of surgical under-correction and over-correction were 15% and 7.5% respectively. However, when combining ocular alignment with binocular vision as the success criteria, success rates decreased to 30%. No statistically significant differences in success rates were obtained between the two- and three-muscle surgery groups. Seven subjects experienced an abduction deficit during the initial postoperative stages, but eventually showed a full recovery. One patient required a second surgery for overcorrection. No statistically significant risk factors for poor outcome were revealed. Our data showed that single-stage two- and three-muscle surgeries for large-angle intermittent exotropia are effective in achieving a favorable outcome. PMID:26919493

  19. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  20. Management of locoregional stage esophageal cancer: a single center experience.

    PubMed

    Javle, M M; Nwogu, C E; Donohue, K A; Iyer, R V; Brady, W E; Khemka, S V; Smith, J L; Demmy, T L; Yang, G Y; Nava, H R

    2006-01-01

    Therapeutic options for locoregional esophageal cancer (EC) include primary surgery, neoadjuvant or definitive chemoradiation and systemic chemotherapy. The role of surgery in these multimodal strategies has recently been debated and definitive chemoradiation is being offered as an alternative to surgery at many centers. We examined our results with multimodal therapy and surgery in this patient population. We conducted a retrospective analysis of 172 patients with locoregional (AJCC stages I-III) EC treated at RPCI between February 14, 1990 and September 20, 2002. Median age was 65 years (range, 36-95); there were 136 male patients. There were 100 regional (stages IIB-III), 69 local (stages I-IIA) and three in situ cases. Initial therapy was either combined modality (n = 122) or single modality (surgery) (n = 50). There was 0%, 30-day, postoperative mortality. Median survival for all patients was 25.3 months and was better for local stage with surgery alone (75 months) than with neoadjuvant (35.7 months) or definitive chemoradiation (19.1 months, P < 0.001). Survival for patients with regional disease treated with surgery alone, neoadjuvant or definitive chemoradiation was 21.5, 24.4 and 11.8 months, respectively (P = not significant). The associations of prognostic factors with overall survival were evaluated using Cox proportional hazards regression analysis and 2-sided Wald's chi-square test. On multivariate analysis, carefully selected patients treated with surgery alone had better outcomes compared with those treated with definitive chemoradiation (P < 0.001). Patients with locoregional esophageal cancer who are eligible for surgical resection either alone or as a part of multimodal therapy may have better outcomes than those treated with non-surgical approaches. PMID:16643174

  1. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    SciTech Connect

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-03-10

    Hydrogen production cannot be maximized from fossil fuels (gas/coal) via the WGS reaction at high temperatures as the WGS-equilibrium constant K{sub WGS} (= [CO{sub 2}][H{sub 2}]/[CO][H{sub 2}O]), falls with increasing temperatures. However, CO{sub 2} removal down to ppm levels by the carbonation of CaO to CaCO{sub 3} in the temperature range 650-850 C, leads to the possibility of stoichiometric H{sub 2} production at high temperature/pressure conditions and at low steam to fuel ratios. Further, CO{sub 2} is also captured in the H{sub 2} generation process, making this coal to hydrogen process compatible with CO{sub 2} sequestration goals. While microporous CaO sorbents attain <50% conversion over cyclical carbonation-calcination, the OSU-patented, mesoporous CaO sorbents are able to achieve >95% conversion. Novel calcination techniques could lead to an ever-smaller footprint, single-stage reactors that achieve maximum theoretical H{sub 2} production at high temperatures and pressures for on/off site usage. Experimental results indicate that the PCC-CaO sorbent is able to achieve complete conversion of CO for 240 seconds as compared to only a few seconds with CaO derived from natural sources.

  2. Study of the comminution characteristics of coal by single particle breakage test device

    SciTech Connect

    Sahoo, R.

    2005-09-01

    Single-particle breakage tests of South Blackwater and Ensham coal from the Bowen Basin area in Queensland were conducted by a computer-monitored twin-pendulum device to measure the energy utilization pattern of the breakage particles. Three particle sizes (-16.0+13.2mm, -13.2+11.2mm, -11.2+9.5mm) of each coal were tested by a pendulum device at five input energy levels to measure the specific comminution energy. When particles were tested at constant input energy, the variation of comminution energy between the same size broken particles of Ensham coal was minimal, because Ensham coal is a softer and higher friability coal, which absorbs more input energy than harder coal during breakage tests. For different particle sizes, the specific comminution energy increases linearly with the input energy and the fineness of the breakage products increases with the specific comminution energy. The size distribution graphs are curved but approach linearity in the finer region. At a constant input energy, the twin pendulum breakage product results show that the fineness of the products increases with decrease in particle size and South Blackwater coal produced finer products than the Ensham coal. The t-curves are the family of size distribution curves, which can describe the product size distribution of the breakage particles during single-particle breakage tests.

  3. The single electron chemistry of coals. [Quarterly] report, April 1, 1990--June 30, 1990

    SciTech Connect

    Larsen, J.W.; Flowers, R.A. II

    1990-07-24

    TCNQ Charge Transfer Complexes with Coals. TCNQ can be readily deposited in coals from pyridine solution. IR spectra of TCNQ and TCNQ in Illinois No. 6 coal are shown in Fig. 1. It is clear that the stretching frequency has been shifted by the full 44 cm{sup {minus}1} caused by the transfer of a single electron. Similar behavior has been observed with a variety of coals, including lignites, subbituminous and a range of bituminous coals. There are two possible explanations for the observed shift. The simplest explanation is that there exist in coals structures which are excellent single electron donors capable of transferring an electron to TCNQ in the ground state. All of the TCNQ dissolved in the coal is shifted. No uncomplexed TCNQ remains in the sample, as demonstrated by the absence of the unaltered CN stretch at 2227 cm{sup {minus}1}. The spectrum shown is for TCNQ in coal in a molar concentration equivalent to approximately 20% of the PNA systems in this coal as deduced from the NMR studies of Solum et al. (1989). It is highly unlikely that 20% of the PNA systems in coal are such good electron donors that the charge transfer complex would have an electron transferred in the ground state. The second explanation is that cooperative interactions between the TCNQ and the aromatic systems in coal have led to the formation of an extended valance band structure, that the TCNQ LUMO is part of this band structure, and that the band is half filled.

  4. Airbreathing/Rocket Single-Stage-to-Orbit Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.

    1995-01-01

    A definitive design/performance study was performed on a single-stage-to-orbit (SSTO) airbreathing propelled orbital vehicle with rocket propulsion augmentation in the Access to Space activities during 1993. A credible reference design was established, but by no means an optimum. The results supported the viability of SSTO airbreathing/rocket vehicles for operational scenarios and indicated compelling reasons to continue to explore the design matrix. This paper will (1) summarize the Access to Space design activity from the SSTO airbreathing/rocket perspective, (2) present an airbreathing/rocket SSTO design matrix established for continued optimization of the design space, and (3) focus on the compelling reasons for airbreathing vehicles in Access to Space scenarios.

  5. Development of Single Stage Stirling Cooler for Space Use

    NASA Astrophysics Data System (ADS)

    Narasaki, K.; Tsunematsu, S.; Kanao, K.; Otsuka, K.; Hoshika, S.; Fujioka, K.; Tsurumi, K.; Hirabayashi, M.

    2006-04-01

    A single-stage Stirling cooler has been developed and tested for space applications, which include instrument or detector cooling, and a supplemental cooler for the cryogenic system. The mechanical cooler is a free displacer type and consists of a compressor, a cold head and a connecting tube. The features of this cooler are a moving cylinder, clearance seal by diaphragm spring, twin pole magnet system and pneumatically driven displacer. The typical cooling power is 2 W at 80 K and the input power to the cooler is 50 W without driver electronics. The total weight of the cooler is 4.2 kg. The engineering and the flight models of the cooler have been fabricated and evaluated to verify the capability for three space missions. This paper describes the design of the cooler and the results from verification tests including cooler performance test, thermal vacuum test, vibration test and lifetime test.

  6. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  7. Technology requirements for affordable single-stage rocket launch vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    1993-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  8. Evaporation and heating of a single suspended coal-water slurry droplet in hot gas streams

    SciTech Connect

    Shi-chune, Y.; Liu, L.

    1982-01-01

    The evaporation, heating, and burning of single coal-water slurry droplets are studied. The coal selected in this study is Pittsburgh Seam number 8 coal which is a medium volatile caking bituminous coal. The droplet is suspended on a microthermocouple and exposed to a hot gas stream. Temperature measurement and microscopic observation are performed in the parametric studies. The duration of water evaporation in CWS droplets decreases with the reduction of the droplet size, increasing of coal weight fraction, and increasing of gas temperature and velocity. The duration of heat-up is always significant due to the agglomeration. The CWS droplets are generally observed to swell like popcorn during heating. A model for the formation of the popped swelling is proposed and discussed.

  9. The single electron chemistry of coals. [Quarterly report], April 1--June 30, 1993

    SciTech Connect

    Larsen, J.W.; Rothenberg, S.E.

    1993-11-01

    Objective was to investigate the single electron reactions of alkyl and alkoxy aromatic compounds and the role of these reactions in the chemistry of coal. During this period, the reactions of Illinois No. 6 coal with tetracyanoethylene (TCNE) was studied using diffuse reflectance infrared spectra. Results showed that no chemical reaction occurred, either Diels-Alder or addition, even at 180 C; TCNE`s lowest unoccupied molecular orbital was still occupied 2/3 of an electron transferred by Illinois No. 6 coal.

  10. The single electron chemistry of coals. [Quarterly] report, July 1--September 30, 1993

    SciTech Connect

    Larsen, J.W.; Rothenberg, S.E.

    1993-12-31

    Tetracyanoethylene (TCNE) and Tetracyanoquinodimethane (TCNQ) were used earlier in an attempt to determine the single electron donating ability of aromatic groups in coals. The extent of electron transfer from coals to these compounds was measured by determining the frequency shift of the nitrile stretching bands in the Diffuse Reflectance (DR) infrared spectra. Our addition to this work will be to study the interactions of coals, such as Illinois No. 6, with TCNE. We will determine whether a Diels-Alder reaction or other addition reactions are occurring.

  11. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  12. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  13. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    SciTech Connect

    Fair, C.E.; Cook, M.E. Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system.

  14. System and method for single-phase, single-stage grid-interactive inverter

    SciTech Connect

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  15. Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report, [October 1, 1988--December 31, 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported herein are the details and results of Laboratory and Bench-Scale experiments using bituminous coal concluded at Hydrocarbon Research, Inc., under DOE contract during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with the application of coal cleaning methods and solids separation methods to the Catalytic Two-Stage Liquefaction (CTSL) Process. Additionally a predispersed catalyst was evaluated in a thermal/catalytic configuration, and an alternative nickel molybdenum catalyst was evaluated for the CTSL process. Three coals were evaluated in this program: Bituminous Illinois No. 6 Burning Star and Sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The tests involving the Illinois coal are reported herein, and the tests involving the Wyoming and New Mexico coals are described in Topical Report No. 1. On the laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects are reported in Topical Report No. 3. Other microautoclave tests, such as tests on rejuvenated catalyst, coker liquids, and cleaned coals, are described in the Bench Run sections to which they refer. The microautoclave tests conducted for modelling the CTSL process are described in the CTSL Modelling section of Topical Report No. 3 under this contract.

  16. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  17. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  18. Catalytic multi-stage liquefaction of coal. Eleventh quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.

    1995-10-01

    This quarterly report covers the activities of Catalytic Multi-Stage Liquefaction of Coal during the Period April 1 - June 30, 1995, at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. This DOE Contract Period was from December 8, 1992 to December 7, 1994 and has been extended to September 30, 1995. The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  19. Two-stage, closed coupled catalytic liquefaction of coal. Sixteenth quarterly report, 1 July 1992--30 September 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.

    1992-12-01

    This quarterly report covers activities of the Two-Stage, Close-Coupled Catalytic Liquefaction of Coal Program during the period of July 1--September 30, 1992, at Hydrocarbon Research, Inc., in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1998 to December 31, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory testing, Bench Scale Studies and PDU Activities focusing on scale-up of the Catalytic Two-Stage Liquefaction (CTSL) processing of sub-bituminous Black Thunder Coal.

  20. Single-stage-to-orbit: Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene

    1995-10-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  1. Single-stage-to-orbit — Meeting the challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene

    1996-02-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  2. Development of a large cooling capacity single stage GM cryocooler

    NASA Astrophysics Data System (ADS)

    Yamada, K.

    2014-09-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed 4 K Gifford-McMahon (GM) cryocoolers for various cryogenic fields including Magnetic resonance imaging (MRI) systems. However, for the purpose of cooling high temperature superconductor (HTS) devices, the needs for cryocoolers with a large cooling capacity in the range of 20-30 K has been rapidly increasing. Recently, SHI developed a large cooling capacity single-stage GM cryocooler, for HTS applications. A typical cooling capacity is 46/52 W at 20 K or 85/96 W at 30 K with 6.9/7.9 kW input power at 50/60 Hz. The cooling capacity degradation caused by inclination is within 24%. And also, a low mechanical vibration and a low acoustic noise have been achieved because the displacer is driven by a motor instead of a pneumatic force. In addition, the cryocooler does not contain lead as a regenerator material, so it complies with restriction of hazardous substances (RoHS) directive.

  3. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  4. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    PubMed

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. PMID:25432400

  5. Advanced technologies for rocket single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, Alan W.; Bush, Lance B.; Cruz, Christopher I.; Lepsch, Roger A.; Morris, W. Douglas; Stanley, Douglas O.; Wurster, Kathryn E.

    1991-01-01

    A single-stage-to-orbit vertical takeoff/horizontal landing rocket vehicle was studied to determine the benefits of advanced technology. Advanced technologies that were included in the study were variable mixture ratio oxygen/hydrogen rocket engines and materials, structures, and subsystem technologies currently being developed in the National Aero-Space Plane Program. The application of advanced technology results in an 85 percent reduction in vehicle dry weight. With advanced materials, an external thermal protection system, like the Space Shuttle tiles, was not required. Compared to an all-airbreathing horizontal takeoff/horizontal landing vehicle using the same advanced technologies and mission requirements, the rocket vehicle is lighter in dry weight and has fewer subsystems. To increase reliability and safety, operational features were included in the rocket vehicle-robust subsystems, 5 percent additional margin, no slush hydrogen, fail-operational with an engine out, and a crew escape module. The resulting vehicle grew in dry weight and was still lower in dry weight than the airbreathing vehicle.

  6. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect

    Costa, M.; Azevedo, J.L.T.

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  7. The single electron chemistry of coals. [Quarterly] report, October 1--December 31, 1991

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-01-31

    Depolymerization of coals at low temperatures may offer advantages over thermal bond cleavage. Because bond cleavage energies of radical cations are lower than the corresponding homolytic bond cleavage energies of the same bond, generation of radical cations in coal may make possible depolymerization at lower temperatures. We seek to investigate the above possibility using single molecules containing functional groups common in coals. Since the generation of a radical cation requires the removal of an electron from a neutral molecule, a primary focus of the study will be finding oxidants that will remove an electron from compounds with structural similarity to those typically found in coals. The study must also be concerned with the decomposition of radical cations and the products formed as a result of the decomposition.

  8. The single electron chemistry of coals. [Quarterly], April 1--June 30, 1992

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-10-01

    Depolymerization of coals at low temperatures may offer advantages over thermal bond cleavage. Because bond cleavage energies of radical cations are lower than the corresponding homolytic bond cleavage energies of the same bond, generation of radical cations in coal may make possible depolymerization at lower temperatures. We seek to investigate the above possibility using single molecules containing functional groups common in coals. Since the generation of a radical cation requires the removal of an electron from a neutral molecule, a primary focus of the study will be finding oxidants that will remove an electron from compounds with structural similarity to those typically found in coals. The study will also be concerned with the decomposition of radical cations and the products formed as a result of the decomposition.

  9. Single-Stage Trans-mastoid Drainage of Otogenic Brain Abscess: A Single-Institution Experience.

    PubMed

    Mukherjee, Dwaipayan; Das, Chiranjib; Paul, Dipten

    2016-06-01

    Brain abscess is the ultimate otogenic complication, both in severity and difficulty of management. In developing countries with high incidence of cholesteatoma, brain abscess is not a rare complication. In India, brain abscesses constitute about 8 % of all intracranial lesions. The surgical treatment of brain abscess is very controversial. This prospective study was done in ENT department of a tertiary care hospital in Kolkata, during the period from May 2009 to April 2014. 22 such cases of otogenic brain abscess managed by single-stage trans-mastoid drainage along with meticulous mastoid clearance. On the basis of clinical, radiological and operative findings, data of all patients with otogenic brain abscess were analyzed. There was male predominance and 9 (40.91 %) of them were younger than 20 years. 15 (68.18 %) cases were of cerebellar abscess and in 7 (31.82 %) cases were of the temporal abscess. Lateral sinus thrombosis was the most common associated complication found (22.73 %) in our study. All the patients peri-operatively revealed cholesteatoma. All the patients recovered well and there was no recurrence of symptoms on a minimum 15 months follow-up. This approach suits the otologists in clearing the cause and effect of pathology, at the same sitting. This single-stage approach decreases the peri-operative morbidity and mortality of the two-stage procedure. It also decreases the hospital stay and financial burden. PMID:27340633

  10. Two-stage, close coupled catalytic liquefaction of coal. Fourteenth quarterly report, 1 January 1992--31 March 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, T.L.K.; Popper, G.A.; Stalzer, R.H.

    1992-04-01

    This quarterly report covers activities of the Two-Stage, Close- Coupled Catalytic Liquefaction of Coal program during the period January 1,--March 31,1992, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1988 to September 30, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory Testing, PDU Activities and Administration.

  11. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  12. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 14. Catalyst activity trends in two-stage coal liquefaction

    SciTech Connect

    Not Available

    1984-02-01

    The Two Stage Coal Liquefaction process became operational at Wilsonville in May 1981, with the inclusion of an H-OIL ebullated-bed catalytic reactor. The two stage process was initially operated in a nonintegrated mode and has recently been reconfigurated to fully integrate the thermal and the catalytic stages. This report focuses on catalyst activity trends observed in both modes of operation. A literature review of relevant catalyst screening studies in bench-scale and PDU units is presented. Existing kinetic and deactivation models were used to analyze process data over an extensive data base. Based on the analysis, three separate, application studies have been conducted. The first study seeks to elucidate the dependence of catalyst deactivation rate on type of coal feedstock used. A second study focuses on the significance of catalyst type and integration mode on SRC hydrotreatment. The third study presents characteristic deactivation trends observed in integrated operation with different first-stage thermal severities. In-depth analytical work was conducted at different research laboratories on aged catalyst samples from Run 242. Model hydrogenation and denitrogenation activity trends are compared with process activity trends and with changes observed in catalyst porosimetric properties. The accumulation of metals and coke deposits with increasing catalyst age, as well as their distribution across a pellet cross-section, are discussed. The effect of catalyst age and reactor temperature on the chemical composition of flashed bottoms product is addressed. Results from regenerating spent catalysts are also presented. 35 references, 31 figures, 18 tables.

  13. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  14. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    SciTech Connect

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  15. Coal slurry combustion optimization on single cylinder engine

    SciTech Connect

    Not Available

    1992-09-01

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  16. Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution

    DOEpatents

    Wen, Wu-Wey; Gray, McMahan L.; Champagne, Kenneth J.

    1995-01-01

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  17. Method for simultaneous use of a single additive for coal flotation, dewatering and reconstitution

    SciTech Connect

    Wen, Wu-Wey; Gray, M.L.; Champagne, K.J.

    1993-11-09

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  18. Single-stage posterior-only approach treating single-segment thoracic tubercular spondylitis

    PubMed Central

    Shen, Xiongjie; Liu, Hongzhe; Wang, Guoping; Liu, Xiangyang

    2015-01-01

    There are quite a few controversies on surgical management of single-segment thoracic spinal tuberculosis (STB) with neurological deficits. The present study was to compare single-stage posterior-only transpedicular debridement, interbody fusion and posterior instrumentation (posterior-only surgery) with a combined posterior-anterior surgical approach for treatment of single-segment thoracic STB with neurological deficits and to determinethe clinical feasibility and effectiveness of posterior-only surgical treatment. Sixty patients with single-segment thoracic STB with neurological deficits were treated with one of two surgical procedures in our center from January 2003 to January 2013. Thirty patients were treated with posterior-only surgery (Group A) andthirty were treated with combined posterior-anterior surgery (Group B). The American Spinal Injury Association (ASIA) score system to evaluate the neurological deficits, thevisual analogue scale (VAS) to assess the degree of pain, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) to judge the activity of tuberculosis (TB), surgery duration, intraoperative blood loss, length of hospitalization, bonyfusion rates, and kyphosis correction of the two groups were compared. The average follow-up period was 36.5 ± 9.2 months for Group A and 34.6 ± 10.2 months for Group B. Under the ASIA score system, all patients improved with treatment. STB was completely cured and grafted bones were fused within 5-11 months in allpatients. There were no persistent or recurrent infections orobvious differences in radiological results between thegroups. The kyphosis deformity was significantly corrected after surgical management. The average operative duration, blood loss, length of hospital stay, and postoperative complication rateof Group A were lower than those of Group B. In conclusions, posterior-only surgery is feasible and effective, resulting in better clinical outcomes than combined posterior-anterior surgeries

  19. Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.

    2014-07-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 μW at 60 mK [1]) was sufficient for the small (6 × 6) detector arrays [2], but recent advances in arraying and multiplexing technologies [3] are generating a need for higher cooling power (5-10 μW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  20. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  1. Single-stage experimental evaluation of low aspect ratio, highly loaded blading for compressors. Part 9: Stage F and stage G, volume 1

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Smith, J. D.; Wright, D. L.

    1976-01-01

    Two single-stage, 0.77 hub/tip ratio axial-flow compressors were tested to evaluate the effectiveness of low aspect ratio blading as a means of obtaining higher stage loadings. One compressor, designated Stage F, was comprised of circular arc blading with an aspect ratio of 0.9 for both the rotor and stator. This compressor was tested with uniform inlet flow, hub radial, tip radial, and 180 deg arc circumferential inlet distortion. The second compressor, designated Stage G, was comprised of multiple circular arc blading with an aspect ratio of 1.0 for both the rotor and stator. This compressor was tested with uniform inlet flow only. Design rotor tip speeds for Rotor F and Rotor G were 285 m/sec (934 ft/sec) and 327 m/sec (1,074 ft/sec) respectively. Both stages operated at high loading levels with adequate efficiency and operating range. The peak efficiencies and corresponding average stage diffusion factors for Stages F and G at design rotor speed were 86.4% and 84.1% and 0.59 and 0.55 respectively. The surge margin at peak efficiency for Stage F was 12.6% and the corresponding value for Stage G was 16.5%. Both stages experienced a loss in efficiency with increasing rotor speed; however, the multiple circular arc rotor delayed the characteristic loss in efficiency within increasing Mach number to higher Mach number.

  2. Feeding Dysfunction in Children with Single Ventricle Following Staged Palliation

    PubMed Central

    Hill, Garick D.; Silverman, Alan H.; Noel, Richard J.; Simpson, Pippa M.; Slicker, Julie; Scott, Ann E.; Bartz, Peter J.

    2013-01-01

    Objective To determine the prevalence of feeding dysfunction in children with single ventricle defects and identify associated risk factors. Study design Patients aged 2–6 years with single ventricle physiology presenting for routine cardiology follow-up at the Children’s Hospital of Wisconsin were prospectively identified. Parents of the patients completed 2 validated instruments for assessment of feeding dysfunction. Chart review was performed to retrospectively obtain demographic and diagnostic data. Results Instruments were completed for 56 patients; median age was 39 months. Overall, 28 (50%) patients had some form of feeding dysfunction. Compared with a normal reference population, patients with single ventricle had statistically-significant differences in dysfunctional food manipulation (p<0.001), mealtime aggression (p=0.002), choking/gagging/vomiting (p<0.001), resistance to eating (p<0.001) and parental aversion to mealtime (p<0.001). Weight and height for age z-scores were significantly lower in subjects with feeding dysfunction (−0.84 vs. −0.33; p<0.05 and −1.46 vs. −0.56; p=0.001 respectively). Multivariable analysis identified current gastrostomy tube use (p=0.02) and a single parent household (p=0.01) as risk factors for feeding dysfunction. Conclusion Feeding dysfunction is common in children with single ventricle defects, occurring in 50% of our cohort. Feeding dysfunction is associated with worse growth measures. Current gastrostomy tube use and a single parent household were identified as independent risk factors for feeding dysfunction. PMID:24161218

  3. The single electron chemistry of coals. Quarterly report, July 1--September 30, 1992

    SciTech Connect

    Larsen, J.W.; Eskay, T.P.

    1992-11-11

    Depolymerization of coals at low temperatures may offer advantages over thermal bond cleavage. Because bond cleavage energies of radical cations are lower than the corresponding homolytic bond cleavage energies of the same bond, generation of radical cations in coal may make possible depolymerization at lower temperatures. We seek to investigate the above possibility using single molecules containing functional groups common in coals. Since the generation of a radical cation requires the removal of an electron from a neutral molecule, a primary focus of the study will be finding oxidants that will remove an electron from compounds with structural similarity to those typically found in coals. The study will also be concerned with the decomposition of radical cations and the products formed as a result of the decomposition. In our last report we described that treatment of bibenzyl and neo-pentylbenzene with Fe(III) (1,10-phenanthroline){sub 3}(ClO{sub 4}){sub 3} (Fe(III)(PHEN)) in refluxing CH{sub 3}CN (82{degrees}C) failed to produce substantial bond cleavage {beta} to the aromatic ring. Because bond cleavage was not observed, we have continued our study by moving to compounds which have lower ionization potentials as well as study other oxidants.

  4. Catalytic multi-stage liquefaction of coal. Tenth quarterly report, January 1--March 31, 1995

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1995-05-01

    The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This report describes the following: (1) laboratory support for bench run CMSL-09, (2) the laboratory-scale efforts for development of suitable catalysts for hydrocracking/depolymerization of waste plastics, (3) analysis of TBP (true boiling point) fractions of distillates from CMSL-08, and (4) objectives and run-plan for bench run CMSL-09.

  5. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOEpatents

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  6. Composite engines for application to a single-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Bendot, J. G.; Brown, P. N.; Piercy, T. G.

    1975-01-01

    Seven composite engines were designed for application to a reusable single-stage-to-orbit vehicle. The engine designs were variations of the supercharged ejector ramjet engine. The resulting performance, weight, and drawings of each engine form a data base for establishing a potential of this class of composite engine to various missions, including the single-stage-to-orbit application. The impact of advanced technology in the design of the critical fan turbine was established.

  7. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors

    NASA Astrophysics Data System (ADS)

    Hinkey, Robert T.; Yang, Rui Q.

    2013-09-01

    absorbers are designed to absorb and collect an equal number of carriers in each stage. It is shown that for zero-bias operation, this design has a higher ultimate detectivity than a single-absorber device. Such improvements in detectivity are significant for material with αLn ≤ 0.5. Using the results derived for general values of αLn, we offer an outlook for multiple-stage detectors that utilize InAs/GaSb superlattice absorbers.

  8. Downstream processing of virus-like particles: single-stage and multi-stage aqueous two-phase extraction.

    PubMed

    Ladd Effio, Christopher; Wenger, Lukas; Ötes, Ozan; Oelmeier, Stefan A; Kneusel, Richard; Hubbuch, Jürgen

    2015-02-27

    The demand for vaccines against untreated diseases has enforced the research and development of virus-like particle (VLP) based vaccine candidates in recent years. Significant progress has been made in increasing VLP titres during upstream processing in bacteria, yeast and insect cells. Considering downstream processing, the separation of host cell impurities is predominantly achieved by time-intensive ultracentrifugation processes or numerous chromatography and filtration steps. In this work, we evaluate the potential of an alternative separation technology for VLPs: aqueous two-phase extraction (ATPE). The benefits of ATPE have been demonstrated for various biomolecules, but capacity and separation efficiency were observed to be low for large biomolecules such as VLPs or viruses. Both performance parameters were examined in detail in a case study on human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A solubility-guided approach enabled the design of polyethylene (PEG) salt aqueous two-phase systems with a high capacity of up to 4.1mg/mL VLPs. Unique separation efficiencies were obtained by varying the molecular weight of PEG, the pH value and by using neutral salt additives. Further improvement of the separation of host cell impurities was achieved by multi-stage ATPE on a centrifugal partition chromatography (CPC) device in 500mL scale. While single-stage ATPE enabled a DNA clearance of 99.6%, multi-stage ATPE improved the separation of host cell proteins (HCPs). The HPLC purity ranged from 16.8% (100% VLP recovery) for the single-stage ATPE to 69.1% (40.1% VLP recovery) for the multi-stage ATPE. An alternative two-step downstream process is presented removing the ATPS forming polymer, cell debris and 99.77% DNA with a HPLC purity of 90.6% and a VLP recovery of 63.9%. PMID:25637013

  9. Assessing the Validity of a Single-Item HIV Risk Stage-of-Change Measure

    ERIC Educational Resources Information Center

    Napper, Lucy E.; Branson, Catherine M.; Fisher, Dennis G.; Reynolds, Grace L.; Wood, Michelle M.

    2008-01-01

    This study examined the validity of a single-item measure of HIV risk stage of change that HIV prevention contractors were required to collect by the California State Office of AIDS. The single-item measure was compared to the more conventional University of Rhode Island Change Assessment (URICA). Participants were members of Los Angeles…

  10. Complex aortopulmonary window in a single ventricle setting: Technical considerations for staged palliation

    PubMed Central

    Salve, Gananjay G; Jain, Shreepal A; Katkade, Sandip S; Shivaprakash, Krishnanaik

    2016-01-01

    We report a successful surgical management of a case presented with a combination of aortopulmonary window (APW) with large ventricular septal defect (VSD) amounting to a single ventricle, with a view to highlight technical considerations during staged single-ventricle palliation. PMID:27212854

  11. Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity.

    PubMed

    Lue, Y H; Hikim, A P; Swerdloff, R S; Im, P; Taing, K S; Bui, T; Leung, A; Wang, C

    1999-04-01

    Short term exposure of the testis to heat causes degeneration of germ cells. However, the mechanisms underlying this process are poorly understood. The major objectives of this study were to determine whether the heat-induced loss of germ cells in the adult rat occurs via apoptosis, to document its stage-specific and cell-specific distribution, and to examine whether intratesticular testosterone (T) plays any role in the stage specificity of heat-induced germ cell death. Testes of adult male Sprague-Dawley rats were exposed to 22 C (control) or 43 C for 15 min. Animals were killed on days 1, 2, 9, and 56 after heat exposure. Germ cell apoptosis was characterized by DNA gel electrophoresis and in situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling assay. The incidence of germ cell apoptosis [apoptotic index (AI)] was quite low in control rats (AI = 0.04-0.1). Mild hyperthermia within 1 or 2 days resulted in a marked activation (AI = 4.7-5.6) of germ cell apoptosis predominantly at early (I-IV) and late (XII-XIV) stages. Stages V-VI and VII-VIII were relatively protected from heat-induced apoptosis. Spermatocytes, including pachytenes at stages I-IV and IX-XII, diplotene and dividing spermatocytes at stages XIII-XIV, and early (steps 1-4) spermatids, were most susceptible to heat. On day 9, the majority of the tubules were severely damaged and displayed only a few remaining apoptotic germ cells. By day 56, spermatogenesis was completely recovered, and the incidence of germ cell apoptosis was compatible with the control levels. To determine whether intratesticular T plays a role in protecting germ cells at stages VII-VIII against heat-induced cell death, adult rats were exposed to local testicular heating on day 2 or were given a daily sc injection of GnRH antagonist (GnRH-A) for 4 days with and without a single exposure of testes to heat applied on day 2. By day 4, the incidence of increased germ cell apoptosis at stages other than VII

  12. Short-range correlations in single-crystalline CoAl2O4

    NASA Astrophysics Data System (ADS)

    MacDougall, G. J.; Gout, D.; Zarestky, J. L.; Mandrus, D.; Nagler, S. E.

    2010-03-01

    The A-site spinels, where magnetic cations reside on a diamond sublattice, have been receiving much attention in recent years. Order can be frustrated in these systems due to competing nearest and further neighbor exchange, and theoretical studies suggest a number of interesting ground states and a central role for fluctuations. One such spinel, CoAl2O4, has been held up as a material of particular interest. Despite a large Curie-Weiss constant of θ˜104K, only a glassy transition is reported at T^*˜4-10K. Preliminary results on powders has been associated with novel spin liquid behavior, but careful studies of single crystals are needed. To this end, we have grown several large single crystals of CoAl2O4 at ORNL via the floating zone method, and studied them with neutron scattering using the HB-1a beamline at the High Flux Isotope Reactor. We will present the results of these neutron scattering experiments, and discuss both the evolution of magnetic properties in this system and implications for existing theories.

  13. Combustion of volatile matter during the initial stages of coal combustion

    SciTech Connect

    Marlow, D.; Niksa, S.; Kruger, C.H.

    1990-08-01

    Both the secondary pyrolysis and combustion of the volatiles from a bituminous coal will be studied. Devolatilization and secondary pyrolysis experiments will be conducted in a novel flow reactor in which secondary pyrolysis of the volatiles occurs after devolatilization is complete. This allows unambiguous measurements of the yields from both processes. Measurements will be made for reactor temperatures from 1500 to 1700 K, and a nominal residence time of 200 msec. These conditions are typical of coal combustion. Yields of tar, soot, H{sub 2}, CO, CH{sub 4}, and C{sub 2} and C{sub 3} hydrocarbons will be determined as a function of reactor temperature. The yields will be reported as a function of the temperature of the reactor. The instrumentation for temperature measurements will be developed during future studies. Combustion studies will be conducted in a constant volume bomb, which will be designed and constructed for this study. Tar and soot will be removed before introducing the volatiles to the bomb, so that only the combustion of the light gas volatiles will be considered. The burning velocities of light gas volatiles will be determined both as functions of mixture stoichiometry and the temperature at which the volatiles are pyrolysed. 90 refs., 70 figs., 13 tabs.

  14. Venturestar{trademark} single stage to orbit reusable launch vehicle program overview

    SciTech Connect

    Baumgartner, R.I.

    1997-01-01

    Lockheed Martin is developing the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle system. The VentureStar{trademark} launch system will drastically reduce the cost to place payloads in orbit. This paper describes the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle Program, system and technology. The technology to achieve VentureStar{trademark} will be demonstrated in the National Aeronautics and Space Administration X-33 Phase II Advanced Technology Demonstration Program. The X-33 program, vehicle, and technology are described herein. {copyright} {ital 1997 American Institute of Physics.}

  15. Cochlear implantation and management of chronic suppurative otitis media: single stage procedure?

    PubMed

    Basavaraj, S; Shanks, M; Sivaji, N; Allen, Agnes A

    2005-10-01

    In a series of 360 patients who underwent cochlear implantation at our center, four patients (five procedures) had cochlear implantation with obliteration of the mastoid cavity and management of cholesteatoma as a single-staged procedure. Three patients were bilaterally deaf secondary to CSOM and had bilateral mastoid cavities, and in one patient congenital cholesteatoma was identified during cochlear implantation. A mastoidectomy or revision mastoidectomy with obliteration of the mastoid cavity and cochlear implantation was performed as a single stage procedure. Cholesteatoma reoccurred in one patient 9 years after cochlear implantation. Surgical procedures, complications, follow-up and outcomes are discussed. PMID:15756568

  16. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin

    2013-08-15

    Effects of single and dual stage (acidogenic-methanogenic) mesophilic anaerobic digestion (AD) of kitchen waste (KW) was evaluated at hydraulic retention times (HRTs) of 20, 15, 12 and 9 d with and without thermal microwave (MW) pretreatment (145 °C). Anaerobic acidification in terms of acid accumulation was superior compared to microaerophilic acidification. Maximum anaerobic acidification of KW was determined to occur with an HRT of 2 d which was then selected for the acidification stage. The dual stage AD system fed with untreated KW produced the maximum biogas and volatile solids (VS) stabilization efficiencies at the shortest HRT of 9 d. Conversely, for free liquid resulting from MW pretreatment of KW the two stage reactor at 20 d HRT produced three fold more methane compared with the untreated free liquid control. However, MW pretreatment and AD of the free liquid fraction only, was not a sustainable treatment option. For KW, staging of the AD process had a greater positive impact on waste stabilization and methane yield compared to single stage reactors or MW pretreatment. KW can be characterized as being a readily biodegradable solid waste; concomitantly it is recommended that digester staging without MW pretreatment be employed to maximize methane yield and production. PMID:23648266

  17. Synthesis of low-temperature, fast, single-firing body for porcelain stoneware tiles with coal gangue.

    PubMed

    Qiangwei Wei; Wenyuan Gao; Xinguo Sui

    2010-10-01

    Coal gangue is a major industrial solid waste in China, causing great environment pollution. According to phase diagram theory, a low-temperature, fast, single-firing body mix for porcelain stoneware tiles was designed in the quaternary system CaO--MgO--Al₂O₃--SiO₂, using coal gangue as the main raw material. The coal gangue was from Baishan city, Jilin province and mainly composed of kaolinite and quartz. Mineralogical compositions and microstructures of some selected samples sintered at different temperatures were identified with X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that the optimal body mix was the one containing 34 wt% coal gangue sintered at 1170°C for about 1 h, with rupture strength of 43 MPa and water absorption of 0.22%. The main crystalline phases of the sintered body were quartz, anorthite and mullite. PMID:19942651

  18. Features of the Kaiser effect in coal specimens at different stages of the triaxial axisymmetric deformation

    SciTech Connect

    Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.

    2007-01-15

    The experimental data are presented for the features of formation and manifestation of the acoustic-emission and deformation memory effects in specimens of anthracite at different stages of the triaxial cyclic deformation by the Karman scheme in the pre-limiting and post-limiting zones.

  19. Heat balance analysis of single stage Gifford-McMahon cycle cryorefrigerator

    NASA Astrophysics Data System (ADS)

    Thirumaleshwar, M.; Subramanyam, S. V.

    A heat balance analysis of single stage Gifford-McMahon cycle cryorefrigerator is presented. Ideal refrigeration, actual refrigeration, net refrigeration and the various losses are tabulated. It is observed that pressure-volume losses account for a major fraction of the total losses.

  20. Effects of multistage or single-stage incubation on broiler chick quality and performance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-stage (SS) incubation has benefit over multistage (MS) incubation by matching incubator environment to embryo needs. Eggs from a young breeder flock may be incubated diffeerently than eggs from old flocks. Information on chick quality and performance are scarce. The objective of this study...

  1. An experimental study of high-speed single stage magnetic fluid seals

    NASA Astrophysics Data System (ADS)

    Ozaki, K.; Fujiwara, T.

    1987-03-01

    Sealing performance, namely burst pressure difference and power loss, of the single stage magnetic fluid seals were experimentally studied to search for the optimal design of the magnetic fluid seals for flywheel systems. They were measured on a rotary shaft 120 mm in diameter, 12000 rpm at the maximum speed.

  2. Limits of Single-stage Compression in Centrifugal Superchargers for Aircraft

    NASA Technical Reports Server (NTRS)

    Kollmann, K

    1940-01-01

    The limits of the single-stage compression in superchargers at the present state of development are determined by five factors. 1) by the rotor material; 2) by the formation of the flow; 3) by the manufacture of double shrouded rotors; 4) by the bearing problem; 5) by the drive method.

  3. The Maximum Delivery Pressure of Single-stage Radial Superchargers for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Null, W Von Der

    1940-01-01

    With the aid of simple considerations and test results, an attempt is made to clear up some obscure points that still exist. The considerations are restricted to those cases where it is in fact of advantage to"force" the large delivery heads required for high altitude and high supercharge with a single-stage supercharger.

  4. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  5. High energy, high current neutral beam injector operation with single stage and two-stage multi-aperture extraction systems

    NASA Astrophysics Data System (ADS)

    Becherer, R.; Desmons, M.; Fumelli, M.; Raimbault, P.; Valckx, F. P. G.

    1982-12-01

    Neutral beam development for JET injections at FAR laboratory has led to the study of properties of a single stage (triode) and a two-stage (tetrode) multi-aperture extraction system at ion beam powers exceeding the megawatt level and up to 80 keV beam energy. The results of the experimental measurements and of a numerical study of the beam optical qualities and grid power loadings of these systems are presented. Grid power loading levels of less than 1% of the high-voltage drain power were measured in both the triode and the tetrode accelerators. This would allow long pulse operation (10 s with water-cooling) as required for JET. The beam divergence angle (α ≅ 0.7°) and the transmission characteristics were almostidentical. At the same energy, higher current densities, at optimum perveance, were obtained with the triode at a lower electric field stress on the high-voltage gap. The triode offers the additional advantage of being simpler from the mechanical and electrical points of view. Operation of the injection line with an electrostatic beam dump associated with a grounded source is also demonstrated for a 25 ion beam up to 60 keV.

  6. Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF

    NASA Astrophysics Data System (ADS)

    Köser, J.; Becker, L. G.; Vorobiev, N.; Schiemann, M.; Scherer, V.; Böhm, B.; Dreizler, A.

    2015-12-01

    This work presents first-of-its-kind high-speed planar laser-induced fluorescence measurements of the hydroxyl radical in the boundary layer of single coal particles. Experiments were performed in a laminar flow reactor providing an oxygen-enriched exhaust gas environment at elevated temperatures. Single coal particles in a sieve fraction of 90-125 µm and a significant amount of volatiles (36 wt%) were injected along the burner's centerline. Coherent anti-Stokes Raman spectroscopy measurements were taken to characterize the gas-phase temperature. Time-resolved imaging of the OH distribution at 10 kHz allowed identifying reaction and post-flame zones and gave access to the temporal evolution of burning coal particles. During volatile combustion, a symmetric diffusion flame was observed around the particle starting from a distance of ~150 µm from the particle surface. For subsequent char combustion, this distance decreased and the highest OH signals appeared close to the particle surface.

  7. Overlapping of the devolatilization and char combustion stages in the burning of coal particles

    SciTech Connect

    Veras, C.A.G.; Saastamoinen, J.; Aho, M.; Carvalho, J.A. Jr.

    1999-03-01

    The oxygen content at the surface of a fuel particle can significantly exceed zero during the devolatilization stage of combustion, despite the flux of volatiles from the surface and also gas phase reactions. This implies that char oxidation can take place simultaneously. This overlapping of the devolatilization and char combustion stages is studied by modeling. The rates of gas phase reactions around the particle influence the availability of oxygen at the surface of a burning particle and they are accounted for by using a two-step global model for combustion of volatiles. The effects of particle size, ambient temperature, and oxygen concentration on the degree of overlap are studied. The study provides theoretical and experimental evidence that the combustion time of a particle does not always increase with its size at constant ambient conditions, but there can be a specific particle size giving a maximum combustion rate.

  8. Recording Single Neurons' Action Potentials from Freely Moving Pigeons Across Three Stages of Learning

    PubMed Central

    Güntürkün, Onur

    2014-01-01

    While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.1 for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning. PMID:24961391

  9. Single stage minimally invasive bilateral video assisted thoracoscopic surgery for simultaneous bilateral primary spontaneous pneumothorax.

    PubMed

    Sachithanandan, A; Nur Ezrin, I; Badmanaban, B

    2012-04-01

    Simultaneous bilateral spontaneous pneumothorax (SBSP) is a very rare life-threatening condition that requires rapid diagnosis and treatment. Most cases are secondary to various underlying lung pathology but a primary SBSP may occur due to rupture of subpleural blebs or bullae. Surgery via an open or minimally invasive approach provides definitive treatment and can be undertaken as a staged or simultaneous procedure. We report our experience with two such rare cases utilizing a single stage minimally invasive bilateral video assisted thoracoscopic (VATS) approach. The pathogenesis of this rare condition and intra-operative technical considerations for a successful outcome are discussed. PMID:22822653

  10. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.

    1980-01-01

    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  11. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    PubMed

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  12. Construction of a 150 t/d pilot plant for bituminous coal liquefaction

    SciTech Connect

    Ishibashi, Hirohito; Kobayashi, Masatoshi; Suzuki, Satoru

    1994-12-31

    This present paper covers bituminous coal liquefaction R and D carried out by Nippon Coal Oil Co., Ltd. (NCOL). Construction of a 150 ton/day bituminous coal liquefaction pilot plant will be presented. The NEDOL process is characterized by the wide applicability of various coal grades, such as low-rank bituminous coal, subbituminous coal and low-rank subbituminous coal, and a single-stage liquefaction method that combines the advantages of a hydrogen-donor solvent and a fine iron catalyst. A vacuum distillation system for solid-liquid separation is used to improve reliability. The simplicity of this process ensures a high degree of stability.

  13. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    PubMed

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes. PMID:23399080

  14. Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.

    1996-01-01

    This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.

  15. Analysis and design of a high power factor, single-stage electronic dimming ballast

    SciTech Connect

    Wu, T.F.; Yu, T.H.

    1998-05-01

    This paper presents the analysis, design, and practical consideration of a single-stage electronic dimming ballast with unity power factor. The power stage of the ballast is derived from combining a buck-boost converter and a half-bridge series-resonant parallel-loaded inverter (SRPLI). With the plasma model of the lamp, the analysis of the ballast is carried out, from which the key equations used for dimming control are derived. Starting performance and dimming consideration are also addressed in the paper. In this dimming ballast, both pulsewidth modulation (PWM) and variable-frequency control strategies are employed. The discussed ballast with the controls can save a controller and a switch driver, reduce size and cost, and possibly increase system reliability over conventional two-stage systems in the applications with moderate power level. Simulated and experimental results of the ballast for an OSRAM T8 32-W lamp are used to verify the discussion.

  16. Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.

    1947-01-01

    Efficiency investigations have been made on a single-stage modification of the turbine of a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. The turbine was faund to be most efficient with a cast nozzle having sharp-edged inlets to the nine nozzle ports. An analysis af the effectiveness af the first and second stages of the standard Mark 25 torpedo turbine indicates that the first- stage turbine contributes nearly all the brake power produced at blade-jet speed ratios above 0.26.

  17. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  18. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report.

    PubMed

    de Carvalho, Bruna M D F; Freitas-Pontes, Karina M; de Negreiros, Wagner A; Verde, Marcus A R L

    2015-08-01

    Malignant tumors in the nasal region may be treated by means of invasive surgical procedures, with large facial losses. Nasal prostheses, retained by osseointegrated facial implants, instead of plastic surgery, will, in most patients, offer good biomechanical and cosmetic results. This clinical report describes the prosthetic rehabilitation of a patient with nasal cancer who had the entire nasal vestibule removed in a single-stage surgical procedure in order to shorten the rehabilitation time. The nasal prosthesis was built on a 3-magnet bar and was made of platinum silicone with intrinsic pigmentation, thereby restoring the patient's appearance and self-esteem. The authors concluded that single-stage implants may reduce the rehabilitation time to as little as 1 month, and the correct use of materials and techniques may significantly improve the nasal prosthesis. PMID:25976710

  19. Single staged complete length excision of the holocord ependymoma: Team work.

    PubMed

    Bhaisora, Kamlesh S; Sharma, Pradeep; Srivastava, Arun Kumar; Mehrotra, Anant; Das, Kuntal Kanti; Sardhara, Jayesh; Behari, Sanjay; Jaiswal, A K; Sahu, R N

    2015-01-01

    The authors present a case of a 15-year-old male patient who presented with gradually progressive quadriparesis for 3 years. Magnetic resonance imaging of the spine was suggestive of heterogeneously enhancing mass lesion extending from cervicomedullary junction to conus. This holocord spinal tumor was excised in a single stage with standard microsurgical technique. In immediate postoperative period, the patient had deterioration in power in both lower limbs which improved in follow-up at 6 months. Histopathology of the tumor was suggestive of ependymoma. Holocord ependymoma is a rare entity; until now, only six cases have been described in the literature. To the author's best knowledge, this is only the second case of holocord ependymoma excised in a single stage. PMID:26962355

  20. Single staged complete length excision of the holocord ependymoma: Team work

    PubMed Central

    Bhaisora, Kamlesh S.; Sharma, Pradeep; Srivastava, Arun Kumar; Mehrotra, Anant; Das, Kuntal Kanti; Sardhara, Jayesh; Behari, Sanjay; Jaiswal, A. K.; Sahu, R. N.

    2015-01-01

    The authors present a case of a 15-year-old male patient who presented with gradually progressive quadriparesis for 3 years. Magnetic resonance imaging of the spine was suggestive of heterogeneously enhancing mass lesion extending from cervicomedullary junction to conus. This holocord spinal tumor was excised in a single stage with standard microsurgical technique. In immediate postoperative period, the patient had deterioration in power in both lower limbs which improved in follow-up at 6 months. Histopathology of the tumor was suggestive of ependymoma. Holocord ependymoma is a rare entity; until now, only six cases have been described in the literature. To the author's best knowledge, this is only the second case of holocord ependymoma excised in a single stage. PMID:26962355

  1. Validation of a PC based program for single stage absorption heat pump

    NASA Astrophysics Data System (ADS)

    Zaltash, A.; Ally, M. R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO3 water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3 percent. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design.

  2. Validation of a PC based program for single stage absorption heat pump. Final report

    SciTech Connect

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  3. Validation of a PC based program for single stage absorption heat pump

    SciTech Connect

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  4. Parallel-burn options for dual-fuel single-stage orbital transports

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    A parallel-burn version of a single-stage vehicle for transport from the earth to low-earth orbit using two fuels and rocket propulsion is considered. New engine results were incorporated in vehicle performance and design studies. The results indicate that a hydrogen-cooled gas generator cycle engine provides attractive vehicle performance and that there is little incentive for increasing the chamber pressure beyond 27 MPa.

  5. Project management lessons learned on SDIO's Delta Star and Single Stage Rocket Technology programs

    NASA Technical Reports Server (NTRS)

    Klevatt, Paul L.

    1992-01-01

    The topics are presented in viewgraph form and include the following: a Delta Star (Delta 183) Program Overview, lessons learned, and rapid prototyping and the Single Stage Rocket Technology (SSRT) Program. The basic objective of the Strategic Defense Initiative Programs are to quickly reduce key uncertainties to a manageable range of parameters and solutions, and to yield results applicable to focusing subsequent research dollars on high payoff areas.

  6. Single stage to orbit vertical takeoff and landing concept technology challenges

    NASA Astrophysics Data System (ADS)

    Heald, Daniel A.; Kessler, Thomas L.

    1991-10-01

    General Dynamics has developed a VTOL concept for a single-stage-to-orbit under contract to the Strategic Defense Initiative Organization. This paper briefly describes the configuration and its basic operations. Two key advanced technolgy areas are then discussed: high-performance rocket propulsion employing a plug nozzle arrangement and integrated health management to facilitate very rapid turnaround between flights, more like an aircraft than today's rockets.

  7. History of the Phoenix VTOL SSTO and recent developments in single-stage launch systems

    NASA Astrophysics Data System (ADS)

    Hudson, Gary C.

    The history of the VTOL SSTO (single stage to orbit) concept and the Phoenix designs is reviewed. The role the Phoenix concept played in stimulating consideration of the SSTO approach by the U.S. Government in ongoing SSTO concept studies is also discussed. It is pointed out that these studies are currently expected to lead to prototype hardware development aimed at demonstrating the SSTO approach by 1995-1997 in the form of the McDonnell-Douglas DC-Y.

  8. Adaptive kanban control mechanism for a single-stage hybrid system

    NASA Astrophysics Data System (ADS)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  9. High Frequency Single-Stage Multi-Bypass Pulse Tube Cryocooler for 23.8K

    NASA Astrophysics Data System (ADS)

    Yang, Junling; Hou, Xiaofeng; Yang, Luwei; Zhou, Yuan; Zhang, Liang

    2008-03-01

    A below 30K single-stage high-frequency multi-bypass pulse tube cryocooler(PTC) is introduced in this paper. At present, the lowest temperature of 27.46K has been achieved with input power of 100W and 23.8K with input power of 200W. Experiments show that if the area of multi-bypass and the length of inertance tube matching well, a better performance of PTC will be obtained.

  10. Method of calculating gas dynamics and heat transfer in single stage refrigeration units

    NASA Technical Reports Server (NTRS)

    Zhitomirskiy, I. S.; Popolskiy, A. B.

    1974-01-01

    A generalized mathematical model of gas-dynamic and heat transfer processes in single-stage regenerative installations operating in Stirling, MacMahon, Gifford-MacMahon, and pulsating tube cycles is proposed. A numerical method os solving initial equations on a digital computer is given. This makes it possible to calculate the change in the thermodynamic parameters in the working cycle in different machine components, as well as the dependence of cold productivity on the temperature level in the steady regime.

  11. Single Stage to Orbit: Politics, Space Technology, and the Quest for Reusable Rocketry

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    2003-01-01

    While the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparable part of a lesser-known but no less important drama-the search for a re-useable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle. Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea-that of the reusable rocket-powered single-stage- to-orbit vehicle-planners who belonged to what President Eisenhower referred to as the military-industrial complex added experimental (" X "), "aircraft-like" capabilities and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed-not in the realization of inexpensive, reliable space transport-but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century. "The 'holy grail' of the spaceship movement has been the development of a vehicle that could accomplish single stage to orbit (SSTO) flight. This study describes the evolution of this concept from the 192'0s to the present, revealing a conservative space agenda that has not yet been the subject of historical analysis. As such, it makes an important contribution to space history literature."-Roger D. Launius, The Smithsonian Institution.

  12. Single-stage small satellite launcher with combustible tank of polyethylene

    NASA Astrophysics Data System (ADS)

    Yemets, Vitaly; Sanin, Fedir; Dzhur, Yevgen; Masliany, Mykola; Kostritsyn, Oleg; Minteev, Grygory

    2009-01-01

    A solid propellant version of the single-stage launch vehicle with polyethylene case that consumed as fuel is considered as means for launching small satellites. Emphasis is on experimental investigating gasification of a polyethylene structure element by a chamber of special design. Photographs and the reference to electronic annex containing an experimental video record are included in the paper. Main previous experiments are also briefly reviewed. Conclusions concern improvements of the gasification chamber design and a speculation about next experiments.

  13. Single-stage bilateral pulmonary resections by video-assisted thoracic surgery for multiple small nodules

    PubMed Central

    Yao, Feng; Yang, Haitang

    2016-01-01

    Background Surgical treatment is thought to be the most effective strategy for multiple small nodules. However, in general, one-stage bilateral resection is not recommended due to its highly invasive nature. Methods Clinical records of patients undergoing one-stage bilateral resections of multiple pulmonary nodules between January 2009 and September 2014 in a single institution were retrospectively reviewed. Results Simultaneous bilateral pulmonary resection by conventional video-assisted thoracic surgery (VATS) was undertaken in 29 patients. Ground glass opacity (GGO) accounted for 71.9% (46/64) of total lesions, including 26 pure GGO and 20 mixed GGO lesions. One case underwent bilateral lobectomy that was complicated by postoperative dyspnea. Lobar-sublobar (L/SL) resection and bilateral sublobar resection (SL-SL) were conducted in 16 and 12 cases, respectively, and most of these cases had uneventful postoperative courses. There was no significant difference with regard to postoperative complications (P=0.703), duration of use of chest drains (P=0.485), between one- and two-stage groups. Mean postoperative follow-up in cases of primary lung cancer was 31.4 (range, 10–51) months. There was neither recurrence nor deaths at final follow-up. Conclusions Single-stage bilateral surgery in selected cases with synchronous bilateral multiple nodules (SBMNs) is feasible and associated with satisfactory outcomes. PMID:27076942

  14. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor.

    PubMed

    Halalsheh, M; Sawajneh, Z; Zu'bi, M; Zeeman, G; Lier, J; Fayyad, M; Lettinga, G

    2005-03-01

    A 96 m3 UASB reactor was operated for 2.5 years under different conditions to assess the feasibility of treating strong sewage (COD(tot) = 1531 mg/l) at ambient temperatures with averages of 18 and 25 degrees C for winter and summer respectively. During the first year, the reactor was operated as a two-stage system at OLRs in the range of 3.6-5.0 kg COD/m3 d for the first stage and 2.9-4.6 kg COD/m3 d for the second stage. The results of the first stage showed average removals of 51% and 60% for COD(tot) and COD(ss) respectively without significant effect of temperature. The second stage reactor was unstable. The temperature affected sludge stabilization. During the second year, the first stage was operated as a single-stage UASB reactor at half of the previous loading rates. The results showed an average removal efficiency of 62% for COD(tot) during summer, while it dropped to 51% during wintertime. However, the effluent suspended solids were stabilized with VSS/TSS ratio around 0.50 all over the year. The sludge in the single-stage reactor was well-stabilized and exerted an excellent settlability. During the last three months of research, sludge was discharged regularly from the single-stage UASB reactor. The results showed no significant improvement in the performance in terms of COD(tot). Based on the results of the experiment, a single-stage UASB reactor operated at relatively long HRT is preferred above two-stage system at the Jordanian conditions. PMID:15501665

  15. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    SciTech Connect

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s.

  16. Single stage transforaminal retrojugular tumor resection: The spinal keyhole for dumbbell tumors in the cervical spine

    PubMed Central

    Bobinski, Lukas; Henchoz, Yves; Sandu, Kishore; Duff, John Michael

    2015-01-01

    Background: Dumbbell tumors are defined as having an intradural and extradural component with an intermediate component within an expanded neural foramen. Complete resection of these lesions in the subaxial cervical spine is a challenge, and it has been achieved through a combined posterior/anterior or anterolateral approach. This study describes a single stage transforaminal retrojugular (TFR) approach for dumbbell tumors resection in the cervical spine. Methods: This is a retrospective review of a series of 17 patients treated for cervical benign tumors, 4 of which were “true” cervical dumbbell tumors operated by a simplified retrojugular approach. The TFR approach allows a single stage gross total resection of both the extraspinal and intraspinal/intradural components of the tumor, taking advantage of the expanded neural foramen. All patients were followed clinically and radiologically with magnetic resonance imaging (MRI). Results: Gross total resection was confirmed in all four patients by postoperative MRI. Minimal to no bone resection was performed. No fusion procedure was performed and no delayed instability was seen. At follow up, one patient had a persistent mild hand weakness and Horners syndrome following resection of a hemangioblastoma of the C8 nerve root. The other three patients were neurologically normal. Conclusions: The TFR approach appears to be a feasible surgical option for single stage resection in selective cases of dumbbell tumors of the cervical spine. PMID:25883845

  17. A single-stage GM-type pulse tube cryocooler operating at 10.6 K

    NASA Astrophysics Data System (ADS)

    Gan, Z. H.; Dong, W. Q.; Qiu, L. M.; Zhang, X. B.; Sun, H.; He, Y. L.; Radebaugh, R.

    2009-05-01

    In order to explore the lowest attainable refrigeration temperature and improve cooling performance at temperatures around 20 K for a single-stage G-M type pulse tube cryocooler (PTC), numerical and experimental studies were performed. The National Institute of Standards and Technology (NIST) numerical model known as REGEN was applied to the simulation of a G-M type PTC for the first time. Based on the calculation results, a single-stage G-M type PTC was designed, fabricated and tested. The performance improvement of the regenerator in the temperature range of 10-80 K was investigated. The calculations predicted a lowest temperature of 10 K. A lowest temperature of 10.6 K was achieved experimentally with an input power of 7.5 kW, which is the lowest temperature ever achieved by a single-stage PTC. Further more, the cryocooler can provide a cooling power of 20 W at 20.6 K and 39.5 W at 30 K, respectively.

  18. Single stage and thrust augmented reusable launch vehicle stability and performance study

    NASA Astrophysics Data System (ADS)

    Tanck, Pamela A.; Steadman, Kimberly B.

    1998-01-01

    The requirement for routine, reliable, inexpensive launch service drives the interest in the development of a fully reusable launch vehicle (RLV). In theory, single-stage vehicle operations would resemble aircraft operations where high initial development costs are offset by relatively low recurring costs. However, the large size of a single-stage-to-orbit vehicle and the advanced engine and structural technology requirements could overshadow advantages gained through streamlined operations. This analysis explores the feasibility of using thrust augmentation on a fully reusable core vehicle in order to lessen the disadvantages of a fully single-stage vehicle. Advanced technology systems and two 86,000 kg solid strapon motors are incorporated into a vehicle designed to deliver an Atlas-class payload. This study shows that thrust augmentation significantly decreases vehicle size, decreases development risk and improves longitudinal stability characteristics. The thrust augmentation reduces vehicle insertion mass by 40% and reduces the vehicle's sensitivity to the increases in dry mass growth often experienced during development, thus reducing development risk. Thrust augmentation also moves the center of gravity location forward, thus improving longitudinal stability characteristics and maximizing the vehicle's reentry cross range capability.

  19. Nitrite reduction and methanogenesis in a single-stage UASB reactor.

    PubMed

    Borges, L I; López-Vazquez, C M; García, H; van Lier, J B

    2015-01-01

    In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO(2)(-)-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO(2)(-)-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO(2)(-)-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO(2)(-) reduction to N₂. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater. PMID:26676012

  20. The single electron chemistry of coals, January 1, 1990--March 30, 1990

    SciTech Connect

    Larsen, J.W.; Flowers, R.A. II.

    1990-04-16

    The Wyodak, Upper Freeport and Pocahontas No. 3 samples containing DPPD display a decrease in spin density as compared to the starting coals. Coincident with this decrease is a loss or decrease of the narrow inertinite signal in the esr spectrum of these coals. The Pittsburgh No. 8 coal sample containing DPPD also displays a loss of spin density as compared to the starting coal but there is no change in the esr spectrum. These results compare well with earlier work involving 4-vinylpyridine and the same coal samples. We discovered the presence of poly(4-vinylpyridine) in our coal samples and a concurrent loss of inertinite radical density. It is possible that the inertinite radicals may initiate the polymerization or in the present work may abstract hydrogen from DPPD. No C=N stretch was displayed in the IR spectrum to substantiate this claim.

  1. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    NASA Astrophysics Data System (ADS)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  2. Single Stage Single Switch Power Supply (S4PS)Design for Low Power HB-LED Lighting

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ashish; Singh, Bhim

    2013-05-01

    This paper presents an improved power quality converter (IPQC)-based power supply design for high brightness light emitting diode (HB-LED) low power lighting. The IPQC circuit uses a Cuk buck-boost converter to operate it in a discontinuous conduction mode (DCM) using the voltage follower technique for the mitigation of harmonic contents present in the AC mains current. Subsequently, reduction in harmonic contents results in improving the power quality indices at the AC mains. Single-stage single switch converter topology is used, which has less component count, size and cost as compared to the two-stage converter topology. DCM operation has an advantage that only output voltage control loop is required as compared to three control loops required in the continuous conduction mode operation. An 18-W LED driver is designed, modeled and simulated using MATLAB/Simulink software for 220 V, 50 Hz AC mains. The performance of the proposed LED driver is observed in terms of total harmonic distortion of the input current (THDi), input power factor (PF) and crest factor (CF) taking into account the strict international standard of IEC 61000-3-2 for class C equipments.

  3. Single- vs. multi-stage repair of proximal hypospadias: The dilemma continues

    PubMed Central

    Badawy, Haytham; Fahmy, Ahmed

    2013-01-01

    Introduction The surgical reconstruction of distal penile hypospadias in a single stage is the standard practice for managing anterior hypospadias. Unfortunately, it is not simple to extrapolate the same principle to proximal hypospadias. There is no consensus among hypospadiologists about whether a single- or multi-stage operation is the optimal treatment for proximal hypospadias. In this review, we assess the currently reported outcomes and complications of both techniques in proximal hypospadias repair. Methods We searched Medline, Pubmed, Scopus and Ovid for publications in the last 10 years (2002–2012) for relevant articles, using the terms ‘proximal hypospadias’, ‘posterior hypospadias’ ‘single stage’, ‘multiple stage’, and ‘complications’. Articles retrieved were analysed according to the technique of repair, follow-up, complications, success rate, number of included children, and re-operative rate. Results and conclusions The reported complications in both techniques were similar, including mostly minor complications in the form of fistula, meatal stenosis, partial glans dehiscence, and urethral diverticulum, with their easy surgical repair. The outcomes of single- and multistage repairs of proximal hypospadias are comparable; no technique can be considered better than any other. Thus, it is more judicious for a hypospadiologist to master a few of these procedures to achieve the best results, regardless of the technique used. PMID:26558078

  4. Monte Carlo Error Analysis Applied to Core Formation: The Single-stage Model Revived

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Walter, M. J.

    2009-12-01

    The last decade has witnessed an explosion of studies that scrutinize whether or not the siderophile element budget of the modern mantle can plausibly be explained by metal-silicate equilibration in a deep magma ocean during core formation. The single-stage equilibrium scenario is seductive because experiments that equilibrate metal and silicate can then serve as a proxy for the early earth, and the physical and chemical conditions of core formation can be identified. Recently, models have become more complex as they try to accommodate the proliferation of element partitioning data sets, each of which sets its own limits on the pressure, temperature, and chemistry of equilibration. The ability of single stage models to explain mantle chemistry has subsequently been challenged, resulting in the development of complex multi-stage core formation models. Here we show that the extent to which extant partitioning data are consistent with single-stage core formation depends heavily upon (1) the assumptions made when regressing experimental partitioning data (2) the certainty with which regression coefficients are known and (3) the certainty with which the core/mantle concentration ratios of the siderophile elements are known. We introduce a Monte Carlo algorithm coded in MATLAB that samples parameter space in pressure and oxygen fugacity for a given mantle composition (nbo/t) and liquidus, and returns the number of equilibrium single-stage liquidus “solutions” that are permissible, taking into account the uncertainty in regression parameters and range of acceptable core/mantle ratios. Here we explore the consequences of regression parameter uncertainty and the impact of regression construction on model outcomes. We find that the form of the partition coefficient (Kd with enforced valence state, or D) and the handling of the temperature effect (based on 1-atm free energy data or high P-T experimental observations) critically affects model outcomes. We consider the most

  5. Single institution experience with the Ladd’s procedure in patients with heterotaxy and stage I palliated single-ventricle

    PubMed Central

    Piggott, Kurt D; George, Grace; Fakioglu, Harun; Blanco, Carlos; Narasimhulu, Sukumar Saguna; Pourmoghadam, Kamal; Munroe, Hamish; Decampli, William

    2016-01-01

    AIM To investigate and describe our current institutional management protocol for single-ventricle patients who must undergo a Ladd’s procedure. METHODS We retrospectively reviewed the charts of all patients from January 2005 to March 2014 who were diagnosed with heterotaxy syndrome and an associated intestinal rotation anomaly who carried a cardiac diagnosis of functional single ventricle and were status post stage I palliation. A total of 8 patients with a history of stage I single-ventricle palliation underwent Ladd’s procedure during this time period. We reviewed each patients chart to determine if significant intraoperative or post-operative morbidity or mortality occurred. We also described our protocolized management of these patients in the cardiac intensive care unit, which included pre-operative labs, echocardiography, milrinone infusion, as well as protocolized fluid administration and anticoagulation regimines. We also reviewed the literature to determine the reported morbidity and mortality associated with the Ladd’s procedure in this particular cardiac physiology and if other institutions have reported protocolized care of these patients. RESULTS A total of 8 patients were identified to have heterotaxy with an intestinal rotation anomaly and single-ventricle heart disease that was status post single ventricle palliation. Six of these patients were palliated with a Blaylock-Taussig shunt, one of whom underwent a Norwood procedure. The two other patients were palliated with a stent, which was placed in the ductus arteriosus. These eight patients all underwent elective Ladd’s procedure at the time of gastrostomy tube placement. Per our protocol, all patients remained on aspirin prior to surgery and had no period where they were without anticoagulation. All patients remained on milrinone during and after the procedure and received fluid administration upon arrival to the cardiac intensive care unit to account for losses. All 8 patients experienced

  6. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  7. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. PMID:26210232

  8. On the modeling of a single-stage, entrained-flow gasifier using Aspen Custom Modeler (ACM)

    SciTech Connect

    Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

    2010-01-01

    Coal-fired gasifiers are the centerpiece of integrated gasification combined cycle (IGCC) power plants. The gasifier produces synthesis gas that is subsequently converted into electricity through combustion in a gas turbine. Several mathematical models have been developed to study the physical and chemical processes taking place inside the gasifier. Such models range from simple one-dimensional (1D) steady-state models to sophisticated dynamic 3D computational fluid dynamics (CFD) models that incorporate turbulence effects in the reactor. The practical operation of the gasifier is dynamic in nature but most 1D and some higher-dimensional models are often steady state. On the other hand, many higher order CFD-based models are dynamic in nature, but are too computationally expensive to be used directly in operability and controllability dynamic studies. They are also difficult to incorporate in the framework of process simulation software such as Aspen Plus Dynamics. Thus lower-dimensional dynamic models are still useful in these types of studies. In the current study, a 1D dynamic model for a single-stage, downward-firing, entrained-flow GE-type gasifier is developed using Aspen Custom Modeler{reg_sign} (ACM), which is a commercial equation-based simulator for creating, editing, and re-using models of process units. The gasifier model is based on mass, momentum, and energy balances for the solid and gas phases. The physical and chemical reactions considered in the model are drying, devolatilization/pyrolysis, gasification, combustion, and the homogeneous gas phase reactions. The dynamic gasifier model is being developed for use in a plant-wide dynamic model of an IGCC power plant. For dynamic simulation, the resulting highly nonlinear system of partial differential algebraic equations (PDAE) is solved in ACM using the well-known Method of Lines (MoL) approach. The MoL discretizes the space domain and leaves the time domain continuous, thereby converting the PDAE to

  9. Comparing a single-stage geocoding method to a multi-stage geocoding method: how much and where do they disagree?

    PubMed Central

    Lovasi, Gina S; Weiss, Jeremy C; Hoskins, Richard; Whitsel, Eric A; Rice, Kenneth; Erickson, Craig F; Psaty, Bruce M

    2007-01-01

    Background Geocoding methods vary among spatial epidemiology studies. Errors in the geocoding process and differential match rates may reduce study validity. We compared two geocoding methods using 8,157 Washington State addresses. The multi-stage geocoding method implemented by the state health department used a sequence of local and national reference files. The single-stage method used a single national reference file. For each address geocoded by both methods, we measured the distance between the locations assigned by each method. Area-level characteristics were collected from census data, and modeled as predictors of the discordance between geocoded address coordinates. Results The multi-stage method had a higher match rate than the single-stage method: 99% versus 95%. Of 7,686 addresses were geocoded by both methods, 96% were geocoded to the same census tract by both methods and 98% were geocoded to locations within 1 km of each other by the two methods. The distance between geocoded coordinates for the same address was higher in sparsely populated and low poverty areas, and counties with local reference files. Conclusion The multi-stage geocoding method had a higher match rate than the single-stage method. An examination of differences in the location assigned to the same address suggested that study results may be most sensitive to the choice of geocoding method in sparsely populated or low-poverty areas. PMID:17367520

  10. Ornithodoros peropteryx (Acari: Argasidae) in Bolivia: an argasid tick with a single nymphal stage.

    PubMed

    Venzal, José M; Nava, Santiago; Terassini, Flavio A; Ogrzewalska, Maria; Camargo, Luis Marcelo A; Labruna, Marcelo B

    2013-10-01

    By the end of the 1960s, the argasid tick Ornithodoros peropteryx was described from larval specimens collected from the bat Peropteryx macrotis in Colombia. Since its original description, no additional record of O. peropteryx has been reported, and its post-larval stages have remained unknown. During July 2010, 18 larvae were collected from 9 bats (Centronycteris maximiliani), resulting in a mean infestation of 2.0 ± 2.2 ticks per bat (range 1-8). These bats were captured in a farm in northeastern Bolivia close to Guaporé River in the border with Brazil. Morphological examinations of the larvae revealed them to represent the species O. peropteryx. One engorged larva that was kept alive in the laboratory moulted to a nymph after 9 days. Fourteen days after the larval moulting, the nymph moulted to an adult female without taking any blood meal during the nymphal period. This adult female was used for a morphological description of the female stage of O. peropteryx. In addition, the larvae were used for a morphological redescription of this stage. One larva and two legs extirpated from the adult female were submitted to DNA extraction and PCR targeting a fragment of the mitochondrial 16S rDNA gene, which yielded DNA sequences at least 11 % divergent from any available argasid sequence in Genbank. We show that O. peropteryx ontogeny is characterized by a single, non-feeding, nymphal stage. This condition has never been reported for ticks. PMID:23543273

  11. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, ~50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  12. Single-trial ERP analysis reveals facial expression category in a three-stage scheme.

    PubMed

    Zhang, Dandan; Luo, Wenbo; Luo, Yuejia

    2013-05-28

    Emotional faces are salient stimuli that play a critical role in social interactions. Following up on previous research suggesting that the event-related potentials (ERPs) show differential amplitudes in response to various facial expressions, the current study used trial-to-trial variability assembled from six discriminating ERP components to predict the facial expression categories in individual trials. In an experiment involved 17 participants, fearful trials were differentiated from non-fearful trials as early as the intervals of N1 and P1, with a mean predictive accuracy of 87%. Single-trial features in the occurrence of N170 and vertex positive potential could distinguish between emotional and neutral expressions (accuracy=90%). Finally, the trials associated with fearful, happy, and neutral faces were completely separated during the window of N3 and P3 (accuracy=83%). These categorization findings elucidated the temporal evolution of facial expression extraction, and demonstrated that the spatio-temporal characteristics of single-trial ERPs can distinguish facial expressions according to a three-stage scheme, with "fear popup," "emotional/unemotional discrimination," and "complete separation" as processing stages. This work constitutes the first examination of neural processing dynamics beyond multitrial ERP averaging, and directly relates the prediction performance of single-trial classifiers to the progressive brain functions of emotional face discrimination. PMID:23566819

  13. Transient analysis of single stage GM type double inlet pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Gujarati, P. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2015-12-01

    Transient analysis of single stage GM type double inlet pulse tube cryocooler is carried out using a one dimensional numerical model based on real gas properties of helium. The model solves continuity, momentum and energy equation for gas and solid to analyse the physical process occurring inside of the pulse tube cryocooler. Finite volume method is applied to discretize the governing equations with realistic initial and boundary conditions. Input data required for solving the model are the design data and operating parameters viz. pressure waveform from the compressor, regenerator matrix data, and system geometry including pulse tube, regenerator size and operating frequency for pulse tube cryocooler. The model investigates the effect of orifice opening, double inlet opening, pressure ratio, system geometry on no load temperature and refrigeration power at various temperatures for different charging pressure. The results are compared with experimental data and reasonable agreement is observed. The model can further be extended for designing two stage pulse tube cryocooler.

  14. A single-stage optical load-balanced switch for data centers.

    PubMed

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers. PMID:23187266

  15. Off-design performance of a single-stage transonic turbine

    SciTech Connect

    Woinowsky-Krieger, M.; Lavoie, J.P.; Vlasic, E.P.; Moustapha, S.H.

    1999-04-01

    This paper presents results of rig testing of a transonic, single-stage turbine at off-design conditions. Mapping of the 3.4 pressure ratio, 1.9 stage loading turbine ranged from 70 through 120% of design speed and 75 to 125% of design pressure ratio. Results show expansion efficiency dropping over 4% from 100 to 80% of design speed at design pressure ratio, while remaining within half a percent from 90 to 110% of design pressure ratio at design speed. Efficiency lapse rate from equivalent sea-level to cruise altitude Reynolds numbers at the design point was measured and found to be worth over 1.5%. Analyses of test results using a viscous three-dimensional solver showed very good agreement for the efficiency change with speed.

  16. Immediate Single-Stage Reconstruction of Complex Frontofaciobasal Injuries: Part I

    PubMed Central

    Awadalla, Akram Mohamed; Ezzeddine, Hichem; Fawzy, Naglaaa; Saeed, Mohammad Al; Ahmad, Mohammad R.

    2014-01-01

    Objective To determine if immediate (within 6 hours of adequate resuscitation) single-stage repair of complex craniofacial injuries could be accomplished with acceptable morbidity and mortality taking into consideration the cosmetic appearance of the patient. Patients and Methods A total of 26 patients (19 men, 7 women) ranging in age from 8 to 58 years with Glasgow Coma Scale scores of 5 to 15 all had a combined single-stage repair of their complex craniofacial injuries within 6 hours of their admission. After initial assessment and adequate resuscitation, they were evaluated with three-dimensional computed tomography of the face and head. Coronal skin flap was used for maximum exposure for frontal sinus exenteration as well as dural repair, cortical debridement, calvarial reconstruction, and titanium mesh placement. Results Neurosurgical outcome at both the early and late evaluations was judged as good in 22 of 26 patients (85%), moderate in 3 of 26 (11%), and poor in 1 of the 26 (3.8%). Cosmetic surgical outcome at the early evaluation showed 17 of 26 (65%) to be excellent, 4 of 26 (15.5%) to be good, 4 patients (15.5%) to be fair, and 1 patient (3.8%) to be poor. At the late reevaluation, the fair had improved to good with an additional reconstructive procedure, and the poor had improved to fair with another surgery. There was no calvarial osteomyelitis, graft resorption, or intracranial abscess. Complications included three patients (11%): one (3.8%) had tension pneumocephaly and meningitis, one (3.8%) had delayed cerebrospinal fluid leak with recurrent attacks of meningitis, and one had a maxillary sinus infection (3.8%) secondary to front maxillary fistula. Conclusion The immediate single-stage repair of complex craniofacial injuries can be performed with acceptable results, a decreased need for reoperation, and improved cosmetic and functional outcomes. PMID:25844296

  17. Immediate single-stage reconstruction of complex frontofaciobasal injuries: part I.

    PubMed

    Awadalla, Akram Mohamed; Ezzeddine, Hichem; Fawzy, Naglaaa; Saeed, Mohammad Al; Ahmad, Mohammad R

    2015-03-01

    Objective To determine if immediate (within 6 hours of adequate resuscitation) single-stage repair of complex craniofacial injuries could be accomplished with acceptable morbidity and mortality taking into consideration the cosmetic appearance of the patient. Patients and Methods A total of 26 patients (19 men, 7 women) ranging in age from 8 to 58 years with Glasgow Coma Scale scores of 5 to 15 all had a combined single-stage repair of their complex craniofacial injuries within 6 hours of their admission. After initial assessment and adequate resuscitation, they were evaluated with three-dimensional computed tomography of the face and head. Coronal skin flap was used for maximum exposure for frontal sinus exenteration as well as dural repair, cortical debridement, calvarial reconstruction, and titanium mesh placement. Results Neurosurgical outcome at both the early and late evaluations was judged as good in 22 of 26 patients (85%), moderate in 3 of 26 (11%), and poor in 1 of the 26 (3.8%). Cosmetic surgical outcome at the early evaluation showed 17 of 26 (65%) to be excellent, 4 of 26 (15.5%) to be good, 4 patients (15.5%) to be fair, and 1 patient (3.8%) to be poor. At the late reevaluation, the fair had improved to good with an additional reconstructive procedure, and the poor had improved to fair with another surgery. There was no calvarial osteomyelitis, graft resorption, or intracranial abscess. Complications included three patients (11%): one (3.8%) had tension pneumocephaly and meningitis, one (3.8%) had delayed cerebrospinal fluid leak with recurrent attacks of meningitis, and one had a maxillary sinus infection (3.8%) secondary to front maxillary fistula. Conclusion The immediate single-stage repair of complex craniofacial injuries can be performed with acceptable results, a decreased need for reoperation, and improved cosmetic and functional outcomes. PMID:25844296

  18. Single-stage surgical repair of airway gastric fistula after esophagectomy

    PubMed Central

    2014-01-01

    Airway gastric fistula (AGF) is a rare but catastrophic complication after esophagectomy. Surgical repair with viable tissue interposed between the airway and alimentary tracts remains the definitive treatment. However, it is challenging for surgeons, and only anecdotally described in sporadic case reports due to the complexity of the techniques necessary for successful surgical intervention. Here, we report two cases successfully managed via single-stage surgical re-exploration. On outpatient follow-up, the two Chinese patients were progressing satisfactorily without complaint of any dyspnea or dysphagia. PMID:24506968

  19. [Biological implant in single-stage reconstruction of mammary gland for cancer].

    PubMed

    Zikiriakhodzhaev, A D; Ermoshchenkova, M V

    2015-01-01

    Brief literature review about features of biological implants application for mammary gland reconstruction is presented in the article. Possible complications after such materials use, first experience of acellular dermal matrix administration for single-stage mammary gland reconstruction in 6 patients with breast cancer are also described. We offered surgical techniques, complications and methods of its treatment. We presented advantages of biological implant use which are consisted in decrease of surgical damage and duration of surgery, opportunity for enlargement of pocket for implant, decrease of pain syndrome. PMID:25909549

  20. Tracking Single C. elegans Using a USB Microscope on a Motorized Stage.

    PubMed

    Yemini, Eviatar I; Brown, André E X

    2015-01-01

    Locomotion and gross morphology have been important phenotypes for C. elegans genetics since the inception of the field and remain relevant. In parallel with developments in genome sequencing and editing, phenotyping methods have become more automated and quantitative, making it possible to detect subtle differences between mutants and wild-type animals. In this chapter, we describe how to calibrate a single-worm tracker consisting of a USB microscope mounted on a motorized stage and how to record and analyze movies of worms crawling on food. The resulting quantitative phenotypic fingerprint can sensitively identify differences between mutant and wild-type worms. PMID:26423975

  1. Design and cold-air test of single-stage uncooled turbine with high work output

    NASA Technical Reports Server (NTRS)

    Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.

    1980-01-01

    A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.

  2. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    SciTech Connect

    Wang, Jy-An John; Graziano, Joe; Chan, John

    2011-01-01

    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  3. Effects of relaxed static longitudinal stability on a single-stage-to-orbit vehicle design

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Wilhite, A. W.

    1979-01-01

    The effects of relaxing longitudinal stability requirements on single stage to orbit space vehicles is studied. A comparison of the mass and performance characteristics of two vehicles, one designed for positive levels of longitudinal stability and the other designed with relaxed stability requirements in a computer aided design process is presented. Both vehicles, required to meet the same mission characteristics are described. Wind tunnel tests, conducted over a Mach number range from 0.3 to 4.63 to verify estimated aerodynamic characteristics, are discussed.

  4. Propulsion system requirements for reusable single-stage-to-orbit rocket vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1992-01-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  5. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-01-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  6. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    NASA Astrophysics Data System (ADS)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  7. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    NASA Technical Reports Server (NTRS)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  8. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  9. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 5: Analysis and design of stages D and E

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Cheatham, J. G.; Clemmons, D. R.

    1972-01-01

    A conventional and a tandem bladed stage were designed for a comparative experimental evaluation in a 0.8 hub/tip ratio single-stage compressor. Based on a preliminary design study, a radially constant work input distribution was selected for the rotor designs. Velocity diagrams and blade leading and trailing edge angles selected for the conventional rotor and stator were used in the design of the tandem blading. The effects of axial velocity ratio and secondary flow on turning were included in the selection of blade leading and trailing edge angles. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.26, respectively.

  10. A True Single-Stage Reconstruction of a Projected Auricle for Concha-Type Microtia Incorporating Endoscopically Harvested Temporoparietal Fascia.

    PubMed

    Nataliya, Biskup; Martin, Mark C

    2015-09-01

    Reconstruction of microtia with autogenous costal cartilage that produces a well-projected ear in a single stage is a challenging endeavor. In this case report, we describe a single-stage, projected costal cartilage-based reconstruction of concha type mitoria. Due to the patient's low hairline, his hair-bearing scalp would encroach on the ear framework if placed subcutaneously in the standard fashion. Thus, a large TPF flap harvested with endoscopic assistance was planned to achieve both a color-matched hairless skin envelope and a well-projected ear in single stage. PMID:26147024

  11. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  12. Catalytic multi-stage liquefaction of coal twelth quarterly report for the period 1 July 1995--30 September 1995

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1995-12-01

    The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench- scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  13. Hemodynamic consequences of LPA stenosis in single ventricle stage 2 LPN circulation with automatic registration

    NASA Astrophysics Data System (ADS)

    Schiavazzi, Daniele E.; Kung, Ethan O.; Dorfman, Adam L.; Hsia, Tain-Yen; Baretta, Alessia; Arbia, Gregory; Marsden, Alison L.

    2013-11-01

    Congenital heart diseases such as hypoplastic left heart syndrome annually affect about 3% of births in the US alone. Surgical palliation of single ventricle patients is performed in stages. Consequently to the stage 2 surgical procedure or other previous conditions, a stenosis of the left pulmonary artery (LPA) is often observed, raising the clinical question of whether or not it should be treated. The severity of stenoses are commonly assessed through geometric inspection or catheter in-vivo pressure measurements with limited quantitative information about patient-specific physiology. The present study uses a multiscale CFD approach to provide an assessment of the severity of LPA stenoses. A lumped parameter 0D model is used to simulate stage 2 circulation, and parameters are automatically identified accounting for uncertainty in the clinical data available for a cohort of patients. The importance of the latter parameters, whether alone or in groups, is also ranked using forward uncertainty propagation methods. Various stenosis levels are applied to the three-dimensional SVC-PA junction model using a dual mesh-morphing approach. Traditional assessments methodologies are compared to the results of our findings and critically discussed.

  14. Cheap spaceflight promised again: Is single-stage-to-orbit finally the answer?

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    Chemical rocket fuel is cheap, and rockets, in theory, are simple devices, but spaceflight remains one of Western civilization's most expensive activities. The problems are that it takes close to the maximum power that a chemical rocket can achieve just to lift a fuel tank, rocket engines, vehicle structure, and the diminishing quantity of fuel all the way to orbit. The solution to that problem causes the second. By staging a rocket, its performance is improved, but it vastly increases the complexity of the rocket. Three potential solutions are: (1) to improve the performance of the rocket engines, but performance equals cost and today's most efficient engines already yield fairly close to the best performance that chemical rockets can produce; (2) to reduce the weight and volume of the fuel that must be carried in the tank, which is the approach of the National Aerospace Plane project; and (3) to reduce the weight and complexity of the vehicle as a system, which is perhaps the most promising approach. Technical advances may allow what has been considered largely impractical: a chemical Earth-to-orbit rocket without stages, a Single-Stage-To-Orbit vehicle (SSTO) or Delta Clipper. The detailed program is addressed.

  15. Dimension determination of precursive stall events in a single stage high speed compressor

    SciTech Connect

    Bright, M.M.; Qammar, H.K.; Hartley, T.T.

    1996-06-01

    This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undersireable event of rotating stall formation in high speed compressor cores. {copyright} {ital 1996 American Institute of Physics.}

  16. Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    2000-01-01

    Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.

  17. FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR

    SciTech Connect

    Seletskiy, S.; Solyak, N.

    2011-03-28

    The use of single stage bunch compressor (BC) in the International Linear Collider (ILC) Damping Ring to the Main Linac beamline (RTML) requires new design for the extraction line (EL). The EL located downstream of the BC will be used for both an emergency abort dumping of the beam and the tune-up continuous train-by-train extraction. It must accept both compressed and uncompressed beam with energy spread of 3.54% and 0.15% respectively. In this paper we report the final design that allowed minimizing the length of such extraction line while offsetting the beam dumps from the main line by 5m distance required for acceptable radiation level in the service tunnel. Proposed extraction line can accommodate beams with different energy spreads at the same time providing the beam size suitable for the aluminum ball dump window. We described the final design of the ILC RTML extraction line located downstream of the new single-stage bunch compressor. The extraction line is only 24m long and is capable of accepting and transmitting 220kW of beam power. The EL can be used for both fast intra-train and continual extraction, and is capable of accepting both 0.15% and 3.54% energy spread beams at 5MeV and 4.37MeV respectively.

  18. Performances of single and two-stage pulse tube cryocoolers under different vacuum levels with and without thermal radiation shields

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, Srinivasan; Behera, Upendra; Nadig, D. S.; Krishnamoorthy, V.

    2012-06-01

    Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of ~ 29 K at its cold end, the two-stage PTC reaches ~ 2.9 K in its second stage cold end and ~ 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of ~ 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni / HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

  19. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy.

    PubMed

    Stickles, Allison M; Ting, Li-Min; Morrisey, Joanne M; Li, Yuexin; Mather, Michael W; Meermeier, Erin; Pershing, April M; Forquer, Isaac P; Miley, Galen P; Pou, Sovitj; Winter, Rolf W; Hinrichs, David J; Kelly, Jane X; Kim, Kami; Vaidya, Akhil B; Riscoe, Michael K; Nilsen, Aaron

    2015-06-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  20. Inhibition of Cytochrome bc1 as a Strategy for Single-Dose, Multi-Stage Antimalarial Therapy

    PubMed Central

    Stickles, Allison M.; Ting, Li-Min; Morrisey, Joanne M.; Li, Yuexin; Mather, Michael W.; Meermeier, Erin; Pershing, April M.; Forquer, Isaac P.; Miley, Galen P.; Pou, Sovitj; Winter, Rolf W.; Hinrichs, David J.; Kelly, Jane X.; Kim, Kami; Vaidya, Akhil B.; Riscoe, Michael K.; Nilsen, Aaron

    2015-01-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  1. Clinical Outcomes and Risks of Single-stage Bilateral Unicompartmental Knee Arthroplasty via Oxford Phase III

    PubMed Central

    Ma, Tong; Tu, Yi-Hui; Xue, Hua-Ming; Wen, Tao; Cai, Min-Wei

    2015-01-01

    Background: Osteoarthritis often affects the joint bilaterally, and the single-stage (SS) unicompartmental knee arthroplasty (UKA) is advantageous in terms of a single anesthesia administration, a short hospital stay, lower medical costs, and enhanced patient convenience. However, the complication risk of SS UKA continues to be debated. The aim of this article was to evaluate the clinical effectiveness, complications, and functional recovery of SS and two-stage (TS) UKA. Methods: From January 2008 to December 2013, we compared a series of 36 SS UKA with 45 TS UKA for osteoarthritis. The mean age was 65.4 years (range: 55–75 years). The mean body mass index was 25.2 kg/m2 (range: 22–29 kg/m2). The pre- and post-operative Oxford Knee Scores (OKSs), complications, operative times, tourniquet times, the amount of drainage, and hemoglobin (Hb) were evaluated. The Chi-square test, Fisher's exact test, and paired and grouped t-tests were used in this study. Results: The mean follow-up was 50 months. No complications of death, fat embolism, deep vein thrombosis, and prosthetic infection were reported. Patients who underwent SS UKA had a shorter cumulative anesthesia time (113.5 vs. 133.0 min, P < 0.01). There were no significant variations between the values of the mean tourniquet time, the amount of drainage, pre- and post-operative Hb in the different groups. No patient required a blood transfusion. No statistical differences were found in the complications between two groups (P > 0.05). At the final follow-up, the mean OKS improved from 39.48 ± 5.69 to 18.83 ± 3.82 (P < 0.01), with no statistical differences between the two groups (P > 0.05). Patients who underwent SS UKA had a faster recovery. Conclusions: The single-staged UKA offers the benefits of a single anesthesia administration, reduced total anesthetic time, decreased overall rehabilitation time, and absence of an increase in perioperative mortality or complications compared with the TS bilateral UKA

  2. Nuclear magnetic resonance studies of ancient buried wood-I. Observations on the origin of coal to the brown coal stage

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Earl, W.L.

    1981-01-01

    Various wood fragments buried in sediments under anaerobic conditions for from 450 yr to approximately 8 Myr have been examined by solid-state 13C nuclear magnetic resonance. Cellulose and other carbohydrates, the major components of Holocene wood, have been shown to be gradually hydrolyzed or otherwise lost under the conditions of burial. Lignin structures, however, are preserved relatively unchanged and become concentrated by difference as the carbohydrates disappear. Thus, a fragment of coalified wood isolated from a Miocene brown coal was found to be still composed of approximately 75% lignin and 25% cellulose. On the basis of our observations, we suggest that coalification of woody tissue progresses directly from lignin to coal and that such coalification may be retarded until most of the cellulose disappears. ?? 1981.

  3. Abort performance for a winged-body single-stage to orbit vehicle

    NASA Astrophysics Data System (ADS)

    Lyon, Jeffery A.

    1995-08-01

    Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.

  4. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 7: Data and performance for stage E

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.

    1974-01-01

    An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.

  5. Total Single-Stage Autologous Breast Reconstruction with Free Nipple Grafts

    PubMed Central

    Schwartz, Jean-Claude D.; Skowronski, Piotr P.

    2015-01-01

    Summary: Outstanding results are difficult to achieve in postmastectomy reconstructions in obese ptotic patients. We describe an autologous single-stage reconstruction with free nipple grafts that is best suited for these difficult patients. This technique allows for delayed volume supplementation with implants or fat grafting but does not commit the patient to additional surgery. It avoids the common complications of immediate implant-based reconstructions. This technique is also an excellent option in patients with a known requirement for radiotherapy as it does not sacrifice a valuable autologous flap nor does it subject the patient to capsular contracture, infection, and extrusion. It also obviates the psychological trauma that many women suffer awaiting a reconstruction after radiotherapy. We believe it should be considered as a first-line reconstructive option. PMID:26894012

  6. Single-stage-to-orbit performance enhancement from take-off thrust augmentation

    SciTech Connect

    Galati, T.; Elkins, T.

    1997-01-01

    Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor{sup {reg_sign}} strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80{percent} of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H{sub 2} engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, I{sub sp} and pitch rate are quantified. {copyright} {ital 1997 American Institute of Physics.}

  7. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  8. Total Single-Stage Autologous Breast Reconstruction with Free Nipple Grafts.

    PubMed

    Schwartz, Jean-Claude D; Skowronski, Piotr P

    2015-12-01

    Outstanding results are difficult to achieve in postmastectomy reconstructions in obese ptotic patients. We describe an autologous single-stage reconstruction with free nipple grafts that is best suited for these difficult patients. This technique allows for delayed volume supplementation with implants or fat grafting but does not commit the patient to additional surgery. It avoids the common complications of immediate implant-based reconstructions. This technique is also an excellent option in patients with a known requirement for radiotherapy as it does not sacrifice a valuable autologous flap nor does it subject the patient to capsular contracture, infection, and extrusion. It also obviates the psychological trauma that many women suffer awaiting a reconstruction after radiotherapy. We believe it should be considered as a first-line reconstructive option. PMID:26894012

  9. Robust H∞ stabilization of a hard disk drive system with a single-stage actuator

    NASA Astrophysics Data System (ADS)

    Harno, Hendra G.; Kiin Woon, Raymond Song

    2015-04-01

    This paper considers a robust H∞ control problem for a hard disk drive system with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant uncertain system where its uncertain parameters and high-order dynamics are considered as uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati equations as nonconvex constraints. The nonlinear optimization problem is then solved using a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the hard disk drive system with a specified disturbance attenuation level.

  10. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  11. Projectile acceleration in a single-stage gun at breech pressures below 50 MPa

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Ohba, S.; Takayama, K.

    Experimental studies were carried out to investigate projectile acceleration in a single-stage gun at breech pressures below 50 MPa. The gun was driven by firing either liquid or solid propellant. In-bore projectile velocity was continuously recorded using the well-known, precise VISAR interferometer technique so that accurate projectile acceleration data could be deduced. Both the attained projectile acceleration and muzzle exit velocity depend upon the charge-to-mass ratio and the pressure at which the blow-out disk ruptures. The results obtained from these experiments render information on the interplay between propellant combustion and projectile acceleration for low in-bore pressure regimes, and they provide the input data required for adequate numerical simulation.

  12. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Xu, S.; Dougans, A.

    2013-01-01

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such 14C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed 13C and 16O by improvising an additional Wien filter on our SSAMS deck. Also, 14C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the 14N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  13. Single-Stage Minimally Invasive Surgery for Synchronous Primary Pulmonary Adenocarcinoma and Left Atrial Myxoma.

    PubMed

    van der Merwe, Johan; Beelen, Roel; Martens, Sebastiaan; Van Praet, Frank

    2015-12-01

    We report the first successful short-term outcome of single-stage combined video-assisted thoracoscopic surgery lobectomy and port access surgery in a patient with operable primary right lower lobe adenocarcinoma and a synchronous cardiac myxoma. The video-assisted thoracic surgery right lower lobectomy with systematic lymph node dissection was performed first, followed by myxoma excision by port access surgery through the same working port incision. The histopathologic analysis confirmed a pT2a N0 M0 R0 (TNM 7th edition) primary poorly differentiated pulmonary adenocarcinoma and a completely excised cardiac myxoma. Postoperative recovery was uneventful, and follow-up at 6 weeks confirmed an excellent surgical and oncologic outcome. PMID:26652533

  14. Approach to key technologies identification for rocket powered single stage to orbit vehicles

    SciTech Connect

    Deneu, F.; Terrenoire, P.

    1996-03-01

    A reusable vertical take off, vertical landing rocket powered single stage to orbit vehicle has been studied as a part of the A{acute e}rospatiale future launchers systematic study policy. The main goal of this study is to investigate the key points of this kind of configurations, especially identify, classify and quantify the specific problems, key technologies, tools and test facilities needed and the development costs and schedule. Concurrent engineering techniques were used to take into account all the viewpoints (such as RAMS, abort, operations viewpoints) from the very beginning of this study in order to perform a multidisciplinary conceptual design. The configuration presented here is a conical shape, 60 m long, 1200 ton gross lift-off weight vehicle which delivers to and is able to bring back from a space station a 10 ton payload. This paper presents the study methodology, the systems requirements taken into account and the reference vehicle. {copyright} {ital 1996 American Institute of Physics.}

  15. Rocket-powered single-stage vehicle configuration selection and design

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger A.; Mcmillin, Mark; Wurster, Kathryn E.; Powell, Richard W.; Guinta, Anthony A.; Unal, Resit

    1993-01-01

    A reusable rocket-powered, single-stage launch vehicle has been designed as a part of NASA's Advanced Manned Launch System (AMLS) study to examine options for a next-generation manned space transportation system. The configuration selection process utilized a response surface methodology for multidisciplinary optimization. The methodology was utilized to determine the minimum dry weight entry vehicle to meet constraints on landing velocity and on subsonic, supersonic, and hypersonic trim and stability. Once the optimum configuration was determined, a multidisciplinary conceptual vehicle design was performed. This paper presents the results of the configuration selection methodology and summarizes the overall conceptual design process with special attention given to the individual disciplines of weights/ sizing, structures/materials, configuration, flight mechanics, aerodynamics, aeroheating, propulsion, and operations.

  16. Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.

  17. Single stage to orbit mass budgets derived from propellant density and specific impulse

    SciTech Connect

    Whitehead, J.C.

    1996-06-06

    The trade between specific impulse (Isp) and density is examined in view of Single Stage To Orbit (SSTO) requirements. Mass allocations for vehicle hardware are derived from these two properties, for several propellant combinations and a dual-fuel case. This comparative analysis, based on flight-proven hardware, indicates that the higher density of several alternative propellants compensates for reduced Isp, when compared with cryogenic oxygen and hydrogen. Approximately half the orbiting mass of a rocket- propelled SSTO vehicle must be allocated to propulsion hardware and residuals. Using hydrogen as the only fuel requires a slightly greater fraction of orbiting mass for propulsion, because hydrogen engines and tanks are heavier than those for denser fuels. The advantage of burning both a dense fuel and hydrogen in succession depends strongly on tripropellant engine weight. The implications of the calculations for SSTO vehicle design are discussed, especially with regard to the necessity to minimize non-tankage structure.

  18. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  19. Single stage evaluation of highly loaded high Mach number compressor stages. 6: Data and performance of cantilevered stator

    NASA Technical Reports Server (NTRS)

    Merrow, A. S.

    1972-01-01

    A compressor stage with a rotor tip speed of 1600 ft/sec was tested to evaluate its performance with a cantilevered stator and a rotating inner shroud beneath the stator. Both the rotor blades and the stator vanes were composed of multiple circular arc airfoil sections. Comparison of data taken during this test of the cantilevered stator and previous tests with the same compressor and airfoil geometry in a shroud stator configuration showed only slight differences in stage performance with no significant effect on overall efficiency. However, the severity of the stator wake near the rotating hub was decreased at all flows including the near surge condition. Stall and wise open discharge corrected weight flows were the same as for the shrouded stator configuration.

  20. Oxygen as a light element: A solution to single-stage core formation

    NASA Astrophysics Data System (ADS)

    Corgne, Alexandre; Siebert, Julien; Badro, James

    2009-10-01

    The abundances of siderophile elements in the silicate Earth indicate that Earth's iron-rich core probably formed at high pressure and high temperature. A popular model of core formation considers that the concentrations of several moderately siderophile elements are consistent with a scenario of simple single-stage equilibration at the base of a magma ocean. However, recent work using temperature sensitive partitioning data for V and Nb have casted doubt on this interpretation since the required basal temperature would greatly exceed that of the mantle solidus. Here we show that single-stage core formation event could explain the mantle contents of siderophile elements best constrained by experiment (Ni, Co, V, Mn, Cr, and Nb) provided that the core contains a few weight percents of oxygen. Our calculations, based on partitioning and metallurgy data, reveal that V and Nb become significantly less siderophile with increasing the O content of core-forming materials, while the behaviour of Ni, Co, Cr and Mn is little affected. Since the other likely light element candidates C, Si and S do not drastically influence the siderophile behaviour, we conclude that a simple-equilibration scenario is a viable hypothesis only if O contributes partially to the core density deficit. This interpretation is consistent with the W budget of the silicate Earth and recently published W metal-silicate partitioning data. The presence of a few weight percents of oxygen in the core is also in agreement with recent high-pressure high-temperature solubility measurements in molten iron equilibrated with perovskite and ferropericlase.

  1. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy.

    PubMed

    Huang, Yi-Fan; Kooyman, Patricia J; Koper, Marc T M

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  2. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

    PubMed Central

    Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  3. Single stage: dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures using perineal route

    PubMed Central

    Prabha, Vikram; Devaraju, Shishir; Vernekar, Ritesh; Hiremath, Murigendra

    2016-01-01

    ABSTRACT Objective To assess the outcome of single stage dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures (>4cm long) using a perineal incision. Materials and Methods From August 2010 to August 2013, 20 patients underwent BMG urethroplasty. The cause of stricture was Lichen sclerosis in 12 cases (60%), Instrumentation in 5 cases (25%), and unknown in 3 cases (15%). Strictures were approached through a perineal skin incision and penis was invaginated into it to access the entire urethra. All the grafts were placed dorsolaterally, preserving the bulbospongiosus muscle, central tendon of perineum and one-sided attachement of corpus spongiosum. Procedure was considered to be failure if the patient required instrumentation postoperatively. Results Mean stricture length was 8.5cm (range 4 to 12cm). Mean follow-up was 22.7 months (range 12 to 36 months). Overall success rate was 85%. There were 3 failures (meatal stenosis in 1, proximal stricture in 1 and whole length recurrent stricture in 1). Other complications included wound infection, urethrocutaneous fistula, brownish discharge per urethra and scrotal oedema. Conclusion Dorsolateral buccal mucosal urethroplasty for long anterior urethral strictures using a single perineal incision is simple, safe and easily reproducible by urologists with a good outcome. PMID:27286122

  4. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    SciTech Connect

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. )

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  5. Heavy recycle solvent studies in two-stage coal liquefaction. Final technical report, September 1, 1982-December 30, 1983

    SciTech Connect

    Longanbach, J. R.

    1984-01-10

    The objective of this program has been to study the chemistry of the components with high boiling points in a direct coal liquefaction recycle solvent and to identify those components which lead to higher overall yields and improved product stability in the initial coal dissolution step of direct coal liquefaction processes. The major conclusions are: -454 C recycle solvent is primarily aromatic hydrocarbons (73%) and contains almost no asphaltenes; +454 C recycle solvent is primarily asphaltenes and aromatic hydrocarbons; recycle solvent also contains aliphatic hydrocarbons, N-containing aromatics and O-containing aromatics; heteroatoms in coal derived materials seem to be grouped by type, i.e. acidic O and basic N and sulfur occur together; under helium a small net amount of hydrogen and more CO and CO/sub 2/ are produced than under hydrogen; under hydrogen the amounts of H/sub 2/S and hydrocarbon gases are increased and a small amount of hydrogen gas is usually consumed; overall coal conversions to THF solubles are improved by adding more -454 C solvent but decreased by adding +454 C solvent; for added fractions of -454 C solvent the pecent conversion to THF solubles increases in the order aromatic hydrocarbons (+7.2) > aliphatic hydrocarbons (+0.8) > no added solvent (0.0) > N-containing aromatics (-0.9) > O-containing aromatics (-22.1); percent conversion to THF solubles using -454 C solvent with +454 C solvent fractions added decrease in the order aliphatics (+3.7) > aromatic hydrocarbons (+3.0) > no added solvent (0.0) > O-containing aromatics (-9.3) > N-containing aromatics (-13.3); of the +454 C solvent components, aromatic hydrocarbons and aliphatic hydrocarbons are beneficial but total only approx. 25% of the +454 C recycle solvent; and steric effects may be important in determining the effectiveness of the heavier solvent components as liquefaction solvents. 28 references, 25 figures, 31 tables.

  6. Adjuvant Radiotherapy Outcome of Stage I Testicular Seminoma: A Single Institution Study

    PubMed Central

    Lee, Hayoon; Kim, Jun Won; Hong, Sung Joon; Yang, Seung Choul; Choi, Young Deuk; Rha, Koon Ho

    2015-01-01

    Purpose To analyze treatment outcome and side effects of adjuvant radiotherapy using radiotherapy fields and doses which have evolved over the last two decades in a single institution. Materials and Methods Forty-one patients received radiotherapy after orchiectomy from 1996 to 2007. At our institution, the treatment field for stage I seminoma has changed from dog-leg (DL) field prior to 2003 to paraaortic (PA) field after 2003. Fifteen patients were treated with the classic fractionation scheme of 25.5 Gy at 1.5 Gy per fraction. Other patients had been treated with modified schedules of 25.05 Gy at 1.67 Gy per fraction (n=15) and 25.2 Gy at 1.8 Gy per fraction (n=11). Results With a median follow-up of 112 months, the 5-year and 10-year survival rates were 100% and 96%, respectively, and 5-year and 10-year relapse-free survival rates were both 97.1%. No in-field recurrence occurred. Contralateral seminoma occurred in one patient 5 years after treatment. No grade III-IV acute toxicity occurred. An increased rate of grade 1-2 acute hematologic toxicity was found in patients with longer overall treatment times due to 1.5 Gy per fraction. The rate of grade 2 acute gastrointestinal toxicity was significantly higher with DL field than with PA field and also higher in the 1.8-Gy group than in the 1.5-Gy and 1.67-Gy groups. Conclusion Patients with stage I seminoma were safely treated with PA-only radiotherapy with no pelvic failure. Optimal fractionation schedule needs to be explored further in order to minimize treatment-related toxicity. PMID:25510743

  7. Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing

    PubMed Central

    De Domenico, Elena; Owens, Nick D.L.; Grant, Ian M.; Gomes-Faria, Rosa; Gilchrist, Michael J.

    2015-01-01

    Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal–ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal–ventral or left–right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal–ventral or left–right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos. PMID:26100918

  8. Molecular asymmetry in the 8-cell stage Xenopus tropicalis embryo described by single blastomere transcript sequencing.

    PubMed

    De Domenico, Elena; Owens, Nick D L; Grant, Ian M; Gomes-Faria, Rosa; Gilchrist, Michael J

    2015-12-15

    Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos. PMID:26100918

  9. Single-Crystal Sapphire High-Temperature Measurement Instrument for Coal Gasification

    NASA Astrophysics Data System (ADS)

    Zhang, Yibing; Pickrell, Gary; Qi, Bing; May, Russell G.; Wang, Anbo

    2003-09-01

    Based on the broadband polarimetric differential interferometry (BPDI) technology, a complete prototype optical sensor instrumentation system was designed and implemented for on-line reliable and accurate high temperature measurement in a slagging coal gasifier, which operates under high temperatures and extremely corrosive conditions. A wide dynamic measurement range from room temperature up to 1600 °C with a resolution better than 0.1 °C and high accuracy is achieved; long-term operating stability has also been tested.

  10. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.