Science.gov

Sample records for coal technical progress

  1. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.; Jiang, X.; Tao, D.; Parekh, B.K.; Meloy, T.

    1996-10-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

  2. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  3. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  4. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    SciTech Connect

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  5. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  6. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  7. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.

    1996-07-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies will be conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model is developed by West Virginia University. The research to be performed by the University of Kentucky has recently been determined to be: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Acoomplishments to date are reported.

  8. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  9. Development of a Coal Quality Expert. Final technical progress report No. 14, [July--September 1993

    SciTech Connect

    Not Available

    1994-01-17

    This is the fourteenth Technical Progress Report, describing work performed under DOE Contract No. DE-FC22-90PC89663, ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from July 1 through September 30, 1993. Five companies and five host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 51-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and (2) develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inactive bench-scale tests.

  10. Panama coal to methanol project. Phase I. Feasibility Study. Technical progress report

    SciTech Connect

    Not Available

    1983-11-01

    This Technical Progress Report contains the results of the investigations performed for the Panama Coal to Methanol Project: Technical efforts associated with the gasification technology evaluation; evaluation of other related process technologies; results of the venture analyses, including the efforts made for structuring the project; results of the ongoing financial analyses and cost projections, including potential and use applications of methanol in Japan primarily for combustion turbine-combined cycle steam/electric utilization. At this time, and for the next few years, the Panama-based methanol fuel is more expensive than oil. However, when measured in terms of KWH production cost in Japan, the use of methanol fuel in combustion turbine, combined-cycle operations appears to create less expensive electric power than that produced from conventional coal direct fired operations using imported coal. This cost advantage arises from significantly lower capital costs and enhanced performance efficiencies associated with combined cycle power generators as contrasted with conventional coal plants equipped with scrubbers. Environmental and social land-use benefits are also much greater for the methanol fuel plant. The cost of electricity from a methanol-fueled combined cycle plant is also expected to compare favorably in Japan with electrical costs from a future liquefied natural gas fired plant.

  11. Hydrothermally treated coals for pulverized coal injection. [Quarterly] technical progress report, January--March 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-04-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and the Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products are being characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey is being conducted.

  12. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report

    SciTech Connect

    Doyle, F.M.

    1995-05-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  14. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  15. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  16. Assessment of pulverized coal-fired combustor performance. First quarterly technical progress report

    SciTech Connect

    Richter, W.; Clark, W.; Payne, R.

    1981-01-01

    The objective of this program is to provide the engineering tools necessary for an authoritative assessment of the performance of industrial furnaces firing pulverized coal. The program incorporates two experimental tasks and is constructed around an analytical task which will identify and upgrade the family of computer programs required to undertake the performance analysis studies. These analytical tools will be used to predict the effect of parameters such as fuel type and furnace variables on combustor performance, and to identify those properties which have a major impact on thermal performance. The second task uses a combustion reactor to screen the key variables identified and to provide data on the properties of coal particulate matter which affect heat transfer performance. Verification of the engineering analytical approach will be provided by measurements made in a pilot-scale furnace. This present report discusses technical progress during the first three months of the program, and considers the selection of the appropriate analytical tools and preliminary details of the experimental system.

  17. The Magnetohydrodynamics Coal-Fired Flow Facility technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    In this quarterly technical progress report, UTSI reports on a multi-task research contract directed toward developing the technology for an MHD steam combined cycle power plant. During the period two tests were conducted in the DOE Coal Fired FLow Facility. Both of these tests were part of the western coal proof-of-concept (POC) test series. The report describes the performance of the tests and provides some preliminary performance data on particulate removal systems during the tests. The performance of ceramic tubes being tested for high temperature air heater application is described. Performance of advanced diagnostics equipment from both UTSI and MSU is summarized. The results of experiments designed to determine the effects of potassium compounds on combustion are included. Plans for analysis of metal tube specimens previously removed from the test train are discussed. Modeling and analysis of previous test data include a deposition model to predict ash deposition on tubes, mass balance results, automated data screening and chemical analyses and the data base containing these analyses. Laboratory tests on sealing ceramic tubes and corrosion analyses of previously tested tubes are reported.

  18. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  20. Electrostatic beneficiation of coal. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-11-01

    Progress reports are presented for the following tasks: single particle measurement of size and charge; electrodynamic balance for trapping single particles for measurement; and tribocharging of coal particles passed through a circular tube.

  1. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  2. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  3. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  4. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  5. Molecular biological enhancement of coal biodesulfurization. Third quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-03-15

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: Clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; Conduct a batch-mode optimization/analysis of scale-up variables.

  6. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  7. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    SciTech Connect

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  8. Photochemical coal dissolution. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1996-01-01

    Research continued on coal photochemical dissolution. Experiments were performed in a newly constructed, computerized, coal photochemical reactor. The experiments demonstrated the active participation of coal in photochemistry.

  9. Low severity coal liquefaction promoted by cyclic olefins. Quarterly technical progress report, April--June 1996

    SciTech Connect

    Curtis, C.W.

    1997-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports.

  10. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    SciTech Connect

    Not Available

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  11. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  12. Surface properties of photo-oxidized bituminous coals. Technical progress report, January--March 1996

    SciTech Connect

    Mitchell, G.; Davis, A.; Chander, S.

    1996-12-31

    During this report period, a vitrinite concentrate from the mvb Splash Dam seam (DECS-30) was prepared and analyzed. Results show that the concentrate was 91 vol % vitrinite and that the sample has been adequately protected from oxidation under refrigerated storage in argon. The 9% level of contamination within the vitrinite resulted from the extreme friability of the coal and to the dispersion of fine grains of semifusinite and micrinite. Polished blocks containing vitrain bands that were prepared, irradiated in blue-light and employed in contact angle measurements were evaluated using specular reflectance-mode FT-IR for changes in functional group chemistry. Infrared spectra from unexposed areas of vitrinite and those irradiated for 1, 5 and 10 min for six coals ranging in rank from hvCb to mvb were obtained using a FTS 175 spectrometer with a Bio-Rad UMA 500 microscope accessory. Preliminary results demonstrate that photo-oxidation occurred during irradiation, becoming progressively more intense with increasing irradiation time; however, the magnitude of this change diminished with increasing rank. A relatively steady increase in the carbonyl region (1,800--1,650 cm{sup {minus}1}) and a decrease in the aliphatic region (2,950--2,850 cm{sup {minus}1}) of the spectra supports this observation and is similar to observations made in the past for natural weathering and laboratory oxidation of coals. A series of tests was initiated to photo-oxidize powdered vitrains using the BLAK-RAY ultraviolet lamp evaluated last quarter. Samples of four vitrinite concentrates were exposed to UV light for 10 mins per side. These and the corresponding whole-seam channel samples and raw vitrinite concentrates were submitted for initial microflotation tests which have not been completed at this time.

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [March--May 1992

    SciTech Connect

    Doyle, F.M.

    1992-06-30

    during the seventh quarter, electrokinetic, humic acid extraction and film flotation tests were done on oxidized samples of Upper Freeport coal from the Troutville {number_sign} 2 Mine, Clearfield County, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis was done to characterize the morphology and composition of the surface of as-received coal, oxidized coal, oxidized coal after extraction of humic acids and humic acid extracted from oxidized coal. In addition, electrochemical studies were done on electrodes prepared from coal pyrite samples.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Doyle, F.M.

    1993-06-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eleventh quarter, dry thermal oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied by ion-exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the flotability of as-received and oxidized coals. In addition, electrokinetic tests were done on different coals, to obtain information pertinent to the selection of flotation reagents. DRIFT analysis was done to characterize the structure of coals.

  15. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  16. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year research has focused on fine coal dewatering and modeling.

  17. Biochemical removal of HAP precursors from coal. Technical progress report, January--March 1996

    SciTech Connect

    1996-08-01

    Shake flask bioleaching tests were conducted with Pittsburgh NO. 8 and Indiana No. 5 coal. Bacteria removed pyritic sulfur from both coals at maximum rates of 5 to 9% per day, which was about 20 times the abiotic rate of pyrite oxidation. Concentrations of inorganic hazardous air pollutant (HAP) precursor elements in starting coal, bioleached coal and in leach solutions were measured. Of the 13 HAP precursors, significant amounts of arsenic, cobalt, cadmium, manganese, and nickel were removed from both coals by bacterial activity and also by the acidic leach solutions in control flasks. Little or no mercury, lead, beryllium, chromium, antimony, fluorine or chlorine was removed from the coals. Selenium was bioleached from both coals as determined by analysis of Se in leach solutions. However, analyses of Se in starting coal and in coal residues remains problematic. With very few exceptions, mass balances for the HAP precursors ranged from 80 to 120%. Improved analytical methods were developed for measuring concentrations of Hg, Se, As, and Sb in coal. Shake flask tests with pyrite oxidizing bacteria were conducted on Pittsburgh No. 8 and Indiana No. 5 coal. Concentrations of HAP precursors in the starting coal, leach solutions, and final coal residues were measured. A column leaching-rotating biological contactor (RBC) unit was assembled and a column leach test with Pittsburgh No. 8 coal was begun.

  18. Exploratory research on solvent-refined-coal liquefaction. Annual technical progress report, January 1-December 31, 1980

    SciTech Connect

    1981-04-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by the Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1980. Six coals and a coal blend, representing the Interior, Rocky Mountain, Eastern and Northern Great Plains Provinces, were processed in the SRC I and SRC II modes to study the relationship between coal properties and liquefaction behavior. Disposable catalysts and specific compounds were added to Loveridge, Kaiparowits and Blacksville No. 2 coals during SRC II mode liquefaction. Kentucky 9/14, Indiana V and Loveridge coals were processed at short residence times (4 to 9 minutes) in the SRC I mode to evaluate the effects of temperature, pressure, residence time and disposable catalyst addition. Finally, coal from the Powhatan No. 1 Mine was evaluated as a feedstock for major coal liquefaction facilities.

  19. Appalachian Clean Coal Technology Consortium. Technical progress report, October 10, 1994--December 31, 1994

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year activites are focused on dewatering and modeling of spirals.

  20. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, June 1995--August 1995

    SciTech Connect

    Doyle, F.M.

    1996-03-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The action of coal and pyrite as reducing agents and as waste processing sorptive material for wastes outside the industry are also discussed.

  1. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect

    Huffman, G.P.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  2. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  3. Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984

    SciTech Connect

    Paranjape, A.S.

    1984-04-30

    Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

  4. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  5. MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

    SciTech Connect

    Dicks, J. B.; Chapman, J. N.; Crawford, L. W.

    1980-02-01

    In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.

  6. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  7. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  8. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    1996-05-23

    The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

  9. New concept for coal wettability evaluation and modulation. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Hu, W.

    1996-05-01

    The objective of this project is to evaluate the surface wettability and flotation of coal and pyrite in order to establish a new separation strategy for advanced coal cleaning for premium fuel applications. During this quarter, mini-cell flotation tests were carried out on Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 coals, and two pyrite samples. Flotation media used were kerosene, benzene, and amyl-xanthate. Test results are given and discussed.

  10. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  11. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  12. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, May 31, 1995

    SciTech Connect

    Doyle, F.M.

    1995-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  13. Coal materials handling coal feeder development, Phase I. First quarterly technical progress report, October-December 1980

    SciTech Connect

    Not Available

    1981-01-20

    The FMA Linear Pocket Feeder (LPF) is a positive displacement feed system in which the pressure seal is developed by a set of mechanical labyrinth seals between the piston rings and the sealing tube. The pressure seal is completely independent of the type and size of coal used. The LPF can maintain a pressure difference with no coal in the system and can achieve steady state operation in less than a minute after startup. Coal flow rate can be changed while the LPF is operating at design speed and operating pressure with no effect on the LPF's performance. The LPF has the potential for operating on all types and sizes of coal as long as they are free flowing. The existing LPF will be upgraded utilizing the knowledge gained during the previous 330 hours of operation. The loading station will be redesigned to allow the infeed of coarse coal in such a manner that minimum degradation occurs during entry into the pockets of the feeder and feed of pulverized coal in a way that minimizes entrapment of air under the coal charge to allow quicker settling. Certain other proposed design changes are described also. (LTN)

  14. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, April--June 1996

    SciTech Connect

    1997-12-31

    Analytical methods were finalized and all analyses completed on shake flask tests with Indiana No. 5 and Pittsburgh No. 8 coal. A column leaching-rotating biological contractor (RBC) unit was used to bioleach pyrite and hazardous air pollutant precursors from Pittsburgh No. 8 coal. Shake flask tests with Rosebud subbituminous coal were begun. In connection with upcoming slurry column reactor tests, coal was prepared and shipped to INEL, and a detailed work plan was developed for operation and sampling for the tests. A manuscript and poster was prepared for presentation at the PETC contractors conference.

  15. Supercritical fluid reactions for coal processing. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Eckert, C.A.

    1995-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which closely resemble the organic sulfur and nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal desulfurization and denitrogenation. Diels-Alder reactions involving such compounds have been extensively studied and characterized in liquids. However, there is very little understanding of such reactions in SCF`s. We are developing an approach which will allow optimum design of coal desulfurization and denitrogenation processes.

  16. Photochemical coal dissolution. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Doetschman, D.C.

    1996-05-01

    The remaining types of photochemical extraction experiments originally proposed have now been examined. Experiments in which benzophenone (BP) in solution was employed as a photochemical extraction reagent on pre-extracted coals were performed with Hg arc light through a quartz light filter at a concentration permitting light absorption primarily by the coal. Experiments were done on pre-extracted coals in which tetralin was employed as the photochemical extraction reagent. Finally experiments were performed in which the pre-extracted coal was swelled with BP above its melting point, irradiated through a quartz filter and extracted. The solvent was acetonitrile in all cases.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  18. Upgraded Coal Interest Group. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1995-08-01

    This report presents information from the coal interest group. Topics of discussion at the meeting included the current political views concerning the Department of Energy and programs contained therein. The group met on January 10 and 11, in Nashville, TN. The status of various coal upgrading technologies was also reviewed. Four new technology opportunities were given reviews, Coal/Waste pellets, Custom Coals advanced technology, CSRC sulfur removing bacteria and a Mag-Mill which is a magnetic separation done within the pulverizer. Coal Waste pellets is a technology for making pellets of coal and fiber waste from recycling plants. The incentives are low cost and low sulfur and nitrogen. Lebowitz made a field trip to the pilot unit in Canton Ohio. The Mag Mill takes advantage of the natural concentration of pyrite in the pulverizer recycle stream (due to its hardness). Special magnets are installed in the mill to remove pyrite from this stream. Custom Coals reported on an advanced two step process for removal of organic sulfur from coal. Consolidated Sulfur Reduction Co. reported on a two step microbial desulfurization process.

  19. Development of a Coal Quality Expert. Final technical progress report No. 8

    SciTech Connect

    Not Available

    1992-06-16

    During the past quarter, Tasks 2, 3, 4, 5, and 6 were active. Data reduction continued for the characterization of raw coal samples collected from five mines located in the Powder Basin in support of the Northern States Power (NSP) King test site. Four flowsheet tests were performed at the CQDC with the Pratt and Utley coals as part of the coal cleanability characterizations being performed for the Alabama Power Company`s (APC) Gaston test site. Babcock and Wilcox (B&W) performed pilot-scale combustion testing of the baseline and alternate coals used for the full-scale test bums at Northern States Power`s King Station. PSI Technology Company (PSIT) and the University of North Dakota`s Energy and Environmental Research Center (EERC) continued to work under ABB/CE to develop the slogging and fouling models. Work continued on the preparation of final test reports for the field tests performed at Public Service Oklahoma`s Northeastern Unit 4 and Mississippi Power Company`s Watson Unit 4, and plans and test schedules were developed for tests to be conducted later this year at Alabama Power Company`s Gaston Unit 5 and Duquesne Light Company`s Cheswick Unit 1. Task 5 and 6 activities were directed at overall CQE program definition, development of the CQE software specification, completion of the Acid Rain Advisor (ARA), and continued formulation of CQE algorithms and submodels. All laboratory analyses required for the raw-coal characterizations of the Powder River Basin coals--collected in support of the NSP King test program--were completed. Coal cleanability tests were performed with the Pratt and Utley Seam coals obtained from the Pittsburg and Midway Coal Company in support of the baseline coal test performed at APC`S Gaston Unit 5.

  20. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  1. EDS coal liquefaction process development. Phase V. Monthly technical progress report, June 1-June 30, 1980

    SciTech Connect

    Epperly, W.R.

    1980-07-01

    High pressure bottoms recycle operations were conducted on the 50 pounds/day Recycle Coal Liquefaction Unit (RCLU) with Texas lignite from the Big Brown mine. Results indicate that significant conversion, yield and unit operability advantages can be obtained with Big Brown lignite by operating in the bottoms recycle mode, as compared to coal only operation. Yield data obtained from the one ton-per-day Coal Liquefaction Pilot Plant (CLPP) showed that the C/sub 4/-1000/sup 0/F distillate yield was approximately 44% based on dry, ash-free coal compared to 47% for Wyoming subbituminous coal. No unusual coal-specific problems were noted. Preliminary results from liquefaction of neat bottoms on the Once Through Coal Liquefaction Unit (OTCLU) showed significantly higher (C/sub 4/-1000/sup 0/F) liquid make and 1000/sup 0/F/sup +/ conversion for single pass CLPP bottoms when compared with equilibrium CLPP recycle bottoms. Work began on an engineering screening study to determine the impact of high pressure bottoms recycle on the relative economics of various bottoms processing options. A screening study was undertaken to evaluate various methods of calculating the Required Initial Selling Price (RISP) of coal liquids. Heat and material balances were completed to simulate high pressure vacuum bottoms recycle operations at ECLP within the fuel gas treating and DEA regeneration areas of the plant. A research guidance study was initiated to select preferred bottoms recycle operating conditions for subsequent CLPP operations with Wyoming (Wyodak mine) coal. Fluid bed combustion of vacuum bottoms to supply high-level process heat provides incentives comparable to hybrid boilers, another direct combustion option. Research and development on coal slurry fired heaters, conducted by outside organizations, is currently being reviewed.

  2. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  3. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Anderson, S.A.; Radovic, L.R.; Hatcher, P.G.

    1996-11-01

    Objective is to use {sup 129}Xe NMR to study the microporous structure of coals. During this quarter, we have: performed a presaturation experiment on Wyodak subbituminous coal, monitored the progress of Xe adsorption in an anthracite, focusing on the changes observed in the external-surface adsorbed gas signal, used an echo sequence to obtain {sup 129}Xe NMR spectra of Blind Canyon hvAb coal, and improved and repeated the successive oxygen adsorption and desorption experiment on a microporous carbon.

  4. Sorption and chemical transformation of PAHs on coal fly ash. Technical progress report No. 8

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1993-12-01

    The objective of this work is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Specific investigations directed toward this overall objective include: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (c) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (d) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of {open_quotes}surface roughness{close_quotes} of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  5. Argonne premium coal sample program. Annual technical progress report. Reporting period : 2/2006-2/2007.

    SciTech Connect

    Hunt, J. E.; Chemistry

    2007-03-04

    This project provides highly uniform, premium (unexposed to oxygen) coal samples to researchers investigating coal structure, properties and behavior, and maintains accessible databases of published reports describing work carried out on the Argonne Premium Coal Samples. The samples are made available to DOE researchers and others. The eight carefully selected samples have been kept in as pristine a condition as possible through careful control the conditions in all stages from sample collection throughout processing and packaging. The samples are available in glass ampoules to ensure sample uniformity and maintain premium quality to ensure sample integrity.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Third quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. Progress is described.

  7. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  8. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  9. MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980

    SciTech Connect

    Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

    1981-03-01

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

  10. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  11. Development of phenomenological model for coal slurry atomization. Quarterly technical progress report

    SciTech Connect

    Dooher, J.

    1996-10-01

    Atomization tests on simulated fluids are being performed. For each sample tested, {Delta}P{sub c} is being determined as described in the last quarterly report. The results will be reported when the coal slurry testing is completed for comparative purposes. The viscoelastic properties on the simulated fluids and coal water slurries are being determined using the Adelphi Stresstech Viscometer. A discussion of viscoelastic properties and their relationship to atomization is presented.

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  14. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1993-10-01

    The Research and Development Department of CONSOL Inc. is conducted a program to characterize process and product streams from direct coal liquefaction process development projects sponsored by the Department of Energy. In this program, CONSOL obtains samples from current process development activities in coal liquefaction and coal-oil coprocessing, and characterizes them using established analytical techniques. In addition, selected samples are characterized by other analytical techniques to evaluate their potential for aiding process development. These analyses and interpretation of the results in relation to process operations are provided by the subcontractor. Major topics reported in this thirteenth quarterly report are the following: (1) Analyses were performed on three coals and eleven process oils from HRI, Inc. process development unit Run 260--03, which was the first process development unit test of Black Thunder Mine subbituminous coal, significant operating problems were encountered, and sample properties are discussed in context to the operational problems; (2) a summary of the status of the Participants Program is given; (3) summaries of the final reports produced by the University of Chicago, the University of Utah, Iowa State University, and the University of Kentucky under the Participants Program, are presented.

  15. Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-04-23

    In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

  16. Reactivity of coal in direct hydrogenation processes: Technical progress report, September-November 1987

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1987-01-01

    Research focused on two facets of the reactivity studies. First, a series of experimental runs aimed at investigation of the role of hydrogen in direct liquefaction were completed. A model compound system consisting of dibenzyl in aromatic (non-donor) or hydroaromatic (hydrogen donor) vehicles was hydrogenated to determine the effect of molecular hydrogen and hydrogen from donor molecules in the radical quenching and bond scission reactions. Special attention was paid to the role of hydrogen as an active bond cleavage agent. These data show the relative participation of hydrogen from both sources at conditions relevant to the reactivity data and provide support for the role of hydrogen acting directly to promote bond cleavage. Maintenance of a ''pool'' of hydrogen atoms was found to be of great importance in terms of promoting hydrogenolysis and hydrocracking reactions of dibenzyl. Five bituminous coals from the Argonne premium coal collection were liquefied at conditions similar to those employed in the model compound study. The general findings relative to the activity of molecular hydrogen determined from the model compound experiments were evidenced in the coal liquefaction data. Additionally, the presence of aliphatic hydrodgen in the coal itself was found to be a highly significant factor in determining the sensitivity of coal conversion to the presence of gas phase molecular hydrogen. 8 refs., 6 figs., 8 tabs.

  17. Coal plasticity at high heating rates and temperatures. Eighth technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1992-05-01

    The potential influence of gas bubbles on the viscosity of molten coal at elevated temperatures was estimated by calculations, using literature models for the viscosity of two and three phase suspensions. In one approach, gas bubbles in molten coal were approximated as the dispersed phase of deformable liquid globules in G.I. Taylor`s model of emulsion viscosity. This model was incorporated into different models for the viscosity of solid-in-liquid suspensions, in which the dispersed solids are approximated as rigid spheres. Calculations show that in the presence of gas bubbles, the apparent viscosity of molten coal increases roughly in proportion to the volume fraction of gas with respect to the liquid continuum phase. It is experimentally and mathematically difficult to accurately determine gas volume fractions throughout the softening stage of coal pyrolysis. Our current plan is therefore to assume that the apparent viscosity of molten coal can be reasonably modeled in terms of a single liquid continuum phase and one dispersed phase consisting only of solids, using for example the two phase suspension viscosity model of Hatschek or of Frankel and Acrivos. In this approximation, gas bubble effects would force the model to underestimate metaplast concentrations and to overpredict the contribution of the dispersed solids to increase the viscosity of the liquid continuum.

  18. Photochemical coal dissolution. Final technical progress report, September 30, 1993--September 29, 1996

    SciTech Connect

    Doetschman, D.C.

    1997-05-01

    A flowing solvent photochemical reactor was designed, built and tested. A modified ACE photochemical reactor, lamp and power supply were employed. They were modified to accommodate a silica column-constrained dispersed coal sample and a solvent flowing through the silica/coal column to sweep away coal extract. Before each experiment the column was packed with the mixture of silica and coal in the annular space around the lamp. A reflective aluminum surface (foil) reflected any light-transmitted through the column for multiple passes back through the sample. A variable speed Rainin Rabbit Plus peristaltic pump was interfaced to an IBM XT computer via a Gilson RS232/RS422 converter. The purpose of the computer control was to vary the speed of the pump so as to control the absorbance of the solution of coal extract in the solvent. Absorbances at a chosen wavelength were measured by a Spec 21 spectrophotometer with a flow cell connected to the column effluent port. A signal proportional to transmittance from the Spec 21 was delivered to the computer through a Keithley DAS 801 A/D plug-in the computer. The analysis of the Spec 21 signal and control of the pump speed was based on a QuickBasic computer program written by us.

  19. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1982-01-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory for the period January 1, 1980 through March 31, 1980. A series of experiments was conducted with three western coals to study the relationship between coal properties and liquefaction behavior. All three coals were low in iron (0.2 to 0.4%, dry coal basis) and processing in both the SRC I and SRC II modes does not appear to be feasible at normal conditions without added catalyst. Adding 1 to 2% pyrite to the feed slurry increased oil yields considerably while reducing SRC and IOM yields and improved operability. Product quality was also generally improved by the catalyst. Operability and oil yields were generally found to be better at 450/sup 0/C than at 465/sup 0/C.

  20. Semiconductor electrochemistry of coal pyrite. Technical progress report, January--March 1992

    SciTech Connect

    Osseo-Asare, K.

    1992-05-01

    This project seeks to advance the fundamental understanding of the physicochemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural (i.e. coal-derived) pyrite specimens, the utilization of pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk)-electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. Central to this research is the recognition that pyrite is a semiconductor material. (Photo)electrochemical experiments will be conducted to unravel the mechanisms of anodic and cathodic processes such as those associated with pyrite decomposition and the reduction of oxidants such as molecular oxygen and the ferric ion.

  1. Role of porosity in supercritical fluid extraction of coal: Technical progress report

    SciTech Connect

    Bale, H.D.

    1987-04-15

    Our studies of supercritical extraction from coal entail two experimental approaches. Changes in the porosity of the coal brought on by the extraction process will be studied by small angle x-ray scattering at the UND Physics Department and the analysis of extract composition will be carried out at the UND Energy Research Center. At this time we are still in the equipment testing and development stage. This brief report points out some of the ''discoveries'' and difficulties that our tests have revealed and also discusses the necessary changes that we have made in order to deal with the problem areas.

  2. Technical progress report for the magnetohydrodynamics Coal-Fired Flow Facility for the period April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-10-01

    In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actions being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.

  3. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle power plant. The experimental program was effectively terminated and reoriented to preparation of reports on previous tests and maintaining the DOE facility. In this report, the results of tube corrosion studies for the samples removed after 500 hours of western coal testing are summarized. Plans for evaluating the tube samples after termination of the tests at 1,047 hours are discussed. The status of development of models to predict ash deposition on conductive heat transfer tubes and their validation with experimental data is presented. Modeling and experiments to induce agglomeration of particulate are also discussed. Significant accomplishments, findings and conclusions include: In summary, corrosion measurements on typical, commercial stainless steels and on low and intermediate chromium steels after 639 hours of LMF5 exposure in the SHTM test sections revealed corrosion that was generally acceptable in magnitude if corrosion kinetics are parabolic, but, except for the higher chromium alloys 253MA and 310, not if kinetics are linear. The production of bilayer scales, and the large amount of scale separation and fragmentation make long term parabolic kinetics unlikely, and result in a high likelihood for breakaway corrosion.

  4. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1992

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  5. Coal log pipeline research at University of Missouri. Second quarterly technical progress report, 1 April--30 June 1996

    SciTech Connect

    Liu, H.

    1996-06-01

    During this quarter, significant progress has been made in the following, fronts of coal log pipeline research, development and technology transfer: 1. Design of the special 300-ton coal log compaction machine was completed, Furthermore, much progress has been made in the design of the system needed to feed coal into the coal log compaction machine, and the design of the system to remove logs automatically as soon as they are compacted. 2. Coal mixtures containing different amounts of moisture were compacted into 1.91- inch-diameter coal logs rapidly (in 6 seconds). It was found that for the Mettiki coal tested, the optimum moisture is around 8%. Under the test conditions (room temperature and 3% binders), the rapidly compacted coal logs with 8% moisture had less than 4% weight loss in 350 cycles of circulation. 3. Completed evaluation of the effectiveness of using wall lubricants to enhance coal log quality. Both calcium sterarate and MoS{sub 2} were found to be effective. 4. It was found that when the interior of a mold is not cleaned after coal log has been compacted, the coal mixture film clinging to the wall hardens in time and form a hard crust which affects the quality of the next log to be produced. But, if the second log is produced immediately after the first, no hard crust is formed and the quality of the second log, is not affected. 5. Coal logs made with the coal crushed by the Gundlach Company were found to be better than coal logs made with the coal crushed by the CPRC`s hammer mill. 7. A 320-ft-long, 6-inch-diameter coal log pipeline test facility was constructed in Rolla during this period. 8. Completed the simulation of an 8-inch-diameter, 20-mile-long coal log pipeline recirculating loop driven by a pump bypass. 9. Continued improvement was accomplished in the hydraulic model of HCP and CLP to predict pressure drop and capsule velocity for both single capsules and capsule train. Also, work has started to extend the analysis to sloped pipelines.

  6. Electrostatic beneficiation of coal. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1997-01-01

    From previous study, we know that oxidation of the coal surface will decrease the efficiency of electrostatic beneficiation by increasing the negative charge of the carbon particles. The polarity and magnitude of charge acquired by the nonconducting particles varied depending on the state of ``oxidation`` of the surfaces and the work function relative to the metal surface. The formation of oxide layer on the coal particles are rather rapid, therefore, the grinding and charging processes are needed to be carried out in a nitrogen or argon atmosphere. It is clear that impaction efficiency between coal particle and charger will decrease with decreasing particle size and particle velocity. So, it is necessary to charge small particles in a different process. We plan to size classify the coal particles into three size fractions: (1)fine (<40{mu}m). (2) medium (40{approximately}100{mu}m). (3) coarse (100{approximately}200{mu}m). Static mixer and a new designed charger (powder pump connected with a circular tubing) are used in the experiment. And we planned to measure the charge to mass ratio distributions as a function of the particle size distribution on the separator plates. This report discusses the following: determination of the charge to mass ratio distributions as a function of particle size distribution; and method to measure the mass, charge and size of the particle.

  7. Characterization of coal surfaces. Technical progress report, 21 May-20 August 1986

    SciTech Connect

    Fuerstenau, D.W.

    1986-09-01

    The overall objective of this research work is directed towards delineating the fundamental aspects of the interfacial behavior of coal in relation to surface-based beneficiation processes for coal cleaning. Previous reports have presented the results of our film flotation technique to evaluate the wettability characteristics of coal. The efficacy of the film flotation technique to characterize the lyophobicity (hydrophobicity) of particles was confirmed by comparing the average critical wetting tension value obtained by this method with that obtained from contact angle measurements. By coating different mineral substrates with paraffin wax, the negligible effect of gravity on film flotation was demonstrated. Various flotation tests were performed to correlate flotation behavior with the critical surface tension results obtained from the film flotation experiments. Research during the last quarter was directed along two main lines: (1) repeat the earlier film flotation response of a series of coal samples to correlate wettability with their bulk properties; (2) conduct film flotation of chemically treated glass beads to delineate particle shape effects in this characterization process. 2 refs., 1 fig., 2 tabs.

  8. Healy clean coal project. Quarterly technical progress report No. 4, October--December 1991

    SciTech Connect

    Not Available

    1992-03-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better than the federal New Source Performance Standards. (VC)

  9. Healy clean coal project. Quarterly technical progress report No. 5, January--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

  10. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  11. Advanced technology for ancillary coal cleaning operations. Technical progress report, September--December, 1987

    SciTech Connect

    Not Available

    1994-09-01

    The work under contract number DE-AC22-87PC97881 is devoted to experimental research and development to investigate the feasibility of novel ancillary coal-cleaning technologies that offer a potential for reduced capital and operating costs. The ancilliary operations that are specifically addressed in this work include pulse enhanced drying, fines reconstitution by extrusion, and hydraulic wave comminution.

  12. Evaluation of hyperbaric filtration for fine coal dewatering. Quarterly technical progress report, 1996

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I, model development, Phase II, laboratory studies, Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments to date are reported for the three phases.

  13. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  15. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  16. Electrostatic beneficiation of coal. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-04-01

    Two methods of examining the decay rate of charge on powders deposited on the separator plates were examined. In the first method the charge transferred from ground to the separator plate was measured directly with an electrometer after completion of the powder deposition and after turning off the electric field. In a second method an electrostatic field meter (Trek model 354A) was used to measure the field due to the charge on the plates or on thin Teflon or aluminum plates which had been placed over the metal separator plates. In addition the paper discusses the fabrication and use of a resistivity cell for coal powder; charging of small particles by milling; observations with silica gel; and a review of articles on particle charging. A separate section presents the electrostatic charging properties of coal macerals.

  17. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    1980-11-01

    Part 3 consists of appendices 5, 6 and 7, which have been entered individually into EDB and ERA. They deal with regression analysis of pilot plant SRC-II yields to develop thermal response models of the process and the possibility of predicting yields from coal properties. The possibility of a runaway exothermal reaction under some operating conditions on the demonstration plant scale is also considered. (LTN)

  18. Surface properties of photo-oxidized bituminous coals. Technical progress report, October--December 1995

    SciTech Connect

    Mitchell, G.; Polat, H.; Davis, A.; Chander, S.

    1996-02-01

    During this report period, polished blocks of coal containing 3--4 mm wide vitrain bands were prepared for contact angle measurements of fresh and photo-oxidized surfaces using the advancing-drop technique. Contact angles were measured on two of the coals collected for this study, (the Ohio No. 4a (DECS-33) and Lower Kittanning (PSOC-1562) seams) and the results added to those presented in the last quarterly report. Although the new data give additional variation to the sample set, they are consistent with the original observations, i.e., that contact angle is influenced by irradiation time and coal rank. Using the maximum change in contact angle measured between fresh and photo-oxidized surfaces, a linear decrease is observed with increasing rank resulting from 5 and 10 minutes of irradiation. The magnitude of the decrease in contact angle diminishes with increasing rank. Also during this period, an ultraviolet spotlight was evaluated as a means of irradiating powdered vitrain. This 100 watt, long wavelength (366 nm) ultraviolet lamp is to be used in place of the optical microscope system to establish the influence of surface photo-oxidation on the flotation characteristics of vitrain concentrates. A series of experiments was designed to determine the magnitude of change in the luminescence intensity (at 600 nm measured in the optical microscope) with exposure to the ultraviolet light with time for vitrinite from different rank coals. The authors have established that there is a significant decrease in luminescence intensity with time of exposure which diminishes slightly as rank increases. The ultraviolet light appears to provide a level of photo-oxidation that is a factor of 10 lower than that obtained with their optical microscope system.

  19. Photochemical coal dissolution. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Doetschman, D.C.

    1996-07-01

    As mentioned in the report on the previous quarter, the authors have turned their attention to studies of photochemically-induced-charge-transfer phenomena involving aromatic electron donors. Coal is a porous material and it has been demonstrated that there are ground-state charge-transfer-interactions between imbibed TCNE or TCNQ and the automatic systems in bituminous coals. The authors aim to develop a preliminary understanding of the ground and excited state donor-acceptor interactions and the charge-transfer phenomena in porous materials that are better-defined than coals. They are performing background examinations of a set of donors and acceptors in solution by cyclic voltammetry and uv-visible spectroscopy. These preliminary experiments are being followed by systematic studies of the adsorption of the donors and acceptors, individually and together into adjacent supercages of a series of cation-exchanged X- and Y-type faujasite zeolites. Ultraviolet-irradiation of these systems are being performed and electron paramagnetic resonance examination of the samples is being made for the presence of paramagnetic, one-electron, charge-transfer products. In related work performed by students supported by this contract, the authors have reached a good understanding of the interactions and molecular motions of free radical {pi} electron systems in the X- and Y-type faujasite zeolites. Luminescence spectroscopy may also be used to examine the doped zeolite samples in future experiments. The authors have begun to examine the donor-acceptor pairs: diphenylamine-benzophenone, nitroxyl and substituted nitroxyl radical-benzophenone, and aromatic hydrocarbon-unsaturated tetracyano hydrocarbon. The oxidation and reduction potentials and excitation energies of these systems are given. The aromatic hydrocarbon donors span the range of typical aromatic ring sizes found in bituminous, subbituminous and lignite coals.

  20. Pelletization of fine coals. Technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Sastry, K.V.S.

    1992-09-01

    The first step consisted of producing a batch of seed pellets (in the size range {minus}4.75+4.00 mm) by pelletizing of 200 g of ground coal with desired additives (surface active agents and binders) and moisture content for 800 revolutions. The seed pellets are obtained by sieving the output from the batch drum. The second step involved the production of finished size pellets by layering the seed pellets with stepwise addition of moist feed which is again produced with desired additives and moisture content. Specifically, 25 g of the {minus}4.75+4.00 mm seed pellets are placed in the drum and 20 g of moist fluffy feed is added every 80 revolutions for five times. After 400 revolutions the pellets are sieved on the 4.75 mm screen and the screen undersize which corresponds to new seeds generated during the layering cycles is discarded. Now, 30 g of moist fluffy feed is added every 50 revolutions for five more cycles. These layered pellets are sieved again and the {minus}9.5+8.00 mm pellets. Coal agglomerates produced by the above described technique are nice and spherical. With our past experience with iron ore pelletization we learnt that as long as sufficient fluffy feed is available for the consumption by the seed pellets, they generally grow by forming layers consuming the feed rather than grow by coalescence. This is found to be true in the case of coal also. Growth by coalescence of coal pellets is found to yield raspberry type uneven agglomerates. After ascertaining the possibility of producing nice spherical pellets, several experiments have been conducted to develop the above standard procedure for making pellets in a reproducible way and testing them for their quality.

  1. Advanced coal-fueled gas turbine systems. Technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-24

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  2. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  3. Volatiles mass transport within particles of softened coal. Technical progress report, April 1-October 20, 1986

    SciTech Connect

    Howard, J.; Hsu, J.S.; Peters, W.A.

    1986-10-01

    A mathematical model is developed to describe the intraparticle effects of unsteady volatiles transport, chemical kinetics of metaplast formation and depletion, and transient plastic behavior in softening coal pyrolysis. In the pyrolysis process, coal is converted into metaplast and gases via chemical-bond breaking and physical melting. The viscous, fluid-like metaplast further decomposes to form gases, tar, and coke. The transports of gaseous species to the particle surface and to the bubbles which are originated from the sealed pores in the metaplast phase are related to the plastic behavior of coal. The bubbles may grow due to the influx of gaseous volatiles adn the decomposition of tar evaporated from the metaplast. Through the break-up of bubbles on the particle surface, the tar and the light gases in bubbles are released into the ambient. The main objectives of this model are to quantitatively simulate the coupled effects of transport and kinetics and to predict the independent effects of reaction temperature, pressure, particle size, and heating rate on the volatiles yields and the extent of swelling during pyrolysis.

  4. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  5. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    SciTech Connect

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  6. Coal materials handling/coal feeder development, Phase I. 2nd quarterly technical progress report, January-March 1981

    SciTech Connect

    Not Available

    1981-04-27

    The essential objective of Phase I of our program is to demonstrate extended capabilities for the Linear Pocket Feeder (LPF). This requires extensive modification of both our test facility and the LPF. At this time we estimate that delays in modifications will prevent our testing the LPF until at least mid-May, a month and a half later than originally scheduled. However, we have reviewed our test plan and facility operation in detail and conclude that testing can probably be completed by the end of August as originally proposed, and that the program is not jeopardized in any other way. In fact, our projected delay in specified testing is due in part to our initial testing - crude but successful, with pulverized coal (PC). On the strength of this success, we are attempting to go immediately to an LPF and feed system that is fully modified for PC. A status report task by task is given.

  7. Semiconductor electrochemistry of coal pyrite. Technical progress report, October--December 1992

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1993-02-01

    This project seeks to advance the fundamental understanding of the physics-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid minedrainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural ( i.e. coal-derived) pyrite specimens, the utilization of.pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk) electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. The kinetic study of the reaction between sulfide and ferrous ions in solution suggested that the black species formed initially is FeHS{sup +} intermediate. To farther confirm this mechanism, the experiments aimed at establishing the stoichiometry for the intermediate were carried out thermodynamically with a stopped-flow spectrophotometric technique. The results showed that the mole ratio of H{sup {minus}}/Fe{sup 2+} is 1 to 1 for the intermediate product, which is in good agreement with the kinetic results previously obtained. Furthermore, the equilibrium constant for the reaction Fe{sup 2+} + H{sup {minus}} = FeHS{sup +} was determined as K = 10{sup 4.34}. The forward rate constant is 10{sup 3.81}(mol/l){sup {minus}1}sec{sup {minus}1} and the backward rate constant is 10{sup {minus}0.53} (mol/l){sup {minus}1} sec{sup {minus}1}.

  8. Semiconductor electrochemistry of coal pyrite. Technical progress report, January--March 1993

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1993-05-01

    This project seeks to advance the fundamental understanding of the physicochemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural ( i.e. coal-derived) pyrite specimens, the utilization of pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk) electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. The work performed during this quarter focuses on the synthesis of pyrite in aqueous solutions at room temperature and atmospheric pressure. The experimental results show that the initial product from the reaction between ferrous ions and sulfide ions is X-ray amorphous iron sulfide, and the final product is mackinawite from this reaction. Both amorphous iron sulfide and mackinawite in wet states are oxidized quickly in air to {gamma}-FeOOH. Pyrite can form in aqueous solution through a simple path from a reaction between ferric ions and sulfide ions at room temperature within 9 days. It is believed that a redox reaction occurs between ferric and sulfide ions to form ferrous ions and elemental sulfur. The Fe{sup 2+}, S{sup 2{minus}} ions and elemental sulfur, S{sup o}, in the system can then react with each other to form pyrite. This pathway of pyrite formation can be used in synthesizing nanoparticles of pyrite in microemulsions.

  9. Photochemical coal dissolution. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1995-12-31

    Examination of the photochemical extractions of the four Argonne Premium Coal Residues has been under way in a routine manner during this last quarter. An unexpectedly great effort last quarter had been necessary to find extraction solvents and photochemical reagents that were photochemically stable and inert. While it is a rather poor thermal extraction solvent, acetonitrile has proven to be the best solvent the authors have examined. In addition to runs with only the acetonitrile solvent present, experiments were performed with the photochemical reagents, benzophenone and pyridine. Both ketone and pyridine triplet states are well-known for their hydrogen abstraction and electron transfer capabilities. The photochemical reagents were used at concentrations resulting in 50% transmission of the light across the reactor pathlength at 320 nm. Experiments with the quartz cutoff filter remain to be completed at concentrations resulting in 50% transmittance at lower wavelengths. Changes in the transmission of light by the column effluent were monitored continuously and the extraction yield by weight was measured by evaporation of the solvent and subtraction of reagent weight. Thermal extraction yields without light under otherwise identical conditions were measured for comparison. As a check on undesirable effects, such as solvent photochemical degradation, otherwise identical light and dark experiments were also done without the coal on the column.

  10. Healy clean coal project. Technical quarterly progress report no. 6, April--June 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  11. Molecular biology of coal bio-desulfurization; Quarterly technical progress report, October 1--December 31, 1990

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1991-01-25

    The aim of this project is to use the techniques of molecular genetics to identify, clone, sequence, and enhance the expression of proteins which remove sulfur covalently bound to coal. This includes the movement and expression of these proteins into bacterial species which may be more useful in the industrial application of a biological desulfurization process. This quarter we finalized the initial cloning and sequencing of the dibenzothiophene (DBT) metabolic (``dox``) genes from strain C18. In addition, we constructed several mutations in single dox genes and have begun to dissect the contribution of each gene product in the DBT degradation pathway. Using a probe derived from DNA adjacent to a transposon which inactivated DBT metabolism, the DBT active genes from A15 have been cloned and identified on cosmids. We have also electroporated Thiobacillus ferrooxidans with a plasmid containing a chloramphenicol resistant transposon. Colonies of T. ferrooxidans resistant to chloramphenicol were obtained.

  12. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  13. Evaluation of hyperbaric filtration for fine coal dewatering. Sixth quarterly technical progress report, 1 January--31 March 1994

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1994-06-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consists of three phases, namely: model development; laboratory studies; and field testing. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Progress to date is described.

  14. Coal-feeder development. Second quarterly technical progress report, January-March 1980

    SciTech Connect

    Mistry, D.K.

    1981-04-01

    The pilot-scale piston-feeder development is progressing satisfactorily and should proceed as planned. The bench scale testing of components, sub-system and critical areas continued to provide very useful information in support of the development of the complete feeder. The K30M seals and polyurethane scrapers are showing very promising results. The components development facility is being upgraded and testing at the bench scale level should be vigorously perused. The upgrading of the pilot scale feeder and its system will be emphasized during the next quarter to perform feeder capabilities and limitations testing. No progress on the 5.5-in. diameter pilot scale screw feeder has been made because IRRI is waiting decision from METC as to when the feeder can be installed on the 42-in. gas producer.

  15. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  16. Heterogeneous kinetics of coal gasification. Technical progress report, 1 August 1981-31 January 1982

    SciTech Connect

    Sy, O.; Calo, J.M.

    1982-02-01

    The continuing development of an experimental apparatus for the study of the heterogeneous reactions of coal-char gasifiction under conditions of industrial significance is described. The apparatus consists of: (1) a continuous gas flow, fixed solids gradientless reactor; (2) an automatic gas addition system for generating concentration perturbations in the reactor feed stream under conditions of constant flow rate, temperature, and pressure; and (3) a supersonic, modulated molecular beam mass spectrometer sampling system to monitor and resolve the transient response of the gas phase composition at the reactor exit. Work was concentrated on experimental runs of the transient behavior of the char-CO/sub 2/ reaction system. In addition, reactor mixing performance and estimates of possible interphase heat and mass transfer limitations on the kinetic rates were also determined. Modifications, testing and calibration of the beam sampling system and the mass spectrometer were also performed. Computer codes were written to simulate the transient response of the reaction system under varying experimental conditions for different mechanisms found in the literature. These codes are primarily used for model discrimination. An optimization code based on the Marquardt technique was also written for model parameter estimation from the data.

  17. Returning coal waste underground. Technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1982-01-15

    The initial approach for returning coal waste underground at the No. 4 Mine will be limited to the current 1'' x 0 refuse product (132 TPH; 540 GPM) from the Wolf Creek plant at Pilgrim, Kentucky. It is possible to bypass existing units in the refuse circuits by pumping the refuse directly out of the cleaning circuits for backfilling. the refuse dryer, filter screen and static thickener will not be used when the refuse is backfilled. A necessary condition of this concept is to maintain continuous backfilling operations by providing two outlets underground and always keeping at least one unit working. To avoid settling and unstable conditions in the pipe, the percentage of solids in the refuse slurry should not exceed 45% by weight and the velocity of the slurry should be about 10 feet per second. The pumping of the 150 TPH of refuse solids (45% by weight) requires that the slurry flow at approximately 1000 GPM. The velocity will be about 10 feet per second if the inside diameter of the pipeline is six (6) inches. The backfilling process could function with an open-end outlet pipe if there was a sufficient gradient in the mine. The areas to be backfilled in the No. 4 Mine are generally flat. This condition will require the installation of bulkheads for containing the material. The slurry water, however, will be free flowing and may deterioriate the floor. The water will therefore have to be collected and pumped back to the surface.

  18. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-10-01

    The general goal of this project is to provide a fundamental understanding of deposition processes of flyash and pulverized coal particles in coal combustors and coal gasifiers. In the period of April 1 to June 30, 1996, further research progress was made. The computational model for simulating particle motions in turbulent flows was applied to the dispersion and deposition analysis. The study of particle transport and deposition in a circular duct was completed and the major findings are summarized. A detailed model for particle resuspension process in a gas flow is developed. The new model accounts for the surface adhesion, surface roughness, as well as the structure of near wall turbulent flows. The model also accounts for all the relevant hydrodynamic forces and torques exerted on the particle attached to a surface. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  19. Mulled coal - a beneficiation coal form for use as a fuel or fuel intermediate. Technical progress report No. 9, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. During this reporting period the authors have: developed a suite of empirical tests covering water retention, rewetting, mull stability, angle of repose, dusting, etc.; a standardized suite for testing handling properties has been developed; initiated screening studies of alternate mulling agent formulations; mulls from six different coals and coals cleaned at different levels are being prepared for evaluation.

  20. Semiconductor electrochemistry of coal pyrite. Technical progress report, April--June 1992

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1992-12-01

    Pyrite synthesis is of interest in many diverse fields, such as geology, fuel processing technology, chemistry, metallurgy, materials science, and so on. Based on fundamental studies of this process, the formation mechanisms of this important sulfide on the earth can be better understood. The studies can also help us to better understand the surface chemistry and electrochemistry of pyrite, thereby assisting in the development of more efficient processes for removal of the sulfide from coal. The work performed during this quarter focuses on the study of the reaction between aqueous sulfide ions and dissolved Fe(II) salts by using a stopped-flow spectrophotometric technique. At a wavelength of 500 mn, no absorption was observed with either aqueous sulfide or dissolved Fe(II) salt alone. However, when the two solutions were mixed, a strong absorbance appeared at the same wavelength. The absorbance-time curve showed that a black material formed at the first few seconds of the reaction, then this material decayed and changed gradually to a lighter dark material within the following several minutes. These processes were pH-dependent. It was more likely to form the black intermediate at the pH range from 7 to 8. This indicates that the reaction between Fe{sup 2+} and HS{sup {minus}} results in the formation of the black intermediate because in this pH range, both Fe{sup 2+} and HS{sup {minus}} are the predominant species. The absorbance varied linearly with the concentration of the reactant for the first step of the reaction. The absorptivity of the black intermediate was determined as 4800 l/mol/cm. By means of this spectrophotometric technique, the stoichiometry, the equilibrium constant and the rate constant of the reaction will be determined.

  1. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  3. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility. January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported in developing technology for steam bottoming cycle of the coal-fired MHD Steam Combined Cycle Power Plant. During this period, no testing was scheduled in the DOE Coal-Fired Flow Facility. The report covers facilities modification and maintenance in preparation for a 225 hour POC test that is scheduled for early next quarter. The modifications to the dry ESP to replace the electrodes with smaller diameter wires is discussed. Continued work on the rotary vacuum filter, which is designed to separate the more soluble potassium carbonate from the potassium sulfate and fly ash, is reported. Environmental activities for the quarter are summarized.

  4. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, No. 4, July 1995--September 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-11-06

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 29, 1995.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  7. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  8. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 2, January--March 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-04-26

    The main purpose of this project is engineering development of advanced column flotation and selective agglomeration technologies for cleaning coal. Development of these technologies is an important step in the Department of Energy program to show that ultra-clean fuel can be produced from selected United States coals and that this fuel will be a cost-effective replacement for a portion of the premium fuels (oil and natural gas) burned by electric utility and industrial boilers in this country. Capturing a relatively small fraction of the total utility and industrial oil-fired boiler fuel market would have a significant impact on domestic coal production and reduce national dependence on petroleum fuels. Significant potential export markets also exist in Europe and the Pacific Rim for cost-effective premium fuels prepared from ultra-clean coal. The replacement of premium fossil fuels with coal can only be realized if retrofit costs, and boiler derating are kept to a minimum. Also, retrofit boiler emissions must be compatible with national goals for clean air. These concerns establish the specifications for the ash and sulfur levels and combustion properties of ultra-clean coal discussed below. The cost-shared contract effort is for 48 months beginning September 30, 1992, and ending September 30, 1996. This report discusses the technical progress made during the second 3 months of the project, January 1 to March 31, 1993.

  9. Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-07-01

    The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

  10. Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 4, January 1, 1991--March 31, 1991

    SciTech Connect

    Not Available

    1991-09-01

    During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

  11. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  12. Control of trace metal emissions during coal combustion. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Ho, Thomas C.

    1996-01-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold end of the process by air-pollution control devices such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions at the hot end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatized metal vapors. The objectives of this project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The following progress has been made during the performance period from Oct. 1, 1995 through Dec. 31, 1995: (1) Additional combustion experiments involving both coal and wood pellets were carried out in the constructed quartz fluidized bed combustor. (2) A new Buck Scientific Model 210VGP Atomic Absorption spectrophotometer equipped with a continuous flow hydride generator especially for arsenic and selenium was installed for the project. (3) A paper, entitled ``Capture of Toxic Metals by Various Sorbents during Fluidized Bed Coal Combustion,`` was presented at the 1995 AIChE Annual Meeting held in Miami, November 13--17, 1995. (4) A manuscript, entitled ``Trace Metal Capture by Various Sorbents during Fluidized Bed Coal Combustion,`` was submitted to the 26th International Symposium on Combustion for presentation and for publication in the symposium proceedings. 1 ref., 3 tabs.

  13. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  14. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility: October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-06-01

    Progress is reported on a multitask contract to develop technology for steam bottoming cycle of a Combined Cycle MHD Steam Power Plant. The report describes a 314 hour proof-of-concept (POC) test completed during the quarter. Results include secondary combustion and effect of potassium on the light-off temperature, fouling of heat transfer surfaces, particulate clean-up device performance and advanced diagnostic system performance. Test results on ceramic materials and tubes directed toward the development of a high temperature recuperative air heater are summarized. Results of data analysis of previous tests that are reported include the continuing analysis of tube materials that were exposed to 1500 and 2000 hours of eastern coal fired operation during the previously completed 2000 hour POC test series on eastern, high sulfur coal.

  15. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, ``Transpassive Oxidation of Pyrite,`` ``Flotation and Electrochemical Pretreatment,`` and ``Flotation Kinetics of Coal and Coal Pyrite.``

  16. Development of a retrofit coal combustor for industrial applications, (Phase 2). Technical progress report, April--June 1989

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  17. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on the status of a multi-task contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing has occurred or is scheduled, and the planned effort for this period was to maintain the DOE CFFF facility in a standby status and to complete test reports.

  18. Technical progress report for the magnetohydrodynamics coal-fired flow facility for the period April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-07-01

    In this quarterly technical progress report, UTSI reports on the status of a multitask contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing occurred or was scheduled during the quarter, but the DOE CFFF facility was maintained in a standby status.

  19. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  20. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  1. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  2. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, July 21, 1989--September 30, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  3. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  4. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-07-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  5. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, January 1, 1990--March 31, 1990

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  6. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  7. Effect of maceral properties on the comminution of coal. Technical progress report, January 1-March 31, 1986. [Resinite

    SciTech Connect

    Bodily, D.M.

    1986-01-01

    The objective is to study the chemical and physical properties of coal macerals and whole coal which are important in the comminution of coal. Swelling studies of pyridine extracted and o-methylated coals were made in various solvents. For the pyridine extracted coal swelling increased in cyclohexane, toluene, acetone and methanol. Swelling in tetrahydrofuran remained constant and decreased in pyridine. For the 0-methylated coal pyridine also-caused reduced swelling compared to the untreated coal. Tetrahydrofuran also caused reduced swelling while acetone, methanol and toluene caused enhanced swelling. Results of swelling are in agreement with the model preposed for coal swelling. Maceral separations of coal samples are being separated to provide sufficient sample for characterization studies on maceral fractions. Experiments have been initiated to study the grinding of coal in the presence of various solvents. 2 refs., 4 figs.

  8. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  9. Magnetic relaxation--coal swelling, extraction, pore size. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Doetschman, D.C.

    1991-12-31

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  10. Methane modeling: predicting the inflow of methane gas into coal mines. Quarterly technical progress report, January 2, 1981-March 31, 1981

    SciTech Connect

    Boyer, C.M. II; Morrison, H.L.; Schwerer, F.C.

    1981-04-15

    Salient features of technical progress for the first quarter are the following: (I) computer-assisted literature searches have been completed for several strategies designed to cover different aspects of the model development and evaluation program. Some strategy refinement and additional searches are required. Ultimately a comprehensive bibliography will have been compiled and evaluated; (II) basic mathematical components that are sufficient for the development of a first numerical model for water and methane flows to coal mines have been identified. This initial set of components is a basis for the collection and analysis of refinements to provide more realistic accounts of the complex factors affecting coal-bed methane during mining and degasification; (III) a set of basic partial differential equations for flow of water and gas in a horizontal, homogeneous coal seam has been formulated in terms of pressure, pore saturation, and adsorbed gas variables and presented in normalized form for numerical solution. Equation sets corresponding to alternative choices of dependent variables will be formulated and compared with this initial set and (IV) computer subroutines have been modified and assembled to implement one-dimensional, nonsteady, two-phase flow models. These programs implement numerical, finite-difference, method-of-lines algorithms in a format that facilitates substitution of mathematical components and equation sets. Initial runs with this software package have illustrated the superiority of a particular space-discretization scheme and provide data for comparison of grid and permeability weighting schemes.

  11. New concept for coal wettability evaluation and modulation. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hu, W.

    1993-09-01

    This project is concerned with the new concept for coal surface wettability evaluation and modulation. The objective of the work is to study the fundamental surface chemistry features about the evaluation of the surface wettability of coal and pyrite and establish a new separation strategy which could contribute to the advanced coal-cleaning for premium fuel application. In the past quarter report, the capillary rise test results of three coal and mineral pyrite samples in distilled water, kerosene, and salt solution indicated that there are good agreements between the experimental observations and theoretical assumption. In this quarter, the further capillary rise tests were conducted for coal, pyrite and coal pyrite in distilled water, kerosene and benzene. The test results shown that surface wettability of coal, mineral pyrite, and coal pyrite have good correlation with the theoretical predictions.

  12. New concept for coal wettability evaluation and modulation. Technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Hu, Weibai

    1993-12-31

    This project is concerned concept for coal surface wettability evaluation and modulation. The objective of the work are to study the fundamental surface chemistry feature about the evaluation of the surface of coal, pyrite and coal pyrite, and also establish a new separation strategy which could contribute to the advanced coal cleaning for premium fuel application. In this quarter, the capillary rise of three coals, colorado mineral pyrite, and coal pyrite in butanol, pentanol, and butyl ether have been tested. The test results shown that the kinetic wettability of the five samples in the alcohol homolog are dependent on the carbon chain length, as the length of the carbon chain is shorter, the surface wettability is the better. Another test results shown that the kinetic wettability of coals are better than mineral pyrite and coal pyrite in the butyl ether.

  13. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  14. New concept for coal wettability evaluation and modulation. Technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Hu, W.

    1994-08-01

    This project is concerned with the new concept for coal surface wettability and floatability and modulation. The objective of this work is to study the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel applications.

  15. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    SciTech Connect

    1996-03-15

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

  16. Evaluation of hyperbaric filtration for fine coal dewatering. First quarterly technical progress report, September 1, 1992--November 30, 1992

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1992-12-31

    Most of the coal presently used by the utility industry is cleaned at preparation plants employing wet processes. Water, while being the mainstay of coal washing, is also one of the least desirable components in the final product. Coarse coal (+3/4 inch) is easily dewatered to a 3--4 percent moisture level using conventional vibrating screens and centrifuges. However, the main problem of excess product moisture occurs in fine (minus 28 mesh) coal and refuse. Even though fines may constitute only about 20 percent of a contemporary cleaning plant feed, they account for two-thirds of the product surface moisture. This high surface moisture offsets many of the benefits of coal cleaning, and can easily undercut the ongoing programs on recovery of fine clean coal from refuse as well as producing an ultra-fine super clean coal fuel. Currently, most of the coal preparation plants utilize vacuum disk type technology for dewatering of the fine coal, providing dewatered product containing about 25 percent moisture. The coal industry would prefer to have a product moisture in the range of 10 to 15 percent, thereby avoiding thermal drying of coal. Hyperbaric filtration. has shown potential in lowering moisture in fine coal to about 20 percent level. This project will develop fundamental information on particle-liquid interaction during hyperbaric filtration and apply the knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric filter system.

  17. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W.

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  18. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of chemical analyses to direct coal liquefaction process development. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, new analytical instruments and techniques to examine coal-derived samples are being evaluated. The data obtained form this study are used to guide process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and experimental data, a kinetic model of resid conversion will be constructed. Such a model will provide insights to improve process performance and the economics of direct coal liquefaction.

  19. New concept for coal wettability evaluation and modulation. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Hu, Weibai

    1995-12-31

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. The objective of the work is study the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel application. During this quarter, the mini-flotation cell tests are conducted to study floatability of coal and pyrite. The three coals, coal pyrite and Colorado mineral pyrite samples are used in these tests. The kinetic floatability of the five samples have been tested without collector, with 3% and 6% NaCl solution. The test results have shown that there are good agreement between the experimental observation and the theoretical hypothesis about the new concept about the surface wettability and floatability of the coal and pyrite. The experimental results indicate that the coal floatability increase rapidly, but the floatability of coal pyrite and mineral pyrite are not change significantly with the addition of NaCl in flotation. It can be seen that the coal floatability increase as NaCl concentration increase. 14 figs., 5 tabs.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  1. Bioconversion of coal derived synthesis gas to liquid fuels. Final quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-10-25

    The overall objective of the project is to develop an integrated two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) development/isolation of superior strains for fermentation of syngas, (2) optimization of process conditions for fermentation of syngas, (3) evaluation of bioreactor configuration for improved mass transfer of syngas, (4) development of a membrane-based pervaporation system, (5) optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation, and (6) synthesis gas fermentation in single-stage by co-culture. Progress is reported in isolation of CO utilizing anaerobic strains; investigating the product profile for the fermentation of syngas by B. methylotrophicum; and determining the effect of carbon monoxide on growth of C. acetobutylicum.

  2. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M; Zhong, Tingke; Wadsworth, M.E.

    1992-09-01

    A series of fine coal kinetic tests were carried out on three coals. It was found that the rank of flotation rates for the three coals tested were: Upper Freeport > Pittsburgh No. 8 > Illinois No. 6. In the case of Pittsburgh No. 8, the contained coal-pyrite was found to float more slowly than the coal itself when xanthate was used as the collector. In kinetic modeling, first order kinetic models produced large errors for long flotation times. It was found that a modified first order kinetic-model with slow and fast rate constants was appropriate for fine coal flotation. A log-log plot of 1(R{sub j} -R) versus t forms a straight line for the test conditions of this study. The Lai proportionality flotation model was found to apply from the start and extending over a very broad time range.

  3. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, June 1, 1985-August 31, 1985

    SciTech Connect

    Eisch, J.J.

    1985-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. By learning the mechanism whereby H2, metal hydrides or partially hydrogenated aromatics can transfer hydrogen to model aromatic compounds, under homogeneous transition-metal catalysis, we hope to identify new methods for producing superior fuels from coal.

  4. Continuous-mixture kinetics of coal thermolysis in supercritical fluid. [Quarterly technical progress report, August--October 1992

    SciTech Connect

    Wang, M.

    1992-11-09

    The model developed builds on earlier models and introduces the following features: new rate expressions for both single-and two- fragment reactions; representation of initial coal composition by molecular weight distributions of chemical functional groups releasable from coal matrix by bond rupture; and applicability to semi-batch reactor. For the rate of coal depolymerization, two types of reactions are considered, one producing a single product species and the other producing two product species. A visualization of the reaction kinetics is presented.

  5. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress report No. 8, July 1, 1989--September 30, 1989

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Clark, W.D.; Kramlich, J.C.

    1989-10-01

    During this reporting period the global experiments were concluded. The final activities under these experiments involved measuring mineral content of coals as a function of coal particle size. The principal activities during this quarter involved the mechanistic experiments. Three baseline coals were cleaned and two of these sized. The ash from these various cuts were sampled from a bench scale reactor. The ash size distributions were compared to distributions predicted by the breakup model.

  6. New concept for coal wettability evaluation and modulation. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Hu, W.

    1994-05-01

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. During this quarter the Hallimond-tube tests were conducted for the three coals, mineral pyrite, and coal pyrite samples. The kinetic floatability of the five samples have been tested without collector, with kerosene and with benzene as collector. The test results indicate that there are good agreements between the experimental observation and the theoretical assumption hypothesis about the new concept of the surface wettability and floatability of the coal and pyrite. These test results also shown that wettability is incompatible with floatability.

  7. New concept for coal wettability evaluation and modulation. Technical progress report for the project, July 1, 1995--September 30, 1995

    SciTech Connect

    Hu, W.

    1995-12-31

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. the objective of the work is the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel application. In this quarter, the mini-cell flotation tests are conducted to study kinetic floatability and kinetic collectability of coal and pyrite. The kinetic floatability of the five samples have been tested with methanol, butanol, and hexanol as collector.

  8. Multi-parameter on-line coal bulk analysis. Technical progress report, March 16, 1995--June 15, 1995

    SciTech Connect

    1995-10-01

    Research continued on multi-parameter on-line coal bulk analysis. The thermal neutron flux distribution in coal and free air for two types of neutron sources was performed. The MCNP code was used to calculate the gamma ray response function and to determine the thermal neutron flux in coal when a lead collimator was used and when paraffin blocks were placed in front of the sample. The identification of chlorine in coal is discussed along with the analysis of the gamma spectra.

  9. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components. Technical progress report

    SciTech Connect

    Chess, E.K.; Smith, R.D.

    1986-01-01

    This Technical Progress Report reviews the technical progress made over the first 18 months of the program. Our goals include the design, development, and evaluation of a combined capillary column supercritical fluid chromatograph/high-performance mass spectrometer capable of analyzing high-molecular-weight polar materials and evaluating the system's potential for application in coal conversion process monitoring. The program includes not only the development and evaluation of the required instrumentation, but the development of polar fluids and compatible chromatographic stationary phases needed for efficient separation and analysis of polar and high-molecular-weight compounds. A new chromatograph/mass spectrometer interface and new mass spectrometer ion source have been designed, constructed, and evaluated using low-polarity supercritical fluids such as pentane. Results from the evaluations have been used to modify the instrumentation to improve performance. The design and fabrication of capillary flow restrictors from fused silica tubing has been explored. Research has also been conducted toward advancing the technology of fabricating high-performance chromatographic columns suitable for use with polar supercritical fluids. Results to date support our initial belief that high-resolution supercritical fluid chromatography (SFC)/high-performance mass spectrometry (MS) will provide a significantly enhanced analytical capability for broad classes of previously intractable fuel components. 10 refs., 13 figs.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  11. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.

  12. Evaluation of hyperbaric filtration for fine coal dewatering. Seventh quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1994-10-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. This project is oriented into three phases.

  13. Evaluation of hyperbaric filtration for fine coal dewatering. Second Quarterly technical progress report, December 1, 1992--February 28, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-06-01

    The normal practice in the coal preparation plant is to remove the water from the fine coal slurry by vacuum filtration and drying. Conventional vacuum filtration typically produces filter cake moisture containing in the range of 25 to 30 weight percent from minus 28 mesh coal slurries. Although the desired product quality can be obtained by using thermal dryers, there are problems associated with these equipment such as high capital costs and the greatest potential source of air pollution in a coal cleaning plant. In the present research project, an alternative to thermal drying, hyperbaric filtration which has shown potential in lowering moisture content in fine coal to about 20 percent level, is being investigated in detail. This project will essentially focus on developing fundamental information on particle-liquid interaction during hyperbaric filtration and applying the knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric filter system.

  14. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  15. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-07-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. This project builds on work performed in DOE Contract No. DE-AC22-89PC89883. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently under utilized for the purpose of examining coal-derived samples are being evaluated. The data obtained from this study is used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction.

  16. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  17. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. During this reporting period, CONSOL completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI`s iron catalyst, a sulfated iron hydroxide. Results are discussed in this report.

  18. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    SciTech Connect

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  19. Toxic substances from coal combustion -- Forms of occurrence analyses. Technical progress report, April 30--November 1, 1996

    SciTech Connect

    Crowley, S.S.; Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Belkin, H.E.

    1996-12-06

    The overall objective of this project is to provide analytical support for the Physical Sciences, Inc. (PSI) effort being performed under a DOE Contract. The Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 program coals have been examined to determine the mode of occurrence of selected trace elements using scanning electron microscopy, microprobe analysis, and experimental leaching procedures. Preliminary microprobe data indicates that the arsenic content of pyrite grains in the Illinois No. 6 (0.0--0.027 ppm As) and Pittsburgh (0.0--0.080 ppm As) coals is similar. Pyrite grains observed in the Elkhorn/Hazard coal generally have arsenic concentrations (0.0--0.272 wt.% As) that are slightly higher than those of the Pittsburgh or Illinois No. 6 coals. One pyrite grain observed in the Elkhorn/Hazard coal contained much higher levels of arsenic (approximately 2 wt.% As). Preliminary microprobe analyses and data from leaching experiments indicate the association of arsenic with pyrite in the Pittsburgh and Illinois No. 6 coals. Leaching data for arsenic in the Elkhorn/Hazard coal, in contrast, is inconclusive and additional data are needed before a definite determination can be made.

  20. Effects of surface chemistry on the porous structure of coal. Technical progress report, September 1994--October 1995

    SciTech Connect

    Anderson, S.A.; Radovic, L.R.; Hatcher, P.G.

    1995-12-31

    The primary objective of this work is to use {sup 129}Xe NMR to characterize the microporous structure of coals. As an aide in this characterization, another objective is to combine this technique with volumetric adsorption techniques and track the effect of controlled opening of the micropores in a microporous carbon by oxygen chemisorption/desorption. The primary goal of the NMR work is to measure the micropore sizes in coal; more broadly, it is to better tailor the {sup 129}Xe NMR method for use with coal, and to investigate other ways it may be used to describe pore structure in coal, with emphasis on determining whether micropores in coal are connected or isolated. In terms of the primary objectives of the project, the {sup 129}Xe NMR spectra with pressure variation have been completed for four coals, and N{sub 2} and C0{sub 2} adsorption isotherms with surface area measurement have been completed for three coals. A microporous carbon has been subjected to one oxygen chemisorption/desorption cycle and examined by {sup 129}Xe NMR.

  1. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 11, October--December 1996

    SciTech Connect

    1997-01-01

    This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of the many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.

  2. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-08-01

    CONSOL completed characterization of 64 samples from five run conditions of HTI Run ALC-1 (227-94), in which raw and cleaned (oil-agglomerated at low pH) Black Thunder Mine subbituminous coal was fed and processed using only dispersed catalysts in the liquefaction reactors. Extraction of THF-soluble resid from the pressure-filter cakes was more complete when agglomerates were fed, leaving only 5% or less THF solubles in the extracted cakes. When raw coal was fed, the extracted cakes contained 9-34% THF solubles. HTI also observed improved filtration during the periods that agglomerates were fed. Improved operability, if verified by additional work, could be an economically significant benefit of coal cleaning by oil agglomeration at low pH. An apparently higher Mo addition rate (see fourth bullet) may have contributed to the benefits of using oil-agglomerated coal. Other stream sample characteristics changed when oil-agglomerated coal was fed in Conditions 2-4, relative to when uncleaned coal was fed in Conditions 1 and 5. The ash content of the 0-6 bottoms samples was lower when oil-agglomerates were fed. The THF-soluble 524{degrees}C+ resid concentration in the feed slurry doubled when agglomerated coal was fed. Three factors may have influenced these characteristics. Higher coal conversion would have produced more resid. More efficient toluene-extraction of the filter cake would have recycled more resid. Removal of distillate as product to offset oil fed as part of the agglomerated coal would preferentially recycle the heaviest components.

  3. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Song, C.; Huang, L.; Saini, A.K.; Schobert, H.H.; Hatcher, P.G.

    1993-07-01

    In this quarter, progress has been made in the following two aspects: (1) effects of drying and mild oxidation on conversion and product distribution during non-catalytic and catalytic liquefaction of a Montana subbituminous coal (DECS-9); and (2) effects of solvent and catalyst on conversion and structural changes of a Texas subbituminous coal (DECS-1). Influence of drying and mild oxidation on catalytic and non-catalytic liquefaction (at 350C for 30 min with 6.9 MPa (cold) H{sub 2} was studied using Wyodak subbituminous coal. For non-catalytic runs, fresh raw coal gave higher conversion and higher oil yield than both the vacuum- and air-dried coals, regardless of the solvent. Compared to the vacuum-dried coal, the coal dried in air in 100C for 2 h gave a better conversion in the presence of either a hydrogen donor tetralin or a non-donor 1-methylnaphthalene (1-MN) solvent. Catalytic runs were performed using in-situ generated molybdenum sulfide catalyst from ammonium tetrathiomolybdate (ATTM) precursor impregnated on either raw coal or predried coal samples. The solvent-free runs using ATTM loaded on the raw coal gave higher conversion and higher oil yield than loading ATTM on vacuum- or air-dried coal. In the presence of either tetralin or 1-MN, however, the runs using ATTM loaded on air-dried coal afford better conversions and oil yields as compared to the runs using vacuum-dried coal. Upon drying coal in air at 150C for 20 h, the conversion significantly decreased to a lower value than that of the vacuum-dried coal in the non-catalytic runs, and the same trend was observed in the runs of the dried coals loaded with ATTM. Physical, chemical, and surface chemical aspects of effects of drying and oxidation and the role of water are also discussed in the report.

  4. Rate enhancement for catalytic upgrading coal naphthas. Final of final technical progress report, July 1991--September 1994

    SciTech Connect

    Davis, B.H.

    1995-08-01

    The objective of this project is to remove sulfur, nitrogen, and oxygen from naphtha derived from coal liquefaction. The project is concerned with the development of hydrotreating catalysts. This period, a ruthenium sulfide catalyst has been studied.

  5. Short-residence-time hydropyrolysis of coal. Technical progress report, 1 July 1980-31 September 1980

    SciTech Connect

    Saville, D. A.; Russel, W. B.

    1980-01-01

    In this quarterly report we update the status of the program to gather kinetic data for the pyrolysis and hydropyrolysis of coal and the combined theoretical and experimental effort to understand the role of plasticity in these processes.

  6. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mishra, N.C.

    1996-05-01

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  7. The development of coal-based technologies for Department of Defense facilities. Volume 2, Appendices. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This semiannual progress report contains the following appendices: description of the 1,000 lb steam/h watertube research boiler; the Pennsylvania CGE model; Phase II, subtask 3.9 coal market analysis; the CGE model; and sector definition.

  8. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-12-31

    There is significant current interest in general area of coal pyrolysis, particularly because of the central role of pyrolysis in all thermally driven coal conversion processes-gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. A significant amount of time has been devoted during this quarter to extending the work on measurements of vapor pressures of tars. For this purpose, cellulose tar and cellulose tar related compounds have been selected as model systems. Cellulose tar has a much narrower distribution of molecular weight than does coal tar, and it is much more homogeneous. Thus it is better to develop the methods to be used for coal tars on this simpler model system first.

  9. Structure and thermochemical kinetic studies of coal pyrolysis. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Dodoo, J.N.D.

    1991-12-31

    The overall objectives of this project is an intensive effort on the application of laser to the microscopic structure and thermochemical kinetic studies of coal particles pyrolysis, char combustion and ash transformation at combustion level heat fluxes in a laser beam. Research emphasis in FY91 is placed on setup and calibration of the laser pyrolysis system, preparation and mass loss studies of Beulah lignite and subbituminous coals. The task is therefore divided into three subtasks.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  11. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  12. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1993--March 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This quarter, the solubilization of ammonium tetrathiomolybdate and the synthesis of molybdenum sulfide in several microemulsion systems is discussed.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October 1992--December 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.In this quarter, the synthesis of molybdenum sulfide in a microemulsion system with an alcohol-to-surfactant mass ratio of 3.5 is reported.

  14. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1993--June 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including g dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This report discusses molybdenum sulfide particle synthesis, characterization, and microemulsion characterization.

  15. Consortium for coal log pipeline research and development. Final technical progress report, August 10, 1993--August 9, 1996

    SciTech Connect

    Marrero, T.R.

    1996-10-01

    The main objective of this project was to conduct intensive research and development of the Coal Log Pipeline (CLP). Specifically, the R & D was to concentrate on previously neglected and insufficiently studied aspects of CLP which were deemed significant. With improvements in these areas, CLP could be implemented for commercial use within five years. CLP technology is capable of transporting coal logs for long distances. The many potential advantages of CLP over truck and railroad transportation include: lower freight costs, less energy consumption, less air pollution, decreased environmental problems, increased safety, and improved reliability. Previous studies have shown that CLP is advantageous over slurry pipeline technology. First, CLP uses one-third the water required by a coal slurry pipeline. Second, CLP provides easier coal dewatering. Third, the CLP conveying capacity of coal is twice as much as a slurry transport line of equal diameter. In many situations, the cost for transporting each ton of coal is expected to be less expensive by CLP as compared to other competing modes of transportation such as: truck, unit train and slurry pipeline.

  16. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  17. Magnetic relaxation: Coal swelling, extraction, pore size. Quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-11-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromolecular network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS{sub 2} solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment under vacuum oven conditions ({approximately}10{sup {minus}2} torr at 145--150{degrees}C) until constant weight was achieved. The extraction, without further washing with other solvents, results in substantial uptake of NMP, apparently by H-bonding or acid-base interactions. The NMP uptake tends to be higher in coal matter with higher heteroatom (N,O,S) content and the NMP more tightly bound. The molecular material in the medium rank bituminous coals is more aromatic and heteroatom-poor than the macromolecular material and is mobilized by the extracting solvent. Likewise the more aromatic and heteroatom-poor molecular, free radicals are also extracted. However, mobilization of the molecular free radicals by solvent and the exposure of free radicals by the macromolecular matrix to solvent or species dissolved in the solvent, results in preferential reactions of the more aromatic and heteroatom-poor free radicals. Greater losses of extract free radicals, being the more aromatic, occur than residue free radicals. As a consequence, the surviving extract radicals exhibit a greater heteroatom content than the original whole coals, as determined from EPR g value changes.

  18. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly technical progress report, September 15, 1995--January 15, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1996-01-26

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) f or coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives.

  19. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1992--March 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-05-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  20. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July 1992--September 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1992-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle. nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  1. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1992--June 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.This quarter, the effect of ammonium tetrathiomolybdate concentration on the synthesis of molybdenum sulfide in the 0.15 M NP-5/cyclohexane/water microemulsion system is discussed.

  2. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  3. Data base for analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, November-January 1981

    SciTech Connect

    Davis, A; Suhr, N H; Spackman, W; Painter, P C; Walker, P L; Given, P H

    1981-04-01

    The basic objectives of this program are, first, to understand the systematic relationships between the properties of coals, and, second, to determine the nature of the lateral and vertical variability in the properties of a single seam. Multivariate statistical analyses applied to the Coal Data Base confirm a number of known trends for coal properties. In addition, nitrogen and some components of the ash analysis bear interesting relationships to rank. The macroscopic petrography of column samples of the Lower Kittanning seam reveals a significant difference between the sample from a marine-influenced environment and those from toward the margins of the basin where conditions were non-marine. The various methods of determining the amount and mineralogy of the inorganic fraction of coals are reviewed. General trends in seam thickness, ash, sulfur, volatile matter yield, and vitrinite reflectance of the Lower Kittanning seam of western Pennsylvania are presented. Controls of sedimentation are discussed in relation to the areal variability which has been observed. Differential subsidence and paleotopography appear to have played a major role during the deposition of the coal. The same controls may have maintained some influence upon the coalification process after deposition, especially along the eastern margin of the Lower Kittanning basin.

  4. A novel coal feeder for production of low sulfur fuel. Annual technical progress report, October 1, 1990--October 1, 1991

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-12-31

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  5. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1993-10-29

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

  6. Micro-agglomerate flotation for deep cleaning of coal. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Chander, S.; Hogg, R.

    1995-07-01

    The development, of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. This project is concerned with a hydrid process, micro-agglomerate flotation, which is a combination of oil agglomeration and froth flotation.

  7. Studies of coal structure and extraction by magnetic relaxation techniques. [Quarterly technical progress report, March--May 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-07-01

    NMP-CS{sub 2} extraction of the Argonne Premium coals results in substantial uptake of NMP, apparently H-bonding most extensively to coals for which extraction is most efficient. The solvent mobilization and exposure of free radicals in the molecular and macromolecular parts of the coals leads to preferential loss of apparently more reactive heteroatom-bearing free radicals. The resulting extract and residue free radicals are more predominantly odd-alternate hydrocarbon fire radicals. SLR of these radicals is determined by the angular amplitudes of free radical motion at the resonance frequency that modulates the electron-nuclear dipolar interaction at the CH groups. The strength of the interaction depends on the degree of ring condensation because of its effect on diluting the electron spin density at the CH group.

  8. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-10-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Both the gas saturation method and the Knudsen effusion method are being used. Results are presented for anthracene, naphthacene, pentacene, and a mixture of anthracene and perylene obtained using the effusion method.

  9. Diffusion of gases in coals and chars: Quarterly technical progress report No. 8, June 15, 1987-September 14, 1987

    SciTech Connect

    Smith, D.M.

    1987-01-01

    As a result of the complex nature of coal, it is difficult to probe its pore structure over the entire pore size range of interest. Multiple techniques such as gas adsorption (nitrogen and carbon dioxide), mercury porosimetry, small angle x-ray scattering (SAXS) and density measurements are required. These techniques suffer from inherent problems such as a limited pore size range, errors due to network/percolation effects, the necessity of pore shape assumptions, and/or sample changes during analysis. In this work, the use of low-field NMR spin-lattice relaxation measurements as a pore structure analysis technique for coal is demonstrated. In principle, NMR pore structure analysis does not suffer from the problems of the other methods. Other measuring techniques investigated during the report period are: Surface area determination via nitrogen and carbon dioxide adsorption for raw coals; mercury porosimetry; and diffusion measurements.

  10. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  11. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report No. 1, September 1--November 30, 1992

    SciTech Connect

    Fuerstenau, D.W.

    1992-12-01

    The objective of the research is the development of improved technology for the preparation of coal-water slurries, which have potential for replacing fuel oil in direct combustion. The fine grinding of coal is a crucial step in the manufacture of coal-water slurries. In this context, currently available grinding mills exhibit poor energy efficiency for size reduction and non-optimum packing characteristics of the ground coal. The first increases the cost of manufacture of coal-water slurries and the second adversely affects their rheological properties. The newly invented choke-fed, high-pressure roll mill is up to 50% more energy efficient and, moreover, there are reasons to believe that it produces a size distribution of ground particles which is closer to the dense packing composition. The high-pressure roll mill (which is perhaps the only really significant innovation in industrial comminution in this century) has lower capital cost, occupies less floor space, shows negligible wear rate, accepts feed with a wide range of moisture contents and, of particular importance, it can be scaled up to grind hundreds of tons of solids per hour. The high-pressure roll mill provides a unique opportunity to develop an improved technology for preparing coal-water slurries. Our research group in the University of California at Berkeley not only has a fully instrumented, laboratory-scale, choke-fed. high-pressure roll mill (the only one of its kind in the United States) but also fully instrumented laboratory ball mills for comparative fine coal preparation purposes. In this research program, our plans are to systematically investigate comminution energy consumption, deagglomeration procedures, and the stability and rheology of coal-water slurry fuel prepared with high-pressure roll mill, and to compare the results with slurry prepared with ball-milled coal.

  12. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    SciTech Connect

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  13. New concept for coal wettability evaluation and modulation. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Hu, Weibai

    1993-12-01

    The ratio of kinetics of capillary rise test between different media is a measure of relative wettability. From table 1, 2 and 3, the Hu`s evaluation of wettability of five samples in the methanol, ethanol and propanol are shown that the kinetic wettability is dependent on the carbon homologous series of alcohol, as shorter the carbon chain of the alcohol, the better surface wettability. The Hu`s evaluation of wettability of H{sub H2O}/H{sub methanol}, H{sub H2O}/H{sub ethanol}, and H{sub H2O}/H{sub propanol} for five samples are listed respectively in table 4, 5 and 6. It indicates that in the water/methanol, water/ethanol, and water/propanol system, Upper Freeport Coal is very little hydrophilicity, or better floatability than Coal Pyrite, it also can be seen that in these system, Pittsburgh No.8 Coal have a little hydrophilicity, or better floatability than Coal pyrite, it would mean that if Methanol, Ethanol, and Propanol are used as flotation collector, coal will be selectively separated from coal pyrite. This has been verified by our investigation elsewhere. The Hu`s evaluation of wettability of H{sub methanol}/H{sub kerosene} for five samples are listed in table 7. It is very interesting to note that the five samples have more methanol-philicity than kerosene. This is very useful for flotation reagents evaluation and selection in practice. The Hu`s evaluation of wettability of H{sub ethanol}/H{sub kerosene} for five samples are listed in table 8. It is indicated that ethanol also can be used as flotation collector. The Hu`s evaluation of wettability H{sub propanol}/H{sub kerosene} for five samples are listed in table 9. It shows that the five samples have lower propanol-philicity than kerosene.

  14. Engineering development of advanced coal-fired low emission boiler systems. Fourth quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    The LEBS plant design will be based on a high-sulfur Illinois No. 6 coal. This coal meets program selection requirements of extensive reserves and production, sulfur content, and representativeness. Two alternate test coals have been selected to examine fuel effects, and to broaden the range of application of the technology being developed. The alternate coals are a medium sulfur, Pittsburgh No. 8 bituminous, and a Wyoming subbituminous coal. The efficiency goals for the LEBS are challenging, particularly with the demands environmental controls are likely to place on auxiliary power. Table 1 shows estimates of overall plant efficiencies for three steam cycles: (1) a 2400 psi subcritical single reheat cycle typical of current plants; (2) a 3500 psi supercritical single reheat cycle; and (3) an advanced 4500 psi double reheat cycle. The plant heat rates are based on maximum boiler efficiency and minimum auxiliary power requirements consistent with conventional plant design for the design and alternate coals. The aggressive efficiency goals clearly require advanced steam conditions, as well as careful management of any added auxiliary power requirements for environmental controls. The EPRI SOAPP (State-of-the-Art Power Plant) project has selected the 4500 psi cycle as maximizing plant efficiency while minimizing generating costs for a commercial plant to be constructed by the year 2000. This program will incorporate the SOAPP base case cycle. The LESS design will incorporate a high-efficiency, once-through boiler design known as the Benson. Significant improvements in availability and operating flexibility have made this boiler design the system of choice for European power generation over the last fifteen years.

  15. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  16. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1991

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1992-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  17. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April--June 1991

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  18. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1990

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effects that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable.

  19. Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991

    SciTech Connect

    Not Available

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  20. Development and testing of a high efficiency advanced coal combustor Phase III industrial boiler retrofit. Quarterly technical progress report, July 1, 1995--September 30, 1995 No. 16

    SciTech Connect

    Borio, R.W.

    1995-12-15

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the sixteenth quarter (July `95 through September `95) of the program. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components. (2) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4) Economics evaluation of the HEACC concept for retrofit applications. (5) Long term demonstration under commercial user demand conditions.

  1. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, December 1, 1979-February 29, 1980

    SciTech Connect

    Garg, D; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-03-01

    This report describes work done in study of the role of coal minerals and by-product metallic wastes in coal liquefaction. Samples of Elkhorn No. 3 coal (Letcher County, Kentucky), Robena pyrite and several minerals and metallic by-product waste were acquired. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) in the presence of hydrogen, nitrogen and air. The coal process development unit was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. We established that the base line reaction conditions to evaluate the activity of the various minerals, metallic wastes and by-products will be a tubing-bomb reactor of 46.3 ml volume at a reaction temperature of 450/sup 0/C for reaction times of 60 minutes. The reduced pyrite, Robena pyrite and Siniola Mexico pyrite were found to give similar product distribution and coal conversion. The oil production in the cases of reduced pyrite and pyrite was 4 times higher than that of no-catalyst run. Iron oxide (Fe/sub 2/O/sub 3/) was shown to give slightly higher coal conversion and oil production that pyrites and reduced pyrite. Presulfided Co-Mo-Al was found to give the highest coal conversion and oil production. The increase in oil production in the case of Co-Mo-Al was due to the conversion of both asphaltenes and preasphaltenes.

  2. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1991

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1991-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metalbearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  3. Evaluation of hyperbaric filtration for fine coal dewatering. Tenth quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonseca, A.

    1995-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: Phase I, model development; Phase II, laboratory studies; and Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in-all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments are discussed for all three phases of study.

  4. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April--June 1993

    SciTech Connect

    Song, Chunshan; Parfitt, D.P.; Schobert, H.H.

    1993-08-01

    The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular precursors, that can be used in low concentrations (coals under temperature-programmed conditions. Several heterometallic complexes consisting of two transition metals, Mo and Co, and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous coal (DECS-9) at the loading level of 0.5 wt% Mo on dmmf coal. It was found that the structure of the precursors, in particular the ligands to the metal species, affect the activity of the resulting catalyst significantly. Among the M-M` type precursors tested, Mo-Co thiocubane, Mo{sub 2}Co{sub 2}S{sub 4}(Cp){sub 2}(CO){sub 2} [Cp = cyclopentadiene], designated as MoCo-TC2, produced in-situ the best catalyst The performance of the Mo-Co bimetallic catalyst was further enhanced by using temperature programmed (TPL) conditions consisting of a low temperature soaking at 200{degrees}C, programmed heat-up to 400 or 425{degrees}C followed by a 30 minutes hold. The pro ed heat-up serves as an in-situ activation of catalyst and coal pretreatment, which contributes to more effective hydrogenation of reactive fragments at high temperature.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Eleventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1995-12-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I - Model Development, Phase II - Laboratory Studies, Phase III - Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  7. Evaluation of hyperbaric filtration for fine coal dewatering. Twelfth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-02-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely: (1) Phase I Model Development; (2) Phase II Laboratory Studies; and (3) Phase III Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  8. Evaluation of hyperbaric filtration for fine coal dewatering. Ninth quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonesca, A.

    1995-04-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consists of three phases, namely: model development; laboratory studies; and field testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Results to date from all three phases are discussed.

  9. Evaluation of hyperbaric filtration for fine coal dewatering. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: model development; laboratory studies; and field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase I and 11 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. In this report, dewatering model development and laboratory studies are presented.

  10. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report No. 12, June 1, 1995--August 31, 1995

    SciTech Connect

    Fuerstenau, D.W.

    1995-09-01

    The objective of this research is the development of improved technology for the preparation of coal-water slurries that have potential for replacing fuel oil in direct combustion. This should be of major importance to the United States in its efforts to reduce dependence on imported oil and to rely more on its enormous low-cost coal resources. In accordance with this objective, in the first stage of this project, considerable work was conducted to standardize experimental procedures for sample preparation, coal grinding, and Theological measurements to assure reproducibility of the experimental results. Since a Haake RV-12 viscometer with an MV-DIN sensor system was found to give the most reproducible results for measurement of slurry viscosities, it has subsequently been used for all of our Theological measurements. Methods were developed for applying the acoustophoresis technique for studying the electrokinetic behavior of concentrated coal-water suspensions. These measurements were carried out using this technique to identify the potential of chemical additives for functioning as reagents for effective dispersion. Detailed investigations of the effect of solids content and chemical additives on the rheology of coal-water slurries, prepared with fines produced by the ball milling of Pittsburgh No. 8 coal, were conducted during the first phase of our research program. These experiments were to provide a baseline against which the rheological behavior of slurries prepared with fines produced by high-pressure roll milling or hybrid high-pressure roll mill/ball mill grinding could be compared.

  11. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, 1 March 1980-31 May 1980

    SciTech Connect

    Garg, D; Schweighardt, F K; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-06-01

    This report describes work done in a study of the role of coal minerals and by-product metallic wastes in coal liquefaction. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis and differential thermal analysis in the presence of hydrogen, nitrogen, and air. The CPDU was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. A number of minerals were screened for catalytic activity toward coal liquefaction in a tubing-bomb reactor. The catalytic activity of the minerals was assessed by comparing the product distributions both in the presence of minerals and their absence. The use of a Bronson Sonifier was initiated in March to accelerate and improve the solvent separation technique. The addition of lime to the reaction mixture practically killed the liquefaction reaction. The addition of dolomite, rutile, illite, quartz, zircon, and calcite to the reaction mixture showed no significant improvement over that of a no additive run. The addition of zinc oxide and ilmenite showed slight improvement. Robena pyrite and Co-Mo-Al showed significant improvement in coal conversion and production of benzene solubles and gases. Iron oxide (Fe/sub 2/O/sub 3/) gave the highest conversion of coal and production of benzene solubles among all the minerals tested so far.

  12. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  13. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, September 1, 1985-November 30, 1985

    SciTech Connect

    Eisch, J.J.

    1986-01-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. During the fifth quarter of this three-year grant the following phases of this study received particular attention: (a) the principal investigator completed his three-month period as visiting scientist at Cornell University, October 1 to December 31, 1985, with Professor Roald Hoffmann on the topic of Extended Hueckel Molecular Orbital calculations of organometallic structure; (b) final gas evolution studies between LiAlH/sub 4/ and bipyridyl(1,5-cyclooctadiene) nickel have been made and the related manuscript written for publication; (c) gas evolution studies between diisobutylaluminum hydride and phosphine complexes of Pt(0) and Ni(0) have been undertaken, as part of our trying to understand how powerful reducing agents can be generated from such combinations; (d) hydrogen shuttling studies continue between dihydroaromatic hydrocarbons and Ni(0) complexes; (e) studies on the cleavage of benzylic C-C bonds by Ni(0) and Cr(0) complexes are being intensified; and (f) attempts are being made to isolate crystalline samples of several organonickel intermediates in the foregoing cleavage reactions, so that x-ray structure determinations can be carried out.

  14. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  15. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  16. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, June 1, 1980-August 31, 1980

    SciTech Connect

    Garg, D; Givens, E N; Schweighardt, F K; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, W J; Shridharani, K

    1980-09-01

    Additional data on the pyrite catalysis of liquefaction of Elkhorn number 3 coal are presented. The liquefaction of Elkhorn number 3 coal was significantly catalyzed by the presence of pyrite. Coal conversion, oil yield and preasphaltene conversion all increased when pyrite was added. An increase in hydrocarbon gas make accompanied by a higher hydrogen consumption were also observed. The higher activity in the presence of pyrite could be utilized by running the liquefaction step at milder conditions which would mean a lower gas make. Although we had heard reports that sulfur elimination from the SRC was improved by use of pyrite, our data showed only very small changes. Nitrogen removal from the solvent, however, was definitely observed. At 850/sup 0/F nitrogen in the oil product went from 1.61 to 1.12 on adding pyrite. This increased nitrogen removal was also seen in the added ammonia yields. Kentucky number 9 coal also responded very well to the presence of pyrite. Conversions and oil yields increased while the hydrocarbon yields decreased at both temperatures that were tested, i.e., 825 and 850/sup 0/F. Hydrogen consumptions also increased. In the screening program the results from testing a number of materials are reported. None of the zeolites gave any significant improvement over coal itself. The iron, molybdenum, nickel, and cobalt rich materials had significant activity, all 85 to 90% conversion with high oil yields.Among materials specifically reported this period the clays failed to show any significant catalytic effect.

  17. Determination of local radiative properties in coal-fired flames. Technical progress report, September 15, 1987--September 15, 1988

    SciTech Connect

    Menguec, M.P.; Agarwal, B.; Bush, M.; Dsa, D.; Subramaniam, S.

    1988-12-31

    Recently, an extensive, in-depth review of the modeling of radiation heat transfer in combustion chambers has been prepared (Viskanta and Menguc, 1987); therefore, there is no need to repeat that material here. It is already known that the most important missing link in the prediction of radiation heat transfer in combustion systems is the lack of detailed information about the optical and physical properties of combustion products (Viskanta and Menguc, 1987). The purpose of this research is to determine the radiative properties of coal particles. Considering the uncertainty in the fundamental optical and physical properties of coal particles, such as complex index of refraction, size, size distribution, and shape, it is difficult to predict the radiative properties of particles using available analytical methods, such as Lorenz-Mie theory. For a better understanding of radiation and radiation/combustion or radiation/turbulence interactions, it is preferable to determine the radiative properties in situ.

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    SciTech Connect

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  19. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  20. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    SciTech Connect

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  1. An Advanced Control System for Fine Coal Flotation. Sixth quarter, technical progress report, July 1-September 30, 1997

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-10-27

    Over the past thirty years, process control has spread from the chemical industry into the fields of mineral and coal processing. Today, process control computers, combined with improved instrumentation, are capable of effective control in many modem flotation circuits. Unfortunately, the classical methods used in most control strategies have severe limitations when used in froth flotation. For example, the nonlinear nature of the flotation process can cause single-input, single-output lines to battle each other in attempts to achieve a given objective. Other problems experienced in classical control schemes include noisy signals from sensors and the inability to measure certain process variables. For example, factors related to ore type or water chemistry, such as liberation, froth stability, and floatability, cannot be measured by conventional means. The purpose of this project is to demonstrate an advanced control system for fine coal flotation. The demonstration is being carried out at an existing coal preparation plant by a team consisting of Virginia Polytechnic Institute and State University (VPI&SU) as the prime contractor and J.A. Herbst and Associates as a subcontractor. The objectives of this work are: (1) to identify through sampling, analysis, and simulation those variables which can be manipulated to maintain grades, recoveries, and throughput rates at levels set by management; (2) to develop and implement a model-based computer control strategy that continuously adjusts those variables to maximize revenue subject to various metallurgical, economic, and environmental constraints; and (3) to employ a video-based optical analyzer for on-line analysis of ash content in fine coal slurries.

  2. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  3. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 8, January 1996--March 1996

    SciTech Connect

    Rozelle, P.

    1997-12-31

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken by the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation facility that will produce a low-ash, double sized stoker coal for burning in a typical traveling-gate stoker.

  4. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989

    SciTech Connect

    1989-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

  5. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January to April 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal solid processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.This study is organized into four major Tasks. Task 1 and 2 were devoted to planning the Task 3 field study. Task 4 uses the results of the field testing to produce an Engineering Design Manual for the utilities and industrial users who manage wastes from advanced coal combustion technologies.

  6. Control of trace metal emissions during coal combustion. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  7. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-07-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  8. Toxic substances from coal combustion -- a comprehensive assessment. Quarterly technical progress report, 1 April 1996--30 June 1996

    SciTech Connect

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.

    1996-07-01

    Before electric utilities can plan or implement emissions minimization strategies for hazardous pollutants, they must have an accurate and site-specific means of predicting emissions in all effluent streams for the broad range of fuels and operating conditions commonly utilized. Development of a broadly applicable emissions model useful to utility planners first requires a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion (specifically in Phase I, As, Se, Cr, and possibly Hg). PSI Technologies (PSIT) and its team members will achieve this objective through the development of an {open_quotes}Engineering Model{close_quotes} that accurately predicts the formation and partitioning of toxic species as a result of coal combustion. The {open_quotes}Toxics Partitioning Engineering Model{close_quotes} (ToPEM) will be applicable to all conditions including new fuels or blends, low-NO{sub x} combustion systems, and new power systems being advanced by DOE in the Combustion 2000 program. This report describes the mineralogy and chemical analysis of bituminous coal samples.

  9. Fluid dynamics of pressurized, entrained coal gasifiers. Tenth quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Louge, M.Y.

    1996-10-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena Re erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle -rather than discard- gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-up on the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--July 1992

    SciTech Connect

    Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

    1992-08-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS {sup 13}C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425{degree}C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.

  11. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  12. Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    Not Available

    1993-12-31

    The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

  13. Diffusion of gases in coals and chars. Technical progress report No. 3, March 15-June 14, 1986

    SciTech Connect

    Smith, D.M.

    1986-01-01

    Surfaces areas of 13 PSOC coals have been measured by nitrogen adsorption at 77 K and carbon dioxide adsorption at 273 K. Surfaces areas were extracted from nitrogen adsorption isotherms using the BET theory. Mercury intrusion experiments have been conducted for all eight Group A PSOC coals. Traditional analysis of this pressure-volume data would indicate that there is substantial pore volume with average pore radius greater than approx.0.1 ..mu..m. However, this low pressure intrusion is more likely the result of mercury filling the regions were coal particles are touching. This view is supported by the observed differences between intrusion in the large and fine particles. The application of NMR spin-lattice relaxation measurements of water in porous solids is investigated as a possible tool for the determination of pore size distributions. NMR methods have several potential advantages over conventional porosimetry/adsorption techniques including the study of wet porous solids, a wide range of sample sizes may be studied, and the fact that no pore shape assumption is required. In principle, water contained in a pore will relax faster than bulk water. This decrease in the observed relaxation rate decay constant, T/sub 1/, is directly related to the pore volume to surface area ratio (i.e., hydraulic radius) according to the two-fraction, fast exchange model. However, the suitability of this model and NMR spin-lattice relaxation measurements for the determination of pore size distribution has not been previously demonstrated. 23 refs., 11 figs., 4 tabs.

  14. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ho, T.C.

    1996-07-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The observed experimental results indicated that metal capture by sorbents can be as high as 91% depending on the metal species and sorbent involved. All three sorbents tested, i.e., bauxite, zeolite and lime, were observed to be capable of capturing lead and cadmium in a various degree. Zeolite and lime were able to capture chromium. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions. Additional experiments are being carried out to provide more statistically representative results for better understanding the metal capture process.

  15. Refining and end use study of coal liquids. Sixth quarterly technical progress report, December 19, 1994--March 26, 1995

    SciTech Connect

    1995-08-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed.

  16. Novel catalysts for upgrading coal-derived liquids. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1993-12-31

    The principal objective of this research is to evaluate the hydrotreatment properties of {gamma}-Al{sub 2}O{sub 3} supported Mo oxynitride and oxycarbide catalysts. This information will be used to assess the potential of these materials for use as commercial catalysts for hydrotreating coal-derived liquids. During this quarter, the authors evaluated the catalytic properties of a series of supported molybdenum nitride catalysts. These catalysts were prepared in the laboratory for comparison with the supported molybdenum oxynitrides. Pyridine hydrodenitrogenation (HDN) was used as the test reaction.

  17. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  18. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1994-01-30

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy awarded Vortec Corporation this Phase III contract (No. DE-AC22-91PC91161) for the development of {open_quotes}A Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes}. The effective contrast start date was September 3, 1991. The contract period of performance is 36 months. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. Final detailed installation designs for the integrated test system configuration are being completed. The equipment is being fabricated and deliveries have begun. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe recyclable glass product.

  19. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 9, April 1996--June 1996

    SciTech Connect

    Rozelle, P.

    1997-12-31

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken by the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation plant. Quotations for a 300tph modular heavy-medium cyclone plant are being evaluated.

  20. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 8, 1993--August 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    High hydrocracking and liquefaction activity can be achieved with 10 wt.% of sulfided clay-supported iron catalysts. Further tests and demonstrations of this activity were required. Iron hydroxyoxide was generated on acid-treated montmorillonite. The new batch of catalyst exhibited high hydrocracking activity, Three hour tests with the solubilized intermediate from low-severity treatment of Wyodak coal (LSW) gave a high conversion (45%) of the heptane-insoluble LSW intermediate to heptane-soluble products. An investigation of new methods for the production of catalysts from tetralin-soluble iron oxometallates and the determination of their catalytic activities was continued in this quarter. Iron oxotitanate and iron oxoaluminate gave very high conversions of LSW to heptane solubles (61% and 54%, respectively). The high yields of heptane soluble products obtained with these catalysts offers a potential for use in liquefaction stages with solubilized coal, or at least serve as a model for producing active catalysts via mixed metal oxides. Methods for successfully testing dispersed iron catalysts with the low-severity intermediate were also devised. Catalyst recovered from the dispersed iron hydroxyoxide-catalyzed reaction of ion-exchanged Wyodak gave a high conversion (47%) of LSW to heptane solubles.

  1. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April 1994--June 1994

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1994-07-01

    Coal liquefaction involves cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units. The selected compound for model coal liquefaction reactions is 4-(1-naphthylmethyl)bibenzyl (NMBB). This report describes the synthesis and screening of several iron containing complexes as precursors of dispersed catalysts for hydrocracking of NMBB. Experiments were carried out at 400{degrees}C for 30 min under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Small amounts of secondary products were formed by hydrogenation, isomerization and fragmentation of the primary products. The greatest activity among the tested catalysts was found using superfine iron oxide with added sulfur. An experiment of the high surface Fe{sub 2}O{sub 3} without added sulfur gave only moderate conversion. Organometallics with relatively high volatility show higher activity than the inorganic system iron oxide. The thiocubane type cluster Cp{sub 4}Fe{sub 4}S{sub 4} showed the lowest activity. The beneficial effect of sulfur was also demonstrated in a reaction of iron pentacarbonyl and NMBB. A sulfur-free run showed substantially smaller conversion, whereas an experiment with added sulfur gave 15.6 % higher conversion. The catalytic activity of Cp{sub 2}Fe{sub 2}(CO){sub 4} is the highest among the sulfur-free catalyst precursors.

  2. Extraction, separation and analysis of high sulfur coal. Technical progress report No. 11, January 1, 1990--March 21, 1990

    SciTech Connect

    Olesik, S.V.

    1990-04-02

    In summary, significant bond cleavage was found only for thiophenol under the supercritical conditions studied. Less than 5% yield was found for the observed reaction products for all the other organosulfur compounds. The hydrogen sulfur bond in thiophenol is clearly the weakest of those studied and therefore it is the easiest to rupture. Also a general trend was observed the solvolysis reaction products such as ethylthiobenzene were the products initially formed at lower temperatures. But with higher temperatures the reaction product were those typically produced from the bimolecular association of free-radicals, such as phenylsulfide for the thiophenol sample. This type of reaction would be expected in pyrolysis reactions. Bimolecular reactions between organosulfur compounds would not be expected when the reaction is occurring at the surface of the solid coal matrix. The probability of the extracted organosulfur radicals having such bimolecular reactions is quite low. However, the reactions that are observed from the interaction of supercritical ethanol and the model coal compounds are not ones that show obvious indications of desulfurization of the compound.

  3. Facile reaction/extraction of coal with supercritical fluids. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    Venier, C. G.; Squires, T. G.

    1984-04-20

    Arylmethyl phenyl ethers undergo competing reactions when treated with Lewis acids in benzene solvent. Apparently, benzene is insufficiently reactive to compete with intramolecular (intrapolymer) nucleophiles and, consequently, no increase in solubility accompanies the cleavages of ether links upon addition of benzene. When better nucleophiles, naphthalene and phenanthene, are provided, carbonium ions generated from ether cleavages are capped and the product is lower in molecular weight and more soluble. It is worth noting that the naphthalene (k/sub rel/ = 300) is nearly as good a trap as the phenol (k/sub rel/ = 450). Since hydroxylic solvents will level the acid strength of BF/sub 3/ to that of ROBF/sub 3//sup -/H/sup +/ and hydrocarbons would not, the acid-catalyzed bond cleavages necessary for unlinking coal may in fact be faster in BF/sub 3/-arene than in BF/sub 3/-phenol. While we have not yet extended these results to coals, we believe that the combination of a relatively mild Lewis acid catalyst, BF/sub 3/, with a good carbonium ion trap, naphthalene, will allow selective cleavage and capping of aryl alkyl ether bonds. 3 references, 2 figures, 3 tables.

  4. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 13, October--December 1992

    SciTech Connect

    Gallier, P.W.

    1993-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the ``Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies: The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The commercially available ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. This report is submitted to document the progress of Aspen Technology, Inc. (AspenTech), its contractor, ICF Kaiser Engineers, Inc.,(ICF KE) and CQ Inc., a subcontractor to ICF KE, for the period of October through December 1992. ICF KE is providing coal preparation consulting and processing engineering services in this work and they are responsible for recommending the design of models to represent conventional coal cleaning equipment and costing of these models. CQ Inc. is a subcontractor to ICF KE on Tasks 1-5.

  5. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, December 1992--March 1993

    SciTech Connect

    Song, C.; Saini, A.K.; Wenzel, K.; Huang, L.; Hatcher, P.G.; Schobert, H.H.

    1993-04-01

    This work is a fundamental study of catalytic pretreatments as a potential preconversion step to low-severity liquefaction. The ultimate goal of this work is to provide the basis for the design of an improved liquefaction process and to facilitate our understanding of those processes that occur when coals are initially dissolved. The main objectives of this project are to study the effects of low-temperature pretreatments on coal structure and their impacts on the subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank and influence of solvent will be examined. We have made significant progress in the following four aspects during this quarterly period: (1) influence of drying and oxidation of coal on the conversion and product distribution in catalytic liquefaction of Wyodak subbituminous coal using a dispersed catalyst; (2) spectroscopic characterization of dried and oxidized Wyodak coal and the insoluble residues from catalytic and thermal liquefaction; (3) the structural alteration of low-rank coal in low-severity liquefaction with the emphasis on the oxygen-containing functional groups; and (4) effects of solvents and catalyst dispersion methods in temperature-programmed and non-programmed liquefaction of three low-rank coals.

  6. Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 8, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-09-01

    As we reported in the Technical Progress Report No. 7, there are surges of electric current in the charging loop during triboelectrification of all particles. A high speed data acquisition and analysis system was developed to monitor and record the current pattern. There is no known report on such charge-discharge surges in the literature. The mechanism for it is yet to be understood. The on-line computerized electric current measurement also leads to an observation of charging effects as a function of particle feeding rate. It is shown that feed rate greatly alters particle charge. Such an effect is mostly overlooked by researchers and it could have a important role in process design where the feed rate would be maximized. The initial results for coal and mineral particles demonstrated that the average charge was lower when the feed rate was increased. Further investigation is scheduled to identify potential controlling factors, eg, the solid volume fraction and particle number density could be important process factors. The study of charging velocity and particle size was continued. It was found that particle charge was linearly dependent on the charging velocity for all samples investigated. However, the slope of this linear dependence varied for particles having different diameters. In addition, the charge-velocity relationships were dependent on feeding rates. Hence, the data discussed below include these interrelationships.

  7. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  8. Bioconversion of coal-derived synthesis gas to liquid fuels. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-07-16

    The overall objective of the project is to develop two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, B .methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: Development/isolation of superior strains for fermentation of syn gas; optimization of process conditions for fermentation of syn gas; evaluation of bioreactor configuration for improved mass transfer of syn gas; and optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation.

  9. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  10. Development of a Coal Quality Expert. Final technical progress report No. 12, [January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-08-12

    During the past quarter, Tasks 3, 4, 5, and 6 were active. Task 3 Pilot Scale Combustion Testing activity included data analysis of pilot- and bench-scale combustion samples in support of the development of CQE slogging and fouling models. Under Task 4, field testing at the fifth host utility site -- New England Power Service Company`s Brayton Point Unit 3 -- was completed in March with the testing of the alternate coal. Test plans were finalized for the sixth and final field test to be performed at Brayton Point Unit 2 in April 1993. Tasks 5 and 6 activities were directed at design and development of CQE base classes and objects, continued formulation and integration of CQE algorithms and submodels, development of the user interface prototype, and preparation of the Fireside Advisor.

  11. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect

    Wesnor, J.D.; Bakke, E.; Bender, D.J.; Kaminski, R.S.

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  12. Testing low mass flow train in the DOE Coal Fired Flow Facility. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Not Available

    1984-06-01

    UTSI reports on testing of the Low Mass Flow Train in the DOE Coal Fired Flow Facility. During this period eight tests were conducted, which complete the seed/slag interaction test series. Preliminary results of these tests are reported. Additional nitrogen oxide (NO/sub x/) measurements are included, as are SO/sub 2/ removal results. An analysis of deposit accumulation on the tubes in the materials test module is reported. Data obtained from high velocity thermocouple (HVT) probes in the radiant furnace are included for the first time and show essentially a flat temperature profile in the furnace. Heat transfer calculations for the flow train are correlated with experimental measurements, including those obtained from both UTSI and MSU line reversal systems.

  13. Multi-parameter on-line coal bulk analysis. Technical progress report, September 16, 1995--December 15, 1995

    SciTech Connect

    1996-05-01

    Sodium and silicon in coal has been analyzed by fast neutron activation analysis. Work also continued on the gamma-ray spectrum processing. The final version of the analysis program will be run in Windows environment using the advantage of the user friendly graphical interface and the multitasking. The methods for the class of decomposition of the spectra have been implemented, following the logic of the Pascal version of the program. The main effort was expended in implementing the dialog windows for setting the parameters for the decomposition, creating the library spectra, and the input parameters and for creating the dialog windows. An important feature of the program is the saving of all important parameters when exiting.

  14. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, October 1, 1982-December 31, 1982

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Seaverson, L.M.

    1983-02-01

    Research included an examination of the adsorbed water on coal fly ash, the utilization of phosgene as a chlorination agent, the physical adsorption and chemisorption of phosgene on fly ash particles, and the aqueous separation of chlorination products. Results of an investigation of coal fly ash powder samples using photoacoustic infrared spectroscopy showed almost complete removal of adsorbed water after drying for 30 hours at 700/sup 0/C. A thermodynamic computer simulation of the chlorination of an SiO/sub 2/ and Al/sub 2/O/sub 3/ mixture of 2:1 molar ratio with a stoichiometric amount of carbon present revealed that silica is the preferred reactant at lower temperature, but that alumina chlorination is preferred at 800/sup 0/C. Experiments using phosgene to chlorinate acid-leached Texas lignite fly ash gave information about the kinetic rate dependence of the reaction involved. Work to determine the amount of chemisorption and physical adsorption of phosgene on pellets of the leached Texas lignite ash was initiated to permit the calculation of surface reaction rates. Separation of FeCl/sub 3/ by solvent extraction improved as the chloride ion concentration of the aqueous phase increased, regardless of whether the associated cation was hydrogen or aluminum. A static equilibrium cell/furnace arrangement with ultraviolet spectroscopy capability has been confirmed to be suitable for measurement of the absorbance of vapor species. A Harper 6 in. dia rotary kiln was used to continuously sinter a limestone-soda ash-fly ash mixture in the form of 1/8 in. dia pellets. Extraction of sintered material with dilute aqueous soda ash solution gave aluminate recoveries comparable to those obtained when small samples were sintered in a benchscale tube furnace. Results are presented which show that x-ray diffraction data can be used to calculate the amounts of individual compounds in sintered samples.

  15. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1994--December 1994

    SciTech Connect

    Schmidt, E.; Kirby, S.; Song, Chunshan

    1995-02-01

    Coal liquefaction involves cleavage of methylene and dimethylene and ether-type bridges connecting polycyclic aromatic units. The selected compounds for model coal liquefaction reactions are 4-(l-naphthylmethyl)bibenzyl (NMBB) and several oxygen-containing compounds. This report mainly describes the synthesis and screening of selected iron and molybdenum compounds as precursors of dispersed catalysts for hydrocracking of NMBB and oxygen-containing compounds. Experiments using NMBB were carried out at 400{degrees}C for 30 min. under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Generally, ferrocene demonstrated very low activity as catalyst. Even sulfur addition did not increase activity. Hydrated iron sulfate FeSO{sub 4} x 7 H{sub 2}O gave similar conversion like ferrocene. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt %, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. Non catalytic runs after experiments with added sulfur yielded higher conversion than a normal run with a new reactor. The objective of the work on oxygen-compounds is to investigate the utility of highly dispersed catalysts, from organometallic precursors, in the removal of heteroatom functionality from the products of a reaction performed under liquefaction conditions. The bimetallic catalytic precursor CoMo-T2 exhibited a sizable increase in the yield of non-O-containing products, compared to the run using a standard inorganic catalyst precursor (ATTM) or a non-catalytic reaction.

  16. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, July--September 1994

    SciTech Connect

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-11-01

    Coal liquefaction involves cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. The selected compound for model coal liquefaction reactions are 4-(l-naphthylmethyl)bibenzyl (NMBB) and anthrone. This report describes (1) the synthesis and screening of selected iron carbonyl complexes as precursors of dispersed catalysts for hydrocracking of NMBB, and (2) the hydrogenation and hydrodeoxygenation reactions of anthrone. Experiments were carried out at 400{degree}C (for NMBB) or at both 300{degree}C and 400{degree}C (for anthrone) for 30 min under 6.9 MPa H{sub 2} pressure. All catalyst precursors converted NMBB predominately into naphthalene and 4-methylbibenzyl. Small amounts of secondary products were formed by hydrogenation, isomerization and fragmentation of the primary products. The greatest activity among the tested catalysts was found using iron pentacarbonyl with added sulfur. Increasing cluster size lead to decreased activity. The beneficial effect of sulfur was also demonstrated in a reaction of iron pentacarbonyl and NMBB. A sulfur-free run showed substantially smaller conversion, whereas an experiment with added sulfur gave considerably higher conversion. Again, the same trend between cluster size and catalyst activity was observed. The objective of examining oxygen-containing compounds is to investigate the possibility of reduced oxygen functionality in the products of a reaction performed under liquefaction conditions, with the use of highly dispersed catalysts from monometallic and bimetallic organometallic precursors. Both the Ni-Mo and CoMo-T2 precursors showed an increase in the yield of non-0-containing products, compared to a non-catalytic reaction or one using a standard inorganic catalyst precursor, ammonium tetrathiomolybdate (ATTM).

  17. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, January--March, 1994

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1994-06-01

    Coal liquefaction involves cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units. The selected compound for model coal liquefaction reactions is 4-(1-naphthylmethyl)bibenzyl (NMBB). This report describes the synthesis and screening of several hetero- and homometallic complexes as precursors of dispersed catalysts for hydrocracking of NMBB. Experiments were carried out at 400 C for 30 min under 6.9 MPa H{sub 2} pressure. (NH{sub 4}){sub 2}MoS{sub 4} and MoCl{sub 3} converted NMBB predominantly into naphthalene and 4-methylbibenzyl. Small amounts of secondary products were formed by hydrogenation and fragmentation of the primary products. Lewis acid-type MoCl{sub 3} catalyst gave lower selectivity to the primary products, with relatively larger amounts of methyltetrahydronaphthalene- and methylnaphthalene-derivatives. In contrast, the bimetallic catalyst precursors Cp{sub 2}Co {sub 2}Mo{sub 2} (CO){sub 2}S{sub 4} and (Ph{sub 4}P){sub 2}(Ni(MoS{sub 4})) inflict less fragmentation and less hydrogenation of primary cleavage products. Cp{sub 2}Co{sub 2}Mo{sub 2}(CO){sub 2}S{sub 4} converted a substantial amount of starting material even at 350 C; whereas, a noncatalytic run under the same conditions showed only small conversion. Inorganic and bimetallic catalyst precursors gave similar conversions. Greater product selectivity can be achieved by means of organometallic precursors and low severity reaction condition. Mo(CO){sub 6} and Co{sub 2}(CO){sub 8}/Mo(CO){sub 6} gave similar conversion as the bimetallic catalyst precursors. The addition of sulfur to the combination Co{sub 2}(CO){sub 8}/Mo(CO){sub 6} gave significant higher conversion but reduced generally the yield of hydrogenation products.

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, January--March, 1995

    SciTech Connect

    Song, C.; Kirby, S. Schmidt, E.; Schobert, H.H.

    1995-05-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. The selected compound for model coal liquefaction reactions are 4-(1-naphthylmethyl)bibenzyl (NMBB) and anthrone. This report describes hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors and activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-Naphthylmethyl) bibenzyl. For hydrodeoxygenation, model compound studies were performed using multi-ring systems, or those of comparable molecular weight, to investigate the capabilities of the dispersed catalysts. The model compounds selected include anthrone (carbonyl); dinaphthyl ether (aryl-aryl ether); xanthene (heterocyclic ether); and 2,6-di-t-butyl-4-methylphenol (hydroxyl). The catalyst precursors used were (NH{sub 4}){sub 2}MoS{sub 4}, [Ph{sub 4}P]{sub 2}[Ni(MoS{sub 4}){sub 2}] and Cp{sub 2}Co{sub 2}Mo{sub 2}(CO){sub 2}S{sub 4}. To examine what determines the activity and selectivity of Fe catalysts for hydrogenation and hydrocracking, various molecular precursors with Fe in different chemical environments have been tested in this work to help understand the influence of precursor structure and the effect of sulfur addition on the activity and selectivity of resulting Fe catalysts in model reactions of 4-(naphthylmethyl)bibenzyl. The authors have examined various precursors, including a thiocubane type cluster Cp{sub 4}Fe{sub 4}S{sub 4}, a cyclopentadienyliron dicarbonyl dimer Cp{sub 2}Fe{sub 2}(CO){sub 4}, ferrocene Cp{sub 2}Fe, a series of carbonyl precursors including Fe(CO){sub 5}, Fe{sub 2}(CO){sub 9}, and Fe{sub 3}(CO){sub 12}, and superfine iron oxide with average particle size of 30 {angstrom}.

  19. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

  20. Novel Bimettallic Dispersed Catalysts for Temperature-Programmed Coal Liquefaction: Technical progress report January--March 1996

    SciTech Connect

    Song, C.; Schmidt, E.; Schobert, H.H.

    1996-06-01

    Coal liquefaction may involve cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the effects of dispersed Mo catalysts and H{sub 2}O addition on hydrogenation and C-C bond hydrocracking of 4-(1- naphthylmethyl)bibenzyl, abbreviated as NMBB. Recent research in this laboratory has demonstrated a strong synergistic effect between a dispersed Mo sulfide catalyst and water in low-severity coal liquefaction reaction. This finding prompted us to examine the effects of dispersed Mo catalysts and H{sub 2}O addition on hydrogenation and C-C bond hydrocracking of 4-(1-naphthylmethyl)bibenzyl, NMBB. Batch studied in microautoclave reactors at 350 and 400{degrees}C for 30 min revealed that active catalysts can be generated in situ from either ammonium tetrathiomolybdate (ATTM) or Mo(CO){sub 6} under the reaction conditions (350 or 400{degrees}C, 30 min), with the main catalysis of the latter for NMBB hydrogenation, but the former for C-C bond cleavage. Water may have strong promoting effect on NMBB conversion in catalytic runs, depending on the conditions. At 350{degrees}C a 50% increase in NMBB conversion was observed upon H{sub 2}O addition to the run using ATTM (1 wt % Mo) as catalyst. However, at 400{degrees}C no major difference in conversion or product distribution was found. Runs of NMBB at 350{degrees}C using Mo(CO){sub 6} lead to tetrahydro-NMBB-derivatives and few cleavage products. Water added to Mo(CO){sub 6} suppressed hydrogenation. The combination of Mo(CO){sub 6} and S lead to almost complete conversion of NMBB. A run with Mo(CO){sub 6}/S/H{sub 2}O gave similar results. It appears that water can increase NMBB conversion with ATTM at 350{degrees}C but decreased conversion for runs at 400{degrees}C. Also contained in this report is mechanistic discussion for hydrocracking and hydrogenation of NMBB.

  1. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  2. A computational model for coal transport and combustion. Quarterly technical progress report, September 1, 1994--November 30, 1994

    SciTech Connect

    Ahmadi, G.

    1995-04-01

    In the period of September 1, 1994 to November 30, 1994, further progress was made in the analysis of granular materials in ducts and passages with bumpy walls. The analysis of gravity chute flows was completed. Additional results on flows of gas-solid mixtures in vertical ducts were obtained. The results were compared with the experimental data of Tsuji an co-worker and Miller and Gidaspow and good agreement was obtained. The computational model was used to study two-phase flows in a horizontal duct. Significant progress was made in the formulation of chemically active two-phase solid-fluid flows. The experimental study of mono-granular layer simple shear flow device was completed. Preparation of the final report was initiated.

  3. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Ahmadi, G.

    1996-07-01

    During this report period, additional progress was made in accomplishing the tasks of the project. In particular, the computational model for simulating particle motions in turbulent flows was further developed. The model was applied to the dispersion analysis of particles in a circular duct and the transport and deposition of particles in a recirculating region. A model for resuspension of particles from various surfaces in a gas flow is also being developed. The new model accounts for the surface adhesion, as well as the hydrodynamic forces and torques. In addition, the model includes the effect of surface roughness and the structure of near wall turbulent flow. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  4. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Quarterly technical progress report, July--September 1995

    SciTech Connect

    Song, Chunshan; Schmidt, E.; Schobert, H.H.

    1996-01-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the hydrocracking of 4-(l-naphthylmethyl)bibenzyl in the presence of iron (Fe) catalysts and sulfur and residual wall catalytic effect. Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl (NMBB) predominantly yielded naphthalene and 4-methylbibenzyl. Various iron compounds were examined as catalyst precursors. Sulfur addition to most catalyst precursors led to substantially higher catalyst activity and higher conversion. NMBB was also treated with sulfur in the absence of iron compounds, in concentrations of 1.2-3.4 wt%, corresponding to the conditions present in reactions with added iron compounds. Increasing sulfur concentrations led to higher NMBB conversions. Furthermore, sulfur had a permanent effect on the reactor walls. A black sulfide layer formed on the surface which could not be removed mechanically. The supposed non-catalytic reactions done in the same reactor but after experiments with added sulfur showed higher conversions than comparable experiments done in new reactors. This wall catalytic effect can be reduced by treating the sulfided reactors with hydrochloric acid. The results of this work demonstrate the significant effect of sulfur addition and sulfur-induced residual wall effects on carbon-carbon bond cleavage and hydrogenation of aromatics.

  5. Chemical and biological properties of coal conversion solid wastes: Technical annual progress report for year ending January 31, 1981

    SciTech Connect

    Neufeld, R.D.; Wallach, S.; Erdogan, H.; Bern, J.

    1981-01-31

    A review is presented on sources of solid wastes generated from fixed bed gasification processes, and suggestions are made for acceptable disposal alternatives. Samples of fixed bed coal gasification solid wastes from the Grand Forks Energy Technology Center's slagging gasifier, and the Morgantown Energy Technology Center's low Btu stirred fixed bed gasifier were sieved into discrete particle size ranges, and each particle size range was subjected to leaching in accord with EPA-''EP'' and ASTM-A procedures. Each derived leachate sample was analyzed for key heavy metals. In addition, AMES testing for potential mutagenicity, and acute toxicity testing via utilization of Daphnia bioassay procedures was conducted on smallest and largest size fractions of the sieved samples. Results of bioassay procedures are not complete at this time, however, data that has been developed to date indicates that potential toxicities exist based on Daphnia evaluations via the LC-50 test using GFETC solid wastes leached via the ASTM-A procedures. Results of such tests are not now currently part of RCRA regulations, but have been considered in draft versions of these regulations. Daphnia testing using leachates developed via the ASTM-A (distilled water) procedure and the EPA-''EP'' (acetic acid) procedure are not comparable. Heavy metal data indicates that no legislative difficulties should exist vis-a-vis RCRA regulations; however, should secondary drinking water standards be incorporated into RCRA regulations, the GFETC solid wastes may prove administratively ''toxic'' due to excessive iron levels in developed leachates.

  6. Molecular biology of coal bio-desulfurization; Quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1991-04-17

    The aim of this project is to use the techniques of molecular genetics to identify, clone, sequence, and enhance the expression of proteins which remove sulfur covalently bound to coal. This includes the movement and expression of these proteins into bacterial species which may be more useful in the industrial application of a biological desulfurization process. This quarter, several mutants were constructed to inactivate specific cloned C18 dox genes. These mutants were consistent with the phenotypes expected if these genes participated in an oxidative degradation DBT. The dox genes from strain A15 have been isolated in several cosmid clones, one of which can transfer the DBT metabolic trait to our laboratory Pseudomonas strain. DBT desulfurizing strains of Rhodococcus rhodochrous (IGTS8 and IGTS85) were obtained. Bioavailability assays confirmed the ability of these isolates to remove sulfur from DBT. Several mutants of IGTS8 were isolated that had lost the ability to use DBT as a sole sulfur source. These mutants were investigated as preferred recipients of the gene libraries. Multiple trials are underway to discover a mechanism by which DNA can be successfully introduced into the Rhodococcus strains. 1 tab.

  7. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  8. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  9. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  10. Surface properties of photo-oxidized bituminous coals. Technical progress report for the period July--September 1996

    SciTech Connect

    Mitchell, G.; Werner, D.; Davis, A.; Chander, S.

    1996-11-01

    During this report period, irradiation (photo-oxidation) of all six vitrain concentrates for three different time periods (10, 50 and 100 min) using the BLAK-RAY ultraviolet lamp was completed along with film flotation and surface luminescence measurements for each condition. Flotation results from photo-oxidized powdered vitrains appear to be contrary to earlier results obtained from contact angle measurements on polished surfaces. Some of the more strongly photo-oxidized powders, particularly for hvAb and mvb coals, exhibit greater hydrophobicity. The changes in hydrophobicity as well as a measured decrease in surface luminescence with increasing irradiation time, clearly shows that UV irradiation has had an influence on surface properties. There is some possibility that increasing exposure to the UV source may cause mobilization of aliphatic compounds (oils) from the fresh fracture surfaces of vitrain. These compounds, once exuded onto the surface could act like a natural flotation collector that would both increase particle hydrophobicity and may obscure the surface from further oxidation. Because most aliphatic compounds do not luminesce, their presence on the surface would reduce measured luminescence. A second possible explanation is that the types of oxygen functional groups which form during UV irradiation may inhibit or promote hydrophobicity depending upon their concentration. In an attempt to resolve these issues several analytical tests will be undertaken. Pyrolysis GC/MS will be used to investigate whether photo-oxidation of bulk vitrains was sufficiently severe with increasing UV irradiation. Reflectance-mode FTIR will be used to measure changes in surface chemistry for some of the irradiated powdered vitrains.

  11. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  12. Enhanced coal liquefaction by low-severity catalytic reactions: Technical progress report for the period March to May 1987

    SciTech Connect

    Davis, A.; Derbyshire, F.J.; Schobert, H.H.

    1987-06-01

    The objective of this investigation is to examine the potential and limitations of temperature-staged catalytic liquefaction. Experiments have been planned to examine the chemical reactions which occur during the low- and high-severity stages, the effects of coal rank and process conditions, the function of catalyst and influence of solvent donor capability. In our dry, catalytic experiments the key to high conversions is the use of hydrogen at 425/sup 0/C. Pretreatment with nitrogen gave essentially no advantage, and with hydrogen resulted in a slight improvement in oil yield. For the non-catalytic reactions, with a solvent, the result demonstrates the importance of a hydrogen donor (tetralin compared to naphthalene). The use of hydrogen in the pretreatment stage has little influence on the total level of conversion, but gives a somewhat better oil-asphaltene ratio. In fact, regardless of whether a hydrogen donor is present, the best oil/asphaltene ratios were always obtained whenever hydrogen was used in the first stage and nitrogen in the second stage. In order to understand what kinds of bonds are broken during a low-temperature stage in the presence of a hydrogenation catalyst, five model compounds have been reacted and evaluated in terms of product yield and boiling point distribution. For the reactions conducted at 275/sup 0/C, biphenyl was found to be unreactive, even in the presence of a catalyst; pyrene, diphenyl ketone and phenyl ether are relatively reactive under these conditions. Temperature-staging with MoS/sub 2/ as the catalyst, for most of the model compounds, resulted in more products with boiling points below the starting material, than with any other conditions employed. Observations were made which suggest that minerals can act as catalysts during ''non-catalytic runs''. 12 refs.

  13. Development of a retrofit coal combustor for industrial applications, (Phase 1-A). Technical progress report, July--September 1988

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  14. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, May-July 1980

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-10-01

    The basic objectives of this new program are, firstly, to understand the systematic relationships between the properties of coals and macerals, and, secondly, to determine the lateral and vertical variability in the properties of a single seam imposed by varying environmental conditions at the time of coal formation. Thirty-four coal samples were collected during the quarter from Pennsylvania and Illinois. To date, 54 vitrinite concentrates have been hand picked and will be studied by a range of physical and chemical techniques. One hundred and forty coal samples and 53 printouts of coal data were provided on request to the coal research community. The Lower Kittanning seam has been selected for the study of the variability in chemical, petrographic, mineralogic, fluid, and conversion properties of a single seam. A description of the structural and stratigraphic settings of the important coal seam as they relate to this investigation is given. Bivariate plots of data from the Lower Kittanning seam are presented. The fluid temperature range as measured with the Gieseler plastometer reaches a maximum at a reflectance of 1.10 to 1.15% and carbon content of 87 to 88% dmmf. Liquefaction conversion in a tubing-bomb reactor with tetralin shows a linear decrease with rank (reflectance). The problems associated with the application Fourier Transform Infrared Spectroscopy to the characterization of coal structure are critically discussed. The micropore surface areas and micropore volumes of three selected coals and a vitrinite concentrate, as measured from uptake of CO/sub 2/ at 25/sup 0/C, increased with decreasing particle size. Work on measurements of apparent densities and uptake of methanol and water is in progress.

  15. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-12-31

    The computational model for simulating particle motions in turbulent flows was further developed and used to analyze the transport and dispersion of particles in a recirculating flow region. The model for resuspension of particles from surfaces in a gas flow is also further developed; it accounts for the surface adhesion as well as hydrodynamic forces and torques. It includes effects of the structure of near wall turbulent flows as well as surface roughness. In addition, a direct numerical simulation procedure for analyzing the particle removal process in turbulent gas flows is also developed. The sublayer model for evaluating the particle deposition in turbulent flows is being extended to include the effect of particle rebound. Further progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  16. A computational model for coal transport and combustion. Quarterly technical progress report, September 1--November 30, 1991

    SciTech Connect

    Ahmadi, G.

    1991-12-31

    During the last three months, considerable progress has been made in formulation of the thermodynamically consistent rate dependent model for turbulent two-phase flows. The basic governing equations were derived and the case of a simple shear flow was also analyzed. Preliminary comparisons with the available experimental data were also performed. The thermodynamical approach was successfully formulated for developing a stress transport model for granular flows. The appropriate constitutive equations were derived and it was shown that the model contains the existing kinetic theory results as special limiting cases. The formulation also allows for the possible rotation of the frame of reference. Using a kinetic-based model which includes frictional losses, several rapid granular shear flows including Couette and gravity flows were analyzed. Preliminary comparisons with experimental data were also performed. The experimental setup for the simple shear flow device is being designed. The procedure for constructing the device is being studied.

  17. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 10, January 1997--March 1997

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1997-02-28

    In previous progress reports, we reported our study on the proposed mechanism for the formation of chlorinated organics during combustion, in which molecular chlorine is thought to be the key starting material. The objective of this quarter of study was to quantitatively test the inhibiting effect of SO{sub 2} on the formation of Cl{sub 2} during the combustion of MSW. The experiments were conducted under conditions close to those employed in the AFBC system. The principle analytical technique used for identification of the products from these experiments was GC/MS system. The results indicate that the production of Cl{sub 2} decreases when the concentration of SO{sub 2} in the gaseous mixture increases.

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  19. Identification of sulfur heterocycles in coal liquids and shale oils. Technical progress report, August 1, 1980-May 1, 1981

    SciTech Connect

    Lee, M. L.; Castle, R. N.

    1981-01-01

    The sulfur heterocycle separation scheme which was described in the last progress report was evaluated for quantitative recovery of individual components. The results indicate that recoveries can range from 10% to approx. 30% depending on the structure of the compound. During this period, 23 unsubstituted sulfur-containing heterocyclic ring systems were synthesized in oder to confirm GC/MS identifications and for biological testing. The four possible 3-ring heterocycles and the thirteen possible 4-ring heterocycles were tested for mutagenic activity in the histidine reversion (Ames assay) system. One of the 3-ring isomers, naphtho(1,2-b)-thiophene, and six of the 4-ring isomers induced mutations in Salmonella test strains. One of these compounds, phenanthro(3,4-b)thiophene, displayed approximately the same mutagenic activity as benzo(a)pyrene. A two-step adsorption chromatographic procedure was developed in order to fractionate synthetic fuels into various chemical-type classes for studying the relative concentrations and mutagenic activities of the various types. An SRC-II Heavy Distillate was fractionated into aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, sulfur heterocycles, indoles and carbazoles, azaarenes, and amino polycyclic aromatic hydrocarbons. It was found that the amino-PAH fraction contained most of the mutagenic activity. A survey was made for compounds containing both nitrogen and sulfur heteroatoms in their structures. A number of these compounds were detected by GC using nitrogen- and sulfur-selective detection.

  20. Development of instrumental methods of analysis of sulfur compounds in coal process streams. Quarterly technical progress report for October-December 1980

    SciTech Connect

    Jordan, J.; Stutts, J. D.; Ankabrandt, S. J.; Stahl, J.; Yakupkovic, J. E.

    1981-01-01

    Work is in progress on the preparation of a user-oriented computer software manual, for estimating sulfur speciation in aqueous coal process streams form a thermodynamic data base. Capabilities and limitations of sulfide and polysulfide analysis by differential pulse polarography at a dropping mercury anode are assessed critically. Thallous nitrate used as the titrant reagent in a thermometric enthalpy titration yields the molar sum of monosulfide and polysulfide. Inorganic sulfur has been successfully speciated in coal conversion by-product water samples. A combination of differential pulse voltammetry, thermometric enthalpy titrations and classical methods was used. One hundred percent of the total sulfur present was quantitatively accounted for.

  1. Characterization of open-cycle coal-fired MHD generators. 16th quarterly technical progress report, December 16, 1980-March 31, 1981

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Dvore, D.; Freedman, A.; Stanton, A.; Stewart, G.

    1981-05-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is reported. In addition, studies related to understanding arcing and corrosion phenomena in the vicinity of an anode are reported.

  2. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  3. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1993--December 1993

    SciTech Connect

    Song, C.; Huang, L.; Wenzel, K.A.; Hatcher, P.G.; Schobert, H.H.

    1994-02-01

    In this quarter, progress has been made in the following two aspects: The influences of temperature, dispersed Mo catalyst, and solvent on the liquefaction conversion and composition of products from low-rank coals; and the hydrous pyrolysis of a lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. The analytical work described in this quarter also represents molecular-level characterization of products. The purpose of the first part of the work described in this quarter is to study the influences of temperature, solvent and dispersed Mo catalyst on the liquefaction conversion and chemical composition of the products. Many specialty chemicals, including one- to four-ring aromatics, could potentially be produced by liquefying coal. To achieve this goal, not only a high coal conversion but also a desirable product distribution is necessary. Therefore, it is of great importance to understand the structural changes of the coal during reaction and to investigate the conditions under which the aliphatics or aromatics can be removed from the macromolecular structure of coal. This quarterly report also describes the hydrous pyrolysis of Potapsco lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. This work has some implications both on the structural changes of low-rank coals during pretreatment and on the geochemical reactions during coalification stage. Vitrinite, a major component of most coals, is derived from degraded wood in ancient peat swamps. Organic geochemical studies conducted on a series of coalified wood samples derived mostly from gymnosperms have allowed the development of a chemical reaction series to characterize the major coalification reactions which lignin, the major coal-producing component of wood, undergoes.

  4. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3, Technical progress report, October 1993--December 1993

    SciTech Connect

    1993-12-31

    The objective of this Phase III program for the development of a commercial scale, coal-fired combustion system is to develop and integrate all system components from fuel through total system controls building upon the prior Phase I and II development accomplishments of the MTCI pulse combustion technology and to then field test the complete system in order to evaluate its potential marketability. During this 13th quarter, a steam generation cost model was developed to compare the economics of steam production in the commercial-scale, coal-fired pulse combustion system with that in a natural gas- or oil-fired system. The purpose of this model is to define the competitive capital cost range for the MTCI system under a specified set of technical and economic conditions. A current preliminary estimate of the MTCI pulse coal combustion system capital cost turns out to be about $120,000 and this is within the target range of the US commercial boiler market sector. European differential fuel costs are expected to be more favorable. Several conceptual arrangements for coal reburn and char burnout were evaluated. The arrangement was selected based on the following considerations viz. utilization of the existing pulse combustor as is, minimization of footprint and vertical space requirement, good mixing of coal, steam and combustion products in the reburn section, and adequate char residence time in the char burnout section.

  5. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Fourth quarter 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x } reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB tong-term data collected show the full load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term, full load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stack particulate emissions issue is resolved.

  6. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions. Quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Not Available

    1991-09-01

    The program objective is to generate ultra-fine catalyst particles (20 to 400 {Angstrom} in size) and quantify their potential for improving coal dissolution in the solubilization stage of two-stage catalytic-catalytic liquefaction systems. In the first quarterly report for this program the concept behind our approach was detailed, the structure of the program was presented, key technical issues were identified, preliminary designs were outlined, and technical progress was discussed. All progress made during the second quarter of this program related to experiment design of the proposed supercritical expansion technique for generating ultra-fine, iron compound, catalyst particles. This second quarterly report, therefore, presents descriptions of the final designs for most system components; diagnostic approaches and designs for determining particles size and size distributions, and the composition of the pre-expansion supercritical solution; and the overall technique progress made during this reporting period. 6 refs., 15 figs., 1 tab.

  7. Prediction and measurement of optimum operating conditions for entrained coal gasification processes. Quarterly technical progress report, No. 1, 1 November 1979-31 January 1980

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Smith, P.J.

    1980-02-15

    This report summarizes work completed to predict and measure optimum operating conditions for entrained coal gasifications processes. This study is the third in a series designed to investigate mixing and reaction in entrained coal gasifiers. A new team of graduate and undergraduate students was formed to conduct the experiments on optimum gasification operating conditions. Additional coal types, which will be tested in the gasifier were identified, ordered, and delivered. Characterization of these coals will be initiated. Hardware design modifications to introduce swirl into the secondary were initiated. Minor modifications were made to the gasifier to allow laser diagnostics to be made on an independently funded study with the Los Alamos Scientific Laboratory. The tasks completed on the two-dimensional model included the substantiation of a Gaussian PDF for the top-hat PDF in BURN and the completion of a Lagrangian particle turbulent dispersion module. The reacting submodel is progressing into the final stages of debug. The formulation of the radiation submodel is nearly complete and coding has been initiated. A device was designed, fabricated, and used to calibrate the actual Swirl Number of the cold-flow swirl generator used in the Phase 2 study. Swirl calibrations were obtained at the normal tests flow rates and at reduced flow rates. Two cold-flow tests were also performed to gather local velocity data under swirling conditions. Further analysis of the cold-flow coal-dust and swirl test results from the previous Phase 2 study were completed.

  8. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 6, January--March 1994

    SciTech Connect

    Not Available

    1994-05-17

    Work continued as planned and scheduled. Total expenditures are below budget. Tasks 2 and 3 are complete. Task 5 was started early. Task 6 will start in April. The following major deliverables were issued: (1) Slides and narrative for PETC Audio/Visual combustion 2000 Exhibit; (2) Technical Paper for the 19th International Technical Conference on Coal Utilization & Fuel Systems; and (3) Draft of Technical Paper (for internal review) for the 1994 International Joint Power Generation Conference. Two advisors were added to the Team -- Richmond Power & Light and Peridot chemicals, Inc. RP&L is an excellent candidate for the POC host. Peridot has expertise in the production and marketing of sulfuric acid. A regular Quarterly Review Meeting was held with DOE-PETC.

  9. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  10. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  11. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  12. Fluid seals development for coal liquefaction slurry pumps. Quarterly technical progress report No. 11, 1 April 1985-30 June 1985. [Reciprocating pumps

    SciTech Connect

    Burcham, R.E.

    1985-07-22

    This quarterly progress report covers the work performed during the period 1 April 1985 to 30 June 1985 on the Fluid Seals Development for Coal Liquefaction Slurry Pumps Program. The work was sponsored by the Department of Energy, Pittsburgh Technology Center, to develop technology for hydrostatic fluid seals to be used in coal slurry centrifugal and reciprocating pumps. The scope of the program consists of the following tasks: (1) Task 1A: Survey of current practices for centrifugal and reciprocating coal slurry pump seals; (2) Task 1B: Preliminary evaluation of three alternative centrifugal and reciprocating fluid seal concepts; (3) Task 2: Detail evaluation of the best two centrifugal and reciprocating fluid seal concepts; (4) Task 3A: Design and fabrication of the selected centrifugal and reciprocating fluid seal concept, Design and fabrication of the centrifugal and reciprocating seal testers; (5) Task 3B: Laboratory seal testing of the centrifugal and reciprocating fluid seals; and (6) Task 4: Field testing of the centrifugal and reciprocating fluid seals. Tasks 1, 2, 3A, and 3B have been completed. Task 4 is in progress. 2 figs.

  13. Production and screening of carbon products precursors from coal. Quarterly technical progress report No. 5, January 1,1996--March 31, 1996

    SciTech Connect

    1996-04-01

    Individual quarterly reports of four industrial participants of this project are included in this report. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the Carbon Products Consortium (CPC) is a continual effort. Interest in the program and positive results from the research continue to grow. In several aspects, the program is ahead of schedule.

  14. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    SciTech Connect

    Jennings, P.; Borio, R.; McGowan, J.G.

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  16. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1994, April 1994--June 1994

    SciTech Connect

    1995-09-01

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NOx burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters. Results are described.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  18. Fluid seals development for coal liquefaction slurry pumps. Quarterly technical progress report No. 10, 1 January 1985-31 March 1985. [Reciprocating and centrifugal pumps

    SciTech Connect

    Burcham, R.E.

    1985-04-22

    This quarterly progress report covers the work performed during the period January 1, 1985 to March 31, 1985 on the Fluid Seals Development for Coal Liquefaction Slurry Pumps Program. The work was sponsored by the Department of Energy, Pittsburgh Technology Center, to develop technology for hydrostatic fluid seals to be used in coal slurry centrifugal and reciprocating pumps. The scope of the program consists of the following tasks: (1) Task 1A, survey of current practices for centrifugal and reciprocating coal slurry pump seals; (2) Task 1B, preliminary evaluation of three alternative centrifugal and reciprocating fluid seal concepts; (3) Task 2, detail evaluation of the best two centrifugal and reciprocating fluid seal concepts; (4) Task 3A, design and fabrication of the selected centrifugal and reciprocating fluid seal concept, design and fabrication of the centrifugal and reciprocating seal testers; (5) Task 3B, laboratory seal testing of the centrifugal and reciprocating fluid seals; (6) Task 4, field testing of the centrifugal and reciprocating fluid seals. Tasks 1, 2, 3A, and 3B have been completed. Task 4 is pending Department of Energy approval. 2 figs., 1 tab.

  19. Coal conversion. 1979 technical report

    SciTech Connect

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  20. Technical progress report

    SciTech Connect

    1996-10-01

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993

    SciTech Connect

    1995-06-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

  2. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  3. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, July--September 1993

    SciTech Connect

    Song, C.; Saini, A.K.; Huang, L.; Schobert, H.H.; Hatcher, P.G.

    1994-01-01

    In this quarter, progress has been made in the following two aspects: (1) spectroscopic and chemical reaction studies on the effects of drying and mild oxidation of a Wyodak subbituminous coal on its structure and pretreatment/liquefaction at 350{degrees}C; and (2) effects of dispersed catalyst and solvent on conversion and structural changes of a North Dakota lignite. Drying and oxidation of Wyodak subbituminous coal at 100-150{degrees}C have been shown to have significant effects on its structure and on its catalytic and non-catalytic low-severity liquefaction at 350{degrees}C for 30 min under 6.9 MPa H{sub 2}. Spectroscopic analyses using solid-state {sup 13}C NMR, Pyrolysis-GC-MS, and FT-IR revealed that oxidative drying at 100-150{degrees}C causes the transformation of phenolics and catechol into other related structures (presumably via condensation) and high-severity air drying at 150{degrees}C for 20 h leads to disappearance of catechol-like structure. Increasing air drying time or temperature increases oxidation to form more oxygen functional groups at the expense of aliphatic carbons. Such a clearly negative impact of severe oxidation is considered to arise from significantly increased oxygen functionality which enhances the cross-link formation in the early stage of coal liquefaction. Physical, chemical, and surface physicochemical aspects of drying and oxidation and the role of water are also discussed. A North Dakota lignite (DECS-1) coal was studied for its behaviors in non-catalytic and catalytic liquefaction. Reactions were carried out at temperatures between 250 and 450{degrees}C. Regardless the reaction solvents and the catalyst being used, the optimum temperature was found to be 400{degrees}C. The donor solvent has a significant effect over the conversion especially at temperatures higher than 350{degrees}C.

  4. Char crystalline transformations during coal combustion and their implications for carbon burnout. Semiannual technical progress report, 1 January 1996--1 July 1996

    SciTech Connect

    Hurt, R.H.

    1996-11-01

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following three goals: to determine transient, high-temperature thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: (1) experimental technique development; (2) thermal deactivation kinetics; and (3) crystal structure characterization. In this second project period, progress was made on subtasks 1 and 3, in both cases in the areas of equipment and technique development. These activities are discussed in detail in this report.

  5. Clean coal technology III (CCT III): 10 MW demonstration of gas suspension absorption. Technical progress report, October 1, 1990--December 31, 1990

    SciTech Connect

    Not Available

    1990-12-31

    This project will be the first North American demonstration of the Gas Suspension Absorption (GSA) System in its application for flue gas desulfurization. The purpose of this project is to demonstrate the high sulfur dioxide (SO{sub 2}) removal efficiency as well as the cost effectiveness of the GSA system. GSA is a novel concept for flue gas desulfurization developed by F.L. Smidth miljo (FLS miljo). The GSA system is distinguished in the European market by its low capital cost, high SO{sub 2} removal efficiency and low operating cost. The specific technical objectives of the GSA demonstration project are to: effectively demonstrate SO{sub 2} removal in excess of 90% using high sulfur US coal. Optimize recycle and design parameters to increase efficiencies of lime reagent utilization and SO{sub 2} removal. Compare removal efficiency and cost with existing Spray Dryer/Electrostatic Precipitator technology.

  6. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 10, January 1995--March 1995

    SciTech Connect

    1995-05-17

    The project is on schedule and under budget. The current status is shown in the Milestone Schedule Report included as Appendix A. All Project Plans were updated based on the revised finding level authorized for FY95 and anticipated for FY96. Technology Transfer activities included {open_quotes}supplying{close_quotes} three executives and several team members to the LEBS Workshop, delivering a technical paper at a conference, and working on a Combustion 2000 Session for another conference. ABBES and CeraMem reached agreement concerning Task 7 work, including ownership and disposition of project-purchased equipment to be used during Task 7 and also during Task 11. A test plan was prepared. Task 7 activities for the Low-NO{sub x} Firing System included computational modeling of the firing arrangement. Reasonable comparisons to experimental data previously obtained in the Boiler Simulation Facility were achieved. A kinetic evaluation for both baseline and low NO{sub x} firing arrangements was also performed, with results indicating that the final reducing zone within the main windbox has a dominant effect on NO{sub x} reduction, with higher temperatures being more favorable for lower NO{sub x}. A week of combustion testing was completed in the Fundamental Scale Burner Facility to examine the impact of integrated fuel staging (NO{sub x} reduction via the reburn mechanism), and to explore preliminary vertical staging concepts within the main windbox region. Preliminary results from this testing demonstrated the potential of vertical air staging within the main windbox to augment overfire air. Testing was performed to quantify the coal size distribution and power requirements for one (1) conventional static and four (4) dynamic classifier designs. Results from this testing show the dynamic classifier capable of producing finer grinds of coal at lower relative power requirements.

  7. Hydrocarbon-oil encapsulate bubble flotation of fine coal. Technical progress report for the twelfth quarter, July 1--September 30, 1993

    SciTech Connect

    Peng, F.F.

    1993-12-31

    Two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal. Five different coal samples were used in the column flotation test program. They are Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 seam coals, which correspond to anthracite-, low volatile-, medium volatile-, and high volatile-seam coals, respectively. In this quarterly report, the test results for the Upper Freeport seam coal and Pittsburgh No. 8 seam coal are reported.

  8. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 6, October 1, 1991--December 31, 1991

    SciTech Connect

    Conkle, H.N.

    1992-03-17

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coals studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).

  9. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Seventh quarterly technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the ``native`` or ``self-induced`` floatability of pyrite is no as profound as the oil-induced flotation.

  10. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 7, July 1, 1995--September 30, 1995

    SciTech Connect

    1996-08-22

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. The Mulled Coal circuit was installed in an empty bay at the Chetopa Preparation Plant. Equipment has been installed to divert a 2.7 tonnes/hr (3 tons/hr) slipstream of the froth concentrate to a dewatering centrifuge. The concentrated wet coal fines from the centrifuge dropped through a chute directly into a surge hopper and feed system for the Mulled Coal circuit. The Mulled Coal product was gravity discharged from the circuit to a truck or product discharge area from which it will be hauled to a stockpile located at the edge of the clean coal stockpile area. During the 3-month operating period, the facility produced 870 tonnes (966 tons) of the Muffed Coal for evaluation in various storage, handling, and transportation equipment and operations. Immediately following the production demonstration, the circuit was disassembled and the facility was decommissioned.

  11. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  12. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 25, 1990--October 24, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  13. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 26, 1991--January 25, 1992: Draft

    SciTech Connect

    Klein, M.T.; Foley, H.C.

    1992-03-23

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fine-particle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optical catalyst for coal liquefaction.

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy`s program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research & Development Center (Amax R&D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  15. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    SciTech Connect

    Miller, B.G.; Miller, S.F.; Morrison, J.L.

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  16. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    SciTech Connect

    Miller, B.G.; Miller, S.F.; Pisupati, S.V.

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  17. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Eighth quarterly technical progress report, June 1, 1992--August 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-12-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  18. A new model of coal-water interaction and relevance for dewatering. Quarterly technical progress report, 1 March--31 May 1993

    SciTech Connect

    Suuberg, E.M.; Yun, Y.; Lilly, W.D.; Leung, K.; Gates, T.; Otake, Y.; Deevi, S.C.

    1993-12-31

    It has been noted that there is no single, distinct measure of the bulk modulus of coals measurable in mercury porosimetry experiments. As with other modulus measurements on coal, there is a hysteresis associated with these measurements of bulk modulus. The hysteresis is presumably associated with the time-dependent reorganization of its macromolecular network structure, in response to the applied stresses. The above results confirm what has been inferred from other types of measurements on the porosity and surface areas of coals. It has been concluded that because coal behaves as a viscoelastic gel ( as opposed to a rigid solid) on the timescales of interest, then many of the ``classical`` characterizations of porosity might provide a misleading picture of the structure of coals. Here, it has been specifically concluded that ``corrections`` for coal compressibility, commonly used in mercury porosimetry work on raw coals, are subject to some uncertainty from this source. At the higher temperatures of actual coal processing, and especially in the presence of solvents, there is an even greater uncertainty concerning the applicability of these measurements, since the physical structure of the coal can be dramatically altered. The apparent bulk moduli of coals do not vary widely with rank. The pre-extraction of the coal or presence of water in the coal affect the moduli by only a small amount. Water is an effective swelling agent for low rank coals, swelling lignites by 30 to 40%, relative to a dry state. There is, however, no evidence from the values of bulk modulus obtained here that the rubbery state of the coal, as is attainable in pyridine swelling of higher ranks, exists in the wet lignites. We therefore indirectly support earlier workers in their conclusion that the effect of moisture content on dynamic moduli is small.

  19. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  20. Engineereing development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 5, October--December 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1994-02-18

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. The project has three major objectives: The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  1. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 3, April--June 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-08-05

    Economical dewatering of an ultra-fine clean coal product to a 20% or lower level moisture will be an important step in successful implementation of the advanced fine coal cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept (POC) scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals. During this quarter, addition of reagents such as ferric ions and a novel concept of in-situ polymerization (ISP) was studied in the laboratory. Using the ISP approach with vacuum filtration provided 25% moisture filter cake compared to 65.5% moisture obtained conventionally without using the ISP. A series of dewatering tests were conducted using the Andritz hyperbaric pilot filter unit with high sulfur clean coal slurry.

  2. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 5, October--December 1993

    SciTech Connect

    Not Available

    1994-04-06

    Work continued as planned and scheduled. Total expenditures are below budget. Task 2 is complete. Task 3 is complete except for R, D & T Plan -- Phase II. Task 4 is currently slightly behind schedule but is projected to finish on or ahead of schedule. Task 5 was started early. The following major deliverables were issued: (1) Technical Paper for `93 International Joint Power Generation Conference. (2) Technical Paper for IEA Second International Conference, and (3) Topical Report by EAR on Air Toxics. Subtask 4.1 -- Engineering Analysis in support of the CGU design is nearly complete and partial design specifications are being employed in Task 5. Subtask 4.2 -- Experimental Research efforts consisted of the first series of Drop Tube Furnace tests. Data is being analyzed. Subtask 4.3 -- Modeling work to data resulted in input files for Boiler Simulation Facility and flow pattern convergence was attained. Particle combustion is the next step. This work will be reported on at the next Quarterly Project Review meeting. Task 5 was started early to facilitate Task 6 schedule and quality. Integration of the SNO{sub x} Hot Scheme into the boiler and turbine/feedwater train was optimized and design work on the boiler and ``backend`` is underway. Cost estimating assumptions and methodology were discussed at length and finalized. The RAM analysis is nearly complete. BOP engineering is in progress. No changes to the Work Plan are anticipated for the next quarter.

  3. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  4. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Quarterly technical progress report, March 1, 1991--May 31, 1991

    SciTech Connect

    Eisch, J.J.

    1991-07-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  5. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  6. Macromolecular structural changes in bituminous coals during extraction and solubilization. Quarterly technical progress report, 1 September 1981-1 December 1981

    SciTech Connect

    Peppas, N.A.

    1981-01-01

    Data are presented of the effect of coal pretreatment (extraction, flotation etc.) and porous structure on the apparent and effective swelling of several coals by four swelling agents. Analysis of the pore structure was achieved by mercury porosimetry and pyconometry. The effect of retained solvent in the pores is more prominent in the determination of the equilibrium coal volume fraction and the actual molecular weight between crosslinks, M/sub c/.

  7. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1995--September 27, 1995

    SciTech Connect

    Miller, B.G.; Hatcher, P.; Knicker, H.

    1996-10-21

    The U.S. Department of Defense (DOD), through the Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Mixture Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, preparation of the Phase I final report continued. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included initiating a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work started on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filter device will be used to demonstrate a more compact and efficient filtering device for retrofit applications. Coal preparation and utilization activities, and the economic analysis were completed and work focused on preparing the final report. Work on Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on selecting incentives for commercialization of coal using technologies, community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  8. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1994--September 27, 1994

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Morrison, J.L.

    1995-04-14

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. Activities this reporting period included performing coal beneficiation/preparation studies, conducting combustion performance evaluations, preparing retrofit engineering designs, determining retrofit economics, and installing a micronized coal-water mixture (MCWM) circuit.

  9. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  10. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Mishra, N.C.

    1995-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. The authors also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  11. Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Mishra, N.C.

    1994-08-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

  12. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, July 1, 1994--September 30, 1994, fourth quarterly

    SciTech Connect

    Mishra, N.C.

    1994-11-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms (Faison, 1991). In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  13. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 10, January 1, 1995--March 31, 1995

    SciTech Connect

    Kramlich, J.C.; Chenevert, B.; Park, J.

    1995-06-01

    The production of ash particles from coal combustion limits it`s use as a fuel. On mechanism by which small ash particles are formed is the generation of submicron aerosols through a vaporization/condensation mechanism. Previous work has shown that coal cleaning can lead to increased emissions of aerosols. This research will investigate the means or aerosol formation in coals and the effects that various methods of coal cleaning have on aerosol production, and whether or not cleaning can be performed in a manner that will not lend itself to aerosol formation.

  14. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 18, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This task is the actual demonstration of the advanced froth flotation technology. All previous work has led to this task. ICF KE technicians and process engineers from the team will operate the plant over a 10 month period to demonstrate the capability of the technology to remove 85% of the pyritic sulfur from three different test coals while recovering at least 85% of the as-mined coal`s energy content. Six major subtasks have been included to better define the overall work scope for this task. The ICF KE team will test the Pittsburgh No. 8 seam, the Illinois No. 6 seam and the Upper Freeport seam; the team will operate the circuit in a continuous run; the team will analyze all samples generated in those runs and will develop a plan to store and dispose of the coal and refuse products. All laboratory data generated will be accessible to all team members and the DOE. The test program for the Pittsburgh No. 8 coal began during March 1, 1993. An arrangement has been made between ICF Kaiser Engineers (ICF KE) and American Electric Power (AEP), who is the host for the DOE POC facility. The arrangement calls for AEP to purchase the raw coal and use the clean coal generated by the DOE POC facility. This arrangement permits the processing of raw coal at a very minimal cost of purchasing the raw coal.

  16. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Technical progress report No. 17, 18 and 19, September 30, 1991--December 31, 1996

    SciTech Connect

    Borio, R.W.; Patel, R.L.; Thornock, D.E.

    1996-07-29

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the last three quarters [seventeenth (October `95 through December `95), eighteenth (January `96 through March `96), and nineteenth (April `96 through June `96)] of the program.

  17. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 4, April 1, 1991--June 30, 1991

    SciTech Connect

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.; Jha, M.C.

    1991-09-20

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be formulated into Coal-Water Fuels (CWFs) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines.

  18. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 11, April 1, 1995--June 30, 1995

    SciTech Connect

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung

    1995-08-02

    Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present program are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; and (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. The current experimental series focuses on the use of artificial char to study sodium vaporization and aerosol formation associated with dispersed sodium and mineral inclusions. Artificial char has the advantage over natural coal in that the composition can be precisely controlled, such that the influences of specific mineral composition and content can be investigated. The study showed: the addition of calcite had no effect of the aerosol yield; increased amounts of pyrite did not lead to increased residual ash formation; in spite of the increase in mineral content, the yield of aerosol on the backup filter did not correlate with the amount of added minerals; and the general trend was for reduced aerosol yields as the amount of bentonite increased which suggested that the bentonite was effective at complexing sodium and reducing its overall vaporization.

  19. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1992--March 27, 1993

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.; Hogg, R.

    1993-05-13

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (MC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash and high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil- designed watertube boiler located on a DOD installation to fire either MCWM or MC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; (5) Final Report/Submission of Design Package.

  20. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress reports Nos. 3 and 4, April 1, 1988--September 30, 1988

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R.; Samuelsen, G.S.

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  2. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  4. A study of coal extraction with electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance relaxation techniques. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-09-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromoleculer network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS2 solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment in a vacuum. The mobilization of molecular free radicals by the solvent and the exposure of free radicals in the macromoleculer matrix to solvent or to species dissolved in the solvent, results in a preferential survival of residue radicals of types that depend on the particular coal and results in the apparently fairly uniform loss of all types of radicals in bituminous coal extracts. The surviving extract and residue free radicals are more predominantly of the odd- alternate hydrocarbon free radical type. The spin-lattice relaxation (SLR) of these coal free radicals has previously been inferred (Doetschman and Dwyer, Energy Fuels, 1992, 6, 783) to be from the modulation of the intramolecular electron-nuclear dipole-interactions of the CH groups in a magnetic field by rocldng motions of the radical in the coal matrix. Such a modulation would depend not only on the rocking amplitude and frequency but also upon the electron spin density at the CH groups in the radical. The observed SLR rates decrease with coal rank in agreement with the smaller spin densities and the lower rocidng amplitudes that are expected for the larger polycondensed ring systems in coals of higher rank. The SLR rates are found to be generally faster in the extracts (than residues) where the molecular species would be expected to have a smaller polycondensed ring system than in the macromoleculer matrix of the residue.

  5. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1995

    SciTech Connect

    1995-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: advanced overfire air (AOFA), low NO{sub x} burners (LNB), LNB with AOFA, and advanced digital controls and optimization strategies. The project has completed the baseline, AOFA, LNB, and LNB + AOFA test segments, fulfilling all testing originally proposed to DOE. Phase 4 of the project, demonstration of advanced control/optimization methodologies for NO{sub x} abatement, is now in progress. The methodology selected for demonstration at Hammond Unit 4 is the Generic NO{sub x} Control Intelligent System (GNOCIS), which is being developed by a consortium consisting of the Electric Power Research institute, PowerGen, Southern Company, Radian Corporation, U.K. Department of Trade and Industry, and US DOE. GNOCIS is a methodology that can result in improved boiler efficiency and reduced NO{sub x} emissions from fossil fuel fired boilers. Using a numerical model of the combustion process, GNOCIS applies an optimizing procedure to identify the best set points for the plant on a continuous basis. GNOCIS is designed to operate in either advisory or supervisory modes. Prototype testing of GNOCIS is in progress at Alabama Power`s Gaston Unit 4 and PowerGen`s Kingsnorth Unit 1.

  6. Development and testing of industrial scale, coal fired combustion system, Phase 3. Fifth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Zauderer, B.

    1993-05-17

    In the present reporting period, the first quarter of calendar year 1993, the effort was divided between Task 2. ``Pre Systems Tests`` and Task 4 ``Economics and Commercialization Plan.`` A major part of the task 2 effort was devoted converting the nozzle from adiabatic to air cooted operation. This conversion will allow immediate implementation of the longer duration task 3.2 tests after the completion of the task 2 tests. Therefore, a significant pan of the exit nozzle conversion effort is also part of task 3.1, ``Combustor Refurbishment.`` In task 1 the only activity remaining is to receive the results of the BYU combustion modeling. The results are anticipated this Spring. One of the three remaining tests in task 2 was implemented in late January under freezing weather and snow conditions. Ice plugged the coal feed lines and stack scrubber water outlet and ice jammed and damaged the coal metering auger. While these lines were thawed, the combustor was fired with oil. The coal used in this test contained fine fibrous tramp material which passed through the two tramp material retaining screens and eventually plugged several of the coal feed lines to the combustor. This cut the planned coal feed rate in half. As a result it was decided for the next test to increase the number of coal injection ports by 50% in order to provide excess capacity in the pneumatic feed feed. This will allow continued operation even in the presence of fine tramp material in the coal.

  7. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  8. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, February-April 1980. [Variability

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-06-01

    The basic objective of this program is to invetigate systematic relationships between the properties of US coals and macerals. Thirty-five samples from the Lower Kittanning seam have been collected to study the vertical and lateral variability of petrographic, chemical, mineralogical and plastic characteristics within a single coal seam. The ratio of aromatic to aliphatic C-H groups as measured by the integrated absorption or peak areas shows a linear relationship with coal rank (reflectance). Uptake of CO/sub 2/ at 25/sup 0/C on -20 mesh sizes of selected coals (PSOC-1166, 1171, 1197, and 1201) has been measured. From Dubinin-Polanyi plots, micropore surface areas and micropore volumes were obtained. Displacement of mercury was used to estimate particle densities for -20 mesh and -100 mesh sizes of coals and vitrinite concentrates. Some uncertainty in this measurement is introduced because of the difficulty of knowing at what pressure filling of voids between particles with mercury is complete. A new helium density apparatus has been constructed which promises to speed up measurements. Two coals from China were found to have very unusual characteristics. The extremely high liptinite (cutinite) content of one would account for its anamolous chemical composition and liquefaction behavior. Several organic and inorganic components of liquefaction residues can be recognized under the microscope. The proportions of these components in residues from experiments performed by PETC appear to be related to process conditions. Major, minor element and mineralogical analyses are reported for up to 21 coals.

  9. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  10. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1995

    SciTech Connect

    1995-12-31

    This document discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. Specifically, the objectives of the projects are: (1) demonstrate in a logical stepwise fashion the short-term NO{sub x} reduction capabilities of the following advanced low NO{sub x} combustion technologies: advanced overfire air (AOFA); low NO{sub x} burners (LNB); LNB with AOFA; and advanced digital controls and optimization strategies; (2) determine the dynamic, long-term emissions characteristics of each of these combustion NO{sub x} reduction methods using sophisticated statistical techniques; (3) evaluate the cost effectiveness of the low NO{sub x} combustion techniques tested; and (4) determine the effects on other combustion parameters (e.g., CO production, carbon carryover, particulate characteristics) of applying the above NO{sub x} reduction methods.

  11. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  12. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 26, 1990--January 26, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-02-22

    The first task in our proposed study of catalysts for coal liquefaction was to prepare ultrafine dispersed metal sulfide particles by reactive precipitation from solutions of appropriate metal precursors. At this point, equipment to allow us to prepare these air-sensitive materials in an anaerobic environment has been acquired and assembled. Initial experiments aimed at synthesizing iron sulfide particles have been initiated. As part of the investigation of short contact time catalytic coal liquefaction, initial efforts focused on the noncatalytic pyrolysis reactions of coal and a model compound, Dibenzyl ether (DBE). Two different reactor configurations were examined; catalytic experiments are planned for the coming month.

  13. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 9, October--December 1991

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the ``Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  14. [Performance evaluation of fabric bag filters on a bench-scale coal gasifier]. Quarterly technical progress report, October 19, 1984--December 30, 1984

    SciTech Connect

    Not Available

    1986-01-15

    The objective of the proposed work is to demonstrate the operational and economic feasibility of using high-temperature ceramic filters for particulate control in a variety of coal gasification power generating systems.

  15. [Performance evaluation of fabric bag filters on a bench-scale coal gasifier]. Quarterly technical progress report, September 30, 1985--December 29, 1985

    SciTech Connect

    Not Available

    1986-01-15

    The objective of the proposed work is to demonstrate the operational and economic feasibility of using high-temperature ceramic filters for particulate control in a variety of coal gasification power generating systems.

  16. The development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1993--September 27, 1993

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Sharifi, R.

    1993-12-17

    The US DOD, through an Interagency Agreement with the US DOE, has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. A team of researchers has been assembled from Penn State, ABB Combustion Engineering Systems (CE), AMAX Research and Development Center (AMAX), and Energy and Environmental Research Corporation (EER). These four organizations are the current members of the Consortium. Phase 1 activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase 2 research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion strategies for the utilization of high ash, high sulfur coals. Phase 3 activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase 1 are described in this report. The objective of Phase 1 is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program of the following tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package. Miscellaneous activities are reported. Activities planned for the next semiannual period are listed. The project schedule, with a description of milestones, is included.

  17. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S.

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    SciTech Connect

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  20. Novel microorganism for selective separation of coal from ash and pyrite. Second quarterly technical progress report, 1 December 1993--28 February 1994

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1994-05-01

    The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the hydrophobicity of different coal samples was studied both in the presence and absence of M. phlei cells. In the absence of M. Phlei, Illinois No. 6 and Pennsylvania No. 8 exhibited higher contact angles as compared to Kentucky No. 9 coal. All the coal samples exhibited a maximum in contact angle around pH 5--7, which roughly coincides with the iso-electric point (iep) of different coals studied in this investigation. In the presence of M. phlei, maximum contact angle shifted to lower pH range of 2--3 which coincides with the iep of the M. phlei. These measurements reinforce the notion that good flocculation of coal with M. phlei can be achieved around pH 2--3. The amount of soluble fraction released during rupturing of M. phlei cells was studied as a function of sonication time. The rupturing experiments showed that the whole cells (unruptured cells) contain nearly 40% by weight of soluble fractions. Also, during the reporting period, the fabrication of the counter-current flocculation device was completed.

  1. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1993-12-31

    There is significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from the central role of pyrolysis in all thermally driven coal conversion processes -- gasification, combustion, liquefaction, mild gasification, or thermal benefication. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. Only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Results of the literature survey are compiled. The experimental tasks have been concerned with setup and calibration.

  2. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report no. 3, April 1, 1995--June 31, 1995

    SciTech Connect

    Houshang, M.; Samudrala, S.R.; Mohannad, O.

    1995-07-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  3. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report No. 2, January 1, 1995--March 31, 1995

    SciTech Connect

    Houshang, Masudi

    1995-04-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  4. Development and testing of a commercial scale coal-fired combustion system -- Phase 3. Final technical progress report, September 26, 1990--August 31, 1994

    SciTech Connect

    Litka, A.; Breault, R.

    1994-10-01

    This report summarizes the results of work performed in the development and testing of a coal-fired space heating system for the commercial market sector. Although coal is the most plentiful energy resource in the US, its use since World War II has been largely restricted to utility power generation for environmental and economic reasons. Within the commercial sector, oil and natural gas are the predominant heating fuels for office buildings, apartment complexes, and similar structures. Generally, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program was to design, build, and test a coal-based heating system for this sector, and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel was chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering, and dusting problems, as well as its explosive potential. A brief description of the overall system design is given in this report, as well as a discussion of the unique features of the system configuration and key components. This is followed by a summary of the testing performed, including a comparison between system performance and program goals. Finally, the results of the economic evaluation are presented, along with a commercialization plan for the technology. A key issue in the eventual commercialization of the technology is the availability of a competitively priced coal water slurry fuel. Predicted prices and availability of CWS are discussed.

  5. Development and testing of industrial scale coal fired combustion systems, Phase 3. Sixth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Zauderer, B.

    1993-09-22

    The most significant effort in the quarter was the completion of the conversion of the exit nozzle from adiabatic operation to air cooled operation. This conversion was implemented midway in the task 2 test effort, and the final two tests in task 2 were with the cooled nozzle. It performed as per design. The second significant result was the successful implementation of a computer controlled combustor wall cooling procedure. The hot side combustor liner temperature can now be maintained within a narrow range of less than 5OF at the nominal wall temperature of 2000F. This is an essential requirement for long term durability of the combustor wall. The first tests with the computer control system were implemented in June 1993. A third development in this period was the decision to replace the coal feeder that had been in use since coal fired operation began in late 1987. Since that time, this commercial device has been modified numerous times in order to achieve uniform coal feed. Uniform feed was achieved in 1991. However, the feeder operation was not sufficiently reliable for commercial use. The new feeder has the same design as the sorbent feeders that have been successfully used since 1987. This design has much better speed control and it can be rapidly restarted when the feed auger becomes jammed with tramp material. The last task 2 test was a long duration coal fired test with almost 12 hours of coal fired operation until the 4 ton coal bin was empty. It was the longest coal firing period of the task 2 tests. The exit nozzle cooling maintained the wall temperature in the desired operating range.

  6. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  7. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Suuberg, E.M.

    1993-12-31

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. Sophisticated general correlative approaches are slowly being developed, based upon group contribution methods, or based upon some key functional features of the molecules. These are as yet difficult to apply to coal tars. The detailed group contribution methods, in which fairly precise structural information is needed, do not lend themselves well for application to very complex, poorly characterized coal tars. The methods based upon more global types of characterizations have not yet dealt much with the question of oxygenated functional groups. In short, only very limited correlations exist, and these are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion.

  8. AFBC co-firing of coal and hospital wastes. Quarterly technical progress report, February 15, 1992--May 15, 1992: Phase 1

    SciTech Connect

    Not Available

    1992-12-01

    During the previous report period, shredder system verification and testing was initiated at DONLEE`s pilot facility located in York, Pennsylvania. General waste from the Lebanon VA Medical Center was transported to the pilot facility in York. The waste was fed into the unit starting December 18, 1991. The waste feed rate was adjusted to approximately 150 lb./hr. The stack monitoring portion of the shredder testing was conducted on January 28 and 29. The heat input was approximately 6 {times} l0{sup 6} BTU/hr. both days. On the first day, only coal and limestone were fed into the unit. On the second day, hospital waste, coal, and limestone were fed into the unit. On both days of testing, data included: coal, limestone, and ash samples and flow rates; all air flows; stack flue gas flow; combustor, cyclone, boiler, and baghouse; temperatures and pressures; stack concentration of dioxins and furans; stack concentration of heavy metals; stack concentration of HCI; stack concentration of PAH. The hospital waste feed during the second test was approximately 150 lb./hr. The PA DER requested that the final design of the Lebanon facility fire anthracite coal only. On February 4, the unit was lit off on anthracite coal. Operation on anthracite stabilized at a 1650 degree F combustor temperature. Hospital waste was fed into the unit while on anthracite without incident.

  9. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components: Technical progress report, October 1, 1986-September 30, 1987

    SciTech Connect

    Chess, E.K.; Kalinoski, H.T.; Smith, R.D.

    1988-02-01

    This program, Development and Evaluation of Supercritical Fluid Chromatography/Mass Spectrometry for Polar and High-Molecular-Weight Coal Components, is aimed at the development of new analytical technologies for the characterization of previously intractable complex mixtures. The specific goals of this program are twofold: (1) to develop and evaluate a combined high-resolution, capillary column, supercritical fluid chromatograph/high-performance mass spectrometer (SFC/MS) that is capable of analyzing high-molecular-weight materials, such as polar and heavy-end components found in coal conversion processes; and (2) to use this system to develop and evaluate analytical technology applicable to coal process development technology. Studies have been conducted to characterize the performance of the supercritical fluid chromatograph-mass spectrometer interface, and several modifications have been made to the probe, ion source, and associated hardware to improve performance and operator safety. Methods have been developed that allow the mass calibration of the magnetic sector mass spectrometer to 1400 daltons using desorption chemical ionization. Methodologies have been improved for fabricating capillary columns with bonded, crosslinked stationary phases suitable for use with polar fluids. Coal-derived materials and fossil-fuel-derived sediments have been investigated with supercritical fluid chromatograph/mass spectrometry and supercritical fluid extraction/mass spectrometry. Microbore packed columns coupled to a modified mass spectrometer interface allowed the chemical class fractionation of relatively polar complex mixtures derived from coal liquefaction. 6 refs., 12 figs.

  10. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  11. Determination of the radiative of pulverized-coal particles. Technical progress report, third quarter of the third year, March 15, 1990--June 15, 1990

    SciTech Connect

    Menguec, M.P.; Dsa, D.; Manickavasagam, S.; Dutta, P.; Mahadeviah, A.

    1991-12-31

    For accurate modeling of radiative transfer in combustion systems, radiative properties of combustion products are required. It is usually difficult to calculate the properties of nonhomogeneous and irregular-shaped pulverized-coal and char particles, because of the lack of information on optical constants and unavailability of simple and accurate theoretical models. Because of this, it is preferable to determine the required properties from experiments in situ. This can be accomplished by combining optical diagnostic techniques with inverse analyses of radiative transfer problem. In this study, experiments were conducted using a CO{sub 2}-laser nephelometer to measure angular distribution of light scattered by a cold-layer of pulverized-coal particles. The data obtained from the experiments were used along with a new step-phase function approximation in a numerical inverse radiation scheme to obtain ``effective`` extinction coefficient and scattering phase function for coal particles in narrow size distributions. In addition to that, a mercury-arc-lamp monochromator system was used to obtain spectral absorption coefficient of coal particles as a function of wavelength and coal size.

  12. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    SciTech Connect

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  13. The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  15. Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  17. Diffusion of gases in coals and chars: Technical progress report, quarterly report No. 5, 9/15/86-12/14/86

    SciTech Connect

    Smith, D.M.

    1986-01-01

    Work during the past quarter involved: (1) surface area measurement; (2) mercury porosimetry; (3) NMR pore structure analysis; and (4) diffusion measurements. Surface area measurements via both nitrogen and carbon dioxide adsorption were completed for all group A coals. Four particle sizes of three coals were studied with mercury porosimetry. NMR relaxation experiments were used to determine continuous pore size distributions. Activity concerning diffusion measurements has been in the area of improving experimental design for both the pellet string reactor and batch desorption experiments. 1 ref.

  18. Large scale solubilization of coal and bioconversion to utilizable energy. Eleventh quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Mishra, N.C.

    1996-10-01

    Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.

  19. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  20. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  1. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  2. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report,January--March 1997

    SciTech Connect

    Tao, D.; Grappo, J.G.; Parekh, B.K.

    1997-05-07

    Laboratory centrifugal dewatering tests were conducted to study the effects of anionic and cationic flocculants on filtration of PMCC compliance (low sulfur) and non-compliance (high sulfur) ultrafine coal slurry. The results obtained with compliance coal indicated that use of 30 g/t anionic flocculant reduced filter cake moisture from 32. 3 to 29.0 percent and increased solids recovery by two absolute percentage points. Use of cationic flocculant had no effects on solids recovery but lowered cake moisture to 27 percent at a dosage of 15 g/t. With the non-compliance coal slurry addition of 15 g/t anionic flocculant lowered cake moisture from 30 to 28.5 percent with marginal effects on solids recovery; addition of cationic flocculant reduced cake moisture by one absolute percentage point. Both flocculants showed marginal effects on solids recovery. Laboratory vacuum filter leaf filtration studies showed that use of flocculants considerably increased filtration kinetics. For example, addition of 15 g/t anionic flocculant to the compliance coal slurry increased filtration kinetics by 10 times and addition of 15 g/t.

  3. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Tenth quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1993-08-01

    The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. This report summarizes the studies in the following three aspects: (1) the effects of borate, used as pH buffer or electrolyte, on the pyrite surface oxidation and flotation; (2) the quantification of pyrite surface oxidation kinetics under different oxidation potentials; and (3) finding new coal-pyrite depressants. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying pyrite oxidation, actively participates in the surface oxidation of pyrite. In high borate concentration solutions, the surface oxidation of pyrite is strongly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. At low borate concentration, borate is chemisorbed on pyrite surfaces. In the intermediate concentration range, borate dissolves surface iron compounds. Consequently, the flotation of pyrite in borate solutions (using fuel oil as collector) displays depression-flotation-depression phenomena as the borate concentration is increased. The oxidation kinetics of pyrite surfaces has been determined by AC impedance spectroscopy. At low oxidation potentials, only capacitive behavior is observed. However, at high oxidation potentials, an inductive loop appears. The charge transfer resistance decreases with increasing potential, indicating that the oxidation rate increases with increasing potential. A chemical reagent has been found to be very effective in depressing the flotation of coal-pyrites from different sources, while it has little effects on the flotation of coal. The surface chemistry involved in the selective pyrite depression by this new reagent has been investigated by electrochemical studies and contact angle measurements.

  4. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1994--August 15, 1994

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new system specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. During this reporting period, the construction of the CWSF preparation circuit (as well as a dry, micronized coal circuit) continued. The CWSF preparation circuit will be completed by November 1,1994. Additional activities included receiving a coal-designed burner and installing it on the demonstration boiler, and working with DOE in selecting pollution control systems to install on the boiler.

  5. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semi-annual technical progress report, February 15--September 15, 1995

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1997-06-02

    A coal-water slurry fuel (CWSF) program is being undertaken to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. Information will also be generated to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated In a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (target is 98%) was achieved; however, natural gas cofiring was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second demonstration (Phase 4) will be conducted after a proven CWSF-designed burner is installed on the boiler. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production.

  6. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 7, January 1, 1992-- March 31, 1992

    SciTech Connect

    Conkle, H.N.

    1992-06-09

    Work in this quarter focused on completing (1) the final batch of pilot-scale disk pellets, (2) storage, handling, and transportation evaluation, (3) pellet reslurrying and atomization studies, and (4) cost estimation for pellet and slurry production. Disk pelletization of Elkhorn coal was completed this quarter. Pellets were approximately 1/2- to 3/4-in. in diameter. Pellets, after thermal curing were strong and durable and exceeded the pellet acceptance criteria. Storage and handling tests indicate a strong, durable pellet can be prepared from all coals, and these pellets (with the appropriate binder) can withstand outdoor, exposed storage for at least 4 weeks. Pellets in unexposed storage show no deterioration in pellet properties. Real and simulated transportation tests indicate truck transportation should generate less than 5 percent fines during transport. Continuous reslurrying testing and subsequent atomization evaluation were performed this quarter in association with University of Alabama and Jim Walter Resources. Four different slurries of approximately 55-percent-solids with viscosities below 500 cP (at 100 sec{sup {minus}1}) were prepared. Both continuous pellet-to-slurry production and atomization testing was successfully demonstrated. Finally, an in depth evaluation of the cost to prepare pellets, transport, handle, store, and convert the pellet into Coal Water Fuel (CWF) slurries was completed. Cost of the pellet-CWF option are compared with the cost to directly convert clean coal filter cake into slurry and transport, handle and store it at the user site. Findings indicate that in many circumstances, the pellet-CWF option would be the preferred choice. The decision depends on the plant size and transportation distance, and to a lesser degree on the pelletization technique and the coal selected.

  7. The use of starch to enhance sulfur and ash removal from coal by selective oil agglomeration. Quarterly technical progress report No. 12, July 1--September 30, 1990

    SciTech Connect

    Good, R.J.; Badgujar, M.N.

    1990-12-31

    We have found that the use of starch or gelatin, as an additive in the Otisca T-Process of selective oil agglomeration of coal, leads to a considerable improvement in the reduction of pyritic sulfur and of ash-forming minerals. A patent application has been filed; (Good & Badgugar). Improvement in rejection of pyritic sulfur by up to 55% has been found, and improvement in ash rejection by up to 28%. Carbon recovery of 97.5 to 99.1% was obtained when the starch concentration was in the range, 30 to 200 ppM in the water. Three different bituminous coals were used: Upper Freeport, Kentucky No. 9, and Illinois No. 6.

  8. Clean Coal Technology III (CCT III): 10 MW demonstration of gas suspension absorption. Second quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The Gas Suspension Absorber was initially developed as a calciner for limestone used for cement production. It has been successfully to clean the gases from commercial waste to energy plants in Denmark where it has also captured chloride emissions. The GSA system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur-absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system`s superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry.

  9. Inhibition of retrogressive reactions in coal/petroleum co-processing. Quarterly technical progress report, October 1, 1991--December 30, 1991

    SciTech Connect

    Schobert, H.H.; Tomic, J.

    1992-01-01

    The overall objective of this project is to develop a fundamental understanding of the reactions occurring at the onset of coke formation during the co-processing of coals with petroleum residua. The specific objectives include examination of chemical components, or groups of components, in coals and petroleum feedstocks to quantify and rank the effects of these components in retarding or enhancement of coke formation. The work involves bench scale reactions in microautoclaves, supplemented by studies of the carbonaceous residues by such techniques as diffuse reflectance Fourier transform infrared spectroscopy and {sup 13}C nuclear magnetic resonance spectrometry. During this reporting period work focused on identification of mechanisms of coke formation. The objective of this task is to identify those compounds or components which are specifically responsible for initiating coke formation.

  10. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Third quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Zauderer, B.

    1996-09-01

    The primary project objective is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This non-equilibrium process is a key step in the capture and retention of sulfur released during coal combustion by the interaction with calcium based sorbent particles. By encapsulating the sulfur bearing calcium particles in slag, the need for landfilling of this waste is eliminated. This objective will be implemented through a series of up to 20 one day tests carried out in a 20 MMBtu/hr air cooled, slagging combustor-boiler installation located in Philadelphia, PA. The project will consist of two tasks. Task 1 consists of the experiments conducted in the 20 MMBtu/hr combustor, and task 2 will consist of analysis of this data. All the operating procedures for this effort have been developed in the 7 years of operation of this combustor.

  11. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  12. Reactivity of heteroatom-containing organics during liquefaction of subbituminous coal: Quarterly technical progress report, March 15, 1988-June 15, 1988

    SciTech Connect

    Aulich, T.R.; Knudson, C.L.; Hawthorne, S.B.

    1988-01-01

    Deuteration of AO4 liquefaction solvent to an isotopic purity of approximately 99% was accomplished using a teflon-lined Parr bomb reactor. Tubing bomb liquefaction tests were performed using two sets of reaction conditions including coal and AO4, and coal and deuterated AO4. The THF insolubles to be used in testing the stability of the deuterated AO4 under liquefaction conditions were extracted using a Soxhlet apparatus and methylene chloride solvent. A system enabling product slurry distillation directly from the tubing bomb following completion of the liquefaction reaction was designed, constructed, and utilized to recover and quantitate volatile fractions of product slurries. The AO4 solvent was also distilled using the same equipment and procedure. Weighed amounts of eight deuterium-labeled species were added to weighed amounts of both labeled and non-labeled AO4 in preparation for the four remaining tubing bomb tests. 3 figs.

  13. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report No. 17, October 1, 1996--December 31, 1996

    SciTech Connect

    Regan, J.W.; Bender, D.J.; Clark, J.P.; Wesnor, J.D.

    1997-01-01

    This report describes the work performed between October 1 and December 31, 1996 by the ABB team on U.S. Department of Energy project ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` (LEBS), which is part of the DOE`s Combustion 2000 Program. The overall objective of the LEBS Project is to dramatically improve environmental performance of future coal-fired power plants without adversely impacting efficiency or the cost of electricity. Near-term technologies, i.e., advanced technologies that are partially developed, will be used to reduce NO{sub x} and SO{sub 2} emission to one-sixth current NSPS limits and particulates to one- third current NSPS limits.

  14. Clean Coal Technology III (CCT III) 10 MW demonstration of gas suspension absorption. Fourth quarterly technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Not Available

    1992-02-07

    The Gas Suspension Absorber (GSA) system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur-absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system`s superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry. The GSA system is expected to be the answer to the need of the US industry for an effective, economic and space efficient solution to the SO{sub 2} pollution problem.

  15. Stabilization of coal cleaning and power plant combustion wastes: Fossil Energy Program technical progress report, 1 January 1987-31 March 1987

    SciTech Connect

    Burnet, G.; Gokhale, A.

    1987-03-01

    The Ames Laboratory granulation/sintering process for the stabilization of coal cleaning refuse is being adapted to the codisposal of refuse and power plant combustion wastes. The combustion wastes are fly ash, flue gas desulfurization sludge, and liquid wastes from the regeneration of ion exchange beds, the cleaning of boiler internals, and boiler blowdown. A plan of work was developed that calls for the batch preparation of green granules of sufficient durability and for sintering of the granules to attain high strength. A second phase of the work will involve continuous agglomerator runs to produce granules for large scale sintering and subsequent leaching and freeze/thaw testing. Suitable solid raw materials were identified and fully characterized. The level of grinding of the coal refuse required for granule formation was determined.

  16. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 13, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1993-02-12

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  17. Clean coal technology III (CCT III): 10 MW demonstration of gas suspension absorption. Technical progress report, third quarter, FY 1991, April 1, 1991-- June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The Gas Suspension Absorber system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur- absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system`s superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry. The GSA system is expected to be the answer to the need of the US industry for an effective, economic and space efficient solution to the SO{sub 2} pollution problem.

  18. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system, controls, and then test the complete system in order to evaluate its potential marketability. The past quarter began with a two-day test performed in January to determine the cause of pulsations in the batch feed system observed during pilot-scale testing of surrogate TSCA incinerator ash performed in December of 1993. Two different batch feedstocks were used during this test: flyash and cullet. The cause of the pulsations was traced to a worn part in the feeder located at the bottom of the batch feed tank. The problem was corrected by replacing the wom part with the corresponding part on the existing coal feed tank. A new feeder for the existing coal tank, which had previously been ordered as part of the new coal handling system, was procured and installed. The data from the pilot-scale tests performed on surrogate TSCA incinerator ash during December of 1993 was collected and analyzed. All of the glass produced during the test passed both the Toxicity characteristics Leach Procedure (TCLP) and the Product Consistency Test (PCT) by approximately two orders of magnitude.

  19. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996

    SciTech Connect

    1996-08-19

    The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

  20. Clean Coal Technology III (CCT III): 10 MW demonstration of gas suspension absorption. Technical progress report, fourth quarter, FY 1991 (10/01/91--12/31/91)

    SciTech Connect

    1995-05-01

    In response to the third Clean Coal Technology Program solicitation, AirPol Inc. submitted a proposal for the design, installation and testing of the Gas Suspension Absorption (GSA) system at Tennessee Valley Authority`s (TVA) Shawnee Test Facility (STF). This low-cost retrofit project will demonstrate the GSA system which is expected to remove more than 90% of the SO{sub 2} from coal-fired flue gas, while achieving a high utilization of reagent lime. The host site facility will be the STF located at the Shawnee Fossil Plant in West Paducah, Kentucky. Over the past 15 years, the STF has served as a testground for flue gas desulfurization (FGD) systems. At the present time a semi-dry process employing 10 MW capacity spray dryer is being tested at the facility. Upon completion of the current spray dryer test, the GSA system will be tested for a period of eleven months. The GSA system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur-absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system`s superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry.

  1. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1994--February 15, 1995

    SciTech Connect

    Miller, B.G.

    1995-05-12

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and stagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases (i.e., the first demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. Consequently, the first demonstration has been concluded at 500 hours.

  2. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993--February 15, 1994

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first demonstrations been completed and the combustion performance of the burner that was provided with the boiler has been determined to be unacceptable. Consequently, the first demonstration has been concluded at 500 hours. The second demonstration will be conducted after a proven CWSF-designed burner is installed on the boiler. During this reporting period, the construction of the fuel preparation facility that will contain the CWSF circuit (as well as a dry, micronized coal circuit) was completed. Proposals from potential suppliers of the flue gas treatment systems were reviewed by Penn State and DOE.

  3. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 11, April--June 1992

    SciTech Connect

    Gallier, P.W.

    1992-07-20

    The changes made to the Coal Cleaning Simulator during this period were mostly aimed at correcting problems found during the flowsheet validations. one modification was made to the washability interpolation. Prior to interpolation, the feed size distribution is preprocessed by a subroutine which resets the size intervals. That subroutine was changed to ensure that standard screen sizes be used for the size intervals, with only the topsize being the actual user specified size limit. This should prevent problems such as the size range being much wider than that provided by the user (previously, this subroutine would add fine size intervals to the input size range, in some cases). Another change made was the modification of the heavy media cyclone water balance algorithm. Because of the internal calculations of both the amount of media and makeup water required, the water balance was not being made correctly in the case where a feed that was too dilute. The report writer for this model was also modified in order to correctly label the material balances reported. Other changes made were the addition of fifteen coals to the Coal Property Databank, and the referencing of utilities in the screen cost models for operating cost calculations. Finally, a number of problems had been reported for CCS cost models. These were related to discrepancies between UOS block sizing calculations and cost block sizing calculations, and utilities (horsepower requirement) calculations. The corrections were applied to the latest CCS version.

  4. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    SciTech Connect

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  5. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Third quarterly technical progress report, April 1996--June 30, 1996

    SciTech Connect

    Yoon, R.-H.; Mesenyashin, A.; Yan, E.S.; Luttrell, G.H.; Adel, G.T.

    1996-10-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. At present, the project is at the stage of engineering design (Task 3). Work accomplished during this reporting period include the construction of a Faraday Cage for measurement of particle charges (Subtask 3.1), construction of a bench-scale triboelectrostatic separator (Subtask 3.2) and development of a theoretical model for predicting motion of charged particles in a non-uniform electrostatic field (Subtask 3.2). This model will be useful for designing the POC module.

  6. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    SciTech Connect

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  7. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 11, April 1995--June 1995

    SciTech Connect

    1995-08-30

    The Pittsburgh Energy Technology Center of the U.S. Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quotes} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: (1) NO{sub x} emissions not greater than one-third NSPS. (2) SO{sub x} emissions not greater than one-third NSPS. (3) Particulate emissions not greater than one-half NSPS. The specific secondary objectives are: (1) Improved ash disposability and reduced waste generation. (2) Reduced air toxics emissions. (3) Increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24-month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36-month period and will include POCTF detailed design, construction, testing, and evaluation.

  8. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  9. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1993--August 15, 1993

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1993-09-24

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement with the purpose of determining if CWSF prepared from a cleaned coal (containing approximately 3.5 wt % ash and 0.9 wt % sulfur) can be effectively burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also generate information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The approach being used in the program is as follows: 1. Install a natural gas/fuel oil-designed package boiler and generate baseline data firing natural gas; 2. Shake down the system with CWSF and begin the first 1,000 hours of testing using the burner/atomizer system provided with the boiler. The first 1,000-hour demonstration was to consist of boiler operation testing and combustion performance evaluation using CWSF preheat, a range of atomizing air pressures (up to 200 psig as compared to the 100 psig boiler manufacturer design pressure), and steam as the atomizing medium; 3. If the combustion performance was not acceptable based on the combustion efficiency obtained and the level of gas support necessary to maintain flame stabilization, then low-cost modifications were to be implemented, such as installing a quarl and testing alternative atomizers; 4. If acceptable combustion performance was not obtained with the low-cost modifications, then the first demonstration was to be terminated and the burner system replaced with one of proven CWSF design.

  10. Hydrothermally treated coals for pulverized coal injection. Final technical report

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-10-01

    This project investigated the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coalfield and the Usibelli Coal Mine, Alaska, were used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times of 10, 60 and 120 minutes. Products were characterized to determine their suitability for pulverized coal injection. Characterization included proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey was also conducted.

  11. The economical production of alcohol fuels from coal-derived synthsis gas. Quarterly technical progress report number 10, 1 January 1994--31 March 1994

    SciTech Connect

    Not Available

    1994-04-01

    The WVU plug-flow microreactor system is now complete. Screening runs with this system will commence. Computer control is being installed in the second WVU unit. Additional hardware has been suggested for this system so that it can be used either to screen additional catalysts or to obtain kinetic data on selected catalyst samples. Synthetic preparations and characterizations of molybdenum-based sulfide and nitride catalysts are ongoing. Modelling studies are continuing satisfactorily. A more detailed model of the reaction kinetics, to account for individual alcohols rather than a lumped highter-alcohol, has been inserted into the model of a plug-flow reactor. A solution methodology to maximize the profitability of alcohol production, separation and blending has been developed. The temperatures, pressures, flowrates, and key component recoveries in the separation steps are the optimization variables. The probability of this process becoming economically feasible in the near future appears to be extremely small given the low return on capital investment associated with the production of alcohol from coal. If coal derived alcohols are to become alternative transportation fuels, then the capital cost associated with the process must be reduced, specifically the cost of the gasifiers, or significant changes need to be made in the composition of the mixed alcohol product. A methodology for performing Monte Carlo studies to determine quantitatively the uncertainties relevant to future decisions to build an alcohol-fuels plant is still being developed.

  12. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 12, July--September 1995

    SciTech Connect

    1995-11-27

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The goals for emissions and plant efficiency are: NO{sub x} emissions not greater than 0.1 lb/million Btu; SO{sub x} emissions not greater than 0.1 lb/million Btu; particulate emissions not greater than 0.01 lb/million Btu; and net plant efficiency (HHV basis) not less than 42%. Other goals include: improved ash disposability and reduced waste generation; and reduced air toxics emissions. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives, and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24- month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36- month period and will include POCTF detailed design, construction, testing, and evaluation.

  13. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO{sub x}, process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayed in Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO{sub x}, by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0{sub 2}. Assuming that 85 percent of the newly formed N0{sub 2} can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO{sub x}, process has been shown capable of reducing NO{sub 2}, by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0{sub 2} formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  14. Engineering development of advanced coal-fired low-emission boiler systems: Technical progress report No. 16, July-September 1996

    SciTech Connect

    Barcikowski, G.F.; Borio, R.W.; Bozzuto, C.R.; Burr, D.H.; Cellilli, L.; Fox, J.D.; Gibbons, T.B.; Hargrove, M.J.; Jukkola, G.D.; King, A.M.

    1996-11-27

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Under Task 7--Component development and optimization, the CeraMem filter testing was completed. Due to an unacceptably high flue gas draft loss, which will not be resolved in the POCTF timeframe, a decision was made to change the design of the flue gas cleaning system from Hot SNO{sub x}{sup {trademark}} to an advanced dry scrubber called New Integrated Desulfurization (NID). However, it is recognized that the CeraMem filter still has the potential to be viable in pulverized coal systems. In Task 8-- Preliminary POCTF design, integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle as well as the balance of plant design were completed. Licensing activities continued. A NID system was substituted for the SNO{sub x} Hot Process.

  15. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  16. Radiative properties of char, fly-ash, and soot particles in coal flames. Technical progress report, second year, October 1994--December 1994

    SciTech Connect

    Menguec, M.P.; Manickavasagam, S.; Govindan, R.; Ghosal, S.

    1995-04-01

    In large-scale coal-fired flames, radiative transfer is significant as a large portion of the energy generated during the char pyrolysis and soot oxidation is transferred to the surroundings by radiation (due to emission). The relatively cold gases and particles which are not burning yet are heated by this incoming energy (absorption), which may have originated not only from the immediate surroundings of the control volume of interest but the entire flame. It is obvious that if the emission and absorption of radiation in such a flame are not accounted for correctly, it is not possible to determine other underlying phenomena with accuracy, as the fundamental principle of conservation of energy would be violated. In order to consider the effect of radiation heat transfer in coal-fired furnaces, we have to (1) model the radiative transfer equation to satisfy the conservation of radiant energy principle; (2) use the correct radiative properties of combustion gases and particles; (3) account for the interaction of radiation with the flow and energy equations. The radiative properties for a participating medium of spherical particles can be expressed in terms of the spectral absorption, extinction, and scattering efficiencies and the phase function for a single particle, and can be calculated from the Lorenz-Mie theory. For small size particles, the expressions are based on the Rayleigh limit of Lorenz-Mie theory, and are significantly simpler. The details are readily available in the literature.

  17. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, April 26, 1991--July 26, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-09-11

    A series of carbonyl-based homogeneous catalyst precursors has been prepared. These species include: Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, S{sub 2}Fe{sub 2}(CO){sub 6}, S{sub 2}Fe{sub 3}(CO){sub 9}. Fe(CO){sub 4}PPh{sub 3} was prepared by a combined photochemical and thermal route from triphenylphosphine (PPh{sub 3}) in iron pentacarbonyl (Fe(CO){sub 5}). This preparation procedure, which is selective to the monosubstituted product, is outlined herein. Currently these compounds are being tested as catalysts/catalyst precursors with coal or model compounds in the tubing bomb reactors to provide information relating catalytic activity to catalyst structure and properties. (VC)

  18. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    SciTech Connect

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to a significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)

  19. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1993-10-01

    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  20. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Fifth quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Zauderer, B.

    1997-02-04

    Calcium oxide sorbents injected in a stagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. In the present quarterly reporting period, 10 days of combustor tests were performed, bringing the total number of tests performed to 15. A wide range of operating conditions were tested including injection of metal oxide powders to achieve total mineral injection rates in excess of 400 lb/hr at coal mass flow rates of around 1000 lb/hr. It was determined that efficient sulfur capture requires calcium oxide particle sizes that are too small to be effectively retained in the combustor. On the other hand, injection of coarse calcium sulfate particles into the combustor sharply increased the slag viscosity, thereby reducing the slag flow rate and causing substantial revolution of the sulfur in the slag. It is tentatively concluded that conditions necessary for sulfur capture with sorbents and its retention in the slag cannot be efficiently achieved in one step in a cyclone combustor. It is further concluded that due to the increases in slag viscosity by calcium sulfate extremely high slag mass flow rates are required for sulfur retention in slag. Further tests in that direction are planned for the next quarterly reporting period.

  1. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 6, January 1, 1994--March 31, 1994

    SciTech Connect

    Kramlich, J.C.; Butcher, E.K.; Chenevert, B.

    1994-04-30

    During the present quarter the model was coded and tested on the Illinois coal. Some features of the process need discussion. After devolatilization, the char particle heats towards its steady-state combustion temperature. At approximately 1200--1300 K, the particle quickly goes from a temperature where the equilibrium sodium vapor pressure is negligible to a temperature where it is at one atmosphere. This shows that the sodium vaporization occurs under non-isothermal conditions, although the rapid rate of sodium diffusion relative to particle heating suggests that the quasi steady-state formulation for the sodium vaporization portion of the problem is appropriate. It also illustrates the two-stage release pattern for the sodium: (1) an early rapid release of organically-bound sodium, and (2) a more delayed release of acid-washable sodium, and sodium that was complexed into clay chemicals during the organic sodium vaporization. The conditions reported for the present calculations are as follows: Coal: 8.7% ash, 12% H{sub 2}O, 33.5% volatile matter. Elemental sodium represent 0.82% of the ash. For purposes of calculation, the char particle is presumed to consist of the fixed carbon from the proximate analysis, along with the ash. This establishes the mass fraction of sodium and other minerals in the char at the start of char combustion. For the baseline condition, the char particle was assumed to be 50% covered by attached excluded mineral, and the included mineral matter was assumed to be divided into monodisperse 0.5 {mu}m particles that are evenly dispersed throughout the char. The diameter of the char particle was 25 {mu}m.

  2. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 3, April 1, 1993--June 30, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1993-07-23

    One of the major obstacles to the economical use of coal is managing the behavior of its mineral matter. Ash size and composition are of critical importance for a variety of reasons. Fly ash size and emissivity affect radiant furnace heat transfer. Heat transfer is also affected by the tendency of ash to adhere to heat transfer surfaces, and the properties of these deposits. Removal of ash from flue gas by electrostatic precipitators is influenced by both particle size and particle resistivity. The efficiency of fabric filter-based cleaning devices is also influenced by ash size. Both types of devices have reduced collection efficiencies for smaller-sized particles, which corresponds to the size most efficiently retained in the alveolar region of the human lung. Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Although these particles represent a relatively small fraction of the mass, they can present a large fraction of the surface area. Thus, they are a preferred site for the condensation of the more volatile oxides later in the furnace. This leads to a layering effect in which the refractory oxides are concentrated at the particle core and the more volatile oxides reside at the surface. This also explains the enrichment of the aerosol by volatile oxides that has been noted in samples from practical furnaces. These volatile metal oxides include the majority of the toxic metal contaminants, e.g., mercury, arsenic, selenium and nickel. Risk assessment studies suggest that toxic metal emissions represent a significant portion of the health risk associated with combustion.

  3. Studies of incipient oxidation of coal-pyrite for improved pyrite rejection. First quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1992-12-31

    In order to foster the development of advanced coal cleaning technologies fundamental studies.of the initial stages of pyrite oxidation have been.initiated. This work is being done on pyrite surfaces that are freshly fractured in an electrolyte solution. This procedure produces surfaces that are initially unoxidized, allowing the subsequent oxidation processes to be studied in detail. It is shown that freshly fractured pyrite electrodes instantaneously (at fracture) assume a rest potential several hundred millivolts more negative than the usual open-circuit potential. A finite, anodic photocurrent, is also observed on the fractured electrodes. Following cleavage, the rest potential increases, indicating an oxidation reaction occurring on the electrodes. The photocurrent is relatively insensitive to this oxidation process, and to moderate anodic and cathodic polarization. However, strong cathodic polarization to about -0.76 V (SHE) at pH 9.2 causes the photocurrent to decrease to zero. No reversal in the sign of the photocurrent is observed and it is believed that the flat band potential occurs near -0.76 V, i.e., where the photocurrent goes to zero. Voltammetry indicates that pyrite also undergoes cathodic decomposition at -0.76 V. This establishes that pyrite must be cathodically decomposed to reach the flat band potential.

  4. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 February-30 April 1982. [680 to 770/sup 0/C; 8 to 30 atm

    SciTech Connect

    Calo, J.M.

    1982-05-01

    The operation of the gradientless reactor system designed to study heterogeneous gas-char reactions under transient conditions was successfully demonstrated. CO/sub 2/ char gasification was studied at temperatures from 680 to 770/sup 0/C and at pressures from 8 to 30 atm. The transient response of the reactor resulting from a step change from inert gas (Ar) to pure CO/sub 2/ is adequately described by a simple, two-step mechanism. The determination of the rate parameters from the transient data was accomplished with the Marquardt optimization code developed for this purpose. For what is believed to be the first time in the same experiment, the active site concentration was uncoupled from the intrinsic rate constants. The active site concentration of the coconut char exhibits an Arrhenius type temperature dependence with an apparent negative activation energy. A preliminary design has been developed for a steam addition system to be used for steam-char gasification studies. This system will be constructed during the next reporting period. Various chars have been generated in a high temperature furnace system from fresh coals. These chars are to be used in the gradientless reactor system to determine the effects of char type on the intrinsic rate parameters and char reactivity.

  5. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  6. Development and testing of industrial scale, coal fired combustion system, Phase 3. Third quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Zauderer, B.

    1992-10-17

    In the third quarter of calendar year 1992, work continued on Task l. ``Design, Installation, and Shakedown of the Modifications to the 20 MMBtu/hr Air Cooled Combustor and Boiler Components``. Task 2. ``Preliminary Systems Tests`` and Task 4 ``Economics and Commercialization Plan``. In task 1, the design of the planned modifications were mostly completed. The equipment to implement these modifications was procured, and most of the installation of this equipment was completed. Finally, a series of two shakedown tests was performed to test the operability of these modifications. As previously reported, no modifications to the combustor were made. All the changes were improvements in overall combustor-boiler operation, maintenance and repair of components, and addition of diagnostics. In addition, during shakedown tests of these modifications the need for additional improvements or modifications became apparent, and these were or a-re being implemented. The major improvements focused on coal and sorbent storage, transport, and combustor injection, real time control of ash deposition in the boiler, unproved combustor wall cooling, expanded computer control and diagnostics, and refurbishment of the scrubber and combustor temperature measurements. AD this work has been described in a detailed topical report on task 1, which was recently submitted to DOE, and it will not be repeated here. Instead the focus of this report will be on the analysis of the test results obtained in the two shakedown tests. This work was partly reported in the 7th 8th and 9th monthly reports. An important result of these tests has been the observation of high (over 85%) SO{sub 2} reduction obtained with sorbent injection in the combustor.

  7. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  8. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report number 14, January--March, 1996

    SciTech Connect

    1996-05-28

    The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Task 7--Component Development and Optimization and Task 11--Subsystem Test Operation and evaluation are shown to be slightly behind schedule. Also, addition of Kalina technology may delay completion of Task 8. However, Phase 2 will be completed on schedule. The Project and plans for the POCTF were presented to the Richmond Power and Light Board of Directors. Technology transfer activities included delivering papers at two conferences, submitting paper abstracts for two other conferences and organizing a Technical Session for a conference. Under Task 7 the 200 acfm CeraMem filter test rig was installed at Richmond Power and Light and testing commenced. Low-NO{sub x} firing system work was essentially completed. In Task 8 integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle is proceeding but it has required much more time than anticipated. Preliminary designs of this equipment are nearly complete. Plant design and licensing activities will restart in April. The test designs and plan created in Task 9 were previously submitted and approved, although the plan for the 5,000 acfm CeraMem filter test will be updated following completion of the 200 acfm test. Task 10 work is nearly complete. The test rig for the 5,000 acfm CeraMem test has been shipped to the fabricator`s shop, inspected, cleaned and is being modified based on input from the 200 acfm testing. Task 11 work on the CeraMem filter was delayed and is expected to be started during the next reporting period. The second series of combustion testing of the low-NO{sub x} firing system was completed and the data is being analyzed. Early review indicates that 0.1 lb of NO{sub x}/million Btu may be achievable with reasonable stoichiometry and carbon loss.

  9. Investigation of sulfur-tolerant catalysts for selective synthesis of hydrocarbon liquids from coal-derived gases. Annual technical progress report, September 19, 1980-September 18, 1981

    SciTech Connect

    Bartholomew, C.H.

    1981-10-31

    During the past contract year, considerable progress was made in characterization and activity/selectivity testing of iron and cobalt catalysts. Preparation of boride promoted cobalt and iron catalysts was refined and nearly completed. H/sub 2/ and CO adsorption and oxygen titration measurements were performed on a number of supported and unsupported catalysts, especially several boride promoted cobalt and iron catalysts. Activity/selectivity tests of 3 and 15% Fe/SiO/sub 2/ and Co/SiO/sub 2/ and of 6 borided cobalt and iron catalysts were completed. The product distributions for iron and cobalt boride catalysts are unusual and interesting. Boron promoted iron is more active and stable than iron/silica; cobalt boride has an unusually high selectivity for alcohols. Tests to determine effects of H/sub 2/S poisoning on activity/selectivity properties of 15% Co/SiO/sub 2/ indicate that a significant loss of activity occurs over a period of 24 to 28 h in the presence of 10 to 20 ppM H/sub 2/S. Product selectivity to liquids increased through a maximum during the gradual addition of sulfur. Reactant CO and H/sub 2/S interact partially to form COS which is less toxic than H/sub 2/S. H/sub 2/ and CO adsorption data were obtained for 3, 6 and 9% Co/ZSM-5 catalysts prepared and reactor tested by PETC. The unusual and interesting results suggest that metal-support interactions may have an important influence on reactant adsorption properties.

  10. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, August-October 1980

    SciTech Connect

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1981-02-01

    A total of 69 samples have been obtained from the Lower Kittanning seam in western Pennyslvania and eastern Ohio. The samples were taken from 39 sample sites and consist of 39 channel samples and 30 hand-picked vitrinites. A complex statistical analysis of petrographic, physical and chemical properties of these samples was performed in order to study their relationship with thermoplastic and liquefaction behavior. The parameters of the thermoplastic properties were obtained using a Gieseler plastometer. The liquefaction conversion with tetralin was determined in tubing bomb reactors at 400/sup 0/C for 1 hour. Factor analysis on the whole sample population indicated that both liquefaction conversion and some of the measured thermoplastic properties are significantly related with rank. Temperature of softening and degree of fluidity, however, did not load on the rank component. /sup 13/C nmr spectra were obtained for six of our vitrinite concentrates by the University of Utah. The aromaticities determined for fairly wide rank range of these samples varied only from 0.66 to 0.72. However the series showed progression from highly functional aromatic structure at low rank to one with little functionality at high rank. The spectra show no indication of a consistent loss in aliphatic oxygen. The surface areas and micropore volumes of two fractions, -20 and -100 mesh, of five vitrinite concentrates have been measured from CO/sub 2/ uptake at 25/sup 0/C. An increase in these values is observed with decreasing particle size. Total open pore volumes were calculated from particle and helium densities.

  11. Coal: America' energy future. Volume II. A technical overview

    SciTech Connect

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the national Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume II are: Electricity Generation; Coal-to-Liquids; An Overview of the Natural Gas Situation; and Economic Benefits of Coal Conversion Investments. 8 apps.

  12. Production and screening of carbon products precursors from coal: Carbon Products Consortium. Quarterly technical progress report and key personnel staffing report number 4, October 1, 1995--December 31, 1995

    SciTech Connect

    1996-01-01

    This quarterly report covers activities during the period from October 1, 1995 through December 31, 1995. The principal events concerning administration of the Carbon Products Consortium (CPC) were the December 12, 1995 Fall business meeting of the CPC and the general CPC review meeting on December 13, 1995. It is noteworthy that CONOCO, Inc. joined the CPC and that the CPC Board of Directors approved annual member fees to help support the CPC organization. Discussions have been initiated on licensing and joint venture arrangements to produce pilot-scale quantities of solvent extract coal pitches. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the CPC is a continual effort. Interest in the program and positive results from the research continue to grow.

  13. 48 CFR 2052.211-71 - Technical progress report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Technical progress report... Technical progress report. As prescribed at 2011.104-70(b), the contracting officer shall insert the... solicitation. Technical Progress Report (JAN 1993) The contractor shall provide a monthly Technical...

  14. 48 CFR 2052.211-71 - Technical progress report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Technical progress report... Technical progress report. As prescribed at 2011.104-70(b), the contracting officer shall insert the... solicitation. Technical Progress Report (JAN 1993) The contractor shall provide a monthly Technical...

  15. 48 CFR 2052.211-71 - Technical progress report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Technical progress report... Technical progress report. As prescribed at 2011.104-70(b), the contracting officer shall insert the... solicitation. Technical Progress Report (JAN 1993) The contractor shall provide a monthly Technical...

  16. 48 CFR 2052.211-71 - Technical progress report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Technical progress report... Technical progress report. As prescribed at 2011.104-70(b), the contracting officer shall insert the... solicitation. Technical Progress Report (JAN 1993) The contractor shall provide a monthly Technical...

  17. Fossil Energy Program. Progress report for November 1979. [35 Wt % Illinois No. 6 coal with Wilsonville recycle solvent

    SciTech Connect

    Not Available

    1980-01-01

    This report - the sixty-fourth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, materials engineering, a coal equipment test program, an atmospheric fluid bed combustor for cogeneration, engineering studies and technical support, process and program analysis, environmental assessment studies, magnetic beneficiation of dry pulverized coal, technical support to the TVA fluid bed combustion program, coal cogeneration/district heating plant assessment, chemical research and development, and technical support to major liquefaction projects.

  18. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Quarterly technical progress report, December 15, 1992--March 14, 1993

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1993-05-01

    During the sixth quarter progress has been made in the following areas: Preparation for reactor refurbishment, instrumentation development, coal acquisition for experimental tests, and radiation and particle dispersion modelling. Refurbishment of the Controlled Profile Reactor was initiated this summer and is completed. Construction work for the local transmissometer probe is also now completed. This laser-based instrument, combined with the data from the PCSV probe will enable estimate of the local concentration of particulates below 0.5 {mu}m in size. Additionally, it will permit measurement of the temporal statistics of the local particulate number density.

  19. Advanced progress concepts for direct coal liquefaction

    SciTech Connect

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  20. Quarterly technical progress report, April-June 1982

    SciTech Connect

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  1. The proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems

    SciTech Connect

    Sakkestad, B.A.

    1998-03-01

    This document contains the proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems, held March 9-13, 1998 in Clearwater, Florida. Topics included advanced combustion systems, alternative fuels, coal liquefaction, climate change strategies, international highlights, combustion by-product utilization, co-firing, fuel gas treatment, low nitrogen oxide burners, carbon dioxide mitigation, power plant upgrades, Latin American coal perspective, coal fines utilization, upgraded coal for the power industry, hot gas particulate cleanup, coal conversion, hydraulics and transportation, coal briquetting and coal beneficiation, air toxics, materials and equipment, and coal-water fuels preparation. Separate abstracts have been prepared for the individual papers presented at this conference.

  2. Confined Vortex Scrubber. Quarterly technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Not Available

    1990-02-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards. This is to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber. This is the first quarterly technical progress report under this contract. Accordingly, a summary of the cleanup concept and the structure of the program is given here.

  3. Sludge Treatment Evaluation: 1992 Technical progress

    SciTech Connect

    Silva, L J; Felmy, A R; Ding, E R

    1993-01-01

    This report documents Fiscal Year 1992 technical progress on the Sludge Treatment Evaluation Task, which is being conducted by Pacific Northwest Laboratory. The objective of this task is to develop a capability to predict the performance of pretreatment processes for mixed radioactive and hazardous waste stored at Hanford and other US Department of Energy (DOE) sites. Significant cost savings can be achieved if radionuclides and other undesirable constituents can be effectively separated from the bulk waste prior to final treatment and disposal. This work is initially focused on chemical equilibrium prediction of water washing and acid or base dissolution of Hanford single-shell tank (SST) sludges, but may also be applied to other steps in pretreatment processes or to other wastes. Although SST wastes contain many chemical species, there are relatively few constituents -- Na, Al, NO[sub 3], NO[sub 2], PO[sub 4], SO[sub 4], and F -- contained in the majority of the waste. These constituents comprise 86% and 74% of samples from B-110 and U-110 SSTS, respectively. The major radionuclides of interest (Cs, Sr, Tc, U) are present in the sludge in small molal quantities. For these constituents, and other important components that are present in small molal quantities, the specific ion-interaction terms used in the Pitzer or NRTL equations may be assumed to be zero for a first approximation. Model development can also be accelerated by considering only the acid or base conditions that apply for the key pretreatment steps. This significantly reduces the number of chemical species and chemical reactions that need to be considered. Therefore, significant progress can be made by developing all the specific ion interactions for a base model and an acid dissolution model.

  4. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Section 1 contains a report of the progress by the University of Kentucky Center for Applied Energy Research on the following tasks: laboratory support (liquefaction in dewaxed and hydrotreated dewaxed solvent); CO pretreatment (effect of process variables on CO pretreatment, CO-pretreated product characterization, and liquefaction results); and iron based dispersed catalysts (production, characterization and testing of sulfated hematites and reaction model development). Section 2 contains a progress report by CONSOL, Inc. on the following tasks: laboratory support; pretreatment work on dewaxing; pretreatment work on agglomeration; and economic evaluation. Progress by Sandia National Laboratories is reported in Section 3 on the following: laboratory support (TGA methods) and solvent pretreatment (coker tar hydrogenation and coal liquefaction results). Section 4 gives a preliminary technical assessment by LDP Associates on the following: baseline economic assessment; assessment of improved coal conversion; and fluid coking.

  5. Technical progress by major task. Semiannual technical progress report, September 29, 1997--March 29, 1998

    SciTech Connect

    1998-04-01

    The technical progress achieved during the period 29 September 1997 through 29 March 1998 on Contract DE-AC03-91SF18852 Radioisotope Thermoelectric Generators and Ancillary Activities is described in this report. The report is organized by program task structure: spacecraft integration and liaison; engineering support; safety; qualified unicouple production; RTG fabrication, assembly, and test; ground support equipment; RTG shipping and launch support; designs, reviews, and mission applications; project management, quality assurance, reliability, contract changes, CAGO acquisition (operating funds), and CAGO maintenance and repair.

  6. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components: Technical progress report for the period October 1, 1985 - September 30, 1986

    SciTech Connect

    Chess, E.K.; Kalinoski, H.T.; Wright, B.W.; Smith, R.D.

    1987-02-01

    Technical progress toward the programmatic goals of developing and evaluating SFC/MS for the analysis of higher-molecular-weight compounds was made in the following areas: Studies have been conducted to characterize the requirements for and to facilitate the transfer of thermal energy to the capillary flow restrictor region. Such studies have resulted in a new interface probe design which allows better transport of higher molecular weight, less volatile compounds decreasing the mass discrimination at the supercritical fluid chromatograph mass spectrometer interface region. Calibration of the magnetic sector mass spectrometer to 1400 daltons has been developed. A digital syringe pump controller, interfaced to an Apple IIe computer allows much finer and more reproducible control of the pressure (density) of the supercritical fluid mobile phase. Nonpolar supercritical fluid mobile phases have been modified by the addition of small amounts of polar fluids to create fluids with higher solvating powers than, but with similar operating parameters. An in-depth knowledge of the fluid behavior is required for successful utilization of these modified fluids. Polar-modified fluids have been used with three types of supercritical fluid introduction to the mass spectrometer: direct fluid injection, supercritical fluid chromatography, and supercritical fluid extraction. Capillary columns evaluated for stability indicated that our present methods for preparing columns are sufficient, for many of the stationary phase and supercritical fluid combinations tested, to create columns that can be used successfully with supercritical fluid chromatography. 9 refs., 11 figs.

  7. Assessment of the technical and economic feasibility of coal sludge slurries

    SciTech Connect

    Dooher, J.

    1999-07-01

    Over the past two decades, there has been considerable progress made in the technical developments relating to the utilization of coal in the form of a coal water slurry (CWS) both as a gasifier feedstock and as a furnace fuel. A very promising approach to utilizing CWS in an economical and cost effective manner is to use its basic technical advantage over coal, i.e. its behavior as a fluid as a method of introducing other ordinary unusable fuel sources such as sewage sludge or other solid Btu containing wastes. This can provide an economic advantage to CWS via waste disposal fees income as well as solving a vexing disposal problem. Sewage sludge presents severe disposal problems for municipalities across the country. The problem of sewage sludge disposal has reached crisis proportions in many areas of the country. Although the benefit of concentrating the sludge slurry for combustion is evident, there is a major technical barrier, which is related to the rheological properties of the sludge. It would appear that the solids in a sludge slurry consist of both colloidal-sized particles and larger open-structures which trap a significant amount of water. As the sludge is concentrated, it begins to lose its fluid properties at about 10% solids and becomes a filter cake at 15% solids which must be handled as a solid, i.e. belt feeders, etc. This poses problems for incineration because feeding concentrated sludge requires mechanical feeders and combustion of the sludge requires a considerable amount of excess air (40--50%) and significant quantities of auxiliary fuels. Direct combustion of sludge in a resource recovery facility or an incinerator also leads to high levels of uncontrolled emissions including particulates and metals such as cadmium, mercury, etc. Expensive emission controls are required to meet EPA limits. The net result is a considerable add-on expense to sludge disposal with little recovery of the inherent Btu value. The overall goal of this project was

  8. Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

  9. Superacid catalyzed coal conversion chemistry. 1st and 2nd quarterly technical progress reports, September 1, 1983-March 30, 1984. [Model compound consisting of 2 benzene rings connected with various bridging units such as alkylidene, ether, sulfide, etc

    SciTech Connect

    Olah, G.A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF/sub 3/ in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF/sub 3/:H/sub 2/ system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100/sup 0/C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  10. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Quarterly technical progress report, June 15, 1993--September 14, 1993

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1993-11-01

    Testing on the CPR using Pitt No. 8 coal was completed this quarter. Combustion characteristics of this coal required combustion to take place at an air/fuel equivalence ration of 0.75 (fuel-rich) in order to maintain a stable flame. The reason for this difficulty in burning at higher equivalence ratios is still under investigation. Flame symmetry was established during testing using suction pyrometer measurements, and was checked at various times throughout the test. Repeatability measurements were also made. These tests showed that running on coal for four hours after warm up was necessary to ensure constant wall temperatures. The PCSV-P was used to measure radial profiles of velocities and number density distributions for particles between 0.4 and 98 microns at three axial locations in the CPR. The particle velocities were measured as the average small particle (0.4-3.5 micron) and large particle (3.5-98 micron) velocities. The analysis of the data taken during these tests has not been completed. The coal feed system was revised again before testing. The Acrison auger feeder used to deliver the coal was calibrated according to the armature setting on the feeder motor. Variability and repeatability of this method were established by taking several manual measurements over and extended period of time. It was shown that the error associated with this method was less than 4% over one minute intervals. The small error was attributable to the excellent armature feedback supplied by the Acrison controller board.

  11. Micronized coal-fired retrofit system for SO{sub x} reduction: Krakow Clean Fossil Fuels and Energy Efficiency Program. Technical progress report No. 3, October 1996--December 1996

    SciTech Connect

    1996-12-31

    The PROJECT proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields. The new micronized coal fired boiler would: (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil. Currently, the Town of Krzeszowice is considering a district heating program that would replace some, or all, of the 40 existing small in-town heating boilers that presently burn high-sulfur content coal. Potentially the district heating system can be expanded and connected into the PHRO boiler network; so that, PHRO boilers can supply all, or a portion of, the Town`s heating demand. The new TCS micronized coal system could provide a portion of this demand.

  12. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    SciTech Connect

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  13. Progress in Scientific and Technical Communications, 1968 Annual Report.

    ERIC Educational Resources Information Center

    Federal Council for Science and Technology, Washington, DC. Committee on Scientific and Technical Information.

    This sixth annual report describes progress achieved by the Federal Government in improving the communication of scientific and technical information to support and enhance national science and technology. Included in the report are details regarding the scientific and technical activities of individual Federal Agencies, such as the Atomic Energy…

  14. Biochemistry of bond breaking in coal: Final technical report

    SciTech Connect

    Not Available

    1988-08-22

    The goal of this program was to investigate possible biochemical mechanisms by which natural microorganisms solubilize low-rank coals. Specific objectives which were met to attain this goal included: (1) identification of microbes capable of solubilizing low-rank coals; (2) optimization of coal biosolubilization; (3) characterization of the products resulting from microbial coal solubilization; and (4) postulation of biochemical mechanisms involved in coal solubilization using model compound studies to identify bonds which are susceptible to cleavage. Several bacterial and fungal cultures were examined for coal solubilization. A microbial consortium (CP1/plus/2) that was developed at ARCTECH exhibited the best coal solubilization of the cultures tested. This mixture of bacteria and fungi solubilized untreated Leonardite coal as well as pretreated (HNO/sub 3/ or H/sub 2/O/sub 2/) lignites and a Wyodak subbituminous coal. Complex mechanisms of bond breaking are likely involved in coal biosolubilization. The solubilization of coal may be mediated by a combination of biological and non-biological factors. Model compound studies indicated that a variety of bonds thought to be present in coal can potentially be cleaved by the CP1/plus/2 coal solubilizing agents. Solubilization of coals by CP1/plus/2 was most rapid during the initial stages of the reaction. The overall biosolubilization process could not be defined in terms of zero or first order kinetics with respect to product appearance over time. 51 refs., 49 figs., 39 tabs.

  15. Anaerobic bioprocessing of low-rank coals. Progress report, April 1--June 30, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-07-14

    We are seeking to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were : continuation of microbial consortia development and maintenance, evaluation of commercial decarboxylase, decarboxylation of lignite, demineralized Wyodak coal and model polymer, and characterization of biotreated coals. Specifically we report that two batch fermentor systems were completed and three other fermentors under optimum conditions for coal decarboxylation are in progress; that inhibition of growth of methanogens in the batch fermentor system enhanced the carbon dioxide production; that adapted microbial consortium produced more gas from lignite than Wyodak subbituminous coal; that phenylalanine decarboxylase exhibited insignificant coal decarboxylation activity; that two different microbial consortia developed on coal seem to be effective in decarboxylation of a polymer containing free carboxylic groups; and that CHN analyses of additional biotreated coals reconfirm increase in H/C ratio by 3--6%.

  16. Solar lease grant program. Technical progress report

    SciTech Connect

    Not Available

    1981-04-01

    Progress on a lease program for the installation of a solar water heater with no installation charge is reported. Information on the announcement of the program, the selection of participants, the contractural agreement, progress on installation of equipment, monitoring, and evaluation is summarized. The status of the budget concerned with the program is announced. Forms used for applications for the program and an announcement from Resource Alternatives for Cilco customers are presented.

  17. Jointly sponsored research program quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppelman ``Series C`` Power River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with Bell Lumber and Pole; ``B`` series pilot plant tests; and in-situ treatment of manufactured gas plant contaminated soils demonstration program.

  18. Jointly sponsored research program. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Deans, H.A.

    1994-05-01

    This is a progress report on work performed by Western Research Institute for the U.S. DOE, Morgantown Energy Technology Center in the period October- December 1993. Tasks addressed include: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the koppelman {open_quotes}series c{close_quotes} process using a batch test unit with Powder River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with bell lumber and pole; {open_quotes}B{close_quotes} series pilot plant tests; in situ treatment of manufactured gas plant contaminated soils demonstration program.

  19. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semi-annual technical progress report, February 1996--July 1996

    SciTech Connect

    Banovic, S.W.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-08-01

    Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO{sub x}, emissions to the environment. To reduce NO{sub x}, emissions, new low NO{sub x}, combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO{sub x} environments, H{sub 2}S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures. One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

  20. Anaerobic processing of low-rank coals. Quarterly progress report, July 1--September 30, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-12-31

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (i) continuation of microbial consortia maintenance and completion of coal decarboxylation using batch reactor system, (ii) decarboxylation of model polymer, (iii) characterization of biotreated coals, and (iv) microautoclave liquefaction of the botreated coal. Progress is reported on the thermogravimetric analysis of coal biotreated in the absence of methanogens and under 5% hydrogen gas exhibits increased volatile carbon to fixed carbon ratio; that the microbial consortia developed on coal are being adapted to two different model polymers containing free carboxylic groups to examine decarboxylation ability of consortium; completion of experiments to decarboxylate two model polymers, polyacrylic acid and polymethyl methacrylate, have been completed; that the biotreated coal showed increase in THF-solubles.

  1. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions. Quarterly technical progress report, October 1, 1990--December 31, 1990

    SciTech Connect

    Not Available

    1991-08-01

    The program objective is to generate ultra-fine catalyst particles (20 to 400 {Angstrom} in size) and quantify their potential for improving coal dissolution in the solubilization stage of two-stage catalytic-catalytic liquefaction systems. It has been shown that catalyst activity increases significantly with decreasing particle size for particle sizes in the submicron range. Ultra-fine catalyst particle generation will be accomplished using a novel two-step process. First, the severe conditions produced by a supercritical fluid (e.g., supercritical H{sub 2}O or CO{sub 2}) will be used to dissolve suitable catalyst compounds (e.g., Fe{sub 2}O{sub 3}, FeS{sub 2}, and/or Fe(CO){sub 5}). Sulfur containing compounds may be added to the supercritical solvent during catalyst dissolution to enhance the catalytic activity of the resulting ultra-fine, iron based, catalyst particles.

  2. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991

    SciTech Connect

    Not Available

    1991-12-31

    ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  3. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  4. Coal Combustion Science quarterly progress report, April--June 1990

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  5. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, September 1--November 30, 1991

    SciTech Connect

    Singh, Shyam

    1991-12-31

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through {minus}200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc. This report covers the first quarter`s progress. Major activities during this period were focused on finding the plants where a demo MTU column will be installed to prepare the samples needed to characterize the combustion behavior of slurry effluents. Also, a meeting was held at Penn State University to discuss the availability of the laboratory furnace for testing the plant coal/recovered coal fines blends.

  6. Magnetohydrodynamics coal-fired flow facility: Quarterly progress report, July--September 1988

    SciTech Connect

    Not Available

    1989-04-01

    In this Quarterly Technical progress report, UTSI reports on progress in proof-of-concept (POC) testing and development of the components for a magnetohydrodynamic (MHD) steam bottoming plant. The primary activities discussed are results of a 252 hour, coal-fired test in the Department of Energy Coal Fired Flow Facility (CFFF). The performance of the upstream components, which simulate the MHD topping cycle for the generation of test gases with the correct time-temperature history, was significantly more reliable than in previous tests. In the bottoming cycle tests continued on candidate superheater test module (SHTM) tube materials in three different temperature zones. The test achieved all objectives in this area. Difficulties continued in keeping the accumulation of deposits sufficiently blown-off on the high temperature tubes of the first test section and the following cooling section. Particulate loading samples were taken to evaluate the effectiveness of the baghouse and electrostatic precipitator (ESP). Results of varying the flow rate through the ESP to determine the minimum specific collection area (SCA) to meet the New Source Performance Standard (NSPS) particulate emission standards are reported. Reports of on-going studies and analyses are summarized. Results of utilization of advanced diagnostics by both UTSI and MSU are included. Data and analyses from stack gas analysis, water quality, ambient air sampling and terrestrial ecology programs are summarized and future plans are outlined. 14 figs., 1 tab.

  7. Characterization of porosity via secondary reactor. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Calo, J.M.

    1992-12-31

    In this quarterly technical Progress report, we summarize the progress which has been achieved with the development of the small angle scattering capability to be used in the current project. In particular, the following was accomplished during the reporting period. The parameter estimation code, MARQFIT, has been tested and is fully operational. The code has been applied to small angle neutron scattering (SANS) data on coals swollen with deuterated solvents. Application of the FPPS model to these data indicated that the large sphere distribution apparently requires a mean greater than 1000{Angstrom}. This was attributed to the influence of interparticle voids. Specific surface areas were also estimated for these coals. Application of this model to the coal chars used in the current project will not be subject to the same effects.

  8. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  9. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical progress report, August 14, 1996--January 14, 1997

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-02-01

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. In the first six months of this project, bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The results of microstructural characterization of these alloys were presented in the first semiannual report. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. An increase in the volume fraction of alumina in the nickel matrix from 0 to 45% led to a significant increase in hardness of these composites.

  10. Providing solutions to energy and environmental problems. Quarterly technical progress report, January--March 1995

    SciTech Connect

    Not Available

    1995-05-01

    Brief progress reprots are presented for the following tasks: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; injection into coal seams for simultaneous co[sub 2] mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppleman Series C'' process using a batch; test unit with powder river basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid state NMR analysis of naturally and artificially matured kerogens; contained recovery of oily wastes field demonstration with bell lumber and pole; insitu treatment of manufactured gas plant contaminated soils; development and demonstration of a wood-fired. Gas turbine system; solid state NMR analysis of mowry formation shale from different sedimentary basins; and acid-mine drainage prevention, control, and treatment development for the stockett/sand coulee area

  11. Providing solutions to energy and environmental problems. Quarterly technical progress report, October--December 1994

    SciTech Connect

    Not Available

    1995-02-01

    Progress reports are briefly described for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; injecton into coal seams for simultaneous CO[sub 2] mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppleman Series C'' process using a batch; test unit with powder river basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid state NMR analysis of naturally and artificially matured kerogens; contained recovery of oily wastes field demonstration with bell lumber and pole; insitu treatment of manufactured gas plant contaminated soils; development and demonstration of a wood-fired gas turbine system; solid state NMR analysis of Mowry Formation Shale from different sedimentary basins; and acid-mine drainage prevention, control, and treatment development for the stockett/sand coulee area

  12. Pittsburgh Energy Technology Center quarterly technical progress report for the period ending September 30, 1985

    SciTech Connect

    Not Available

    1986-06-01

    Encouraging progress was made toward the development of acid rain control technology. PETC competitively selected and awarded contracts totaling over $8 million over the next three years to firms proposing new concepts for reducing the costs of cleaning the flue gas emissions of older, coal-burning power plants. PETC and ANL have undertaken a joint venture in dry flue-gas scrubbing that will ultimately lead to testing of a sorbent for combined SO/sub x/ and NO/sub x/ removal in Argonne's 20-megawatt spray dryer. The overall objective of a high-sulfur coal research program is to conduct a broad spectrum of coal-related research in order to increase and expand the use of coal in an environmentally acceptable manner. In the liquefaction program area, operations with Wyodak subbituminous coal are proceeding smoothly (Run 249) at the Wilsonville Process Development Unit. Understanding the processes involved in catalyst deactivation is important to the development of longer lived catalysts. In the area of process analysis, PETC has acquired a new version of ASPEN (Advanced System for Process Engineeering) software. The new version was recently installed on PETC's VAX/VMS operating system and is the most up-to-date version currently available. Work at PETC has resulted in the development and testing of a highly automated capillary tube viscometer for use with heavy coal-derived liquids. Results of PETC research in Fischer-Tropsch product characterization were also shared with the technical community. A particularly difficult analytical problem in the characterization of Fischer-Tropsch products is quantitative determination of carbon number distributions by compound class. PETC scientists developed a method that uses capillary gas chromatographic techniques to make these determinations. A paper describing the method was the lead article in the July 1985 issue of the Journal of Chromatographic Science and was featured on the cover.

  13. Predictors of plasticity in bituminous coals. Final technical report

    SciTech Connect

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

    1984-02-01

    A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

  14. Diffusion of gases in New Mexico coals: Final technical report

    SciTech Connect

    Williams, F.L.; Smith, D.M.

    1987-02-01

    As part of the first phase of this study, characterization of the pore volume and surface area of coal was principally undertaken while the more extensive and complex diffusivity and high-pressure adsorption experiments were being built. The careful characterization work resulted in new understanding of the limitations of mercury porosimetry and nitrogen adsorption analysis for coal. Our results indicate that as the size of coal particles in a sample decreases, a spurious, intruded-pore volume is indicated in mercury porosimetry. Furthermore, at higher pressures of Hg, the penetration of Hg may actually be a measure of micropore crushing rather than pore structure information. Nitrogen adsorption measurements do not reflect the total surface area of the coal which is easily accessed and measured by carbon dioxide. At the same time we found that condensation of nitrogen and NMR relaxation experiments may lead to significantly new interpretations of coal porosity. We find that measurements of condensation of nitrogen gives a direct measure of large pore volume that can be contrasted to total pore volumes. Preliminary NMR results show remarkable differences in apparent pore structure for similar New Mexico coals. The extension of basic science of coal structure and development of a potential new method for characterization of coal are major, long range impacts of this work. 41 refs., 9 figs., 6 tabs.

  15. Technical Entrepreneurship and Technological Progress in Developing Countries.

    ERIC Educational Resources Information Center

    Quevedo-Procel, Jose

    This paper describes the Mexican economic environment in terms of general economic conditions from the 1940s to the present, the role of science and technology in industrial progress, and the promotion and support of small companies. The technical entrepreneur is identified as the missing link that would play an important part in the technological…

  16. Assessment Program Technical Progress Report, 1996-1997.

    ERIC Educational Resources Information Center

    McCown, Laurie; Fanning, Erin; Eickmeyer, Barbara

    Coconino Community College (CCC) annually assesses its institutional effectiveness to demonstrate its commitment to improving programs and services to students. The 1996-97 Assessment Program Technical Progress Report records the assessment and institutional activities enacted during the academic year, detailing the assessment model, timelines,…

  17. Biochemical removal of HAP precursors from coal. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect

    Olson, G.J.

    1997-01-01

    This fifth quarterly report covers the period of October through December of 1996. Results are presented of pyrite and HAP precursor removal from Kentucky No. 9 coal in shake flasks and from Indiana No. 5 coal in columns. With Kentucky coal, rates of pyrite oxidation were about 6% per day, and significant As, Co, Cd, Mn, and Ni were removed from the coal. These same five HAP precursors also were significantly removed from Indiana No. 5 coal. Additionally, test results are presented of pyrite and HAP precursor removal from Indiana No. 5 and Pittsburgh No. 8 coal using high initial concentrations of ferric ions. These tests showed faster depyritization of coal than in previous tests done with low initial ferric ion concentrations. In addition, faster and more extensive removal of Cd, Co, Mn, and Ni from Indiana No. 5 coal occurred under high ferric conditions. High solution ferric ion concentration are expected in any biodepyritization process due to progressive biooxidation of pyrite to ferric sulfate. Ferric ions are probably the primary oxidant of pyrite and many of the HAP precursors in coal. Analysis of HAP precursors in Stockton Coal, used by PETC in HAP precursor combustion-mass balance test, was done and compared to PETC analytical data. The INEL slurry column reactor was operated in several shake down runs to prepare for complete HAP precursor removal-mass balance tests. Good separation of coal from ash-forming minerals was observed in these tests.

  18. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  19. Professional technical support services for the Mining Equipment Test Facility. First annual technical progress report, April 14-September 30, 1981

    SciTech Connect

    Garson, R C

    1981-10-01

    The Department of Energy recently began the operation of its Mining Equipment Test Facility. One component at that facility is the highly sophisticated Mine Roof Simulator (MRS) for research and development of roof support equipment. Because of its previous experience, the University of Pittsburgh was contracted to assist the Facilities Manager by providing professional technical support services, principally for the MRS. This technical progress report briefly describes the services provided during the reporting period and planned for the next period. No significant technical disclosures of interest to those not associated with the MRS are contained herein. One of the four units of the US government-owned METF is the Mine Roof Simulator. This unique $10 million test facility was designed to simulate underground mine roof loads and motions. The MRS is a hybrid, analog-digital, computer-controlled, closed-loop, electro-hydraulic, research device capable of applying either loads or displacements in the vertical and one horizontal axis. Its vertical capacity of 3,000,000 pounds can be applied over its 20 by 20 foot active test area. The horizontal load capacity is 1,600,000 pounds. It can simulate coal seam heights of up to 16 feet. Automatic data acquisition and real time display are provided. The most modern, sophisticated technology was used in its design and construction.

  20. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.