Science.gov

Sample records for coal technical progress

  1. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.; Jiang, X.; Tao, D.; Parekh, B.K.; Meloy, T.

    1996-10-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

  2. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  3. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  4. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    SciTech Connect

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  5. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  6. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  7. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.

    1996-07-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies will be conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model is developed by West Virginia University. The research to be performed by the University of Kentucky has recently been determined to be: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Acoomplishments to date are reported.

  8. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  9. Development of a Coal Quality Expert. Final technical progress report No. 14, [July--September 1993

    SciTech Connect

    Not Available

    1994-01-17

    This is the fourteenth Technical Progress Report, describing work performed under DOE Contract No. DE-FC22-90PC89663, ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from July 1 through September 30, 1993. Five companies and five host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 51-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and (2) develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inactive bench-scale tests.

  10. Panama coal to methanol project. Phase I. Feasibility Study. Technical progress report

    SciTech Connect

    Not Available

    1983-11-01

    This Technical Progress Report contains the results of the investigations performed for the Panama Coal to Methanol Project: Technical efforts associated with the gasification technology evaluation; evaluation of other related process technologies; results of the venture analyses, including the efforts made for structuring the project; results of the ongoing financial analyses and cost projections, including potential and use applications of methanol in Japan primarily for combustion turbine-combined cycle steam/electric utilization. At this time, and for the next few years, the Panama-based methanol fuel is more expensive than oil. However, when measured in terms of KWH production cost in Japan, the use of methanol fuel in combustion turbine, combined-cycle operations appears to create less expensive electric power than that produced from conventional coal direct fired operations using imported coal. This cost advantage arises from significantly lower capital costs and enhanced performance efficiencies associated with combined cycle power generators as contrasted with conventional coal plants equipped with scrubbers. Environmental and social land-use benefits are also much greater for the methanol fuel plant. The cost of electricity from a methanol-fueled combined cycle plant is also expected to compare favorably in Japan with electrical costs from a future liquefied natural gas fired plant.

  11. Hydrothermally treated coals for pulverized coal injection. [Quarterly] technical progress report, January--March 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-04-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and the Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products are being characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey is being conducted.

  12. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report

    SciTech Connect

    Doyle, F.M.

    1995-05-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  14. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  15. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  16. Assessment of pulverized coal-fired combustor performance. First quarterly technical progress report

    SciTech Connect

    Richter, W.; Clark, W.; Payne, R.

    1981-01-01

    The objective of this program is to provide the engineering tools necessary for an authoritative assessment of the performance of industrial furnaces firing pulverized coal. The program incorporates two experimental tasks and is constructed around an analytical task which will identify and upgrade the family of computer programs required to undertake the performance analysis studies. These analytical tools will be used to predict the effect of parameters such as fuel type and furnace variables on combustor performance, and to identify those properties which have a major impact on thermal performance. The second task uses a combustion reactor to screen the key variables identified and to provide data on the properties of coal particulate matter which affect heat transfer performance. Verification of the engineering analytical approach will be provided by measurements made in a pilot-scale furnace. This present report discusses technical progress during the first three months of the program, and considers the selection of the appropriate analytical tools and preliminary details of the experimental system.

  17. The Magnetohydrodynamics Coal-Fired Flow Facility technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    In this quarterly technical progress report, UTSI reports on a multi-task research contract directed toward developing the technology for an MHD steam combined cycle power plant. During the period two tests were conducted in the DOE Coal Fired FLow Facility. Both of these tests were part of the western coal proof-of-concept (POC) test series. The report describes the performance of the tests and provides some preliminary performance data on particulate removal systems during the tests. The performance of ceramic tubes being tested for high temperature air heater application is described. Performance of advanced diagnostics equipment from both UTSI and MSU is summarized. The results of experiments designed to determine the effects of potassium compounds on combustion are included. Plans for analysis of metal tube specimens previously removed from the test train are discussed. Modeling and analysis of previous test data include a deposition model to predict ash deposition on tubes, mass balance results, automated data screening and chemical analyses and the data base containing these analyses. Laboratory tests on sealing ceramic tubes and corrosion analyses of previously tested tubes are reported.

  18. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  20. Electrostatic beneficiation of coal. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-11-01

    Progress reports are presented for the following tasks: single particle measurement of size and charge; electrodynamic balance for trapping single particles for measurement; and tribocharging of coal particles passed through a circular tube.

  1. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  2. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  3. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  4. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  5. Molecular biological enhancement of coal biodesulfurization. Third quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-03-15

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: Clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; Conduct a batch-mode optimization/analysis of scale-up variables.

  6. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  7. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    SciTech Connect

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  8. Photochemical coal dissolution. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1996-01-01

    Research continued on coal photochemical dissolution. Experiments were performed in a newly constructed, computerized, coal photochemical reactor. The experiments demonstrated the active participation of coal in photochemistry.

  9. Low severity coal liquefaction promoted by cyclic olefins. Quarterly technical progress report, April--June 1996

    SciTech Connect

    Curtis, C.W.

    1997-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports.

  10. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    SciTech Connect

    Not Available

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  11. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  12. Surface properties of photo-oxidized bituminous coals. Technical progress report, January--March 1996

    SciTech Connect

    Mitchell, G.; Davis, A.; Chander, S.

    1996-12-31

    During this report period, a vitrinite concentrate from the mvb Splash Dam seam (DECS-30) was prepared and analyzed. Results show that the concentrate was 91 vol % vitrinite and that the sample has been adequately protected from oxidation under refrigerated storage in argon. The 9% level of contamination within the vitrinite resulted from the extreme friability of the coal and to the dispersion of fine grains of semifusinite and micrinite. Polished blocks containing vitrain bands that were prepared, irradiated in blue-light and employed in contact angle measurements were evaluated using specular reflectance-mode FT-IR for changes in functional group chemistry. Infrared spectra from unexposed areas of vitrinite and those irradiated for 1, 5 and 10 min for six coals ranging in rank from hvCb to mvb were obtained using a FTS 175 spectrometer with a Bio-Rad UMA 500 microscope accessory. Preliminary results demonstrate that photo-oxidation occurred during irradiation, becoming progressively more intense with increasing irradiation time; however, the magnitude of this change diminished with increasing rank. A relatively steady increase in the carbonyl region (1,800--1,650 cm{sup {minus}1}) and a decrease in the aliphatic region (2,950--2,850 cm{sup {minus}1}) of the spectra supports this observation and is similar to observations made in the past for natural weathering and laboratory oxidation of coals. A series of tests was initiated to photo-oxidize powdered vitrains using the BLAK-RAY ultraviolet lamp evaluated last quarter. Samples of four vitrinite concentrates were exposed to UV light for 10 mins per side. These and the corresponding whole-seam channel samples and raw vitrinite concentrates were submitted for initial microflotation tests which have not been completed at this time.

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, [March--May 1992

    SciTech Connect

    Doyle, F.M.

    1992-06-30

    during the seventh quarter, electrokinetic, humic acid extraction and film flotation tests were done on oxidized samples of Upper Freeport coal from the Troutville {number_sign} 2 Mine, Clearfield County, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis was done to characterize the morphology and composition of the surface of as-received coal, oxidized coal, oxidized coal after extraction of humic acids and humic acid extracted from oxidized coal. In addition, electrochemical studies were done on electrodes prepared from coal pyrite samples.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Doyle, F.M.

    1993-06-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eleventh quarter, dry thermal oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied by ion-exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the flotability of as-received and oxidized coals. In addition, electrokinetic tests were done on different coals, to obtain information pertinent to the selection of flotation reagents. DRIFT analysis was done to characterize the structure of coals.

  15. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  16. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year research has focused on fine coal dewatering and modeling.

  17. Biochemical removal of HAP precursors from coal. Technical progress report, January--March 1996

    SciTech Connect

    1996-08-01

    Shake flask bioleaching tests were conducted with Pittsburgh NO. 8 and Indiana No. 5 coal. Bacteria removed pyritic sulfur from both coals at maximum rates of 5 to 9% per day, which was about 20 times the abiotic rate of pyrite oxidation. Concentrations of inorganic hazardous air pollutant (HAP) precursor elements in starting coal, bioleached coal and in leach solutions were measured. Of the 13 HAP precursors, significant amounts of arsenic, cobalt, cadmium, manganese, and nickel were removed from both coals by bacterial activity and also by the acidic leach solutions in control flasks. Little or no mercury, lead, beryllium, chromium, antimony, fluorine or chlorine was removed from the coals. Selenium was bioleached from both coals as determined by analysis of Se in leach solutions. However, analyses of Se in starting coal and in coal residues remains problematic. With very few exceptions, mass balances for the HAP precursors ranged from 80 to 120%. Improved analytical methods were developed for measuring concentrations of Hg, Se, As, and Sb in coal. Shake flask tests with pyrite oxidizing bacteria were conducted on Pittsburgh No. 8 and Indiana No. 5 coal. Concentrations of HAP precursors in the starting coal, leach solutions, and final coal residues were measured. A column leaching-rotating biological contactor (RBC) unit was assembled and a column leach test with Pittsburgh No. 8 coal was begun.

  18. Exploratory research on solvent-refined-coal liquefaction. Annual technical progress report, January 1-December 31, 1980

    SciTech Connect

    1981-04-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by the Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1980. Six coals and a coal blend, representing the Interior, Rocky Mountain, Eastern and Northern Great Plains Provinces, were processed in the SRC I and SRC II modes to study the relationship between coal properties and liquefaction behavior. Disposable catalysts and specific compounds were added to Loveridge, Kaiparowits and Blacksville No. 2 coals during SRC II mode liquefaction. Kentucky 9/14, Indiana V and Loveridge coals were processed at short residence times (4 to 9 minutes) in the SRC I mode to evaluate the effects of temperature, pressure, residence time and disposable catalyst addition. Finally, coal from the Powhatan No. 1 Mine was evaluated as a feedstock for major coal liquefaction facilities.

  19. Appalachian Clean Coal Technology Consortium. Technical progress report, October 10, 1994--December 31, 1994

    SciTech Connect

    Feeley, T.J. III

    1995-06-26

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.; Pittston Coal Management Co.; and Roberts & Schaefer Company. First year activites are focused on dewatering and modeling of spirals.

  20. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, June 1995--August 1995

    SciTech Connect

    Doyle, F.M.

    1996-03-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The action of coal and pyrite as reducing agents and as waste processing sorptive material for wastes outside the industry are also discussed.

  1. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  2. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect

    Huffman, G.P.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  3. Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984

    SciTech Connect

    Paranjape, A.S.

    1984-04-30

    Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

  4. MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

    SciTech Connect

    Dicks, J. B.; Chapman, J. N.; Crawford, L. W.

    1980-02-01

    In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.

  5. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  6. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect

    Doyle, F.M.

    1992-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  7. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  8. Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    1996-05-23

    The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

  9. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  10. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  11. New concept for coal wettability evaluation and modulation. Technical progress report, April 1--June 30, 1995

    SciTech Connect

    Hu, W.

    1996-05-01

    The objective of this project is to evaluate the surface wettability and flotation of coal and pyrite in order to establish a new separation strategy for advanced coal cleaning for premium fuel applications. During this quarter, mini-cell flotation tests were carried out on Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 coals, and two pyrite samples. Flotation media used were kerosene, benzene, and amyl-xanthate. Test results are given and discussed.

  12. Coal materials handling coal feeder development, Phase I. First quarterly technical progress report, October-December 1980

    SciTech Connect

    Not Available

    1981-01-20

    The FMA Linear Pocket Feeder (LPF) is a positive displacement feed system in which the pressure seal is developed by a set of mechanical labyrinth seals between the piston rings and the sealing tube. The pressure seal is completely independent of the type and size of coal used. The LPF can maintain a pressure difference with no coal in the system and can achieve steady state operation in less than a minute after startup. Coal flow rate can be changed while the LPF is operating at design speed and operating pressure with no effect on the LPF's performance. The LPF has the potential for operating on all types and sizes of coal as long as they are free flowing. The existing LPF will be upgraded utilizing the knowledge gained during the previous 330 hours of operation. The loading station will be redesigned to allow the infeed of coarse coal in such a manner that minimum degradation occurs during entry into the pockets of the feeder and feed of pulverized coal in a way that minimizes entrapment of air under the coal charge to allow quicker settling. Certain other proposed design changes are described also. (LTN)

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, May 31, 1995

    SciTech Connect

    Doyle, F.M.

    1995-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. Work during the nineteenth quarter has concluded studies of the surface functional groups produced on coal by severe thermal and chemical oxidation, and on investigating the partition of metal ions between such strongly oxidized coal samples and aqueous solutions. This partitioning behavior was being followed to obtain further information on the chemistry of the coal surfaces after different oxidation treatments. Adsorption isotherms for the uptake of Cd{sup 2+} on coal oxidized by different methods were obtained, and these and the Cu{sup 2+} adsorption isotherms reported in the last report have been scrutinized, and interpreted more exhaustively. The apparent discrepancies noted in the last report for the analysis of surface functional groups have been investigated further. The adsorption behavior has been related to the surface chemistry of Upper Freeport coal oxidized by different methods.

  14. Supercritical fluid reactions for coal processing. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Eckert, C.A.

    1995-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which closely resemble the organic sulfur and nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal desulfurization and denitrogenation. Diels-Alder reactions involving such compounds have been extensively studied and characterized in liquids. However, there is very little understanding of such reactions in SCF`s. We are developing an approach which will allow optimum design of coal desulfurization and denitrogenation processes.

  15. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, April--June 1996

    SciTech Connect

    1997-12-31

    Analytical methods were finalized and all analyses completed on shake flask tests with Indiana No. 5 and Pittsburgh No. 8 coal. A column leaching-rotating biological contractor (RBC) unit was used to bioleach pyrite and hazardous air pollutant precursors from Pittsburgh No. 8 coal. Shake flask tests with Rosebud subbituminous coal were begun. In connection with upcoming slurry column reactor tests, coal was prepared and shipped to INEL, and a detailed work plan was developed for operation and sampling for the tests. A manuscript and poster was prepared for presentation at the PETC contractors conference.

  16. Photochemical coal dissolution. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Doetschman, D.C.

    1996-05-01

    The remaining types of photochemical extraction experiments originally proposed have now been examined. Experiments in which benzophenone (BP) in solution was employed as a photochemical extraction reagent on pre-extracted coals were performed with Hg arc light through a quartz light filter at a concentration permitting light absorption primarily by the coal. Experiments were done on pre-extracted coals in which tetralin was employed as the photochemical extraction reagent. Finally experiments were performed in which the pre-extracted coal was swelled with BP above its melting point, irradiated through a quartz filter and extracted. The solvent was acetonitrile in all cases.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  18. Upgraded Coal Interest Group. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1995-08-01

    This report presents information from the coal interest group. Topics of discussion at the meeting included the current political views concerning the Department of Energy and programs contained therein. The group met on January 10 and 11, in Nashville, TN. The status of various coal upgrading technologies was also reviewed. Four new technology opportunities were given reviews, Coal/Waste pellets, Custom Coals advanced technology, CSRC sulfur removing bacteria and a Mag-Mill which is a magnetic separation done within the pulverizer. Coal Waste pellets is a technology for making pellets of coal and fiber waste from recycling plants. The incentives are low cost and low sulfur and nitrogen. Lebowitz made a field trip to the pilot unit in Canton Ohio. The Mag Mill takes advantage of the natural concentration of pyrite in the pulverizer recycle stream (due to its hardness). Special magnets are installed in the mill to remove pyrite from this stream. Custom Coals reported on an advanced two step process for removal of organic sulfur from coal. Consolidated Sulfur Reduction Co. reported on a two step microbial desulfurization process.

  19. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  20. EDS coal liquefaction process development. Phase V. Monthly technical progress report, June 1-June 30, 1980

    SciTech Connect

    Epperly, W.R.

    1980-07-01

    High pressure bottoms recycle operations were conducted on the 50 pounds/day Recycle Coal Liquefaction Unit (RCLU) with Texas lignite from the Big Brown mine. Results indicate that significant conversion, yield and unit operability advantages can be obtained with Big Brown lignite by operating in the bottoms recycle mode, as compared to coal only operation. Yield data obtained from the one ton-per-day Coal Liquefaction Pilot Plant (CLPP) showed that the C/sub 4/-1000/sup 0/F distillate yield was approximately 44% based on dry, ash-free coal compared to 47% for Wyoming subbituminous coal. No unusual coal-specific problems were noted. Preliminary results from liquefaction of neat bottoms on the Once Through Coal Liquefaction Unit (OTCLU) showed significantly higher (C/sub 4/-1000/sup 0/F) liquid make and 1000/sup 0/F/sup +/ conversion for single pass CLPP bottoms when compared with equilibrium CLPP recycle bottoms. Work began on an engineering screening study to determine the impact of high pressure bottoms recycle on the relative economics of various bottoms processing options. A screening study was undertaken to evaluate various methods of calculating the Required Initial Selling Price (RISP) of coal liquids. Heat and material balances were completed to simulate high pressure vacuum bottoms recycle operations at ECLP within the fuel gas treating and DEA regeneration areas of the plant. A research guidance study was initiated to select preferred bottoms recycle operating conditions for subsequent CLPP operations with Wyoming (Wyodak mine) coal. Fluid bed combustion of vacuum bottoms to supply high-level process heat provides incentives comparable to hybrid boilers, another direct combustion option. Research and development on coal slurry fired heaters, conducted by outside organizations, is currently being reviewed.

  1. Development of a Coal Quality Expert. Final technical progress report No. 8

    SciTech Connect

    Not Available

    1992-06-16

    During the past quarter, Tasks 2, 3, 4, 5, and 6 were active. Data reduction continued for the characterization of raw coal samples collected from five mines located in the Powder Basin in support of the Northern States Power (NSP) King test site. Four flowsheet tests were performed at the CQDC with the Pratt and Utley coals as part of the coal cleanability characterizations being performed for the Alabama Power Company`s (APC) Gaston test site. Babcock and Wilcox (B&W) performed pilot-scale combustion testing of the baseline and alternate coals used for the full-scale test bums at Northern States Power`s King Station. PSI Technology Company (PSIT) and the University of North Dakota`s Energy and Environmental Research Center (EERC) continued to work under ABB/CE to develop the slogging and fouling models. Work continued on the preparation of final test reports for the field tests performed at Public Service Oklahoma`s Northeastern Unit 4 and Mississippi Power Company`s Watson Unit 4, and plans and test schedules were developed for tests to be conducted later this year at Alabama Power Company`s Gaston Unit 5 and Duquesne Light Company`s Cheswick Unit 1. Task 5 and 6 activities were directed at overall CQE program definition, development of the CQE software specification, completion of the Acid Rain Advisor (ARA), and continued formulation of CQE algorithms and submodels. All laboratory analyses required for the raw-coal characterizations of the Powder River Basin coals--collected in support of the NSP King test program--were completed. Coal cleanability tests were performed with the Pratt and Utley Seam coals obtained from the Pittsburg and Midway Coal Company in support of the baseline coal test performed at APC`S Gaston Unit 5.

  2. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Anderson, S.A.; Radovic, L.R.; Hatcher, P.G.

    1996-11-01

    Objective is to use {sup 129}Xe NMR to study the microporous structure of coals. During this quarter, we have: performed a presaturation experiment on Wyodak subbituminous coal, monitored the progress of Xe adsorption in an anthracite, focusing on the changes observed in the external-surface adsorbed gas signal, used an echo sequence to obtain {sup 129}Xe NMR spectra of Blind Canyon hvAb coal, and improved and repeated the successive oxygen adsorption and desorption experiment on a microporous carbon.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  4. Sorption and chemical transformation of PAHs on coal fly ash. Technical progress report No. 8

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1993-12-01

    The objective of this work is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Specific investigations directed toward this overall objective include: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (c) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (d) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of {open_quotes}surface roughness{close_quotes} of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  5. Argonne premium coal sample program. Annual technical progress report. Reporting period : 2/2006-2/2007.

    SciTech Connect

    Hunt, J. E.; Chemistry

    2007-03-04

    This project provides highly uniform, premium (unexposed to oxygen) coal samples to researchers investigating coal structure, properties and behavior, and maintains accessible databases of published reports describing work carried out on the Argonne Premium Coal Samples. The samples are made available to DOE researchers and others. The eight carefully selected samples have been kept in as pristine a condition as possible through careful control the conditions in all stages from sample collection throughout processing and packaging. The samples are available in glass ampoules to ensure sample uniformity and maintain premium quality to ensure sample integrity.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Third quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. Progress is described.

  7. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  8. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  9. MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980

    SciTech Connect

    Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

    1981-03-01

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

  10. Development of phenomenological model for coal slurry atomization. Quarterly technical progress report

    SciTech Connect

    Dooher, J.

    1996-10-01

    Atomization tests on simulated fluids are being performed. For each sample tested, {Delta}P{sub c} is being determined as described in the last quarterly report. The results will be reported when the coal slurry testing is completed for comparative purposes. The viscoelastic properties on the simulated fluids and coal water slurries are being determined using the Adelphi Stresstech Viscometer. A discussion of viscoelastic properties and their relationship to atomization is presented.

  11. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  14. Reactivity of coal in direct hydrogenation processes: Technical progress report, September-November 1987

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1987-01-01

    Research focused on two facets of the reactivity studies. First, a series of experimental runs aimed at investigation of the role of hydrogen in direct liquefaction were completed. A model compound system consisting of dibenzyl in aromatic (non-donor) or hydroaromatic (hydrogen donor) vehicles was hydrogenated to determine the effect of molecular hydrogen and hydrogen from donor molecules in the radical quenching and bond scission reactions. Special attention was paid to the role of hydrogen as an active bond cleavage agent. These data show the relative participation of hydrogen from both sources at conditions relevant to the reactivity data and provide support for the role of hydrogen acting directly to promote bond cleavage. Maintenance of a ''pool'' of hydrogen atoms was found to be of great importance in terms of promoting hydrogenolysis and hydrocracking reactions of dibenzyl. Five bituminous coals from the Argonne premium coal collection were liquefied at conditions similar to those employed in the model compound study. The general findings relative to the activity of molecular hydrogen determined from the model compound experiments were evidenced in the coal liquefaction data. Additionally, the presence of aliphatic hydrodgen in the coal itself was found to be a highly significant factor in determining the sensitivity of coal conversion to the presence of gas phase molecular hydrogen. 8 refs., 6 figs., 8 tabs.

  15. Coal plasticity at high heating rates and temperatures. Eighth technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1992-05-01

    The potential influence of gas bubbles on the viscosity of molten coal at elevated temperatures was estimated by calculations, using literature models for the viscosity of two and three phase suspensions. In one approach, gas bubbles in molten coal were approximated as the dispersed phase of deformable liquid globules in G.I. Taylor`s model of emulsion viscosity. This model was incorporated into different models for the viscosity of solid-in-liquid suspensions, in which the dispersed solids are approximated as rigid spheres. Calculations show that in the presence of gas bubbles, the apparent viscosity of molten coal increases roughly in proportion to the volume fraction of gas with respect to the liquid continuum phase. It is experimentally and mathematically difficult to accurately determine gas volume fractions throughout the softening stage of coal pyrolysis. Our current plan is therefore to assume that the apparent viscosity of molten coal can be reasonably modeled in terms of a single liquid continuum phase and one dispersed phase consisting only of solids, using for example the two phase suspension viscosity model of Hatschek or of Frankel and Acrivos. In this approximation, gas bubble effects would force the model to underestimate metaplast concentrations and to overpredict the contribution of the dispersed solids to increase the viscosity of the liquid continuum.

  16. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1993-10-01

    The Research and Development Department of CONSOL Inc. is conducted a program to characterize process and product streams from direct coal liquefaction process development projects sponsored by the Department of Energy. In this program, CONSOL obtains samples from current process development activities in coal liquefaction and coal-oil coprocessing, and characterizes them using established analytical techniques. In addition, selected samples are characterized by other analytical techniques to evaluate their potential for aiding process development. These analyses and interpretation of the results in relation to process operations are provided by the subcontractor. Major topics reported in this thirteenth quarterly report are the following: (1) Analyses were performed on three coals and eleven process oils from HRI, Inc. process development unit Run 260--03, which was the first process development unit test of Black Thunder Mine subbituminous coal, significant operating problems were encountered, and sample properties are discussed in context to the operational problems; (2) a summary of the status of the Participants Program is given; (3) summaries of the final reports produced by the University of Chicago, the University of Utah, Iowa State University, and the University of Kentucky under the Participants Program, are presented.

  17. Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-04-23

    In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

  18. Photochemical coal dissolution. Final technical progress report, September 30, 1993--September 29, 1996

    SciTech Connect

    Doetschman, D.C.

    1997-05-01

    A flowing solvent photochemical reactor was designed, built and tested. A modified ACE photochemical reactor, lamp and power supply were employed. They were modified to accommodate a silica column-constrained dispersed coal sample and a solvent flowing through the silica/coal column to sweep away coal extract. Before each experiment the column was packed with the mixture of silica and coal in the annular space around the lamp. A reflective aluminum surface (foil) reflected any light-transmitted through the column for multiple passes back through the sample. A variable speed Rainin Rabbit Plus peristaltic pump was interfaced to an IBM XT computer via a Gilson RS232/RS422 converter. The purpose of the computer control was to vary the speed of the pump so as to control the absorbance of the solution of coal extract in the solvent. Absorbances at a chosen wavelength were measured by a Spec 21 spectrophotometer with a flow cell connected to the column effluent port. A signal proportional to transmittance from the Spec 21 was delivered to the computer through a Keithley DAS 801 A/D plug-in the computer. The analysis of the Spec 21 signal and control of the pump speed was based on a QuickBasic computer program written by us.

  19. Semiconductor electrochemistry of coal pyrite. Technical progress report, January--March 1992

    SciTech Connect

    Osseo-Asare, K.

    1992-05-01

    This project seeks to advance the fundamental understanding of the physicochemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural (i.e. coal-derived) pyrite specimens, the utilization of pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk)-electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. Central to this research is the recognition that pyrite is a semiconductor material. (Photo)electrochemical experiments will be conducted to unravel the mechanisms of anodic and cathodic processes such as those associated with pyrite decomposition and the reduction of oxidants such as molecular oxygen and the ferric ion.

  20. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1982-01-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory for the period January 1, 1980 through March 31, 1980. A series of experiments was conducted with three western coals to study the relationship between coal properties and liquefaction behavior. All three coals were low in iron (0.2 to 0.4%, dry coal basis) and processing in both the SRC I and SRC II modes does not appear to be feasible at normal conditions without added catalyst. Adding 1 to 2% pyrite to the feed slurry increased oil yields considerably while reducing SRC and IOM yields and improved operability. Product quality was also generally improved by the catalyst. Operability and oil yields were generally found to be better at 450/sup 0/C than at 465/sup 0/C.

  1. Role of porosity in supercritical fluid extraction of coal: Technical progress report

    SciTech Connect

    Bale, H.D.

    1987-04-15

    Our studies of supercritical extraction from coal entail two experimental approaches. Changes in the porosity of the coal brought on by the extraction process will be studied by small angle x-ray scattering at the UND Physics Department and the analysis of extract composition will be carried out at the UND Energy Research Center. At this time we are still in the equipment testing and development stage. This brief report points out some of the ''discoveries'' and difficulties that our tests have revealed and also discusses the necessary changes that we have made in order to deal with the problem areas.

  2. Technical progress report for the magnetohydrodynamics Coal-Fired Flow Facility for the period April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-10-01

    In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actions being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.

  3. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle power plant. The experimental program was effectively terminated and reoriented to preparation of reports on previous tests and maintaining the DOE facility. In this report, the results of tube corrosion studies for the samples removed after 500 hours of western coal testing are summarized. Plans for evaluating the tube samples after termination of the tests at 1,047 hours are discussed. The status of development of models to predict ash deposition on conductive heat transfer tubes and their validation with experimental data is presented. Modeling and experiments to induce agglomeration of particulate are also discussed. Significant accomplishments, findings and conclusions include: In summary, corrosion measurements on typical, commercial stainless steels and on low and intermediate chromium steels after 639 hours of LMF5 exposure in the SHTM test sections revealed corrosion that was generally acceptable in magnitude if corrosion kinetics are parabolic, but, except for the higher chromium alloys 253MA and 310, not if kinetics are linear. The production of bilayer scales, and the large amount of scale separation and fragmentation make long term parabolic kinetics unlikely, and result in a high likelihood for breakaway corrosion.

  4. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1992

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  5. Coal log pipeline research at University of Missouri. Second quarterly technical progress report, 1 April--30 June 1996

    SciTech Connect

    Liu, H.

    1996-06-01

    During this quarter, significant progress has been made in the following, fronts of coal log pipeline research, development and technology transfer: 1. Design of the special 300-ton coal log compaction machine was completed, Furthermore, much progress has been made in the design of the system needed to feed coal into the coal log compaction machine, and the design of the system to remove logs automatically as soon as they are compacted. 2. Coal mixtures containing different amounts of moisture were compacted into 1.91- inch-diameter coal logs rapidly (in 6 seconds). It was found that for the Mettiki coal tested, the optimum moisture is around 8%. Under the test conditions (room temperature and 3% binders), the rapidly compacted coal logs with 8% moisture had less than 4% weight loss in 350 cycles of circulation. 3. Completed evaluation of the effectiveness of using wall lubricants to enhance coal log quality. Both calcium sterarate and MoS{sub 2} were found to be effective. 4. It was found that when the interior of a mold is not cleaned after coal log has been compacted, the coal mixture film clinging to the wall hardens in time and form a hard crust which affects the quality of the next log to be produced. But, if the second log is produced immediately after the first, no hard crust is formed and the quality of the second log, is not affected. 5. Coal logs made with the coal crushed by the Gundlach Company were found to be better than coal logs made with the coal crushed by the CPRC`s hammer mill. 7. A 320-ft-long, 6-inch-diameter coal log pipeline test facility was constructed in Rolla during this period. 8. Completed the simulation of an 8-inch-diameter, 20-mile-long coal log pipeline recirculating loop driven by a pump bypass. 9. Continued improvement was accomplished in the hydraulic model of HCP and CLP to predict pressure drop and capsule velocity for both single capsules and capsule train. Also, work has started to extend the analysis to sloped pipelines.

  6. Healy clean coal project. Quarterly technical progress report No. 4, October--December 1991

    SciTech Connect

    Not Available

    1992-03-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better than the federal New Source Performance Standards. (VC)

  7. Healy clean coal project. Quarterly technical progress report No. 5, January--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and heat recovery system with both high and low temperature emission control processes. The emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better then the federal New Source Performance Standards. (VC)

  8. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  9. Electrostatic beneficiation of coal. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1997-01-01

    From previous study, we know that oxidation of the coal surface will decrease the efficiency of electrostatic beneficiation by increasing the negative charge of the carbon particles. The polarity and magnitude of charge acquired by the nonconducting particles varied depending on the state of ``oxidation`` of the surfaces and the work function relative to the metal surface. The formation of oxide layer on the coal particles are rather rapid, therefore, the grinding and charging processes are needed to be carried out in a nitrogen or argon atmosphere. It is clear that impaction efficiency between coal particle and charger will decrease with decreasing particle size and particle velocity. So, it is necessary to charge small particles in a different process. We plan to size classify the coal particles into three size fractions: (1)fine (<40{mu}m). (2) medium (40{approximately}100{mu}m). (3) coarse (100{approximately}200{mu}m). Static mixer and a new designed charger (powder pump connected with a circular tubing) are used in the experiment. And we planned to measure the charge to mass ratio distributions as a function of the particle size distribution on the separator plates. This report discusses the following: determination of the charge to mass ratio distributions as a function of particle size distribution; and method to measure the mass, charge and size of the particle.

  10. Characterization of coal surfaces. Technical progress report, 21 May-20 August 1986

    SciTech Connect

    Fuerstenau, D.W.

    1986-09-01

    The overall objective of this research work is directed towards delineating the fundamental aspects of the interfacial behavior of coal in relation to surface-based beneficiation processes for coal cleaning. Previous reports have presented the results of our film flotation technique to evaluate the wettability characteristics of coal. The efficacy of the film flotation technique to characterize the lyophobicity (hydrophobicity) of particles was confirmed by comparing the average critical wetting tension value obtained by this method with that obtained from contact angle measurements. By coating different mineral substrates with paraffin wax, the negligible effect of gravity on film flotation was demonstrated. Various flotation tests were performed to correlate flotation behavior with the critical surface tension results obtained from the film flotation experiments. Research during the last quarter was directed along two main lines: (1) repeat the earlier film flotation response of a series of coal samples to correlate wettability with their bulk properties; (2) conduct film flotation of chemically treated glass beads to delineate particle shape effects in this characterization process. 2 refs., 1 fig., 2 tabs.

  11. Advanced technology for ancillary coal cleaning operations. Technical progress report, September--December, 1987

    SciTech Connect

    Not Available

    1994-09-01

    The work under contract number DE-AC22-87PC97881 is devoted to experimental research and development to investigate the feasibility of novel ancillary coal-cleaning technologies that offer a potential for reduced capital and operating costs. The ancilliary operations that are specifically addressed in this work include pulse enhanced drying, fines reconstitution by extrusion, and hydraulic wave comminution.

  12. Evaluation of hyperbaric filtration for fine coal dewatering. Quarterly technical progress report, 1996

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I, model development, Phase II, laboratory studies, Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments to date are reported for the three phases.

  13. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  15. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  16. Electrostatic beneficiation of coal. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-04-01

    Two methods of examining the decay rate of charge on powders deposited on the separator plates were examined. In the first method the charge transferred from ground to the separator plate was measured directly with an electrometer after completion of the powder deposition and after turning off the electric field. In a second method an electrostatic field meter (Trek model 354A) was used to measure the field due to the charge on the plates or on thin Teflon or aluminum plates which had been placed over the metal separator plates. In addition the paper discusses the fabrication and use of a resistivity cell for coal powder; charging of small particles by milling; observations with silica gel; and a review of articles on particle charging. A separate section presents the electrostatic charging properties of coal macerals.

  17. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    1980-11-01

    Part 3 consists of appendices 5, 6 and 7, which have been entered individually into EDB and ERA. They deal with regression analysis of pilot plant SRC-II yields to develop thermal response models of the process and the possibility of predicting yields from coal properties. The possibility of a runaway exothermal reaction under some operating conditions on the demonstration plant scale is also considered. (LTN)

  18. Surface properties of photo-oxidized bituminous coals. Technical progress report, October--December 1995

    SciTech Connect

    Mitchell, G.; Polat, H.; Davis, A.; Chander, S.

    1996-02-01

    During this report period, polished blocks of coal containing 3--4 mm wide vitrain bands were prepared for contact angle measurements of fresh and photo-oxidized surfaces using the advancing-drop technique. Contact angles were measured on two of the coals collected for this study, (the Ohio No. 4a (DECS-33) and Lower Kittanning (PSOC-1562) seams) and the results added to those presented in the last quarterly report. Although the new data give additional variation to the sample set, they are consistent with the original observations, i.e., that contact angle is influenced by irradiation time and coal rank. Using the maximum change in contact angle measured between fresh and photo-oxidized surfaces, a linear decrease is observed with increasing rank resulting from 5 and 10 minutes of irradiation. The magnitude of the decrease in contact angle diminishes with increasing rank. Also during this period, an ultraviolet spotlight was evaluated as a means of irradiating powdered vitrain. This 100 watt, long wavelength (366 nm) ultraviolet lamp is to be used in place of the optical microscope system to establish the influence of surface photo-oxidation on the flotation characteristics of vitrain concentrates. A series of experiments was designed to determine the magnitude of change in the luminescence intensity (at 600 nm measured in the optical microscope) with exposure to the ultraviolet light with time for vitrinite from different rank coals. The authors have established that there is a significant decrease in luminescence intensity with time of exposure which diminishes slightly as rank increases. The ultraviolet light appears to provide a level of photo-oxidation that is a factor of 10 lower than that obtained with their optical microscope system.

  19. Pelletization of fine coals. Technical progress report, March 1, 1992--May 31, 1992

    SciTech Connect

    Sastry, K.V.S.

    1992-09-01

    The first step consisted of producing a batch of seed pellets (in the size range {minus}4.75+4.00 mm) by pelletizing of 200 g of ground coal with desired additives (surface active agents and binders) and moisture content for 800 revolutions. The seed pellets are obtained by sieving the output from the batch drum. The second step involved the production of finished size pellets by layering the seed pellets with stepwise addition of moist feed which is again produced with desired additives and moisture content. Specifically, 25 g of the {minus}4.75+4.00 mm seed pellets are placed in the drum and 20 g of moist fluffy feed is added every 80 revolutions for five times. After 400 revolutions the pellets are sieved on the 4.75 mm screen and the screen undersize which corresponds to new seeds generated during the layering cycles is discarded. Now, 30 g of moist fluffy feed is added every 50 revolutions for five more cycles. These layered pellets are sieved again and the {minus}9.5+8.00 mm pellets. Coal agglomerates produced by the above described technique are nice and spherical. With our past experience with iron ore pelletization we learnt that as long as sufficient fluffy feed is available for the consumption by the seed pellets, they generally grow by forming layers consuming the feed rather than grow by coalescence. This is found to be true in the case of coal also. Growth by coalescence of coal pellets is found to yield raspberry type uneven agglomerates. After ascertaining the possibility of producing nice spherical pellets, several experiments have been conducted to develop the above standard procedure for making pellets in a reproducible way and testing them for their quality.

  20. Photochemical coal dissolution. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Doetschman, D.C.

    1996-07-01

    As mentioned in the report on the previous quarter, the authors have turned their attention to studies of photochemically-induced-charge-transfer phenomena involving aromatic electron donors. Coal is a porous material and it has been demonstrated that there are ground-state charge-transfer-interactions between imbibed TCNE or TCNQ and the automatic systems in bituminous coals. The authors aim to develop a preliminary understanding of the ground and excited state donor-acceptor interactions and the charge-transfer phenomena in porous materials that are better-defined than coals. They are performing background examinations of a set of donors and acceptors in solution by cyclic voltammetry and uv-visible spectroscopy. These preliminary experiments are being followed by systematic studies of the adsorption of the donors and acceptors, individually and together into adjacent supercages of a series of cation-exchanged X- and Y-type faujasite zeolites. Ultraviolet-irradiation of these systems are being performed and electron paramagnetic resonance examination of the samples is being made for the presence of paramagnetic, one-electron, charge-transfer products. In related work performed by students supported by this contract, the authors have reached a good understanding of the interactions and molecular motions of free radical {pi} electron systems in the X- and Y-type faujasite zeolites. Luminescence spectroscopy may also be used to examine the doped zeolite samples in future experiments. The authors have begun to examine the donor-acceptor pairs: diphenylamine-benzophenone, nitroxyl and substituted nitroxyl radical-benzophenone, and aromatic hydrocarbon-unsaturated tetracyano hydrocarbon. The oxidation and reduction potentials and excitation energies of these systems are given. The aromatic hydrocarbon donors span the range of typical aromatic ring sizes found in bituminous, subbituminous and lignite coals.

  1. Volatiles mass transport within particles of softened coal. Technical progress report, April 1-October 20, 1986

    SciTech Connect

    Howard, J.; Hsu, J.S.; Peters, W.A.

    1986-10-01

    A mathematical model is developed to describe the intraparticle effects of unsteady volatiles transport, chemical kinetics of metaplast formation and depletion, and transient plastic behavior in softening coal pyrolysis. In the pyrolysis process, coal is converted into metaplast and gases via chemical-bond breaking and physical melting. The viscous, fluid-like metaplast further decomposes to form gases, tar, and coke. The transports of gaseous species to the particle surface and to the bubbles which are originated from the sealed pores in the metaplast phase are related to the plastic behavior of coal. The bubbles may grow due to the influx of gaseous volatiles adn the decomposition of tar evaporated from the metaplast. Through the break-up of bubbles on the particle surface, the tar and the light gases in bubbles are released into the ambient. The main objectives of this model are to quantitatively simulate the coupled effects of transport and kinetics and to predict the independent effects of reaction temperature, pressure, particle size, and heating rate on the volatiles yields and the extent of swelling during pyrolysis.

  2. Advanced coal-fueled gas turbine systems. Technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-24

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  3. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  4. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    SciTech Connect

    Not Available

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  5. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    SciTech Connect

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  6. Coal materials handling/coal feeder development, Phase I. 2nd quarterly technical progress report, January-March 1981

    SciTech Connect

    Not Available

    1981-04-27

    The essential objective of Phase I of our program is to demonstrate extended capabilities for the Linear Pocket Feeder (LPF). This requires extensive modification of both our test facility and the LPF. At this time we estimate that delays in modifications will prevent our testing the LPF until at least mid-May, a month and a half later than originally scheduled. However, we have reviewed our test plan and facility operation in detail and conclude that testing can probably be completed by the end of August as originally proposed, and that the program is not jeopardized in any other way. In fact, our projected delay in specified testing is due in part to our initial testing - crude but successful, with pulverized coal (PC). On the strength of this success, we are attempting to go immediately to an LPF and feed system that is fully modified for PC. A status report task by task is given.

  7. Semiconductor electrochemistry of coal pyrite. Technical progress report, October--December 1992

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1993-02-01

    This project seeks to advance the fundamental understanding of the physics-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid minedrainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural ( i.e. coal-derived) pyrite specimens, the utilization of.pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk) electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. The kinetic study of the reaction between sulfide and ferrous ions in solution suggested that the black species formed initially is FeHS{sup +} intermediate. To farther confirm this mechanism, the experiments aimed at establishing the stoichiometry for the intermediate were carried out thermodynamically with a stopped-flow spectrophotometric technique. The results showed that the mole ratio of H{sup {minus}}/Fe{sup 2+} is 1 to 1 for the intermediate product, which is in good agreement with the kinetic results previously obtained. Furthermore, the equilibrium constant for the reaction Fe{sup 2+} + H{sup {minus}} = FeHS{sup +} was determined as K = 10{sup 4.34}. The forward rate constant is 10{sup 3.81}(mol/l){sup {minus}1}sec{sup {minus}1} and the backward rate constant is 10{sup {minus}0.53} (mol/l){sup {minus}1} sec{sup {minus}1}.

  8. Semiconductor electrochemistry of coal pyrite. Technical progress report, January--March 1993

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1993-05-01

    This project seeks to advance the fundamental understanding of the physicochemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. A novel approach to the study of pyrite aqueous electrochemistry is proposed, based on the use of both synthetic and natural ( i.e. coal-derived) pyrite specimens, the utilization of pyrite both in the form of micro (i.e. colloidal and subcolloidal) and macro (i.e. rotating ring disk) electrodes, and the application of in-situ direct electroanalytical and spectroelectrochemical characterization techniques. The work performed during this quarter focuses on the synthesis of pyrite in aqueous solutions at room temperature and atmospheric pressure. The experimental results show that the initial product from the reaction between ferrous ions and sulfide ions is X-ray amorphous iron sulfide, and the final product is mackinawite from this reaction. Both amorphous iron sulfide and mackinawite in wet states are oxidized quickly in air to {gamma}-FeOOH. Pyrite can form in aqueous solution through a simple path from a reaction between ferric ions and sulfide ions at room temperature within 9 days. It is believed that a redox reaction occurs between ferric and sulfide ions to form ferrous ions and elemental sulfur. The Fe{sup 2+}, S{sup 2{minus}} ions and elemental sulfur, S{sup o}, in the system can then react with each other to form pyrite. This pathway of pyrite formation can be used in synthesizing nanoparticles of pyrite in microemulsions.

  9. Photochemical coal dissolution. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1995-12-31

    Examination of the photochemical extractions of the four Argonne Premium Coal Residues has been under way in a routine manner during this last quarter. An unexpectedly great effort last quarter had been necessary to find extraction solvents and photochemical reagents that were photochemically stable and inert. While it is a rather poor thermal extraction solvent, acetonitrile has proven to be the best solvent the authors have examined. In addition to runs with only the acetonitrile solvent present, experiments were performed with the photochemical reagents, benzophenone and pyridine. Both ketone and pyridine triplet states are well-known for their hydrogen abstraction and electron transfer capabilities. The photochemical reagents were used at concentrations resulting in 50% transmission of the light across the reactor pathlength at 320 nm. Experiments with the quartz cutoff filter remain to be completed at concentrations resulting in 50% transmittance at lower wavelengths. Changes in the transmission of light by the column effluent were monitored continuously and the extraction yield by weight was measured by evaporation of the solvent and subtraction of reagent weight. Thermal extraction yields without light under otherwise identical conditions were measured for comparison. As a check on undesirable effects, such as solvent photochemical degradation, otherwise identical light and dark experiments were also done without the coal on the column.

  10. Molecular biology of coal bio-desulfurization; Quarterly technical progress report, October 1--December 31, 1990

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1991-01-25

    The aim of this project is to use the techniques of molecular genetics to identify, clone, sequence, and enhance the expression of proteins which remove sulfur covalently bound to coal. This includes the movement and expression of these proteins into bacterial species which may be more useful in the industrial application of a biological desulfurization process. This quarter we finalized the initial cloning and sequencing of the dibenzothiophene (DBT) metabolic (``dox``) genes from strain C18. In addition, we constructed several mutations in single dox genes and have begun to dissect the contribution of each gene product in the DBT degradation pathway. Using a probe derived from DNA adjacent to a transposon which inactivated DBT metabolism, the DBT active genes from A15 have been cloned and identified on cosmids. We have also electroporated Thiobacillus ferrooxidans with a plasmid containing a chloramphenicol resistant transposon. Colonies of T. ferrooxidans resistant to chloramphenicol were obtained.

  11. Healy clean coal project. Technical quarterly progress report no. 6, April--June 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  12. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  13. Evaluation of hyperbaric filtration for fine coal dewatering. Sixth quarterly technical progress report, 1 January--31 March 1994

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1994-06-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consists of three phases, namely: model development; laboratory studies; and field testing. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Progress to date is described.

  14. Coal-feeder development. Second quarterly technical progress report, January-March 1980

    SciTech Connect

    Mistry, D.K.

    1981-04-01

    The pilot-scale piston-feeder development is progressing satisfactorily and should proceed as planned. The bench scale testing of components, sub-system and critical areas continued to provide very useful information in support of the development of the complete feeder. The K30M seals and polyurethane scrapers are showing very promising results. The components development facility is being upgraded and testing at the bench scale level should be vigorously perused. The upgrading of the pilot scale feeder and its system will be emphasized during the next quarter to perform feeder capabilities and limitations testing. No progress on the 5.5-in. diameter pilot scale screw feeder has been made because IRRI is waiting decision from METC as to when the feeder can be installed on the 42-in. gas producer.

  15. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  16. Heterogeneous kinetics of coal gasification. Technical progress report, 1 August 1981-31 January 1982

    SciTech Connect

    Sy, O.; Calo, J.M.

    1982-02-01

    The continuing development of an experimental apparatus for the study of the heterogeneous reactions of coal-char gasifiction under conditions of industrial significance is described. The apparatus consists of: (1) a continuous gas flow, fixed solids gradientless reactor; (2) an automatic gas addition system for generating concentration perturbations in the reactor feed stream under conditions of constant flow rate, temperature, and pressure; and (3) a supersonic, modulated molecular beam mass spectrometer sampling system to monitor and resolve the transient response of the gas phase composition at the reactor exit. Work was concentrated on experimental runs of the transient behavior of the char-CO/sub 2/ reaction system. In addition, reactor mixing performance and estimates of possible interphase heat and mass transfer limitations on the kinetic rates were also determined. Modifications, testing and calibration of the beam sampling system and the mass spectrometer were also performed. Computer codes were written to simulate the transient response of the reaction system under varying experimental conditions for different mechanisms found in the literature. These codes are primarily used for model discrimination. An optimization code based on the Marquardt technique was also written for model parameter estimation from the data.

  17. Returning coal waste underground. Technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1982-01-15

    The initial approach for returning coal waste underground at the No. 4 Mine will be limited to the current 1'' x 0 refuse product (132 TPH; 540 GPM) from the Wolf Creek plant at Pilgrim, Kentucky. It is possible to bypass existing units in the refuse circuits by pumping the refuse directly out of the cleaning circuits for backfilling. the refuse dryer, filter screen and static thickener will not be used when the refuse is backfilled. A necessary condition of this concept is to maintain continuous backfilling operations by providing two outlets underground and always keeping at least one unit working. To avoid settling and unstable conditions in the pipe, the percentage of solids in the refuse slurry should not exceed 45% by weight and the velocity of the slurry should be about 10 feet per second. The pumping of the 150 TPH of refuse solids (45% by weight) requires that the slurry flow at approximately 1000 GPM. The velocity will be about 10 feet per second if the inside diameter of the pipeline is six (6) inches. The backfilling process could function with an open-end outlet pipe if there was a sufficient gradient in the mine. The areas to be backfilled in the No. 4 Mine are generally flat. This condition will require the installation of bulkheads for containing the material. The slurry water, however, will be free flowing and may deterioriate the floor. The water will therefore have to be collected and pumped back to the surface.

  18. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-10-01

    The general goal of this project is to provide a fundamental understanding of deposition processes of flyash and pulverized coal particles in coal combustors and coal gasifiers. In the period of April 1 to June 30, 1996, further research progress was made. The computational model for simulating particle motions in turbulent flows was applied to the dispersion and deposition analysis. The study of particle transport and deposition in a circular duct was completed and the major findings are summarized. A detailed model for particle resuspension process in a gas flow is developed. The new model accounts for the surface adhesion, surface roughness, as well as the structure of near wall turbulent flows. The model also accounts for all the relevant hydrodynamic forces and torques exerted on the particle attached to a surface. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  19. Mulled coal - a beneficiation coal form for use as a fuel or fuel intermediate. Technical progress report No. 9, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Under the auspices of the DOE and private industry, considerable progress has been made in: preparation of coal-water fuels; combustion of low-ash coal-based fuel forms; processes to provide deeply-cleaned coal. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas associated with this product. This is attributable to the beneficiated coal being procured in very fine particles with high surface areas, modified surface characteristics, reduced particle size distribution range, and high inherent moisture. Experience in the storage, handling, and transport of highly beneficiated coal has been limited. This is understandable, as quantities of such product are only now becoming available in meaningful quantities. During this reporting period the authors have: developed a suite of empirical tests covering water retention, rewetting, mull stability, angle of repose, dusting, etc.; a standardized suite for testing handling properties has been developed; initiated screening studies of alternate mulling agent formulations; mulls from six different coals and coals cleaned at different levels are being prepared for evaluation.

  20. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  1. Semiconductor electrochemistry of coal pyrite. Technical progress report, April--June 1992

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1992-12-01

    Pyrite synthesis is of interest in many diverse fields, such as geology, fuel processing technology, chemistry, metallurgy, materials science, and so on. Based on fundamental studies of this process, the formation mechanisms of this important sulfide on the earth can be better understood. The studies can also help us to better understand the surface chemistry and electrochemistry of pyrite, thereby assisting in the development of more efficient processes for removal of the sulfide from coal. The work performed during this quarter focuses on the study of the reaction between aqueous sulfide ions and dissolved Fe(II) salts by using a stopped-flow spectrophotometric technique. At a wavelength of 500 mn, no absorption was observed with either aqueous sulfide or dissolved Fe(II) salt alone. However, when the two solutions were mixed, a strong absorbance appeared at the same wavelength. The absorbance-time curve showed that a black material formed at the first few seconds of the reaction, then this material decayed and changed gradually to a lighter dark material within the following several minutes. These processes were pH-dependent. It was more likely to form the black intermediate at the pH range from 7 to 8. This indicates that the reaction between Fe{sup 2+} and HS{sup {minus}} results in the formation of the black intermediate because in this pH range, both Fe{sup 2+} and HS{sup {minus}} are the predominant species. The absorbance varied linearly with the concentration of the reactant for the first step of the reaction. The absorptivity of the black intermediate was determined as 4800 l/mol/cm. By means of this spectrophotometric technique, the stoichiometry, the equilibrium constant and the rate constant of the reaction will be determined.

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  3. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility. January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported in developing technology for steam bottoming cycle of the coal-fired MHD Steam Combined Cycle Power Plant. During this period, no testing was scheduled in the DOE Coal-Fired Flow Facility. The report covers facilities modification and maintenance in preparation for a 225 hour POC test that is scheduled for early next quarter. The modifications to the dry ESP to replace the electrodes with smaller diameter wires is discussed. Continued work on the rotary vacuum filter, which is designed to separate the more soluble potassium carbonate from the potassium sulfate and fly ash, is reported. Environmental activities for the quarter are summarized.

  4. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, No. 4, July 1995--September 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-11-06

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 29, 1995.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  7. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  8. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 2, January--March 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-04-26

    The main purpose of this project is engineering development of advanced column flotation and selective agglomeration technologies for cleaning coal. Development of these technologies is an important step in the Department of Energy program to show that ultra-clean fuel can be produced from selected United States coals and that this fuel will be a cost-effective replacement for a portion of the premium fuels (oil and natural gas) burned by electric utility and industrial boilers in this country. Capturing a relatively small fraction of the total utility and industrial oil-fired boiler fuel market would have a significant impact on domestic coal production and reduce national dependence on petroleum fuels. Significant potential export markets also exist in Europe and the Pacific Rim for cost-effective premium fuels prepared from ultra-clean coal. The replacement of premium fossil fuels with coal can only be realized if retrofit costs, and boiler derating are kept to a minimum. Also, retrofit boiler emissions must be compatible with national goals for clean air. These concerns establish the specifications for the ash and sulfur levels and combustion properties of ultra-clean coal discussed below. The cost-shared contract effort is for 48 months beginning September 30, 1992, and ending September 30, 1996. This report discusses the technical progress made during the second 3 months of the project, January 1 to March 31, 1993.

  9. Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-07-01

    The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

  10. Mulled Coal: A beneficiated coal form for use as a fuel or fuel intermediate. Technical progress report No. 4, January 1, 1991--March 31, 1991

    SciTech Connect

    Not Available

    1991-09-01

    During the past quarter Energy International has evaluated additional mull formulations with varying reagent additives, mixing times, and particle sizes. The Environmental Review was completed and conceptual designs developed for the Mull Preparation and CWF Conversion Systems. As these technical developments move toward commercial application, the needs for coordinated efforts and integrated requirements have become increasingly apparent. Systems are vitally needed to integrate energy delivery systems from the raw resource through processing to application and end use. Problems have been encountered in the preparation of conventional coal-water fuels that mutually satisfy the requirements for storage stability, handling, preparation, atomization, combustion, and economics. Experience has been slow in evolving generic technologies or products and coal-specific requirements and specifications continue to dominate the development. Thus, prospects for commercialization remain highly specific to the coal, the processor, and the end use. Developments in advanced beneficiation of coal to meet stringent requirements for low ash and low sulfur can be anticipated to further complicate the problem areas. This is attributable to the beneficiated coal being produced in very fine particles with a high surface area, modified surface characteristics, reduced particle size distribution range, and high inherent moisture.

  11. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  12. Control of trace metal emissions during coal combustion. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Ho, Thomas C.

    1996-01-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold end of the process by air-pollution control devices such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions at the hot end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatized metal vapors. The objectives of this project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The following progress has been made during the performance period from Oct. 1, 1995 through Dec. 31, 1995: (1) Additional combustion experiments involving both coal and wood pellets were carried out in the constructed quartz fluidized bed combustor. (2) A new Buck Scientific Model 210VGP Atomic Absorption spectrophotometer equipped with a continuous flow hydride generator especially for arsenic and selenium was installed for the project. (3) A paper, entitled ``Capture of Toxic Metals by Various Sorbents during Fluidized Bed Coal Combustion,`` was presented at the 1995 AIChE Annual Meeting held in Miami, November 13--17, 1995. (4) A manuscript, entitled ``Trace Metal Capture by Various Sorbents during Fluidized Bed Coal Combustion,`` was submitted to the 26th International Symposium on Combustion for presentation and for publication in the symposium proceedings. 1 ref., 3 tabs.

  13. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Hu, Weibai; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  14. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility: October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-06-01

    Progress is reported on a multitask contract to develop technology for steam bottoming cycle of a Combined Cycle MHD Steam Power Plant. The report describes a 314 hour proof-of-concept (POC) test completed during the quarter. Results include secondary combustion and effect of potassium on the light-off temperature, fouling of heat transfer surfaces, particulate clean-up device performance and advanced diagnostic system performance. Test results on ceramic materials and tubes directed toward the development of a high temperature recuperative air heater are summarized. Results of data analysis of previous tests that are reported include the continuing analysis of tube materials that were exposed to 1500 and 2000 hours of eastern coal fired operation during the previously completed 2000 hour POC test series on eastern, high sulfur coal.

  15. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report contains three sections, ``Transpassive Oxidation of Pyrite,`` ``Flotation and Electrochemical Pretreatment,`` and ``Flotation Kinetics of Coal and Coal Pyrite.``

  16. Development of a retrofit coal combustor for industrial applications, (Phase 2). Technical progress report, April--June 1989

    SciTech Connect

    Not Available

    1989-07-01

    The objective of Phase I of the program for the development of a retrofit pulse coal combustor for industrial applications was to design, fabricate, test and evaluate advanced chamber designs at the laboratory-scale utilizing several fuels (Task 1). The activities were structured to provide design criteria for scaling up to the pilot-scale level for the demonstration of a pulse combustor fired with coal-water mixtures for industrial boiler and process heater retrofit applications. The design data and information acquired during Task 1 of the initial phase was to develop scale-up design criteria for scaling the laboratory-scale design to pilot-scale including interface requirements for the field demonstration. The scale-up pilot unit design was to be sufficiently developed to allow fabrication of the unit for testing in the existing test facility upon DOE exercising its option for the follow-on activities of this program. These follow-on activities (Phase II) included the fabrication, test, and engineering evaluation of the pilot-scale combustor as well as technical and laboratory test support activities for reducing the technical risks and costs of development at the pilot-scale. Based on the information, test, data and technical support activities, a retrofit combustor system was to be designed for field demonstration. An additional effort was added to the contract by modification A005. This modification added a Phase IA in place of the original Task 2 of Phase I activity. This interim phase consisted of three technical tasks described in previous quarterly reports. Phase II was initiated in April 1989.

  17. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on the status of a multi-task contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing has occurred or is scheduled, and the planned effort for this period was to maintain the DOE CFFF facility in a standby status and to complete test reports.

  18. Technical progress report for the magnetohydrodynamics coal-fired flow facility for the period April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-07-01

    In this quarterly technical progress report, UTSI reports on the status of a multitask contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing occurred or was scheduled during the quarter, but the DOE CFFF facility was maintained in a standby status.

  19. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  20. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  1. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  2. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, July 21, 1989--September 30, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  3. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  4. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M.; Liang, Jun; Zhong, Tingke; Wadsworth, M.E.

    1992-07-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  5. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, January 1, 1990--March 31, 1990

    SciTech Connect

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Bodily, D.M.; Wadsworth, M.E.

    1990-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  6. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  7. Effect of maceral properties on the comminution of coal. Technical progress report, January 1-March 31, 1986. [Resinite

    SciTech Connect

    Bodily, D.M.

    1986-01-01

    The objective is to study the chemical and physical properties of coal macerals and whole coal which are important in the comminution of coal. Swelling studies of pyridine extracted and o-methylated coals were made in various solvents. For the pyridine extracted coal swelling increased in cyclohexane, toluene, acetone and methanol. Swelling in tetrahydrofuran remained constant and decreased in pyridine. For the 0-methylated coal pyridine also-caused reduced swelling compared to the untreated coal. Tetrahydrofuran also caused reduced swelling while acetone, methanol and toluene caused enhanced swelling. Results of swelling are in agreement with the model preposed for coal swelling. Maceral separations of coal samples are being separated to provide sufficient sample for characterization studies on maceral fractions. Experiments have been initiated to study the grinding of coal in the presence of various solvents. 2 refs., 4 figs.

  8. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  9. Magnetic relaxation--coal swelling, extraction, pore size. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Doetschman, D.C.

    1991-12-31

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  10. Methane modeling: predicting the inflow of methane gas into coal mines. Quarterly technical progress report, January 2, 1981-March 31, 1981

    SciTech Connect

    Boyer, C.M. II; Morrison, H.L.; Schwerer, F.C.

    1981-04-15

    Salient features of technical progress for the first quarter are the following: (I) computer-assisted literature searches have been completed for several strategies designed to cover different aspects of the model development and evaluation program. Some strategy refinement and additional searches are required. Ultimately a comprehensive bibliography will have been compiled and evaluated; (II) basic mathematical components that are sufficient for the development of a first numerical model for water and methane flows to coal mines have been identified. This initial set of components is a basis for the collection and analysis of refinements to provide more realistic accounts of the complex factors affecting coal-bed methane during mining and degasification; (III) a set of basic partial differential equations for flow of water and gas in a horizontal, homogeneous coal seam has been formulated in terms of pressure, pore saturation, and adsorbed gas variables and presented in normalized form for numerical solution. Equation sets corresponding to alternative choices of dependent variables will be formulated and compared with this initial set and (IV) computer subroutines have been modified and assembled to implement one-dimensional, nonsteady, two-phase flow models. These programs implement numerical, finite-difference, method-of-lines algorithms in a format that facilitates substitution of mathematical components and equation sets. Initial runs with this software package have illustrated the superiority of a particular space-discretization scheme and provide data for comparison of grid and permeability weighting schemes.

  11. New concept for coal wettability evaluation and modulation. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hu, W.

    1993-09-01

    This project is concerned with the new concept for coal surface wettability evaluation and modulation. The objective of the work is to study the fundamental surface chemistry features about the evaluation of the surface wettability of coal and pyrite and establish a new separation strategy which could contribute to the advanced coal-cleaning for premium fuel application. In the past quarter report, the capillary rise test results of three coal and mineral pyrite samples in distilled water, kerosene, and salt solution indicated that there are good agreements between the experimental observations and theoretical assumption. In this quarter, the further capillary rise tests were conducted for coal, pyrite and coal pyrite in distilled water, kerosene and benzene. The test results shown that surface wettability of coal, mineral pyrite, and coal pyrite have good correlation with the theoretical predictions.

  12. New concept for coal wettability evaluation and modulation. Technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Hu, Weibai

    1993-12-31

    This project is concerned concept for coal surface wettability evaluation and modulation. The objective of the work are to study the fundamental surface chemistry feature about the evaluation of the surface of coal, pyrite and coal pyrite, and also establish a new separation strategy which could contribute to the advanced coal cleaning for premium fuel application. In this quarter, the capillary rise of three coals, colorado mineral pyrite, and coal pyrite in butanol, pentanol, and butyl ether have been tested. The test results shown that the kinetic wettability of the five samples in the alcohol homolog are dependent on the carbon chain length, as the length of the carbon chain is shorter, the surface wettability is the better. Another test results shown that the kinetic wettability of coals are better than mineral pyrite and coal pyrite in the butyl ether.

  13. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  14. New concept for coal wettability evaluation and modulation. Technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Hu, W.

    1994-08-01

    This project is concerned with the new concept for coal surface wettability and floatability and modulation. The objective of this work is to study the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel applications.

  15. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    SciTech Connect

    1996-03-15

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

  16. Evaluation of hyperbaric filtration for fine coal dewatering. First quarterly technical progress report, September 1, 1992--November 30, 1992

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1992-12-31

    Most of the coal presently used by the utility industry is cleaned at preparation plants employing wet processes. Water, while being the mainstay of coal washing, is also one of the least desirable components in the final product. Coarse coal (+3/4 inch) is easily dewatered to a 3--4 percent moisture level using conventional vibrating screens and centrifuges. However, the main problem of excess product moisture occurs in fine (minus 28 mesh) coal and refuse. Even though fines may constitute only about 20 percent of a contemporary cleaning plant feed, they account for two-thirds of the product surface moisture. This high surface moisture offsets many of the benefits of coal cleaning, and can easily undercut the ongoing programs on recovery of fine clean coal from refuse as well as producing an ultra-fine super clean coal fuel. Currently, most of the coal preparation plants utilize vacuum disk type technology for dewatering of the fine coal, providing dewatered product containing about 25 percent moisture. The coal industry would prefer to have a product moisture in the range of 10 to 15 percent, thereby avoiding thermal drying of coal. Hyperbaric filtration. has shown potential in lowering moisture in fine coal to about 20 percent level. This project will develop fundamental information on particle-liquid interaction during hyperbaric filtration and apply the knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric filter system.

  17. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W.

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  18. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of chemical analyses to direct coal liquefaction process development. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, new analytical instruments and techniques to examine coal-derived samples are being evaluated. The data obtained form this study are used to guide process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and experimental data, a kinetic model of resid conversion will be constructed. Such a model will provide insights to improve process performance and the economics of direct coal liquefaction.

  19. New concept for coal wettability evaluation and modulation. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Hu, Weibai

    1995-12-31

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. The objective of the work is study the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel application. During this quarter, the mini-flotation cell tests are conducted to study floatability of coal and pyrite. The three coals, coal pyrite and Colorado mineral pyrite samples are used in these tests. The kinetic floatability of the five samples have been tested without collector, with 3% and 6% NaCl solution. The test results have shown that there are good agreement between the experimental observation and the theoretical hypothesis about the new concept about the surface wettability and floatability of the coal and pyrite. The experimental results indicate that the coal floatability increase rapidly, but the floatability of coal pyrite and mineral pyrite are not change significantly with the addition of NaCl in flotation. It can be seen that the coal floatability increase as NaCl concentration increase. 14 figs., 5 tabs.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  1. Bioconversion of coal derived synthesis gas to liquid fuels. Final quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-10-25

    The overall objective of the project is to develop an integrated two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) development/isolation of superior strains for fermentation of syngas, (2) optimization of process conditions for fermentation of syngas, (3) evaluation of bioreactor configuration for improved mass transfer of syngas, (4) development of a membrane-based pervaporation system, (5) optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation, and (6) synthesis gas fermentation in single-stage by co-culture. Progress is reported in isolation of CO utilizing anaerobic strains; investigating the product profile for the fermentation of syngas by B. methylotrophicum; and determining the effect of carbon monoxide on growth of C. acetobutylicum.

  2. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, June 1, 1985-August 31, 1985

    SciTech Connect

    Eisch, J.J.

    1985-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. By learning the mechanism whereby H2, metal hydrides or partially hydrogenated aromatics can transfer hydrogen to model aromatic compounds, under homogeneous transition-metal catalysis, we hope to identify new methods for producing superior fuels from coal.

  3. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Hu, Weibai; Huang, Qinping; Zhu, Ximeng; Li, Jun; Bodily, D.M; Zhong, Tingke; Wadsworth, M.E.

    1992-09-01

    A series of fine coal kinetic tests were carried out on three coals. It was found that the rank of flotation rates for the three coals tested were: Upper Freeport > Pittsburgh No. 8 > Illinois No. 6. In the case of Pittsburgh No. 8, the contained coal-pyrite was found to float more slowly than the coal itself when xanthate was used as the collector. In kinetic modeling, first order kinetic models produced large errors for long flotation times. It was found that a modified first order kinetic-model with slow and fast rate constants was appropriate for fine coal flotation. A log-log plot of 1(R{sub j} -R) versus t forms a straight line for the test conditions of this study. The Lai proportionality flotation model was found to apply from the start and extending over a very broad time range.

  4. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress report No. 8, July 1, 1989--September 30, 1989

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Clark, W.D.; Kramlich, J.C.

    1989-10-01

    During this reporting period the global experiments were concluded. The final activities under these experiments involved measuring mineral content of coals as a function of coal particle size. The principal activities during this quarter involved the mechanistic experiments. Three baseline coals were cleaned and two of these sized. The ash from these various cuts were sampled from a bench scale reactor. The ash size distributions were compared to distributions predicted by the breakup model.

  5. Continuous-mixture kinetics of coal thermolysis in supercritical fluid. [Quarterly technical progress report, August--October 1992

    SciTech Connect

    Wang, M.

    1992-11-09

    The model developed builds on earlier models and introduces the following features: new rate expressions for both single-and two- fragment reactions; representation of initial coal composition by molecular weight distributions of chemical functional groups releasable from coal matrix by bond rupture; and applicability to semi-batch reactor. For the rate of coal depolymerization, two types of reactions are considered, one producing a single product species and the other producing two product species. A visualization of the reaction kinetics is presented.

  6. New concept for coal wettability evaluation and modulation. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Hu, W.

    1994-05-01

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. During this quarter the Hallimond-tube tests were conducted for the three coals, mineral pyrite, and coal pyrite samples. The kinetic floatability of the five samples have been tested without collector, with kerosene and with benzene as collector. The test results indicate that there are good agreements between the experimental observation and the theoretical assumption hypothesis about the new concept of the surface wettability and floatability of the coal and pyrite. These test results also shown that wettability is incompatible with floatability.

  7. New concept for coal wettability evaluation and modulation. Technical progress report for the project, July 1, 1995--September 30, 1995

    SciTech Connect

    Hu, W.

    1995-12-31

    This project is concerned with the new concept for coal surface wettability and floatability evaluation and modulation. the objective of the work is the fundamental surface chemistry features about the evaluation of the surface wettability and floatability of coal and pyrite, and establish a new separation strategy which could contribute to advanced coal-cleaning for premium fuel application. In this quarter, the mini-cell flotation tests are conducted to study kinetic floatability and kinetic collectability of coal and pyrite. The kinetic floatability of the five samples have been tested with methanol, butanol, and hexanol as collector.

  8. Multi-parameter on-line coal bulk analysis. Technical progress report, March 16, 1995--June 15, 1995

    SciTech Connect

    1995-10-01

    Research continued on multi-parameter on-line coal bulk analysis. The thermal neutron flux distribution in coal and free air for two types of neutron sources was performed. The MCNP code was used to calculate the gamma ray response function and to determine the thermal neutron flux in coal when a lead collimator was used and when paraffin blocks were placed in front of the sample. The identification of chlorine in coal is discussed along with the analysis of the gamma spectra.

  9. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components. Technical progress report

    SciTech Connect

    Chess, E.K.; Smith, R.D.

    1986-01-01

    This Technical Progress Report reviews the technical progress made over the first 18 months of the program. Our goals include the design, development, and evaluation of a combined capillary column supercritical fluid chromatograph/high-performance mass spectrometer capable of analyzing high-molecular-weight polar materials and evaluating the system's potential for application in coal conversion process monitoring. The program includes not only the development and evaluation of the required instrumentation, but the development of polar fluids and compatible chromatographic stationary phases needed for efficient separation and analysis of polar and high-molecular-weight compounds. A new chromatograph/mass spectrometer interface and new mass spectrometer ion source have been designed, constructed, and evaluated using low-polarity supercritical fluids such as pentane. Results from the evaluations have been used to modify the instrumentation to improve performance. The design and fabrication of capillary flow restrictors from fused silica tubing has been explored. Research has also been conducted toward advancing the technology of fabricating high-performance chromatographic columns suitable for use with polar supercritical fluids. Results to date support our initial belief that high-resolution supercritical fluid chromatography (SFC)/high-performance mass spectrometry (MS) will provide a significantly enhanced analytical capability for broad classes of previously intractable fuel components. 10 refs., 13 figs.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  11. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.

  12. Evaluation of hyperbaric filtration for fine coal dewatering. Seventh quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1994-10-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. This project is oriented into three phases.

  13. Evaluation of hyperbaric filtration for fine coal dewatering. Second Quarterly technical progress report, December 1, 1992--February 28, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-06-01

    The normal practice in the coal preparation plant is to remove the water from the fine coal slurry by vacuum filtration and drying. Conventional vacuum filtration typically produces filter cake moisture containing in the range of 25 to 30 weight percent from minus 28 mesh coal slurries. Although the desired product quality can be obtained by using thermal dryers, there are problems associated with these equipment such as high capital costs and the greatest potential source of air pollution in a coal cleaning plant. In the present research project, an alternative to thermal drying, hyperbaric filtration which has shown potential in lowering moisture content in fine coal to about 20 percent level, is being investigated in detail. This project will essentially focus on developing fundamental information on particle-liquid interaction during hyperbaric filtration and applying the knowledge in developing optimum conditions for the pilot plant testing of the hyperbaric filter system.

  14. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  15. Toxic substances from coal combustion -- Forms of occurrence analyses. Technical progress report, April 30--November 1, 1996

    SciTech Connect

    Crowley, S.S.; Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Belkin, H.E.

    1996-12-06

    The overall objective of this project is to provide analytical support for the Physical Sciences, Inc. (PSI) effort being performed under a DOE Contract. The Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 program coals have been examined to determine the mode of occurrence of selected trace elements using scanning electron microscopy, microprobe analysis, and experimental leaching procedures. Preliminary microprobe data indicates that the arsenic content of pyrite grains in the Illinois No. 6 (0.0--0.027 ppm As) and Pittsburgh (0.0--0.080 ppm As) coals is similar. Pyrite grains observed in the Elkhorn/Hazard coal generally have arsenic concentrations (0.0--0.272 wt.% As) that are slightly higher than those of the Pittsburgh or Illinois No. 6 coals. One pyrite grain observed in the Elkhorn/Hazard coal contained much higher levels of arsenic (approximately 2 wt.% As). Preliminary microprobe analyses and data from leaching experiments indicate the association of arsenic with pyrite in the Pittsburgh and Illinois No. 6 coals. Leaching data for arsenic in the Elkhorn/Hazard coal, in contrast, is inconclusive and additional data are needed before a definite determination can be made.

  16. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-07-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. This project builds on work performed in DOE Contract No. DE-AC22-89PC89883. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently under utilized for the purpose of examining coal-derived samples are being evaluated. The data obtained from this study is used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction.

  17. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  18. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. During this reporting period, CONSOL completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI`s iron catalyst, a sulfated iron hydroxide. Results are discussed in this report.

  19. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    SciTech Connect

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  20. Effects of surface chemistry on the porous structure of coal. Technical progress report, September 1994--October 1995

    SciTech Connect

    Anderson, S.A.; Radovic, L.R.; Hatcher, P.G.

    1995-12-31

    The primary objective of this work is to use {sup 129}Xe NMR to characterize the microporous structure of coals. As an aide in this characterization, another objective is to combine this technique with volumetric adsorption techniques and track the effect of controlled opening of the micropores in a microporous carbon by oxygen chemisorption/desorption. The primary goal of the NMR work is to measure the micropore sizes in coal; more broadly, it is to better tailor the {sup 129}Xe NMR method for use with coal, and to investigate other ways it may be used to describe pore structure in coal, with emphasis on determining whether micropores in coal are connected or isolated. In terms of the primary objectives of the project, the {sup 129}Xe NMR spectra with pressure variation have been completed for four coals, and N{sub 2} and C0{sub 2} adsorption isotherms with surface area measurement have been completed for three coals. A microporous carbon has been subjected to one oxygen chemisorption/desorption cycle and examined by {sup 129}Xe NMR.

  1. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 11, October--December 1996

    SciTech Connect

    1997-01-01

    This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of the many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.

  2. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-08-01

    CONSOL completed characterization of 64 samples from five run conditions of HTI Run ALC-1 (227-94), in which raw and cleaned (oil-agglomerated at low pH) Black Thunder Mine subbituminous coal was fed and processed using only dispersed catalysts in the liquefaction reactors. Extraction of THF-soluble resid from the pressure-filter cakes was more complete when agglomerates were fed, leaving only 5% or less THF solubles in the extracted cakes. When raw coal was fed, the extracted cakes contained 9-34% THF solubles. HTI also observed improved filtration during the periods that agglomerates were fed. Improved operability, if verified by additional work, could be an economically significant benefit of coal cleaning by oil agglomeration at low pH. An apparently higher Mo addition rate (see fourth bullet) may have contributed to the benefits of using oil-agglomerated coal. Other stream sample characteristics changed when oil-agglomerated coal was fed in Conditions 2-4, relative to when uncleaned coal was fed in Conditions 1 and 5. The ash content of the 0-6 bottoms samples was lower when oil-agglomerates were fed. The THF-soluble 524{degrees}C+ resid concentration in the feed slurry doubled when agglomerated coal was fed. Three factors may have influenced these characteristics. Higher coal conversion would have produced more resid. More efficient toluene-extraction of the filter cake would have recycled more resid. Removal of distillate as product to offset oil fed as part of the agglomerated coal would preferentially recycle the heaviest components.

  3. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Song, C.; Huang, L.; Saini, A.K.; Schobert, H.H.; Hatcher, P.G.

    1993-07-01

    In this quarter, progress has been made in the following two aspects: (1) effects of drying and mild oxidation on conversion and product distribution during non-catalytic and catalytic liquefaction of a Montana subbituminous coal (DECS-9); and (2) effects of solvent and catalyst on conversion and structural changes of a Texas subbituminous coal (DECS-1). Influence of drying and mild oxidation on catalytic and non-catalytic liquefaction (at 350C for 30 min with 6.9 MPa (cold) H{sub 2} was studied using Wyodak subbituminous coal. For non-catalytic runs, fresh raw coal gave higher conversion and higher oil yield than both the vacuum- and air-dried coals, regardless of the solvent. Compared to the vacuum-dried coal, the coal dried in air in 100C for 2 h gave a better conversion in the presence of either a hydrogen donor tetralin or a non-donor 1-methylnaphthalene (1-MN) solvent. Catalytic runs were performed using in-situ generated molybdenum sulfide catalyst from ammonium tetrathiomolybdate (ATTM) precursor impregnated on either raw coal or predried coal samples. The solvent-free runs using ATTM loaded on the raw coal gave higher conversion and higher oil yield than loading ATTM on vacuum- or air-dried coal. In the presence of either tetralin or 1-MN, however, the runs using ATTM loaded on air-dried coal afford better conversions and oil yields as compared to the runs using vacuum-dried coal. Upon drying coal in air at 150C for 20 h, the conversion significantly decreased to a lower value than that of the vacuum-dried coal in the non-catalytic runs, and the same trend was observed in the runs of the dried coals loaded with ATTM. Physical, chemical, and surface chemical aspects of effects of drying and oxidation and the role of water are also discussed in the report.

  4. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mishra, N.C.

    1996-05-01

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  5. Short-residence-time hydropyrolysis of coal. Technical progress report, 1 July 1980-31 September 1980

    SciTech Connect

    Saville, D. A.; Russel, W. B.

    1980-01-01

    In this quarterly report we update the status of the program to gather kinetic data for the pyrolysis and hydropyrolysis of coal and the combined theoretical and experimental effort to understand the role of plasticity in these processes.

  6. Rate enhancement for catalytic upgrading coal naphthas. Final of final technical progress report, July 1991--September 1994

    SciTech Connect

    Davis, B.H.

    1995-08-01

    The objective of this project is to remove sulfur, nitrogen, and oxygen from naphtha derived from coal liquefaction. The project is concerned with the development of hydrotreating catalysts. This period, a ruthenium sulfide catalyst has been studied.

  7. The development of coal-based technologies for Department of Defense facilities. Volume 2, Appendices. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This semiannual progress report contains the following appendices: description of the 1,000 lb steam/h watertube research boiler; the Pennsylvania CGE model; Phase II, subtask 3.9 coal market analysis; the CGE model; and sector definition.

  8. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-12-31

    There is significant current interest in general area of coal pyrolysis, particularly because of the central role of pyrolysis in all thermally driven coal conversion processes-gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for more reliable correlation for prediction of vapor pressure of heavy, primary coal tars. The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. A significant amount of time has been devoted during this quarter to extending the work on measurements of vapor pressures of tars. For this purpose, cellulose tar and cellulose tar related compounds have been selected as model systems. Cellulose tar has a much narrower distribution of molecular weight than does coal tar, and it is much more homogeneous. Thus it is better to develop the methods to be used for coal tars on this simpler model system first.

  9. Structure and thermochemical kinetic studies of coal pyrolysis. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Dodoo, J.N.D.

    1991-12-31

    The overall objectives of this project is an intensive effort on the application of laser to the microscopic structure and thermochemical kinetic studies of coal particles pyrolysis, char combustion and ash transformation at combustion level heat fluxes in a laser beam. Research emphasis in FY91 is placed on setup and calibration of the laser pyrolysis system, preparation and mass loss studies of Beulah lignite and subbituminous coals. The task is therefore divided into three subtasks.

  10. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  11. Consortium for coal log pipeline research and development. Final technical progress report, August 10, 1993--August 9, 1996

    SciTech Connect

    Marrero, T.R.

    1996-10-01

    The main objective of this project was to conduct intensive research and development of the Coal Log Pipeline (CLP). Specifically, the R & D was to concentrate on previously neglected and insufficiently studied aspects of CLP which were deemed significant. With improvements in these areas, CLP could be implemented for commercial use within five years. CLP technology is capable of transporting coal logs for long distances. The many potential advantages of CLP over truck and railroad transportation include: lower freight costs, less energy consumption, less air pollution, decreased environmental problems, increased safety, and improved reliability. Previous studies have shown that CLP is advantageous over slurry pipeline technology. First, CLP uses one-third the water required by a coal slurry pipeline. Second, CLP provides easier coal dewatering. Third, the CLP conveying capacity of coal is twice as much as a slurry transport line of equal diameter. In many situations, the cost for transporting each ton of coal is expected to be less expensive by CLP as compared to other competing modes of transportation such as: truck, unit train and slurry pipeline.

  12. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1993--March 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This quarter, the solubilization of ammonium tetrathiomolybdate and the synthesis of molybdenum sulfide in several microemulsion systems is discussed.

  14. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October 1992--December 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.In this quarter, the synthesis of molybdenum sulfide in a microemulsion system with an alcohol-to-surfactant mass ratio of 3.5 is reported.

  15. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1993--June 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including g dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This report discusses molybdenum sulfide particle synthesis, characterization, and microemulsion characterization.

  16. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  17. Magnetic relaxation: Coal swelling, extraction, pore size. Quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-11-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromolecular network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS{sub 2} solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment under vacuum oven conditions ({approximately}10{sup {minus}2} torr at 145--150{degrees}C) until constant weight was achieved. The extraction, without further washing with other solvents, results in substantial uptake of NMP, apparently by H-bonding or acid-base interactions. The NMP uptake tends to be higher in coal matter with higher heteroatom (N,O,S) content and the NMP more tightly bound. The molecular material in the medium rank bituminous coals is more aromatic and heteroatom-poor than the macromolecular material and is mobilized by the extracting solvent. Likewise the more aromatic and heteroatom-poor molecular, free radicals are also extracted. However, mobilization of the molecular free radicals by solvent and the exposure of free radicals by the macromolecular matrix to solvent or species dissolved in the solvent, results in preferential reactions of the more aromatic and heteroatom-poor free radicals. Greater losses of extract free radicals, being the more aromatic, occur than residue free radicals. As a consequence, the surviving extract radicals exhibit a greater heteroatom content than the original whole coals, as determined from EPR g value changes.

  18. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly technical progress report, September 15, 1995--January 15, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1996-01-26

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) f or coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives.

  19. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1992--March 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-05-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  20. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July 1992--September 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1992-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle. nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.

  1. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1992--June 1992

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Radovic, L.R.

    1992-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption. Catalytic activity tests will be conducted under standardized conditions in both hydrogenation and hydrodesulfurization reactions. The effect of particle size of these unsupported catalysts on the product yield and distribution during liquefaction of a bituminous and a subbituminous coal will thus be quantitatively determined.This quarter, the effect of ammonium tetrathiomolybdate concentration on the synthesis of molybdenum sulfide in the 0.15 M NP-5/cyclohexane/water microemulsion system is discussed.

  2. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  3. Data base for analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, November-January 1981

    SciTech Connect

    Davis, A; Suhr, N H; Spackman, W; Painter, P C; Walker, P L; Given, P H

    1981-04-01

    The basic objectives of this program are, first, to understand the systematic relationships between the properties of coals, and, second, to determine the nature of the lateral and vertical variability in the properties of a single seam. Multivariate statistical analyses applied to the Coal Data Base confirm a number of known trends for coal properties. In addition, nitrogen and some components of the ash analysis bear interesting relationships to rank. The macroscopic petrography of column samples of the Lower Kittanning seam reveals a significant difference between the sample from a marine-influenced environment and those from toward the margins of the basin where conditions were non-marine. The various methods of determining the amount and mineralogy of the inorganic fraction of coals are reviewed. General trends in seam thickness, ash, sulfur, volatile matter yield, and vitrinite reflectance of the Lower Kittanning seam of western Pennsylvania are presented. Controls of sedimentation are discussed in relation to the areal variability which has been observed. Differential subsidence and paleotopography appear to have played a major role during the deposition of the coal. The same controls may have maintained some influence upon the coalification process after deposition, especially along the eastern margin of the Lower Kittanning basin.

  4. A novel coal feeder for production of low sulfur fuel. Annual technical progress report, October 1, 1990--October 1, 1991

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-12-31

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  5. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1993-10-29

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

  6. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Suuberg, E.M.

    1995-10-01

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude when applied to tars. The present project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal, (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars, (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. Both the gas saturation method and the Knudsen effusion method are being used. Results are presented for anthracene, naphthacene, pentacene, and a mixture of anthracene and perylene obtained using the effusion method.

  7. Diffusion of gases in coals and chars: Quarterly technical progress report No. 8, June 15, 1987-September 14, 1987

    SciTech Connect

    Smith, D.M.

    1987-01-01

    As a result of the complex nature of coal, it is difficult to probe its pore structure over the entire pore size range of interest. Multiple techniques such as gas adsorption (nitrogen and carbon dioxide), mercury porosimetry, small angle x-ray scattering (SAXS) and density measurements are required. These techniques suffer from inherent problems such as a limited pore size range, errors due to network/percolation effects, the necessity of pore shape assumptions, and/or sample changes during analysis. In this work, the use of low-field NMR spin-lattice relaxation measurements as a pore structure analysis technique for coal is demonstrated. In principle, NMR pore structure analysis does not suffer from the problems of the other methods. Other measuring techniques investigated during the report period are: Surface area determination via nitrogen and carbon dioxide adsorption for raw coals; mercury porosimetry; and diffusion measurements.

  8. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  9. Micro-agglomerate flotation for deep cleaning of coal. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Chander, S.; Hogg, R.

    1995-07-01

    The development, of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. This project is concerned with a hydrid process, micro-agglomerate flotation, which is a combination of oil agglomeration and froth flotation.

  10. Studies of coal structure and extraction by magnetic relaxation techniques. [Quarterly technical progress report, March--May 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-07-01

    NMP-CS{sub 2} extraction of the Argonne Premium coals results in substantial uptake of NMP, apparently H-bonding most extensively to coals for which extraction is most efficient. The solvent mobilization and exposure of free radicals in the molecular and macromolecular parts of the coals leads to preferential loss of apparently more reactive heteroatom-bearing free radicals. The resulting extract and residue free radicals are more predominantly odd-alternate hydrocarbon fire radicals. SLR of these radicals is determined by the angular amplitudes of free radical motion at the resonance frequency that modulates the electron-nuclear dipolar interaction at the CH groups. The strength of the interaction depends on the degree of ring condensation because of its effect on diluting the electron spin density at the CH group.

  11. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report No. 1, September 1--November 30, 1992

    SciTech Connect

    Fuerstenau, D.W.

    1992-12-01

    The objective of the research is the development of improved technology for the preparation of coal-water slurries, which have potential for replacing fuel oil in direct combustion. The fine grinding of coal is a crucial step in the manufacture of coal-water slurries. In this context, currently available grinding mills exhibit poor energy efficiency for size reduction and non-optimum packing characteristics of the ground coal. The first increases the cost of manufacture of coal-water slurries and the second adversely affects their rheological properties. The newly invented choke-fed, high-pressure roll mill is up to 50% more energy efficient and, moreover, there are reasons to believe that it produces a size distribution of ground particles which is closer to the dense packing composition. The high-pressure roll mill (which is perhaps the only really significant innovation in industrial comminution in this century) has lower capital cost, occupies less floor space, shows negligible wear rate, accepts feed with a wide range of moisture contents and, of particular importance, it can be scaled up to grind hundreds of tons of solids per hour. The high-pressure roll mill provides a unique opportunity to develop an improved technology for preparing coal-water slurries. Our research group in the University of California at Berkeley not only has a fully instrumented, laboratory-scale, choke-fed. high-pressure roll mill (the only one of its kind in the United States) but also fully instrumented laboratory ball mills for comparative fine coal preparation purposes. In this research program, our plans are to systematically investigate comminution energy consumption, deagglomeration procedures, and the stability and rheology of coal-water slurry fuel prepared with high-pressure roll mill, and to compare the results with slurry prepared with ball-milled coal.

  12. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    SciTech Connect

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  13. New concept for coal wettability evaluation and modulation. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Hu, Weibai

    1993-12-01

    The ratio of kinetics of capillary rise test between different media is a measure of relative wettability. From table 1, 2 and 3, the Hu`s evaluation of wettability of five samples in the methanol, ethanol and propanol are shown that the kinetic wettability is dependent on the carbon homologous series of alcohol, as shorter the carbon chain of the alcohol, the better surface wettability. The Hu`s evaluation of wettability of H{sub H2O}/H{sub methanol}, H{sub H2O}/H{sub ethanol}, and H{sub H2O}/H{sub propanol} for five samples are listed respectively in table 4, 5 and 6. It indicates that in the water/methanol, water/ethanol, and water/propanol system, Upper Freeport Coal is very little hydrophilicity, or better floatability than Coal Pyrite, it also can be seen that in these system, Pittsburgh No.8 Coal have a little hydrophilicity, or better floatability than Coal pyrite, it would mean that if Methanol, Ethanol, and Propanol are used as flotation collector, coal will be selectively separated from coal pyrite. This has been verified by our investigation elsewhere. The Hu`s evaluation of wettability of H{sub methanol}/H{sub kerosene} for five samples are listed in table 7. It is very interesting to note that the five samples have more methanol-philicity than kerosene. This is very useful for flotation reagents evaluation and selection in practice. The Hu`s evaluation of wettability of H{sub ethanol}/H{sub kerosene} for five samples are listed in table 8. It is indicated that ethanol also can be used as flotation collector. The Hu`s evaluation of wettability H{sub propanol}/H{sub kerosene} for five samples are listed in table 9. It shows that the five samples have lower propanol-philicity than kerosene.

  14. Engineering development of advanced coal-fired low emission boiler systems. Fourth quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    The LEBS plant design will be based on a high-sulfur Illinois No. 6 coal. This coal meets program selection requirements of extensive reserves and production, sulfur content, and representativeness. Two alternate test coals have been selected to examine fuel effects, and to broaden the range of application of the technology being developed. The alternate coals are a medium sulfur, Pittsburgh No. 8 bituminous, and a Wyoming subbituminous coal. The efficiency goals for the LEBS are challenging, particularly with the demands environmental controls are likely to place on auxiliary power. Table 1 shows estimates of overall plant efficiencies for three steam cycles: (1) a 2400 psi subcritical single reheat cycle typical of current plants; (2) a 3500 psi supercritical single reheat cycle; and (3) an advanced 4500 psi double reheat cycle. The plant heat rates are based on maximum boiler efficiency and minimum auxiliary power requirements consistent with conventional plant design for the design and alternate coals. The aggressive efficiency goals clearly require advanced steam conditions, as well as careful management of any added auxiliary power requirements for environmental controls. The EPRI SOAPP (State-of-the-Art Power Plant) project has selected the 4500 psi cycle as maximizing plant efficiency while minimizing generating costs for a commercial plant to be constructed by the year 2000. This program will incorporate the SOAPP base case cycle. The LESS design will incorporate a high-efficiency, once-through boiler design known as the Benson. Significant improvements in availability and operating flexibility have made this boiler design the system of choice for European power generation over the last fifteen years.

  15. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  16. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1991

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1992-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  17. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April--June 1991

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  18. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October--December 1990

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effects that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable.

  19. Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991

    SciTech Connect

    Not Available

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  20. Development and testing of a high efficiency advanced coal combustor Phase III industrial boiler retrofit. Quarterly technical progress report, July 1, 1995--September 30, 1995 No. 16

    SciTech Connect

    Borio, R.W.

    1995-12-15

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the sixteenth quarter (July `95 through September `95) of the program. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components. (2) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4) Economics evaluation of the HEACC concept for retrofit applications. (5) Long term demonstration under commercial user demand conditions.

  1. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, December 1, 1979-February 29, 1980

    SciTech Connect

    Garg, D; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-03-01

    This report describes work done in study of the role of coal minerals and by-product metallic wastes in coal liquefaction. Samples of Elkhorn No. 3 coal (Letcher County, Kentucky), Robena pyrite and several minerals and metallic by-product waste were acquired. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) in the presence of hydrogen, nitrogen and air. The coal process development unit was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. We established that the base line reaction conditions to evaluate the activity of the various minerals, metallic wastes and by-products will be a tubing-bomb reactor of 46.3 ml volume at a reaction temperature of 450/sup 0/C for reaction times of 60 minutes. The reduced pyrite, Robena pyrite and Siniola Mexico pyrite were found to give similar product distribution and coal conversion. The oil production in the cases of reduced pyrite and pyrite was 4 times higher than that of no-catalyst run. Iron oxide (Fe/sub 2/O/sub 3/) was shown to give slightly higher coal conversion and oil production that pyrites and reduced pyrite. Presulfided Co-Mo-Al was found to give the highest coal conversion and oil production. The increase in oil production in the case of Co-Mo-Al was due to the conversion of both asphaltenes and preasphaltenes.

  2. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1991

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1991-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metalbearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  3. Evaluation of hyperbaric filtration for fine coal dewatering. Tenth quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonseca, A.

    1995-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: Phase I, model development; Phase II, laboratory studies; and Phase III, field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in-all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Accomplishments are discussed for all three phases of study.

  4. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  5. Evaluation of hyperbaric filtration for fine coal dewatering. Ninth quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Parekh, B.K.; Leonard, J.W.; Hogg, R.; Fonesca, A.

    1995-04-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consists of three phases, namely: model development; laboratory studies; and field testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. Results to date from all three phases are discussed.

  6. Evaluation of hyperbaric filtration for fine coal dewatering. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases: model development; laboratory studies; and field testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase I and 11 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit. In this report, dewatering model development and laboratory studies are presented.

  7. Evaluation of hyperbaric filtration for fine coal dewatering. Eleventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1995-12-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely Phase I - Model Development, Phase II - Laboratory Studies, Phase III - Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase II, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  8. Evaluation of hyperbaric filtration for fine coal dewatering. Twelfth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-02-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, namely: (1) Phase I Model Development; (2) Phase II Laboratory Studies; and (3) Phase III Field Testing. The Pennsylvania State University is leading efforts in Phase I, the University of Kentucky in Phase 11, and Consol Inc. in Phase III of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase I and II will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April--June 1993

    SciTech Connect

    Song, Chunshan; Parfitt, D.P.; Schobert, H.H.

    1993-08-01

    The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular precursors, that can be used in low concentrations (coals under temperature-programmed conditions. Several heterometallic complexes consisting of two transition metals, Mo and Co, and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous coal (DECS-9) at the loading level of 0.5 wt% Mo on dmmf coal. It was found that the structure of the precursors, in particular the ligands to the metal species, affect the activity of the resulting catalyst significantly. Among the M-M` type precursors tested, Mo-Co thiocubane, Mo{sub 2}Co{sub 2}S{sub 4}(Cp){sub 2}(CO){sub 2} [Cp = cyclopentadiene], designated as MoCo-TC2, produced in-situ the best catalyst The performance of the Mo-Co bimetallic catalyst was further enhanced by using temperature programmed (TPL) conditions consisting of a low temperature soaking at 200{degrees}C, programmed heat-up to 400 or 425{degrees}C followed by a 30 minutes hold. The pro ed heat-up serves as an in-situ activation of catalyst and coal pretreatment, which contributes to more effective hydrogenation of reactive fragments at high temperature.

  10. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report No. 12, June 1, 1995--August 31, 1995

    SciTech Connect

    Fuerstenau, D.W.

    1995-09-01

    The objective of this research is the development of improved technology for the preparation of coal-water slurries that have potential for replacing fuel oil in direct combustion. This should be of major importance to the United States in its efforts to reduce dependence on imported oil and to rely more on its enormous low-cost coal resources. In accordance with this objective, in the first stage of this project, considerable work was conducted to standardize experimental procedures for sample preparation, coal grinding, and Theological measurements to assure reproducibility of the experimental results. Since a Haake RV-12 viscometer with an MV-DIN sensor system was found to give the most reproducible results for measurement of slurry viscosities, it has subsequently been used for all of our Theological measurements. Methods were developed for applying the acoustophoresis technique for studying the electrokinetic behavior of concentrated coal-water suspensions. These measurements were carried out using this technique to identify the potential of chemical additives for functioning as reagents for effective dispersion. Detailed investigations of the effect of solids content and chemical additives on the rheology of coal-water slurries, prepared with fines produced by the ball milling of Pittsburgh No. 8 coal, were conducted during the first phase of our research program. These experiments were to provide a baseline against which the rheological behavior of slurries prepared with fines produced by high-pressure roll milling or hybrid high-pressure roll mill/ball mill grinding could be compared.

  11. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, 1 March 1980-31 May 1980

    SciTech Connect

    Garg, D; Schweighardt, F K; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-06-01

    This report describes work done in a study of the role of coal minerals and by-product metallic wastes in coal liquefaction. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis and differential thermal analysis in the presence of hydrogen, nitrogen, and air. The CPDU was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. A number of minerals were screened for catalytic activity toward coal liquefaction in a tubing-bomb reactor. The catalytic activity of the minerals was assessed by comparing the product distributions both in the presence of minerals and their absence. The use of a Bronson Sonifier was initiated in March to accelerate and improve the solvent separation technique. The addition of lime to the reaction mixture practically killed the liquefaction reaction. The addition of dolomite, rutile, illite, quartz, zircon, and calcite to the reaction mixture showed no significant improvement over that of a no additive run. The addition of zinc oxide and ilmenite showed slight improvement. Robena pyrite and Co-Mo-Al showed significant improvement in coal conversion and production of benzene solubles and gases. Iron oxide (Fe/sub 2/O/sub 3/) gave the highest conversion of coal and production of benzene solubles among all the minerals tested so far.

  12. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  13. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, September 1, 1985-November 30, 1985

    SciTech Connect

    Eisch, J.J.

    1986-01-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. During the fifth quarter of this three-year grant the following phases of this study received particular attention: (a) the principal investigator completed his three-month period as visiting scientist at Cornell University, October 1 to December 31, 1985, with Professor Roald Hoffmann on the topic of Extended Hueckel Molecular Orbital calculations of organometallic structure; (b) final gas evolution studies between LiAlH/sub 4/ and bipyridyl(1,5-cyclooctadiene) nickel have been made and the related manuscript written for publication; (c) gas evolution studies between diisobutylaluminum hydride and phosphine complexes of Pt(0) and Ni(0) have been undertaken, as part of our trying to understand how powerful reducing agents can be generated from such combinations; (d) hydrogen shuttling studies continue between dihydroaromatic hydrocarbons and Ni(0) complexes; (e) studies on the cleavage of benzylic C-C bonds by Ni(0) and Cr(0) complexes are being intensified; and (f) attempts are being made to isolate crystalline samples of several organonickel intermediates in the foregoing cleavage reactions, so that x-ray structure determinations can be carried out.

  14. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  15. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  16. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, June 1, 1980-August 31, 1980

    SciTech Connect

    Garg, D; Givens, E N; Schweighardt, F K; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, W J; Shridharani, K

    1980-09-01

    Additional data on the pyrite catalysis of liquefaction of Elkhorn number 3 coal are presented. The liquefaction of Elkhorn number 3 coal was significantly catalyzed by the presence of pyrite. Coal conversion, oil yield and preasphaltene conversion all increased when pyrite was added. An increase in hydrocarbon gas make accompanied by a higher hydrogen consumption were also observed. The higher activity in the presence of pyrite could be utilized by running the liquefaction step at milder conditions which would mean a lower gas make. Although we had heard reports that sulfur elimination from the SRC was improved by use of pyrite, our data showed only very small changes. Nitrogen removal from the solvent, however, was definitely observed. At 850/sup 0/F nitrogen in the oil product went from 1.61 to 1.12 on adding pyrite. This increased nitrogen removal was also seen in the added ammonia yields. Kentucky number 9 coal also responded very well to the presence of pyrite. Conversions and oil yields increased while the hydrocarbon yields decreased at both temperatures that were tested, i.e., 825 and 850/sup 0/F. Hydrogen consumptions also increased. In the screening program the results from testing a number of materials are reported. None of the zeolites gave any significant improvement over coal itself. The iron, molybdenum, nickel, and cobalt rich materials had significant activity, all 85 to 90% conversion with high oil yields.Among materials specifically reported this period the clays failed to show any significant catalytic effect.

  17. Determination of local radiative properties in coal-fired flames. Technical progress report, September 15, 1987--September 15, 1988

    SciTech Connect

    Menguec, M.P.; Agarwal, B.; Bush, M.; Dsa, D.; Subramaniam, S.

    1988-12-31

    Recently, an extensive, in-depth review of the modeling of radiation heat transfer in combustion chambers has been prepared (Viskanta and Menguc, 1987); therefore, there is no need to repeat that material here. It is already known that the most important missing link in the prediction of radiation heat transfer in combustion systems is the lack of detailed information about the optical and physical properties of combustion products (Viskanta and Menguc, 1987). The purpose of this research is to determine the radiative properties of coal particles. Considering the uncertainty in the fundamental optical and physical properties of coal particles, such as complex index of refraction, size, size distribution, and shape, it is difficult to predict the radiative properties of particles using available analytical methods, such as Lorenz-Mie theory. For a better understanding of radiation and radiation/combustion or radiation/turbulence interactions, it is preferable to determine the radiative properties in situ.

  18. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    SciTech Connect

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  20. An Advanced Control System for Fine Coal Flotation. Sixth quarter, technical progress report, July 1-September 30, 1997

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-10-27

    Over the past thirty years, process control has spread from the chemical industry into the fields of mineral and coal processing. Today, process control computers, combined with improved instrumentation, are capable of effective control in many modem flotation circuits. Unfortunately, the classical methods used in most control strategies have severe limitations when used in froth flotation. For example, the nonlinear nature of the flotation process can cause single-input, single-output lines to battle each other in attempts to achieve a given objective. Other problems experienced in classical control schemes include noisy signals from sensors and the inability to measure certain process variables. For example, factors related to ore type or water chemistry, such as liberation, froth stability, and floatability, cannot be measured by conventional means. The purpose of this project is to demonstrate an advanced control system for fine coal flotation. The demonstration is being carried out at an existing coal preparation plant by a team consisting of Virginia Polytechnic Institute and State University (VPI&SU) as the prime contractor and J.A. Herbst and Associates as a subcontractor. The objectives of this work are: (1) to identify through sampling, analysis, and simulation those variables which can be manipulated to maintain grades, recoveries, and throughput rates at levels set by management; (2) to develop and implement a model-based computer control strategy that continuously adjusts those variables to maximize revenue subject to various metallurgical, economic, and environmental constraints; and (3) to employ a video-based optical analyzer for on-line analysis of ash content in fine coal slurries.

  1. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    SciTech Connect

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  2. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January to April 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal solid processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.This study is organized into four major Tasks. Task 1 and 2 were devoted to planning the Task 3 field study. Task 4 uses the results of the field testing to produce an Engineering Design Manual for the utilities and industrial users who manage wastes from advanced coal combustion technologies.

  3. Control of trace metal emissions during coal combustion. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to reduce the amount of metal volatilization during combustion and capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  4. Control of trace metal emissions during coal combustion. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Ho, T.C.

    1995-07-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor.

  5. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  6. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 8, January 1996--March 1996

    SciTech Connect

    Rozelle, P.

    1997-12-31

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken by the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation facility that will produce a low-ash, double sized stoker coal for burning in a typical traveling-gate stoker.

  7. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989

    SciTech Connect

    1989-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

  8. Fluid dynamics of pressurized, entrained coal gasifiers. Tenth quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Louge, M.Y.

    1996-10-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena Re erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle -rather than discard- gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-up on the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements.

  9. Toxic substances from coal combustion -- a comprehensive assessment. Quarterly technical progress report, 1 April 1996--30 June 1996

    SciTech Connect

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.

    1996-07-01

    Before electric utilities can plan or implement emissions minimization strategies for hazardous pollutants, they must have an accurate and site-specific means of predicting emissions in all effluent streams for the broad range of fuels and operating conditions commonly utilized. Development of a broadly applicable emissions model useful to utility planners first requires a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion (specifically in Phase I, As, Se, Cr, and possibly Hg). PSI Technologies (PSIT) and its team members will achieve this objective through the development of an {open_quotes}Engineering Model{close_quotes} that accurately predicts the formation and partitioning of toxic species as a result of coal combustion. The {open_quotes}Toxics Partitioning Engineering Model{close_quotes} (ToPEM) will be applicable to all conditions including new fuels or blends, low-NO{sub x} combustion systems, and new power systems being advanced by DOE in the Combustion 2000 program. This report describes the mineralogy and chemical analysis of bituminous coal samples.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--July 1992

    SciTech Connect

    Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

    1992-08-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS {sup 13}C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425{degree}C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.