Science.gov

Sample records for coalbed methane

  1. The basics of coalbed methane

    SciTech Connect

    2006-12-15

    The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

  2. Method for removal of methane from coalbeds

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  3. Coalbed methane production case histories

    SciTech Connect

    Not Available

    1981-02-01

    The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

  4. Exploration for coalbed methane gains momentum in Uinta basin

    USGS Publications Warehouse

    Gloyn, Robert W.; Sommer, Steven N.

    1993-01-01

    A development program is planned, and at least three other companies are exploring for coalbed methane in the surrounding area. Estimates have been revised by the Utah Geological Survey for the coalbed methane potential of the southern Uinta basin. They are 8 tcf to more than the earlier estimates of 0.8-4.6 tcf.

  5. Coal-bed methane resources in Arkoma basin, southeastern Oklahoma

    SciTech Connect

    Friedman, S.A. )

    1989-08-01

    A major federal tax incentive for unconventional gas production has interested entrepreneurs, geologists, and engineers in the occurrence and distribution of coal-bed methane resources in the Arkoma basin. Because the methane is trapped in coal beds, geology of the coal resources also has received renewed attention. The Arkoma basin contains most of the coal-bed methane resources in Oklahoma: 76% of the 7.9 billion short tons of the remaining, identified Middle Pennsylvanian coal resources of the state. This paper briefly reviews previous estimates of coal-bed methane resources in Oklahoma and presents an updated estimate for Haskell and LeFlore Counties and a new estimate for Latimer County. Rieke and Kirr indicated that 2.8 tcf of coal-bed methane is present in 10 coals in eight Oklahoma counties of the Arkoma basin, 500-3,000 ft deep. Iannacchione and Puglio estimated that a maximum of 1.5 tcf of coal-bed methane occurs in the Hartshorne coals in Haskell and LeFlore Counties from 500-3,000 ft deep. The present investigation shows that the Hartshorne and 11 other coals contain at least 1.8 tcf of coal-bed methane resources, based on identified coal resources 500-3,000 ft deep in Haskell, Latimer, and LeFlore Counties. An additional 1.2 tcf of coal-bed methane resources occur in the Hartshorne and four other coals from 3,000-7,000 ft deep, based on assumed stratigraphic and thickness continuity. Thus, a revised estimate indicates that Haskell, Latimer, and LeFlore Counties alone contain about 3 tcf of coal-bed methane resources in 12 coal beds from 500-7,000 ft deep. Undoubtedly additional coal-bed methane resources are present in the westernmost part of the Arkoma basin.

  6. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  7. Raton basin coalbed methane production picking up in Colorado

    USGS Publications Warehouse

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  8. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  9. Coalbed methane reservoir characterization using magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Makhatova, Meruyert; Kalbekov, Arkhat; Baibussinova, Zhanar; Moldagereyeva, Anel

    2016-04-01

    This research describes a study of the dependence of the magnetic susceptibility (MS) and permeability as a new approach for coalbed methane (CBM) reservoir characterization. Experimental measurements were undertaken in coal cores from Kazakhstan (Karaganda Basin). The well sections containing coal are the area of high interest where regular deposition of sandstone, shale and coal is observed. The MS measurements were made by the core logging sensor with the sensitive area of the probe providing volume magnetic susceptibility values. Permeability has been determined by air permeameter. Both magnetic susceptibility and permeability have been measured at the same points. The obtained values of permeability and magnetic susceptibility exhibit the predicted pattern of deposition of reservoir rocks. Coal reservoirs generally is spaced between shale layers with extremely high MS values and highly low permeability. Sandstone with shale interlayers tends to be a transition area between shale and coal. Such tendency appears within several sections. The experimental results showed a strong correspondence between measured magnetic susceptibility and permeability of coal core samples. Therefore, inverse proportionality between magnetic susceptibility and permeability is observed. Generally, the high values of magnetic susceptibility correspond to low permeability, likewise the low diamagnetic MS values comply with high permeability of production zones. In a point of fact, linear proportionality appears as well due to fractures. In this case, permeability must be recalculated in relation to degree of fracturing. Magnetic susceptibility results could sometimes be affected by small content of ferrimagnetic minerals that resulted in high MS values. However, MS data demonstrated good correlations with permeability. The application of magnetic susceptibility values for coalbed methane reservoir characterization could be a non-destructive and rapid method potentially used in both

  10. Exploiting coalbed methane and protecting the global environment

    SciTech Connect

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  11. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H., Jr.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to

  12. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  13. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  14. Raton basin coalbed methane production picking up in Colorado

    SciTech Connect

    Hemborg, H.T.

    1996-11-11

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has advanced past pilot testing and is entering into a development stage that should stretch out over several years. At last count 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin`s Raton and Vermejo formation coals (Early Paleocene to Latest Maastrichtian). This development work is currently restricted to roughly a 25 mile by 15 mile wide ``fairway`` centered about 20 miles west of Trinidad, Colo., in the headwater area of the Purgatoire River. The paper discusses the companies involved in the basin development, geology of the coal seam, and water disposal from coal seam dewatering.

  15. Coalbed methane exploration in the Lorraine Basin, France

    SciTech Connect

    Michaud, B.; Briens, F.; Girdler, D.

    1995-08-01

    DuPont Conoco Hydrocarbures has been involved in a Coalbed Methane (CBM) project in France since 1991. Coalbed methane exploration differs noticeably in several aspects from conventional oil and gas exploration. This paper is divided in three parts and discusses some geological, reservoir and drilling considerations relevant to the exploration and appraisal of a coalbed methane prospect. The first part presents geological issues such as data collection and evaluation of its associated value, building expertise to create a geological and geophysical model integrating the work of a multidisciplinary team, and assessing uncertainties of the data interpretation. A short review of the basin activity, geological and tectonic setting, and environment aspects is presented in order to illustrate some CBM exploration issues. The second part describes a comprehensive coalbed methane reservoir data acquisition program incorporating coal sample optical and chemical analyses, gas sample chromatography, canister desorption, fracture density of coal cores, and measurement of in-situ coal permeability and bounding-strata stress. Field practical concerns are then discussed such as on-site and off-site canister desorption, gas sample collection, rapid estimation of gas content, ash content, total bed moisture, and finally well testing alternatives for permeability and rock stress determination. The third part reviews drilling issues such as drilling and coring options for core hole size and casing size, rig site equipment requirements for continuous coring operations, including mud treatment equipment, core handling material and core work stations, alliance of national and foreign drilling contractors to optimize equipment and experience, and finally overview of coring procedures to identify best practices for pending operations. The paper is derived from Conoco`s experience in CBM exploration in the Lorraine Basin, North East of France.

  16. Central-northern Appalachian coalbed methane flow grows

    SciTech Connect

    Lyons, P.C.

    1997-07-07

    Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

  17. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single

  18. Exploration for coalbed methane starts up in northwestern Nova Scotia

    SciTech Connect

    Sakashita, B.J. )

    1993-03-29

    A consortium of three Canadian companies and a U.S. firm, Resources Enterprises Inc. (REI), Salt Lake City, has been awarded the rights for coalbed methane gas exploration on 250,000 acres in the Cumberland basin of Nova Scotia, Canada. The license agreement requires that geological and engineering studies be performed during 1993 to select exploratory well locations. Three slimhole wells must be drilled by yearend 1994, and three production test wells must be completed by yearend 1995. The paper describes the Cumberland basin exploration license; market outlets for the methane; and geothermal potential of the Cumberland basin in combination with dewatering the coal seam.

  19. Coalbed methane resources of the Appalachian Basin, eastern USA

    USGS Publications Warehouse

    Milici, Robert C.; Hatch, Joseph R.; Pawlewicz, Mark J.

    2010-01-01

    In 2002, the U.S. Geological Survey (USGS) assessed the technically recoverable, undiscovered coalbed-gas resources in the Appalachian basin and Black Warrior basin Assessment Provinces as about 15.5 trillion cubic feet. Although these resources are almost equally divided between the two areas, most of the production occurs within relatively small areas within these Provinces, where local geological and geochemical attributes have resulted in the generation and retention of large amounts of methane within the coal beds and have enhanced the producibility of the gas from the coal. In the Appalachian basin, coalbed methane (CBM) tests are commonly commercial where the cumulative coal thickness completed in wells is greater than three meters (10 ft), the depth of burial of the coal beds is greater than 100 m (350 ft), and the coal is in the thermogenic gas window. In addition to the ubiquitous cleating within the coal beds, commercial production may be enhanced by secondary fracture porosity related to supplemental fracture systems within the coal beds. In order to release the methane from microporus coal matrix, most wells are dewatered prior to commercial production of gas. Two Total Petroleum Systems (TPS) were defined by the USGS during the assessment: the Pottsville Coal-bed gas TPS in Alabama, and the Carboniferous Coal-bed Gas TPS in Pennsylvania, Ohio, West Virginia, eastern Kentucky, Virginia, Tennessee, and Alabama. These were divided into seven assessment units, of which three had sufficient data to be assessed. Production rates are higher in most horizontal wells drilled into relatively thick coal beds, than in vertical wells; recovery per unit area is greater, and potential adverse environmental impact is decreased.

  20. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  1. Biogeochemistry of Microbial Coal-Bed Methane

    NASA Astrophysics Data System (ADS)

    Strąpoć, Dariusz; Mastalerz, Maria; Dawson, Katherine; Macalady, Jennifer; Callaghan, Amy V.; Wawrik, Boris; Turich, Courtney; Ashby, Matthew

    2011-05-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal.

  2. Biogeochemistry of microbial coal-bed methane

    USGS Publications Warehouse

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  3. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect

    Hunt, A.M. )

    1991-08-01

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  4. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  5. Coalbed methane could cut India`s energy deficit

    SciTech Connect

    Kelafant, J.; Stern, M.

    1998-05-25

    Foreign interest in upcoming Indian coalbed methane (CBM) concession rounds will depend on prospect quality, fiscal regime attractiveness, and perceptions interested parties will have concerning the government`s willingness to promote development. The more liberal tax and royalty provisions for foreign producers announced by the ministry of Petroleum and Natural Gas indicate that India is interested in attracting international CBM investments. This article examines the potential for developing the country`s large CBM resource base, estimated between 30 tcf (250 billion cu m) and 144 tcf (4 trillion cu m) of gas. It also provides an overview of the current contractual and regulatory framework governing CBM development.

  6. Central-northern Appalachian coalbed methane flow grows

    USGS Publications Warehouse

    Lyons, Paul C.

    1997-01-01

    Coalbed methane (CBM) has become an increasingly important source of unconventional natural gas in the US within a span of a decade. In 1995, nearly 144 bcf of CBM was produced in the Appalachian basin at a value of about $260 million. From 1992 to 1995, CBM production in the central northern Appalachian basin quadrupled to nearly 31.3 bcf/year at a value of over $55 million, which represents only about 0.2% of the estimated technically recoverable CBM resource. Legal aspects of CBM ownership and environmental problems such as water disposal will become important issues to resolve in the various Appalachian states.

  7. Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems

    SciTech Connect

    Komar, C.A.

    1980-01-01

    This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

  8. Coal-bed methane water effects on dill and essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  9. The effect of coal-bed methane water on spearmint and peppermint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coal bed methane (CBM) is extracted from underground coal seams, flooded with water. In order to reduce the pressure and release the methane, the trapped water needs to be pumped out. The resulting ‘waste water’ is known as coal-bed methane water (CBMW). Major concerns with the use of CBMW are the h...

  10. Coalbed-methane pilots - timing, design, and analysis

    SciTech Connect

    Roadifer, R.D.; Moore, T.R.

    2009-10-15

    Four distinct sequential phases form a recommended process for coalbed-methane (CBM)-prospect assessment: initial screening reconnaissance, pilot testing, and final appraisal. Stepping through these four phases provides a program of progressively ramping work and cost, while creating a series of discrete decision points at which analysis of results and risks can be assessed. While discussing each of these phases in some degree, this paper focuses on the third, the critically important pilot-testing phase. This paper contains roughly 30 specific recommendations and the fundamental rationale behind each recommendation to help ensure that a CBM pilot will fulfill its primary objectives of (1) demonstrating whether the subject coal reservoir will desorb and produce consequential gas and (2) gathering the data critical to evaluate and risk the prospect at the next-often most critical-decision point.

  11. Coalbed methane produced water in China: status and environmental issues.

    PubMed

    Meng, Yanjun; Tang, Dazhen; Xu, Hao; Li, Yong; Gao, Lijun

    2014-01-01

    As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In the USA, Canada, and Australia, much research has been done on the effects and management of coalbed methane produced water (CMPW). However, in China, the environmental effects of CMPW were overlooked. The quantity and the quality of CMPW both vary enormously between coal basins or stratigraphic units in China. The unit produced water volume of CBM wells in China ranges from 10 to 271,280 L/well/day, and the concentration of total dissolved solids (TDS) ranges from 691 to 93,898 mg/L. Most pH values of CMPW are more than 7.0, showing the alkaline feature, and the Na-HCO3 and Na-HCO3-Cl are typical types of CMPW in China. Treatment and utilization of CMPW in China lag far behind the USA and Australia, and CMPW is mainly managed by surface impoundments and evaporation. Currently, the core environmental issues associated with CMPW in China are that the potential environmental problems of CMPW have not been given enough attention, and relevant regulations as well as environmental impact assessment (EIA) guidelines for CMPW are still lacking. Other potential issues in China includes (1) water quality monitoring issues for CMPW with special components in special areas, (2) groundwater level decline issues associated with the dewatering process, and (3) potential environmental issues of groundwater pollution associated with hydraulic fracturing. PMID:24599657

  12. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  13. Montana's Coalbed Methane Ground-Water Monitoring Program: Year One

    NASA Astrophysics Data System (ADS)

    Wheaton, J. R.; Smith, M.; Donato, T. A.; Bobst, A. L.

    2003-12-01

    Tertiary coal seams in the Powder River Basin in southeastern Montana provide three very important resources: ground water, coal, and natural gas. Ground water from springs and wells is essential for the local agricultural economy. Because coal seams in the Fort Union Formation have higher hydraulic conductivity values and are more continuous than the sandstone units, they are the primary aquifers in this region. Coalbed methane (CBM) production is beginning in the Powder River Basin, and requires removal and management of large quantities of water from the coal-seam aquifers. The extensive pumping required to produce the methane is expected to create broad areas of severe potentiometric decline. The Montana CBM ground-water monitoring program, now in place, is based on scientific concepts developed during more than 30 years of coal-mine hydrogeology research. The program includes inventories of ground-water resources and regular monitoring at dedicated wells and selected springs. The program is now providing baseline potentiometric and water-quality data, and will continue to be active through the duration of CBM production and post-production ground-water recovery. An extensive inventory of ground-water resources in the Montana portion of the Powder River Basin has located 300 springs and 21 wells on private land, and 460 springs and 21 wells on U. S. Forest Service and U. S. Bureau of Land Management land, all producing ground water from the methane bearing strata. In southeastern Montana, 134 monitoring wells are currently included in the CBM monitoring program. They are completed either in coal seams, adjacent sandstone units, or alluvium. During the coal boom of the 1970's and 1980's many monitoring wells were drilled, but most have been since unused. Thirty-six of these existing wells have now been returned to service to decrease start-up costs for the CBM program. This network of existing wells has been augmented at key sites with 26 new wells drilled

  14. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs

  15. Results from Coalbed Methane Drilling in Winn Parish, Louisiana

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton, Jr.; Richard, Troy E.; Ross, Kirk

    2007-01-01

    A coalbed methane (CBM) well in Winn Parish, Louisiana, named CZ Fee A No. 114, was drilled by Vintage Petroleum, Inc., in January 2004. The CZ Fee A No. 114 CBM well was drilled to a total depth of 3,114 ft and perforated at 2,730-2,734 ft in a Wilcox Group (Paleocene-Eocene) coal bed. Analytical data from the drilling project have been released by Vintage Petroleum, Inc., and by the current well operator, Hilcorp Energy Corporation (see Appendix) to the Louisiana Geological Survey (LGS) and the U.S. Geological Survey (USGS) for publication. General information about the CZ Fee A No. 114 CBM well is compiled in Table 1, and analytical data from the well are included in following sections. The CZ Fee A No. 114 well is located in eastern Winn Parish, approximately 30 mi east of where Wilcox Group strata crop out on the Sabine Uplift (fig. 1). In the CZ Fee A No. 114 well, lower Wilcox Paleocene coal beds targeted for CBM production occur at depths of 2,600-3,000 ft (fig. 2). Average monthly gas production for the reporting period August 1, 2004, through May 1, 2005, was 450 thousand cubic feet (Mcf) (Louisiana Department of Natural Resources, 2005).

  16. Technology spurs growth of U.S. coalbed methane

    SciTech Connect

    Stevens, S.H.; Kuuskraa, J.A.; Schraufnagel, R.A.

    1996-01-01

    Since the late 1980s, more than $2 billion in capital investments and continued technological advances have harnessed an entirely new source of natural gas -- coalbed methane (CBM). From its roots as an experimental coal mine degasification method, the CBM industry today has grown into significant component of US natural gas supply. This report, the second of a four part series assessing unconventional gas development in the US, examines the state of the CBM industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. Parts of the industry believed that CBM was largely a tax credit play that would die out once supports were removed. Now that several years have passed, however, it is becoming clear that the CBM industry has legs sturdy enough to carry it into the 21st century without special tax breaks. This article presents the post 1992 drilling and production data, coupled with detailed assessments of specific CBM projects, which together paint a portrait of a CBM industry that overall continues to thrive without tax credits, thanks to improving E and P technology and continued identification of favorable reservoir settings.

  17. Alaska coal geology, resources, and coalbed methane potential

    SciTech Connect

    Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

    2005-11-15

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

  18. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview

    USGS Publications Warehouse

    Pashin, J.C.

    1998-01-01

    Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a

  19. Methane recovery from coalbeds project. Monthly progress report

    SciTech Connect

    Not Available

    1980-11-01

    Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

  20. The analysis of the factors effect on coalbed methane pool concentration and high-production -- The North China coalbed methane districts as an example

    SciTech Connect

    Wang Shengwei; Zhang Ming; Zhuang Xiaoli

    1997-12-31

    The factors which affect coalbed methane (CBM) pool concentration and high-production based upon the exploration and research of the North China CBM districts are coal facies, coal rank and metamorphic types, structural features, the surrounding rocks and their thickness, and hydrogeological conditions. Coal facies, coal rank and their metamorphic types mainly affect the CBM forming characteristic, while the other factors effect the trap of CBM pool. The interaction of the above factors determines the petrophysics of coal reservoirs and extractability of CBM. The high-production areas where CBM pools develop well in North China CBM districts are sites which have a favorable coordination of the five factors. The poor-production areas where CBM pools are undeveloped in North China are caused by action of one or more unfavorable factors. Therefore the favorable factors coordination is the prerequisite in selecting sites for coalbed methane recovery.

  1. Chemistry of trace elements in coalbed methane product water.

    PubMed

    McBeth, Ian; Reddy, Katta J; Skinner, Quentin D

    2003-02-01

    Extraction of methane (natural gas) from coal deposits is facilitated by pumping of aquifer water. Coalbed methane (CBM) product water, produced from pumping ground water, is discharged into associated unlined holding ponds. The objective of this study was to examine the chemistry of trace elements in CBM product water at discharge points and in associated holding ponds across the Powder River Basin, Wyoming. Product water samples from discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. Samples were analyzed for pH, Al (aluminum), As (arsenic), B (boron), Ba (barium), Cr (chromium), Cu (copper), F (fluoride), Fe (iron), Mn (manganese), Mo (molybdenum), Se (selenium), and Zn (zinc). Chemistry of trace element concentrations were modeled with the MINTEQA2 geochemical equilibrium model. Results of this study show that pH of product water for three watersheds increased in holding ponds. For example the pH of CBM product water increased from 7.21 to 8.26 for LPR watershed. Among three watersheds, the CBM product water exhibited relatively less change in trace element concentrations in CHR watershed holding ponds. Concentration of dissolved Al, Fe, As, Se, and F in product water increased in BFR watershed holding ponds. For example, concentration of dissolved Fe increased from 113 to 135 microg/L. Boron, Cu, and Zn concentrations of product water did not change in BFR watershed holding ponds. However, concentration of dissolved Ba, Mn, and Cr in product water decreased in BFR watershed holding ponds. For instance, Ba and Cr concentrations decreased from 445 to 386 microg/L and from 43.6 to 25.1 microg/L, respectively. In the LPR watershed, Al, Fe, As, Se, and F concentrations of product water increased substantially in holding ponds. For example, Fe concentration increased from 192 to 312 microg/L. However, concentration of

  2. Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?

    ERIC Educational Resources Information Center

    Duncan, Michael B.

    2010-01-01

    Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…

  3. Coalbed methane: A partial solution to Indonesia`s growing energy problems

    SciTech Connect

    Murray, D.K.; Gold, J.P.

    1995-04-01

    Indonesia contains the largest resources of coal in Southeast Asia. Indonesian scientists estimate that the in-place coalbed methane resource in 16 onshore basins is about 213 Tcf ({approximately}6 Tcm). This volume is approximately double Indonesia`s current reserves of natural gas. Indonesia is a rapidly industrializing nation of 186 million people, of which 111 million live in Java and 38 million in Sumatra. As industrialization progresses from the present low level, the growth in energy demand will be very rapid. Indonesia`s domestic gas demand is expected to increase form 1.6 Bcf/d (0.05 Bcm/d) in 1991 to 5.7 Bcf/d (0.2 Bcm/d) in 2021. Because the major gas resources of East Kalimantan, North Sumatra, and Natuna are so remote from the main consuming area in northwest Java and are dedicated for export by virtue of the national energy policy, the need is becoming urgent to develop new resources of natural gas, including coalbed methane, for the domestic market. Due to the high geothermal gradient, the coal deposits in the back-arc basins of Sumatra and Java are expected to be of higher than normal rank at depths favorable for coalbed methane production. The oil- and gas-productive Jatibarang sub-basin in northwest Java, with estimated in-place resources of coalbed methane in excess of 20 Tcf (0.6 Tcm), is considered to be the most prospective area in Indonesia for the near-term development of coalbed methane. This area includes Jakarta and vicinity, the most populous and most heavily industrialized part of Indonesia.

  4. Method for Determining the Coalbed Methane Content with Determination the Uncertainty of Measurements

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Korzec, Marek

    2016-06-01

    Methane has a bad influence on safety in underground mines as it is emitted to the air during mining works. Appropriate identification of methane hazard is essential to determining methane hazard prevention methods, ventilation systems and methane drainage systems. Methane hazard is identified while roadways are driven and boreholes are drilled. Coalbed methane content is one of the parameters which is used to assess this threat. This is a requirement according to the Decree of the Minister of Economy dated 28 June 2002 on work safety and hygiene, operation and special firefighting protection in underground mines. For this purpose a new method for determining coalbed methane content in underground coal mines has been developed. This method consists of two stages - collecting samples in a mine and testing the sample in the laboratory. The stage of determining methane content in a coal sample in a laboratory is essential. This article presents the estimation of measurement uncertainty of determining methane content in a coal sample according to this methodology.

  5. Challenges in assessment, management and development of coalbed methane resources in the Powder River Basin, Wyoming

    SciTech Connect

    McGarry, D.E.

    2000-07-01

    Coalbed methane development in the Powder River Basin has accelerated rapidly since the mid-1990's. forecasts of coalbed methane (CBM) production and development made during the late 1980's and early 1990's have proven to be distinctly unreliable. Estimates of gas in place and recoverable reserves have also varied widely. This lack of reliable data creates challenges in resource assessment, management and development for public resource management agencies and the CBM operators. These challenges include a variety of complex technical, legal and resource management-related issues. The Bureau of Land Management's Wyoming Reservoir Management Group (WRMG) and US Geological Survey (USGS), with the cooperation and assistance of CBM operators and other interested parties have initiated cooperative studies to address some of these issues. This paper presents results of those studies to date and outlines the agencies' goals and accomplishments expected at the studies' conclusion.

  6. Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None

    SciTech Connect

    Verrips, A.M.; Gustavson, J.B.

    1987-04-01

    In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

  7. The role of ownership in environmental performance: evidence from coalbed methane development.

    PubMed

    Fitzgerald, Timothy

    2013-12-01

    One way coalbed methane production differs from traditional oil and gas extraction is in the large quantities of produced water. This water must be disposed of for production to occur. Surface discharge has proven to be a low-cost alternative; regulations are in place to protect surface water quality. This paper investigates the effects of alternative ownership regimes on regulatory compliance. A unique dataset linking coalbed methane wells in Wyoming to water disposal permit violations is used to explore differences in environmental performance across severed and unified minerals. Empirical analysis of these data suggest that ownership does impact environmental compliance behavior. Most violations occur on split estate. Federal split estate wells have more severe violations, though not necessarily more of them. Federal unified wells performed best, with fewer and less serious violations. Wells on private land have more, though not necessarily more severe, violations. These results suggest some room for policy proposals accounting for alternative ownership regimes. PMID:24104729

  8. Coal-bed methane in Utah, New Mexico, Colorado, and Wyoming: Resources, reserves, and production

    SciTech Connect

    Sommer, S.N. ); DeBruin, R.H. ); Tremain, C.M. ); Whitehead, N.H. III )

    1993-08-01

    Coal-bed methane reserves of 10 tcf, in-place resources up to 250 tcf, and dramatically increased production rates from Cretaceous and Tertiary formations affirm the importance of the Rocky Mountain gas province well into the 21st century. These resources have been calculated for the individual states and basins using a variety of criteria and methods and the resource numbers are not necessarily comparable. The Book Cliffs, Emery, Wastach Plateau, Kaiparowits Plateau, and Sego coal fields in Utah contain a coal-bed methane resource of 10.4 tcf. The Book Cliffs and Emery coal fields contain 8.3 tcf or 80% of this resource. The San Juan basin, New Mexico and Colorado, has 10 tcf (reserves), 40 tcf (resources) in the Fruitland Formation, and 28 tcf (resources) in the Menefee Formation. The Raton basin, Colorado and New Mexico, has 10.2 tcf of resources in the Raton and Vermejo Formations. The Piceance and Sand Wash basins in Colorado have estimated resources of more than 96 tcf. The Powder River, Green River, Hams Fork, Wind River, Hanna, Rock Creek, and Bighorn coal fields in Wyoming have resources of 54.4 tcf. The Powder River, Wind River, Green River, and Hams Fork coal fields contain 87% of this resource. In August, 1992, coal-bed methane production accounted for 49% of all gas produced from the San Juan basin (New Mexico) and 30% of all New Mexico production. For 1991, coal-bed methane production in Colorado from the San Juan and Piceance basins was 16% of all Colorado gas production.

  9. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  10. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  11. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  12. Organic petrography of coals from a coalbed methane test well, Ouachita Parish, Louisiana

    SciTech Connect

    Paul C. Hackley; Peter D. Warwick

    2005-07-01

    In March 2003, the U.S. Geological Survey, the Louisiana Geological Survey, and EnerVest Management Partners Ltd. participated in a Cooperative Research and Development Agreement (CRADA) to drill and core the Fairbanks Real Estate No. 359 (FRE No. 359) coalbed methane test well in Ouachita Parish, Louisiana. This effort was in support of ongoing U.S. Geological Survey investigations into the coal gas potential of the Gulf Coastal Plain. To determine possible relationships between coalbed gas content and coal composition, maceral modes were determined for 17 subsurface coal and carbonaceous shale samples cored and desorbed from the Paleocene-Eocene Wilcox Group. Similar determinations of maceral mode were made on cuttings collected from 5 non-cored coaly intervals in the overlying Eocene Sparta Sand. 22 refs., 11 figs., 3 tabs.

  13. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  14. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton, Jr.; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  15. A review on recent advances in the numerical simulation for coalbed-methane-recovery process

    SciTech Connect

    Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V.

    2007-12-15

    The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

  16. Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995

    SciTech Connect

    Penny, G.S.; Conway, M.W.

    1996-02-01

    The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

  17. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  18. The Republic of the Philippines coalbed methane assessment: based on seventeen high pressure methane adsorption isotherms

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.

    2006-01-01

    Introduction: The Republic of the Philippines has some 19 coal districts that contain coal deposits ranging from Eocene to Pleistocene in age. These coal districts include: (1) Catanduanes (Eocene); (2) Cebu, Zamboanga Sibuguey, Bukidnon, Maguindanao, Sarangani, and Surigao (Oligocene to Miocene); (3) Batan Island, Masbate, Semirara (including Mindoro), and Quezon-Polilio (lower-upper Miocene); (4) Davao, Negros, and Sorsogon (middle-upper Miocene); (5) Cotabato (lower Miocene-lower Pliocene), Cagayan-Isabella, and Quirino (upper Miocene-Pliocene); (6) Sultan Kudarat (upper Miocene-Pleistocene); and (7) Samar-Leyte (lower Pliocene-Pleistocene). In general, coal rank is directly related to the age of the deposits - for example, the Eocene coal is semi-anthracite and the Pliocene-Pleistocene coal is lignite. Total coal resources in these 19 coal districts, which are compiled by the Geothermal and Coal Resources Development Division (GCRDD) of the Department of Energy of the Philippines, are estimated at a minimum of 2,268.4 million metric tonnes (MMT) (approximately 2.3 billion metric tones). The largest resource (550 MMT) is the subbituminous coal in the Semirara (including Mindoro) coal district, and the smallest (0.7 MMT) is the lignite-subbituminous coal in the Quirino coal district. The combined lignite and subbituminous coal resources, using the classification by GCRDD and including Semirara and Surigao coal districts, are about 1,899.2 MMT, which make up about 84 percent of the total coal resources of the Philippines. The remaining resources are composed of bituminous and semi-anthracite coal. The subbituminous coal of Semirara Island in the Mindoro- Semirara coal district (fig. 2) is known to contain coalbed methane (CBM), with the coal being comparable in gas content and adsorption isotherms to the coal of the Paleocene Fort Union Formation in the Powder River Basin in Wyoming, USA (Flores and others, 2005). As a consequence, the presence of CBM in the

  19. Source and Cycling of Trace Metals and Nutrients in a Microbial Coalbed Methane System

    NASA Astrophysics Data System (ADS)

    Earll, M. M.; Barnhart, E. P.; Ritter, D.; Vinson, D. S.; Orem, W. H.; Vengosh, A.; McIntosh, J. C.

    2015-12-01

    The source and cycling of trace metals and nutrients in coalbed methane (CBM) systems are controlled by both geochemical processes, such as dissolution or precipitation, and biological mediation by microbial communities. CBM production by the microbes is influenced by trace metals and macronutrients such as nitrogen (N) and phosphate (P). Previous studies have shown the importance of these nutrients to both enhance and inhibit methane production; however, it's not clear whether they are sourced from coal via in-situ biodegradation of organic matter or transported into the seams with groundwater recharge. To address this knowledge gap, trace metal and nutrient geochemistry and the organic content of solid coal and associated groundwater will be investigated across a hydrologic gradient in CBM wells in the Powder River Basin, MT. Sequential dissolution experiments (chemical extraction of organic and inorganic constituents) using 8 core samples of coal and sandstone will provide insight into the presence of trace metals and nutrients in coalbeds, the associated minerals present, and their mobilization. If significant concentrations of N, P, and trace metals are present in core samples, in-situ sourcing of nutrients by microbes is highly probable. The biogeochemical evolution of groundwater, as it relates to trace metal and nutrient cycling by microbial consortia, will be investigated by targeting core-associated coal seams from shallow wells in recharge areas to depths of at least 165 m and across a 28 m vertical profile that include overburden, coal, and underburden. If microbial-limiting trace metals and nutrients are transported into coal seams with groundwater recharge, we would expect to see higher concentrations of trace metals and nutrients in recharge areas compared to deeper coalbeds. The results of this study will provide novel understanding of where trace metals and nutrients are sourced and how they are cycled in CBM systems.

  20. Thermodynamic Constraints on Sulfate Reduction and Methanogenesis in a Coalbed Methane Reservoir

    NASA Astrophysics Data System (ADS)

    Kirk, M. F.; Marquart, K. A.; Wilson, B. H.; Flynn, T. M.; Vinson, D. S.

    2014-12-01

    In this study we consider how commercial natural gas production could affect sulfate reduction and methanogenesis in coal-bearing sediments of the Cherokee Basin, Kansas, USA. Controls on the activity of these two groups of microbes are important to understand because their activity and interactions may influence methane formation and retention in unconventional reservoirs. During November 2013, we collected water and gas samples from 16 commercial gas wells for geochemical and microbiological analysis. Results indicate that methane in the coalbeds formed biologically and that both methanogens and sulfate reducers are present. Gas samples consisted almost entirely of methane (C1/(C2+C3) = 2638 on avg.) and the δD and δ13C of methane averaged -222‰ VSMOW and -61‰ VPDB, respectively. Archaeal sequences in our samples were nearly all classified within groups of methanogens (avg. 91%) and cultivable methanogens were present in all water samples. On average, 6% of the bacterial sequences from our samples were classified in groups of sulfate reducers and sulfate available to support their activity ranged up to 110 μM in concentration. Any interaction that occurs between these groups may be influenced by the energetics of their metabolic reactions. Thermodynamic calculations show that methanogens hold an energy advantage over sulfate reducers if dissolved methane concentrations are low. Under current conditions, methanogens see between 12 and 16 kJ mol-1 more usable free energy than sulfate reducers, if we assume a minimal methane concentration (1 μM). However, usable energy for methanogens would equal that available to sulfate reducers at methane concentrations ranging between 144 and 831 μM, well below saturation levels. Production activities that hold methane concentration below these levels, therefore, would help maintain an energy advantage for methanogens. In contrast, if production activities cause sulfate concentrations to increase, sulfate reducers would

  1. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region.

    PubMed

    Dahm, Katharine G; Guerra, Katie L; Xu, Pei; Drewes, Jörg E

    2011-09-15

    Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide. PMID:21790201

  2. Correlation of producing Fruitland Formation coals within the western outcrop and coalbed methane leakage on the Southern Ute Reservation

    SciTech Connect

    Carroll, Christopher J.; Mathews, Stephanie; Wickman, Barbara

    2000-07-07

    The Colorado Geological Survey and Southern Ute Indian Tribe proposed to determine the cause of several gas seeps which are occurring on the western outcrop of the coalbed methane producing Fruitland Formation on the Southern Ute Indian Reservation. Correlation between outcrop coals and subsurface coals was necessary to determine seep source in the northern part of the study area. Subsurface studies include structure and net coal isopach maps, stratigraphy was cross-sections, production maps, and a production database. Detailed coal stratigraphy was correlated through production wells near the outcrop region. These maps and cross-sections were correlated to new surface outcrop maps generated by the Colorado, Geological Survey and the Southern Ute Division of Energy Resources. Methane gas seepage has been noted historically within the study area. The total investigation may help determine if gas seepage is natural, a result of coalbed methane development, or some combination of the above.

  3. Evaluation of the seismic reflection method as a monitoring tool during primary and enhanced coalbed methane production

    NASA Astrophysics Data System (ADS)

    Lespinasse Fung, Diane Jael

    In this thesis I present an evaluation of the seismic reflection method as a monitoring tool during coalbed methane (CBM) production and enhanced coalbed methane (ECBM) production by CO2 injection. This evaluation is based on a workflow previously developed for monitoring CO2 storage in the Big George coalbeds in the Powder River Basin. I study the changes in seismic and the AVO response associated with coalbeds during primary production using a data set from the Mannville coals, which represent one of the most important CBM resources in the Province of Alberta. Using published data, I perform a single well flow simulation to make an assessment of its production forecast in a 10 year period. The flow simulation provides information on methane saturation and reservoir pressure during production, while the changes in porosity and permeability due to depletion are estimated according to the Palmer and Mansoori permeability model. Using well log data of the Corbett Field and the results of the flow simulation, I complete a Gassmann fluid substitution to replace brine by a mixture of brine and methane in the pore space and estimate the variations in Vp, Vs and density due to changes in fluid saturation. I evaluate offset dependent synthetic seismograms before and after fluid substitution, and I use different coalbed thicknesses to establish resolution limits. To observe significant changes in the character and phase of the wavelet due to the replacement of brine by methane I find that coalbed thickness must be at least 10 m, also in terms of AVO I observe that there is a decrease in amplitude with offset caused by the presence of methane in the pore space. Using the same methodology and production data from the Fruitland Coals Fairway in the North of the San Juan Basin U.S.A, which is considered the most productive CBM reservoir in the world, I evaluate Elastic Impedance (EI) and Elastic Impedance Coefficient (EC) response during ECBM by CO2 injection. In this case, I

  4. Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Harpalani, Satya

    2014-08-01

    A sound knowledge of the stress path for coalbed methane (CBM) reservoirs is critical for a variety of applications, including dynamic formation stability evaluation, long-term gas production management, and carbon sequestration in coals. Although this problem has been extensively studied for traditional oil and gas reservoirs, it is somewhat unclear for CBM reservoirs. The difference between the stress paths followed in the two reservoir types is expected to be significant given the unique sorption-induced deformation phenomenon associated with gas production from coal. This results in an additional reservoir volumetric strain, which induces a rather "abnormal" loss of horizontal stress with depletion, leading to continuous changes in the subsurface formation stresses, both effective as well as total. It is suspected that stress changes within the reservoir triggers formation failure after significant depletion. This paper describes an experimental study, carried out to measure the horizontal stress under in situ depletion conditions. The results show that the horizontal stress decreases linearly with depletion under in situ conditions. The dynamic stress evolution is theoretically analyzed, based on modified poroelasticity associated with sorption-induced strain effect. Additionally, the failure tendency of the reservoir under in situ conditions is analyzed using the traditional Mohr-Coulomb failure criterion. The results indicate that depletion may lead to coal failure, particularly in deeper coalbeds and ones exhibiting large matrix shrinkage.

  5. A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs

    SciTech Connect

    Maricic, N.; Mohaghegh, S.D.; Artun, E.

    2008-12-15

    Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

  6. Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications

    SciTech Connect

    L. J. Pekot; S. R. Reeves

    2002-03-31

    Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for

  7. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect.

    PubMed

    Liu, Jianjun; Li, Guang; Zhang, Yue

    2016-01-01

    CO2 flooding of coalbed methane (CO2-ECBM) not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well. PMID:27031096

  8. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect

    PubMed Central

    Liu, Jianjun; Li, Guang; Zhang, Yue

    2016-01-01

    CO2 flooding of coalbed methane (CO2-ECBM) not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well. PMID:27031096

  9. Gas productivity related to cleat volumes derived from focused resistivity tools in coalbed methane (CBM) fields

    SciTech Connect

    Yang, Y.H.; Peeters, M.; Cloud, T.A.; Van Kirk, C.W.

    2006-06-15

    Cleats are critical for coal-bed methane (CBM) production, but operators usually lack a viable method to determine productivity except for costly well tests. Wireline logs, run over the CBM deposits of the Drunkards Wash Unit located in the Uinta Basin of Utah, were used to develop a new method to relate productivity to the cleat volume. The latter is derived from a focused resistivity log and the wellbore-fluid resistivity. Induction tools are unsuitable for this method, because they are dominated by borehole effects in high resistivity coals and low resistivity mud. Moreover, they read too deep to be significantly affected by the substitution of formation fluid by borehole fluid in the cleats on which the method is based. The method was demonstrated by relating cleat volume to CBM gas productivity in 24 wells, an exercise that clearly separated good from poor producers.

  10. Drunkard's wash project: Coalbed methane production from Ferron coals in east-central Utah

    SciTech Connect

    Lemarre, R.A. ); Burns, T.D. )

    1996-01-01

    The Drunkard's Wash Project produces dry, coalbed methane gas from coals within the Ferron Sandstone Member of the Mancos Shale. The project covers 120,000 acres on the western flank of the San Rafael Uplift in east-central Utah. Gas was first produced into the sales line in January 1993. The field is being developed on 160 acre spacing with 73 wells currently producing 32.2 MMCFD for an average of 437 MCFD/well. Thirty three of those wells have been producing for 32 months and now average 637 MCFD/well. Most of the wells show a classic coalbed methane negative decline curve with increasing gas rates as the reservoir pressure declines due to production of water. Daily water production is 14,500 BPD, for an average of 199 BWPD/well. Total coal thickness ranges from 7 ft. to 48 ft., with an average of 24 ft. The coals occur in 3 to 6 seams at depths of 1350 to 2450 ft. The coal rank is high volatile A B bituminous. We can not yet see a correlation between total coal thickness and current production. All wells are cased and hydraulically stimulated and most require pumping units to handle the large volumes of water. However, 22 wells do not require pumps and flow unassisted to the surface. The structure consists of monoclinal westward dip. A thin tonstein layer in the bottom coal seam serves as an excellent datum for mapping. Enhanced production is encountered along a southwest-plunging nose that probably formed additional fracture permeability within the coals. Northeast-trending reverse faults with small displacement appear to compartmentalize the reservoir. The Ferron coals were deposited in a river-dominated deltaic system that prograded to the east and southeast during Turonian-Coniacian (Upper Cretaceous) time. The Ferron Sandstone Member represents an eastward-thinning elastic wedge that was deposited during regression of the Western Interior Cretaceous seaway.

  11. Drunkard`s wash project: Coalbed methane production from Ferron coals in east-central Utah

    SciTech Connect

    Lemarre, R.A.; Burns, T.D.

    1996-12-31

    The Drunkard`s Wash Project produces dry, coalbed methane gas from coals within the Ferron Sandstone Member of the Mancos Shale. The project covers 120,000 acres on the western flank of the San Rafael Uplift in east-central Utah. Gas was first produced into the sales line in January 1993. The field is being developed on 160 acre spacing with 73 wells currently producing 32.2 MMCFD for an average of 437 MCFD/well. Thirty three of those wells have been producing for 32 months and now average 637 MCFD/well. Most of the wells show a classic coalbed methane negative decline curve with increasing gas rates as the reservoir pressure declines due to production of water. Daily water production is 14,500 BPD, for an average of 199 BWPD/well. Total coal thickness ranges from 7 ft. to 48 ft., with an average of 24 ft. The coals occur in 3 to 6 seams at depths of 1350 to 2450 ft. The coal rank is high volatile A&B bituminous. We can not yet see a correlation between total coal thickness and current production. All wells are cased and hydraulically stimulated and most require pumping units to handle the large volumes of water. However, 22 wells do not require pumps and flow unassisted to the surface. The structure consists of monoclinal westward dip. A thin tonstein layer in the bottom coal seam serves as an excellent datum for mapping. Enhanced production is encountered along a southwest-plunging nose that probably formed additional fracture permeability within the coals. Northeast-trending reverse faults with small displacement appear to compartmentalize the reservoir. The Ferron coals were deposited in a river-dominated deltaic system that prograded to the east and southeast during Turonian-Coniacian (Upper Cretaceous) time. The Ferron Sandstone Member represents an eastward-thinning elastic wedge that was deposited during regression of the Western Interior Cretaceous seaway.

  12. Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs

    SciTech Connect

    Jahediesfanjani, H.; Civan, F.

    2005-09-01

    Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

  13. Identifying well contamination through the use of 3-D fluorescence spectroscopy to classify coalbed methane produced water.

    PubMed

    Dahm, Katharine G; Van Straaten, Colette M; Munakata-Marr, Junko; Drewes, Jörg E

    2013-01-01

    Production of unconventional gas resources commonly requires the use of hydraulic fracturing and chemical production well additives. Concern exists for the use of chemical compounds in gas wells due to the risk of groundwater contamination. This study focuses on a proposed method of identifying groundwater contamination from gas production. The method focuses on the classification of naturally occurring organic signatures of coalbed methane (CBM) produced water compared to anthropogenic organic compounds. The 3-D fluorescence excitation-emission matrix (EEM) spectra of coalbed methane produced water samples revealed four peaks characteristic of coalbed methane produced water: Peak P (aromatic proteins region), Peak M(1) (microbial byproducts region), Peak M(2) (microbial byproducts region), and Peak H (humic acid-like region). Peak H is characteristic of the coal-water equilibria present in all basins, while peaks P and M(2) correlate with microbial activity in basins with biogenic methane generation pathways. Anthropogenic well additives produce EEM signatures with notable flooding of peaks P, M(1), M(2), and H, relatively higher overall fluorescence intensity, and slightly higher DOC concentrations. Fluorescence spectroscopy has the potential to be used in conjunction with groundwater contamination studies to determine if detected organic compounds originate from naturally occurring sources or well production additives. PMID:23198677

  14. Coal-Bed Methane Water Effects on Dill and Its Essential Oils.

    PubMed

    Poudyal, Shital; Zheljazkov, Valtcho D; Cantrell, Charles L; Kelleners, Thijs

    2016-03-01

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic method of methane extraction. The water that is pumped out is known as "coal-bed methane water" (CBMW), which is high in sodium and other salts. In the past 25 yr, the United States has seen a 16-fold increase in the production of coal bed methane gas, and trillions of cubic meters are yet to be extracted. There is no sustainable disposal method for CBMW, and there are very few studies investigating the effects of this water on plants and their secondary metabolites and on soil properties. This study was conducted to determine the effects of CBMW on soil chemical properties and on the biomass and essential oil yield and composition of dill ( L.). This crop was grown in a greenhouse and was subjected to different levels of CBMW treatment: tap water only; 25% CBMW, 75% tap water; 50% CBMW, 50% tap water; 75% CBMW, 25% tap water; and 100% CBMW. The major dill oil constituents, limonene and α-phellandrene, were not affected by the treatments; however, the concentration of dill ether increased with increasing CBMW levels, whereas the concentration of carvone decreased. In soil, sodium level significantly increased with increasing level of treatment, but pH and cation exchange capacity were not much affected. Coal bed methane water could be used for irrigation of dill for one growing season, but longer-term studies may be needed to clarify the long-term effects on soil and plant. PMID:27065421

  15. Coalbed methane, Cook Inlet, south-central Alaska: A potential giant gas resource

    USGS Publications Warehouse

    Montgomery, S.L.; Barker, C.E.

    2003-01-01

    Cook Inlet Basin of south-central Alaska is a forearc basin containing voluminous Tertiary coal deposits with sufficient methane content to suggest a major coalbed gas resource. Coals ranging in thickness from 2 to 50 ft (0.6 to 15 m) and in gas content from 50 to 250 scf/ton (1.6 to 7.8 cm2/g) occur in Miocene-Oligocene fluvial deposits of the Kenai Group. These coals have been identified as the probable source of more than 8 tcf gas that has been produced from conventional sandstone reservoirs in the basin. Cook Inlet coals can be divided into two main groups: (1) those of bituminous rank in the Tyonek Formation that contain mainly thermogenic methane and are confined to the northeastern part of the basin (Matanuska Valley) and to deep levels elsewhere; and (2) subbituminous coals at shallow depths (<5000 ft [1524 m]) in the Tyonek and overlying Beluga formations, which contain mainly biogenic methane and cover most of the central and southern basin. Based on core and corrected cuttings-desorption analyses, gas contents average 230 scf/ton (7.2 cm2/g) for bituminous coals and 80 scf/ton (2.5 cm2/g) for subbituminous coals. Isotherms constructed for samples of both coal ranks suggest that bituminous coals are saturated with respect to methane, whereas subbituminous coals at shallow depths along the eroded west-central basin margin are locally unsaturated. A preliminary estimate of 140 tcf gas in place is derived for the basin.

  16. The current state of coalbed methane development in the United Kingdom

    SciTech Connect

    Sharman, P.

    1997-12-31

    Much of the early work on coalbed methane exploitation was carried out in the US. Considerable quantities of gas are currently being extracted from the San Juan and Black Warrior Basins. Based on this experience there is considerable interest in using the technology in Western and Eastern Europe. This is against the background of a declining European production of conventional deep-mined coal, due to difficult geological and market conditions. Nevertheless Europe has considerable reserves of deep coal, unsuitable for conventional mining, many of which contain large amounts of in situ methane. This paper outlines the work that has been carried out in the UK. There have been considerable problems, not least of which has been the far lower permeability of European coals, compared with US ones. Nevertheless many lessons have been learned and there is now a far better understanding of the potential for CBM production in the UK. While the paper concentrates on UK conditions the results are of relevance throughout Europe and indeed in other continents.

  17. Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana

    USGS Publications Warehouse

    Solano-Acosta, W.; Mastalerz, Maria; Schimmelmann, A.

    2007-01-01

    Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress. At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution. The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to

  18. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    USGS Publications Warehouse

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  19. Integrated exploration strategy for locating areas capable of high gas rate cavity completion in coalbed methane reservoirs

    SciTech Connect

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    1995-10-01

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequential reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.

  20. Permo-Carboniferous coal: A major target for coalbed methane exploration in China

    SciTech Connect

    Murray, D.K. )

    1996-01-01

    The People's Republic of China is the largest producer of coal in the world, the most populous country, and is experiencing a significant growth in GNP. Three-fourths of China's energy requirements are met by burning coal. At least 80 percent of the produced coal is Permo-Carboniferous, ranging in rank from bituminous to anthracite ([open quotes]hardcoal[close quotes]), and is mined from underground facilities that typically are very gas-prone. The coal resources of China, estimated at 7.7 to 12.1 trillion tons, are among the largest in the world. Much of this in-place resource consists of Permo-Carboniferous hardcoal. The resource base of coalbed methane (CBM) in China, variously estimated at 1,000 to 2,800 Tcf, may be the world's largest. A significant portion of this valuable energy source is believed to be contained in Permo-Carboniferous coals. The government of China is seeking international technology and investment to develop and utilize CBM, which is expected to improve the nation's economy, increase mine safety, and reduce the wasteful and polluting emissions of methane from coal mines. In particular, the government is emphasizing development of CBM in the North China Basin region, the locale of the most abundant and highest rank Permo-Carboniferous coals. An encouraging aspect of cooperative Sino-American efforts is the recent discovery of significant flows of methane from permeable anthracite reservoirs in Henan and Shanxi Provinces. These two discoveries are believed to be the first in the world from anthracites.

  1. Permo-Carboniferous coal: A major target for coalbed methane exploration in China

    SciTech Connect

    Murray, D.K.

    1996-12-31

    The People`s Republic of China is the largest producer of coal in the world, the most populous country, and is experiencing a significant growth in GNP. Three-fourths of China`s energy requirements are met by burning coal. At least 80 percent of the produced coal is Permo-Carboniferous, ranging in rank from bituminous to anthracite ({open_quotes}hardcoal{close_quotes}), and is mined from underground facilities that typically are very gas-prone. The coal resources of China, estimated at 7.7 to 12.1 trillion tons, are among the largest in the world. Much of this in-place resource consists of Permo-Carboniferous hardcoal. The resource base of coalbed methane (CBM) in China, variously estimated at 1,000 to 2,800 Tcf, may be the world`s largest. A significant portion of this valuable energy source is believed to be contained in Permo-Carboniferous coals. The government of China is seeking international technology and investment to develop and utilize CBM, which is expected to improve the nation`s economy, increase mine safety, and reduce the wasteful and polluting emissions of methane from coal mines. In particular, the government is emphasizing development of CBM in the North China Basin region, the locale of the most abundant and highest rank Permo-Carboniferous coals. An encouraging aspect of cooperative Sino-American efforts is the recent discovery of significant flows of methane from permeable anthracite reservoirs in Henan and Shanxi Provinces. These two discoveries are believed to be the first in the world from anthracites.

  2. Geologic and hydrologic controls on coalbed methane: Sand wash basin, Colorado and Wyoming. Topical report, August 1, 1991-April 30, 1993

    SciTech Connect

    Kaiser, W.R.; Scott, A.R.; Hamilton, D.S.; Tyler, R.; McMurry, R.G.

    1993-08-01

    Contents: tectonic evolution, stratigraphic setting, and coal fracture patterns of the sand wash basin; stratigraphy and coal occurrence of the upper cretaceous mesaverde group, sand wash basin; coal rank, gas content, and composition and origin of coalbed gases, mesaverde group, sand wash basin; hydrologic setting of the upper mesaverde group, sand wash basin; stratigraphy and coal occurrence of the paleocene fort union formation, sand wash basin; coal rank, gas content, and composition and origin of coalbed gases, fort union formation, sand wash basin; hydrologic setting of the fort union formation, sand wash basin; and resources and producibility of coalbed methane in the sand wash basin.

  3. The central and northern Appalachian Basin-a frontier region for coalbed methane development

    USGS Publications Warehouse

    Lyons, P.C.

    1998-01-01

    The Appalachian basin is the world's second largest coalbed-methane (CBM) producing basin. It has nearly 4000 wells with 1996 annual production at 147.8 billion cubic feet (Bcf). Cumulative CBM production is close to 0.9 trillion cubic feet (Tcf). The Black Warrior Basin of Alabama in the southern Appalachian basin (including a very minor amount from the Cahaba coal field) accounts for about 75% of this annual production and about 75% of the wells, and the remainder comes from the central and northern Appalachian basin. The Southwest Virginia coal field accounts for about 95% of the production from the central and northern parts of the Appalachian basin. Production data and trends imply that several of the Appalachian basin states, except for Alabama and Virginia, are in their infancy with respect to CBM development. Total in-place CBM resources in the central and northern Appalachian basin have been variously estimated at 66 to 76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (~ 20%) is technically recoverable according to a 1995 U.S. Geological Survey assessment. For comparison in the Black Warrior basin of the 20 Tcf in-place CBM resources, 2.30 Tcf (~ 12%) is technically recoverable. Because close to 0.9 Tcf of CBM has already been produced from the Black Warrior basin and the proved reserves are about 0.8 Tcf for 1996 [Energy Information Administration (EIA), 1997]. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1996 Annual Report. U.S. Department of Energy DOE/EIA-0216(96), 145 pp.], these data imply that the central and northern Appalachian basin could become increasingly important in the Appalachian basin CBM picture as CBM resources are depleted in the southern Appalachian basin (Black Warrior Basin and Cahaba Coal Field). CBM development in the Appalachian states could decrease the eastern U.S.A.'s dependence on coal for electricity. CBM is expected to provide over the next few decades a virtually untapped source of

  4. Analytical modeling of pressure transient behavior for coalbed methane transport in anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Xiaodong

    2014-06-01

    Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion.

  5. Anomaly Identification from Super-Low Frequency Electromagnetic Data for the Coalbed Methane Detection

    NASA Astrophysics Data System (ADS)

    Zhao, S. S.; Wang, N.; Hui, J.; Ye, X.; Qin, Q.

    2016-06-01

    Natural source Super Low Frequency(SLF) electromagnetic prospecting methods have become an increasingly promising way in the resource detection. The capacity estimation of the reservoirs is of great importance to evaluate their exploitation potency. In this paper, we built a signal-estimate model for SLF electromagnetic signal and processed the monitored data with adaptive filter. The non-normal distribution test showed that the distribution of the signal was obviously different from Gaussian probability distribution, and Class B instantaneous amplitude probability model can well describe the statistical properties of SLF electromagnetic data. The Class B model parameter estimation is very complicated because its kernel function is confluent hypergeometric function. The parameters of the model were estimated based on property spectral function using Least Square Gradient Method(LSGM). The simulation of this estimation method was carried out, and the results of simulation demonstrated that the LGSM estimation method can reflect important information of the Class B signal model, of which the Gaussian component was considered to be the systematic noise and random noise, and the Intermediate Event Component was considered to be the background ground and human activity noise. Then the observation data was processed using adaptive noise cancellation filter. With the noise components subtracted out adaptively, the remaining part is the signal of interest, i.e., the anomaly information. It was considered to be relevant to the reservoir position of the coalbed methane stratum.

  6. INJECTION INTO COAL SEAMS FOR SIMULTANEOUS CO2 MITIGATION AND ENHANCED RECOVERY OF COALBED METHANE

    SciTech Connect

    Francis M. Carlson; Charles G. Mones; Lyle A. Johnson; Floyd A. Barbour; L. John Fahy

    1997-04-01

    Because of confidentiality requirements of this task, this topical report is necessarily brief and is based on quarterly reports that have been previously approved for release by Amoco Production Company (Amoco). More detailed topical reports have been written and will continue to be written as the project proceeds. The US Department of Energy (DOE) has approved that these detailed reports can be held in confidence for a period not to exceed three years from their dates of publication. When this three-year period has transpired, or earlier with Amoco's approval, the more detailed topical reports will be provided to DOE for its discretionary use. Three detailed technical reports have been written that cover the two-well pilot test, the laboratory work, and modeling using a coal reservoir description and Amoco's coalbed methane simulator. The document covering the two-well pilot test elicited many comments from Amoco personnel and a major revision of the document is in progress. The other two documents are essentially complete. History matching of the Allison Unit CO{sub 2} injection project has been completed and long-term performance predictions have been made using the resulting reservoir description. Idealized predictions for a quarter of a five-spot pattern of the process have been made and economics of the process evaluated.

  7. Economic feasibility of drilling horizontal wells in a shallow high permeability coalbed methane reservoir

    NASA Astrophysics Data System (ADS)

    Doghor, Kesiena Gavin

    Coalbed methane (CBM) reservoirs have emerged as an important source of natural gas production. However, the choice of drilling configuration employed differs from basin to basin. The Powder River Basin coal seams shallow nature is believed to favor the current vertical well configuration. Horizontal well drilling in CBM reservoirs has been studied in deep and thick coal seams like the Appalachian and Cherokee Basins in USA, but little work has been done in shallow CBM reservoirs like those of the Powder River Basin. The objective of this thesis is to use a reservoir simulator and economic analysis to study the economic feasibility of drilling horizontal wells in shallow CBM reservoirs such as the CX field Monarch Coal seam of the Powder River Basin. A dual porosity reservoir model was built and historical production was matched. The resulting simulator was used to run different configurations of vertical and horizontal wells. Economic analysis was then performed on the simulated productions to determine the optimal drilling strategy. Additional cases of different permeability values and thicknesses were also considered. The results show that horizontal wells would not be economical when compared to vertical wells in shallow coal seams. The results of this work were based on current natural gas prices and drilling and operational cost.

  8. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994

    SciTech Connect

    Penny, G.S.; Conway, M.W.

    1994-08-01

    The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

  9. CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations

    SciTech Connect

    Muhammad Sahimi; Theodore T. Tsotsis

    2002-12-15

    One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.

  10. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  11. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    SciTech Connect

    Advanced Resources International

    2002-11-30

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

  12. Factors facilitating or limiting the use of AVO for coal-bed methane

    SciTech Connect

    Peng, S.P.; Chen, H.J.; Yang, R.Z.; Gao, Y.F.; Chen, X.P.

    2006-07-15

    There are similarities and differences in employing amplitude variation with offset (AVO) to explore for gas-sand reservoirs, as opposed to coal-bed methane (CBM) reservoirs. The main similarity is that large Poisson's ratio contrasts, resulting in AVO gradient anomalies, are expected for both kinds of reservoirs. The main difference is that cleating and fracturing raise the Poisson's ratio of a coal seam as it improves its reservoir potential for CBM, while gas always lowers the Poisson's ratio of a sandstone reservoir. The top of gas sands usually has a negative AVO gradient, leading to a class one, two, or three anomaly depending on the impedance contrast with the overlying caprock. On the other hand, the top of a CBM reservoir has a positive AVO gradient, leading to a class four anomaly. Three environmental factors may limit the usage of AVO for CBM reservoirs: the smaller contrast in Poisson's ratio between a CBM reservoir and its surrounding rock, variations in the caprock of a specific CBM reservoir, and the fact that CBM is not always free to collect at structurally high points in the reservoir. However, other factors work in favor of using AVO. The strikingly high reflection amplitude of coal improves signal/noise ratio and hence the reliability of AVO measurements. The relatively simple characteristics of AVO anomalies make them easy to interpret. Because faults are known to improve the quality of CBM reservoirs, faults accompanied by AVO anomalies would be especially convincing. A 3D-AVO example offered in this paper shows that AVO might be helpful to delineate methane-rich sweet spots within coal seams.

  13. Coalbed methane produced water management guide treatment and discharge to surface waters: Black Warrior Basin, Alabama. Final report, April 1991-May 1993

    SciTech Connect

    Davis, H.A.

    1993-05-01

    To assist coalbed methane in their efforts to manage produced waters in an environmentally acceptable manner, GRI, in cooperation with the member companies of the Coalbed Methane Association of Alabama, developed a guidance manual that presents the state-of-the-art methodology for managing Black Warrior Basin produced water through the use of treatment ponds and National Pollutant Discharge Elimination System (NPDES) permits. Six treatment pond systems were studied to develop information for the manual. Topics included in the manual are produced water characteristics, NPDES permit requirements, sample collection and testing, pond based treatment methods, treatment pond management, and process troubleshooting.

  14. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  15. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus

    SciTech Connect

    Zou, L.; Miller, S.N.; Schmidtmann, E.T.

    2006-09-15

    Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM + data were initially classified into spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximate to 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.

  16. Production waters associated with the Ferron coalbed methane fields, central Utah: Chemical and isotopic composition and volumes

    USGS Publications Warehouse

    Rice, C.A.

    2003-01-01

    This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in

  17. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    USGS Publications Warehouse

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  18. Coal-bed methane production in eastern Kansas: Its potential and restraints

    SciTech Connect

    Stoeckinger, B.T.

    1989-08-01

    In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

  19. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    SciTech Connect

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W.

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  20. Optimization of coalbed-methane-reservoir exploration and development strategies through integration of simulation and economics

    SciTech Connect

    Clarkson, C.R.; McGovern, J.M.

    2005-12-15

    The unique properties and complex characteristics of coalbed methane (CBM) reservoirs, and their consequent operating strategies, call for an integrated approach to be used to explore for and develop coal plays and prospects economically. An integrated approach involves the use of sophisticated reservoir, wellbore, and facilities modeling combined with economics and decision-making criteria. A new CBM prospecting tool (CPT) was generated by combining single-well (multilayered) reservoir simulators with a gridded reservoir model, Monte Carlo (MC) simulation, and economic modules. The multilayered reservoir model is divided into pods, representing relatively uniform reservoir properties, and a 'type well' is created for each pod. At every MC iteration, type-well forecasts are generated for the pods and are coupled with economic modules. A set of decision criteria contingent upon economic outcomes and reservoir characteristics is used to advance prospect exploration from the initial exploration well to the pilot and development stages. A novel approach has been used to determine the optimal well spacing should prospect development be contemplated. CPT model outcomes include a distribution of after-tax net present value (ATNPV), mean ATNPV (expected value), chance of economic success (Pe), distribution of type-well and pod gas and water production, reserves, peak gas volume, and capita. Example application of CPT to a hypothetical prospect is provided. An integrated approach also has been used to assist with production optimization of developed reservoirs. For example, an infill-well locating tool (ILT) has been constructed to provide a quick-look evaluation of infill locations in a developed reservoir. An application of ILT to a CBM reservoir is provided.

  1. Coalbed methane-produced water quality and its management options in Raniganj Basin, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Mendhe, Vinod Atmaram; Mishra, Subhashree; Varma, Atul Kumar; Singh, Awanindra Pratap

    2015-09-01

    Coalbed methane (CBM) recovery is associated with production of large quantity of groundwater. The coal seams are depressurized by pumping of water for regular and consistent gas production. Usually, CBM operators need to pump >10 m3 of water per day from one well, which depends on the aquifer characteristics, drainage and recharge pattern. In India, 32 CBM blocks have been awarded for exploration and production, out of which six blocks are commercially producing methane gas at 0.5 million metric standard cubic feet per day. Large amount of water is being produced from CBM producing blocks, but no specific information or data are available for geochemical properties of CBM-produced water and its suitable disposal or utilization options for better management. CBM operators are in infancy and searching for the suitable solutions for optimal management of produced water. CBM- and mine-produced water needs to be handled considering its physical and geochemical assessment, because it may have environmental as well as long-term impact on aquifer. Investigations were carried out to evaluate geochemical and hydrogeological conditions of CBM blocks in Raniganj Basin. Totally, 15 water samples from CBM well head and nine water samples from mine disposal head were collected from Raniganj Basin. The chemical signature of produced water reveals high sodium and bicarbonate concentrations with low calcium and magnesium, and very low sulphate in CBM water. It is comprehend that CBM water is mainly of Na-HCO3 type and coal mine water is of Ca-Mg-SO4 and HCO3-Cl-SO4 type. The comparative studies are also carried out for CBM- and mine-produced water considering the geochemical properties, aquifer type, depth of occurrence and lithological formations. Suitable options like impounding, reverse osmosis, irrigation and industrial use after prerequisite treatments are suggested. However, use of this huge volume of CBM- and mine-produced water for irrigation or other beneficial purposes

  2. Organic Compounds in Produced Waters From Coalbed Methane Wells in the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Orem, W.; Lerch, H.; Rice, C.; Tatu, C.

    2003-12-01

    Coalbed methane (CBM) is a significant energy resource, accounting for about 7.5% of natural gas production in the USA. The Powder River Basin (PRB), WY is currently one of the most active CBM drilling sites in the USA. One aspect of concern in the exploitation of CBM resources is the large volumes of water recovered from wells along with the natural gas (so-called produced waters). CBM produced waters may contain coal-derived dissolved substances (inorganic and organic) of environmental concern, and a potential disposal problem for CBM producers. Studies of CBM produced water have mostly focused on inorganics. Dissolved organic compounds in CBM produced water may also present an environmental issue, but little information is available. As part of a larger study of the health and environmental effects of organic compounds derived from coal, we analyzed a number of produced water samples from CBM wells in the PRB, WY for dissolved organic substances. Our goals were results on coal-derived organic compounds in the environment to evaluate potential health and environmental impacts. In 2001, we sampled produced water from 13 CBM wells covering a broad area of the PRB in order to identify and quantify the organic compounds present. In 2002, produced water from 4 of the 2001 CBM wells and 8 new CBM wells were sampled for dissolved organic components. Produced water was collected directly from each well and filtered on site. Organic compounds were isolated from produced water samples by liquid/liquid extraction with methylene chloride and identified and quantified by gas chromatography/mass spectrometry (GC/MS). Organic compounds identified by GC/MS in extracts of the produced water samples, included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons, phthalates, aliphatic hydrocarbons, and fatty acids. However, most compounds had structures unidentified by GC/MS databases. Many of the identified organic compounds

  3. Adsorption Hysteresis and its Effect on CO2 Sequestration and Enhanced Coalbed Methane Recovery

    NASA Astrophysics Data System (ADS)

    Seto, C. J.; Tang, G. T.; Jessen, K.; Kovscek, A. R.; Orr, F. M.

    2006-12-01

    CO2 sequestration in coal reservoirs is a promising technology for reducing atmospheric CO2 concentrations. Of the candidates for geological sequestration, the physics of transport and sequestration in coal is the least well understood. Adsorption hysteresis has been observed for pure gas adsorption on some coals. It is manifest as desorption curves where the loading of gas on coal surfaces is greater than sorption at the same pressure. Current simulation technology does not have the functionality to incorporate this phenomenon that has a potentially great effect on sequestration in coalbeds. Understanding the interplay between adsorption and desorption of gas species, phase behaviour and convection is paramount to designing safe and effective sequestration projects. Our work integrates experiments and theory development. Isotherms of CH4, N2 and CO2 were measured on a sample of coal from the Powder River Basin, WY, for adsorption and desorption paths. Hysteresis was observed for all gases. Likewise, the displacment of methane by various mixtures of N2 and CO2 was also measured. Simultaneously, a model was developed to solve for the dispersion-free limit of convective transport in multiphase systems with adsorption, including the effects of volume change as components transfer from vapour to liquid and solid phases. Analytical solutions were obtained using the method of characteristics. These solutions were compared against corresponding solutions without adsorption hysteresis. For pure gas injection, in which the amount of adsorbed injected gas increases monotonically and the amount of adsorbed initial gas decreases monotonically, hysteresis effects were not observed. For injection gas mixtures of N2-CO2 displacing CH4, CO2 and N2 separated chromatographically and hysteresis effected breakthrough and bank arrival times as well as shifted overall component concentrations as the displacement progressed. When injection gas mixtures were rich in N2, the structures

  4. Methane in Columbia River Basalt Aquifers: Isotopic and geohydrologic evidence for a deep coal-bed gas source in the Columbia Basin, Washington

    SciTech Connect

    Johnson, V.G. ); Graham, D.L. ); Reidel, S.P. )

    1993-07-01

    Methane occurs as a dissolved constituent in groundwater from confined aquifers in the Columbia River Basalt Group, Columbia basin, Washington. Isotopic compositions of methane in groundwater indicate that the methane is a mixture of biogenic ([sigma][sup 13]C-CH[sub 4] to -88% and [sigma][sup 2]H-CH[sub 4] to -265%) and thermogenic ([sigma][sup 13]C-CH[sub 4] to -35%, and [sigma][sup 2]H-CH[sub 4] to -134%) components. Chemical and isotopic data are consistent with entrainment of deep, coal-bed generated methane in upwelling groundwater from below the Columbia River Basalt Group (>4 km) that mixes with near-surface groundwater. The areal distribution pattern of methane suggests that fault intersections are necessary for vertical migration of deep methane through the basalt. This study suggests that deep subbasalt coal-bed methane in the Columbia basin has infiltrated the shallow basalt groundwater system, and isotopic analysis of methane in groundwater from structurally favorable locations can be used to identify potential exploration targets. The wide areal distribution of methane in this large, relatively unexplored frontier province suggests economic gas reserves. 53 refs., 11 figs.

  5. Injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane. Topical report, March 1995--March 1996

    SciTech Connect

    Carlson, F.M.; Mones, C.G.; Johnson, L.A.; Barbour, F.A.; Fahy, L.J.

    1997-09-01

    The overall objective of this task is to test the technical viability of injecting CO{sub 2} into the Fruitland Coal to displace methane from the coal and to mitigate CO{sub 2} emissions that are a consequence of primary coalbed methane production from surrounding wells in the area. To evaluate this technical viability, a field test was conducted and the test is being interpreted using data measured in WRI`s laboratory, as well as using Amoco`s state-of-the-art coalbed methane simulator. Also, a second pilot of the process is being evaluated using the simulator. Ultimately, the technology developed will be applied to a Wyoming coal.

  6. A preliminary evaluation of vertical separation between production intervals of coalbed-methane wells and water-supply wells in the Raton basin, Huerfano and Las Animas Counties, Colorado, 1999-2004

    USGS Publications Warehouse

    Watts, Kenneth R.

    2006-01-01

    The Raton Basin in southern Colorado and northern New Mexico is undergoing increased development of its coalbed-methane resources. Annual production of methane from coalbeds in the Raton Basin in Huerfano and Las Animas Counties, Colorado, increased from about 28,000,000 thousand cubic feet from 478 wells to about 80,000,000 thousand cubic feet from 1,543 wells, during 1999-2004. Annual ground-water withdrawals for coalbed-methane production increased from about 1.45 billion gallons from 480 wells to about 3.64 billion gallons from 1,568 wells, during 1999-2004. Where the coalbeds are deeply buried near the center of the Raton Basin, water pressure may be reduced as much as 250 to 300 pounds per square inch to produce the methane from the coalbeds, which is equivalent to a 577- to 692-foot lowering of water level. In 2001, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began an evaluation of the potential effects of coalbed- methane production on the availability and sustainability of ground-water resources. In 2003, there were an estimated 1,370 water-supply wells in the Raton Basin in Colorado, and about 90 percent of these water-supply wells were less than 450 feet deep. The tops of the production (perforated) interval of 90 percent of the coalbed-methane wells in the Raton Basin (for which data were available) are deeper than about 675 feet. The potential for interference of coalbed-methane wells with nearby water-supply wells likely is limited because in most areas their respective production intervals are separated by more than a hundred to a few thousand feet of rock. The estimated vertical separation between production intervals of coalbed-methane and water-supply wells is less than 100 feet in an area about 1 to 6 miles west and southwest of Trinidad Lake and a few other isolated areas. It is assumed that in areas with less than 100 feet of vertical separation, production by coalbed-methane wells has a greater

  7. Mechanical and thermal control of cleating and shearing in coal: examples from the Alabama coalbed methane field, USA

    USGS Publications Warehouse

    Pashin, Jack; Carroll, R.E.; Hatch, Joseph R.; Goldhaber, Martin B.

    1999-01-01

    Natural fractures provide most of the interconnected macroporosity in coal. Therefore, understanding the characteristics of these fractures and the associated mechanisms of formation is essential for effective coalbed methane exploration and field management. Natural fractures in coal can be divided into two general types: cleat and shear structures. Cleat has been studied for more than a century, yet the mechanisms of cleat formation remain poorly understood (see reviews by Close, 1993; Laubach et al.,1998). An important aspect of cleating is that systematic fracturing of coal is takes place in concert with devolatization and concomitant shrinkage of the coal matrix during thermal maturation (Ammosov and Eremin, 1960). Coal, furthermore, is a mechanically weak rock type that is subject to bedding-plane shear between more competent beds like shale, sandstone, and limestone. Yet, the significance of shear structures in coal has only begun to attract scientific interest (Hathaway and Gayer, 1996; Pashin, 1998).

  8. Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Ferrara, Thomas W.; Lyon, David R.; Fries, Anastasia E.; Lamb, Brian K.

    2016-03-01

    Recent work indicates that oil and gas methane (CH4) inventories for the United States are underestimated. Here we present results from direct measurements of CH4 emissions from 138 abandoned oil and gas wells, a source currently missing from inventories. Most abandoned wells do not emit CH4, but 6.5% of wells had measurable CH4 emissions. Twenty-five percent of wells we visited that had not been plugged emitted > 5 g CH4 h-1. Stable isotopes indicate that wells emit natural gas and/or coalbed CH4. We estimate that abandoned wells make a small contribution (<1%) to regional CH4 emissions in our study areas. Additional data are needed to accurately determine the contribution of abandoned wells to national CH4 budgets, particularly measurements in other basins and better characterization of the abundance and regional distribution of high emitters.

  9. The knowledge of underground coal gasification (UCG) applied to coalbed methane extraction (CBM) and natural coal fires (NCF)

    SciTech Connect

    Wolf, K.H.A.A.; Hettema, M.H.H.; Bruining, J.; Schreurs, H.C.E.

    1997-12-31

    This paper will give a general view on the application of underground coal gasification (UCG) for the improvement of coalbed methane (CBM) production enhancement and the utilization of natural coal fires (NCF). In general UCG techniques will improve the opportunities for the enhancement and utilization of potential energy sources. When all options, UCG, CBM and NCF are placed in a Clean Coal Exploitation Program, it can be divided into a ``cold program`` and a ``hot program.`` In a cold program the authors propose the development and exploitation of second generation cold coal-energy, i.e., coal gas extraction (CBM). The hot program considers the activities in which in-situ burning coals make the core issue for exploitation (UCG, NCF). In both programs UCG-technologies could be important tools for energy acquisition and production improvement.

  10. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  11. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  12. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming

    USGS Publications Warehouse

    Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.

    2005-01-01

    Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.

  13. Feasibility of no-proppant stimulation to enhance removal of methane from the Mary Lee Coalbed

    SciTech Connect

    Lambert, S.W.; Trevits, M.A.

    1980-04-01

    One experimental approach to hydraulic stimulation is to use fluid to propagate fractures but not to incorporate solid proppant material in the design. The elimination of solid material negates problems related to wellbore sand proppant influx and allows better fracture height control since extremely low injection rates can be used. The Mary Lee Coalbed was stimulated using a 53,000 gallon no-proppant treatment at a 1,150 foot deep test well located approximately 1,600 feet in advance of mining. The well produced for 147 days and gas flow rates declined sharply, ceasing when intercepted by mining. Production comparison of the no-proppant test with another test incorporating sand proppant indicates that the 53,000 gallon no-proppant treatment was less effective than the more conventional 21,000 gallon treatment. The results from the no-proppant test indicate that very few roof rock fluid penetrations occurred during the course of hydraulic stimulation. It cannot be determined, however, if sparsity of roof penetration was due to the use of very low injection rates or because roof rock in the physical test area was less jointed and, therefore, less prone to stimulation fluid invasions. Because gas flow results gathered are inconclusive, the application of no-proppant stimulation designs for other than research is not recommended at this time. The lower injection rate approach to fracture height control is, however, theoretically sound and because limiting upward fracture growth in coalbeds may be desirable to future borehole gas drainage activities, no-proppant experiments could be justified on a limited scale.

  14. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    USGS Publications Warehouse

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  15. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    SciTech Connect

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  16. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    USGS Publications Warehouse

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  17. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  18. The Effect of Biogeochemical and Hydrologic Processes on Nitrogen in Stream Water Originating From Coal-Bed Methane Supply Wells

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Repert, D. A.; Hart, C. P.

    2003-12-01

    Water obtained from coal-bed methane (CBM) wells typically contains a variety of reduced chemical constituents, including methane, metal ions, particulate and dissolved organic carbon, and ammonium. In many locales in Wyoming and Montana, CBM water is disposed via discharge to stream channels and reservoirs. Though it is likely that biogeochemical and hydrologic processes will result in major changes in the chemical composition of these waters with subsequent downstream transport, few studies have actually examined these water quality changes or their ecological impacts. A field study was conducted in the Powder River Basin, WY to document changes in solute composition within stream channels below discharge points of CBM water. Particular emphasis was placed on nitrogen and nitrogen cycling processes. Concentration ranges in discharge water were: DOC, 200-350 μ M; alkalinity, 40-50 meq/L; specific conductance, 3.3-4.0 mS/cm; ammonium, 350-400 μ M; and pH, 7.2-7.3. Ammonium concentrations decreased with transport distance via nitrification, with subsequent increases in nitrite and nitrate. Within a single discharge channel, nitrite concentrations increased with travel distance, peaking at >100 μ M at 100-200 m, but also exhibited a strong diel pattern that was inversely related to incident light. Nitrite production/consumption processes differed significantly within in-stream incubation chambers, depending upon location relative to the CBM discharge point and time of day. In the main channel, subject to several CBM discharge points, diel nitrite concentrations were more constant at a fixed station, but did increase with distance downstream. Main channel total inorganic nitrogen remained relatively constant ( ˜400 μ M N) with distance (>5 km), suggesting little net nitrogen removal. The results of this study suggest that CBM discharge can serve as a significant source of dissolved nitrogen to western watersheds, with oxidative processes resulting in nitrate and

  19. Origin of minerals in joint and cleat systems of the Pottsville Formation, Black Warrior basin, Alabama: Implications for coalbed methane generation and production

    USGS Publications Warehouse

    Pitman, J.K.; Pashin, J.C.; Hatch, J.R.; Goldhaber, M.B.

    2003-01-01

    Coalbed methane is produced from naturally fractured strata in the lower Pennsylvanian Pottsville Formation in the eastern part of the Black Warrior basin, Alabama. Major fracture systems include orthogonal fractures, which consist of systematic joints in siliciclastic strata and face cleats in coal that strike northeast throughout the basin. Calcite and minor amounts of pyrite commonly fill joints in sandstone and shale and, less commonly, cleats in coal. Joint-fill calcite postdates most pyrite and is a weakly ferroan, coarse-crystalline variety that formed during a period of uplift and erosion late in the burial history. Pyrite forms fine to coarse euhedral crystals that line joint walls or are complexly intergrown with calcite. Stable-isotope data reveal large variations in the carbon isotope composition of joint- and cleat-fill calcite (-10.3 to + 24.3??? Peedee belemnite [PDB]) but only a relatively narrow range in the oxygen-isotope composition of this calcite (-16.2 to -4.1 ??? PDB). Negative carbon values can be attributed to 13C-depleted CO2 derived from the oxidation of organic matter, and moderately to highly positive carbon values can be attributed to bacterial methanogenesis. Assuming crystallization temperatures of 20-50??C, most joint- and cleat-fill calcite precipitated from fluids with ??18O ratios ranging from about -11 to +2 ??? standard mean ocean water (SMOW). Uplift and unroofing since the Mesozoic led to meteoric recharge of Pottsville strata and development of freshwater plumes that were fed by meteoric recharge along the structurally upturned, southeastern margin of the basin. Influxes of fresh water into the basin via faults and coalbeds facilitated late-stage bacterial methanogenesis, which accounts for the high gas content in coal and the carbonate cementation of joints and cleats. Diagenetic and epigenetic minerals can affect the transmissivity and storage capacity of joints and cleats, and they appear to contribute significantly to

  20. The effect of coal-bed methane water on spearmint and peppermint.

    PubMed

    Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki; Jeliazkova, Ekaterina; Lowe, Derek

    2013-11-01

    Coal bed methane is extracted from underground coal seams that are flooded with water. To reduce the pressure and to release the methane, the water needs to be pumped out. The resulting waste water is known as coal bed methane water (CBMW). Major concerns with the use of CBMW are its high concentrations of S, Na, dissolved Ca, Mg, SO, and bicarbonate (HCO). Irrigation water is a scarce resource in most of the western states. The objective of this study was to evaluate the effect of various amounts of CBMW on the growth, essential oil content, composition, and antioxidant activity of spearmint ( L.) and peppermint ( L.) crops that were irrigated with the water. These two crops are grown in some western states and are potential specialty crops to Wyoming farmers. The irrigation treatments were 0% CBMW (tap water only), 25% CBMW (25% CBMW plus 75% tap water), 50% CBMW (50% CBMW and 50% tap water), 75% CBMW (75% CBMW plus 25% tap water), and 100% CBMW. Analyses of the data revealed that the CBMW treatments did not affect the antioxidant capacity of spearmint or peppermint oil (242 and 377 μmol L Trolox g, respectively) or their major oil constituents (carvone or menthol). Coal bed methane water at 100% increased total phenols and total flavonoids in spearmint but not in peppermint. Coal bed methane water also affected oil content in peppermint but not in spearmint. Spearmint and peppermint could be watered with CBMW at 50% without suppression of fresh herbage yields. However, CBMW at 75 and 100% reduced fresh herbage yields of both crops and oil yields of peppermint relative to the control. PMID:25602421

  1. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-25

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  2. Depositional sequence stratigraphy and architecture of the cretaceous ferron sandstone: Implications for coal and coalbed methane resources - A field excursion

    USGS Publications Warehouse

    Garrison, J.R., Jr.; Van Den, Bergh, T. C. V.; Barker, C.E.; Tabet, D.E.

    1997-01-01

    This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops

  3. A multicomponent, two-phase-flow model for CO{sub 2} storage and enhanced coalbed-methane recovery

    SciTech Connect

    Seto, C.J.; Jessen, K.; Orr, F.M.

    2009-03-15

    Injection of CO{sub 2} into deep unminable coal seams is an option for geological storage of CO{sub 2} and may enhance the recovery of CH{sub 4} in these systems, making coal reservoirs interesting candidates for sequestration. New analytical solutions are presented for two-phase, three- and four-component flow with volume change on mixing in adsorbing systems. We analyze the simultaneous flow of water and gas containing multiple adsorbing components. The displacement problem is solved by the method of characteristics. Mixtures of N{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O are used to represent enhanced coalbed-methane (ECBM) recovery processes. The displacement behavior is demonstrated to be strongly dependent on the relative adsorption strength of the gas components. In ternary systems, two types of solutions result. When a gas rich in CO{sub 2} displaces a less strongly adsorbing gas (such as CH{sub 4}), a shock solution is obtained. As the injected gas propagates through the system, CO{sub 2} is removed from the mobile phase by adsorption, while desorbed gas propagates ahead of the CO{sub 2} front. The adsorption of CO{sub 2} reduces the flow velocity of the injected gas, delaying breakthrough and allowing for more CO{sub 2} to be sequestered per volume of CH{sub 4} produced. For injection gases rich in N{sub 2}, a decrease in partial pressure is required to displace the preferentially adsorbed CH{sub 4} and a rarefaction solution results. In quaternary displacements with injection-gas mixtures of CO{sub 2} and N{sub 2}, the relative adsorption strength of the components results in solutions that exhibit features of both the N{sub 2}-rich and CO{sub 2}-rich ternary displacements. Analytical solutions for ECBM recovery processes provide insight into the complex interplay of adsorption, phase behavior, and convection.

  4. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    SciTech Connect

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  5. Commercialization of previously-wasted coal mine gob gas and coalbed methane

    SciTech Connect

    Sakashita, B.J.; Deo, M.D.

    1993-12-31

    Enrichment of a gas stream with only one contaminant is a relatively simple process (depending on the contaminant) using available technology. Most of the gas separation technology developed to date addresses this problem. However, gob gas has a unique nature, consisting of five primary constituents, only one of which has any significant value. These constituents are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. In summary, the system design that is expected to be the most favorable from both technical and economic viewpoints is a facility consisting of (1) a PSA nitrogen rejection unit, (2) a catalytic combustion deoxygenation process, (3) an amine or membrane carbon dioxide removal system, and (4) a conventional dehydration unit, as depicted in Figure 1.

  6. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to

  7. Assessment of the Environmental Impacts of Coalbed Methane Development in the Powder River Basin - Use of Coalbead Methane Produced Water for Cropland Irrigation

    SciTech Connect

    Jeff Morris

    2009-01-30

    Water quality is a major concern with regard to development of coalbed methane (CBM) in the Powder River Basin, Wyoming. Large quantities of water are being produced and discharged as a by-product in the process of releasing natural gas from coal. Current practices of discharging large volumes of water into drainage channels or using it to irrigate cropland areas has the potential to elevate salinity and sodicity in soils. Elevated salinity affects the ability of plants to uptake water to facilitate biochemical processes such as photosynthesis and plant growth. Elevated sodicity in irrigation water adversely affects soil structure necessary for water infiltration, nutrient supply, and aeration. Salinity and sodicity concentrations are important in that a sodic soil can maintain its structure if the salinity level is maintained above the threshold electrolyte concentration. In this study, cropland soil and CBM water were treated with gypsum and sulfur. Changes in soil chemistry among different treatments were monitored using a split plot experiment. The CBM water used for irrigation had an EC of 1380 {micro}S cm{sup -1} and SAR of 24.3 mmol{sup 1/2} L{sup -1/2}. Baseline and post treatment soil samples were collected to a depth of 60 cm within each study plot, analyzed, and characterized for chemical parameters. Comparisons between Spring 2004 and Fall 2004 soil chemistry data after one irrigation season (using the equivalent of 1 month of irrigation water or {approx}12 inches) indicated that irrigating with Piney Creek water or a 50:50 blend of Piney Creek water and CBM water did not cause SAR values to increase. A combination of using a gypsum amendment to the soil along with a gypsum injection and sulfur burner treatment to the irrigation water resulted in the lowest SAR value in the first soil horizon among treatments irrigated solely with CBM produced water. The SAR value resulting from this combination treatment was 53% lower than using CBM water with no

  8. Field evaluation of gas-lift and progressive-cavity pumps as effective dewatering methods for coalbed methane wells. Final report, April 1984-December 1985

    SciTech Connect

    Graves, S.L.; Hollingsworth, F.C.; Beavers, W.M.

    1986-03-01

    Field evaluations of gas-lift and progressive-cavity pumps were conducted to determine their effectiveness as dewatering techniques for coalbed-methane wells in the Warrior Coal Field. AMPCO installed a gas-lift system in AMPCO Well No. 6. Problems included poor performance of all gas-lift valve designs and higher instantaneous water production rates than anticipated due to heading and unloading. The test provided the conclusion that gas lift is an effective start-up dewatering tool for initial removal of large amounts of water and solids but that in use as a long-term dewatering tool, needs additional evaluation relative to capital cost, valve design, and extended performance.

  9. Utah coalbed gas exploration poised for growth

    SciTech Connect

    Petzet, G.A.

    1996-08-05

    Coalbed methane production in eastern Utah is growing despite a relaxed pace of exploratory drilling. Leasing has been active the past 2 years, but a delay in issuance of a federal environmental impact statement could retard drilling. Only 19 new wells began producing coalbed gas during 1995, but gas production increased from existing wells as dewatering progressed. The US Bureau of Land Management will allow limited exploration but no field development on federal lands until the EIS is completed, possibly as early as this month. The paper discusses production of coalbed methane in Utah.

  10. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    SciTech Connect

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

  11. Reconnaissance shallow seismic investigation of depth-to-bedrock and possible methane-bearing coalbeds, Galena, Alaska

    USGS Publications Warehouse

    Stephenson, William J.; Williams, Robert A.; Odum, Jack K.; Worley, David M.; Barker, Charles E.; Clark, Arthur C.; Clough, James G.

    2002-01-01

    A reconnaissance shallow seismic reflection/refraction investigation in and around the city of Galena, Alaska suggests that Tertiary and/or Cretaceous bedrock, and possible coalbeds within the Cretaceous, is at least as deep as 550 feet in the immediate vicinity of town. Rock could be deeper than 1000 feet under alternate interpretations. Reflections recorded in these data are believed to be from the sediment/bedrock interface. Analysis of these reflections and associated refractions indicates that this interface, interpreted at most of the six profile locations, has a high seismic velocity, possibly indicating non-sedimentary rock (e.g. volcanic or igneous).

  12. Coalbed methane potential in the Appalachian states of Pennsylvania, West Virginia, Maryland, Ohio, Virginia, Kentucky, and Tennessee; an overview

    USGS Publications Warehouse

    Lyons, Paul C.

    1996-01-01

    This report focuses on the coalbed methane (CBM) potential of the central Appalachian basin (Virginia, eastern Kentucky, southern West Virginia, and Tennessee) and the northern Appalachian basin (Pennsylvania, northern West Virginia, Maryland, and Ohio). As of April 1996, there were about 800 wells producing CBM in the central and northern Appalachian basin. For the Appalchian basin as a whole (including the Cahaba coal field, Alabama, and excluding the Black Warrior Basin, Alabama), the total CBM production for 1992, 1993, 1994, and 1995, is here estimated at 7.77, 21.51, 29.99, and 32 billion cubic feet (Bcf), respectively. These production data compare with 91.38, 104.70, 110.70, and 112.11 Bcf, respectively, for the same years for the Black Warrior Basin, which is the second largest CBM producing basin in the United States. For 1992-1995, 92-95% of central and northern Appalachian CBM production came from southwestern Virginia, which has by far the largest CBM production the Appalachian states, exclusive of Alabama. For 1994, the average daily production of CBM wells in Virginia was 119.6 Mcf/day, which is about two to four times the average daily production rates for many of the CBM wells in the northern Appalachian basin. For 1992-1995, there is a clear increase in the percentage of CBM being produced in the central and northern Appalachian basin as compared with the Black Warrior Basin. In 1992, this percentage was 8% of the combined central and northern Appalachian and Black Warrior Basin CBM production as compared with 22% in 1995. These trends imply that the Appalachian states, except for Alabama and Virginia, are in their infancy with respect to CBM production. Total in place CBM resources in the central and northern Appalachian basin have been variously estimated at 66-76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (3.07 Tcf for central Appalachian basin and 11.48 Tcf for northern Appalachian basin) is technically recoverable according to

  13. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    USGS Publications Warehouse

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  14. Hydrology of the Upper Cretaceous Fruitland Formation and the producibility of coal-bed methane, San Juan basin, Colorado and New Mexico

    SciTech Connect

    Kaiser, W.R. ); Swartz, T.E. )

    1990-05-01

    Fruitland coal seams contain 49 tcf of methane, which is produced from abnormally pressured coals in a variety of hydrologic settings. In a study funded by the Gas Research Institute, the authors calculated bottom-hole pressures from wellhead shut-in pressures to map hydraulic head and pressure regime, and estimated vertical pressure gradients to evaluate Fruitland hydrology and its relation to methane producibility. They inferred relative permeability from hydraulic head, pressure regime, and hydrochemistry, and related these hydrologic elements to established production. In the Fruitland Formation, coal seams are the primary aquifers, receiving recharge mainly from the elevated, wet, north and northwest margins of the basin. Formation waters in the north-central part of the basin have low chlorinities and high alkalinities, whereas those in the southern part of the basin are saline Na-Cl type similar to seawater. Regional discharge is to the San Juan River valley in the western part of the basin. Overpressuring in the north-central part of the basin is explained hydrodynamically and is attributed to artesian conditions. They infer enhanced coal-bed permeability where the potentiometric surface is flat and reduced permeability where it is steep. Overpressuring indicates enhanced permeability because permeability in coal seams is stress dependent. In the overpressured region, groundwater is fresh, indicative of an active, dynamic flow system and of permeable pathways. In contrast, connate seawater in the underpressured southern part of the basin implies negligible permeability; strata are too tight to accept and transmit measurable recharge. The basin's most productive coal bed-methane wells are overpressured and occur at hydrologic transitions from a flat to a steep potentiometric surface, overpressuring to underpressuring, and low- to high-chloride formation waters.

  15. Coalbed-methane production in the Appalachian basin: Chapter G.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.

    2014-01-01

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the northern, central, and southern Appalachian basin coal regions, which extend almost continuously from Pennsylvania southward to Alabama. Most commercial CBM production in the Appalachian basin is from three structural subbasins: (1) the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; (2) the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and (3) part of the Black Warrior basin in Alabama. The cumulative CBM production in the Dunkard basin through 2005 was 17 billion cubic feet (BCF), the production in the Pocahontas basin through 2006 was 754 BCF, and the production in the part of the Black Warrior basin in Alabama through 2007 was 2.008 TCF. CBM development may be regarded as mature in Alabama, where annual production from 1998 through 2007 was relatively constant and ranged from 112 to 121 BCF. An opportunity still exists for additional growth in the Pocahontas basin. In 2005, annual CBM production in the Pocahontas basin in Virginia and West Virginia was 85 BCF. In addition, opportunities are emerging for producing the large, diffuse CBM resources in the Dunkard basin as additional wells are drilled and technology improves.

  16. A primer on the occurrence of coalbed methane in low-rank coals, with special reference to its potential occurrence in Pakistan

    USGS Publications Warehouse

    SanFilipo, John R.

    2000-01-01

    Introduction: This report compiles and updates a series of correspondence that took place between 1998 and early 2000 among the author and representatives of various consulting groups operating in the coal sector of Pakistan. The purpose of the original correspondence was to introduce basic concepts of coalbed methane (CBM) in low-rank coals to planners and other parties interested in the development of Pakistan's coal, particularly the large deposits of the Thar desert area of Sindh Province that were recently discovered (SanFilipo and Khan, 1994) by the Geological Survey of Pakistan (GSP) and the U.S. Geological Survey (USGS). The author tested two shallow boreholes in Sindh Province for CBM in 1992, including one in Thar, with very marginal results. Additional targets with better CBM prospects were recommended shortly thereafter (SanFilipo and others, 1994), but these were not followed up during subsequent drilling, nor were any other sites tested. Recent events, notably the rapid pace of CBM development in low-rank coals of the Powder River Basin of the U.S., and a show of CBM in commercial quantities in the Cambay Basin of India - both of which are similar in age and rank to most of Pakistan's coal - have indicated a need for reevaluating the initial CBM investigations made in Pakistan in 1992 and for a reassessment of the CBM prospects for the country at large.

  17. Coalbed gas development

    SciTech Connect

    Not Available

    1992-01-01

    This book includes: Overview of coalbed gas development; Coalbed gas development in the West Coalbed gas development on Indian lands; Multi-mineral development conflicts; Statutory solutions to ownership disputes; State and local regulation; Environmental regulations; Status of the section 29 tax credit extension; Using the section 29 credit; Leasing coalbed gas prospects; Coalbed gas joint operating agreements and Purchase and sale agreements for coalbed gas properties.

  18. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross

  19. Effects of Adsorbed Gases on the Physical and Transport Properties of Low-Rank Coal, PRB, WY: Implications for Carbon Sequestration and Enhanced Coalbed Methane Recovery

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zoback, M. D.; Hagin, P. N.

    2010-12-01

    When CO2 is injected into unminable coalbeds, it has the potential to enhance the amount of methane production (ECBM) and to geologically sequester CO2 as an adsorbed phase. In this study we study the effects of adsorption of He, N2, CH4 and CO2, on the mechanical and flow properties of sub-bituminous coal from the Powder River Basin (PRB) on both intact and crushed samples. The coal samples were vacuum dried before each test, then saturated by each test gas at a series of either increasing pore pressure or increasing effective stress until steady state was reached. Thus, the amount of adsorption can be measured as a function of pore pressure Permeability was measured as a function of effective stress. Preliminary results show that the adsorption of CO2 is twice as large as CH4, and almost four times that of N2. Hysteresis is observed among pure component adsorption and desorption isotherms which are characterized Langmuir-type adsorption isotherms. Permeability decreases with increasing effective stress for He, CH4 and CO2. At constant effective stress, permeability decreases when the saturating gas changes from He to CH4 and CO2. Hysteresis of permeability with increasing and decreasing effective stress is not observed in crushed samples. The coal swells when CH4 displaces He and swells more when CO2 displaces He. Viscoplastic creep behavior is observed in the presence of CH4 and CO2 with both intact and crushed samples, which may affect maintaining permeability for long-term CO2 injection. Adsorption Isotherm of Crushed Coal Sample, WY Permeability as a function of effective stress with different gas saturation

  20. Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production

    SciTech Connect

    Colmenares, L.B.; Zoback, M.D.

    2007-01-15

    Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

  1. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well.

    PubMed

    An, Thuy T; Picardal, Flynn W

    2015-05-01

    A novel, mesophilic, obligately anaerobic, acetate-oxidizing, dissimilatory iron-, sulfur-, and manganese-reducing bacterium, designated strain ICBM(T), was obtained from an active, coalbed methane gas well in Indiana, USA. Strain ICBM(T) was a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium that was rich in c-type cytochromes and formed red colonies in solid medium. Strain ICBM(T) conserved energy to support growth from the oxidation of acetate, propionate, pyruvate, malate, fumarate, succinate and dl-lactate, concomitant with dissimilatory iron reduction. Strain ICBM(T) fermented fumarate yielding succinate and acetate. Strain ICBM(T) was able to grow in the temperature range of 10 °C to 37 °C, NaCl concentration range of 0 to 1.2 M, and pH range of 6.5 to 8.0. The physiological characteristics of strain ICBM(T) indicated that it belongs to the Desulfuromonas cluster. The G+C content of its genomic DNA was 61.2 mol%. The predominant cellular fatty acids were C16 : 0 (39.3%), C16 : 1ω7c and/or iso-C15 : 0 2-OH (36.6%). The closest cultured phylogenetic relative of strain ICBM(T) was Desulfuromonas michiganensis BB1(T) with only 95% 16S rRNA gene sequence similarity. This confirmed that strain ICBM(T) is affiliated with the genus Desulfuromonas . On the basis of phenotypic and genotypic differences between strain ICBM(T) and other taxa of the genus Desulfuromonas , strain ICBM(T) represents a novel species for which the name Desulfuromonas carbonis sp. nov. is proposed (type strain ICBM(T) = DSM 29759(T) = JCM 30471(T)). Strain ICBM(T) is the first Fe(III)-, S(0)-, and Mn(IV)-reducing bacterium that was isolated from a coal bed. PMID:25736408

  2. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning; Ashraf, Ali; Duckworth, Cole; Sinata, Priscilla; Sugiyono, Ivan; Shannon, Mark A.; Werth, Charles J.

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  3. Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and coalbed methane generation

    USGS Publications Warehouse

    Solano-Acosta, W.; Schimmelmann, A.; Mastalerz, Maria; Arango, I.

    2008-01-01

    Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of ??18O of coalbed paleowaters that had been present at the time of mineralization. ??18Omineral and ??18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272??Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600??m at ??? 78 ?? 5????C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between ??? 500 to ??? 1300??m at a lower temperature of 43 ?? 6????C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a ??18Owater ??? - 1.25??? versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats. ?? 2007 Elsevier B.V. All rights reserved.

  4. Assessments of Environmental Impacts and Beneficial Use of Coalbed Methane Produced Water in the Powder River Basin

    SciTech Connect

    Jeff Morris

    2009-03-15

    Impact on water quality and the beneficial use of the coal bed methane (CBM) produced water are imminent questions to be answered due to the rapidly growing CBM exploration in the Powder River Basin (PRB). The practice of discharging large volumes of water into drainage channels or using it to irrigate rangeland areas has the potential of causing serious problems. The elevated salinity and sodicity in the CBM water may be detrimental to soils, plants and the associated microbial communities. There are limited studies on CBM water characterization; however, a comprehensive understanding of CBM water influence on the local ecosystem is lacking. It is very important that the water applied to soils meets the favorable combination of salinity and sodicity that will allow the plants to grow at good production levels and that will maintain the structure of the soils. The purpose of this study was to access various CBM water treatment technologies and the influence of the treated water on local biogeochemical settings in order to evaluate and identify the proper technologies to treat the CBM produced water from CBM operations, and use it in an environmentally safe manner. Unfortunately, a suitable field site was not identified and the funds for this effort were moved to a different project.

  5. Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water

    SciTech Connect

    Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

    2009-10-18

    Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the

  6. Characteristic of In Situ Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Junlong; Tang, Dazhen; Xu, Hao; Li, Yong; Li, Song; Tao, Shu; Lin, Wenji; Liu, Zhenxing

    2016-08-01

    Coalbed methane (CBM) development faces many challenges, among which in situ stress and permeability are two of the most important and fundamental factors. Knowledge of the characteristics of these factors is crucial to CBM exploration and development. Based on measured injection/falloff and in situ stress well test data of 55 CBM wells in the eastern margin of the Ordos Basin, correlations between parameters including initial reservoir pressure, in situ stress, lateral stress coefficient, well test permeability, and burial depth were determined. The distribution of in situ stress was analyzed systematically and its influence on permeability was also addressed. The results indicate that the maximum horizontal principal stress ( σ H 10.13-37.84 MPa, average 22.50 MPa), minimum horizontal principal stress ( σ h 6.98-26.88 MPa, average 15.04 MPa) and vertical stress ( σ v 12.30-35.72 MPa, average 22.48 MPa) all have positive correlations with coal burial depth. Stress ratios ( σ H/ σ h, σ H/ σ v, and σ h/ σ v) and lateral stress coefficient slowly attenuated with depth. With increase of horizontal principal stresses, coal reservoir permeability (0.01-3.33 mD, average 0.65 mD) decreases. The permeability variation is basically consistent with change of stress state at a certain burial depth, the essence of which is the deformation and destruction of coal pore structures under the action of stresses. Three types of stress fields exist in the area: in the shallow coal seam at burial depths <700 m, the horizontal principal stress is dominant, revealing a strike slip regime ( σ H > σ v > σ h), with average permeability 0.89 mD; from 700 to 1000 m depths, there is a stress transition zone ( σ H ≈ σ v > σ h) with average permeability 0.73 mD; in the deep coal seam with burial depths >1000 m, the vertical principal stress is dominant, demonstrating a normal stress regime ( σ v > σ H > σ h) with average permeability 0.11 mD.

  7. Geologic cross section, gas desorption, and other data from four wells drilled for Alaska rural energy project, Wainwright, Alaska, coalbed methane project, 2007-2009

    USGS Publications Warehouse

    Clark, Arthur C.; Roberts, Stephen B.; Warwick, Peter D.

    2010-01-01

    Energy costs in rural Alaskan communities are substantial. Diesel fuel, which must be delivered by barge or plane, is used for local power generation in most off-grid communities. In addition to high costs incurred for the purchase and transport of the fuel, the transport, transfer, and storage of fuel products pose significant difficulties in logistically challenging and environmentally sensitive areas. The Alaska Rural Energy Project (AREP) is a collaborative effort between the United States Geological Survey (USGS) and the Bureau of Land Management Alaska State Office along with State, local, and private partners. The project is designed to identify and evaluate shallow (<3,000 ft) subsurface resources such as coalbed methane (CBM) and geothermal in the vicinity of rural Alaskan communities where these resources have the potential to serve as local-use power alternatives. The AREP, in cooperation with the North Slope Borough, the Arctic Slope Regional Corporation, and the Olgoonik Corporation, drilled and tested a 1,613 ft continuous core hole in Wainwright, Alaska, during the summer of 2007 to determine whether CBM represents a viable source of energy for the community. Although numerous gas-bearing coal beds were encountered, most are contained within the zone of permafrost that underlies the area to a depth of approximately 1,000 ft. Because the effective permeability of permafrost is near zero, the chances of producing gas from these beds are highly unlikely. A 7.5-ft-thick gas-bearing coal bed, informally named the Wainwright coal bed, was encountered in the sub-permafrost at a depth of 1,242 ft. Additional drilling and testing conducted during the summers of 2008 and 2009 indicated that the coal bed extended throughout the area outlined by the drill holes, which presently is limited to the access provided by the existing road system. These tests also confirmed the gas content of the coal reservoir within this area. If producible, the Wainwright coal bed

  8. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    USGS Publications Warehouse

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  9. Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A

    USGS Publications Warehouse

    Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S.

    2008-01-01

    Significant amounts (> 36??million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, ??DH2O and ??18OH2O were measured for 199 of the samples, and ??DCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na-HCO3-type water with low dissolved SO4 content (median < 1??mg/L) and little or no dissolved oxygen (< 0.15??mg/L), whereas shallow groundwater (depth generally < 120??m) is a mixed Ca-Mg-Na-SO4-HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation-reduction reactions account for high HCO3 (270-3310??mg/L) and low SO4 (median < 0.15??mg/L) values; (4) fractionation between ??DCH4 (- 283 to - 328 per mil) and ??DH2O (- 121 to - 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of ??DH2O and ??18OH2O (- 16 to - 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  10. Coal seam methane is one of the hotter current plays

    SciTech Connect

    Crouse, P.C. )

    1989-11-01

    The author discusses how exploitation and development of coal seams for methane gas recovery has caught the fancy of the petroleum industry. This resource has the potential to add trillions of cubic feet of marketable gas in the future. Shallow coalbed provinces are estimated to constitute around a 400 to 900-Tcf resource with 10 to 100 Tcf of potentially recoverable reserves. Current U.S. gas reserves are 168 Tcf, excluding Alaska (25 Tcf). Coalbed methane resources occur over a large portion of the United States with 37 states containing some amount of coalbed methane. The author shows the major provinces for coalbed methane.

  11. L-FVM for Unsteady Seepage Flow in Low Permeability Coalbed

    SciTech Connect

    Liu, Y. W.; Su, Z. L.; Niu, C. C.; Cai, Q.; Li, H. S.; Zhao, P. H.; Zhou, X. H.; Lu, Q.

    2011-09-28

    The significant feature of coalbed in China is the low permeability. A new unsteady seepage flow model isdeveloped for the low permeability coalbed by considering the startup pressure gradient and methane desorption effect.Since the complexity of the problem, a new method which we call it ''L-FVM'' is developed, based on comparing the normal numerical calculation methods and comprehension research on FVM. The results show that L-FVM has the same precission but higher calculating velocity than normal FVM. This result is very important for monitoring the area pressure drawdown in coalbed methane engineering

  12. Controls on coal-bed gas composition

    SciTech Connect

    Rice, D. )

    1993-09-01

    Coal-bed gases are quite variable in composition. In addition to methane, they can contain significant amounts of heavier hydrocarbon gases (C2+>20%) and carbon dioxide (>99%). Coal-bed gases are also variable in their isotopic composition: [delta][sup 13]C[sub 1]:-70.4 to - 16.8 ppt, [delta][sup 13]C[sub 2]:-29.2 to -22.8 ppt, [delta]D[sub 1]:-333 to -117 ppt, and [delta]C[sub CO2]:26.6 to +18.6 ppt. the primary controls of hydrocarbon gas composition are coal rank and composition and depth/temperature. Biogenic gas is generated by the degradation of organic matter at shallow depths and low temperatures in coals of any rank and is mainly methane. Thermogenic coal-bed gas results from devolatilization of coal at ranks of high- volatile bituminous and higher. These gases can be wet at intermediate ranks (high- to medium-volatile bituminous) and are dry at higher ranks. [delta][sup 13]C and [delta]D values become more positive with increasing rank. In addition, at intermediate ranks, hydrogen-rich coals generate wetter gases than do oxygen-rich coals. Shallow coal-bed gas is relatively dry with isotopically light methane as compared to gas from deeper coal, regardless of rank. This trend results from the original gases being altered by relatively recent bacterial activity (aerobic oxidation of heavier hydrocarbons and/or anaerobic generation of biogenic methane). This alteration occurs at depths <3,000 ft and is controlled by the physical characteristics of the coal beds, burial history, and groundwater flow. Carbon dioxide generated during devolatilization commonly is not preserved in present-day coal-bed gases because it is highly reactive and soluble in water. Significant present-day amounts of carbon dioxide can be the result of several processes not related to coalification, such as recent bacterial activity, thermal destruction of carbonates, and migration from magma chambers or the upper mantle.

  13. Coalbed gas in the Mecsek Basin, Hungary

    USGS Publications Warehouse

    Landis, E.R.; Rohrbacher, T.J.; Barker, C.E.; Fodor, B.; Gombar, G.

    2003-01-01

    Information about the presence and recovery of coalbed gas during underground mining and attempts to recover the gas as an energy source, plus new data about gas storage capacity, petrography, maturity, and other coal quality factors, indicate that the coals of the Mecsek Basin may contain large quantities of coalbed gas that is largely methane. Two preliminary estimates of the total gas content of the coalfield are 0.28e+11 m3 (almost 1 trillion cubic feet) and 1.13e+11 m3 (nearly 4 trillion cubic feet). Although much more information is needed about gas contents, permeabilities and other reservoir factors, the available geologic information may be sufficient to identify target areas for exploration. Efforts required to evaluate production potential are warranted. ?? 2003 Elsevier Science B.V. All rights reserved.

  14. Coalbed gas; Hunt for quality basins goes abroad

    SciTech Connect

    Kuuskraa, V.A.; Boyer, C.M. II; Kelafant, J.A. )

    1992-10-05

    This paper reports that spurred on by success of the U.S. coalbed gas industry, a worldwide hunt for the next San Juan-type coalbed gas basin is under way. This search is taking both major and independent exploration companies form Australia to Zimbabwe. The goal is to find high quality coal basins and areas that not only contain large volumes of gas in place but also have the potential for high gas production rates. Given the widespread distribution of coal-bearing strata around the world, a reasonable assumption is that high-quality basins with commercial levels of coalbed gas production do exist. Thick, gassy coal seams are present on all populated continents as documented by coal production statistics and numerous methane-related mining disasters. In some countries, such as China, the potential gas resources contained in the coal seams may dwarf the conventional gas resource base.

  15. Project identification for methane reduction options

    SciTech Connect

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  16. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2003-03-10

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects

  17. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  18. Interconnecting compressors control coalbed gas production

    SciTech Connect

    Payton, R.; Niederhofer, J. )

    1992-10-05

    This paper reports that centralized compressors afford Taurus Exploration Inc.'s coalbed gas operations optimum control of gas production. Unlike satellite stations, the centralized system allows methane gas to e shifted from station to station via the interconnecting low-pressure pipeline network. The operations area encompasses approximately 40,000 acres, about 40 miles southwest of Birmingham, Ala. The project includes about 250-miles of low-pressure gas flow lines to almost 400 wells. The centralized system is less costly than a satellite station to build and operate. Unlike a satellite station that requires each compressor to have a complete set of ancillary equipment, the centralized system requires only one suction manifold, one dehydration setup, and one metering facility for every five compressor sets.

  19. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  20. Methane control for underground coal mines. Information circular/1994

    SciTech Connect

    Diamond, W.P.

    1993-01-01

    The paper describes the history and technology of methane drainage in the United States as well as other countries. The methane drainage technology developed in other countries is a valuable resource since their longer history of mining has already forced mine operators to deal with methane emission problems only now being experienced in the United States. Methods for accessing the need for methane drainage as well as the data required for planning and implementing an appropriate system are reviewed. The effectiveness of the various technologies at reducing methane emissions underground and/or the in-place gas content of individual coalbeds is illustrated with case studies. In addition to the safety and productivity gains to be realized from methane drainage systems, the potential for commercialization of coalbed methane is also discussed.

  1. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios

    USGS Publications Warehouse

    Strapoc, D.; Mastalerz, Maria; Eble, C.; Schimmelmann, A.

    2007-01-01

    Coalbed gases and waters from exploratory and production gas wells in the southeastern Illinois Basin were sampled to assess geochemically the origin of coalbed gases, with an emphasis on the Springfield and Seelyville Coal Members that are commercially targeted for coalbed methane production in Indiana. On-line analyses of hydrocarbon gases methane to butanes (C1, C2, C3, n-C4, i-C4) and CO2 yielded gas concentrations, plus ??D and ??13C values. The low thermal maturity of Indiana coals with vitrinite reflectance R0 ??? 0.6% is in agreement with an overwhelmingly biogenic isotopic signature of coalbed gases containing ???96% methane generated via bacterial CO2-reduction. In contrast, thermogenic gas was generated in the stratigraphically equivalent coal beds in western Kentucky's Rough Creek Graben zone where higher maturities of up to R0 ??? 0.8% were reached owing to tectonic and hydrothermal activity. No secondary biogenic methane was observed in more mature western Kentucky coal beds where greater burial depth limits the recharge of meteoric water. Biogenic and thermogenic coalbed gases represent two end-members that are compositionally and isotopically distinct. Microbial biodegradation of thermogenic C2+ hydrocarbon gases in Indiana coal beds preferentially targets C3 and introduces isotope fractionation whereby remaining C3 is enriched in deuterium and 13C.

  2. Fermentation enhancement of methanogenic archaea consortia from an Illinois basin coalbed via DOL emulsion nutrition.

    PubMed

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  3. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  4. Geochemistry of coalbed gas - a review

    USGS Publications Warehouse

    Clayton, J.L.

    1998-01-01

    Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.

  5. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams

    SciTech Connect

    Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

    1980-07-01

    Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

  6. Patterns of Endemism and Habitat Selection in Coalbed Microbial Communities

    PubMed Central

    Lawson, Christopher E.; Strachan, Cameron R.; Williams, Dominique D.; Koziel, Susan; Hallam, Steven J.

    2015-01-01

    Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevailing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and microbial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of endemism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to discrete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions. To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin related to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. population genome and related organisms isolated from different environments reflected habitat-specific selection pressures that included nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive wells or for those with declining productivity. PMID:26341214

  7. Patterns of Endemism and Habitat Selection in Coalbed Microbial Communities.

    PubMed

    Lawson, Christopher E; Strachan, Cameron R; Williams, Dominique D; Koziel, Susan; Hallam, Steven J; Budwill, Karen

    2015-11-01

    Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevailing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and microbial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of endemism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to discrete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions. To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin related to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. population genome and related organisms isolated from different environments reflected habitat-specific selection pressures that included nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive wells or for those with declining productivity. PMID:26341214

  8. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, P.C.; Warwick, P.D.; Breland, F.C., Jr.

    2007-01-01

    Wilcox Group (Paleocene-Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate-ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene-Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite-subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower ( 600??m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4 adsorption capacity.

  9. Investigation on log responses of bulk density and thermal neutrons in coalbed with different ranks

    NASA Astrophysics Data System (ADS)

    Zhao, Peiqiang; Mao, Zhiqiang; Jin, Ding; Zhao, Peihua; Sun, Baodian; Sun, Wei; Pang, Xu

    2015-06-01

    Density and neutron logs play an important role in the exploration of coalbed methane (CBM) reservoirs. However, the study of these two log responses of coalbeds is deficient. Based on laboratory data in the published literature and field logs of CBM reservoirs from several coal basins in China, this paper focuses on acquiring and analyzing variations in bulk density and thermal neutrons of coal with different ranks. Two new methods are introduced to correct the effect of ash on field logs to obtain the log values of ash-free coal. The corrected coalbed density logs are in accordance with the density of coal samples in the laboratory. Then, hydrogen indices of coals with different ranks are simulated, and the corrected neutron logs are well verified by simulated values. After obtaining the variations of density and neutrons of coalbeds with different ranks, the behaviors of density and neutron logs are analyzed and discussed. Based on the laboratory data and the simulated and corrected field logs, the specific values of density and neutron porosity for ash-free coals with higher ranks are listed. Furthermore, a crossplot of density versus neutron logs is proposed to identify coal ranks, which has been successfully applied to various CBM fields of several basins in China.

  10. Distribution and geochemical characterization of coalbed gases at excavation fields at natural analogue site area Velenje Basin, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Žigon, Stojan; Grassa, Fausto; Sedlar, Jerneja; Zadnik, Ivo; Zavšek, Simon

    2016-04-01

    Unconventional gas resources, including coal bed methane and shale gas, are a growing part of the global energy mix, which has changed the economic and strategic picture for gas consuming and producing countries, including the USA, China and Australia that, together are responsible for around half the currently recoverable unconventional gas resources. However, CBM production was often hindered by low permeability and mineralization in cleats and fractures, necessitating the development of cost effective horizontal drilling and completion techniques. Geochemical and isotopic monitoring of coalbed gases at excavation fields in Velenje Basin started in year 2000, with the aim to obtain better insights into the origin of coalbed gases. Results from active excavation fields in the mining areas Pesje and Preloge in the year period 2014-2015 are presented in this study. Composition and isotopic composition of coalbed gases were determined with mass - spectrometric methods. The chemical (methane, carbon dioxide, nitrogen) and isotopic composition of carbon in methane and carbon dioxide in the Velenje Basin vary and depend on the composition of the source of coalbed gas before excavation, advancement of the working face, depth of the longwall face, pre-mining activity and newly mined activity. The basic gas components determined in excavation fields are carbon dioxide and methane. Knowledge of the stable isotope geochemistry of coal bed and shale gas and the related production water is essential to determine not only gas origins but also the dominant methanogenic pathway in the case of microbial gas. Concentrations of methane at active excavation fields are changing from 1.8 to 63.9 %, concentrations of carbon dioxide are changing from 36.1 to 98.2% and CDMI (Carbon Dioxide Methane Index) index from 0.2 to 100 %. Isotopic composition of carbon dioxide is changing from -11.0 to -1.9‰ , isotopic composition of methane from -71.8 to -43.3‰ , isotopic composition of

  11. Using Airborne and Ground Electromagnetic Surveys and DC Resistivity Surveys to Delineate a Plume of Conductive Water at an In-Channel Coalbed Methane Produced Water Impoundment Near the Powder River, Wyoming

    NASA Astrophysics Data System (ADS)

    Lipinski, B. A.; Harbert, W.; Hammack, R.; Sams, J.; Veloski, G.; Smith, B. D.

    2004-12-01

    Development of coal bed methane (CBM) in the Powder River Basin of Wyoming and Montana has significantly increased since 1997. Production of CBM involves withdrawing groundwater from the coal bed to lower the hydrostatic pressure thereby allowing methane to desorb from the coal. The water co-produced with CBM is managed by storing it in impoundments until it can infiltrate to the groundwater, be used for beneficial purposes, or be discharged to surface streams. Skewed Reservoir was constructed as a research site to evaluate disposal of CBM water through infiltration ponds constructed by damming ephemeral streams. Geochemical data collected from monitoring wells placed downgradient of the reservoir detected a plume of water with total dissolved solids concentrations an order of magnitude higher than the CBM water stored in the impoundment. Infiltrating CBM water is suspected to have dissolved salts that were present in the unconsolidated materials beneath the reservoir. A geophysical investigation of the Skewed Reservoir area was conducted in July of 2004 to map the horizontal and vertical extent of the plume and to possibly identify the source of solutes to the infiltrating water. The Department of Energy's National Energy Technology Laboratory contracted Fugro Airborne Surveys to fly their RESOLVE frequency domain airborne electromagnetic (AEM) system with 50-m line spacing at the site. A ground investigation was completed at the same time as the airborne survey. Five 2-D dipole-dipole resistivity surveys and one 3-D pole-dipole survey were conducted using the AGI SuperSting R8/IP multi-channel resistivity imaging system. Additionally, ground conductivity measurements were recorded along each resistivity line using a Geophex GEM-2 multi-frequency ground conductivity meter. All geoelectrical measurements were inverted to obtain the subsurface conductivity distribution. Inversions were constrained using results of downhole borehole induction logs. Results were

  12. Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002

    SciTech Connect

    Milici, R.C.; Hatch, J.R.

    2004-09-15

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

  13. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    USGS Publications Warehouse

    McLaughlin, J.F.; Frost, C.D.; Sharma, S.

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  14. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    USGS Publications Warehouse

    Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.

    2008-01-01

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as

  15. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  16. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-12-26

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

  17. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  18. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    NASA Astrophysics Data System (ADS)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  19. Coalbed gases and hydrocarbon source rock potential of upper Carboniferous coal-bearing strata in upper Silesian Coal Basin, Poland

    SciTech Connect

    Kotarba, M.J.J. ); Clayton, J.L.; Rice, D.D. )

    1996-01-01

    The Upper Silesian Coal Basin (USCB) is one of the major Upper Carboniferous coal basins in the world. Its coalbed gas reserves to the depths of 1,000 m are estimated to be about 350 billion cubic meters (about 12.4 TCF). Coalbed gases in the USCB are variable in both molecular and stable isotope composition [[delta][sup 13]C(CH[sub 4]), [delta]D(CH[sub 4]), [delta][sup 13]C(C[sub 2]H[sub 6]), [delta][sup 13]C(C[sub 3]H[sub 8]), [delta][sup 13]C(CO[sub 2])]. Such variability suggests the effects of both primary reactions operating during the generation of gases and secondary processes such as mixing and migration. Coalbed gases are mostly thermogenic methane in which depth-related isotopic fractionation has resulted from migration but not from mixing with the microbial one. The stable carbon isotope composition indicates that the carbon dioxide, ethane and higher gaseous hydrocarbons were generated during the bituminous coal stage of the coalification process. The main stage of coalbed gas generation occurred during the Variscan orogeny, and generation was completed after the Leonian and Asturian phases of this orogeny. The coals and carbonaceous shales have high gas generation potential but low potential for generation and expulsion of oil compared to the known Type III source rocks elsewhere. In general, the carbonaceous shales have slightly higher potential for oil generation, but probably would not be able to exceed expulsion thresholds necessary to expel economic quantities of oil.

  20. Coalbed gases and hydrocarbon source rock potential of upper Carboniferous coal-bearing strata in upper Silesian Coal Basin, Poland

    SciTech Connect

    Kotarba, M.J.J.; Clayton, J.L.; Rice, D.D.

    1996-12-31

    The Upper Silesian Coal Basin (USCB) is one of the major Upper Carboniferous coal basins in the world. Its coalbed gas reserves to the depths of 1,000 m are estimated to be about 350 billion cubic meters (about 12.4 TCF). Coalbed gases in the USCB are variable in both molecular and stable isotope composition [{delta}{sup 13}C(CH{sub 4}), {delta}D(CH{sub 4}), {delta}{sup 13}C(C{sub 2}H{sub 6}), {delta}{sup 13}C(C{sub 3}H{sub 8}), {delta}{sup 13}C(CO{sub 2})]. Such variability suggests the effects of both primary reactions operating during the generation of gases and secondary processes such as mixing and migration. Coalbed gases are mostly thermogenic methane in which depth-related isotopic fractionation has resulted from migration but not from mixing with the microbial one. The stable carbon isotope composition indicates that the carbon dioxide, ethane and higher gaseous hydrocarbons were generated during the bituminous coal stage of the coalification process. The main stage of coalbed gas generation occurred during the Variscan orogeny, and generation was completed after the Leonian and Asturian phases of this orogeny. The coals and carbonaceous shales have high gas generation potential but low potential for generation and expulsion of oil compared to the known Type III source rocks elsewhere. In general, the carbonaceous shales have slightly higher potential for oil generation, but probably would not be able to exceed expulsion thresholds necessary to expel economic quantities of oil.

  1. Analysis of hydrocarbons generated in coalbeds

    NASA Astrophysics Data System (ADS)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  2. Fall may be imminent for Kansas Cherokee basin coalbed gas output

    USGS Publications Warehouse

    David, Newell K.

    2010-01-01

    Natural gas production in the Kansas portion of the Cherokee basin, Southeastern Kansas, for 2008 was 49.1 bcf. The great majority of Cherokee basin gas production is now coal-bed methane (CBM). The major producers are Quest Energy LLC, Dart Cherokee Basin Operating Co. LLC, and Layne Energy Operating LLC. Most CBM in Southeastern Kansas is from Middle and Upper Pennsylvanian high-volatile B and A rank bituminous coals at 800 to 1,200 ft depth. Rates of decline for the CBM wells generally decrease the longer a well produces. A gentler collective decline of 13.8% is calculated by averaging the number of new producing wells in a given year with that of the previous year. By the calculations using the gentler overall 13.8% decline rate, if more than 918 successful CBM wells are drilled in 2009, then gas production will increase from 2008 to 2009.

  3. Competitive Adsorption of Carbon Dioxide/Methane in Coal: First-Principles Quantum Mechanical Investigations

    NASA Astrophysics Data System (ADS)

    Liu, Yingdi; Wang, Sanwu

    Sequestration of CO2 into geological formations has been suggested to mitigate the effect of the increasing of the atmospheric CO2 concentration on global warming. Coalbeds are investigated as one of the attractive storage sites since the cost of CO2 sequestration can be offset by the enhanced coalbed methane (ECBM) recovery. Extensive experimental studies have been performed for the competitive adsorption of CO2/CH4 into coalbeds. However, the atomic-level understanding for the interaction between the adsorbate (CO2/CH4) and the adsorbent (coal) has not been fully explored. We report first-principles density-functional calculations for the competitive adsorption between CO2/CH4 in the coal network. In particular, we report results of atomic structures, bonding characteristics, energetics, as well as electronic structures of the CO2/CH4-coal systems. This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  4. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    SciTech Connect

    Dan Kieki

    2008-09-30

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  5. Authigenic quartz in the Upper Freeport coalbed, west- central Pennsylvania

    SciTech Connect

    Ruppert, L.P.

    1985-05-01

    Cathodoluminescence petrography was used to examine quartz grains contained in facies of the Upper Freeport coalbed (Middle Pennsylvanian) of west-central Pennsylvania. Samples included ash concentrates, polished blocks of different lithotypes, and standard petrographic pellets of specific gravity separates of facies channel samples. More than 80% of the quartz in mineral and vitrain-rich bands in the polished blocks do not exhibit cathodoluminescence. In specific gravity separates, 100% of the quartz in the lightest gravity separates did not luminesce. In the heaviest gravity separates, which included shale-parting material, 60% of the quartz did not luminesce. In contrast, in a sample of shale directly overlying the coalbed, more than 90% of the quartz luminesced. On the basis of these data and of other published data, quartz in the Upper Freeport coalbed is interpreted to be authigenic in origin. The authigenic quartz grains are postulated to have been derived from phytoclasts.

  6. Financing coal mine, methane recovery and utilization projects

    SciTech Connect

    2006-07-01

    The article describes types and sources of funding that may be available to project developers and investors that are interested in pursuing coal mine methane (CMM) project opportunities particularly in developing countries or economies in transition. It briefly summarizes prefeasibility and feasibility studies and technology demonstrations. It provides a guide to key parties involved in project financing (equity, debt or carbon financing) as well as project risk reduction support. This article provides an update to the information contained in two previous guides - Catalogue of Coal Mine Methane Project Finance Sources (2002) and A Guide to Financing Coalbed Methane Projects (1997) - both available on the CMOP web site http://www.epa.gov/cmop/resources/reports/finance.html.

  7. Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds

    SciTech Connect

    Scott R. Reeves

    2003-03-31

    In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U

  8. Formation and retention of methane in coal

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  9. An anomalous subdiffusion model with fractional derivatives for methane desorption in heterogeneous coal matrix

    NASA Astrophysics Data System (ADS)

    Kang, Jianhong; Zhou, Fubao; Ye, Gaobang; Liu, Yingke

    2015-12-01

    Methane desorption in coal matrix is one of the fundamental gas transport processes during coalbed methane extraction, the mechanism of which is commonly described by Fickian diffusion theory. Here, an anomalous subdiffusion model with fractional derivatives is developed to explore the methane desorption in coal matrix with a highly heterogeneous pore structure. Numerical simulations reproduce the volume fraction of gas desorbed over the entire timescale of experimental desorption. It is suggested that the diffusion of methane in heterogeneous coal matrix may obey the anomalous time and space subdiffusion, rather than Fickian second law. The physical reason is perhaps due to the basic topological complexity inherent to porous coal matrix and the strong adsorption effect of coal on methane molecules.

  10. Methane Gas Concentration in Soils and Ground Water, Carbon and Emery Counties, Utah, 1995-2003

    USGS Publications Warehouse

    Stolp, B.J.; Burr, A.L.; Johnson, K.K.

    2006-01-01

    The release of methane gas from coal beds creates the potential for it to move into near-surface environments through natural and human-made pathways. To help ensure the safety of communities and determine the potential effects of development of coal-bed resources, methane gas concentrations in soils and ground water in Carbon and Emery Counties, Utah, were monitored from 1995 to 2003. A total of 420 samples were collected, which contained an average methane concentration of 2,740 parts per million by volume (ppmv) and a median concentration of less than 10 ppmv. On the basis of spatial and temporal methane concentration data collected during the monitoring period, there does not appear to be an obvious, widespread, or consistent migration of methane gas to the near-surface environment.

  11. Mathematical modeling of spontaneous heating of a coalbed

    SciTech Connect

    Edwards, J.C.

    1990-03-01

    To have the capability to predict the development of localized spontaneous heating within a porous coalbed that is subjected to forced air ventilation or in an otherwise quiescent environment in which buoyancy develops, The Bureau of Mines developed three time-dependent mathematical models, which were used to calculate the temperature increase associated with chemisorption of oxygen by the coal. In each model, spontaneous heating is driven by an Arrhenius first order reaction between the oxygen and coal. Two models ate two-dimensional, and one is one-dimensional. In the first two-dimensional model, a constant-velocity forced convection airflow is specified; and in the other, buoyant flow is allowed to develop in the absence of forced convection. The third model evaluates the airflow from Darcy's law and a specification of the pressure at the surface of a one-dimensional porous coalbed. Numerical computations demonstrate how each model could be used to predict the onset of spontaneous heating when the porous coalbed was subjected to constraints of an imposed internal heat source or a high-temperate airflow. The effects of particle size and coalbed compaction upon spontaneous heating have been examined with the third model.

  12. An evaluation of pretreatment agents for the stimulation of secondary biogenic coalbed natural gas

    NASA Astrophysics Data System (ADS)

    Huang, Zaixing

    Coalbed methane is considered to be an underexploited source of clean energy and, with the realization of its biogenic nature, it has attracted increasing interest in recent decades. Most of the published studies on biogenic coal bed natural gas (CBNG) have focused either on biostimulation (the addition of nutrients to stimulate the native microbial populations) or bioaugmentation (the addition of both nutrients and non-native microbial consortia of microorganisms). Although these approaches have shown promise, they are predicated on the assumption that the coal seam is nutrient-limited or that the existing microbial communities are not optimized to convert coal to natural gas. The premise of this research is that the organic matter present within the coal matrix is, for the most part, environmentally inert and not readily available to the microorganisms living within the coal seam. The goal of this research has been to focus on treatments that will increase the solubility, and hence the bioavailability, of coal to the indigenous microbial community. Initially, treatment agents representing acids, bases and oxidants were selected to evaluate the potential for the in situ solubilization and depolymerization of subbituminous coal. The bioavailability of the coal-derived constituents was then evaluated aerobically using biometer assays and anaerobic bioassays. The experiments have shown that the acid (nitric acid) and base (sodium hydroxide) treatments are more efficient than the oxidants (potassium permanganate and catalyzed hydrogen peroxide) with respect to total organic carbon (TOC). The carbon contained in the solubilized/depolymerized product of nitric acid treatments accounted for approximately 14% of the carbon from the Powder River Basin (PRB) coal evaluated in the study; however, the biometer assays revealed that the bioavailability of the solubilized/depolymerized products was not directly correlated to the amount of dissolved organic carbon (TOC). The

  13. Breaking methane

    PubMed Central

    Rosenzweig, Amy C.

    2015-01-01

    The most powerful oxidant found in nature is compound Q, an enzymatic intermediate that oxidizes methane. New spectroscopic data have resolved the long-running controversy about Q’s chemical structure. PMID:25607367

  14. Potential sulfate reduction in deeply buried coalbeds 2 km below the seafloor off the Shimokita Peninsula (Japan)

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Inagaki, F.; Lever, M. A.; Jørgensen, B. B.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 337 aboard the drilling vessel Chikyu in summer 2012 was the first IODP expedition to drill into a deeply buried hydrocarbon system by riser drilling and, in the process, extended the depth record of scientific ocean drilling to 2466 meters below seafloor (mbsf). A main scientific goal of Expedition 337 was to explore microbial communities associated with deeply buried coalbeds 2 km below the seafloor at Site C0020 off the Shimokita Peninsula of Japan, northwestern coast of the Pacific Ocean. Four lithological units were defined according to sedimentological observations (Inagaki et al. 2012). Temperature measurements during wireline logging revealed in-situ temperatures in the range habitable for life, with ~40-45°C in 2km-deep coalbeds and 60°C at the bottom of the hole. To determine potential sulfate reduction rates (pSRRs) throughout the lower half of the borehole (1200-2466 mbsf; Units II - IV), we prepared slurries from fresh core material in artificial seawater medium containing 1 mM of sulfate and incubated these onboard with 35S-labeled sulfate at approximate in-situ temperatures (i.e., 25, 35, and 45°C). A duplicate set of incubations was started from each sample, one with only N2 in the headspace, and one with N2 + CH4 in the headspace. We incubated samples with 3.7 MBq 35S for a period of 10 days to achieve a detection limit of ca. 10 fmol sulfate cm-3 d-1. pSRRs were close to the detection limit in Unit II and increased by two orders of magnitude up to 2 pmol cm-3 d-1 in the coal-bearing strata (Unit III), decreasing again below in Unit IV. Maximum rates in Unit III reached values similar to those determined during the Chikyu shakedown cruise at 350 mbsf at the same site in 2006. In contrast to the pSRRs determined previously, however, addition of methane did not stimulate pSRRs, suggesting that potential sulfate reduction was supported by electron donors other than methane. The increase of pSRR in

  15. Hydraulic and Seismic Properties of Methane-Bearing Coal

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Gritto, R.; Tomutsa, L.

    2002-12-01

    In the last 10 years, coalbed methane (CBM) has transformed from being a coal mine hazard to a low-risk source of long term dry natural gas. The benefit of this clean burning natural gas as an energy source in conjunction with vast amounts stored in coal basins has led to the development of an industry that produces CBM. Reduction of carbon emissions to the atmosphere through carbon dioxide injection into coal has added another benefit to the production of CMB, as carbon dioxide may be used to desorb methane from coal seams. In order to successfully produce CBM, more information is needed on the migration of methane through fractures and cleats and on the replacement of methane by carbon dioxide in the coal seam. Laboratory experiments are underway to address these questions. Tests on core samples are being performed under in-situ pressure to gain insights on processes occurring in CBM extraction and carbon dioxide sequestration. A variety of techniques are being used including measuring physical properties, electrical resistivity, and saturation and phase location using x-ray computed tomography. Simultaneously measurements of seismic waves are performed including P- and S-wave velocities as well as amplitudes of body waves as a function of methane and carbon dioxide concentration in coal. The results can be used to design an experiment to monitor time-lapse changes and thus the production of gas from a coal seam during methane production.

  16. Geology of the Ferron Sandstone coalbed gas [open quotes]fairway,[close quotes] central Utah

    SciTech Connect

    Tabet, D.E.; Hucka, B.P.; Sommer, S.N. )

    1996-01-01

    A major new coalbed gas play with as many as 1,000 wells already proposed is being developed in the Upper Cretaceous Ferron Sandstone of central Utah. The Ferron consists of a vertically stacked sequence of as many as seven fluvial-deltaic sandstones and laterally equivalent interdistributary coal swamp units. A new total-net-coal isopach map for the Ferron, compiled from the review of hundreds of well records, shows the greatest accumulation of coal generally occurs in a 6-to 10-mile-wide band, or fairway, directly to the west (landward) of the fluvial-deltaic sandstones. This fairway can be traced a distance of at least 80 miles, heading southwest from the vicinity of Price to the southeast corner of Sevier County. The fairway is interrupted roughly every 8-to-12 miles along its length by deltaic, distributary-channel systems. Well samples of Ferron coal were examined microscopically to determine vitrinite reflectance and maturity level. Near-surface coals, on the east side of the fairway, have vitrinite reflectance measurements as low as 0.5 percent. Reflectance values increase to the west, reaching a maximum of 0.71 percent. The maturity of coals with vitrinite reflectance readings between 0.5 and 0.71 percent is the early stage in which thermogenic methane generation begins. Examination of drill-hole data also shows that the coal fairway exists at shallow to moderate depths, ranging from surface exposures to 8,000 feet deep.

  17. Geology of the Ferron Sandstone coalbed gas {open_quotes}fairway,{close_quotes} central Utah

    SciTech Connect

    Tabet, D.E.; Hucka, B.P.; Sommer, S.N.

    1996-12-31

    A major new coalbed gas play with as many as 1,000 wells already proposed is being developed in the Upper Cretaceous Ferron Sandstone of central Utah. The Ferron consists of a vertically stacked sequence of as many as seven fluvial-deltaic sandstones and laterally equivalent interdistributary coal swamp units. A new total-net-coal isopach map for the Ferron, compiled from the review of hundreds of well records, shows the greatest accumulation of coal generally occurs in a 6-to 10-mile-wide band, or fairway, directly to the west (landward) of the fluvial-deltaic sandstones. This fairway can be traced a distance of at least 80 miles, heading southwest from the vicinity of Price to the southeast corner of Sevier County. The fairway is interrupted roughly every 8-to-12 miles along its length by deltaic, distributary-channel systems. Well samples of Ferron coal were examined microscopically to determine vitrinite reflectance and maturity level. Near-surface coals, on the east side of the fairway, have vitrinite reflectance measurements as low as 0.5 percent. Reflectance values increase to the west, reaching a maximum of 0.71 percent. The maturity of coals with vitrinite reflectance readings between 0.5 and 0.71 percent is the early stage in which thermogenic methane generation begins. Examination of drill-hole data also shows that the coal fairway exists at shallow to moderate depths, ranging from surface exposures to 8,000 feet deep.

  18. Coalbed gas play emerges in eastern Kansas basins

    USGS Publications Warehouse

    Newell, K.D.; Brady, L.L.; Lange, J.P.; Carr, T.R.

    2002-01-01

    Coalbed gas from Middle Pennsylvanian rocks in eastern Kansas is an emerging new energy play. Many of the critical geological parameters that will prove to be the major controls on the production fairways of this potential new resource have yet to be determined. Nevertheless, preliminary analyses indicate that recent leasing and exploration may translate into long-term production of new gas resources in what was hitherto considered a supermature petroleum province.

  19. Landfill Methane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  20. Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests

    SciTech Connect

    Cui, X.J.; Bustin, R.M.

    2006-03-15

    The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

  1. Research and Development Concerning Coalbed Natural Gas

    SciTech Connect

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality

  2. Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010

    USGS Publications Warehouse

    Clark, Arthur C.

    2014-01-01

    The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.

  3. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  4. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  5. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  6. Formation and retention of methane in coal. Final report

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  7. Coalbed methane adsorption and desorption characteristics related to coal particle size

    NASA Astrophysics Data System (ADS)

    Yan-Yan, Feng; Wen, Yang; Wei, Chu

    2016-06-01

    Effects of particle size on CH4 and CO2 adsorption and desorption characteristics of coals are investigated at 308 K and pressures up to 5.0 MPa. The gas adsorption and desorption isotherms of coals with particle sizes ranging from 250 μm to 840 μm are measured via the volumetric method, and the Langmuir model is used to analyse the experimental results. Coal particle size is found to have an obvious effect on the coal pore structure. With the decrease of coal particle size in the process of grinding, the pore accessibility of the coal, including the specific surface area and pore volume, increases. Hence, coal with smaller particle size has higher specific surface area and higher pore volume. The ability of adsorption was highly related to the pore structure of coal, and coal particle size has a significant influence on coal adsorption/desorption characteristics, including adsorption capacity and desorption hysteresis for CH4 and CO2, i.e., coal with a smaller particle size achieves higher adsorption capacity, while the sample with a larger particle size has lower adsorption capacity. Further, coal with larger particle size is also found to have relatively large desorption hysteresis. In addition, dynamic adsorption performances of the samples are carried out at 298 K and at pressures of 0.1 MPa and 0.5 MPa, respectively, and the results indicate that with the increase of particle size, the difference between CO2 and CH4 adsorption capacities of the samples decreases. Project supported by the National Basic Research Program of China (Grant No. 2011CB201202).

  8. SURFACE AND GROUNDWATER INTERACTIONS AND EFFECTS ON SODIUM ADSORPTION RATIOS IN COALBED METHANE EXTRACTION AREAS

    EPA Science Inventory

    This project will be conducted in the Powder River Basin area of northeastern Wyoming. Sampling will start in May, and repeat sampling will be done monthly. To examine the interactions of the production water with the soil and the subsequent effects on SAR, 6 CBM water discharg...

  9. Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production

    SciTech Connect

    Office of Fossil Energy; National Energy Technology Laboratory

    2003-09-01

    The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

  10. Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams

    SciTech Connect

    Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

    2007-11-01

    A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

  11. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992

    SciTech Connect

    Not Available

    1993-04-01

    The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

  12. The Resource Potential of Low-rank Coalbed Methane in the Eastern Zone of Junggar Basin

    NASA Astrophysics Data System (ADS)

    Ou, Chenghua; Li, Chaochun; He, Jian

    The Eastern Zone of Junggar Basin is a typical and favorable low-rank coal CBM gathering area. This paper firstly, calculates and evaluates the CBM resources of 4 sections and 23 units divided in the Eastern Zone of Junggar Basin; then points out the favorable areas and their burial depth range for further exploration. The results here will provide practical guidance for the whole basin's low-rank CBM investigation and exploration, and impact the understanding of other low-rank CBM resources around the world.

  13. Production-data analysis of single-phase (gas) coalbed-methane wells

    SciTech Connect

    Clarkson, C.R.; Bustin, R.M.; Seidle, J.P.

    2007-06-15

    The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios ({lt} 16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case.

  14. Methane Isotope Instrument Validation and Source Identification at Four Corners, New Mexico, United States.

    PubMed

    Arata, Caleb; Rahn, Thom; Dubey, Manvendra K

    2016-03-10

    Measurements of δ(13)CH4 and CH4 concentration were made at a field site in Four Corners, New Mexico (FC), where we observed large sustained CH4 enhancements (2-8 ppm peaks for hours) during nocturnal inversions. Potential sources of this large CH4 signal at FC include (1) fugitive emissions from coal mining and gas processing that are thermogenic and isotopically (13)C enriched relative to background atmosphere and (2) emissions from agriculture, ruminants, landfills, and coalbed biogenic methane that are(13)C depleted relative to background atmosphere. We analyze our measurements of methane concentration and δ(13)C during spring and summer of 2012 to identify fugitive methane sources. We find CH4 plumes that are both enriched and depleted in (13)C relative to CH4 in background air. Keeling plots show a continuum of δ(13)C source compositions between -40‰ and -60‰ that are consistent with thermogenic and biogenic sources. The Picarro Mobile Methane Investigator (PMMI), a mobile δ(13)CH4 instrument platform, was deployed in the spring of 2013 and used to verify the isotopic enrichment of coal bed methane in the region. We combine our results with meteorological data to spatially separate these sources in the Four Corners regions. Using CO and CO2 data, along with meteorological data, we propose that the high methane concentration events ([CH4] > 3.5 ppm) are from both thermogenic and biogenic methane released from coal beds. PMID:26840278

  15. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    NASA Astrophysics Data System (ADS)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  16. Tracking solutes and water from subsurface drip irrigation application of coalbed methane–produced waters, Powder River Basin, Wyoming

    SciTech Connect

    Engle, Mark A.; Bern, Carleton R.; Healy, Richard W.; Sams, James I.; Zupancic, John W.; Schroeder, Karl T.

    2011-09-01

    One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBM water (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation. Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water.

  17. Four corners: The largest US methane anomaly viewed from space

    NASA Astrophysics Data System (ADS)

    Kort, Eric A.; Frankenberg, Christian; Costigan, Keeley R.; Lindenmaier, Rodica; Dubey, Manvendra K.; Wunch, Debra

    2014-10-01

    Methane (CH4) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH4/yr [0.50-0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH4 emissions from natural gas. The persistence of this CH4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH4 emission source regions and quantify their emissions with the use of a transport model.

  18. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  19. Up with methane

    SciTech Connect

    Barlaz, M.A.; Milke, M.W.; Ham, R.K.

    1986-12-01

    Methane production from municipal refuse represents a rapidly developing source of energy which remains underutilized. Part of the problem is the small amount of methane which is typically collected relative to the refuse's methane generation potential. This study was undertaken to define the parameters which affect the onset of methane production and methane yields in sanitary landfills. Ultimately, we need to develop refuse disposal methods which enhance its methane production potential. Included in the study were tests of how introduction of old refuse, use of sterile cover soil, addition of acetate to refuse, and use of leachate, recycling and neutralization affect methane generation. A more thorough understanding of how the microbes present in refuse react to different variables is the first step in the development of techniques for stimulating methane production in sanitary landfills.

  20. Map of assessed coalbed-gas resources in the United States, 2014

    USGS Publications Warehouse

    U.S. Geological Survey National Assessment of Oil and Gas Resources Team; Biewick, Laura R. H., (compiler)

    2014-01-01

    This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.

  1. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  2. Homicide by methane gas.

    PubMed

    De-Giorgio, Fabio; Grassi, Vincenzo M; Vetrugno, Giuseppe; Rossi, Riccardo; Fucci, Nadia; d'Aloja, Ernesto; Pascali, Vincenzo L

    2012-09-10

    Methane is a suffocating gas, and "methane deaths" are largely the result of suffocation by gas-air displacement after accidental or deliberate exposure. Neither methane gas nor other suffocating gases are a common means of homicide, with the potential exception of the use of gas in chemical weapons or gas chambers. Here, we report the case of a 53-year-old woman who was killed by her husband with methane gas. The man had given his wife a dose of Lorazepam before setting up a hose that conveyed methane from the kitchen into the apartment's bedroom. The man subsequently faked his own suicide, which was later discovered. PMID:22721935

  3. Methane photochemistry and methane production on Neptune

    NASA Technical Reports Server (NTRS)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  4. Methane photochemistry and methane production on Neptune

    SciTech Connect

    Romani, P.N.; Atreya, S.K.

    1988-06-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus. 65 references.

  5. Clumped Methane Isotopologue Temperatures of Microbial Methane

    NASA Astrophysics Data System (ADS)

    Ono, S.; Wang, D. T.; Gruen, D.; Delwiche, K.; Hemond, H.; Pohlman, J.

    2014-12-01

    We will report the abundance of 13CH3D, a clumped isotopologue of methane, in microbial methane sampled from natural environments. They yield some expected and some unexpected results reflecting both equilibrium and kinetic isotope effects controlling the abundance of 13CH3D in low temperature environments. The four isotopologues of methane (12CH4, 13CH4, 12CH3D and 13CH3D) were measured by a tunable infrared spectroscopy method at a precision of 0.2‰ and accuracy of 0.5‰ (Ono et al., 2014). Similar to carbonate clumped isotope thermometry, clumped isotopologues of methane become more stable at lower temperatures. The equilibrium constant for the isotope exchange reaction 13CH4 + 12CH3D ⇌ 13CH3D + 12CH4 deviates from unity by +6.3 to +3.5 ‰ for methane equilibrated between 4 and 121 °C, a range expected for microbial methanogenesis. This would be measurably-distinct from a thermogenic methane signal, which typically have apparent 13CH3D-based temperatures ranging from 150 to 220 °C (+3.0 to +2.2 ‰ clumped isotope effect; Ono et al., 2014; Stolper et al. 2014). Marine samples, such as methane clathrates and porewater methane from the Cascadia margin, have 13CH3D-based temperatures that appear to be consistent with isotopic equilibration at in situ temperatures that are reasonable for deep sedimentary environments. In contrast, methane from freshwater environments, such as a lake and a swamp, yield apparent temperatures that are much higher than the known or inferred environmental temperature. Mixing of two or more distinct sources of methane could potentially generate this high temperature bias. We suggest, however, that this high-temperature bias likely reflects a kinetic isotope fractionation intrinsic to methanogenesis in fresh water environments. In contrast, the low-temperature signals from marine methane could be related to the slow metabolic rates and reversibility of microbial methanogenesis and methanotrophy in marine sedimentary environments

  6. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish: (a) natural in-situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. We have conducted a NSERC-ANR co-funded baseline study investigating the occurrence of methane in shallow groundwater of Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. Our objective was to assess the occurrence and sources of methane in shallow groundwaters and to also characterize the hydrochemical environment in which the methane was formed or transformed through redox processes. Ultimately our aim was to determine whether methane was formed in-situ or whether it migrated from deeper formations into shallow aquifers. Combining hydrochemical and dissolved and free geochemical gas data from 372 groundwater samples obtained from 186 monitoring wells of the provincial groundwater observation well network (GOWN) in Alberta, it was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of dissolved biogenic methane (> 0.01 mM or > 0.2 mg/L), characterized by δ13CCH4 values < -55‰, occurred in anoxic Na-Cl, Na-HCO3 and Na-HCO3-Cl type groundwater with negligible concentrations of nitrate and sulfate suggesting that methane was formed in-situ under methanogenic conditions consistent with the redox ladder concept. Despite quite variable gas concentrations and a

  7. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  8. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    SciTech Connect

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  9. Effects of stimulation treatments on coalbeds and surrounding strata. Evidence from underground observations

    SciTech Connect

    Diamond, W.P.; Oyler, D.C.

    1987-01-01

    This Bureau of Mines report examines the coal mine roof damage potential of stimulation treatments. Vertical fractures in the coalbed were discernible for most treatments, and horizontal fractures were present for about half of the stimulations. Evidence of stimulation fluid movement could generally be traced beyond the maximum extent of sand-filled fractures when fluorescent paint was added to the treatment fluids.

  10. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.

    2014-01-01

    Trap formation began with the deposition of the peat deposits during the Mississippian and continued into the Late Pennsylvanian and Permian, when strata of the Appalachian Plateaus were deformed during the Alleghanian orogeny. The seals are the connate waters that occupy fractures and larger pore spaces within the coal beds, as well as the fine-grained, siliciclastic sedimentary strata that are intercalated with the coal. The critical moment for the petroleum system occurred during the Alleghanian orogeny, when deformation resulted in the geologic structures in the eastern part of the Appalachian basin that enhanced fracture porosity within the coal beds. In places, burial by thrust sheets (thrust loading) in the Valley and Ridge physiographic province may have resulted in the additional generation of thermogenic coalbed methane in the Pennsylvania Anthracite region and in the semianthracite deposits of Virginia and West Virginia, although other explanations have been offered.

  11. Methane Hydrate Field Program

    SciTech Connect

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  12. Methane-Powered Vehicles

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.

  13. Mars methane engine

    NASA Technical Reports Server (NTRS)

    Bui, Hung; Coletta, Chris; Debois, Alain

    1994-01-01

    The feasibility of an internal combustion engine operating on a mixture of methane, carbon dioxide, and oxygen has been verified by previous design groups for the Mars Methane Engine Project. Preliminary stoichiometric calculations examined the theoretical fuel-air ratios needed for the combustion of methane. Installation of a computer data acquisition system along with various ancillary components will enable the performance of the engine, running on the described methane mixture, to be optimized with respect to minimizing excess fuel. Theoretical calculations for stoichiometric combustion of methane-oxygen-carbon dioxide mixtures yielded a ratio of 1:2:4.79 for a methane-oxygen-carbon dioxide mixture. Empirical data shows the values to be closer to 1:2.33:3.69 for optimum operation.

  14. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  15. The future of methane

    SciTech Connect

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  16. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  17. Geoengineering treatment of methane

    NASA Astrophysics Data System (ADS)

    Lockley, Andrew; Gardian, Alan

    2010-05-01

    Methane is a significant GHG, and substantial reservoirs are vulnerable to instability due to AGW. Excursions, from permafrost and clathrates especially, act a positive feedback to AGW. Existing concentrations of well-mixed atmospheric methane substantially exceed pre-industrial levels. Various geoengineering methods are herein proposed for containment of methane, and/or accelerated oxidation to CO2 (a gas with a lower GWP over all timescales). A basic qualitative analysis of each technique is undertaken, to direct further study. Consideration is also given to the potential capacity of each technique to treat the total likely excursions of methane expected as a result of AGW. Proposed techniques: Section 0 SRM (comparison option) Section 1 Pre-emptive treatment of methane reservoirs Soil heating (polytunnels, heat pumps); Soil aeration; Mining of clathrates; Burning of clathrates Section 2 Remediation of aquatic methane excursions Lake sealing; Mixing of aquatic strata; Bubble capture; Lake aeration; Biological oxidation in aquatic environments Section 3 Remediation of concentrated atmospheric methane Regenerative thermal oxidation; Electrical ignition; Thermal ignition; Using incendiary munitions Section 4 Remediation of diffuse atmospheric methane Thermal oxidation by concentrated solar power; Compression ignition; Chemical degradation Assessment criteria: Infrastructure/implementation cost; Energy cost; Expected efficacy; Complexity/development path; Environmental impacts; Potential for CCS

  18. Methane on Mars

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    Detection of methane on Mars has been claimed by Krasnopolsky Maillard Owen 2004 using FTS CFHT Formisano et al 2004 using PFS MEX and Mumma et al in preparation using CSHELL IRTF and Phoenix Gemini The measured abundances are 10 pm 3 ppb in Krasnopolsky et al 10 pm 5 ppb varying from 0 to 40 ppb in Formisano et al and 80 ppb varying from 30 to 300 ppb in Mumma et al The methane lifetime is sim 300 yr and its production loss is 300 tons yr -1 based on gas-phase chemistry Two basic questions are 1 why are the mean abundances so different and 2 how can methane vary if its lifetime is so long Variations of methane on Mars require a very effective heterogeneous loss of methane which is higher than that on Earth by a factor of ge 1000 although the expected efficiency on Earth is stronger than that on Mars because of the liquid ocean and the abundant oxygen Thermodynamic and kinetic data on the catalysis of methane do not also support variations of methane on Mars Production of methane on Mars by impacts of comets meteorites and interplanetary dust is sim 15 t yr -1 A probability that the observed methane on Mars came from impact of a single comet is 0 001 The lack of current volcanism hydrothermal activity hot spots and very low seepage of gases from the interior are not favorable for geologic methane Some weak points in the suggested geologic sources are discussed Though the geologic sources are not completely ruled out methanogenesis by living subterranean organisms is a plausible

  19. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  20. Methane emission by camelids.

    PubMed

    Dittmann, Marie T; Runge, Ullrich; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg⁻¹ d⁻¹) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg⁻¹ d⁻¹). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg⁻¹ in camelids vs. 86.2±12.1 L kg⁻¹ in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  1. Methane Emission by Camelids

    PubMed Central

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  2. Hydrologic properties of coal-beds in the Powder River Basin, Montana. II. Aquifer test analysis

    NASA Astrophysics Data System (ADS)

    Weeks, E. P.

    2005-07-01

    A multiple well aquifer test to determine anisotropic transmissivity was conducted on a coal-bed in the Powder River Basin, southeastern Montana, as part of a multidisciplinary investigation to determine hydrologic conditions of coal-beds in the area. For the test, three wells were drilled equidistant from and at different angles to a production well tapping the Flowers-Goodale coal seam, a 7.6-m thick seam confined at a depth of about 110 m. The test was conducted by air-lift pumping for 9 h, and water levels were monitored in the three observation wells using pressure transducers. Drawdown data collected early in the test were affected by interporosity flow between the coal fracture network and the matrix, but later data were suitable to determine aquifer anisotropy, as the slopes of the late-time semilog time-drawdown curves are nearly identical, and the zero-drawdown intercepts are different. The maximum transmissivity, trending N87°E, is 14.9 m 2/d, and the minimum transmissivity 6.8 m 2/d, giving an anisotropy ratio of 2.2:1. Combined specific storage of the fractures and matrix is 2×10 -5/m, and of the fracture network alone 5×10 -6/m. The principal direction of the anisotropy tensor is not aligned with the face cleats, but instead is aligned with another fracture set and with dominant east-west tectonic compression. Results of the test indicate that the Flowers-Goodale coal-bed is more permeable than many coals in the Powder River Basin, but the anisotropy ratio and specific storage are similar to those found for other coal-beds in the basin.

  3. Hydrologic properties of coal-beds in the Powder River Basin, Montana. II. Aquifer test analysis

    USGS Publications Warehouse

    Weeks, E.P.

    2005-01-01

    A multiple well aquifer test to determine anisotropic transmissivity was conducted on a coal-bed in the Powder River Basin, southeastern Montana, as part of a multidisciplinary investigation to determine hydrologic conditions of coal-beds in the area. For the test, three wells were drilled equidistant from and at different angles to a production well tapping the Flowers-Goodale coal seam, a 7.6-m thick seam confined at a depth of about 110 m. The test was conducted by air-lift pumping for 9 h, and water levels were monitored in the three observation wells using pressure transducers. Drawdown data collected early in the test were affected by interporosity flow between the coal fracture network and the matrix, but later data were suitable to determine aquifer anisotropy, as the slopes of the late-time semilog time-drawdown curves are nearly identical, and the zero-drawdown intercepts are different. The maximum transmissivity, trending N87??E, is 14.9 m2/d, and the minimum transmissivity 6.8 m2/d, giving an anisotropy ratio of 2.2:1. Combined specific storage of the fractures and matrix is 2??10 -5/m, and of the fracture network alone 5??10-6/m. The principal direction of the anisotropy tensor is not aligned with the face cleats, but instead is aligned with another fracture set and with dominant east-west tectonic compression. Results of the test indicate that the Flowers-Goodale coal-bed is more permeable than many coals in the Powder River Basin, but the anisotropy ratio and specific storage are similar to those found for other coal-beds in the basin.

  4. Venus methane and water

    NASA Astrophysics Data System (ADS)

    Donahue, T. M.; Hodges, R. R.

    1993-04-01

    Data collected by the Pioneer Venus Large Probe Neutral Mass Spectrometer are presented and discussed. Results indicate the presence of a large amount of methane in the Venus atmosphere from 60 km to the surface. Deuterium transfer from atmospheric HDO to poorly deuterated methane may account for the puzzling apparent gradient in the water vapor mixing ration below 10 km. Deuterium transfer within the mass spectrometer may cause reduction in the apparent ratio of HDO to H2O. Accounting for the deuterium atoms leads to a revised water vapor mixing ratio of 28 ppm. Arguments against the methane detected being purely atmospheric are overwhelming. The methane may have been generated by a reaction between a highly deuterated atmospheric constituent and a poorly deuterated instrumental contaminant.

  5. Enzymatic Oxidation of Methane

    SciTech Connect

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  6. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  7. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  8. Definitional mission for coal-bed-methane project in Turkey. Export trade information

    SciTech Connect

    Eddy, G.E.; Shrivastava, V.K.

    1992-01-01

    A Trade and Development Program (TDP) sponsored Definitional Mission visited Turkey during June 23 - July 1, 1990. The purpose of the mission was to review Turkey's coalbed methane resources and to assess the needs of Turkey to develop these resources. The mission recommends TDP should encourage the Turkish Government to conduct this initial sampling study to assess the gas content in the Turkish coal. After this study is completed, and if the gas content of the coal indicates the potential for a large gas recovery and utilization project, a detailed feasibility study should be considered. This more detailed feasibility study may be a candidate for TDP funding as this project may present opportunities for technology transfer from the U.S. to Turkey, albeit with strong competition from the German industry.

  9. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  10. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.