Science.gov

Sample records for coarse pm bioassay

  1. Lung Response to Coarse PM: Bioassay in Mice

    PubMed Central

    Wegesser, Teresa C.; Last, Jerold A.

    2008-01-01

    Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5 – 10 μm diameter (PM2.5-PM10). Potential pro-inflammatory and toxic effects of PM2.5-PM10 in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25–50 ug of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time response; peak responses were observed 24 hours after PM instillation, with recovery as early as 48 hours. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California’s hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin. PMID:18384828

  2. Lung response to coarse PM: Bioassay in mice

    SciTech Connect

    Wegesser, Teresa C.; Last, Jerold A.

    2008-07-15

    Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5-10 {mu}m diameter (PM{sub 2.5}-PM{sub 10}). Potential pro-inflammatory and toxic effects of PM{sub 2.5}-PM{sub 10} in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25-50 {mu}g of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time responses; peak responses were observed 24 h after PM instillation, with recovery as early as 48 h. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM-treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California's hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin.

  3. DEVELOPMENT AND EVALUATION OF A CONTINUOUS COARSE (PM10-PM2.5) PARTICLE MONITOR

    EPA Science Inventory

    In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating princ...

  4. COARSE PM EMISSIONS MODEL DEVELOPMENT AND INVENTORY VALIDATION

    EPA Science Inventory

    The proposed research will contribute to our understanding of the sources and controlling variables of coarse PM. This greater understanding, along with an increase in our ability to predict these emissions, will enable more efficient pollution control strategy development. Ad...

  5. SEM/EDS of Submicron and Coarse PM Using Modified Passive Aerosol Sampler Substrates

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Wang, Z.; Willis, B.; Casuccio, G.

    2008-12-01

    Deployment of multiple UNC Passive Aerosol Samplers is an inexpensive and unobtrusive technique for assessing airborne particulate matter (PM) exposure and spatial variability. Computer-controlled SEM/EDS (Scanning Electron Microscopy / Energy-Dispersive X-ray Spectroscopy) is used to measure the deposited particle mass and chemistry. A deposition velocity model is used to obtain ambient PM and elemental size distributions. Previous results have correlated well with active sampler results in environments dominated by coarse mineral dusts. To accurately measure submicron and carbonaceous aerosols, an improved collection substrate is needed. Previous studies used a double-sided carbon adhesive tab, which was ideal for coarse PM but under-detected submicron PM. One promising alternative is polycarbonate (PC) filter substrates. Another is transmission electron microscope (TEM) grids with formvar films mounted over holes drilled in the samplers. Preliminary tests of PC filters and TEM grid substrates, including tests in areas with smoke aerosols, exhibited substantial submicron aerosol and differing elemental size distributions. Detailed qualitative and quantitative evidence shows that the PC filters retained coarse PM well and yielded improved submicron PM imaging. TEM grids yield the best imaging and chemistry of submicron carbonaceous PM, but potentially the poorest retention of coarse PM. PM and elemental size distributions are presented for collocated passive samplers using the three substrate types, in both indoor and outdoor environments. Several methods are proposed to further optimize passive sampling of both submicron and coarse PM. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  6. DETERMINE IF COARSE PM IS OF REGULATORY CONCERN: PHYSIOLOGICAL CHANGES OF ASTHMATICS EXPOSED TO CONCENTRATED CHAPEL HILL AIR PARTICLES

    EPA Science Inventory

    Uncertainty about the effects of coarse PM has led the EPA to propose a dual standard for coarse PM: one for urban areas and one for rural areas. The underlying assumption is that rural PM may be different in chemical composition and toxicity. The OAR has indicated that one o...

  7. (PRESENTED NAQC SAN FRANCISCO, CA) COARSE PM METHODS STUDY: STUDY DESIGN AND RESULTS

    EPA Science Inventory

    Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discrete ...

  8. Comparison of particle lung doses from the fine and coarse fractions of urban PM-10 aerosols.

    PubMed

    Venkataraman, C; Kao, A S

    1999-02-01

    The U.S. Environmental Protection Agency (EPA) recently revised the national ambient air quality standards to include a new PM-2.5 particulate standard. We examine the contributions of fine (PM-2.5) and coarse (PM-2.5 to -10) fraction of typical urban aerosols to particle doses in different lung airways resulting from 24-h exposure to the standard concentration of 150 microg m-3. The aerosol is assumed to have a bimodal lognormal mass distribution with mass median diameters of 0.2 and 5 microm, and geometric standard deviation of 1.7 and 57% of the mass in the fine (PM-2.5) mode. The daily mass dose from exposure to 150 microg m-3 of PM-10 in the nasopharyngeal (NPL) region is 20-51 microg day-1 (1.5% of inhaled fines) and 377-687 microg day-1 (30% of inhaled coarse), respectively, of fine and coarse mass filtered in the nose. Similar daily mass doses from fine and coarse fractions, respectively, to the tracheobronchial (TBL) region are 28-38 (1.5%) and 40-52 (4%) microg day-1 and to the pulmonary (PUL) region are 18-194 (6%) and 32-55 microg day-1 (2%). The daily number dose in the NPL region is 5-15 x 10(8) (0.06% of inhaled fines) and 5-10 x 10(6) day-1 (13% of inhaled coarse) respectively, of fine and coarse particles. Similar number doses to the TBL region are 2.2-3.1 x 10(10) (2%) and 7.1-11. 1 x 10(5) (2%) day-1 and to the PUL region are 1.6-16.7 x 10(10) (9%) and 2.9-17.0 x 10(5) (3%) day-1. The daily surface mass dose (microg cm-2 day-1) from coarse fraction particles is large in generations 3-5. The daily number dose (particles day-1) and surface number dose (particles cm-2 day-1) are higher from the fine than the coarse fraction, by about 10(3) to 10(5) times in all lung airways. Fine fraction particles result in 10,000 times greater particle number dose per macrophage than coarse fraction particles. Particle number doses do not follow trends in mass doses, are much larger from fine than coarse fraction, and must be considered in assessing PM health

  9. SOURCES, COMPOSITION, VARIABILITY AND TOXICOLOGICAL CHARACTERISTICS OF COARSE (PM10-2.5) PARTICLES IN SOUTHERN CALIFORNIA

    EPA Science Inventory

    Our research will help EPA understand the linkage between sources, composition and the toxicity of coarse PM, which provides a strong scientific basis to develop cost-effective strategies to protect the public from the toxic sources of coarse particulate matter. The current da...

  10. INCREASED AIRWAYS INFLAMMATION AND MODIFIED BAL CELL SURFACE PHENOTYPES IN ASTHMATICS EXPOSED TO COARSE SIZE (PM2.5-10) CONCENTRATED AMBIENT PARTICLES (CAPS)

    EPA Science Inventory

    Although associations between inhalation of PM10 and disease morbidity and mortality appear stronger for fine (PM2.5) vs coarse (PM2.5-10) or ultrafine/UF (PM<0.1) PM. In vitro studies suggest that PM2.5-10 are more potent in inducing pro-inflammatory cytokine responses from alve...

  11. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  12. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  13. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  14. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  15. 40 CFR Appendix O to Part 50 - Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Reference Method for the Determination of Coarse Particulate Matter as PM10-2.5 in the Atmosphere O Appendix O to Part 50 Protection of... Coarse Particulate Matter as PM10-2.5 in the Atmosphere 1.0Applicability and Definition 1.1This...

  16. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution?

    PubMed

    Minguillón, M C; Querol, X; Baltensperger, U; Prévôt, A S H

    2012-06-15

    The chemical composition and sources of ambient particulate matter (PM) in Switzerland were studied. PM(1) and PM(10) samples were collected in winter and summer at an urban background site in Zurich and a rural background site in Payerne. Concentrations of major and trace elements, NO(3)(-), SO(4)(2-), NH(4)(+), organic and elemental carbon were determined. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM(10) and PM(1) concentrations varied similarly at both sites, with average PM(10) concentrations 24-25 μg/m(3) and 13-14 μg/m(3) in winter and summer, respectively, and average PM(1) concentrations 12-17 μg/m(3) and 6-7 μg/m(3). The influence of local sources was found to be higher in winter. PM was dominated by nitrate and organic matter in winter, and by mineral matter and organic matter in summer. Trace element concentrations related to road traffic (Zn, Cu, Sb, Sn) were higher at Zurich. Concentrations of Tl and Cs, attributed to the influence of a glass industry, were higher at Payerne. The elements mainly present in the coarse fraction were those related to mineral matter and brake and tyre abrasion (Cu, Mn, Ti, Sb, Sr, Bi, Li, La, Nd), and those in the fine fraction were related to high temperature anthropogenic processes (Pb, As, Cd, Tl, Cs). Common PM(1) and PM(1-10) sources identified by PMF were: ammonium nitrate, present in winter, negligible in summer; ammonium sulfate+K(biomass burning)+road traffic; and road traffic itself, related to exhaust emissions in PM(1) and to road dust resuspension in PM(1-10). Size-fraction specific sources were: a PM(1) glass industry source characterized by Cs, Tl, Rb, Li and Na, only present in Payerne; a PM(1) background source characterized by V, Ni, sulfate and Fe; two PM(1-10) mineral-related sources, with higher contribution in summer; a PM(1-10) salt source; and a PM(1-10) organic source, with higher contribution in summer, attributed to bioaerosols. PMID:22572211

  17. Distribution of the solvent-extractable organic compounds in fine (PM1) and coarse (PM1-10) particles in urban, industrial and forest atmospheres of Northern Algeria.

    PubMed

    Ladji, Riad; Yassaa, Noureddine; Balducci, Catia; Cecinato, Angelo; Meklati, Brahim Youcef

    2009-12-20

    The distribution of the solvent-extractable organic components in the fine (PM(1)) and coarse (PM(1-10)) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m(-3) at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m(-3)) in the PM(1) fraction, 6.462 ng m(-3) at Rouiba-Réghaia, industrial district, (5.135 ng m(-3) or 80% in PM(1)), and 0.512 ng m(-3) at Chréa, forested mountains (0.370 ng m(-3) or 72% in PM(1)). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of "toxic" compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable. PMID:19837448

  18. MULTI-SITE FIELD EVALUATION OF CANDIDATE SAMPLERS FOR MEASURING COARSE-MODE PM

    EPA Science Inventory

    In response to expected changes to the National Ambient Air Quality Standards for particulate matter, comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring coarse mode aerosols (i.e. PMc). Five separate PMc sampling approaches w...

  19. MULTI-SITE EVALUATIONS OF CANDIDATE METHODOLOGIES FOR DETERMINING COARSE PARTICULATE (PM 10-2.5) CONCENTRATIONS: AUGUST 2005 UPDATED REPORT REGARDING SECOND-GENERATION AND NEW PM 10-2.5 SAMPLERS

    EPA Science Inventory

    Multi-site field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 (PM10 2.5) in ambient air. The field studies involved the use of both time-integrated filter-based and direct continuous methods. Despite operationa...

  20. Polycyclic aromatic hydrocarbons in a bioassay-fractionated extract of PM 10 collected in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    De Martinis, Bruno S.; Okamoto, Robert A.; Kado, Norman Y.; Gundel, Lara A.; Carvalho, Lilian R. F.

    Polycyclic aromatic hydrocarbons (PAHs) were measured in airborne particles (PM 10) collected in an urban site of São Paulo City, Brazil. Samples were Soxhlet extracted sequentially with dichloromethane and acetone, followed by solid phase fractionation. Increasing polar fractions (A-K) of dichloromethane and acetone extracts were obtained. Fractionated extracts were analyzed by gas chromatography/mass spectrometry and Salmonella microsuspension bioassay. Sixteen PAH compounds were quantified in dichloromethane B and C fractions, nevertheless the D and E fractions presented higher mutagenic activities. Concentrations of the individual PAHs ranged from 0.8 ng m -3 (perylene) to 12.8 ng m -3 (benzofluranthene), reaching a total concentration of 95.5 ng m -3. BaP/BgP and Pyr/BaP ratios indicated the presence of vehicular emissions and BghiP/Ind and Chr/BeP ratios suggested a contribution of wood combustion emissions. Further investigation is still necessary for a better understanding of the PAH sources in the urban atmosphere of São Paulo City.

  1. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  2. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  3. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  4. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM 2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  5. 40 CFR Table F-5 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration... 53—Estimated Mass Concentration Measurement of PM2.5 for Idealized “Typical” Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval...

  6. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    PubMed

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations. PMID:25689348

  7. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2016-05-01

    In this paper, a cluster analysis of backward air mass trajectories, arriving in Avignon (Southern France), was combined with a Potential Source Contribution Function (PSCF) model on a 0.5° × 0.5° resolution grid, in order to indicate possible aerosol intrusions. A strict triple criterion was constructed from Aerosol Optical Thickness (AOT), Angstrom Exponent (AE), and PM (PM10 and PM2.5) concentration measurements, aiming to distinguish more effectively Episodes of Fine, Coarse and Overall Aerosols (FAE, CAE and OAE respectively). Large fractions of FAE (60.0%) and CAE (40.6%) were strongly attributed to the prevalence of Eastern and South-Southwest (S-SW) airflows respectively, whereas these distinct trajectory clusters also gathered large fractions of OAE (90.2% cumulatively). According to PSCF results, FAE events were strongly associated with the influence of air masses traveling over North Italy and Southern Germany, hence the impact of urban and industrial combustion was emerged. Main sources of coarse aerosols were principally isolated over the Mediterranean, thus the import of sea spray and dust from the Sahara desert is presumed. Satellite AOT observations were used for a more detailed identification of an intense 5-day intrusion of coarse aerosols. Short range slow moving air mass trajectories, were proven to be a clear marker of atmospheric stagnation, based on a wind speed analysis, triggering the accumulation of locally emitted anthropogenic aerosols (mainly PM2.5) and lack of city ventilation.

  8. Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3.

    PubMed

    Wang, Wenxin; Shi, Chanzhen; Yan, Yan; Yang, Yunfei; Zhou, Bin

    2016-11-01

    A bioluminescent bacterium, Photobacterium phosphoreum T3 (PPT3), was used as a bio-indicator for the atmospheric fine particulate matter (PM2.5) to determine the eco-toxicity of PM2.5. The PM2.5 contains toxic chemicals, which reduce light output. The PM2.5 samples were collected in the period from March 2014 to January 2015 in Nanjing and analyzed for the chemical composition versus their eco-toxicity. The eco-toxicological responses of each toxicant were detected in PM2.5 samples with PPT3. The dose-response curves obtained were verified using the Weibull fitting function. According to the measured EC50 values (EC50, the concentration of a toxicant that inhibits 50% of the bioluminescence), the toxicity sequence was: B[a]P>hexa-PCB>tetra-PCB>tri-PCB>Pb(2+)>DEHP>Cu(2+)>DBP>BDE209>Zn(2+)>DMP>DEP, where B[a]P is benzo(a)pyrene, PCB is polychlorinated biphenyl, DEHP is diethylhexyl phthalate, DBP is dibutyl phthalate, BDE209 is decabromodiphenyl ether, DMP is dimethyl phthalate, and DEP is diethyl phthalate. All the PM2.5 samples analyzed proved to be weak toxic for PPT3. The toxicity of PM2.5 was assessed by the dose-addition of organic species and heavy metallic elements existing in PM2.5 with PPT3. The bioluminescence test showed that the metals and organics detected in PM2.5 promoted PM2.5 toxicity. The total detectable organics (denoted by ΣOrs) exhibited slightly higher toxicity than the total metals (denoted by ΣMs). In contrast, the sum of water-soluble ions (denoted by ΣIons) was beneficial to PPT3. The PM2.5 toxicity increased as the PM2.5 trapped more organics or metallic elements from the industrial or densely populated urban areas, where the PM2.5 had a high inhibition rate of bioluminescence for PPT3 in contrast to the residential PM2.5 samples, where the minimum inhibition rate was observed. The toxicity of PM2.5 samples varied with the mass concentrations, chemical constituents, and sampling locations. The chemicals in PM2.5, especially organic

  9. Characterizing Spatial Patterns of Airborne Coarse Particulate (PM10–2.5) Mass and Chemical Components in Three Cities: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Larson, Timothy V.; Gassett, Amanda; Szpiro, Adam A.; Daviglus, Martha; Burke, Gregory L.; Kaufman, Joel D.; Adar, Sara D.

    2014-01-01

    Background: The long-term health effects of coarse particular matter (PM10–2.5) are challenging to assess because of a limited understanding of the spatial variation in PM10–2.5 mass and its chemical components. Objectives: We conducted a spatially intensive field study and developed spatial prediction models for PM10–2.5 mass and four selected species (copper, zinc, phosphorus, and silicon) in three American cities. Methods: PM10–2.5 snapshot campaigns were conducted in Chicago, Illinois; St. Paul, Minnesota; and Winston-Salem, North Carolina, in 2009 for the Multi-Ethnic Study of Atherosclerosis and Coarse Airborne Particulate Matter (MESA Coarse). In each city, samples were collected simultaneously outside the homes of approximately 40 participants over 2 weeks in the winter and/or summer. City-specific and combined prediction models were developed using land use regression (LUR) and universal kriging (UK). Model performance was evaluated by cross-validation (CV). Results: PM10–2.5 mass and species varied within and between cities in a manner that was predictable by geographic covariates. City-specific LUR models generally performed well for total mass (CV R2, 0.41–0.68), copper (CV R2, 0.51–0.86), phosphorus (CV R2, 0.50–0.76), silicon (CV R2, 0.48–0.93), and zinc (CV R2, 0.36–0.73). Models pooled across all cities inconsistently captured within-city variability. Little difference was observed between the performance of LUR and UK models in predicting concentrations. Conclusions: Characterization of fine-scale spatial variability of these often heterogeneous pollutants using geographic covariates should reduce exposure misclassification and increase the power of epidemiological studies investigating the long-term health impacts of PM10–2.5. Citation: Zhang K, Larson TV, Gassett A, Szpiro AA, Daviglus M, Burke GL, Kaufman JD, Adar SD. 2014. Characterizing spatial patterns of airborne coarse particulate (PM10–2.5) mass and chemical

  10. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    PubMed Central

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  11. Temporal-spatial analysis of U.S.-Mexico border environmental fine and coarse PM air sample extract activity in human bronchial epithelial cells

    SciTech Connect

    Lauer, Fredine T.; Mitchell, Leah A.; Bedrick, Edward; McDonald, Jacob D.; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A.; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E.

    2009-07-01

    Particulate matter less than 10 {mu}m (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.

  12. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    PubMed

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  13. Risk of Cardiovascular Hospitalizations from Exposure to Coarse Particulate Matter (PM10) Below the European Union Safety Threshold.

    PubMed

    Vaduganathan, Muthiah; De Palma, Giuseppe; Manerba, Alessandra; Goldoni, Matteo; Triggiani, Marco; Apostoli, Pietro; Dei Cas, Livio; Nodari, Savina

    2016-04-15

    The association between exposure to air pollution and acute cardiovascular (CV) events is well documented; however, limited data are available evaluating the public health safety of various "doses" of particular matter (PM) below currently accepted safety thresholds. We explored the cross-sectional association between PM with aerodynamic diameter <10 μm (PM10) and daily CV hospitalizations in Brescia, Italy, using Poisson regression models adjusted for age, gender, and meteorologic indices. Average daily exposure to PM10 obtained from arithmetic means of air pollution data were captured by 4 selected monitoring stations. PM10 data were expressed as daily means (lag 0-day) or 3-day moving averages (lag 3-day) and categorized according to the European Union daily limit value of 50 μg/m(3). From September 2004 to September 2007, data from 6,000 acute CV admissions to a tertiary referral center were collected. An increase of 1 μg/m(3) PM10 at lag 0-day was independently associated with higher rates of acute hospitalizations for composite CV-related events (relative risk [RR] 1.004, 95% confidence interval [CI] 1.002 to 1.006), acute heart failure (RR 1.004, 95% CI 1.001 to 1.008), acute coronary syndromes (RR 1.002, 95% CI 0.999 to 1.005), malignant ventricular arrhythmias (RR 1.004, 95% CI 0.999 to 1.010), and atrial fibrillation (RR 1.008, 95% CI 1.003 to 1.012). Similar results were obtained using PM10 lag 3-day data. The excess PM10 CV hospitalization risk (by lag 0-day and lag 3-day) did not vary significantly above and below the 50 μg/m(3) safety threshold or by age and gender. In conclusion, increased levels of PM10, even below the current limits set by the European Union, were associated with excess risk for admissions for acute CV events. PMID:26976793

  14. EVALUATION OF THE SMPS-APS SYSTEM AS A CONTINUOUS MONITOR FOR MEASURING PM2.5, PM10 AND COARSE (PM2.5-10) CONCENTRATIONS. (R827352C011)

    EPA Science Inventory

    Respirable particulate matter (PM) has been linked to mortality and morbidity by a variety of epidemiological studies. This research has led to the creation of a new PM standard for particles with diameters <2.5 μm (PM2.5). Since the conclusion of these studie...

  15. Blood Pressure and Same-Day Exposure to Air Pollution at School: Associations with Nano-Sized to Coarse PM in Children

    PubMed Central

    Pieters, Nicky; Koppen, Gudrun; Van Poppel, Martine; De Prins, Sofie; Cox, Bianca; Dons, Evi; Nelen, Vera; Panis, Luc Int; Plusquin, Michelle; Schoeters, Greet

    2015-01-01

    Background Ultrafine particles (UFP) may contribute to the cardiovascular effects of particulate air pollution, partly because of their relatively efficient alveolar deposition. Objective In this study, we assessed associations between blood pressure and short-term exposure to air pollution in a population of schoolchildren. Methods In 130 children (6–12 years of age), blood pressure was determined during two periods (spring and fall 2011). We used mixed models to study the association between blood pressure and ambient concentrations of particulate matter and ultrafine particles measured in the schools’ playground. Results Independent of sex, age, height, and weight of the child, parental education, neighborhood socioeconomic status, fish consumption, heart rate, school, day of the week, season, wind speed, relative humidity, and temperature on the morning of examination, an interquartile range (860 particles/cm3) increase in nano-sized UFP fraction (20–30 nm) was associated with a 6.35 mmHg (95% CI: 1.56, 11.14; p = 0.01) increase in systolic blood pressure. For the total UFP fraction, systolic blood pressure was 0.79 mmHg (95% CI: 0.07, 1.51; p = 0.03) higher, but no effects on systolic blood pressure were found for the nano-sized fractions with a diameter > 100 nm, nor PM2.5, PMcoarse, and PM10. Diastolic blood pressure was not associated with any of the studied particulate mass fractions. Conclusion Children attending school on days with higher UFP concentrations (diameter < 100 nm) had higher systolic blood pressure. The association was dependent on UFP size, and there was no association with the PM2.5 mass concentration. Citation Pieters N, Koppen G, Van Poppel M, De Prins S, Cox B, Dons E, Nelen V, Int Panis L, Plusquin M, Schoeters G, Nawrot TS. 2015. Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environ Health Perspect 123:737–742; http://dx.doi.org/10.1289/ehp.1408121

  16. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  17. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Equivalent Methods for PM 2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  18. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Equivalent Methods for PM 2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

  19. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  20. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-4 Table F-4 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  1. Oxidative potential of coarse particulate matter (PM(10-2.5)) and its relation to water solubility and sources of trace elements and metals in the Los Angeles Basin.

    PubMed

    Shirmohammadi, Farimah; Hasheminassab, Sina; Wang, Dongbin; Saffari, Arian; Schauer, James J; Shafer, Martin M; Delfino, Ralph J; Sioutas, Constantinos

    2015-12-01

    In this study, potential sources of water-soluble (WS) and water-insoluble (WI) fractions of metals and trace elements in coarse particulate matter (CPM) (PM(10-2.5), 2.5 < dp < 10 μm) were identified and their association with the redox properties of CPM, measured by means of reactive oxygen species (ROS), was explored. CPM was collected during 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim, CA. Generally, WI components contributed to a larger fraction of CPM ROS activity (as much as 64% and 54% at Central LA and Anaheim, respectively). Two major source factors were identified by principal component analysis for both the WS and WI fractions: vehicular abrasion and re-suspended road dust. Univariate analysis indicated that several species were correlated with CPM ROS activity: in WS fraction, metals such as Mn, Fe, Cd and Zn were associated with WS ROS, while in WI fraction Ti, Fe, Ni, Pb and Cr had the highest correlations with WI ROS activity. Multiple linear regression analysis revealed that both vehicular abrasion and re-suspension of road dust were associated with WS ROS activity, while only vehicular abrasion contributed significantly to the WI ROS activity. Moreover, comparison with previous studies indicated that the ROS activity of CPM has increased in the past 5 years in Central LA. We attribute this increase mainly to the elevated levels of re-suspension of road dust caused by the increase in vehicle speed and number of trucks in recent years in this area, reaffirming the growing importance of non-tailpipe traffic emissions on CPM toxicity. PMID:26560404

  2. SPATIAL INVESTIGATION OF SOURCES, COMPOSITION, AND LONG-TERM HEALTH EFFECTS OF COARSE PARTICULATE MATTER (PM10-2.5) IN THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) COHORT

    EPA Science Inventory

    This study will provide new and critically important information on the within-city variability of coarse particles and source-specific components and their relation to cardiovascular and pulmonary disease.

  3. PM RESEARCH

    EPA Science Inventory

    Activity Area (F03): PM Implementation NRMRL conducts research to improve the techniques used to quantify PM and PM precursor emissions from stationary, mobile, and fugitive sources and investigates the performance and cost of innovative control technology systems. The emission...

  4. EFFECTIVENESS OF THE PM 2.5 FEDERAL REFERENCE METHOD TO DIFFERENTIATE FINE AND COARSE MODE AEROSOL (A RESPONSE TO SECTION 6102(E) OF THE TRANSPORTATION EQUITY ACT FOR THE 21ST CENTURY

    EPA Science Inventory

    This report is submitted in response to Section 6102(e) of the Transportation Equity Act for the 21st Century, which states:

    "The Administrator shall conduct a field study of the ability of the PM2.5 Federal Reference Method to differentiate those particles that ...

  5. Nanovehicles based Bioassay Labels

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wu, Hong; Lin, Ying-Ying; Lin, Yuehe

    2007-04-01

    In this article, we review recent advances of our group in nanoparticle labels based bioassay. Apoferritin and silica nanoparticles have been used as nanovehicles to load large amount of markers for highly sensitive bioassay. Markers loaded apoferritin, apoferritin-templated metallic phosphate nanoparticles, and poly [guanine] coated silica nanoparticles have been prepared, characterized and used as labels for highly sensitive bioassay of protein and DNA. Dissociation and reconstitution characteristics at different pH as well as the special cavity structure of apoferritin nanovehicle provides a simple and convenient route to prepare versatile nanoparticle labels and avoid the complicated and tedious synthesis process of conventional nanoparticle labels. The optical and electrochemical characteristics of the prepared nanoparticle labels are easily controlled by loading different optical or electrochemical markers. Additionally, the use of apoferritin nanovehicle as template for synthesis of metallic phosphate nanoparticle labels offers fast route to prepare uniform-size metallic nanoparticle labels for electrochemical bioassay and avoids the traditional harsh dissolution conditions to dissolve metallic nanoparticle tags (that is, the strong-acid dissolution of quantum dots and gold nanoparticles) during the stripping analysis step. Silica nanoparticle has also been used as nanovehicle to carry thousands of poly [guanine] tracers, which was used to enhance the oxidation current of Ru(bpy)32+, resulting in enhanced sensitivity of electrochemical immunoassay. The new nanovehicle-based labels have been used for highly sensitive electrochemical detection of DNA and protein biomarkers, such as tumor necrosis factor-alpha (TNF-a). The high sensitivity and selectivity make these labels a useful addition to the armory of nanoparticle-based bioassay. The new nanovehicles based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity

  6. Personal Coarse Particulate Matter Exposures in an Adult Cohort

    EPA Science Inventory

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM10-2.5, PM2.5). Data from these personal measuremen...

  7. CONCENTRATED COARSE AIR PARTICLE EXPOSURE PRODUCES MILD TOXICOLOGICAL EFFECTS IN HEALTHY VOLUNTEERS

    EPA Science Inventory

    Epidemiological studies have shown that the adverse health effects of ambient particulate matter (PM) exposure to be in general more strongly associated with "fine" PM (<2.5 µM) originating from combustion processes than for "coarse" PM (>2.5 µM) from wind-blown dust, mechanical ...

  8. Characterization of coarse particulate matter in school gyms

    SciTech Connect

    Branis, Martin; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  9. Bioassay for assessing marine contamination

    SciTech Connect

    Lapota, D.; Copeland, H.; Mastny, G.; Rosenberger, D.; Duckworth, D.

    1996-03-01

    The Qwiklite bioassay, developed by the laboratory at NCCOSC, is used as a biological tool to gauge the extent of environmental contamination. Some species of marine phytoplankton produce bioluminescence. The Qwiklite bioassay determines acute response and chronic effects of a wide variety of toxicants upon bioluminescent dinotlagellates by measuring their light output after exposure.

  10. PM CHEMISTRY

    EPA Science Inventory

    Although PM2.5 can be directly introduced into the atmosphere through primary emissions, its mass concentration is also strongly affected by secondary processes such as nucleation or condensation of nonvolatile and semivolatile compounds on pre-existing aerosols. Chemical modules...

  11. BIOASSAY VESSEL FAILURE ANALYSIS

    SciTech Connect

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  12. EPA's new PM standards

    SciTech Connect

    Cavallaro, A.

    2006-11-15

    The US Environmental Protection Agency (EPA) announced its adjustments to the national air quality standards in late September after a mandatory five-year review process. The National Ambient Air Quality Standards (NAAQS) address fine and coarse particle pollution, also known as particulate matter (PM). The final action changes the 24-hour allowance for fine particulates, such as those emitted from coal-fired generation stacks, from 65 micrograms of particles per cubic meter of air to 35 {mu}g/m{sup 3}. EPA said this measure protects people from short-term exposure to fine particles. The annual standard will remain the same at 15 {mu}g/m{sup 3}. Carl Weilert of Burns and McDonnell gave some comments on implications of the standards in an interview with Power Engineering. 1 ref.

  13. Cell-Specific Oxidative Stress and Cytotoxicity after Wildfire Coarse Particulate Matter Instillation into Mouse Lung

    PubMed Central

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2012-01-01

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465

  14. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung.

    PubMed

    Williams, Keisha M; Franzi, Lisa M; Last, Jerold A

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465

  15. Prostaglandins, bioassay and inflammation

    PubMed Central

    Flower, R J

    2006-01-01

    The formation of the British Pharmacological Society coincided almost exactly with a series of ground-breaking studies that ushered in an entirely new field of research – that of lipid mediator pharmacology. For many years following their chemical characterisation, lipids were considered only to be of dietary or structural importance. From the 1930s, all this changed – slowly at first and then more dramatically in the 1970s and 1980s with the emergence of the prostaglandins (PGs), the first intercellular mediators to be clearly derived from lipids, in a dynamic on-demand system. The PGs exhibit a wide range of biological activities that are still being evaluated and their properties underlie the action of one of the world's all-time favourite medicines, aspirin, as well as its more modern congeners. This paper traces the development of the PG field, with particular emphasis on the skilful utilisation of the twin techniques of bioassay and analytical chemistry by U.K. and Swedish scientists, and the intellectual interplay between them that led to the award of a joint Nobel Prize to the principal researchers in the PG field, half a century after the first discovery of these astonishingly versatile mediators. PMID:16402103

  16. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  17. Evaluation of a Direct Personal Coarse Particulate Matter Monitor

    EPA Science Inventory

    One aspect of the North Carolina Adult Asthma and Environment study (NCAAES) was to evaluate personal exposures to coarse particulate matter (PM 10-2.5) and their associated variability. As part of this, we examined the ability of a community-based monitor to act as...

  18. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan

    NASA Astrophysics Data System (ADS)

    Shahid, Imran; Kistler, Magdalena; Mukhtar, Azam; Ghauri, Badar M.; Ramirez-Santa Cruz, Carlos; Bauer, Heidi; Puxbaum, Hans

    2016-03-01

    A mass balance method is applied to assess main source contributions to PM2.5 and PM10 levels in Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl‑, NO3‑, SO4‑), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were determined in atmospheric fine (PM2.5) and coarse (PM10) aerosol samples collected under pre-monsoon conditions (March-April 2009) at an urban site in Karachi (Pakistan). The concentrations of PM2.5 and PM10 were found to be 75 μg/m3 and 437 μg/m3 respectively. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and "siliceous dust" were the over all dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. Combustion particles and secondary organics (EC + OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC + OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. In case of secondary inorganic aerosols, ammonium sulphate (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity were found in fraction PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5.

  19. Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030

    NASA Astrophysics Data System (ADS)

    Nganbe, M.; Heilmaier, M.

    2009-12-01

    Two oxide dispersion strengthening (ODS) nickel-base superalloys, a solely dispersion-strengthened alloy (PM 1000) and an additionally γ'-strengthened alloy (PM 3030) are investigated regarding creep resistance at temperatures between 600 °C and 1000 °C. The creep strength advantage of PM 3030 over PM 1000 decreases as the temperature increases due to the thermal instability of the γ' phase. The particle strengthening contribution in both alloys increases linearly with load. However, solid solution softening leads to an apparent drop in particle strengthening in PM 1000. Deformation concentration in slip bands is more accentuated in PM 3030-R34 due to additional γ' strengthening combined with strongly textured coarse and elongated grain structure. Finer, equiaxed grains reduce creep strength at higher temperatures due to grain boundary deformation processes and premature pore formation, but have only minor impact at low and intermediate temperatures.

  20. DEVELOPMENT AND EVALUATION OF A HIGH-VOLUME DICHOTOMOUS SAMPLER FOR CHEMICAL SPECIATION OF COARSE AND FINE PARTICLES

    EPA Science Inventory

    This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...

  1. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after

  2. Personal coarse particulate matter exposures in an adult cohort

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Case, Martin; Yeatts, Karin; Chen, Fu-Lin; Scott, James; Svendsen, Erik; Devlin, Robert

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM 10-2.5, PM 2.5). Data from these personal measurements were then compared to community-based measures that might typically represent surrogate measurements of exposure often used in epidemiological assessments. To determine personal exposures to various particulate matter (PM) size fractions, a recently evaluated personal PM monitor capable of direct PM 10-2.5 size fraction collection was used. Participants living in the central region of North Carolina and enrolled in the NCAAES were asked to wear the monitor attached to a supporting backpack for 24-h collection periods. These volunteers were monitored for 2 to 4 days with subsequent gravimetric analysis of their PM samples. Personal PM 10-2.5 mass concentrations were observed to be highly variable and ranged from 7.6 to 40.2 μg/m 3 over an 8-month period. The median for this measurement from all participants (50th percentile) was 13.7 μg/m 3. A coefficient of determination ( r2) of 0.02 was established for community-based PM 10-2.5 mass concentrations versus personal exposures. Similar coefficients established for PM 2.5 mass revealed only a modest improvement in agreement ( r2 = 0.12). Data from the exposure findings are reported here.

  3. Coarse graining in micromagnetics.

    PubMed

    Grinstein, G; Koch, R H

    2003-05-23

    Numerical solutions of the micromagnetic Landau-Lifshitz-Gilbert equations provide valuable information at low temperatures (T), but produce egregious errors at higher T. For example, Curie temperatures are often overestimated by an order of magnitude. We show that these errors result from the use of block or coarse-grained variables, without a concomitant renormalization of the system parameters to account for the block size. Renormalization solves the problem of the Curie-point anomaly and improves the accuracy of more complicated micromagnetic simulations, even at low T. PMID:12785922

  4. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH PLASMINOGEN AND FIBRIOGEN LEVELS IN ADULT ASTHMATICS

    EPA Science Inventory

    Introduction: Recent reports indicate that the elderly and those with cardiovascular disease are susceptible to fine and coarse particulate matter (PM 2.5, PM 2.5-10) exposures. Asthmatics are thought to be primarily affected via airway inflammation. We investigated whether mark...

  5. Sediment bioassays with oyster larvae

    SciTech Connect

    Chapman, P.M.; Morgan, J.D.

    1983-10-01

    Tests with naturally-occurring sediments are rare and sediment testing methodology is not standardized. The authors present a simple methodology for undertaking sediment bioassays with oyster larvae, and present data from a recent study to prove the utility of this method.

  6. UNIFYING SCALER FOR BIOASSAY TESTS

    EPA Science Inventory

    An extensive set of interlaboratory root bioassay data was unified using centroids of individual tests as scalers. It is shown that the dose response obeys a first order differential equation with the constant of the equation related to the sensitivity of the dose response relati...

  7. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Talbot, N.; Ondráček, J.; Minguillón, M. C.; Martins, V.; Klouda, K.; Schwarz, J.; Ždímal, V.

    2015-10-01

    Measurements of PM10, PM2.5 and PM1 and particle number concentration and size distribution were measured for 24 h on a platform of the Prague underground metro in October 2013. The three PM fractions were analysed for major and minor elements, secondary inorganic aerosols (SIA) and total carbon (TC). Measurements were performed both when the metro was inoperative and closed to the public (referred to as background), and when the metro was in operation and open to passengers. PM concentrations were elevated during both periods, but were substantially increased in the coarse fraction during hours when the metro was in operation. Average PM concentrations were 214.8, 93.9 and 44.8 μg m-3 for PM10, PM2.5 and PM1, respectively (determined gravimetrically). Average particle number concentrations were 8.5 × 103 cm-3 for background hours and 11.5 × 103 cm-3 during operational hours. Particle number concentrations were found to not vary as significantly as PM concentrations throughout the day. Variations in PM were strongly governed by passing trains, with highest concentrations recorded during rush hour. When trains were less frequent, PM concentrations were shown to fluctuate in unison with the entrance and exit of trains (as shown by wind velocity measured on the platform). PM was found to be highly enriched with iron, especially in the coarse fraction, comprising 46% of PM10 (98.9 μg m-3). This reduces to 6.7 μg m-3 during background hours, proving that the trains themselves were the main source of iron, most probably from wheel-rail mechanical abrasion. Other enriched elements relative to background hours included Ba, Cu, Mn, Cr, Mo, Ni and Co, among others. Many of these elements exhibited a similar size distribution, further indicating their sources were common and were attributed to train operations.

  8. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    NASA Astrophysics Data System (ADS)

    Bonifacio, Henry F.; Maghirang, Ronaldo G.; Trabue, Steven L.; McConnell, Laura L.; Prueger, John H.; Bonifacio, Edna R.

    2015-01-01

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentration profiles at the feedlot were measured using gravimetric samplers, and micrometeorological parameters were monitored with eddy covariance instrumentation during the nine 4- to 5-day intensive sampling campaigns from May 2010 through September 2011. Emission fluxes were determined from the measured concentration gradients and meteorological parameters using the flux-gradient technique. PM ratios based on calculated emission fluxes were 0.28 for PM2.5/PM10, 0.12 for PM2.5/TSP, and 0.24 for PM10/TSP, indicating that a large fraction of the PM emitted at the studied feedlot was in the coarse range of aerodynamic diameter, >10 μm. Median daily emission factors were 57, 21, and 11 kg 1000-head (hd)-1 d-1 for TSP (n = 20 days), PM10 (n = 19 days), and PM2.5 (n = 11 days), respectively. Cattle pen surface moisture contents of at least 20-30% significantly reduced both TSP and PM10 emissions, but moisture's effect on PM2.5 emissions was not established due to difficulty in measuring PM2.5 concentrations under low-PM conditions.

  9. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  10. Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA

    PubMed Central

    Masri, Shahir; Kang, Choong-Min; Koutrakis, Petros

    2016-01-01

    Identifying the sources, composition, and temporal variability of fine (PM2.5) and coarse (PM2.5-10) particles is a crucial component in understanding PM toxicity and establishing proper PM regulations. In this study, a Harvard Impactor was used to collect daily integrated fine and coarse particle samples every third day for nine years at a single site in Boston, MA. A total of 1,960 filters were analyzed for elements, black carbon (BC), and total PM mass. Positive Matrix Factorization (PMF) was used to identify source types and quantify their contributions to ambient PM2.5 and PM2.5-10. BC and 17 elements were identified as the main constituents in our samples. Results showed that BC, S, and Pb were associated exclusively with the fine particle mode, while 84% of V and 79% of Ni were associated with this mode. Elements mostly found in the coarse mode, over 80%, included Ca, Mn (road dust), and Cl (sea salt). PMF identified six source types for PM2.5 and three source types for PM2.5-10. Source types for PM2.5 included regional pollution, motor vehicles, sea salt, crustal/road dust, oil combustion, and wood burning. Regional pollution contributed the most, accounting for 48% of total PM2.5 mass, followed by motor vehicles (21%) and wood burning (19%). Source types for PM2.5-10 included crustal/road dust (62%), motor vehicles (22%), and sea salt (16%). A linear decrease in PM concentrations with time was observed for both fine (−5.2%/yr) and coarse (−3.6%/yr) particles. The fine-mode trend was mostly related to oil combustion and regional pollution contributions. Average PM2.5 concentrations peaked in summer (10.4 μg/m3) while PM2.5-10 concentrations were lower and demonstrated little seasonal variability. The findings of this study show that PM25 is decreasing more sharply than PM2.5-10 over time. This suggests the increasing importance of PM2.5-10 and traffic-related sources for PM exposure and future policies. PMID:25947125

  11. Environmental monitoring using genetic bioassays

    SciTech Connect

    Lewtas, J.

    1989-01-01

    Environmental monitoring has evolved over the last ten years toward providing data more useful for exposure and risk assessment. The objective of many monitoring studies in the 1960s and 1970s was to monitor concentrations of pollutants including environmental mutagens at ambient locations, such as roof tops and in large bodies of water, where the pollutants would be well mixed and represent a homogeneous sample. In the 1980s, a number of studies focused on assessing the emission of mutagens from various sources. Now the emphasis has shifted to monitoring human exposure to environmental mutagens and to understanding which sources and factors lead to increased exposure and potential cancer risk. The chapter briefly reviews advances in genetic bioassay methods for environmental monitoring and focuses on approaches to integrating genetic bioassay methods with environmental-monitoring studies.

  12. Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 and PM2.5–10 around MSWI in Shanghai, China

    PubMed Central

    Cao, Lingling; Zeng, Jianrong; Liu, Ke; Bao, Liangman; Li, Yan

    2015-01-01

    Background: The potential impact of municipal solid waste incineration (MSWI), which is an anthropogenic source of aerosol emissions, is of great public health concern. This study investigated the characterization and cytotoxic effects of ambient ultrafine particles (PM<0.2), fine particles (PM0.2–2.5) and coarse particles (PM2.5–10) collected around a municipal solid waste incineration (MSWI) plant in the Pudong district of Shanghai. Methods: Mass concentrations of trace elements in particulate matter (PM) samples were determined using ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The cytotoxicity of sampled atmospheric PM was evaluated by cell viability and reactive oxygen species (ROS) levels in A549 cells. Result: The mass percentage of PM0.2–2.5 accounted for 72.91% of the total mass of PM. Crustal metals (Mg, Al, and Ti) were abundant in the coarse particles, while the anthropogenic elements (V, Ni, Cu, Zn, Cd, and Pb) were dominant in the fine particles. The enrichment factors of Zn, Cd and Pb in the fine and ultrafine particles were extremely high (>100). The cytotoxicity of the size-resolved particles was in the order of coarse particles < fine particles < ultrafine particles. Conclusions: Fine particles dominated the MSWI ambient particles. Emissions from the MSWI could bring contamination of anthropogenic elements (Zn, Cd and Pb) into ambient environment. The PM around the MSWI plant displayed an additive toxic effect, and the ultrafine and fine particles possessed higher biological toxicity than the coarse particles. PMID:25985309

  13. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments

    NASA Astrophysics Data System (ADS)

    Bari, Md. Aynul; MacNeill, Morgan; Kindzierski, Warren B.; Wallace, Lance; Héroux, Marie-Ève; Wheeler, Amanda J.

    2014-08-01

    Exposure to coarse particulate matter (PM), i.e., particles with an aerodynamic diameter between 2.5 and 10 μm (PM10-2.5), is of increasing interest due to the potential for health effects including asthma, allergy and respiratory symptoms. Limited information is available on indoor and outdoor coarse PM and associated endotoxin exposures. Seven consecutive 24-h samples of indoor and outdoor coarse PM were collected during winter and summer 2010 using Harvard Coarse Impactors in a total of 74 Edmonton homes where no reported smoking took place. Coarse PM filters were subsequently analyzed for endotoxin content. Data were also collected on indoor and outdoor temperature, relative humidity, air exchange rate, housing characteristics and occupants' activities. During winter, outdoor concentrations of coarse PM (median = 6.7 μg/m3, interquartile range, IQR = 3.4-12 μg/m3) were found to be higher than indoor concentrations (median 3.4 μg/m3, IQR = 1.6-5.7 μg/m3); while summer levels of indoor and outdoor concentrations were similar (median 4.5 μg/m3, IQR = 2.3-6.8 μg/m3, and median 4.7 μg/m3, IQR = 2.1-7.9 μg/m3, respectively). Similar predictors were identified for indoor coarse PM in both seasons and included corresponding outdoor coarse PM concentrations, whether vacuuming, sweeping or dusting was performed during the sampling period, and number of occupants in the home. Winter indoor coarse PM predictors also included the number of dogs and indoor endotoxin concentrations. Summer median endotoxin concentrations (indoor: 0.41 EU/m3, outdoor: 0.64 EU/m3) were 4-fold higher than winter concentrations (indoor: 0.12 EU/m3, outdoor: 0.16 EU/m3). Other than outdoor endotoxin concentrations, indoor endotoxin concentration predictors for both seasons were different. Winter endotoxin predictors also included presence of furry pets and whether the vacuum had a high efficiency particulate air (HEPA) filter. Summer endotoxin predictors were problems with mice in the

  14. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  15. Coarse frequency comb interferometry

    NASA Astrophysics Data System (ADS)

    Schwider, J.

    2008-08-01

    Real wedge interferometers of the Fizeau-type do not allow for fringes in case of a spectral broad band source - or in short: for white light fringes. Here, the use of a suitable frequency comb source will help to overcome this limitation on the one hand and on the other will offer the capability for enhanced phase sensitivity in high precision measurements of surface deviations. Frequency combs can be produced either by using a pulse train from a fs-laser or by passive filtering of the light emitted by a broad band source as a superlum-diode or a fs-laser. The frequency comb produced by a common fs-laser is extremely fine, i.e., the frequency difference of consecutive peaks is very small or the distance of consecutive pulses of the pulse train might be of the order of 1m. Therefore, the coarse pulse train produced by passive filtering of a broad band source is better adapted to the needs of surface testing interferometers. White light fringes are either applied for the profiling of discontinuous surfaces and/or can serve as an indication for the correct choice of multiplication factors in superposition interferometry. During the last decennium it became more and more clear that spatially incoherent sources provide better measuring accuracy in surface measurements due to the reduced influence of dust diffraction patterns. The advantage of laser illumination can nevertheless be maintained if the laser light is made spatially incoherent through moving scatterers in the light path. Here, we will discuss the application of spatially incoherent broad band light frequency filtered through a Fabry-Perot filter. The main applications are in the following fields: (1) surface profiling applications using two-beam Fizeau interferometers, (2) selection of single cavities out of a series of interlaced cavities, and (3) sensitivity enhancement for multi-beam interferometers for planeness or sphericity measurements. Some of the discussed possibilities will be experimentally

  16. Partitioning of major and trace components in PM 10-PM 2.5-PM 1 at an urban site in Southern Europe

    NASA Astrophysics Data System (ADS)

    Pérez, N.; Pey, J.; Querol, X.; Alastuey, A.; López, J. M.; Viana, M.

    Partitioning of major and trace components in PM 10-PM 2.5-PM 1 at an urban site in Barcelona (Spain) in the Western Mediterranean was studied in the period 2005-2006. Particular attention was paid to the partitioning of mineral matter and to the evidence of possible interactions of mineral matter with other pollutants (gaseous pollutants and secondary PM). The results showed a high contribution of mineral matter (mainly anthropogenic, but sporadically associated with African dust outbreaks) in levels of both PM 10 and PM 2.5. A high proportion of nitrate was also present in the coarse fractions as a result of the interaction of mineral matter with gaseous pollutants. As at most urban sites in Europe, sulphate and carbonaceous aerosols are mainly present in the finer PM fractions. The PM 1-2.5 fraction resembled that of PM 10 in composition. The chemically unaccounted fraction (mostly bounded water) had also a fine grain size, probably because of the fine size of the hygroscopic aerosol components. The data series follow an increasing trend for PM 1 levels (and less clearly for PM 2.5) from 1999 to 2006, whereas no trend is observed for PM 10. The contributions of African dust and regional soil resuspension to the annual PM 10 levels has been estimated in around 1-2 and 2-3 μg m -3 in this part of Spain. The African dust outbreaks accounted for around 15-20 exceedances of the European daily PM 10 limit value. Finally, the data obtained were compared with data from selected European sites to highlight major differences in levels and speciation of PM.

  17. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PM<7μm in diameter) from one general monitoring station. As a measure of coarse particles, we calculated PM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. PMID:26874762

  18. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  19. Wintertime PM 2.5 and PM 10 carbonaceous and inorganic constituents from urban site in western India

    NASA Astrophysics Data System (ADS)

    Rengarajan, R.; Sudheer, A. K.; Sarin, M. M.

    2011-12-01

    Daily variability in the chemical composition of atmospheric PM 2.5 and PM 10 has been studied from an urban site (Ahmedabad) in western India over a span of 30 days during winter. The PM 2.5 and PM 10 mass concentrations ranged from 32 to 106 μg m - 3 and 121 to 327 μg m - 3 , respectively. On average, PM 2.5 constitutes ~ 33% of PM 10, indicating dominance of coarse mode aerosols in the urban atmosphere. The particulate EC and OC show higher abundances in PM 2.5 (average: 3.0 ± 0.9 and 18.3 ± 5.9 μg m - 3 respectively) whereas those in PM 10 are 4.4 ± 2.4 and 29.8 ± 11.2 μg m - 3 respectively. A linear increasing trend and representative OC/EC ratio of 6.2 indicate their primary source from biomass burning emissions. The water-soluble organic carbon (WSOC: 4.0-14.7 μg m - 3 ) and its linear relationship with K + (0.6-1.7 μg m - 3 ) in PM 2.5 further support biomass burning emissions as a dominant source for carbonaceous aerosol. Among water-soluble inorganic species, SO 42- is the most abundant (range: 3.2-22.5 μg m - 3 ); almost all of it occurs in fine mode (PM 2.5) and exhibits near-quantitative neutralization with NH 4+ (r = 0.98, slope: 1.3). The water-soluble Ca 2+ and Mg 2+ mainly abundant in the coarse mode, suggest significant contribution from mineral dust. Documenting large temporal variability in the chemical composition of coarse and fine mode aerosol is essential in order to assess the changing regional emission scenario over mega-cities and their down-wind transport.

  20. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    EPA Science Inventory

    The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM) in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences ...

  1. Chemical Characterization of Ambient Coarse Particulate Matter in Rural Areas of Arizona Impacted by Significant Population Growth

    EPA Science Inventory

    Characterization of PMc is critical to the understanding of recently observed adverse health effects (e.g., asthma, reduced cardiac variability, etc) from coarse particles in ambient air. PMc mass an (PMc, particles between PM2.5 and PM10) in a rural area of increasing populati...

  2. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  3. PM SUPERSITES PROGRAM

    EPA Science Inventory

    In 1997, the EPA administrator published National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM) that included new standards for PM2.5 (PM with diameters less than 2.5 um). These revised standards stimulated national concern over uncertainties regarding the ex...

  4. Nanoparticle-Based Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Wang, Jun; Lin, Yuehe; Wang, Joseph

    2007-10-11

    In this book chapter, we review the recent advances in nanoparticles based bioassay. The nanoparticles include quantum dots, silica nanoparticles and apoferritin nanoparticles. The new nanoparticles-based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.

  5. Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location.

    PubMed

    Byrd, J Brian; Morishita, Masako; Bard, Robert L; Das, Ritabrata; Wang, Lu; Sun, Zhichao; Spino, Catherine; Harkema, Jack; Dvonch, J Timothy; Rajagopalan, Sanjay; Brook, Robert D

    2016-02-01

    Particulate matter (PM) air pollution is a leading global risk factor for cardiovascular mortality. Although exposure to fine PM <2.5 μm raises arterial blood pressure (BP), few studies have evaluated the impact of coarse PM which differs in size (2.5-10 μm), sources, and chemistry. Twenty-nine healthy adults (30.4 ± 8.2 years) underwent a randomized double-blind crossover study involving 2-hour exposures to concentrated ambient coarse PM (164.2 ± 80.4 μg/m(3)) at an urban location (Dearborn, Michigan) versus filtered air. Cardiovascular outcomes were measured during, immediately, and 2 hours after exposures. Both systolic (1.9 mm Hg; 95% confidence interval: 0.96, 2.8; P < .001) and diastolic (1.9 mm Hg; 95% confidence interval: 1.1, 2.7; P < .001) BP levels were higher throughout coarse PM compared with filtered air exposures by mixed-model analyses. Heart rate variability, endothelial function, and arterial compliance were not significantly affected. Brief exposure to coarse PM in an urban environment raises arterial BP. These findings add mechanistic support to the contention that coarse PM may be capable of promoting cardiovascular events. PMID:26750378

  6. Bioassays Based on Molecular Nanomechanics

    DOE PAGESBeta

    Majumdar, Arun

    2002-01-01

    Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA) at concentrations and conditions that are clinically relevant for prostate cancer diagnosis. Since cantilever motion originates from free energy change induced by specific biomolecular binding, this technique is now offering a common platform for label-free quantitative analysis of protein-protein binding, DNA hybridization DNA-protein interactions, and in general receptor-ligandmore » interactions. Current work is focused on developing “universal microarrays” of microcantilever beams for high-throughput multiplexed bioassays.« less

  7. Exposure to coarse particulate matter during gestation and birth weight in the U.S.

    PubMed

    Ebisu, Keita; Berman, Jesse D; Bell, Michelle L

    2016-09-01

    Few studies have explored the relationship between coarse particles (PM10-2.5) and adverse birth outcomes. We examined associations between gestational exposure of PM10-2.5 and birth weight. U.S. birth certificates data (1999-2007) were acquired for 8,017,865 births. Gestational and trimester exposures of PM10-2.5 were estimated using co-located PM10 and PM2.5 monitors ≤35km from the population-weighted centroid of mothers' residential counties. A linear regression model was applied, adjusted by potential confounders. As sensitivity analyses, we explored alternative PM10-2.5 estimations, adjustment for PM2.5, and stratification by regions. Gestational exposure to PM10-2.5 was associated with 6.6g (95% Confidence Interval: 5.9, 7.2) lower birth weight per interquartile range increase (7.8μg/m(3)) in PM10-2.5 exposures. All three trimesters showed associations. Under different exposure methods for PM10-2.5, associations remained consistent but with different magnitudes. Results were robust after adjusting for PM2.5, and regional analyses showed associations in all four regions with larger estimates in the South. Our results suggest that PM10-2.5 is associated with birth weight in addition to PM2.5. Regional heterogeneity may reflect differences in population, measurement error, region-specific emission pattern, or different chemical composition within PM10-2.5. Most countries do not set health-based standards for PM10-2.5, but our findings indicate potentially important health effects of PM10-2.5. PMID:27324566

  8. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    PubMed

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  9. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  10. COMPARATIVE TOXICITY OF COARSE PARTICLES

    EPA Science Inventory

    As determined in preliminary studies, we expect that coarse particle toxicity will be influenced by a variety of factors including particle components (e.g., crustal material vs. metals vs. biologics), particle concentration, and the differing composition of urban and ru...

  11. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles.

    PubMed

    Gerlofs-Nijland, Miriam E; Dormans, Jan A M A; Bloemen, Henk J T; Leseman, Daan L A C; John, A; Boere, F; Kelly, Frank J; Mudway, Ian S; Jimenez, Al A; Donaldson, Ken; Guastadisegni, Cecilia; Janssen, Nicole A H; Brunekreef, Bert; Sandström, Thomas; van Bree, Leendert; Cassee, Flemming R

    2007-10-01

    Residence in urban areas with much traffic has been associated with various negative health effects. However, the contribution of traffic emissions to these adverse health effects has not been fully determined. Therefore, the objective of this in vivo study is to compare the pulmonary and systemic responses of rats exposed to particulate matter (PM) obtained from various locations with contrasting traffic profiles. Samples of coarse (2.5 microm-10 microm) and fine (0.1 microm-2.5 microm) PM were simultaneously collected at nine sites across Europe with a high-volume cascade impactor. Six PM samples from various locations were selected on the basis of contrast in in vitro analysis, chemical composition, and traffic profiles. We exposed spontaneously hypertensive (SH) rats to a single dose (3 mg PM/kg body weight or 10 mg PM/kg body weight) of either coarse or fine PM by intratracheal instillation. We assessed changes in biochemical markers, cell differentials, and histopathological changes in the lungs and blood 24 h postexposure. The dose-related adverse effects that both coarse and fine PM induced in the lungs and vascular system were mainly related to cytotoxicity, inflammation, and blood viscosity. We observed clear differences in the extent of these responses to PM from the various locations at equivalent dose levels. There was a trend that suggests that samples from high-traffic sites were the most toxic. It is likely that the toxicological responses of SH rats were associated with specific PM components derived from brake wear (copper and barium), tire wear (zinc), and wood smoke (potassium). PMID:17957546

  12. Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008.

    PubMed

    Wegesser, Teresa C; Franzi, Lisa M; Mitloehner, Frank M; Eiguren-Fernandez, Arantza; Last, Jerold A

    2010-06-01

    The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-alpha were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM. PMID:20388000

  13. Passive Sampling to Capture the Spatial Variability of Coarse Particles by Composition in Cleveland, OH

    EPA Science Inventory

    Passive samplers deployed at 25 sites for three week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles deter...

  14. MULTI-SITE EVALUATIONS OF CANDIDATE METHODOLOGIES FOR DETERMINING COARSE PARTICULATE MATTER (PMC) CONCENTRATIONS

    EPA Science Inventory

    Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discret...

  15. DIRECT PERSONAL COARSE PARTICULATE MATTER CONCENTRATIONS ASSOCIATED WITH THE NORTH CAROLINA ADULT ASTHMA AND ENVIRONMENT STUDY.

    EPA Science Inventory

    A prototype coarse particulate matter PM(10-2.5) monitor was field evaluated as part of the North Carolina Adult Asthma and Environment Study (NCAAES). The NCAAES was designed to evaluate if airway and blood inflammatory markers in moderate asthmatic adults vary with changes in ...

  16. MULTI-SITE EVALUATIONS OF CANDIDATE METHODOLOGIES FOR DETERMINING COARSE PARTICULATE MATTER (PMC) CONCENTRATIONS

    EPA Science Inventory

    Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discrete ...

  17. MULTI-SITE PERFORMANCE EVALUATIONS OF CANDIDATE METHODOLOGIES FOR DETERMINING COARSE PARTICULATE MATTER (PMC) CONCENTRATIONS

    EPA Science Inventory

    Comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring the coarse fraction of PM10 in ambient air. Five separate sampling approaches were evaluated at each of three sampling sites. As the primary basis of comparison, a discret...

  18. PM2.5 measurements in the Tennessee Valley region

    SciTech Connect

    Parkhurst, W.J.; Tanner, R.L. Weatherford, F.P.; Meagher, J.F.; Eatough, D.J.

    1998-12-31

    Although the monitoring and regulatory implementation schedules for the revised particulate matter (PM) National Ambient Air Quality Standard (NAAQS) remain uncertain, it is evident that the new NAAQS for particulate matter with aerodynamic diameter less than 2.5 m m (i.e., PM2.5 or PMFine) will be difficult for many parts of the country to attain. Since August 1982, the Tennessee Valley Authority (TVA) has collected more than 14 station-years of baseline fine (PM2.5) and coarse (PM2.5 to PM10) mass data using standard dichotomous samplers deployed at eight monitoring stations ranging from urban/industrial to rural/background. The seasonal and inter-site variability of these mass data (and sulfur data as available) are described. PM2.5 to PM10 ratios appropriate for the south-central US estimated, and historic PM2.5 levels are compared with the new NAAQS to identify the potential for compliance problems. Preliminary PM2.5 data from a prototype Federal Reference Method (FRM) PM2.5 monitoring network, established by TVA and Tennessee Valley regulatory partners in 1997 to measure current levels of PM2.5 are presented. An improved denuder-based semi-volatile sampler employing a Harvard University particle concentrator has been developed and field tested. Preliminary results indicate that a significant and highly variable fraction of organic material (from as little as 10% to more than 60%) in the PM2.5 aerosol may be lost. This leads to serious uncertainties in source attribution, environmental exposure, and the development of PM2.5 control strategies.

  19. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  20. Two-generation saccharin bioassays.

    PubMed

    Arnold, D L

    1983-04-01

    The controversy regarding the safety of saccharin for human consumption started shortly after its discovery over 100 years ago and has yet to subside appreciably. The consumption of saccharin, particularly in North America, began to escalate when the U.S. Food and Drug Administration set new standards of identity which allowed foods containing artificial sweeteners to be promoted as "nonnutritive" or "noncaloric" sweeteners for use by the general public. In 1969, when cyclamates were banned, at least 10 single-generation feeding studies were undertaken with saccharin to more accurately assess the potential toxicological consequences resulting from the anticipated increase in its consumption. None of these studies resulted in any overt regulatory action. Subsequently, the introduction of the two-generation chronic toxicity/carcinogenicity bioassay added a new tool to the toxicologist's arsenal. Three two-generation studies using saccharin have since been conducted. The results from these studies clearly show that when rats were exposed to diets containing 5 or 7.5% sodium saccharin from the time of conception to death, an increased frequency of urinary bladder cancers was found, predominantly in the males. While some study results suggested that impurities in commercial saccharin or the presence of urinary tract calculi may have been responsible for the observed bladder tumors, it now appears that these possibilities are highly unlikely. The mechanism by which saccharin elicited the bladder tumors using the two-generation experiment has not been ascertained. PMID:6347682

  1. Bioassays for Monitoring Insecticide Resistance

    PubMed Central

    Miller, Audra L.E.; Tindall, Kelly; Leonard, B. Rogers

    2010-01-01

    Pest resistance to pesticides is an increasing problem because pesticides are an integral part of high-yielding production agriculture. When few products are labeled for an individual pest within a particular crop system, chemical control options are limited. Therefore, the same product(s) are used repeatedly and continual selection pressure is placed on the target pest. There are both financial and environmental costs associated with the development of resistant populations. The cost of pesticide resistance has been estimated at approximately $ 1.5 billion annually in the United States. This paper will describe protocols, currently used to monitor arthropod (specifically insects) populations for the development of resistance. The adult vial test is used to measure the toxicity to contact insecticides and a modification of this test is used for plant-systemic insecticides. In these bioassays, insects are exposed to technical grade insecticide and responses (mortality) recorded at a specific post-exposure interval. The mortality data are subjected to Log Dose probit analysis to generate estimates of a lethal concentration that provides mortality to 50% (LC50) of the target populations and a series of confidence limits (CL's) as estimates of data variability. When these data are collected for a range of insecticide-susceptible populations, the LC50 can be used as baseline data for future monitoring purposes. After populations have been exposed to products, the results can be compared to a previously determined LC50 using the same methodology. PMID:21248689

  2. PHOXOCEPHALID AMPHIPOD BIOASSAY FOR MARINE SEDIMENT TOXICITY

    EPA Science Inventory

    The relative toxicity of marine sediment can be accurately determined through acute, static bioassays with the phoxocepalid amphipod Repoxynius abronius. Mortality and sublethal effects on emergence from sediment and reburial behavior are determined after ten day exposure in 1-L ...

  3. Bioassay criteria for environmental restoration workers

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.

    1993-01-01

    Environmental restoration (ER) work at the U. S. Department of Energy Hanford Site posed questions concerning when to perform bioassay monitoring of workers for potential intakes of radioactivity. Application of criteria originally developed for use inside radionuclide processing facilities to ER work resulted in overly restrictive bioassay requirements. ER work typically involves site characterization or, excavating large quantities of potentially contaminated soil, rather than working with concentrated quantities of radioactivity as in a processing facility. An improved approach, tailored to ER work, provided soil contamination concentrations above which worker bioassay would be required. Soil concentrations were derived assuming acute or chronic intakes of 2% of an Annual Limit on Intake (ALI), or a potential committed effective dose equivalent of 100 mrem, and conservative dust loading of air from the work. When planning ER work, the anticipated soil concentration and corresponding need for bioassay could be estimated from work-site historical records. Once site work commenced, soil sampling and work-place surveys could be used to determine bioassay needs. This approach substantially reduced the required number of bioassay samples with corresponding reductions in analytical costs, schedules, and more flexible work-force management. (Work supported by the US Department of Energy under contract DOE-AC06-76RLO 1830.)

  4. Coarse-graining in peridynamics.

    SciTech Connect

    Silling, Stewart Andrew

    2010-11-01

    The peridynamic theory is an extension of traditional solid mechanics that treats discontinuous media, including the evolution of discontinuities due to fracture, on the same mathematical basis as classically smooth media. A recent advance in the linearized peridynamic theory permits the reduction of the number of degrees of freedom modeled within a body. Under equilibrium conditions, this coarse graining method exactly reproduces the internal forces on the coarsened degrees of freedom, including the effect of the omitted material that is no longer explicitly modeled. The method applies to heterogeneous as well as homogeneous media and accounts for defects in the material. The coarse graining procedure can be repeated over and over, resulting in a hierarchically coarsened description that, at each stage, continues to reproduce the exact internal forces present in the original, detailed model. Each coarsening step results in reduced computational cost. This talk will describe the new peridynamic coarsening method and show computational examples.

  5. Continuous coarse ash depressurization system

    DOEpatents

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2012-11-13

    A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.

  6. A Colorimetric Bioassay for Perchlorate

    NASA Astrophysics Data System (ADS)

    Heinnickel, M. L.; Smith, S.; Coates, J. D.

    2007-12-01

    Recognition of perchlorate (ClO4-) as a widespread contaminant across the United States and its potential adverse affects towards human health has motivated the EPA to place ClO4- on its contaminant candidate list for drinking water supplies. While a federal MCL has not yet been set, a recommended public health goal of 1 ppb (μg.L-1) was established by the US EPA in 2002. To date, methods of detection require use of sensitive ion chromatographic equipment that are expensive, time consuming, and require highly trained personnel for use. Our studies are focused on the development of a highly sensitive, simple, and robust colorimetric bioassay based on the primary enzyme involved in microbial ClO4- reduction, the perchlorate reductase (Pcr). A previously published assay used reduced methyl viologen (MV, the dye is reduced with sodium hydrosulfite) as an electron donor to demonstrate Pcr activity. The assay directly correlates the amount of MV oxidized with the amount of ClO4- reduced by assuming a transfer of four electrons. To test this assumption, we compared actual concentrations of MV oxidized to ClO4- reduced in this assay. ClO4- concentrations were determined using a Dionex ICS-500 ion chromatography system, while MV concentrations were determined using a standard curve generated at 578 nm. Comparisons between the two revealed that twelve molecules of MV were oxidized for each molecule of ClO4- reduced. The oxidation of these additional eight MV molecules is explained by the interaction of the dye with chlorite (the product of the Pcr reaction) and other contaminants that could be present in the enzyme prep. This unsettling result indicated this assay would be problematic for the detection of ClO4- in soil, which has many chemicals that could react with MV. To improve upon this assay, we have tried to reduce ClO4- using less reactive dyes and reductants. The reductants ascorbic acid, NADH, and dithiothreitol drive Pcr catalyzed ClO4- reduction, however, they

  7. Impact into Coarse Grained Spheres

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M.; Crawford, D. A.

    2005-01-01

    Several experimental studies [1,2,3] indicate that differences in the grain size of the target relative to the projectile could influence the cratering process. Impacts into coarse sand grains of size comparable to the projectile show some discrepancies with existing relationships for crater growth [e.g. 4]. Similarly, targets of ne grained, uniform in diameter glass spheres show differences in crater depth, transient crater diameter, and volume of ejecta excavated as a function of grain size [2,3]. The purpose of this work is to continue investigating how the relative grain size may influence early time coupling between a projectile and target, with implications for subsequent ejecta excavation and crater growth. In previous efforts we used numerical techniques to focus on the propagation of shock waves in coarse, granular media emphasizing the influence of relative grain size on crater growth, ejecta production, cratering efficiency, target strength, and crater shape [5,6,7]. In this study, we use experimental techniques - in part as a reality check for the numerical studies - to report on how coarse grained targets might influence ejecta excavation and crater shape. This body of work possesses important implications for ejecta excavation and cratering efficiency on asteroids that may possess rubble pile-like structures, and on planets that may possess either pre-fractured surfaces or large-scale heterogeneities in shock impedance.

  8. Ambient exposure to coarse and fine particle emissions from building demolition

    NASA Astrophysics Data System (ADS)

    Azarmi, Farhad; Kumar, Prashant

    2016-07-01

    Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5-10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m-3), 83 (100 ± 29 μg m-3), and 70% (59 ± 12 μg m-3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m-3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m-2 s-1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction

  9. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  10. Concentrations and source insights for trace elements in fine and coarse particulate matter

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Eav, Jenny; Xie, Mingjie; Hannigan, Michael P.; Miller, Shelly L.; Navidi, William; Peel, Jennifer L.; Schauer, James J.; Shafer, Martin M.; Milford, Jana B.

    2014-06-01

    The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study is a multi-year study focused on characterizing the mass, composition and sources of coarse particulate matter (PM10-2.5) in Denver and Greeley, CO. Between the two cities, Denver is expected to have greater influence of industry and motor vehicles as sources of PM10-2.5. Greeley is a smaller city with greater expected influence of agricultural activity. As part of the CCRUSH study, we collected integrated 24-h samples of PM from four sites in Denver and Greeley at six day intervals from February 2010 to March 2011. Dichotomous samplers with Teflon filters were used to obtain samples for gravimetric and elemental analysis. Magnetic Sector Inductively Coupled Plasma-Mass Spectroscopy (SF-ICP-MS) was used to analyze digests of monthly composited filter samples for 49 elements. Thirty-nine elements were retained for statistical analysis after excluding those with low signal-to-noise ratios. The elements Sb, Cd, Zn, Mo, As, B, Cu, Pb, and W had crustal enrichment factors greater than 10 in the PM2.5 and PM10-2.5 size ranges in both Denver and Greeley. Using positive matrix factorization (PMF) with bootstrap uncertainty estimation, we identified five factors influencing the element concentrations: a crustal factor contributing to both PM2.5 and PM10-2.5; a sodium-dominated PM10-2.5 factor likely associated with road salt; a vehicle abrasion factor contributing in both size ranges; a regional sulfur factor contributing mainly to PM2.5 and likely associated with coal combustion; and a local catalyst factor identified with high Ce and La enrichment in PM2.5 at one of the sites in Denver.

  11. An in vitro rainbow trout cell bioassay for aryl hydrocarbon receptor-mediated toxins

    SciTech Connect

    Richter, C.A.; Tieber, V.L.; Giesy, J.P.; Denison, M.S.

    1997-03-01

    Halogenated aromatic hydrocarbons (HAHs) and other chemicals that act as aryl hydrocarbon (Ah) receptor (AhR) agonists cause a variety of toxicity effects. In sac fry of many fish species, these effects include blue-sac disease and mortality. Because HAHs occur in complex mixtures, their toxicity in the environment is difficult to predict. A bioassay useful in predicting AhR-mediated toxicity to fish was developed using the RTH-149 rainbow trout hepatoma cell line. Stable transfection of this cell line with the pGudLuc 1.1 plasmid, which contains a firefly luciferase reporter gene under the transcriptional regulation of dioxin responsive enhancers, has produced a recombinant cell line designated Remodulated Lightning Trout (RLT 2.0). The RLT 2.0 bioassay method detection limit for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is 4 pM. The responses of the RLT 2.0 bioassay to TCDD and several HAH congeners closely matched the responses observed in vivo in fish. The RLT 2.0 bioassay can provide an integrative measure of the total AhR-mediated toxic activity of complex mixtures to fish. The assay will be useful in screening environmental extracts, guiding chemical analysis, and interpreting the AhR-mediated mechanism of toxicity.

  12. Comparisons of urban and rural PM10-2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Hannigan, Michael P.; Miller, Shelly L.; Peel, Jennifer L.; Milford, Jana B.

    2016-06-01

    Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg m-3 and mean PM10-2.5 / PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s-1. Little wind speed dependence was observed for the residential sites in Denver and Greeley. The mass

  13. NERL PM research monitoring platforms: Baltimore, Fresno, and Phoenix. Data report for February 1995--April 1998

    SciTech Connect

    Zweidinger, R.; Purdue, L.; Fitzgerald, K.; Carmichael, L.; Kellogg, R.

    1998-12-01

    EPA`s National Exposure Research Laboratory, NERL, established PM research monitoring platforms in three metropolitan areas with differing PM size and composition characteristics: Phoenix, AZ (established February 1995), an arid, desert dust dominated western US city where the PM10 mass is dominated by the coarse fraction; Baltimore, MD (established January 1997), a typical eastern city with high sulfates; and Fresno, CA (established June 1997); characteristic of a western area with high nitrates. The primary objective of the research platforms was to collect daily, ambient air quality data to relate the chemical and/or physical properties of PM to support exposure, source apportionment, receptor modeling, and health effects studies. Daily fine and coarse particle mass and composition data, meteorology data, and data for other parameters relevant to the characterization of the size and composition of PM were collected, including: 24 hour integrated and hourly maximum mass concentrations, metals (XRF), organic and elemental carbon.

  14. Coarse Layering at 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows coarse-grained layers from around the edge of a low plateau called 'Home Plate' inside Mars' Gusev Crater. One possible origin is material falling to the ground after being thrown aloft by an explosion such as a volcanic eruption or meteorite impact.

    The panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit acquired the exposures for this image on Spirit's 749th Martian day (Feb. 10, 2006). This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.

  15. A dual site study of PM 2.5 and PM 10 aerosol chemistry in the larger region of Vienna, Austria

    NASA Astrophysics Data System (ADS)

    Puxbaum, H.; Gomiscek, B.; Kalina, M.; Bauer, H.; Salam, A.; Stopper, S.; Preining, O.; Hauck, H.

    The measurements of PM 2.5 and PM 10 at two sites—an urban site in Vienna (AUPHEP-1) and a rural site considered local background (AUPHEP-2)—indicated only low aerosol generation activity in the city on an annual basis. Defining the term "urban impact" as the difference between observations at the urban and the local background site we find an annually averaged urban impact for PM 2.5 of 3.4 μg m -3 and for PM C of 3.3 μg m -3 (the coarse fraction PM C=PM 10-PM 2.5). The relative increase of the particulate matter (PM) concentration at the urban site compared to the background site (AUPHEP-2) is annually averaged only 19% for PM 2.5, but 60% for PM C. The chemical main constituents of the PM 2.5 urban impact are black carbon (BC), organic carbon (OC), and sulfate; the main constituents of the PM C urban impact are OC and indicators for mineralic aerosol (Fe, Ca, Mg, Na, K). The BC/TC ratio of the PM 2.5 urban impact is typical as for combustion sources, e.g. automotive traffic, oil or coal combustion. Urban coarse OC is considered to originate from non-pyrogenic sources. From the trace metals investigated (As, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn) only Cd, Ni, Pb, and Zn exhibited a slight cold season enrichment in the urban airshed. From the weak signal of a seasonality of oil or coal combustion indicators we conclude that local domestic heating sources are using "clean fuels".

  16. Effects of metals in in vitro bioassays.

    PubMed Central

    Sirover, M A

    1981-01-01

    The capacity of in vitro bioassays to detect the potential carcinogenicity of metal compounds is reviewed. The in vitro bioassays discussed include: bacterial reversion analysis to determine the capacity of metal salts to revert Salmonella typhimurium histidine auxotrophs or to revert Escherichia coli WP 2 tryp- to tryptophan prototrophy; examination of the ability of metal salts to preferentially inhibit cell growth in Bacillus subtilis cells deficient in DNA repair pathways; determination of the ability of metal salts to induce resistance to base analogs in mammalian cells; the capacity of metal salts to enhance viral transformation of mammalian cells or to transform cells in the absence of virus; and the ability of metal salts to induce chromosomal aberrations in mammalian cells. Using each of these in vitro bioassays, diverse metal compounds have been identified as potential carcinogens. Furthermore, the use of different compounds of a specific metal may allow a determination of the valence which may be required for carcinogenesis. PMID:7023930

  17. Poultry litter toxicity comparison from various bioassays

    SciTech Connect

    Gupta, G.; Kelly, P. )

    1992-01-01

    Poultry litter contains many toxic chemicals including Cu, As, Pb, Cd, Hg, Se and PCBs. Poultry litter leachate has been shown to be more toxic to marine luminescent organisms (Photobacterium phosphoreum) than other farm animal manures. A comparison of toxicity of the poultry litter leachate was undertaken using various bioassays. The EC{sub 50} (or LC{sub 50}) value for the leachate with the Microtox and Daphnia bioassays was 2.9 g/L/ Nitrobacter and Pseudomonas bioassays were not useful in determining the leachate toxicity because of the nutritional properties of the litter. Poultry litter leachate was found to be mutagenic to strains TA 97, TA 98, TA 100 and TA 102 using the Ames Test.

  18. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols

    NASA Astrophysics Data System (ADS)

    Boreson, Justin; Dillner, Ann M.; Peccia, Jordan

    2004-11-01

    Seasonal allergies and microbial mediated respiratory diseases, can coincide with elevated particulate matter concentrations, often when dry desert soils are disturbed. In addition to effects from the allergens, allergic and asthmatic responses may be enhanced when chemical and biological constituents of particulate matter (PM) are combined together. Because of these associations and also the recent regulatory and health-related interests of monitoring PM2.5, separately from total PM10, the biological loading between the fine (dp<2.5 μm) and coarse (2.5 μmPM was studied. To investigate spatial and seasonal differences of biological loading within PM, 24-h fine and coarse PM fractions were collected at a natural desert area and an urban fringe site located in the expanding Phoenix, Arizona metropolitan area during winter, spring, and summer seasons. Elemental carbon and inorganic ions were measured to determine the relative influence that anthropogenic sources, such as traffic, had on the aerosol composition. Total protein concentration was used as a surrogate measure of total biological concentration within the PM2.5 and PM10cf (coarse fraction) size ranges. In all seasons, coarse protein at the urban fringe was consistently higher than the natural desert. When high-anthropogenic PM events were separated from the data set, a positive significant correlation (p<0.05) was found between protein and coarse PM fraction, but not in the fine fraction. An 18S rDNA clone library was developed from PM10 aerosol samples to characterize the type and phylogenetic diversity of airborne eukaryotic (non-bacterial) microorganisms existing in ambient PM for the urban fringe and natural desert. Both sites contained allergenic organisms. Some groups of eukaryotic species were exclusive to only one of the sites. The natural desert contained more species of Basidiomycota fungi and the urban fringe contained more species of green plants, suggesting that the

  19. Spatial variability of fine and coarse particle composition and sources in Cyprus

    NASA Astrophysics Data System (ADS)

    Achilleos, Souzana; Wolfson, Jack M.; Ferguson, Stephen T.; Kang, Choong-Min; Hadjimitsis, Diofantos G.; Hadjicharalambous, Marios; Achilleos, Constantia; Christodoulou, Andri; Nisanzti, Argyro; Papoutsa, Christiana; Themistocleous, Kyriacos; Athanasatos, Spyros; Perdikou, Skevi; Koutrakis, Petros

    2016-03-01

    Southern and Eastern European countries exceed WHO and EU air quality standards very often, and are influenced by both local and external sources from Europe, Asia and Africa. However, there are limited data on particle composition and source profiles. We collected PM2.5 and PM10 samples (particulate matter with aerodynamic diameter less than 2.5 and 10 μm, respectively) in four cities in Cyprus using Harvard Impactors. Measurements were conducted between January 2012 and January 2013. We analyzed these samples for mass concentration and chemical composition, and conducted a source apportionment analysis using Positive Matrix Factorization (PMF). All sites complied with PM2.5 and PM10 WHO daily standards for most of the days. As in other Eastern European countries, we found higher sulfate contribution and less organic carbon than in the Western and central Europe. For PM2.5, seven source types were identified including regional sulfur, traffic emissions, biomass, re-suspended soil, oil combustion, road dust, and sea salt. In all four sites, regional sulfur was the predominant source (> 30%). High inter-site correlations were observed for both PM2.5 component concentrations and source contributions, may be because a large fraction of PM2.5 is transported. Finally, for PM10 -2.5 (coarse particles with aerodynamic diameter between 2.5 and 10 μm) three sources were identified, which include road dust, soil, and sea salt. Significant inter-site correlations were also observed for coarse particles. All dust storm samples, except one, had PM levels below the daily standard. However, mineral dust, defined as the total mass of crustal metal oxides, increased up to ten times during the dust events.

  20. PM10 and PM2.5 composition over the Central Black Sea: origin and seasonal variability.

    PubMed

    Koçak, M; Mihalopoulos, N; Tutsak, E; Theodosi, C; Zarmpas, P; Kalegeri, P

    2015-11-01

    Daily PM10 and PM2.5 samples were collected between April 2009 and July 2010 at a rural site (Sinop) situated on the coast of the Central Black Sea. The concentrations of PM10 and PM2.5 were 23.2 ± 16.7 and 9.8 ± 6.9 μg m(-3), respectively. Coarse and fine filters were analyzed for Cl(-), NO3(-), SO4(2-), C2O4(2-), PO4(3-), Na(+), NH4(+), K(+), Mg(2+), and Ca(2+) by using ion chromatography. Elemental and organic carbon content in bulk quartz filters were also analyzed. The highest PM2.5 contribution to PM10 was found in summer with a value of 0.54 due to enhanced secondary aerosols in relation to photochemistry. Cl(-), Na(+), and Mg(2+) illustrated their higher concentrations and variability during winter. Chlorine depletion was chiefly attributed to nitrate. Higher nssCa(2+) concentrations were ascribed to episodic mineral dust intrusions from North Africa into the region. Crustal material (31%) and sea salt (13%) were found to be accounted for the majority of the PM10. The ionic mass (IM), particulate organic matter (POM), and elemental carbon (EC) explained 13, 20, and 3% of the PM10 mass, correspondingly. The IM, POM, and EC dominated the PM2.5 (~74%) mass. Regarding EU legislation, the exceeded PM2.5 values were found to be associated with secondary aerosols, with a particular dominance of POM. For the exceeded PM10 values, six of the events were dominated by dust while two and four of these exceedances were caused by sea salt and mix events, respectively. PMID:26174981

  1. RECOMMENDATIONS FOR UO3 PLANT BIOASSAY

    SciTech Connect

    Carbaugh, Eugene H.

    2010-07-12

    Alternative urine bioassay programs are described for application with decontamination and decommissioning activities at the Hanford UO3 Plant. The alternatives are based on quarterly or monthly urine bioassay for recycled uranium, assuming multiple acute inhalation intakes of recycled uranium occurring over a year. The inhalations are assumed to be 5µm AMAD particles of 80% absorption type F and 20% absorption type M. Screening levels, expressed as daily uranium mass excretion rates in urine, and the actions associated with these levels are provided for both quarterly and monthly sampling frequencies.

  2. Dust episodes in Beirut and their effect on the chemical composition of coarse and fine particulate matter.

    PubMed

    Jaafar, Malek; Baalbaki, Rima; Mrad, Raya; Daher, Nancy; Shihadeh, Alan; Sioutas, Constantinos; Saliba, Najat A

    2014-10-15

    Particles captured during dust episodes in Beirut originated from both the African and Arabian deserts. This particular air mixture showed an increase, over non-dust episodes, in particle volume distribution which was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. It also resulted in an increase in average mass concentration by 48.5% and 14.6%, for the coarse and fine fractions, respectively. Chemical analysis of major aerosol components accounted for 93% of fine PM and 71% of coarse PM. Crustal material (CM) dominated the coarse PM fraction, contributing to 39 ± 15% of the total mass. Sea salt (SS) (11 ± 10%) and secondary ions (SI) (11 ± 7%) were the second most abundant elements. In the fine fraction, SI (36 ± 14%) were the most abundant PM constituent, followed by organic matter (OM) (33 ± 7%) and CM (13 ± 2%). Enrichment factors (EF) and correlation coefficients show that biogenic and anthropogenic sources contribute to the elemental composition of particles during dust episodes. This study emphasizes on the role played by the long-range transport of aerosols in changing the chemical composition of the organic and inorganic constituents of urban coarse and fine PM. The chemical reactions between aged urban and dust aerosols are enhanced during transport, leading to the formation of organo-nitrogenated and -sulfonated compounds. Their oligomeric morphologies are further confirmed by SEM-EDX measurements. PMID:25064715

  3. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    PubMed

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  4. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    PubMed Central

    Loxham, Matthew; Morgan-Walsh, Rebecca J.; Cooper, Matthew J.; Blume, Cornelia; Swindle, Emily J.; Dennison, Patrick W.; Howarth, Peter H.; Cassee, Flemming R.; Teagle, Damon A. H.; Palmer, Martin R.; Davies, Donna E.

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  5. BIOASSAY-DIRECTED CHEMICAL ANALYSIS IN ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology 'bioassay directed chemical analysis' to best describe this marriage of analy...

  6. Micro-organism distribution sampling for bioassays

    NASA Technical Reports Server (NTRS)

    Nelson, B. A.

    1975-01-01

    Purpose of sampling distribution is to characterize sample-to-sample variation so statistical tests may be applied, to estimate error due to sampling (confidence limits) and to evaluate observed differences between samples. Distribution could be used for bioassays taken in hospitals, breweries, food-processing plants, and pharmaceutical plants.

  7. EDC BIOASSAYS FOR RISK MANAGEMENT PROJECTS

    EPA Science Inventory

    Overall goal for this research is to develop 3 bioassays for use in EDC projects across NRMRL (estrogenic, androgenic and thyroid assays). Currently, research is focused on estrogenic assays. A literature search was conducted to identify potential assays. The Yeast Estrogen Sc...

  8. Coarse-graining stiff bonds

    NASA Astrophysics Data System (ADS)

    Español, P.; de la Torre, J. A.; Ferrario, M.; Ciccotti, G.

    2011-11-01

    The method of constraints in molecular dynamics is useful because it avoids the resolution of high frequency motions with very small time steps. However, the price to pay is that both the dynamics and the statistics of a constrained system differ from those of the unconstrained one. Instead of using constraints, we propose to dispose of high frequency motions by a coarse-graining procedure in which fast variables are eliminated. These fast variables are thus modeled as friction and thermal fluctuations. We illustrate the methodology with a simple model case, a diatomic molecule in a monoatomic solvent, in which the bond between the atoms of a diatomic molecule is stiff. Although the example is very simple and does not display the interesting effects of "wrong" statistics of the constrained system (i.e. the well-known issue connected to the Fixman potential), it is well suited to give the proof of concept of the whole procedure.

  9. Hemodynamic, Autonomic, and Vascular Effects of Exposure to Coarse Particulate Matter Air Pollution from a Rural Location

    PubMed Central

    Bard, Robert L.; Morishita, Masako; Dvonch, J. Timothy; Wang, Lu; Yang, Hui-yu; Spino, Catherine; Mukherjee, Bhramar; Kaplan, Mariana J.; Yalavarthi, Srilakshmi; Oral, Elif A.; Ajluni, Nevin; Sun, Qinghua; Harkema, Jack; Rajagopalan, Sanjay

    2014-01-01

    Background: Fine particulate matter (PM) air pollution is associated with numerous adverse health effects, including increased blood pressure (BP) and vascular dysfunction. Coarse PM substantially contributes to global air pollution, yet differs in characteristics from fine particles and is currently not regulated. However, the cardiovascular (CV) impacts of coarse PM exposure remain largely unknown. Objectives: Our goal was to elucidate whether coarse PM, like fine PM, is itself capable of eliciting adverse CV responses. Methods: We performed a randomized double-blind crossover study in which 32 healthy adults (25.9 ± 6.6 years of age) were exposed to concentrated ambient coarse particles (CAP; 76.2 ± 51.5 μg/m3) in a rural location and filtered air (FA) for 2 hr. We measured CV outcomes during, immediately after, and 2 hr postexposures. Results: Both systolic (mean difference = 0.32 mmHg; 95% CI: 0.05, 0.58; p = 0.021) and diastolic BP (0.27 mmHg; 95% CI: 0.003, 0.53; p = 0.05) linearly increased per 10 min of exposure during the inhalation of coarse CAP when compared with changes during FA exposure. Heart rate was on average higher (4.1 bpm; 95% CI: 3.06, 5.12; p < 0.0001) and the ratio of low-to-high frequency heart rate variability increased (0.24; 95% CI: 0.07, 0.41; p = 0.007) during coarse particle versus FA exposure. Other outcomes (brachial flow-mediated dilatation, microvascular reactive hyperemia index, aortic hemodynamics, pulse wave velocity) were not differentially altered by the exposures. Conclusions: Inhalation of coarse PM from a rural location is associated with a rapid elevation in BP and heart rate during exposure, likely due to the triggering of autonomic imbalance. These findings add mechanistic evidence supporting the biological plausibility that coarse particles could contribute to the triggering of acute CV events. Citation: Brook RD, Bard RL, Morishita M, Dvonch JT, Wang L, Yang HY, Spino C, Mukherjee B, Kaplan MJ, Yalavarthi S, Oral

  10. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment.

    PubMed

    Tian, Ying-Ze; Shi, Guo-Liang; Huang-Fu, Yan-Qi; Song, Dan-Lin; Liu, Jia-Yuan; Zhou, Lai-Dong; Feng, Yin-Chang

    2016-07-01

    To characterize the sources of to PM10 and PM2.5, a long-term, speciate and simultaneous dataset was sampled in a megacity in China during the period of 2006-2014. The PM concentrations and PM2.5/PM10 were higher in the winter. Higher percentages of Al, Si, Ca and Fe were observed in the summer, and higher concentrations of OC, NO3(-) and SO4(2-) occurred in the winter. Then, the sources were quantified by an advanced three-way model (defined as an ABB three-way model), which estimates different profiles for different sizes. A higher percentage of cement and crustal dust was present in the summer; higher fractions of coal combustion and nitrate+SOC were observed in the winter. Crustal and cement contributed larger portion to coarse part of PM10, whereas vehicular and secondary source categories were enriched in PM2.5. Finally, potential source contribution function (PSCF) and source regional apportionment (SRA) methods were combined with the three-way model to estimate geographical origins. During the sampling period, the southeast region (R4) was an important region for most source categories (0.6%-11.5%); the R1 (centre region) also played a vital role (0.3-6.9%). PMID:27037891

  11. Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden

    PubMed Central

    Johansson, Christer; Forsberg, Bertil

    2011-01-01

    Background: Although serious health effects associated with particulate matter (PM) with aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5; fine fraction) are documented in many studies, the effects of coarse PM (PM2.5–10) are still under debate. Objective: In this study, we estimated the effects of short-term exposure of PM2.5–10 on daily mortality in Stockholm, Sweden. Method: We collected data on daily mortality for the years 2000 through 2008. Concentrations of PM10, PM2.5, ozone, and carbon monoxide were measured simultaneously in central Stockholm. We used additive Poisson regression models to examine the association between daily mortality and PM2.5–10 on the day of death and the day before. Effect estimates were adjusted for other pollutants (two-pollutant models) during different seasons. Results: We estimated a 1.68% increase [95% confidence interval (CI): 0.20%, 3.15%] in daily mortality per 10-μg/m3 increase in PM2.5–10 (single-pollutant model). The association with PM2.5–10 was stronger for November through May, when road dust is most important (1.69% increase; 95% CI: 0.21%, 3.17%), compared with the rest of the year (1.31% increase; 95% CI: –2.08%, 4.70%), although the difference was not statistically significant. When adjusted for other pollutants, particularly PM2.5, the effect estimates per 10 μg/m3 for PM2.5–10 decreased slightly but were still higher than corresponding effect estimates for PM2.5. Conclusions: Our analysis shows an increase in daily mortality associated with elevated urban background levels of PM2.5–10. Regulation of PM2.5–10 should be considered, along with actions to specifically reduce PM2.5–10 emissions, especially road dust suspension, in cities. PMID:22182596

  12. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy

    NASA Astrophysics Data System (ADS)

    Daher, Nancy; Ruprecht, Ario; Invernizzi, Giovanni; De Marco, Cinzia; Miller-Schulze, Justin; Heo, Jong Bae; Shafer, Martin M.; Shelton, Brandon R.; Schauer, James J.; Sioutas, Constantinos

    2012-03-01

    The correlation between health effects and exposure to particulate matter (PM) has been of primary concern to public health organizations. An emerging hypothesis is that many of the biological effects derive from the ability of PM to generate reactive oxygen species (ROS) within affected cells. Milan, one of the largest and most polluted urban areas in Europe, is afflicted with high particle levels. To characterize its ambient PM, fine and coarse PM (PM2.5 and PM2.5-10, respectively) samples were collected on a weekly basis for a year-long period. Samples were analyzed for their chemical properties and ROS-activity. A molecular marker chemical mass balance (MM-CMB) model was also applied to apportion primary and secondary sources to fine organic carbon (OC) and PM. Findings revealed that PM2.5 is a major contributor to ambient particle levels in Milan, averaging 34.5 ± 19.4 μg m-3 throughout the year. Specifically, secondary inorganic ions and organic matter were the most dominant fine PM species contributing to 36 ± 7.1% and 34 ± 6.3% of its mass on a yearly-based average, respectively. Highest PM2.5 concentrations occurred during December-February and were mainly attributed to poor atmospheric dispersion. On the other hand, PM2.5-10 exhibited an annual average of 6.79 ± 1.67 μg m-3, with crustal elements prevailing. Source apportionment results showed that wood-smoke and secondary organic aerosol sources contribute to 4.6 ± 2.6% and 9.8 ± 11% of fine OC on a yearly-based average, respectively. The remaining OC is likely associated with petroleum-derived material that is not adequately represented by existing source profiles used in this study. Lastly, ROS-activity measurements indicated that PM2.5-induced redox activity expressed per m3 of air volume is greatest during January (837 μg Zymosan equivalents m-3) and February (920 μg Zymosan equivalents m-3). Conversely, intrinsic (per PM mass) ROS-activity peaked in July (22,587 μg Zymosan equivalents mg

  13. Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in Istanbul, Turkey

    SciTech Connect

    Karaca, F.; Alagha, O.; Erturk, F.; Yilmaz, Y.Z.; Ozkara, T.

    2008-06-15

    Daily samples of fine (PM2.5) and coarse (PM2.5-10) particles were collected from July 2002 to July 2003 to provide a better understanding of the elemental concentration and source contribution to both PM fractions. Sampling location represents suburban part of Istanbul metropolitan city. Samples were collected on Teflon filters using a 'Dichotomous Sampler.' Concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn were measured by GFAAS, FAAS, and FAES techniques. Elemental variations of heating and nonheating seasons were discussed. Fossil fuel-related atmospheric metals dramatically increased during the heating season, while natural originated atmospheric metals increased during the nonheating season. Seasonal variations of source contributions were evaluated using factor analysis, which was separately applied to the collected fine and coarse particles data sets during heating and nonheating seasons (four data sets: PM2.5 heating, PM2.5 nonheating, PM2.5-10 heating, and PM2.5-10 nonheating). Significant seasonal differences in source contributions were observed. Four factor groups were extracted for PM2.5 dataset during the nonheating season, while five factor groups were extracted for all the other cases. Mineral dust transportation, traffic, and industry-related activities were classified as different factor groups in all the cases.

  14. Brine Shrimp Bioassays: A Useful Technique in Biological Investigations

    ERIC Educational Resources Information Center

    Rice, Stanley A.; Maness, Ian B.

    2004-01-01

    A technique to measure the potency of leaf compounds against herbivores with the use of a bioassay is described. Bioassays are useful in classes where students have career plans like medicine in which bioassays can be used as tools for screening plants for possible medicinal potency.

  15. BIOASSAY-DIRECTED FRACTIONATION OF ORGANIC CONTAMINANTS IN AN ESTUARINE SEDIMENT USING THE NEW MUTAGENIC BIOASSAY, MUTATOX

    EPA Science Inventory

    Bioassay-directed fractionation of organic compounds was performed on an organic solvent extract of a contaminated estuarine sediment from Black Rock Harbor, Connecticut, using the new mutagenic bioassay, Mutatox-. hemical fractionation methods of the sediment extract included si...

  16. High-resolution determination of 147Pm in urine using dynamic ion-exchange chromatography.

    PubMed

    Elchuk, S; Lucy, C A; Burns, K I

    1992-10-15

    A procedure has been developed for measuring 147Pm in bioassay samples, based on the separation and preconcentration of 147Pm from the urine matrix by adsorption onto a conventional cation-exchange column with final separation and purification by HPLC using dynamic ion-exchange chromatography. The concentration of 147Pm is determined by collecting the appropriate HPLC fraction and measuring the 147Pm by liquid scintillation counting. The limit of detection is 0.1 Bq (3 fg) 147Pm based on a 500-mL sample of urine and a counting time of 30 min with a background of 100 cpm. Ten samples can be processed in 1.5-2 days. PMID:1466450

  17. DEVELOPMENT AND EVALUATION OF A CONTINUOUS COARSE (PM10 - PM2.5) PARTICLE MONITOR. (R827352C005)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Ion concentrations of PM10-2.5 and PM2.5 aerosols over the eastern Mediterranean region: seasonal variation and source identification

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, H.; Saliba, N. A.

    2005-12-01

    The annual averages of particulate matters (PM10, PM10-2.5 (coarse) and PM2.5 (fine)) in a densely populated area of Beirut were measured and found to be 84±27, 53±20 and 31±9 μg m-3, respectively. Ion Chromatography (IC) analysis of the collected PM Teflon filters showed that NaCl, CaSO4 and Ca(NO3)2 were predominant in the coarse particles, while (NH4)2SO4 was the main salt in the fine particles. Using the non destructive Fourier Transform Infra Red-Attenuated Total Reflection (FTIR-ATR) technique, CaCO3 was determined in the coarse filter. In addition, ATR measurements showed that inorganic salts present in the coarse particles are mostly water insoluble while salts found in fine particles are soluble. Concentrations of nitrates and calcium higher than the ones reported in neighboring Mediterranean countries were good indication of high traffic density and crustal dust abundance in Beirut, respectively. The study of the seasonal variation showed that long-range transport of SO2 from Eastern and Central Europe, sandy storms coming from Africa and marine aerosols are considered major sources of the determined inorganic ions. Considering the importance of the health and climate impacts of aerosols locally and regionally, this study constitutes a point of reference for eastern Mediterranean transport modeling studies and local regulatory and policy makers.

  19. Georgia After 3PM

    ERIC Educational Resources Information Center

    Afterschool Alliance, 2009

    2009-01-01

    Each afternoon across the U.S., 15 million children are alone and unsupervised after school. The parents of 18 million would enroll their children in an afterschool program, if one were available. These are some of the key findings from the nation's most in-depth study of how America's children spend their afternoons. "America After 3PM" was…

  20. Florida After 3PM

    ERIC Educational Resources Information Center

    Afterschool Alliance, 2009

    2009-01-01

    Each afternoon across the U.S., 15 million children are alone and unsupervised after school. The parents of 18 million would enroll their children in an afterschool program, if one were available. These are some of the key findings from the nation's most in-depth study of how America's children spend their afternoons. "America After 3PM" was…

  1. FAST FLOW IN UNSATURATED COARSE SEDIMENTS

    EPA Science Inventory

    This research proposal was developed to improve our understanding of the physics of unsaturated flow in coarse- to very coarse-textured sediments, and through this meet practical needs related to contaminant transport in such vadose environments. This is a critical area for impr...

  2. The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas Steven

    Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to

  3. EPA's proposal to revise the PM standards

    SciTech Connect

    Steve Page

    2006-06-15

    Over the next few months, the US Environmental Protection Agency (EPA) will be finalizing its proposal to revise the National Ambient Air Quality Standards (NAAQS) for fine and coarse particulate matter (PM). Since issuing the proposal in December 2005, the agency has sought comments from all interested parties, and will base its final decision on the record that was established through the comment period, which ended on April 17. In this issue articles present perspectives from some of the many non-EPA stakeholders who have played an important role in this review process. This article summarizes EPA's proposal, as well as the extensive process EPA goes through when setting air quality standards. 1 fig., 2 tabs.

  4. COMPARISON OF PM 2.5 AND PM 10 MONITORS

    EPA Science Inventory

    An extensive PM monitoring study was conducted during the 1998 Baltimore PM Epidemiology-Exposure Study of the Elderly. One goal was to investigate the mass concentration comparability between various monitoring instrumentation located across residential indoor, residential out...

  5. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)<2.5μm) and coarse PM or PM2.5+ (AD between 2.5μm and 50μm). The iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. PMID:27125683

  6. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  7. Bioassay Labels Based on Apoferritin Nanovehicles

    SciTech Connect

    Liu, Guodong; Wang, Jun; Lea, Alan S.; Lin, Yuehe

    2006-09-04

    Here we report a nanoparticle label based on apoferritin nanovehicle loaded internally with markers for sensitive electrochemical DNA detection. The central cavity structure, the dissociation and reconstitute properties at different pHs of apoferritin provide a facile method to load and release markers. Hexacynoferrate(III) was used as model marker to load into the cavity of apoferritin protein cage. The loaded nanoparticle surface was functionalized with amino-modified DNA probe. Electrochemical DNA hybridization assay based on the hexacynoferrate loaded apoferritin nanovehicle could detect 23 atmol DNA targets in 50 ul sample solution. The concept could be readily extended to load other redox and fluorescence markers for bioassay applications. The new nanoparticle labels hold great promise for multi-target detection (in connection to nanoparticles loaded with different markers) and for enhancing the sensitivity of other bioassays.

  8. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    NASA Astrophysics Data System (ADS)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  9. Perspectives in avoidance-preference bioassays

    SciTech Connect

    Steele, C.W.; Taylor, D.H.; Strickler-Shaw, S.

    1996-12-31

    Although behavioral endpoints are used in hazard assessment, establishment of water quality criteria and assessment of a contaminant`s hazard to aquatic life rely primarily on standard acute and chronic toxicity tests. Sublethal effects of pollutants should, however, be of major concern because more organisms experience sublethal rather than acutely or chronically lethal exposures of contaminants. The avoidance-preference approach to behavioral bioassays is very useful in screening pollutants for which the mechanisms of perception or response are largely unknown. The underlying philosophy of these studies is that an animal which perceives a chemical can be attracted or repulsed by it. No response is frequently assumed to indicate lack of perception. All three responses have broad ecological implications. The authors discuss the conditions required for performing avoidance-preference bioassays, as well as their sensitivities, advantages, and limitations. In this regard, a comparative approach is used in examining the results of avoidance-preference bioassays with zebrafish in two different apparatuses. Finally, they compare the results of avoidance-preference studies with other measures of the behavioral toxicity of lead to tadpoles.

  10. Chronic Fine and Coarse Particulate Exposure, Mortality, and Coronary Heart Disease in the Nurses’ Health Study

    PubMed Central

    Puett, Robin C.; Hart, Jaime E.; Yanosky, Jeff D; Paciorek, Christopher; Schwartz, Joel; Suh, Helen; Speizer, Frank E; Laden, Francine

    2009-01-01

    Background The relationship of fine particulate matter < 2.5 μm in diameter (PM2.5) air pollution with mortality and cardiovascular disease is well established, with more recent long-term studies reporting larger effect sizes than earlier long-term studies. Some studies have suggested the coarse fraction, particles between 2.5 and 10 μm (PM10–2.5), may also be important. With respect to mortality and cardiovascular events, questions remain regarding the relative strength of effect sizes for chronic exposure to fine and coarse particles. Objectives We examined the relationship of chronic PM2.5 and PM10–2.5 exposures with all-cause mortality and fatal and nonfatal incident coronary heart disease (CHD), adjusting for time-varying covariates. Methods The current study included women from the Nurses’ Health Study living in metropolitan areas of the northeastern and midwestern United States. Follow-up was from 1992 to 2002. We used geographic information systems–based spatial smoothing models to estimate monthly exposures at each participant’s residence. Results We found increased risk of all-cause mortality [hazard ratio (HR), 1.26; 95% confidence interval (CI), 1.02–1.54] and fatal CHD (HR = 2.02; 95% CI, 1.07–3.78) associated with each 10-μg/m3 increase in annual PM2.5 exposure. The association between fatal CHD and PM10–2.5 was weaker. Conclusions Our findings contribute to growing evidence that chronic PM2.5 exposure is associated with risk of all-cause and cardiovascular mortality. PMID:20049120

  11. The fine and coarse particulate matter at four major Mediterranean cities: local and regional sources

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2013-11-01

    Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations

  12. Sensitive bioassay for detection of PPARα potentially hazardous ligands with gold nanoparticle probe.

    PubMed

    Xia, Wei; Wan, Yan-Jian; Wang, Xianliang; Li, Yuan-Yuan; Yang, Wen-Jie; Wang, Chun-Xiang; Xu, Shun-qing

    2011-09-15

    There are so many kinds of peroxisome proliferator-activated receptor α (PPARα) ligands with hazardous effect for human health in the environment, such as certain herbicides, plasticizers and drugs. Among these agonists, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and mono-(2-ethylhexyl) phthalate (MEHP) are mostly investigated due to their persistence and accumulation in environment and their potential toxicity via PPARα. This investigation aims at developing a bioassay method to detect PPARα ligands based on the ligand-receptor interaction on microplate. PPARα, which formed heterodimers with retinoid X receptor-α (RXRα), were activated by PPARα ligands to form ligands-PPARα-RXRα complexes. Then the complexes were transferred into a microplate and captured via monoclonal anti-PPARα antibody. The PPARα responsive elements (PPRE) modified-gold nanoparticle probes were captured by the ligand-PPARα-RXRα complexes immobilized on the microplate, and then could be quantified through measuring the optical density after silver enhancement. The results showed that PFOS was quantified with a linear range from 100 pM to 1 μM and the detection limit was 10 pM. In addition to PFOS, PFOA and MEHP were also quantified within a proper range through the proposed bioassay. This bioassay was compared with that of liquid chromatography tandem-mass spectrometry (LC-MS) for water spiked samples with a significant correlation (r = 0.9893). This study provides a high-throughput detection method for PPARα ligands in microplate with high sensitivity and wide linear range. It may serve as an assistant of LC-MS for prescreening of PPARα ligands like PFOS. PMID:21726938

  13. Comparison of how ambient PMc and PM2.5 influence the inflammatory potential

    PubMed Central

    Ferguson, Matthew D.; Migliaccio, Chris; Ward, Tony

    2014-01-01

    Airborne particulate matter (PM) is one of six criteria air pollutants currently regulated by the U.S. Environmental Protection Agency (EPA), with existing ambient standards for PM2.5 and PM10. Currently there are no health-based regulations for the size fraction between 2.5 and 10 μm, commonly known as the coarse fraction (PMc). The present study investigates current gaps in knowledge for PMc including exposure toxicity and PM ratios (PMc:PM2.5) in PM10. Throughout the world, all three PM size fractions have been shown to be associated with adverse impacts. Recent studies have shown that PMc can be more detrimental to susceptible populations when directly compared to PM2.5, and that the PMc fraction in PM10 can account for the majority of the inflammatory response from PM10 exposure. In our studies we utilized a bone marrow-derived mouse macrophage in vitro system to compare the inflammatory potential of PMc, PM2.5, and mixtures of the two. The result was a linear increase in interleukin(IL) −1β with increasing levels of exposure to winter and summer PMc, as compared to PM2.5, which exhibited logarithmic growth. Also, exposure to PM10 as a function of PM2.5 and PMc mass ratios showed that IL-1β and TNF-α levels increased synergistically with a greater burden of PMc. Endotoxin content in the PM did not correlate with these results, suggesting that other activators in PMc are likely responsible for activating the NF-κB pathway and the inflammasome. PMID:24304303

  14. Bioassay procedures and health physics recommendations for a promethium-147 luminescent dial painting industry

    SciTech Connect

    Dunlap, J.H.

    1981-01-01

    A study was conducted to determine the hazard to workers who were applying a radioactive luminescent paint to devices such as clock dials and hands, signs, etc. The paint used was a mixture of macrospheres containing /sup 147/Pm, ZnS, and a binder. It was applied by workers either manually or by machine. This study was designed to determine the radiological safety of these operations. The potential routes of intake of /sup 147/Pm by workers were identified as inhalation and ingestion. Air samples were taken at work stations; total and respirable-sized /sup 147/Pm particles were measured. Both were shown to be at a safe level. An animal inhalation study was conducted to determine deposition of respirable-sized /sup 147/Pm particles. Testing by a bioassay procedure developed specifically for this purpose revealed low levels of deposited activity in the respiratory systems of these animals. A health physics evaluation of the dial painting facility firm and operation revealed that extensive improvements in engineering controls and worker protection were needed. The health physics recommendations made, as a result, should be adopted as a minimum for maximization of long term benefits to both the employee and the employer.

  15. MICROARRAY ANALYSIS OF PM-INDUCED GENEEXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Ambient air particles (PM) are generally classified into 3 sizes; coarse (2.5, 10m), fine (0.1, 2.5m), and ultrafine (<0.lpm). Each particle size is evolved from different sources and transformation processes (e.g., combustion vs. mechanical abrasion, and atmospheric conversion ...

  16. Prediction of Coarse Particle Nitrate From Fine Particle Measurements in a Coastal Environment

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Evans, M. C.; Poor, N. D.

    2003-12-01

    Nutrient induced algal growth is one cause of decreased seagrass in the Tampa Bay Estuary. This influx of nutrients arises from the presence of fixed nitrogen in various flows and discharges to the estuary and from atmospheric deposition. One of the goals of BRACE (Bay Regional Atmospheric Chemistry Experiment) is to obtain improved estimates of the atmospheric nitrogen deposition to Tampa Bay. Previous estimates of atmospheric dry deposition of nitrogen to Tampa Bay have been based on Annular Denuder System (ADS) measurements of gaseous nitric acid and ammonia and fine particle (PM2.5) nitrate and ammonium, which extend back to 1996. However, recent coarse particle measurements indicate that, while ammonium primarily exists in fine particles, nitrate is preferentially found in the coarse fraction. The goal of this study is to examine whether the historical data for fine particle nitrate can be used to predict the amount of nitrate in the coarse fraction so as to obtain a more accurate estimate of dry particle deposition of nitrate to the Tampa Bay Estuary. Specifically, it is shown that averaged nitrate distributions obtained from recent micro-orifice impactor data can be used to predict the coarse to fine ratios observed for dichotomous samplers and the fine particle concentrations obtained from the Annular Denuder System. This provides some confidence that the impactor results may be used in conjunction with earlier fine particle data to obtain an estimate of coarse particle nitrate concentrations, and therefore an improved estimate of nitrate flux to the estuary.

  17. Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey.

    PubMed

    Öztürk, Fatma; Keleş, Melek

    2016-07-01

    Coarse (particulate matter (PM)2.5-10) and fine (PM2.5) fraction of PM samples were collected between December 2014 and February 2015 at an urban sampling site located at the Bolu plain, of the western Black Sea region of Turkey. The collected samples were analyzed in terms of metals (Al, As, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Si, Ti, V, and Zn); elemental carbon (EC); and organic carbon (OC). Elevated concentrations measured in this wintertime study were ∼7.8 μg/m(3) in sum of PM2.5-10 and PM2.5 for SO4 (2-) and ∼59.9 μg/m(3) in PM2.5 for OC. The contributions of primary and secondary OC (POC and SOC, respectively) to total OC mass were 60 and 40 %, respectively, while contribution of SOC to OC increased by up to 74 % in stable atmospheric conditions. The significantly high OC/EC ratio (∼10.1) found in this study relative to other wintertime studies was attributed to increased emissions from residential heating and lower mixing height observed during the study. Two and three factors were resolved by factor analysis for PM2.5-10 and PM2.5, respectively. Two Saharan dust episodes were observed on 31 January and 1 February, during which crustal PM components such as Mg, Si, and Al increased as much as three times their background concentrations. PMID:27048328

  18. Thermodynamically Consistent Coarse-Graining of Polymers

    NASA Astrophysics Data System (ADS)

    Guenza, Marina

    2015-03-01

    Structural and dynamical properties of macromolecular liquids, melts and mixtures, bridge an extensive range of length- and time-scales. For these systems, the computational limitations of the atomistic description prevent the study of the properties of interest and coarse-grained models remain the only viable approach. In coarse-grained models, structural and thermodynamic consistency across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. This talk presents a coarse-graining approach that conserves structural and thermodynamic quantities independent of the extent of coarse-graining, and describes a model for the reconstruction of the dynamics measured in mesoscale simulations of the coarse-grained system. Some of the general challenges of preserving structural and thermodynamic consistency in coarse-grained models are discussed together with the conditions by which the problem is lessened. This material is based upon work partially supported by the National Science Foundation under Grant No. CHE-1362500.

  19. Coarse-graining methods for computational biology.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2013-01-01

    Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems. This framework involves an integrated, iterative approach to couple information from different scales. The primary steps, which coincide with key areas of method development, include developing first-pass coarse-grained models guided by experimental results, performing numerous large-scale coarse-grained simulations, identifying important interactions that drive emergent behaviors, and finally reconnecting to the molecular scale by performing all-atom molecular dynamics simulations guided by the coarse-grained results. The coarse-grained modeling can then be extended and refined, with the entire loop repeated iteratively if necessary. PMID:23451897

  20. In-situ bioassays using caged bivalves

    SciTech Connect

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    It is important to make the distinction between chemical measurements to assess bioaccumulation potential versus biological measurements to assess potential bioeffects because bioaccumulation is not a bioeffect. Caging provides a unique opportunity to make synoptic measurements of each and facilitates making these measurements over space and time. Measuring bioaccumulation in resident and transplanted bivalves has probably been the most frequently used form of an in-situ bioassay because bivalves concentrate chemicals in their tissues. They are also easy to collect, cage, and measure. The authors have refined bivalve bioassay methods by minimizing the size range of test animals, making repetitive measurements of the same individuals, and standardizing test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Growth measurements can serve two purposes in this assessment strategy: (1) An integrated biological response endpoint that is easily quantifiable and with significance to the population, and (2) A means of calibrating bioaccumulation by assessing the relative health and physiological state of tissues that have accumulated the chemicals. In general, the authors have found the highest bioconcentration factors associated with the highest growth rates, the highest concentrations ({micro}g/g) of chemicals in juvenile mussels, and the highest chemical content ({micro}g/animal) in adult mussels. Without accounting for possible dilution of chemical concentrations by tissue growth or magnification through degrowth, contaminant concentrations can be misleading. Examples are provided for the Sudbury River in Massachusetts (Elliptio complanata), San Diego Bay (Mytilus galloprovincialis), and the Harbor Island Superfund Site in Puget Sound (Mytilus trossulus).

  1. A reliable bioassay procedure to evaluate per os toxicity of Bacillus thuringiensis strains against the rice delphacid, Tagosodes orizicolus (Homoptera: Delphacidae).

    PubMed

    Mora, Rebeca; Ibarra, Jorge E; Espinoza, Ana M

    2007-06-01

    A reliable bioassay procedure was developed to test ingested Bacillus thuringiensis (Bt) toxins on the rice delphacid Tagosodes orizicolus. Initially, several colonies were established under greenhouse conditions, using rice plants to nurture the insect. For the bioassay, an in vitro feeding system was developed for third to fourth instar nymphs. Insects were fed through Parafilm membranes on sugar (10 % sucrose) and honey bee (1:48 vol/vol) solutions, observing a natural mortality of 10-15 % and 0-5 %, respectively. Results were reproducible under controlled conditions during the assay (18+/-0.1 degrees C at night and 28+/-0.1 degrees C during the day, 80 % RH and a 12:12 day:light photoperiod). In addition, natural mortality was quantified on insect colonies, collected from three different geographic areas of Costa Rica, with no significant differences between colonies under controlled conditions. Finally, bioassays were performed to evaluate the toxicity of a Bt collection on T. orizicolus. A preliminary sample of twenty-seven Bt strains was evaluated on coarse bioassays using three loops of sporulated colonies in 9 ml of liquid diet, the strains that exhibited higher percentages of T. orizicolus mortality were further analyzed in bioassays using lyophilized spores and crystals (1 mg/ml). As a result, strains 26-O-to, 40-X-m, 43-S-d and 23-O-to isolated from homopteran insects showed mortalities of 74, 96, 44 and 82% respectively while HD-137, HD-1 and Bti showed 19, 83 and 95% mortalities. Controls showed mortalities between 0 and 10% in all bioassays. This is the first report of a reliable bioassay procedure to evaluate per os toxicity for a homopteran species using Bacillus thuringiensis strains. PMID:19069752

  2. A Multichannel Bioluminescence Determination Platform for Bioassays.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays. PMID:27424912

  3. USE OF THE AERODYNAMIC PARTICLE SIZER TO MEASURE PM-COARSE

    EPA Science Inventory

    The aerodynamic particle sizer (APS 3321, TSI, Inc.) measures particle size distributions from 0.5 µm to 20 µm by determining the time-of-flight of individual particles in an accelerating flow field. A complete particle size distribution may be determined in a matter of ...

  4. USE OF THE AERODYNAMIC PARTICLE SIZER TO MEASURE PM-COARSE

    EPA Science Inventory

    The aerodynamic particle sizer (APS 3321, TSI, Inc.) measures particle size distributions from 0.5 µm to 20 µm by determining the time-of-flight of individual particles in an accelerating flow field. A complete particle size distribution may be determined in a matter of s...

  5. Pulmonary function response in smokers and patients with chronic obstructive lung diseae (COPD) following exposure to concentrated fine (PM2.5) particles

    EPA Science Inventory

    Population-based studies strongly suggest that smokers and patients with COPD may be susceptible to particulate matter (PM). The reported associations were stronger with fine than coarse PM .These findings, however, have not been supported by laboratory or clinical data. We stu...

  6. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter

    PubMed Central

    Shoenfelt, Joanna; Mitkus, Robert J.; Zeisler, Rolf; Spatz, Rabia O.; Powell, Jan; Fenton, Matthew J.; Squibb, Katherine A.; Medvedev, Andrei E.

    2009-01-01

    Induction of proinflammatory mediators by alveolar macrophages exposed to ambient air particulate matter has been suggested to be a key factor in the pathogenesis of inflammatory and allergic diseases in the lungs. However, receptors and mechanisms underlying these responses have not been fully elucidated. In this study, we examined whether TLR2, TLR4, and the key adaptor protein, MyD88, mediate the expression of proinflammatory cytokines and chemokines by mouse peritoneal macrophages exposed to fine and coarse PM. TLR2 deficiency blunted macrophage TNF-α and IL-6 expression in response to fine (PM2.5), while not affecting cytokine-inducing ability of coarse NIST Standard Reference Material (SRM 1648) particles. In contrast, TLR4−/− macrophages showed inhibited cytokine expression upon stimulation with NIST SRM 1648 but exhibited normal responses to PM2.5. Preincubation with polymyxin B markedly suppressed the capacity of NIST SRM 1648 to elicit TNF-α and IL-6, indicating endotoxin as a principal inducer of cytokine responses. Overexpression of TLR2 in TLR2/4-deficient human embryonic kidney 293 cells imparted PM2.5 sensitivity, as judged by IL-8 gene expression, whereas NIST SRM 1648, but not PM2.5 elicited IL-8 expression in 293/TLR4/MD-2 transfectants. Engagement of TLR4 by NIST SRM 1648 induced MyD88-independent expression of the chemokine RANTES, while TLR2-reactive NIST IRM PM2.5 failed to up-regulate this response. Consistent with the shared use of MyD88 by TLR2 and TLR4, cytokine responses of MyD88−/− macrophages to both types of air PM were significantly reduced. These data indicate differential utilization of TLR2 and TLR4 but shared use of MyD88 by fine and coarse air pollution particles. PMID:19406832

  7. Urine sample collection protocols for bioassay samples

    SciTech Connect

    MacLellan, J.A.; McFadden, K.M.

    1992-11-01

    In vitro radiobioassay analyses are used to measure the amount of radioactive material excreted by personnel exposed to the potential intake of radioactive material. The analytical results are then used with various metabolic models to estimate the amount of radioactive material in the subject`s body and the original intake of radioactive material. Proper application of these metabolic models requires knowledge of the excretion period. It is normal practice to design the bioassay program based on a 24-hour excretion sample. The Hanford bioassay program simulates a total 24-hour urine excretion sample with urine collection periods lasting from one-half hour before retiring to one-half hour after rising on two consecutive days. Urine passed during the specified periods is collected in three 1-L bottles. Because the daily excretion volume given in Publication 23 of the International Commission on Radiological Protection (ICRP 1975, p. 354) for Reference Man is 1.4 L, it was proposed to use only two 1-L bottles as a cost-saving measure. This raised the broader question of what should be the design capacity of a 24-hour urine sample kit.

  8. Urine sample collection protocols for bioassay samples

    SciTech Connect

    MacLellan, J.A.; McFadden, K.M.

    1992-11-01

    In vitro radiobioassay analyses are used to measure the amount of radioactive material excreted by personnel exposed to the potential intake of radioactive material. The analytical results are then used with various metabolic models to estimate the amount of radioactive material in the subject's body and the original intake of radioactive material. Proper application of these metabolic models requires knowledge of the excretion period. It is normal practice to design the bioassay program based on a 24-hour excretion sample. The Hanford bioassay program simulates a total 24-hour urine excretion sample with urine collection periods lasting from one-half hour before retiring to one-half hour after rising on two consecutive days. Urine passed during the specified periods is collected in three 1-L bottles. Because the daily excretion volume given in Publication 23 of the International Commission on Radiological Protection (ICRP 1975, p. 354) for Reference Man is 1.4 L, it was proposed to use only two 1-L bottles as a cost-saving measure. This raised the broader question of what should be the design capacity of a 24-hour urine sample kit.

  9. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions

    NASA Astrophysics Data System (ADS)

    Karanasiou, A. A.; Siskos, P. A.; Eleftheriadis, K.

    This study was conducted in order to investigate the differences observed in source profiles in the urban environment, when chemical composition parameters from different aerosol size fractions are subjected to factor analysis. Source apportionment was performed in an urban area where representative types of emission sources are present. PM 10 and PM 2 samples were collected within the Athens Metropolitan area and analysed for trace elements, inorganic ions and black carbon. Analysis by two-way and three-way Positive Matrix Factorization was performed, in order to resolve sources from data obtained for the fine and coarse aerosol fractions. A difference was observed: seven factors describe the best solution in PMF3 while six factors in PMF2. Six factors derived from PMF3 analysis correspond to those described by the PMF2 solution for the fine and coarse particles separately. These sources were attributed to road dust, marine aerosol, soil, motor vehicles, biomass burning, and oil combustion. The additional source resolved by PMF3 was attributed to a different type of road dust. Combustion sources (oil combustion and biomass burning) were correctly attributed by PMF3 solely to the fine fraction and the soil source to the coarse fraction. However, a motor vehicle's contribution to the coarse fraction was found only by three-way PMF. When PMF2 was employed in PM 10 concentrations the optimum solution included six factors. Four source profiles corresponded to the previously identified as vehicles, road dust, biomass burning and marine aerosol, while two could not be clearly identified. Source apportionment by PMF2 analysis based solely on PM 10 aerosol composition data, yielded unclear results, compared to results from PMF2 and PMF3 analyses on fine and coarse aerosol composition data.

  10. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  11. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    PubMed

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. PMID:27260457

  12. Nanoparticle-catalyzed reductive bleaching for fabricating turn-off and enzyme-free amplified colorimetric bioassays.

    PubMed

    Li, Wei; Qiang, Weibing; Li, Jie; Li, Hui; Dong, Yifan; Zhao, Yaju; Xu, Danke

    2014-01-15

    Nanoparticle-catalyzed reductive bleaching reactions of colored substrates are emerging as a class of novel indicator reactions for fabricating enzyme-free amplified colorimetric biosensing (turn-off mode), which are exactly opposite to the commonly used oxidative coloring processes of colorless substrates in traditional enzyme-catalyzed amplified colorimetric bioassays (turn-on mode). In this work, a simple theoretical analysis shows that the sensitivity of this colorimetric bioassay can be improved by increasing the amplification factor (kcatΔt), or enhancing the binding affinity between analyte and receptor (Kd), or selecting the colored substrates with high extinction coefficients (ε). Based on this novel strategy, we have developed a turn-off and cost-effective amplified colorimetric thrombin aptasensor. This aptasensor made full use of sandwich binding of two affinity aptamers for increased specificity, magnetic particles for easy separation and enrichment, and gold nanoparticle (AuNP)-catalyzed reductive bleaching reaction to generate the amplified colorimetric signal. With 4-nitrophenol (4-NP) as the non-dye colored substrate, colorimetric bioassay of thrombin was achieved by the endpoint method with a detection limit of 91pM. In particular, when using methylene blue (MB) as the substrate, for the first time, a more convenient and efficient kinetic-based colorimetric thrombin bioassay was achieved without the steps of acidification termination and magnetic removal of particles, with a low detection limit of 10pM, which was superior to the majority of the existing colorimetric thrombin aptasensors. The proposed colorimetric protocol is expected to hold great promise in field analysis and point-of-care applications. PMID:23962710

  13. Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh.

    PubMed

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC. PMID:16165193

  14. Quasiclassical coarse graining and thermodynamic entropy

    SciTech Connect

    Gell-Mann, Murray; Hartle, James B.

    2007-08-15

    Our everyday descriptions of the universe are highly coarse grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no nontrivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions, some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of 'quasiclassical descriptions' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a 'quasiclassical realm' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.

  15. Convergent Coarseness Regulation for Segmented Images

    SciTech Connect

    Paglieroni, D W

    2004-05-27

    In segmentation of remotely sensed images, the number of pixel classes and their spectral representations are often unknown a priori. Even with prior knowledge, pixels with spectral components from multiple classes lead to classification errors and undesired small region artifacts. Coarseness regulation for segmented images is proposed as an efficient novel technique for handling these problems. Beginning with an over-segmented image, perceptually similar connected regions are iteratively merged using a method reminiscent of region growing, except the primitives are regions, not pixels. Interactive coarseness regulation is achieved by specifying the area {alpha} of the largest region eligible for merging. A region with area less than {alpha} is merged with the most spectrally similar connected region, unless the regions are perceived as spectrally dissimilar. In convergent coarseness regulation, which requires no user interaction, {alpha} is specified as the total number of pixels in the image, and the coarseness regulation output converges to a steady-state segmentation that remains unchanged as {alpha} is further increased. By applying convergent coarseness regulation to AVIRIS, IKONOS and DigitalGlobe images, and quantitatively comparing computer-generated segmentations to segmentations generated manually by a human analyst, it was found that the quality of the input segmentations was consistently and dramatically improved.

  16. Aspirator Gun for High-Throughput Mosquito Bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe an innovative aspirator gun designed to transfer anaesthetized mosquitoes directly into glass bioassay tubes. The gun has been used for thousands of transfers with extremely low associated mortality and is the central component of a high-throughput bioassay system. The gun is constructed...

  17. COLLECTION, CHEMICAL FRACTIONATION, AND MUTAGENICITY BIOASSAY OF AMBIENT AIR PARTICULATE

    EPA Science Inventory

    The influence of industrialization and consequent increased concentration of urban particulate matter on the incidence of cancer has long been a concern. The first bioassays used to evaluate complex ambient air samples were whole-animal carcinogenesis bioassays. In these studies,...

  18. Aspirator gun for high-throughput mosquito bioassays.

    PubMed

    Aldridge, Robert L; Wynn, W Wayne; Britch, Seth C; Linthicum, Kenneth J

    2012-03-01

    We describe an innovative aspirator gun designed to transfer individual anesthetized mosquitoes directly into glass bioassay tubes. The gun has been used for thousands of transfers with extremely low associated mortality and is the central component of a high-throughput bioassay system. The gun is constructed using readily obtainable materials and can be modified for a range of insects. PMID:22533090

  19. Bioassay vs. Air Sampling: Practical Guidance and Experience at Hanford

    SciTech Connect

    Carbaugh, Eugene H.; Carlson, Eric W.; Hill, Robin L.

    2004-02-08

    The Hanford Site has implemented a policy to guide in determining whether air sampling data or special fecal bioassay data are more appropriate for determining doses of record for low-level plutonium exposures. The basis for the policy and four years of experience in comparing DAC-hours exposure with bioassay-based dosimetry is discussed.

  20. Characterization of coarse particulate matter in the western United States: a comparison between observation and modeling

    NASA Astrophysics Data System (ADS)

    Li, R.; Wiedinmyer, C.; Baker, K. R.; Hannigan, M. P.

    2013-02-01

    We provide a regional characterization of coarse particulate matter (PM10-2.5) spanning the western United States based on the analysis of measurements from 50 sites reported in the US EPA Air Quality System (AQS) and two state agencies. We found that the observed PM10-2.5 concentrations show significant spatial variability and distinct spatial patterns, associated with the distributions of land use/land cover and soil moisture. The highest concentrations were observed in the southwestern US, where sparse vegetation, shrublands or barren lands dominate with lower soil moistures, whereas the lowest concentrations were observed in areas dominated by grasslands, forest, or croplands with higher surface soil moistures. The observed PM10-2.5 concentrations also show variable seasonal, weekly, and diurnal patterns, indicating a variety of sources and their relative importance at different locations. The observed results were compared to modeled PM10-2.5 concentrations from an annual simulation using the Community Multiscale Air Quality modeling system (CMAQ) that has been designed for regulatory or policy assessments of a variety of pollutants including PM10, which consists of PM10-2.5 and fine particulate matter (PM2.5). The model under-predicts PM10-2.5 observations at 49 of 50 sites, among which 14 sites have annual observation means that are at least five times greater than model means. Model results also fail to reproduce their spatial patterns. Important sources (e.g. pollen, bacteria, fungal spores, and geogenic dust) were not included in the emission inventory used and/or the applied emissions were greatly under-estimated. Unlike the observed patterns that are more complex, modeled PM10-2.5 concentrations show the similar seasonal, weekly, and diurnal pattern; the temporal allocations in the modeling system need improvement. CMAQ does not include organic materials in PM10-2.5; however, speciation measurements show that organics constitute a significant component

  1. Signal Amplification of Bioassay Using Zinc Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  2. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 in Beijing, China

    NASA Astrophysics Data System (ADS)

    SHI, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.

    2013-12-01

    In urban areas,fine particle matter with aerodynamic diameter between 2.5 um and 10 um (PM2.5-10), and 2.5 um (PM2.5), as an important source of urban particulate matter (PM) pollutants, have significant negative effects on health, atmospheric visibility and climate. PM has increasingly become a significant index of indicating the atmospheric pollution of city. In recent years, Beijing, China has been listed as one of the most serious air pollution city in the world. In order to investigate the sources of air pollutants, a total of 283 pairs of PM2.5 and PM2.5-10 samples were collected daily from July, 2010 to June, 2011 in Beijing. Mineral magnetic properties and Scanning electron microscope (SEM) observations and energy dispersive X-ray spectroscopy (EDS) analyses of PM2.5 and PM2.5-10 were measured to verify the magnetic materials. Magnetic measures for PM indicated that the major magnetic phase was coarse-grained magnetite-like material. The χlf, χarm, SIRM and χarm/SIRM series of the PM2.5 and PM2.5-10 show seasonal dependences: high values in winter and low values in summer. In additional the parameters analyzed by Time-series methods show a strong cycle about 7 days above 95% confidence level. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 show different pattern: the concentration of magnetic particles in PM2.5-10 show high values in mid-week, and particle sizes is steady, while the concentration of magnetic particles in PM2.5 show reverse a weekly cycle pattern, and particle sizes is smaller in the mid-week.Microscopy analyses reveal basically three morphologies of magnetic grains: aggregate, spherules and angular particles. The ultrafine carbonaceous particles which tend to form complex clusters and chain-like structures, most likely come from coal burning and motor vehicle exhaust. Spherical particles in PM2.5 are dominantly composed of Fe, O and C, grain-diameters of particles range from 0.3 to 2 um. Angular particles of Fe

  3. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure

    PubMed Central

    Li, Yue; Chen, Ling; Ngoc, Duong Minh; Duan, Yan-Ping; Lu, Zhi-Bo; Wen, Zhi-Hao; Meng, Xiang-Zhou

    2015-01-01

    To evaluate risk via inhalation exposure of polybrominated diphenyl ethers (PBDEs) in office environment, thirty-six pairs air samples including PM2.5 (particles with aerodynamic diameter less than 2.5 μm), PM10 (particles with aerodynamic diameter less than 10 μm), total suspended particles (TSP) with matching gas phase were collected in office environment in Shanghai, China. The average concentrations of PM2.5, PM10 and TSP were 20.4, 27.2 and 50.3 μg/m3, respectively. Σ15PBDEs mean concentrations in PM2.5, PM10, TSP and gas phase were 51.8, 110.7, 148 and 59.6 pg/m3, respectively. Much more PBDEs distributed in fine fractions than coarse ones. PBDEs congener profiles found in PM2.5, PM10 and TSP (dominated by BDE-209) were different from that in gas phase (dominated by the tri- to penta-BDEs). Approximately 3.20 pg/kg/d PM2.5 bound PBDEs can be inhaled into the lung; 3.62 pg/kg/d PM10-PM2.5(particles with aerodynamic diameter of 2.5-10 μm) bound PBDEs tended to be deposited in the upper part of respiratory system, and the intake of PBDEs via gas-phase was 2.74 pg/kg/d. The exposure of PBDEs was far below the minimal risk levels (MRLs), indicating lower risk from PBDEs via inhalation in the studied office in Shanghai. PMID:25793925

  4. Mass concentration and elemental composition of indoor PM 2.5 and PM 10 in University rooms in Thessaloniki, northern Greece

    NASA Astrophysics Data System (ADS)

    Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini

    The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.

  5. Observations of fine and coarse particle nitrate at several rural locations in the United States

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Yu, Xiao-Ying; Ayres, Benjamin; Kreidenweis, Sonia M.; Malm, William C.; Collett, Jeffrey L.

    Nitrate comprises an important part of aerosol mass at many non-urban locations during some times of the year. Little is known, however, about the chemical form and size distribution of particulate nitrate in these environments. While submicron ammonium nitrate is often assumed to be the dominant species, this assumption is rarely tested. Properties of aerosol nitrate were characterized at several IMPROVE monitoring sites during a series of field studies. Study sites included Bondville, Illinois (February 2003), San Gorgonio Wilderness Area, California (April and July 2003), Grand Canyon National Park, Arizona (May 2003), Brigantine National Wildlife Refuge, New Jersey (November 2003), and Great Smoky Mountains National Park, Tennessee (July/August 2004). Nitrate was found predominantly in submicron ammonium nitrate particles during the Bondville and San Gorgonio (April) campaigns. Coarse mode nitrate particles, resulting from reactions of nitric acid or its precursors with sea salt or soil dust, were more important at Grand Canyon and Great Smoky Mountains. Both fine and coarse mode nitrate were important during the studies at Brigantine and San Gorgonio (July). These results, which complement earlier findings about the importance of coarse particle nitrate at Yosemite and Big Bend National Parks, suggest a need to more closely examine common assumptions regarding the importance of ammonium nitrate at non-urban sites, to include pathways for coarse mode nitrate formation in regional models, and to consider impacts of coarse particle nitrate on visibility. Because coarse particle nitrate modes often extend well below 2.5 μm aerodynamic diameter, measurements of PM 2.5 nitrate in these environments should not automatically be assumed to contain only ammonium nitrate.

  6. Observations of Fine and Coarse Particle Nitrate at Several Rural Locations in the United States

    SciTech Connect

    Lee, Taehyoung; Yu, Xiao-Ying; Ayres, Benjamin; Kreidenweis, Sonia M.; Malm, William C.; Collett, Jeffrey L.

    2008-04-01

    Nitrate comprises an important part of aerosol mass at many non-urban locations during some times of the year. Little is known, however, about the chemical form and size distribution of particulate nitrate in these environments. While submicron ammonium nitrate is often assumed to be the dominant species, this assumption is rarely tested. Properties of aerosol nitrate were characterized at several IMPROVE monitoring sites during a series of field studies. Study sites included Bondville, Illinois (February 2003), San Gorgonio Wilderness Area, California (April and July 2003), Grand Canyon National Park, Arizona (May 2003), Brigantine National Wildlife Refuge, New Jersey (November 2003), and Great Smoky Mountains National Park, Tennessee (July/August 2004). Nitrate was found predominantly in submicron ammonium nitrate particles during the Bondville and San Gorgonio (April) campaigns. Coarse mode nitrate particles, resulting from reactions of nitric acid or its precursors with sea salt or soil dust, were more important at Grand Canyon and Great Smoky Mountains. Both fine and coarse mode nitrate were important during the studies at Brigantine and San Gorgonio (July). These results, which complement earlier findings about the importance of coarse particle nitrate at Yosemite and Big Bend National Parks, suggest a need to more closely examine common assumptions regarding the importance of ammonium nitrate at non-urban sites, to include pathways for coarse mode nitrate formation in regional models, and to consider impacts of coarse particle nitrate on visibility. Because coarse particle nitrate modes often extend well below 2.5 µm aerodynamic diameter, measurements of PM2.5 nitrate in these environments should not automatically be assumed to contain only ammonium nitrate.

  7. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  8. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  9. Superluminescent variants of marine luciferases for bioassays.

    PubMed

    Kim, Sung Bae; Suzuki, Hideyuki; Sato, Moritoshi; Tao, Hiroaki

    2011-11-15

    In this study, a rational synthesis of superluminescent variants from marine luciferases with prolonged bioluminescence has been demonstrated. A putative active site of a model marine luciferase, Gaussia princeps Luciferase (GLuc), was assigned and modified by a site-directed mutagenesis. The potent variants were found to generate up to 10 times stronger bioluminescence, emitting red shifts of up to 33 nm with natural coelenterazine than native GLuc, rendering an efficient optical signature in bioassays. The advantageous properties were demonstrated with mammalian two-hybrid assays, single-chain probes, and metastases of murine B16 melanoma in BALB/c nude mice. The unique ideas for engineering GLuc are proved to be valid even for other marine luciferases. PMID:21951281

  10. Modelling larval movement data from individual bioassays.

    PubMed

    McLellan, Chris R; Worton, Bruce J; Deasy, William; Birch, A Nicholas E

    2015-05-01

    We consider modelling the movements of larvae using individual bioassays in which data are collected at a high-frequency rate of five observations per second. The aim is to characterize the behaviour of the larvae when exposed to attractant and repellent compounds. Mixtures of diffusion processes, as well as Hidden Markov models, are proposed as models of larval movement. These models account for directed and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on extensive data collected in a study of novel approaches for the management of cabbage root fly. PMID:25764283

  11. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  12. The Effects of Coarse Particles on Daily Mortality: A Case-Crossover Study in a Subtropical City, Taipei, Taiwan.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    Many studies have examined the effects of air pollution on daily mortality over the past two decades. However, information on the relationship between levels of coarse particles (PM2.5-10) and daily mortality is relatively sparse due to the limited availability of monitoring data. Furthermore, the results are inconsistent. In the current study, the association between coarse particle levels and daily mortality in Taipei, Taiwan's largest city, which has a subtropical climate, was undertaken for the period 2006-2008 using a time-stratified case-crossover analysis. For the single pollutant model (without adjustment for other pollutants), PM2.5-10 showed statistically significant association with total mortality both on warm and cool days, with an interquartile range increase associated with a 11% (95% CI = 6%-17%) and 4% (95% CI = 1%-7%) rise in number of total deaths, respectively. In two-pollutant models, PM2.5-10 remained significant effects on total mortality after the inclusion of SO₂ and O₃ both on warm and cool days. We observed no significant associations between PM2.5-10 and daily mortality from respiratory diseases both on warm and cool days. For daily mortality from circulatory diseases, the effect of PM2.5-10 remained significant when SO₂ or O₃ was added in the regression model both on warm and cool days. Future studies of this type in cities with varying climates and cultures are needed. PMID:27011197

  13. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  14. PubChem BioAssay: 2014 update.

    PubMed

    Wang, Yanli; Suzek, Tugba; Zhang, Jian; Wang, Jiyao; He, Siqian; Cheng, Tiejun; Shoemaker, Benjamin A; Gindulyte, Asta; Bryant, Stephen H

    2014-01-01

    PubChem's BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA interference screening aimed at identifying critical genes responsible for a biological process or disease condition. The mission of PubChem is to serve the community by providing free and easy access to all deposited data. To this end, PubChem BioAssay is integrated into the National Center for Biotechnology Information retrieval system, making them searchable by Entrez queries and cross-linked to other biomedical information archived at National Center for Biotechnology Information. Moreover, PubChem BioAssay provides web-based and programmatic tools allowing users to search, access and analyze bioassay test results and metadata. In this work, we provide an update for the PubChem BioAssay resource, such as information content growth, new developments supporting data integration and search, and the recently deployed PubChem Upload to streamline chemical structure and bioassay submissions. PMID:24198245

  15. PubChem BioAssay: 2014 update

    PubMed Central

    Wang, Yanli; Suzek, Tugba; Zhang, Jian; Wang, Jiyao; He, Siqian; Cheng, Tiejun; Shoemaker, Benjamin A.; Gindulyte, Asta; Bryant, Stephen H.

    2014-01-01

    PubChem’s BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for archiving biological tests of small molecules generated through high-throughput screening experiments, medicinal chemistry studies, chemical biology research and drug discovery programs. In addition, the BioAssay database contains data from high-throughput RNA interference screening aimed at identifying critical genes responsible for a biological process or disease condition. The mission of PubChem is to serve the community by providing free and easy access to all deposited data. To this end, PubChem BioAssay is integrated into the National Center for Biotechnology Information retrieval system, making them searchable by Entrez queries and cross-linked to other biomedical information archived at National Center for Biotechnology Information. Moreover, PubChem BioAssay provides web-based and programmatic tools allowing users to search, access and analyze bioassay test results and metadata. In this work, we provide an update for the PubChem BioAssay resource, such as information content growth, new developments supporting data integration and search, and the recently deployed PubChem Upload to streamline chemical structure and bioassay submissions. PMID:24198245

  16. Influence of tobacco smoke on indoor PM 10 particulate matter characteristics

    NASA Astrophysics Data System (ADS)

    Paoletti, L.; De Berardis, B.; Arrizza, L.; Granato, V.

    In this study we evaluate the influence of tobacco smoke on the physico-chemical characteristics of PM 10 in different environments: outdoors, a smoking room, the same room after a 7-day absence of smokers and in a smoke-free office. The latter office was close to the smoking room, separated by a corridor. The coarse (PM 10-2.1) and fine (PM 2.1) fractions of PM 10 collected in the monitored areas were analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX). Photo-electron spectroscopy (XPS) was used to study the elemental composition of the particulate and to identify the chemical state of atomic species detected. Four clusters of particles for both "fine" and "coarse" fractions were identified: carbonaceous particles, soil erosion particles, Ca-sulphates and metal compound particles. EDX spectra showed that a percentage of carbonaceous particles carried S, Si and metal traces. High-resolution XPS spectra of the C1s region showed a significant greater occurrence of the C-O/C-N functional group in the particulate fine fraction collected in the smoking room compared to that collected outdoors. The carbonaceous component of coarse fraction collected in the smoking room appeared dissimilar from the same component detected in the other areas. After the 7-day absence of smokers this component of the PM 10-2.1 fraction was similar to the corresponding coarse fraction collected at the outdoor location. The carbonaceous component of fine fraction collected in the smoking room, containing tobacco smoke products, such as organic carbon and nicotine, was traceable in the neighbouring areas, even several days after suspension of smoking activity.

  17. Short-Term Effects of Coarse Particulate Matter on Hospital Admissions for Cardiovascular Diseases: A Case-Crossover Study in a Tropical City.

    PubMed

    Chen, Ying-Chen; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh

    2015-01-01

    This study was undertaken to determine whether there was an association between coarse particles (PM2.5-10) levels and frequency of hospital admissions for cardiovascular diseases (CVD) in Kaohsiung, Taiwan. Hospital admissions for CVD, including ischemic heart disease (IHD), stroke, congestive heart failure (CHF), and arrhythmias, and ambient air pollution data levels for Kaohsiung were obtained for the period 2006-2010. The relative risk of hospital admissions for CVD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single-pollutant model (without adjustment for other pollutants), increased rates of admissions for CVD were significantly associated with higher coarse PM levels only on cool days (< 25°C), with a 10-μg/m(3) elevation in PM2.5-10 concentrations associated with a 3% (95% CI = 2-4%) rise in IHD admissions, 5% (95% CI = 4-6%) increase in stroke admissions, 3% (95% CI = 1-6%) elevation in CHF admissions, and 3% (95% CI = 0-6%) rise in arrhythmias admissions. No significant associations were found between coarse particle levels and number of hospital admissions for CVD on warm days. In the two-pollutant models, PM2.5-10 levels remained significantly correlated with higher rate of CVD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. Compared to the effect estimate associated with a 10-μg/m(3) increase in PM2.5 levels, effect estimates of frequency of CVD-related admissions associated with a 10-μg/m(3) rise in coarse PM levels were weaker. This study provides evidence that higher levels of PM2.5-10 enhance the risk of hospital admissions for CVD. PMID:26408041

  18. Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Shaka', Huda; Saliba, Najat A.

    Emission measurements and chemical profiles of PM10-2.5 (coarse) and PM2.5 (fine) in Lebanon are reported for the months of February till May of 2003. A 4 month average of 76 μg m -3 for PM10-2.5 and 40 μg m -3 for PM2.5 compared well with East Mediterranean cities but was higher than most emission measurements reported for the West Mediterranean basin. Using the ATR-FTIR technique, the chemical composition of aerosols was identified. Inorganic ions such as SO 42-, NO 3-, SiO 42-, CO 32-, and NH 4+, showed higher concentrations of PM2.5 when compared to PM10-2.5. Organic functional groups like aliphatic carbons, alcohols, carbonyls, and organic nitrates were also detected. Higher concentrations of organic species, i.e. aliphatic hydrocarbons and long chains of alcoholic and carboxylic acid substances, were identified in PM2.5 while in PM10-2.5, higher water concentrations were observed. Comparison between the ATR spectra of samples collected on a "regular" and a "sandy" day clearly showed the increase of SiO 42- ions and calcium carbonate during the sand storm due to dust loading on the Teflon filters. This study is one of the few works that have reported emission measurements in the Eastern Mediterranean, complementing thereby the large amount of data available in the Western Mediterranean. More importantly, this paper establishes a comparison between the main constituents of PM10-2.5 and PM2.5 using ATR-infrared spectroscopy, for the first time. Understanding the composition of different aerosol size fractions in the atmosphere enables us to better predict detailed chemical environmental variations.

  19. PM science and regional haze

    SciTech Connect

    Casuccio, G.; Watson, J.

    1999-07-01

    Excessive levels of suspended particle are measured in many urban areas throughout the world. The U.S. EPA has promulgated new ambient air quality standards for PM2.5 and PM10 (particles with aerodynamic diameters less than 10 and 2.5 microns, respectively). The new PM10 standards are less stringent than the prior standards, setting targets of 3-year average 98th percentiles for 24-hour PM2.5 averages, 99th percentiles for 24-hour PM10 averages, and three-year averages in place of annual averages. This means that infrequent events, such as fires or industrial upsets, will not greatly influence compliance status. The acceptable PM2.5 levels are strict for the annual average at 15 {micro}g/m{sup 3}, but compliance will be determined by a spatial average from several monitors rather than for a single monitor. Carbon, ammonium, sulfate, and nitrate are the major PM2.5 components in most areas, with geological material constituting only 5% to 15% of the mass. Chemical concentrations in the PM2.5 size fraction are also the major cause of urban and regional haze. This haze results from both the scattering and absorption of light by small particles. PM2.5 will use only population-oriented monitors to determine attainment, and ``fence line'' sites located to determine maximum impact from a facility will not be used to determine compliance as they have been in the past. Primary particles and precursor gases from fuel combustion in vehicles, homes, and industries will become the pollutants under greatest scrutiny in non-attainment areas.

  20. Collection and control of tritium bioassay samples at Pantex

    SciTech Connect

    Fairrow, N.L.; Ivie, W.E.

    1992-01-01

    Pantex is the final assembly/disassembly point for US nuclear weapons. The Pantex internal dosimetry section monitors radiation workers once a month for tritium exposure. In order to manage collection and control of the bioassay specimens efficiently, a bar code system for collection of samples was developed and implemented to speed up the process and decrease the number of errors probable when transferring data. In the past, all the bioassay data from samples were entered manually into a computer database. Transferring the bioassay data from the liquid scintillation counter to each individual's dosimetry record required as much as two weeks of concentrated effort.

  1. Collection and control of tritium bioassay samples at Pantex

    SciTech Connect

    Fairrow, N.L.; Ivie, W.E.

    1992-12-31

    Pantex is the final assembly/disassembly point for US nuclear weapons. The Pantex internal dosimetry section monitors radiation workers once a month for tritium exposure. In order to manage collection and control of the bioassay specimens efficiently, a bar code system for collection of samples was developed and implemented to speed up the process and decrease the number of errors probable when transferring data. In the past, all the bioassay data from samples were entered manually into a computer database. Transferring the bioassay data from the liquid scintillation counter to each individual`s dosimetry record required as much as two weeks of concentrated effort.

  2. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  3. COARSE PARTICULATE MATTER CONCENTRATIONS FROM RESIDENTIAL OUTDOOR SITES ASSOCIATED WITH THE NORTH CAROLINA ASTHMA AND CHILDREN'S ENVIRONMENT STUDIES (NC-ACES)

    EPA Science Inventory

    Coarse particulate matter (PM10-2.5) concentration data from residential outdoor sites were collected using portable samplers as part of an exposure assessment for the North Carolina Asthma and Children's Environment Study (NC-ACES). PMcoarse values were estimated usi...

  4. Source characterization of fine and coarse particles at the East Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Mamane, Yaacov; Perrino, Cinzia; Yossef, Osnat; Catrambone, Maria

    Fine and coarse atmospheric particles were collected in Ashdod—a midsize industrial city on the southeastern Mediterranean coast, and in Gedera—a rural site, to characterize ambient particles and to determine their long-range transport during two major seasons—winter and summer. Manual PM2.5 and PM10 samplers, dichotomous samplers, continuous automated PM10 samplers, and denuders were used to sample particulate and gaseous pollutants. Fine and coarse concentrations in Ashdod were 21.2 and 39.6 μg m -3, and 23.9 and 30.5 μg m -3 in the fall-winter and summer campaigns, respectively. Crustal material, as calcites or dolomites mixed with silicates, dominated the coarse fraction and also the fine fraction on dusty days. In the fall-winter, S, P, and Ni were coupled with minerals. Coarse Ni was associated with crustal material during dust storms, while P originated from shipping and deposition of phosphates in the urban area around. Sulfates dominated the fine fractions in the summer season averaging 12 μg m -3. Multivariate analysis indicated that S was associated with As and Se, V and Ni, both associated with heavy fuel combustion, and Zn and Pb. In winter, those mixed sources were local, but in summer they were part of long-range transport. In the fall-winter, Zn and Pb were strongly associated with Mn, Ga, and Cu—elements emitted from either traffic or metal processing plants. Although the influence of crustal material on both size fractions was significant, most heavy metals were associated with PM2.5. Higher concentrations were linked to a larger number of particles in this fraction, to a larger surface area available for biochemical reaction [Harrison, R., Shi, J., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., Philos, T., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society 358, 2567-2579], and finally to a larger concern in regards to health effects.

  5. Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak, Turkey

    SciTech Connect

    Lokman Hakan Tecer; Pinar Suren; Omar Alagha; Ferhat Karaca; Gurdal Tuncel

    2008-04-15

    In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 m in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 {mu}g/m{sup 3}, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area. 54 refs., 8 figs., 5 tabs.

  6. PM MASS METHODS RESEARCH AND DEVELOPMENT

    EPA Science Inventory

    This task supports research into methodologies for determining particulate matter (PM) mass concentrations. Due to the complexity of PM (composition, size distribution, and concentration), developing PM methods that perform acceptably under most weather conditions at most U.S. l...

  7. Evaporation-Driven Bioassays in Suspended Droplets.

    PubMed

    Hernandez-Perez, Ruth; Fan, Z Hugh; Garcia-Cordero, Jose L

    2016-07-19

    The microtiter plate has been an essential tool for diagnostics, high-throughput screening, and biological assays. We present an alternative platform to perform bioassays in a microplate format that exploits evaporation to drive assay reactions. Our method consists of droplets suspended on plastic pillars; reactions occur in these droplets instead of the wells. The pillars are fabricated by milling, and the rough surface created by this fabrication method pins the droplet to a constant contact line during the assay and also acts as a hydrophobic surface. Upon evaporation, natural convection arising from Marangoni currents mixes solutions in the droplet, which speeds up assay reactions, decreases assay times, and increases limits of detection. As a proof of concept we implemented two colorimetric assays to detect glucose and proteins in only 1.5 μL, without any external devices for mixing and with a digital microscope as a readout mechanism. Our platform is an ideal alternative to the microtiter plate, works with different volumes, is compatible with commercially available reagent dispensers and plate-readers, and could have broad applications in diagnostics and high-throughput screening. PMID:27331825

  8. Annotating Human P-Glycoprotein Bioassay Data

    PubMed Central

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-01-01

    Abstract Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups. PMID:23293680

  9. Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions

    EPA Science Inventory

    Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic...

  10. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    SciTech Connect

    Dr. X. Geroge Xu

    2011-01-28

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  11. A CONTROLLED BIOASSAY SYSTEM FOR MEASURING TOXICITY OF HEAVY METALS

    EPA Science Inventory

    Biological availability of metal micronutrients and metal toxicity are believed to be dependent on metal oxidation state, complexation, and solubility as well as the physicochemical characteristics of the aqueous phase. Basic design criteria for fish bioassays which are capable o...

  12. A wind tunnel bioassay system for screening mosquito repellents.

    PubMed

    Sharpington, P J; Healy, T P; Copland, M J

    2000-09-01

    A wind tunnel bioassay system to screen mosquito repellents is described. A wind tunnel is utilized to exploit the upwind flight response of host-seeking mosquitoes. Mosquitoes within the wind tunnel are activated with human breath, fly upwind, and land on heated chick skins. This behavioral sequence results in a consistently high percentage of the test population approaching repellent or control stimuli. The bioassay system is calibrated with diethyl methylbenzamide against Aedes aegypti and demonstrates a reproducible dose-response relationship. The persistence of diethyl methyl benzamide after a 1-h period is also recorded. The design of the bioassay system permits simultaneous, independent testing of 3 candidate repellents. The wind tunnel bioassay system is compared to other techniques for evaluating mosquito repellents. PMID:11081652

  13. Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH

    NASA Astrophysics Data System (ADS)

    Sawvel, Eric J.; Willis, Robert; West, Roger R.; Casuccio, Gary S.; Norris, Gary; Kumar, Naresh; Hammond, Davyda; Peters, Thomas M.

    2015-03-01

    Passive samplers deployed at 25 sites for three, week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles determined using computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM-EDS) was then used to estimate PM10-2.5 concentrations (μg m-3) and its components in 13 particle classes. The highest PM10-2.5 mean mass concentrations were observed at three central industrial sites (35 μg m-3, 43 μg m-3, and 48 μg m-3), whereas substantially lower mean concentrations were observed to the west and east of this area at suburban background sites (13 μg m-3 and 15 μg m-3). PM10-2.5 mass and components associated with steel and cement production (Fe-oxide and Ca-rich) exhibited substantial heterogeneity with elevated concentrations observed in the river valley, stretching from Lake Erie south through the central industrial area and in the case of Fe-oxide to a suburban valley site. Other components (e.g., Si/Al-rich typical of crustal material) were considerably less heterogeneous. This work shows that some species of coarse particles are considerably more spatially heterogeneous than others in an urban area with a strong industrial core. It also demonstrates that passive sampling coupled with analysis by CCSEM-EDS is a useful tool to assess the spatial variability of particulate pollutants by composition.

  14. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan

    PubMed Central

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-01-01

    This study was undertaken to determine whether there was an association between coarse particles (PM2.5–10) levels and frequency of hospital admissions for respiratory diseases (RD) in Kaohsiung, Taiwan. Hospital admissions for RD including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, and ambient air pollution data levels for Kaohsiung were obtained for the period from 2006 to 2010. The relative risk of hospital admissions for RD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model (without adjustment for other pollutants), increased rate of admissions for RD were significantly associated with higher coarse PM levels only on cool days (<25 °C), with a 10 µg/m3 elevation in PM2.5–10 concentrations associated with a 3% (95% CI = 1%–5%) rise in COPD admissions, 4% (95% CI = 1%–7%) increase in asthma admissions, and 3% (95% CI = 2%–4%) rise in pneumonia admissions. No significant associations were found between coarse particle levels and the number of hospital admissions for RD on warm days. In the two-pollutant models, PM2.5–10 levels remained significantly correlated with higher rate of RD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. This study provides evidence that higher levels of PM2.5–10 enhance the risk of hospital admissions for RD on cool days. PMID:26501308

  15. Coarse-graining Landau-Lifshitz damping

    NASA Astrophysics Data System (ADS)

    Feng, Xuebing; Visscher, P. B.

    2001-06-01

    High speed switching in magnetic materials is usually studied with the Landau-Lifshitz (LL) equation, which describes damping through a phenomenological coefficient. The results of micromagnetic calculations based on the LL equation have been observed to depend strongly on the cell size. We take a coarse-graining or renormalization-group approach to this cell size dependence: from a simulation using cell size L, we look at the dynamics of a cell of size 2L and determine an effective damping coefficient that describes the larger-scale dynamics. This can be thought of as a Green-Kubo calculation of the effective damping coefficient. In principle, this makes it possible to coarse grain from the atomic scale to determine the micromagnetic damping coefficient.

  16. On the evolution of coarse categories.

    PubMed

    Mengel, Friederike

    2012-08-21

    We compare the evolutionary fitness of different cultures (or populations), where we think of culture as partitioning a set of decision situations into categories of situations treated the same. Information about optimal behavior in each category is passed on via a process of noisy cultural transmission. We show that coarse partitions (distinguishing less situations) can provide higher evolutionary fitness even if there are no explicit costs to holding finer partitions. PMID:22659044

  17. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  18. Comparison of laboratory batch and flow-through microcosm bioassays.

    PubMed

    Clément, Bernard J P; Delhaye, Hélène L; Triffault-Bouchet, Gaëlle G

    2014-10-01

    Since 1997, we have been developing a protocol for ecotoxicological bioassays in 2-L laboratory microcosms and have applied it to the study of various pollutants and ecotoxicological risk assessment scenarios in the area of urban facilities and transport infrastructures. The effects on five different organisms (micro-algae, duckweeds, daphnids, amphipods, chironomids) are assessed using biological responses such as growth, emergence (chironomids), reproduction (daphnids) and survival, with a duration of exposure of 3 weeks. This bioassay has mainly been used as a batch bioassay, i.e., the water was not renewed during the test. A flow-through microcosm bioassay has been developed recently, with the assumption that conditions for the biota should be improved, variability reduced, and the range of exposure patterns enlarged (e.g., the possibility of maintaining constant exposure in the water column). This paper compares the results obtained in batch and flow-through microcosm bioassays, using cadmium as a model toxicant. As expected, the stabilization of physico-chemical parameters, increased organism fitness and reduced variability were observed in the flow-through microcosm bioassay. PMID:25086825

  19. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC superstation and their ratios as source signature

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Lee, G.; Kim, S.; Yoon, S.; Kang, K.

    2011-07-01

    PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR) method, which produced five organic carbon (OC) fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP), and three elemental carbon (EC) fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.72 μg m-3, 17.24 μg m-3, and 28.37 μg m-3, respectively. The averaged mass fractions of OC and EC were 23.0 % and 10.4 % for PM1.0, 22.9 % and 9.8 % for PM2.5, and 16.4 % and 6.0 % for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC) measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP) to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was heavily influenced by

  20. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Lee, G.; Kim, S.; Yoon, S.; Kang, K.

    2012-02-01

    PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR) method, which produced five organic carbon (OC) fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP), and three elemental carbon (EC) fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.7 μg m-3, 17.2 μg m-3, and 28.4 μg m-3, respectively. The averaged mass fractions of OC and EC were 23.0% and 10.4% for PM1.0, 22.9% and 9.8% for PM2.5, and 16.4% and 6.0% for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC) measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion (Han et al., 2010). In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP) to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was heavily influenced

  1. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  2. Source apportionment of PM10 and PM2.5 near a large mining zone in Northern Chile

    NASA Astrophysics Data System (ADS)

    Jorquera, H.

    2008-12-01

    Chile's economic growth is mainly driven by intensive mining activities; currently Chile produces ~ 40% of copper worldwide. Most of those activities are located in northern Chile, in a desert region where strong regional winds contribute with soil erosion as well. The city of Calama (22.4°S, 68.9°W) is about 17 km south of Chuquicamata, one of the largest open pit copper mines in the world, both located on the west edge of the Andes; Calama is at 2,400 m asl and it is 215 km east of the Pacific Ocean. The mining complex releases ~ 21 kton/y of PM10 and ~ 78 kton/y of SO2 from a copper smelter. The levels of ambient PM10 have steadily increased at Calama in the last 5 years, so there is concern about the impacts from copper industry in the city´s inhabitants, most of who work in mining or related economic activities. A campaign was conducted at Calama between October and December 2007, sampling ambient PM10 and PM2.5 at several sites across the city. Filters were analyzed at the Desert Research Institute, Reno, NV for elemental composition by XRF and for elemental and organic carbon using thermal analysis. The application of positive matrix factorization (PMF) model identified four sources contributing to ambient PM2.5: secondary sulfates (49%), traffic emissions (37%), dust street (9%) and copper smelter emissions (5%). In the coarse fraction, four sources were identified: dust street (45%), wind erosion (34%), mineral processing (14%) and copper smelter emissions (7%). No natural background was found for PM2.5. For ambient PM10 the source apportionment obtained is: mining activities (33%), street dust (34%), wind erosion (22%) and traffic emissions (12%). With a current PM10 annual average of 58 μg/m3 and further mining activities projected in the area, there is a big challenge to improve air quality in the populated area close to the mining operations.

  3. Critical time scale of coarse-graining entropy production

    NASA Astrophysics Data System (ADS)

    Sohn, Jang-il

    2016-04-01

    We study coarse-grained entropy production in an asymmetric random walk system on a periodic one-dimensional lattice. In coarse-grained systems, the original dynamics are unavoidably destroyed, but the coarse-grained entropy production is not hidden below the critical time-scale separation. The hidden entropy production is rapidly increasing near the critical time-scale separation.

  4. Acarine attractants: Chemoreception, bioassay, chemistry and control.

    PubMed

    Carr, Ann L; Roe, Michael

    2016-07-01

    The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the "foretarsal sensory organ" (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction-aggregation-attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study. PMID:27265828

  5. Characterization of PM 2.5, PM 2.5-10 and PM > 10 in ambient air, Yokohama, Japan

    NASA Astrophysics Data System (ADS)

    Khan, Md. Firoz; Shirasuna, Yuichiro; Hirano, Koichiro; Masunaga, Shigeki

    2010-04-01

    This study elucidated the characteristics of ambient PM 2.5, PM 2.5-10 and PM > 10 with water soluble ions, i.e., Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+ and carbonaceous aerosol, i.e., EC and OC in above size fractions from the samples collected for the period of 2007-2008. The total numbers of PM 2.5, PM 2.5-10 and PM > 10 samples collected with MCI sampler were 91, 87 and 79, respectively. The ambient particulate samples were collected twice in a week for a period of 24 h at the roof of a three-storied building in Yokohama National University. The annual arithmetic mean concentrations of PM 2.5, PM 2.5-10 and PM > 10 were 20.6, 9.6 and 5.1 µg m - 3 , respectively. The results of the daily PM 2.5 concentrations indicated that 67% of the daily PM 2.5 exceeded USEPA National Ambient Air Quality Standards (NAAQS) (15 µg m - 3 ) while 95% in respect of WHO ambient air quality guidelines (10 µg m - 3 ). The concentrations of water soluble ions in PM 2.5, PM 2.5-10 and PM > 10 accounted for 40%, 31% and 19%, respectively. The estimation of non-sea-salt particles implies that the major sources of water soluble ions in PM 2.5 are anthropogenic. On the other hand, a large proportion of sea salt particles contributes to PM 2.5-10 and PM > 10 . Spearman correlation indicated that the concentrations of OC and EC in PM 2.5 can originate from similar type of sources. However, the concentration of OC and EC in PM 2.5-10 and PM > 10 can have multiple sources. In addition, some atmospheric reactions were also characterized in this study.

  6. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  7. BIOLOGICAL ASSESSMENT OF THE TOXICITY OF PM AND PM COMPONENTS

    EPA Science Inventory

    (August 1, 2009 – July 31, 2010):

    1. In vitro Toxicity Assessment of Baltimore PM.

      Overview and summary: Previously, we have utilized human bron...

    2. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project

      PubMed Central

      2011-01-01

      Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples

    3. A Coarse Pointing Assembly for Optical Communication

      NASA Technical Reports Server (NTRS)

      Szekely, G.; Blum, D.; Humphries, M.; Koller, A.; Mussett, D.; Schuler, S.; Vogt, P.

      2010-01-01

      In the framework of a contract with the European Space Agency, RUAG Space are developing a Coarse Pointing Assembly for an Optical Communication Terminal with the goal to enable high-bandwidth data exchange between GEO and/or LEO satellites as well as to earth-bound ground stations. This paper describes some development and testing aspects of such a high precision opto-mechanical device, with emphasis on the influence of requirements on the final design, the usage of a Bearing Active Preload System, some of the lessons learned on the BAPS implementation, the selection of a flex print design as rotary harness and some aspects of functional and environmental testing.

    4. Coarse-grained modelling of supercoiled RNA

      NASA Astrophysics Data System (ADS)

      Matek, Christian; Šulc, Petr; Randisi, Ferdinando; Doye, Jonathan P. K.; Louis, Ard A.

      2015-12-01

      We study the behaviour of double-stranded RNA under twist and tension using oxRNA, a recently developed coarse-grained model of RNA. Introducing explicit salt-dependence into the model allows us to directly compare our results to data from recent single-molecule experiments. The model reproduces extension curves as a function of twist and stretching force, including the buckling transition and the behaviour of plectoneme structures. For negative supercoiling, we predict denaturation bubble formation in plectoneme end-loops, suggesting preferential plectoneme localisation in weak base sequences. OxRNA exhibits a positive twist-stretch coupling constant, in agreement with recent experimental observations.

    5. Coarse grained open system quantum dynamics

      SciTech Connect

      Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe

      2008-11-21

      We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.

    6. Coarse-grained modelling of surface nanobubbles

      NASA Astrophysics Data System (ADS)

      Grosfils, Patrick

      2013-05-01

      Surface nanobubbles are nanoscale gaseous objects that form on hydrophobic surfaces in contact with water. Understanding nanobubble formation and stability remains challenging due to the lack of appropriate theoretical framework and adequate modelling. Here we present a non-equilibrium coarse-grained model for nanobubbles at hydrophobic surfaces. The model is based on a lattice-gas model that has been proposed to understand the hydrophobic effect to which dynamical properties are added. The results presented demonstrate the ability of the model to reproduce the basic features of stable surface nanobubbles, which, thereby, supports the dynamical origin of these objects.

    7. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

      PubMed Central

      Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

      2013-01-01

      Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

    8. Primary Bioassay of Human Myeloma Stem Cells

      PubMed Central

      Hamburger, Anne; Salmon, Sydney E.

      1977-01-01

      The ability to clone primary tumors in soft agar has proven useful in the study of the kinetics and biological properties of tumor stem cells. We report the development of an in vitro assay which permits formation of colonies of human monoclonal plasma cells in soft agar. Colony growth has been observed from bone marrow aspirates from 75% of the 70 patients with multiple myeloma or related monoclonal disorders studied. Growth was induced with either 0.02 ml of human type O erythrocytes or 0.25 ml of medium conditioned by the adherent spleen cells of mineral oil-primed BALB/c mice. 5-500 colonies appeared after 2-3 wk in culture yielding a plating efficiency of 0.001-0.1%. The number of myeloma colonies was proportional to the number of cells plated between concentrations of 105-106 and back-extrapolated through zero, suggesting that colonies were clones derived from single myeloma stem cells. Morphological, histochemical, and functional criteria showed the colonies to consist of immature plasmablasts and mature plasma cells. 60-80% of cells picked from colonies contained intracytoplasmic monoclonal immunoglobulin. Colony growth was most easily achieved from the bone marrow cells of untreated patients or those in relapse. Only 50% of bone marrow samples from patients in remission were successfully cultured. Tritiated thymidine suicide studies provided evidence that for most myeloma patients, a very high proportion of myeloma colony-forming cells was actively in transit through the cell cycle. Velocity sedimentation at 1 g showed myeloma stem cells sedimented in a broad band with a peak at 13 mm/h. Antibody to granulocyte colony-stimulating factor did not reduce the number or size of the colonies. Increased numbers of myeloma colonies were seen when the marrow was depleted of colony-stimulating factor elaborating adherent cells before plating. This bioassay should prove useful in studying the in vitro biological behavior of certain bone marrow-derived (B

    9. A novel laboratory screening bioassay for crop seedling allelopathy.

      PubMed

      Belz, Regina G; Hurle, Karl

      2004-01-01

      Crops that control weeds by root exudation of allelochemicals are receiving increased attention, and there are efforts to breed allelopathic cultivars in several crops. The genetic improvement of allelopathic traits is based upon parental germ plasm with high allelopathic activity. Identification of allelopathic germplasm is done in laboratory screening bioassays, but experimental protocols are limited. We developed a fast and reliable laboratory screening bioassay for grain crops that includes dose-response considerations as an integral part of the experimental design. The bioassay was conducted in hydroponic culture, and a range of experiments with 2-(3H)-benzoxazolinone (BOA), an allelochemical of several grain crops, was carried out to define the basic protocol. Because of its sensitivity to BOA, Sinapis alba L. was selected as the receiver species. BOA affected growth (fresh weight and length of shoot and root), enzyme activities (ascorbate peroxidase, catalase, glutathione S-transferase, peroxidase, phenylalanine ammonia-lyase), and chlorophyll fluorescence, whereby root length was the most reliable response parameter. BOA sensitivity was dependent on nutrients for all parameters measured, and, thus, no nutrients were added. A set of experiments with Secale cereale L. and Triticum aestivum L. as donor species was carried out to optimize the protocol. Light and pH were eliminated as primary causes for the observed inhibition. The proposed bioassay has several methodological advantages over current bioassays. PMID:15074665

    10. Soil bioassays and the {sup 129}I problem

      SciTech Connect

      Sheppard, S.C.

      1995-12-31

      Iodine-129 is a very long-lived radionuclide associated with spent nuclear fuel. Because {sup 129}I has a 10{sup 7}-year half-life, is very mobile in the environment and is a biologically essential element, it is the most limiting radionuclide affecting disposal of spent fuel. Traditionally, the potential impacts of {sup 129}I have been estimated for human receptors, with the implicit assumption that all other organisms are less at risk. Risk is the operative word, the objective for protection of humans is to protect individuals, whereas the objective for other biota is usually to protect populations. Here, {sup 129}I poses an interesting problem: the half-life is so long it is barely radioactive. Thus, the chemical toxicity may be more limiting than the radiological impact. A series of soil bioassays were employed, including a life-cycle plant (Brassica rapa) bioassay, a modified earthworm survival bioassay, a microarthropod colonization/survival bioassay, and a series of more common soil and aquatic bioassays. Chemical toxicity was indicated at soil concentrations as low as 5 mg kg{sup {minus}1}. At these levels, radiological impact on non-human biota would not be expected, and therefore the chemical toxicity effects are more critical. However, human food-chain model estimates show these levels, as pure {sup 129}I, would be unacceptable for human radiological exposure, so that for {sup 129}I, protection of the human environment should also be protective of non-human biota.

    11. [Investigation on pattern and methods of quality control for Chinese materia medica based on dao-di herbs and bioassay - bioassay for Coptis chinensis].

      PubMed

      Yan, Dan; Xiao, Xiao-he

      2011-05-01

      Establishment of bioassay methods is the technical issues to be faced with in the bioassay of Chinese materia medica. Taking the bioassay of Coptis chinensis Franch. as an example, the establishment process and application of the bioassay methods (including bio-potency and bio-activity fingerprint) were explained from the aspects of methodology, principle of selection, experimental design, method confirmation and data analysis. The common technologies were extracted and formed with the above aspects, so as to provide technical support for constructing pattern and method of the quality control for Chinese materia medica based on the dao-di herbs and bioassay. PMID:21800546

    12. Coarse-grained distributions and superstatistics

      NASA Astrophysics Data System (ADS)

      Chavanis, Pierre-Henri

      2006-01-01

      We show an interesting connection between non-standard (non-Boltzmannian) distribution functions arising in the theory of violent relaxation for collisionless stellar systems [D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136 (1967) 101.] and the notion of superstatistics recently introduced by [Beck and Cohen Physica A 322 (2003) 267]. The common link between these two theories is the emergence of coarse-grained distributions arising out of fine-grained distributions. The coarse-grained distribution functions are written as a superposition of Boltzmann factors weighted by a non-universal function. Even more general distributions can arise in case of incomplete violent relaxation (non-ergodicity). They are stable stationary solutions of the Vlasov equation. We also discuss analogies and differences between the statistical equilibrium state of a multi-components self-gravitating system and the metaequilibrium (or quasi-equilibrium) states of a collisionless stellar system. Finally, we stress the important distinction between entropies, generalized entropies, relative entropies and H-functions. We discuss applications of these ideas in two-dimensional turbulence and for other systems with long-range interactions.

    13. Coarse-Grain Modeling of Energetic Materials

      NASA Astrophysics Data System (ADS)

      Brennan, John

      2015-06-01

      Mechanical and thermal loading of energetic materials can incite responses over a wide range of spatial and temporal scales due to inherent nano- and microscale features. Many energy transfer processes within these materials are atomistically governed, yet the material response is manifested at the micro- and mesoscale. The existing state-of-the-art computational methods include continuum level approaches that rely on idealized field-based formulations that are empirically based. Our goal is to bridge the spatial and temporal modeling regimes while ensuring multiscale consistency. However, significant technical challenges exist, including that the multiscale methods linking the atomistic and microscales for molecular crystals are immature or nonexistent. To begin addressing these challenges, we have implemented a bottom-up approach for deriving microscale coarse-grain models directly from quantum mechanics-derived atomistic models. In this talk, a suite of computational tools is described for particle-based microscale simulations of the nonequilibrium response of energetic solids. Our approach builds upon recent advances both in generating coarse-grain models under high strains and in developing a variant of dissipative particle dynamics that includes chemical reactions.

    14. Canadian National Air Pollution Surveillance (NAPS) PM 2.5 speciation program: Methodology and PM 2.5 chemical composition for the years 2003-2008

      NASA Astrophysics Data System (ADS)

      Dabek-Zlotorzynska, Ewa; Dann, Tom F.; Kalyani Martinelango, P.; Celo, Valbona; Brook, Jeffrey R.; Mathieu, David; Ding, Luyi; Austin, Claire C.

      2011-01-01

      The Canadian National Air Pollution Surveillance (NAPS) network, monitoring criteria gases (CO, O 3, NO x, and SO 2), PM 2.5, PM 10, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and particle chemical mass and composition, has been in operation for over 40 years. Since 1984 both fine (<2.5 μm - PM 2.5) and coarse (2.5-10 μm - PM 10-2.5) particle mass measurements have been made at NAPS network sites using dichotomous samplers. In January 2003, the NAPS PM 2.5 speciation program was initiated with the purpose of measuring all major components of PM 2.5, including ammonium nitrate, ammonium sulphate, metals, and organic and elemental carbon. The present paper describes the improved sampling (e.g. Teflon/Nylon filter packs for nitrate loss, and an active blank for each and every sample in the determination of positive organic carbon artifacts), and analytical methods used in the Canadian NAPS PM 2.5 speciation program. A detailed dataset was then analyzed for seasonal and geographical variations in the major components of 24-h time integrated PM 2.5 samples collected at eight urban and three rural measurement sites across Canada (2003-2008). Chemical mass reconstruction was used for assessment of the adequacy of selected sampling and chemical parameters as well as for the determination of the relative contributions of different compound classes to PM 2.5 mass. The highest frequency of PM 2.5 episodes exceeding 30 μg m -3 were observed in Ontario and southern Quebec. In general, the most important contributions to PM 2.5 mass were secondary aerosol sulphate and nitrate (38-63% for western sites and 3-44% for eastern sites), depending on the season. Organic matter (OM) was found to be the second most important component (21-45%), while particle-bound water (PBW) accounted for 6-12% of the PM 2.5 mass. Golden B.C. was an exception, exhibiting high levels of OM (60-70%) and low levels of PBW (˜3%).

  1. Environmental effects of dredging. A chronic sublethal sediment bioassay with the marine polychaete nereis (Neanthes) arenaceodentata

    SciTech Connect

    Dillon, T.M.; Moore, D.W.; Bridges, T.S.

    1995-01-01

    This note provides a general overview of a new 28-day chronic sublethal sediment bioassay designed for the regulatory evaluation of dredged material. The bioassay uses survival and growth rate endpoints with the polychaete Nereis (Neanthes) arenaceodentata. The primary technical reference for this new bioassay is Dillon, Moore, and Reish (in press), upon which this overview is based. Sediment bioassays are used to assess the aggregate toxicity of sediment associated anthropogenic chemicals. Historically, these bioassays have measured survival of highly sensitive species following acute exposures (10 days). A new generation of sediment bioassays is being developed in which the subtle, sublethal response of test species is measured following chronic sediment exposures (Dillon 1993).

  2. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    SciTech Connect

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.

  3. Method comparison for 241Am emergency urine bioassay.

    PubMed

    Li, Chunsheng; Sadi, Baki; Benkhedda, Karima; St-Amant, Nadereh; Moodie, Gerry; Ko, Raymond; Dinardo, Anthony; Kramer, Gary

    2010-10-01

    241Am is one of the high-risk radionuclides that might be used in a terrorist attack. 241Am in urine bioassay can identify the contaminated individuals who need immediate medical intervention and decontamination. This paper compares three methods for the measurement of 241Am in urine, namely liquid scintillation counting (LSC), inductively coupled plasma mass spectrometry (ICP-MS) and gamma spectrometry (GS), at two levels, 20 and 2 Bq l(-1). All three methods satisfied the ANSI N13.30 radio-bioassay criteria for accuracy and repeatability. ICP-MS offered the best sensitivity and fastest sample turnaround; however, the ICP-MS system used in this work may not be available in many bioassay laboratories. LSC and GS are more commonly available instruments. GS requires minimal or no sample preparation, which makes it a good candidate method. Moreover, the sample throughput can be significantly improved if the GS and LSC methods are automated. PMID:20573683

  4. Internal dosimetry performing dose assessments via bioassay measurements

    SciTech Connect

    Bailey, K.M.

    1993-05-11

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected.

  5. The effect of pesticide residue on caged mosquito bioassays.

    PubMed

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication. PMID:17067048

  6. Bioassay-directed chemical analysis in environmental research

    SciTech Connect

    Schuetzle, D.; Lewtas, J.

    1986-01-01

    The use of short-term bioassay tests in conjunction with analytical measurements, constitute a powerful tool for identifying important environmental contaminants. The authors have coined the terminology bioassay directed chemical analysis to best describe this marriage of analytical chemistry and biology. The objective of this methodology is to identify key compounds in various types of air-pollutant samples. Once that task is completed, studies on metabolism, sources, environmental exposure and atmospheric chemistry can be undertaken. The principles and methodologies for bioassay directed chemical analysis are presented and illustrated in this paper. Most of this work has been directed toward the characterization of ambient air and diesel particulates, which are used as examples in this report to illustrate the analytical logic used for identifying the bio-active components of complex mixtures.

  7. Do we really need in-situ bioassays?

    SciTech Connect

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    In-situ bioassays are needed to validate the results from laboratory testing and to understand biological interactions. Standard laboratory protocols provide reproducible test results, and the precision of those tests can be mathematically defined. Significant correlations between toxic substances and levels of response (bioaccumulation and bioeffects) have also been demonstrated with natural field populations and suggest that the laboratory results can accurately predict field responses. An equal number of studies have shown a lack of correlation between laboratory bioassay results and responses of natural field populations. The best way to validate laboratory results is with manipulative field testing; i.e., in-situ bioassays with caged organisms. Bioaccumulation in transplanted bivalves has probably been the most frequently used form of an in-situ bioassay. The authors have refined those methods to include synoptic measurements of bioaccumulation and growth. Growth provides an easily-measured bioeffects endpoint and a means of calibrating bioaccumulation. Emphasis has been on minimizing the size range of test animals, repetitive measurements of individuals and standardization of test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Others have developed methods for in-situ bioassays using eggs, larvae, unicellular organisms, crustaceans, benthic invertebrates, bivalves, and fish. In the final analysis, the in-situ approach could be considered as an exposure system where any clinical measurements are possible. The most powerful approach would be to use the same species in laboratory and field experiments with the same endpoints.

  8. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities.

    PubMed

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike

    2014-08-30

    Building activities generate coarse (PM10≤10μm), fine (PM2.5≤2.5μm) and ultrafine particles (<100nm) making it necessary to understand both the exposure levels of operatives on site and the dispersion of ultrafine particles into the surrounding environment. This study investigates the release of particulate matter, including ultrafine particles, during the mixing of fresh concrete (incorporating Portland cement with Ground Granulated Blastfurnace Slag, GGBS or Pulverised Fuel Ash, PFA) and the subsequent drilling and cutting of hardened concrete. Particles were measured in the 5-10,000nm size range using a GRIMM particle spectrometer and a fast response differential mobility spectrometer (DMS50). The mass concentrations of PM2.5-10 fraction contributed ∼52-64% of total mass released. The ultrafine particles dominated the total particle number concentrations (PNCs); being 74, 82, 95 and 97% for mixing with GGBS, mixing with PFA, drilling and cutting, respectively. Peak values measured during the drilling and cutting activities were 4 and 14 times the background. Equivalent emission factors were calculated and the total respiratory deposition dose rates for PNCs for drilling and cutting were 32.97±9.41×10(8)min(-1) and 88.25±58.82×10(8)min(-1). These are a step towards establishing number and mass emission inventories for particle exposure during construction activities. PMID:25068443

  9. Effect of Coarse Materials Percentage in the Shear Strength

    NASA Astrophysics Data System (ADS)

    Alshameri, B.; Bakar, I.; Madun, A.; Abdeldjouad, L.; Haimi Dahlan, S.

    2016-07-01

    There are several factors that affecting the shear strength and shear strength parameters (i.e. cohesion and friction angle). In this study, the effect of coarse material percentage was tested. Six different mixtures of soils (clay and sand) with different coarse material percentages (i.e. from 80% to 30% of coarse material percentage) were tested via using direct shear test under different moisture content percentage. The results indicated that the shear strength and friction angle were decreased by the increment of the percentage of coarse materials (sand). However, the cohesion results showed unique behavior. The cohesion (at every moisture content values) increased with the increment of the percentage of coarse materials until specific point then it started to decrease with the increment of the percentage of coarse materials.

  10. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Loukkola, Kati; Korhonen, Christina H.; Aurela, Minna; Mäkelä, Timo; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Kousa, Anu; Maenhaut, Willy

    During April 1996-June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996-May 1997. The average PM 2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m 3, and the PM 2.3-15 (coarse particle) concentrations were 12.8 and about 5 μg/m 3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50-60%. The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site. Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non

  11. Coarse-grained modeling of DNA curvature

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.

  12. The Effects of Coarse Particles on Daily Mortality: A Case-Crossover Study in a Subtropical City, Taipei, Taiwan

    PubMed Central

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    Many studies have examined the effects of air pollution on daily mortality over the past two decades. However, information on the relationship between levels of coarse particles (PM2.5–10) and daily mortality is relatively sparse due to the limited availability of monitoring data. Furthermore, the results are inconsistent. In the current study, the association between coarse particle levels and daily mortality in Taipei, Taiwan’s largest city, which has a subtropical climate, was undertaken for the period 2006–2008 using a time-stratified case-crossover analysis. For the single pollutant model (without adjustment for other pollutants), PM2.5–10 showed statistically significant association with total mortality both on warm and cool days, with an interquartile range increase associated with a 11% (95% CI = 6%–17%) and 4% (95% CI = 1%–7%) rise in number of total deaths, respectively. In two-pollutant models, PM2.5–10 remained significant effects on total mortality after the inclusion of SO2 and O3 both on warm and cool days. We observed no significant associations between PM2.5–10 and daily mortality from respiratory diseases both on warm and cool days. For daily mortality from circulatory diseases, the effect of PM2.5–10 remained significant when SO2 or O3 was added in the regression model both on warm and cool days. Future studies of this type in cities with varying climates and cultures are needed. PMID:27011197

  13. Source and Health Implication of Diurnal Atmospheric PM Mass and Number Concentrations

    NASA Astrophysics Data System (ADS)

    Li, W.; Olvera, H. A.; Garcia, J. H.; Pingitore, N. E.

    2007-12-01

    Exposure to atmospheric PM has been known to be associated with adverse health effects, decreased heart-rate variability, and respiratory and cardiopulmonary related morbidity and mortality. New evidence suggests that physical characteristics (mass, size, number, surface area, and morphology) of particles are strongly associated with mortality and morbidity through acute exposure. In particular, as reported in the literature, fine or ultrafine particles are more toxic than coarse particles on an equivalent mass basis while particles of less than 30 nm or greater than 2.5 um in diameter deposit more effectively (approximately 80 percent) in lung versus approximately 18 percent for particles in the range of 100 nm and 1 um. In addition, positive association has been observed between day to day variation in PM2.5 and hospital admissions, mortality and particle surface area, or particle number concentration and oxidative stress-induced DNA damage. This presentation shows the results of a study characterizing the physical properties of PM in El Paso, Texas. Diurnal PM mass concentration peaks previously observed at several other cities along the U.S.-Mexico border and elsewhere in the world were observed in El Paso. The hourly PM particle count varied from less than 10,000 particles/cm3 to greater than 80,000 particles/cm3 during the diurnal PM mass peaks. The total number of PM particles peaked in the morning and in the evening while the mode of the particle size changed from 20 nm to 50 nm, indicating different PM sources may be responsible for the mass and number concentrations and agglomeration of particles in the atmosphere during the day may possibly plays a role. A multivariate regression analysis was performed to correlate the PM mass and number concentrations to environmental variables. Real- time wind statistics were used in conjunction with traffic data at a nearby highway for identifying sources of the PM mass and number concentration peaks. Evaluation of

  14. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements.

    PubMed

    Kwak, Ji-hyun; Kim, Hongsuk; Lee, Janghee; Lee, Seokhwan

    2013-08-01

    We investigated the physical and chemical properties of non-exhaust coarse and fine particles generated by on-road driving and in a laboratory setting using a mobile sampling system. The on-road driving and laboratory measurements performed under constant speed driving revealed that particles produced by tire wear had a size distribution in the range of 2-3 μm, while roadway particles (RWPs) measured behind the front tire during on-road driving largely comprised crustal materials such as road surface wear particles and road dust as well as tire wear particles (TWPs). The mode diameters of particles obtained from on-road driving under cornering conditions were similar to those obtained under constant speed conditions, but with higher concentrations of crustal elements. Under braking conditions, the particulate matter (PM) concentrations of brake wear particles (BWPs) sampled near the brake pad increased significantly and were much higher than the concentration of RWPs during deceleration, indicating that BWPs are one of the main sources of non-exhaust emissions. In addition, BWPs observed from on-road and laboratory measurements had a broader PM size range (1-10 μm) than RWPs. Size-segregated chemical analysis of PM samples indicated that the concentrations of Fe and Ca were highest in the coarse fraction emitted under constant speed and cornering conditions, while Fe, Ba, and Ti were most abundant in the fine fraction emitted during braking events. PMID:23664985

  15. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  16. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  17. A statistical treatment of bioassay pour fractions

    NASA Astrophysics Data System (ADS)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  18. HIGHLY SENSITIVE BIOASSAYS FOR EVALUATING AIRBORNE MUTAGENS INDOORS

    EPA Science Inventory

    The standard mutagenicity bioassays that are readily applied to the valuation of outdoor air samples collected by high volume samplers are not efficiently sensitive to measure the mutagenicity of low volume air samples collected indoors. wo microsuspension mutation assays using v...

  19. Filtration effects due to bioassay cage design and screen type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of bioassay cages in the efficacy assessment of specific compounds, application techniques and technologies is a common practice. There are a number of cage designs being used that range across a variety of cage shapes and sizes and mesh types. The objective of this work was to examine a r...

  20. STRESS ETHYLENE: A BIOASSAY FOR RHIZOSPHERE-APPLIED PHYTOTOXICANTS

    EPA Science Inventory

    A bioassay for rhizosphere-applied phytotoxicants was developed and evaluated with a broad range of chemicals. Test substances were applied to the rhizosphere of whole, intact bush bean plants (Phaseolus vulgaris L. cv. Bush Blue Lake 290) grown in a solid support medium and the ...

  1. Assessment of acrylamide toxicity using a battery of standardised bioassays.

    PubMed

    Zovko, Mira; Vidaković-Cifrek, Željka; Cvetković, Želimira; Bošnir, Jasna; Šikić, Sandra

    2015-12-01

    Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms. PMID:26751864

  2. Artificial diets for life tables bioassays of TPB in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two artificial diets for mass rearing and bioassay of the tarnished plant bug, (TPB), Lygus lineolaris Palisot de Beauvois, (Hemiptera: Miridae) were modified and developed, respectively. The first diet is a modification of a semisolid artificial diet (NI diet), which permits large scale rearing of ...

  3. INFLUENCE OF SEDIMENT EXTRACT FRACTIONATION METHODS ON BIOASSAY RESULTS

    EPA Science Inventory

    Four bioassays [Microtax(tm), Mutatox(tm), sister chromatid exchange (SCE), and metabolic cooperation] were used to analyze marine sediment extracts fractionated by two different methods: silica gel column chromatography and acid-base fractionation. esults indicated that a sedime...

  4. Statistical considerations in the analysis of data from replicated bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple-dose bioassay is generally the preferred method for characterizing virulence of insect pathogens. Linear regression of probit mortality on log dose enables estimation of LD50/LC50 and slope, the latter having substantial effect on LD90/95s (doses of considerable interest in pest management)...

  5. Soil bioassays as tools for sludge compost quality assessment

    SciTech Connect

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-03-15

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  6. US Army Radiological Bioassay and Dosimetry: The RBD software package

    SciTech Connect

    Eckerman, K. F.; Ward, R. C.; Maddox, L. B.

    1993-01-01

    The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker's rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual's external exposure.

  7. Book Review: Bioassays with Arthropods: 2nd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  8. US Army Radiological Bioassay and Dosimetry: The RBD software package

    SciTech Connect

    Eckerman, K.F.; Ward, R.C.; Maddox, L.B.

    1993-01-01

    The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker`s rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual`s external exposure.

  9. BENTHIC INVERTEBRATE BIOASSAYS WITH TOXIC SEDIMENT AND PORE WATER

    EPA Science Inventory

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. he assays studied were: (a) Microtox, a 15-min assay of Photobacterium...

  10. Shape-encoded silica microparticles for multiplexed bioassays.

    PubMed

    Kim, Lily Nari; Kim, Mira; Jung, Keumsim; Bae, Hyung Jong; Jang, Jisung; Jung, Yushin; Kim, Jiyun; Kwon, Sunghoon

    2015-08-01

    Shape-encoded silica microparticles for use in multiplexed bioassays were fabricated by using optofluidic maskless lithography (OFML) and tetraethylorthosilicate (TEOS) polymerization. These encoded silica microparticles exhibit excellent bioconjugation properties and negligible non-specific analyte adsorption. Encoded silica microparticles could be useful in a wide variety of applications, including DNA- and protein-based diagnostics. PMID:26125980

  11. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  12. Sensitive bioassay for detection of biologically active ricin in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of ricin as an agent of biological warfare highlights the need to develop fast and effective methods to detect biologically active ricin. The current “gold standard” for ricin detection is an in vivo mouse bioassay; however, this method is not practical to test on a large number of...

  13. Correction of spray concentration and bioassay cage penetration data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials were conducted to demonstrate the need for correcting sampled spray concentration data for sampler collection efficiencies and estimated spray exposure levels in mosquito bioassays for cage interference effects. A large spray block was targeted with aerial spray treatments of etofenpro...

  14. 1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW IN ROOM 125, BIOASSAY LABORATORY, SHOWN IS THE FIRST STEP IN A SIX-STEP PROCESS TO ANALYZE URINE SAMPLES FOR PLUTONIUM AND URANIUM CONTAMINATION. IN THIS STEP, NITRIC ACID IS ADDED TO SAMPLE, AND THE SAMPLE IS BOILED DOWN TO A WHITE POWDER. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  15. Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns

    SciTech Connect

    Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpaa, M.; Halinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; Hirvonen, M.R.

    2007-03-15

    We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF alpha), interleukin 6 (IL-6), macrophage inflammatory protein-2 (MIP-2)), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.

  16. Modelling the fine and coarse fraction of heavy metals in Spain

    NASA Astrophysics Data System (ADS)

    García Vivanco, Marta; González, M. Angeles

    2014-05-01

    Heavy metals, such as cadmium, lead, nickel, arsenic, copper, chrome, zinc and selenium, are present in the air due to natural and anthropogenic emissions, normally joined to particles. These metals can affect life organisms via inhalation or ingestion, causing damages in human health and ecosystems. Small particles are inhaled and embebed in lungs and alveolus more easily than coarse particles. The CHIMERE model is a eulerian air quality model extensively used in air quality modelling. Metals have been recently included in this model in a special version developed in the CIEMAT (Madrid, Spain) modelling group. Vivanco et al. (2011) and González et al. (2012) showed the model performance for some metals in Spain and Europe. However, in these studies, metals were considered as fine particles. Some studies based on observed heavy metals air concentration indicate the presence of metals also in the coarse fraction, in special for Cu and Zn. For this reason, a new attempt of modelling metals considering a fine (<2.5 micrometres) and coarse (2.5-10 micrometres) fraction has been done. Measurements of metal concentration in PM10, PM2.5 and PM1 recorded in Spain (Fernández-Camacho et al., 2012; Querol et al., 2008) were used to obtain the new metal particle distribution size. Results and the evaluation of the model performance at some minoring sites in Spain is presented. References: - Vivanco, M. G., M.A: González, I. Palomino, J. L. Garrido, X. Querol, B. Bessagnet, J.de la Rosa, A.M. Sánchez de la Campa, 2011. Modelling Arsenic, Lead, Cadmium and Nickel Ambient Air Concentrations in Spain, 2011. Proceedings of the 11 th International Conference on Computational Science and Its Applications (ICCSA 11) 243-246 - González, Ma Vivanco, Marta; Palomino, Inmaculada; Garrido, Juan; Santiago, Manuel; Bessagnet, Bertrand Modelling Some Heavy Metals Air Concentration in Europe. // Water, Air & Soil Pollution;Sep2012, Vol. 223 Issue 8, p5227

  17. Medium-term bioassays for carcinogenicity of chemical mixtures.

    PubMed Central

    Ito, N; Imaida, K; Hirose, M; Shirai, T

    1998-01-01

    Carcinogenic effects of chemical mixtures were examined with a medium-term liver bioassay for carcinogens or a multiorgan medium-term bioassay using male F344 rats. In the medium-term liver bioassay, rats were initially treated with diethylnitrosamine (DEN) at 200 mg/kg body weight, i.p.; after 2 weeks they received chemical mixtures such as 10 different heterocyclic amines at one-tenth or one-hundredth the dose levels used in carcinogenicity studies and the mixtures of 20 different pesticides, each at acceptable daily intake (ADI) levels or a mixture of 100 times ADI levels. All animals were subjected to two-thirds partial hepatectomy at week 3 and were sacrificed at week 8. The number and areas of glutathione S-transferase placental form (GST-P) positive foci (preneoplastic lesions in the liver) were compared between respective groups. When 10 heterocyclic amines were mixed in the diet at one-tenth dose level, clear synergism was observed, but no combined effects were evident with the one-hundredth dose levels. In the pesticide experiment, treatment of rats with the 20-pesticide mixture at the ADI dose level did not enhance GST-P-positive foci. In contrast, a mixture of 100 times the ADI significantly increased those values. In a multiorgan bioassay of 28 weeks, mixtures of 40 high-volume compounds and 20 pesticides (suspected carcinogens) added together at their respective ADI levels did not enhance carcinogenesis in any organs initiated by five different carcinogens (DEN, N-methylnitrosourea, dimethylhydrazine, N-butyl-N-(4-hydroxybutyl)nitrosamine, and dihydroxy-di-n-propylnitrosamine) in combination. The combination effect of low dietary levels of five antioxidants, butylated hydroxyanisole, caffeic acid, sesamol, 4-methoxyphenol, and catechol, were also examined using the multiorgan bioassay. The incidence of forestomach papillomas was significantly increased only in the combination group and the results indicate that combination of the five antioxidants can

  18. Ambient Coarse Particulate Matter and Hospital Admissions in the Medicare Cohort Air Pollution Study, 1999–2010

    PubMed Central

    Powell, Helen; Krall, Jenna R.; Wang, Yun; Bell, Michelle L.

    2015-01-01

    Background In recent years a number of studies have examined the short-term association between coarse particulate matter (PM10–2.5) and mortality and morbidity outcomes. These studies, however, have produced inconsistent conclusions. Objectives We estimated both the national- and regional-level associations between PM10–2.5 and emergency hospitalizations for both cardiovascular and respiratory disease among Medicare enrollees ≥ 65 years of age during the 12-year period 1999 through 2010. Methods Using air pollution data obtained from the U.S. Environmental Protection Agency air quality monitoring network and daily emergency hospitalizations for 110 large urban U.S. counties assembled from the Medicare Cohort Air Pollution Study (MCAPS), we estimated the association between short-term exposure to PM10–2.5 and hospitalizations using a two-stage Bayesian hierarchical model and Poisson log-linear regression models. Results A 10-μg/m3 increase in PM10–2.5 was associated with a significant increase in same-day cardiovascular hospitalizations [0.69%; 95% posterior interval (PI): 0.45, 0.92]. After adjusting for PM2.5, this association remained significant (0.63%; 95% PI: 0.38, 0.88). A 10-μg/m3 increase in PM10–2.5 was not associated with a significant increase in respiratory-related hospitalizations. Conclusions We found statistically significant evidence that daily variation in PM10–2.5 is associated with emergency hospitalizations for cardiovascular diseases among Medicare enrollees ≥ 65 years of age. This association was robust to adjustment for concentrations of PM2.5. Citation Powell H, Krall JR, Wang Y, Bell ML, Peng RD. 2015. Ambient coarse particulate matter and hospital admissions in the Medicare Cohort Air Pollution Study, 1999–2010. Environ Health Perspect 123:1152–1158; http://dx.doi.org/10.1289/ehp.1408720 PMID:25872223

  19. Genotoxicity of leachates from a landfill using three bioassays.

    PubMed

    Cabrera, G L; Rodriguez, D M

    1999-05-19

    In the city of Queretaro, around 500 tons of solid wastes are produced everyday and are deposited in a landfill. This is the result of social and economic activities of human beings or from their normal physiological functions. As a result of rain, leachates are produced, which, if not handled and treated correctly, may pollute the underground water. Among the bioassays developed for the detection of mutagenicity in environmental pollutants, plant systems have been proven to be sensitive, cheap, and effective. The purpose of this study was to determine the presence of genotoxic agents in the leachates of the landfill of the city using three bioassays: Tradescantia-micronucleus (Trad-MCN), Tradescantia stamen hair mutations (Trad-SHM) and Allium root anaphase aberrations (AL-RAA) and make a comparison of the results in the three assays. Leachates were sampled during both the dry and rainy seasons. Plant cuttings of Tradescantia or the roots of Allium were treated by submerging them in the leachates. Three replicates of each sample were analyzed in each of the three bioassays. As expected the samples of leachates collected during the dry season showed a higher genotoxicity than those collected during the rainy season. In conclusion, there are substances present in the leachates capable of inducing genotoxicity in the plant assays. On the other hand, the plant assays showed different degrees of sensitivity: the more sensitive was the Trad-MCN bioassay and the less sensitive the Trad-SHM assay. Therefore, when analyzing environmental pollutants it is recommended to use a battery of bioassays. PMID:10350599

  20. HEAVY-DUTY DIESEL FINE PM EMISSIONS

    EPA Science Inventory

    Fine PM emissions from diesel powered vehicles continues to be a concern for those responsible for implementating the PM-2.5 National Ambient Air Quality Standards (NAAQS). Diesel generated PM is nanometer in size, incorporates a number of toxic air pollutants (including carcinog...

  1. PM POPULATION EXPOSURE AND DOSE MODELS

    EPA Science Inventory

    The overall objective of this study is the development of a refined probabilistic exposure and dose model for particulate matter (PM) suitable for predicting PM10 and PM2.5 population exposures. This modeling research will be conducted both in-house by EPA scientists and through...

  2. SCIENCE VERSION OF PM CHEMISTRY MODEL

    EPA Science Inventory

    PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of inorganic and organic compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. This task, that builds on previous research conducted i...

  3. CMAQ VERSION OF PM CHEMISTRY MODEL

    EPA Science Inventory

    PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. Specific activities to be carried out under this task include (1) in 2005 re...

  4. Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5 mass at Bondville, Illinois.

    PubMed

    Green, Mark; Kondragunta, Shobha; Ciren, Pubu; Xu, Chuanyu

    2009-09-01

    Collocated Interagency Monitoring of Protected Visual Environments (IMPROVE) particulate matter (PM) less than 2.5 microm in aerodynamic diameter (PM2.5) chemically speciated data, mass of PM less than 10 microm in aerodynamic diameter (PM10), and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and size distribution at Bondville, IL, were compared with satellite-derived AOD. This was done to evaluate the quality of the Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data and their potential to predict surface PM2.5 concentrations. MODIS AOD correlated better to AERONET AOD (r = 0.835) than did GOES AOD (r = 0.523). MODIS and GOES AOD compared better to AERONET AOD when the particle size distribution was dominated by fine mode. For all three AOD methods, correlation between AOD and PM2.5 concentration was highest in autumn and lowest in winter. The AERONET AOD-PM2.5 relationship was strongest with moderate relative humidity (RH). At low RH, AOD attributable to coarse mass degrades the relationship; at high RH, added AOD from water growth appears to mask the relationship. For locations such as many in the central and western United States with substantial coarse mass, coarse mass contributions to AOD may make predictions of PM2.5 from AOD data problematic. Seasonal and diurnal variations in particle size distributions, RH, and seasonal changes in boundary layer height need to be accounted for to use satellite AOD to predict surface PM2.5. PMID:19785275

  5. Short-Term Effect of Coarse Particles on Daily Mortality Rate in A Tropical City, Kaohsiung, Taiwan.

    PubMed

    Tsai, Shang-Shyue; Weng, Yi-Hao; Chiu, Ya-Wen; Yang, Chun-Yuh

    2015-01-01

    Many studies examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between exposure to levels of coarse particles (PM(2.5-10)) and daily mortality rate is relatively sparse due to limited availability of monitoring data and findings are inconsistent. This study was undertaken to determine whether an association exists between PM(2.5-10) levels and rate of daily mortality in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period 2006-2008. The relative risk (RR) of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model without adjustment for other pollutants, PM(2.5-10) exposure levels showed significant correlation with total mortality rate both on warm and cool days, with an interquartile range increase associated with a 14% (95% CI = 5-23%) and 12% (95% CI = 5-20%) rise in number of total deaths, respectively. In two-pollutant models, PM(2.5-10) exerted significant influence on total mortality frequency after inclusion of sulfur dioxide (SO(2)) on warm days. On cool days, PM(2.5-10) induced significant elevation in total mortality rate when SO(2) or ozone (O(3)) was added in the regression model. There was no apparent indication of an association between PM(2.5-10) exposure and deaths attributed to respiratory and circulatory diseases. This study provided evidence of correlation between short-term exposure to PM(2.5-10) and increased risk of death for all causes. PMID:26580668

  6. Setting a protective PM standard: A view from the frontline

    SciTech Connect

    John Paul; Eddie Terrill

    2006-06-15

    Several aspects of the US EPA's recent proposal to revise the particulate matter (PM) standards deeply concern state and local air agencies and their representatives with the State and Territorial Air Pollution Program Administrators and the Association of Local Air Pollution Control Offices (STAPPA and ALAPCO). STAPPA and ALAPCO urge EPA to follow the recommendations of its appointed scientific experts and lower the annual average standard to 13 or 14 {mu}mg/m{sup 3} in addition to lowering the daily standard to 35 {mu}m/m{sup 3}. Unless EPA strengthens its proposal consistent with the recommendations of the Clean Air Scientific Advisory Committee (CASAC), STAPPA and ALAPCO are extremely concerned that we will continue to see significant increased premature mortality and adverse health effects throughout the country. For the reasons described in the article STAPPA and ALAPCO urge EPA to eliminate the exemptions for agriculture, mining and rural windblown dust. STAPPA and ALAPCO are troubled that EPA has ignored any commitment to funding the proposed coarse PM network scheduled for deployment in Fiscal Year (FY) 2008. EPA has estimated that the capital costs of this monitoring network could easily exceed US$ 14 million, with annual operating expenses of approximately US$ 13 million. State and local agencies will simply not be able to assume these significant costs. 33 refs.

  7. A comparative study on the varying exposure to atmospheric fine and coarse particles under urban and rural conditions.

    PubMed

    Wolf-Benning, Uta; Schultz, Eckart; Dietze, Volker; Kaminski, Uwe; Endlicher, Wilfried

    2012-11-01

    This paper is based on the results of three air quality studies conducted in Buenos Aires in Berlin, and in German spas between 2003 and 2007. A high comparability of results was ensured by using the same sampling techniques and analytical methods. Total particle sampling was achieved by active sampling of fine (PM2.5) and passive sampling of coarse particles > or = 2.5 microm and giant particles > or = 10 microm. The highly absorbing, black, predominantly carbonaceous particles (BC) of fine particle samples were determined by measuring the total light attenuation of filter samples and interpreting the extinction value as black carbon. The difference between the gravimetric total mass concentration of the PM2.5 samples and the BC is defined as the transparent, mostly mineral fine fraction. In coarse/giant particle samples the mean gray value was determined by means of automated light microscopy with subsequent single-particle analysis. "Opaque" particles were separated from the "transparent" particle fraction by applying a grey value threshold level. Microscopic measurement of individual particles was employed to establish the size distribution of the coarse and giant fraction. Due to different health effects, the separate detection of these components is suggested. Decline functions of particles are given, possibly providing useful information for a more detailed specification of the local particle distribution, and for a better estimate of the individual exposure. Atmospheric dispersal of particles was found effected mainly by source characteristics. An increased, spatially largely constant level of fine transparent particles in Berlin indicates a particle plume originating from photochemical processes. Buenos Aires, in contrast, is characterized by a lower background level of fine transparent particles but is considerably affected by fine black particles from diesel emissions and by a higher resuspension of coarse/giant transparent, mainly soil particles. PMID

  8. CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.

    EPA Science Inventory

    EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...

  9. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  10. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-02-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements, which can lead to further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP "Supersite", Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-), were the dominating species (63%) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt, was the main component (73%) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17%) as providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where as smaller loadings at the site tended to be dominated by sea salt. As with other Western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely, that organic acids contributed to the charge

  11. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-07-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements which can provide further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows for the characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP supersite, Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-) were the dominating species (63 %) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt was the main component (73 %) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17 %) providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where smaller loadings at the site tended to be dominated by sea salt. As with other western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely that organic acids contributed to the charge balance. This study demonstrates the UK

  12. Coarse grained dynamics in the glass phase

    NASA Astrophysics Data System (ADS)

    Smessaert, Anton; Rottler, Jörg

    2013-03-01

    Atomic scale dynamics in glasses is dominated by extended periods of localized vibration, where the crowded surroundings of a particle act as a cage. Collective motion is necessary to escape the cage, and the succession of particle jumps or hops leads to diffusion. Each jump is an elementary relaxation event since the local structure is stable until a jump occurs. The link between local dynamics and structural properties has become of increasing interest in recent years. Aging of the mechanical response has been tied to a power-law distribution of persistence times in the cages, and concentration of hops into dynamical heterogeneities (DH) was observed in granular media and simulations of supercooled liquids in 2D. These studies were limited to small systems or hop detection in subsets, because of the post processing requirements. We present results based on a new algorithm that allows us to detect the hops of all particles during a molecular dynamics simulation. This complete coarse-grained ``map'' of the dynamics allows us to directly investigate temporal and spatial correlations between relaxation events. Furthermore, we can readily identify DH using a cluster algorithm and we explore the impact of aging and deformation on the size and shape of DH.

  13. Coarse-grained models for biological simulations

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2011-03-01

    The large timescales and length-scales of interest in biophysics preclude atomistic study of many systems and processes. One appealing approach is to use coarse-grained (CG) models where several atoms are grouped into a single CG site. In this work we describe a new CG force field for lipids, surfactants, and amino acids. The topology of CG sites is the same as in the MARTINI force field, but the new model is compatible with a recently developed CG electrostatic water (Big Multiple Water, BMW) model. The model not only gives correct structural, elastic properties and phase behavior for lipid and surfactants, but also reproduces electrostatic properties at water-membrane interface that agree with experiment and atomistic simulations, including the potential of mean force for charged amino acid residuals at membrane. Consequently, the model predicts stable attachment of cationic peptides (i.e., poly-Arg) on lipid bilayer surface, which is not shown in previous models with non-electrostatic water.

  14. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results

    PubMed Central

    2011-01-01

    Background High-throughput screening (HTS) is one of the main strategies to identify novel entry points for the development of small molecule chemical probes and drugs and is now commonly accessible to public sector research. Large amounts of data generated in HTS campaigns are submitted to public repositories such as PubChem, which is growing at an exponential rate. The diversity and quantity of available HTS assays and screening results pose enormous challenges to organizing, standardizing, integrating, and analyzing the datasets and thus to maximize the scientific and ultimately the public health impact of the huge investments made to implement public sector HTS capabilities. Novel approaches to organize, standardize and access HTS data are required to address these challenges. Results We developed the first ontology to describe HTS experiments and screening results using expressive description logic. The BioAssay Ontology (BAO) serves as a foundation for the standardization of HTS assays and data and as a semantic knowledge model. In this paper we show important examples of formalizing HTS domain knowledge and we point out the advantages of this approach. The ontology is available online at the NCBO bioportal http://bioportal.bioontology.org/ontologies/44531. Conclusions After a large manual curation effort, we loaded BAO-mapped data triples into a RDF database store and used a reasoner in several case studies to demonstrate the benefits of formalized domain knowledge representation in BAO. The examples illustrate semantic querying capabilities where BAO enables the retrieval of inferred search results that are relevant to a given query, but are not explicitly defined. BAO thus opens new functionality for annotating, querying, and analyzing HTS datasets and the potential for discovering new knowledge by means of inference. PMID:21702939

  15. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Cheung, Kalam; Daher, Nancy; Sioutas, Constantinos

    2011-03-01

    Elevated concentrations of particulate matter (PM) have been found in a number of worldwide underground transit systems, with major implications regarding exposure of commuters to PM and its associated health effects. An extensive sampling campaign was conducted in May-August 2010 to measure PM concentrations in two lines of the Los Angeles Metro system - an underground subway line (Metro red line) and a ground-level light-rail line (Metro gold line). The campaign goals were to: 1) determine personal PM exposure of commuters of both lines, and 2) measure and compare PM concentrations at station platforms and inside the train. Considering that a commuter typically spent 75% of time inside the train and 25% of time waiting at a station, subway commuters were exposed on average to PM 10 and PM 2.5 concentrations that were 1.9 and 1.8 times greater than the light-rail commuters. The average PM 10 concentrations for the subway line at station platforms and inside the train were 78.0 μg m -3 and 31.5 μg m -3, respectively; for the light-rail line, corresponding PM 10 concentrations were 38.2 μg m -3 and 16.2 μg m -3. Regression analysis demonstrated that personal exposure concentrations for the light-rail line are strongly associated with ambient PM levels ( R2 = 0.61), while PM concentrations for the subway line are less influenced by ambient conditions ( R2 = 0.38) and have a relatively stable background level of about 21 μg m -3. Our findings suggest that local emissions (i.e., vehicular traffic, road dust) are the main source of airborne PM for the light-rail line. The subway line, on the other hand, has an additional source of PM, most likely generated from the daily operation of trains. Strong inter-correlation of PM 10 between the train and station microenvironments shows that airborne PM at stations are the main source of PM inside the trains for both lines ( R2 = 0.91 and 0.81 for subway and light-rail line, respectively). In addition, PM 2.5 and coarse PM

  16. Short-term exposure to fine and coarse particles and mortality: A multicity time-series study in East Asia.

    PubMed

    Lee, Hyewon; Honda, Yasushi; Hashizume, Masahiro; Guo, Yue Leon; Wu, Chang-Fu; Kan, Haidong; Jung, Kweon; Lim, Youn-Hee; Yi, Seungmuk; Kim, Ho

    2015-12-01

    Few studies on size-specific health effects of particulate matter have been conducted in Asia. We examined the association between both fine and coarse particles (PM2.5 and PM10-2.5) and mortality across 11 East Asian cities from 4 countries (Korea, Japan, Taiwan, and China). We performed a two-stage analysis: we generated city-specific estimates using a time-series analysis with a generalized additive model (Quasi-Poisson distribution), and estimated the overall effects by conducting a meta-analysis. Each 10-μg/m(3) increase in PM2.5 (lag01) was associated with an increase of 0.38% (95% confidence interval = 0.21%-0.55%) in all causes mortality, 0.96% (0.46%-1.46%) in cardiovascular mortality, and 1% (0.23%-1.78%) in respiratory mortality. Each 10-μg/m(3) increase in PM10-2.5 (lag01) was associated with cardiovascular mortality (0.69%, [0.05%-1.33%]), although this association attenuated after controlling for other pollutants, especially PM2.5. Increased mortality was associated with increasing PM2.5 and PM10-2.5 concentrations over 11 East Asian cities. PMID:26340298

  17. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10.

    PubMed

    Escrig, Alberto; Monfort, Eliseo; Celades, Irina; Querol, Xavier; Amato, Fulvio; Minguillón, María Cruz; Hopke, Philip K

    2009-11-01

    Speciated coarse particulate matter (PM10) data obtained at three air quality monitoring sites in a highly industrialized area in Spain between 2002 and 2007 were analyzed for assessing source contribution of ambient particulate matter (PM). The source apportionment of PM in this area is an especially difficult task. There are industrial mineral dust emissions that need to be separately quantified from the natural sources of mineral PM. On the other hand, the diversity of industrial processes in the area results in a puzzling industrial emissions scenario. To solve this complex problem, a two-step methodology based on the possibilities of the Multilinear Engine was used. Application of positive matrix factorization to the dataset allowed the identification of nine factors relevant to the study area. This preliminary analysis permitted resolving two mineral factors. As a second step, a target rotation was implemented for transforming the mineral factors into experimentally characterized soil resuspension and industrial clay sources. In addition to improving the physical interpretation of these factors, the target rotation reduced the errors arising from the rotational freedom of the solution and the multicollinearity among sources. In this way, the main primary industrial emissions of PM in the zone were identified by this target factor analysis. A marked decrease was observed between 2002 and 2007 for the contributions of industrial sources coinciding with the implementation of mitigation measures in their processes. This study supports the utility of source apportionment methodologies for quantitatively evaluating the effectiveness of the abatement programs for air quality improvement. PMID:19947111

  18. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  19. Pullulan encapsulation of labile biomolecules to give stable bioassay tablets.

    PubMed

    Jahanshahi-Anbuhi, Sana; Pennings, Kevin; Leung, Vincent; Liu, Meng; Carrasquilla, Carmen; Kannan, Balamurali; Li, Yingfu; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2014-06-10

    A simple and inexpensive method is reported for the long-term stabilization of enzymes and other unstable reagents in premeasured quantities in water-soluble tablets (cast, not compressed) made with pullulan, a nonionic polysaccharide that forms an oxygen impermeable solid upon drying. The pullulan tablets dissolve in aqueous solutions in seconds, thereby facilitating the easy execution of bioassays at remote sites with no need for special reagent handling and liquid pipetting. This approach is modular in nature, thus allowing the creation of individual tablets for enzymes and their substrates. Proof-of-principle demonstrations include a Taq polymerase tablet for DNA amplification through PCR and a pesticide assay kit consisting of separate tablets for acetylcholinesterase and its chromogenic substrate, indoxyl acetate, both of which are highly unstable. The encapsulated reagents remain stable at room temperature for months, thus enabling the room-temperature shipping and storage of bioassay components. PMID:24764260

  20. A New Bioassay for Auxins and Cytokinins 1

    PubMed Central

    Boerjan, Wout; Genetello, Chris; Van Montagu, Marc; Inzé, Dirk

    1992-01-01

    The authors have developed a sensitive bioassay that can be used to detect auxins as well as cytokinins. The bioassay is based on the expression in transformed tobacco (Nicotiana tabacum) mesophyll protoplasts of a chimeric gene, consisting of the upstream sequences of the Agrobacterium tumefaciens gene 5, coupled to the coding sequence of the β-glucuronidase. The expression of this gene is induced by the presence of both auxin and cytokinin in the culture medium. Using this assay, indole-3-acetic acid was detected at 5 × 10−8 molar, whereas trans-zeatin could be detected at 5 × 10−11 molar. The assay can be performed in microtiter plates, allowing numerous samples to be analyzed simultaneously. Only 2.5 × 105 protoplasts are required for one individual assay in 250 microliters of culture medium and for qualitative results, the reaction is readily visualized by ultraviolet light. ImagesFigure 3Figure 4Figure 6 PMID:16668975

  1. Bioassay studies to determine OTEC's effect on phytoplankton activity

    SciTech Connect

    Carmiggelt, C.J.W.; Hartwig, E.O.; Commins, M.L.; Horne, A.J.

    1982-09-01

    The effect of artificially upwelled water (800m) on phytoplankton from 25m and 100m was simulated using five day bioassays. The results show that some enhancement of the phytoplankton populations in the receiving waters due to upwelling is likely to occur. The very small phytoplankton (< 5 um) are most important in this response. The magnitude of the biostimulation cannot be predicted from this study. Ammonia leaks, spills, and venting are probable in an operating OTEC plant. The bioassays show that additions of ammonia will produce biostimulaton only when the P/N ratio indicates nitrogen limitation. In the Hawaiian waters sampled N-limitation was not always present and varied with depth. No nitrogen fixation was detected. The magnitude of stimulation due to ammonia alone was generally less than the addition of upwelled water which is a more complete nutrient mixture.

  2. A Rapid and Simple Bioassay Method for Herbicide Detection

    PubMed Central

    Li, Xiu-Qing; Ng, Alan; King, Russell; Durnford, Dion G.

    2008-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn—agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2–3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination. PMID:19578512

  3. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Specifications for PM10, PM2.5 and... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods Specification PM10 PM2.5 Class I Class II Class III...

  4. Interlaced coarse-graining for the dynamic cluster approximation

    NASA Astrophysics Data System (ADS)

    Staar, P.; Jiang, M.; Hähner, U. R.; Schulthess, T. C.; Maier, T. A.

    2016-04-01

    The dynamical cluster approximation (DCA) and its DCA+ extension use coarse-graining of the momentum space to reduce the complexity of quantum many-body problems, thereby mapping the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. While it gives a more localized self-energy for a given cluster size, we show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which converge to the results obtained from the standard coarse-graining with increasing cluster size. Most importantly, the new coarse-graining reduces the severity of the fermionic sign problem of the underlying quantum Monte Carlo cluster solver and thus allows for calculations on larger clusters. This enables the treatment of correlations longer ranged than those accessible with the standard coarse-graining and thus can allow for the evaluation of the exact infinite cluster size result via finite size scaling. As a demonstration, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the extended DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes for which the results can be fit with a Kosterlitz-Thouless scaling law.

  5. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals.

    PubMed

    Singh, Amit Kumar; Singh, Rakesh; Subramani, Rajkumar; Kumar, Rajesh; Wankhede, Dhammaprakash P

    2016-06-01

    Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains. PMID:27252585

  6. Non-Galerkin Coarse Grids for Algebraic Multigrid

    SciTech Connect

    Falgout, Robert D.; Schroder, Jacob B.

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  7. Paper bioassay based on ceria nanoparticles as colorimetric probes.

    PubMed

    Ornatska, Maryna; Sharpe, Erica; Andreescu, Daniel; Andreescu, Silvana

    2011-06-01

    We report the first use of redox nanoparticles of cerium oxide as colorimetric probes in bioanalysis. The method is based on changes in the physicochemical properties of ceria nanoparticles, used here as chromogenic indicators, in response to the analyte. We show that these particles can be fully integrated in a paper-based bioassay. To construct the sensor, ceria nanoparticles and glucose oxidase were coimmobilized onto filter paper using a silanization procedure. In the presence of glucose, the enzymatically generated hydrogen peroxide induces a visual color change of the ceria nanoparticles immobilized onto the bioactive sensing paper, from white-yellowish to dark orange, in a concentration-dependent manner. A detection limit of 0.5 mM glucose with a linear range up to 100 mM and a reproducibility of 4.3% for n = 11 ceria paper strips were obtained. The assay is fully reversible and can be reused for at least 10 consecutive measurement cycles, without significant loss of activity. Another unique feature is that it does not require external reagents, as all the sensing components are fixed onto the paper platform. The bioassay can be stored for at least 79 days at room temperature while maintaining the same analytical performance. An example of analytical application was demonstrated for the detection of glucose in human serum. The results demonstrate the potential of this type of nanoparticles as novel components in the development of robust colorimetric bioassays. PMID:21524141

  8. A Bioassay System Using Bioelectric Signals from Small Fish

    NASA Astrophysics Data System (ADS)

    Terawaki, Mitsuru; Soh, Zu; Hirano, Akira; Tsuji, Toshio

    Although the quality of tap water is generally examined using chemical assay, this method cannot be used for examination in real time. Against such a background, the technique of fish bioassay has attracted attention as an approach that enables constant monitoring of aquatic contamination. The respiratory rhythms of fish are considered an efficient indicator for the ongoing assessment of water quality, since they are sensitive to chemicals and can be indirectly measured from bioelectric signals generated by breathing. In order to judge aquatic contamination accurately, it is necessary to measure bioelectric signals from fish swimming freely as well as to stably discriminate measured signals, which vary between individuals. However, no bioassay system meeting the above requirements has yet been established. This paper proposes a bioassay system using bioelectric signals generated from small fish in free-swimming conditions. The system records signals using multiple electrodes to cover the extensive measurement range required in a free-swimming environment, and automatically discriminates changes in water quality from signal frequency components. This discrimination is achieved through an ensemble classification method using probability neural networks to solve the problem of differences between individual fish. The paper also reports on the results of related validation experiments, which showed that the proposed system was able to stably discriminate between water conditions before and after bleach exposure.

  9. Modeling development of inhibition zones in an agar diffusion bioassay.

    PubMed

    Chandrasekar, Vaishnavi; Knabel, Stephen J; Anantheswaran, Ramaswamy C

    2015-09-01

    A two-temperature agar diffusion bioassay is commonly used to quantify the concentration of nisin using Micrococcus luteus as the indicator microorganism. A finite element computational model based on Fick's second law of diffusion was used to predict the radius of the inhibition zone in this diffusion bioassay. The model developed was used to calculate nisin concentration profiles as a function of time and position within the agar. The minimum inhibitory concentration (MIC) of nisin against M. luteus was determined experimentally. The critical time (T c) for growth of M. luteus within the agar diffusion bioassay was experimentally determined using incubation studies with nisin. The radius of the inhibition zone was predicted from the computational model as the location where the predicted nisin concentration at T c was equal to MIC. The MIC was experimentally determined to be 0.156 μg mL(-1), and T c was determined to be 7 h. Good agreement (R (2) = 0.984) was obtained between model-predicted and experimentally determined inhibition zone radii. PMID:26405525

  10. Improved bioassay for detecting autoinducer of Rhodovulum sulfidophilum

    NASA Astrophysics Data System (ADS)

    Terada, T.; Kikuchi, Y.; Umekage, S.

    2015-02-01

    Quorum sensing is a bacterial gene regulation system that enables prompt environmental adaptation in response to cell density. Quorum sensing is driven by an extracellularly secreted chemical signal called autoinducer. Gram-negative bacteria produce one or several types of N-acylhomoserine lactone (AHL) as autoinducers. Our previous study suggests that the gram-negative marine photosynthetic bacterium Rhodovulum sulfidophilum produces AHL in the early stationary phase and plays a role in maintaining the bacterial cell aggregates called "floc". We performed conventional bioassay to identify AHL production by using Chromobacterium violaceum VIR07, which produces violet pigment (violacein) in response to AHL with side chains ranging from C10 to C18 in length. However, we were not able to observe the violacein with good reproducibility, suggesting that inhibitory chemical compounds co-existed in the AHL extract. Therefore, we improved the extraction method; the ethyl acetate-extracted AHLs were fractionated by using reverse phase TLC. By using the re-extracted AHLs for the bioassay, we observed an obvious production of violacein. This result clearly indicates that R. sulfidophilum produces AHLs with side chains ranging from C10 to C18 in length and suggests the utility of improved bioassay for AHL detection.

  11. Modeling development of inhibition zones in an agar diffusion bioassay

    PubMed Central

    Chandrasekar, Vaishnavi; Knabel, Stephen J; Anantheswaran, Ramaswamy C

    2015-01-01

    A two-temperature agar diffusion bioassay is commonly used to quantify the concentration of nisin using Micrococcus luteus as the indicator microorganism. A finite element computational model based on Fick's second law of diffusion was used to predict the radius of the inhibition zone in this diffusion bioassay. The model developed was used to calculate nisin concentration profiles as a function of time and position within the agar. The minimum inhibitory concentration (MIC) of nisin against M. luteus was determined experimentally. The critical time (Tc) for growth of M. luteus within the agar diffusion bioassay was experimentally determined using incubation studies with nisin. The radius of the inhibition zone was predicted from the computational model as the location where the predicted nisin concentration at Tc was equal to MIC. The MIC was experimentally determined to be 0.156 μg mL−1, and Tc was determined to be 7 h. Good agreement (R2 = 0.984) was obtained between model-predicted and experimentally determined inhibition zone radii. PMID:26405525

  12. Novel bioassay using Bacillus megaterium to detect tetracycline in milk.

    PubMed

    Tumini, Melisa; Nagel, Orlando G; Molina, Pilar; Althaus, Rafael L

    2016-01-01

    Tetracyclines are used for the prevention and control of dairy cattle diseases. Residues of these drugs can be excreted into milk. Thus, the aim of this study was to develop a microbiological method using Bacillus megaterium to detect tetracyclines (chlortetracycline, oxytetracycline and tetracycline) in milk. In order to approximate the limits of detection of the bioassay to the Maximum Residue Limit (100μg/l) for milk tetracycline, different concentrations of chloramphenicol (0, 1000, 1500 and 2000μg/l) were tested. The detection limits calculated were similar to the Maximum Residue Limits when a bioassay using B. megaterium ATCC 9885 spores (2.8×10(8)spores/ml) and chloramphenicol (2000μg/l) was utilized. This bioassay detects 105μg/l of chlortetracycline, 100μg/l of oxytetracycline and 134μg/l of tetracycline in 5h. Therefore, this method is suitable to be incorporated into a microbiological multi-residue system for the identification of tetracyclines in milk. PMID:27131738

  13. Differences in Fine- Coarse Aerosol Ratios in Convective and Non-Convective Dust Events in a Desert City

    NASA Astrophysics Data System (ADS)

    Gill, T. E.; Rivera Rivera, N. I.; Novlan, D. J.

    2014-12-01

    El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (Mexico) form the Paso del Norte, the largest metropolitan area in North America's Chihuahuan Desert. The cities are subject to frequent dust storms presenting a hazard to local infrastructure and health, including synoptic-scale dust events during winter and spring, and dusty outflows from convective storms (haboobs) primarily during the summer. We evaluate particulate matter (PM2.5 and PM10) concentrations over a decade of convective and non-convective dust events, based on hourly aerosol data collected by Texas Commission on Environmental Quality (TCEQ) continuous air monitors in El Paso cross-referenced to weather observations from the USA National Weather Service. A total of 219 dust events (95 convective and 124 non-convective) events occurred between 2001 and 2010. The PM2.5/PM10 ratio was significantly higher (proportionally greater concentration of fine aerosols) in convective episodes and during summertime events than during non-convective dust events and dust episodes in other seasons, although overall concentrations of both PM2.5 and PM10 were higher in the non-convective events, which were also longer-lasting. These differences in fine/coarse aerosol ratios are likely related to different atmospheric stability conditions, and/or different mechanisms of dust particle entrainment and transport in haboobs versus non-convective dust events. Since visibility degradation and adverse human health effects are known to be exacerbated by to fine aerosol concentrations, thunderstorm-related dust events may present a proportionally greater hazard.

  14. PERFORMANCE AUDITING OF A HUMAN AIR POLLUTION EXPOSURE SYSTEM FOR COARSE PARTICULATE MATTER (PM2.5-10)

    EPA Science Inventory

    Databases derived from human health effects research play a vital role in setting environmental standards. An underlying assumption in using these databases for standard setting purposes is that they are of adequate quality. The performance auditing program described in this ma...

  15. Toxicity of copper-spiked sediments to Tubifex tubifex (Oligochaeta, Tubificidae): Comparison of the 28-day reproductive bioassay with an early-life-stage bioassay

    SciTech Connect

    Vecchi, M.; Pasteris, A.; Bonomi, G. . Dipt. di Biologia Evoluzionistica Sperimentale); Reynoldson, T.B. . National Water Research Inst.)

    1999-06-01

    Two sediment bioassay methods using Tubifex tubifex (Mueller, 1774) as the test species were compared. The first was an adult reproduction test, the second an early-life-stage survival test. The duration of both bioassays is 28 d and the amount of work required was similar; they may be useful alternatives to each other in different circumstances (e.g., the early life stage bioassay could be carried out with smaller volumes of sediment). The two bioassays were performed simultaneously on copper-spiked sediments. Sediments from two freshwater and two terrestrial sites were used; five separate, nonsimultaneous experiments were performed, one for each sediment or soil and a further experiment with soil with a good supplement. In the adult bioassay, there were large differences in the production of cocoons, eggs, and young among the control treatments of the five experiments. There were also major differences in the NOEC and LOEC for copper between the tested substrates. The early life stage bioassay appears to be less sensitive to copper toxicity than the adult reproductive bioassay since NOECs and LOECs are higher for early survival than for the most sensitive endpoints of the adult bioassay in three experiments out of five.

  16. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    PubMed Central

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164

  17. Coarse-grained Simulations of Viral Assembly

    NASA Astrophysics Data System (ADS)

    Elrad, Oren M.

    2011-12-01

    The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it

  18. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique. PMID:26356762

  19. Comparability between PM2.5 and particle light scattering measurements.

    PubMed

    Chow, Judith C; Watson, John G; Lowenthal, Douglas H; Richards, L Willard

    2002-10-01

    Particle light scattering and PM2.5 (particles with aerodynamic diameters less than 2.5 microm) concentration data from air quality studies conducted over the past ten years were examined. Fine particle scattering efficiencies were determined from statistical relationships among measured light scattering and fine and coarse mass concentrations. The resulting fine particle scattering efficiencies ranged from 1.7 m2 g(-1) at Meadview in the Grand Canyon to over 5 m2 g(-1) in Mexico City. Most of the derived line scattering efficiencies were centered around 2 m2 g(-1), which is considerably lower than most values reported from previous studies. PMID:12381021

  20. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  1. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  2. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  3. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  4. 40 CFR 93.117 - Criteria and procedures: Compliance with PM10 and PM2.5 control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with PM10 and PM2.5 control measures. 93.117 Section 93.117 Protection of Environment ENVIRONMENTAL....117 Criteria and procedures: Compliance with PM10 and PM2.5 control measures. The FHWA/FTA project must comply with any PM10 and PM2.5 control measures in the applicable implementation plan....

  5. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  6. Two-level method with coarse space size independent convergence

    SciTech Connect

    Vanek, P.; Brezina, M.; Tezaur, R.; Krizkova, J.

    1996-12-31

    The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.

  7. Polarisation mode dispersion correlations with the coarse-step method

    NASA Astrophysics Data System (ADS)

    Braimiotis, Christos; Eberhard, Marc; Blow, Keith

    2006-06-01

    Having a fixed differential-group delay (DGD) term b‧ in the coarse-step method results in a repetitive pattern in the autocorrelation function (ACF). We solve this problem by inserting a varying DGD term at each integration step. Furthermore we compute the range of values needed for b‧ and simulate the phenomenon of polarisation mode dispersion for different statistical distributions of b‧. We examine systematically the modified coarse-step method compared to the analytical model, through our simulation results.

  8. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence.

    PubMed

    Lemos, Andréia Torres; Lemos, Clarice Torres de; Flores, Andressa Negreiros; Pantoja, Eduarda Ozório; Rocha, Jocelita Aparecida Vaz; Vargas, Vera Maria Ferrão

    2016-09-01

    The effects of fine inhalable particles (PM2.5) were evaluated in an area under the influence of a petrochemical industry, investigating the sensitivity of different genotoxicity biomarkers. Organic extracts were obtained from PM2.5 samples at two sites, positioned in the first and second preferential wind direction in the area. The extracts were evaluated with Salmonella/microsome assay, microsuspension method, strains TA98, YG1021 and YG1024. The mammalian metabolization fraction (S9) was used to evaluate metabolite mutagenicity. The Comet Assay (CA) and Micronuclei Test were used in a Chinese hamster lung cell line (V79). All extracts showed mutagenicity in Salmonella, and nitrogenated compounds were strongly present. Genotoxicity were found in CA in almost all extracts and the micronuclei induction at the Site in the first (Autumn 1, Winter 1), and in the second (Spring 2) wind direction. V79 showed cytotoxicity in all samples. The three biomarkers were concordant in characterization Site NO with worse quality, compatible with the greater pollutants dispersion in the first wind direction. All PM2.5 concentrations were lower than those recommended by air quality standards but genotoxic effects were detected in all samples, corroborating that these standards are inadequate as quality indicators. The Salmonella/microsome assay proved sensitive to PM2.5 mutagenicity, with an outstanding influence of nitroarenes and aromatic amines. Analyses using CA and the micronucleus test broadened the levels of response that involve different damage induction mechanisms. Results show that the complex PM2.5 composition can provoke various genotoxic effects and the use of different bioassays is essential to understand its effects. PMID:27343868

  9. Interlaced coarse-graining for the dynamical cluster approximation

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas

    The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  10. Energy-conserving coarse-graining of complex molecules.

    PubMed

    Español, Pep; Serrano, Mar; Pagonabarraga, Ignacio; Zúñiga, Ignacio

    2016-05-25

    Coarse-graining (CG) of complex molecules is a method to reach time scales that would be impossible to access through brute force molecular simulations. In this paper, we formulate a coarse-grained model for complex molecules using first principles caculations that ensures energy conservation. Each molecule is described in a coarse way by a thermal blob characterized by the position and momentum of the center of mass of the molecule, together with its internal energy as an additional degree of freedom. This level of description gives rise to an entropy-based framework instead of the usual one based on the configurational free energy (i.e. potential of mean force). The resulting dynamic equations, which account for an appropriate description of heat transfer at the coarse-grained level, have the structure of the dissipative particle dynamics with energy conservation (DPDE) model but with a clear microscopic underpinning. Under suitable approximations, we provide explicit microscopic expressions for each component (entropy, mean force, friction and conductivity coefficients) appearing in the coarse-grained model. These quantities can be computed directly using MD simulations. The proposed non-isothermal coarse-grained model is thermodynamically consistent and opens up a first principles CG strategy for the study of energy transport issues that are not accessible using current isothermal models. PMID:27127809

  11. Bayesian parametrization of coarse-grain dissipative dynamics models

    NASA Astrophysics Data System (ADS)

    Dequidt, Alain; Solano Canchaya, Jose G.

    2015-08-01

    We introduce a new bottom-up method for the optimization of dissipative coarse-grain models. The method is based on Bayesian optimization of the likelihood to reproduce a coarse-grained reference trajectory obtained from analysis of a higher resolution molecular dynamics trajectory. This new method is related to force matching techniques, but using the total force on each grain averaged on a coarse time step instead of instantaneous forces. It has the advantage of not being limited to pairwise short-range interactions in the coarse-grain model and also yields an estimation of the friction parameter controlling the dynamics. The theory supporting the method is exposed in a practical perspective, with an analytical solution for the optimal set of parameters. The method was first validated by using it on a system with a known optimum. The new method was then tested on a simple system: n-pentane. The local molecular structure of the optimized model is in excellent agreement with the reference system. An extension of the method allows to get also an excellent agreement for the equilibrium density. As for the dynamic properties, they are also very satisfactory, but more sensitive to the choice of the coarse-grain representation. The quality of the final force field depends on the definition of the coarse grain degrees of freedom and interactions. We consider this method as a serious alternative to other methods like iterative Boltzmann inversion, force matching, and Green-Kubo formulae.

  12. Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy).

    PubMed

    Ariola, V; D'Alessandro, A; Lucarelli, F; Marcazzan, G; Mazzei, F; Nava, S; Garcia-Orellana, I; Prati, P; Valli, G; Vecchi, R; Zucchiatti, A

    2006-01-01

    The particulate matter (PM) concentration and composition, the PM10, PM2.5, PM1 fractions, were studied in the urban area of Genoa, a coastal town in the northwest of Italy. Two instruments, the continuous monitor TEOM and the sequential sampler PARTISOL, were operated almost continuously on the same site from July 2001 to September 2004. Samples collected by PARTISOL were weighted to obtain PM concentration and then analysed by PIXE (particle induced X-ray emission) and by ED-XRF (energy dispersion X-ray fluorescence), obtaining concentrations for elements from Na to Pb. Some of the filters used in the TEOM microbalance were analysed by ED-XRF to calculate Pb concentration values averaged over 7-30 d periods. PMID:15982708

  13. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-10-01

    This study was undertaken to determine whether there was an association between coarse particles (PM₂.₅-₁₀) levels and frequency of hospital admissions for respiratory diseases (RD) in Kaohsiung, Taiwan. Hospital admissions for RD including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, and ambient air pollution data levels for Kaohsiung were obtained for the period from 2006 to 2010. The relative risk of hospital admissions for RD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model (without adjustment for other pollutants), increased rate of admissions for RD were significantly associated with higher coarse PM levels only on cool days (<25 °C), with a 10 µg/m³ elevation in PM₂.₅-₁₀ concentrations associated with a 3% (95% CI = 1%-5%) rise in COPD admissions, 4% (95% CI = 1%-7%) increase in asthma admissions, and 3% (95% CI = 2%-4%) rise in pneumonia admissions. No significant associations were found between coarse particle levels and the number of hospital admissions for RD on warm days. In the two-pollutant models, PM₂.₅-₁₀ levels remained significantly correlated with higher rate of RD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. This study provides evidence that higher levels of PM₂.₅-₁₀ enhance the risk of hospital admissions for RD on cool days. PMID:26501308

  14. Wavelets as basis functions to represent the coarse-graining potential in multiscale coarse graining approach

    NASA Astrophysics Data System (ADS)

    Maiolo, M.; Vancheri, A.; Krause, R.; Danani, A.

    2015-11-01

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficient orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.

  15. Spatial variation of PM elemental composition between and within 20 European study areas--Results of the ESCAPE project.

    PubMed

    Tsai, Ming-Yi; Hoek, Gerard; Eeftens, Marloes; de Hoogh, Kees; Beelen, Rob; Beregszászi, Timea; Cesaroni, Giulia; Cirach, Marta; Cyrys, Josef; De Nazelle, Audrey; de Vocht, Frank; Ducret-Stich, Regina; Eriksen, Kirsten; Galassi, Claudia; Gražuleviciene, Regina; Gražulevicius, Tomas; Grivas, Georgios; Gryparis, Alexandros; Heinrich, Joachim; Hoffmann, Barbara; Iakovides, Minas; Keuken, Menno; Krämer, Ursula; Künzli, Nino; Lanki, Timo; Madsen, Christian; Meliefste, Kees; Merritt, Anne-Sophie; Mölter, Anna; Mosler, Gioia; Nieuwenhuijsen, Mark J; Pershagen, Göran; Phuleria, Harish; Quass, Ulrich; Ranzi, Andrea; Schaffner, Emmanuel; Sokhi, Ranjeet; Stempfelet, Morgane; Stephanou, Euripides; Sugiri, Dorothea; Taimisto, Pekka; Tewis, Marjan; Udvardy, Orsolya; Wang, Meng; Brunekreef, Bert

    2015-11-01

    An increasing number of epidemiological studies suggest that adverse health effects of air pollution may be related to particulate matter (PM) composition, particularly trace metals. However, we lack comprehensive data on the spatial distribution of these elements. We measured PM2.5 and PM10 in twenty study areas across Europe in three seasonal two-week periods over a year using Harvard impactors and standardized protocols. In each area, we selected street (ST), urban (UB) and regional background (RB) sites (totaling 20) to characterize local spatial variability. Elemental composition was determined by energy-dispersive X-ray fluorescence analysis of all PM2.5 and PM10 filters. We selected a priori eight (Cu, Fe, K, Ni, S, Si, V, Zn) well-detected elements of health interest, which also roughly represented different sources including traffic, industry, ports, and wood burning. PM elemental composition varied greatly across Europe, indicating different regional influences. Average street to urban background ratios ranged from 0.90 (V) to 1.60 (Cu) for PM2.5 and from 0.93 (V) to 2.28 (Cu) for PM10. Our selected PM elements were variably correlated with the main pollutants (PM2.5, PM10, PM2.5 absorbance, NO2 and NOx) across Europe: in general, Cu and Fe in all size fractions were highly correlated (Pearson correlations above 0.75); Si and Zn in the coarse fractions were modestly correlated (between 0.5 and 0.75); and the remaining elements in the various size fractions had lower correlations (around 0.5 or below). This variability in correlation demonstrated the distinctly different spatial distributions of most of the elements. Variability of PM10_Cu and Fe was mostly due to within-study area differences (67% and 64% of overall variance, respectively) versus between-study area and exceeded that of most other traffic-related pollutants, including NO2 and soot, signaling the importance of non-tailpipe (e.g., brake wear) emissions in PM. PMID:26342569

  16. Quantifying the contribution of long-range transport to Particulate Matter (PM) mass loadings at a suburban site in the North-Western Indo Gangetic Plain (IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-04-01

    Many sites in the densely populated Indo Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan) to coarse mode PM varied between 9 and 57% of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP) were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air

  17. A PROBABILISTIC POPULATION EXPOSURE MODEL FOR PM10 AND PM 2.5

    EPA Science Inventory

    A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM10, and PM2.5, exposures of an urban, population has been developed. This model is intended to be used to predict exposure (magnitude, frequency, and duration) ...

  18. Climatological classification of five sectors in the Iberian Peninsula using columnar (AOD, α) and surface (PM10, PM2.5) aerosol data supported by air mass apportioning

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria; Mateos, David; Toledano, Carlos; Burgos, Maria A.; Bennouna, Yasmine; Torres, Benjamín; Fuertes, David; González, Ramiro; Guirado, Carmen; Román, Roberto; Velasco-Merino, Cristian; Marcos, Alberto; Calle, Abel; de Frutos, Angel M.

    2015-04-01

    The study of atmospheric aerosol over the Iberian Peninsula (IP) under a climatologic perspective is an interesting and meaningful aim due to the wide variety of conditions (geographical position, air masses, topography, among others) which cause a complex role of the distribution of aerosol properties. In the deeply investigation on the annual cycle and time evolution of the particulate matter lower than 10 µm (PM10, surface) and aerosol optical depth (AOD, columnar) in a large number of sites covering the period 2000-2013, five sectors can be distinguished in the IP. Both set of data belong to EMEP and AERONET networks respectively, as representative of aerosol air quality and climate studies, are complementary elements for a global aerosol research. The prevalence of fine-coarse particles is also analyzed over each sector. Seasonal bimodality of the PM10 annual cycle with a strong North-South gradient is observed in most sites, but this is only reported in the AOD climatology for the southern IP. The northern coast is clearly governed by the Atlantic Ocean influence, while the northeastern area is modulated by the Mediterranean Sea. The southern area, very close to the African continent, presents a large influence of desert dust intrusions. However, the southern Atlantic and Mediterranean coast present discrepancies and two sectors have been defined in this area. Finally, the center of the Peninsula is a mix of conditions, with north-south and east-west gradients of different magnitude. Overall, there is a relationship between PM10 and AOD with a proportional factor varying from 20 to 90, depending on the sector. The particular characteristic of PM10-AOD annual cycle of each geographical sector can be understood by the different climatology of the air mass origins observed at 500 and 1500 m (a.s.l.) and its apportioning to PM10 and AOD, respectively.

  19. The PM-200 lubrication system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    Plasma sprayed composite coating of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on desk bench tests from room temperature to 900 C. An early coating formulation of this type, designated as PS-200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760 C in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650 C. A subsequent optimization program has shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS-212. The same powder formulation was used to make free-standing powder metallurgy (PM-212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed.

  20. New technique for collecting ambient diesel particles for bioassays

    SciTech Connect

    Hallock, M.F.; Smith, T.J.; Hammond, S.K.; Beck, B.D.; Brain, J.D.

    1987-05-01

    This paper describes a new application of viable aerosol sampler, the Liquid electrostatic Aerosol Precipitator (LEAP), for the collection of diesel particles for bioassays of pulmonary toxicity and mutagenicity or carinogenicity. Currently used methods (filtration, dry electrostatic precipitation) cause agglomeration of particles and increases in particle size up to twenty-fold, which may alter particle toxicity significantly. Collection of diesel particles with the LEAP preserved submicronic particle size. Differences in chemical composition of extracts of surface adsorbents as compared to particles collected on filters also were observed. This technique may be applicable for collection other types of combustion products or oil mists that agglomerate when collected by filtration.

  1. A new technique for collecting ambient diesel particles for bioassays.

    PubMed

    Hallock, M F; Smith, T J; Hammond, S K; Beck, B D; Brain, J D

    1987-05-01

    This paper describes a new application of a viable aerosol sampler, the Liquid Electrostatic Aerosol Precipitator (LEAP), for the collection of diesel particles for bioassays of pulmonary toxicity and mutagenicity or carcinogenicity. Currently used methods (filtration, dry electrostatic precipitation) cause agglomeration of particles and increases in particle size up to twenty-fold, which may alter particle toxicity significantly. Collection of diesel particles with the LEAP preserved submicronic particle size. Differences in chemical composition of extracts of surface adsorbents as compared to particles collected on filters also were observed. This technique may be applicable for collection of other types of combustion products or oil mists that agglomerate when collected by filtration. PMID:2438921

  2. Field and Bioassay Indicators for Internal Dose Intervention Therapy

    SciTech Connect

    Carbaugh, Eugene H.

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake.

  3. Field and bioassay indicators for internal dose intervention therapy.

    PubMed

    Carbaugh, Eugene H

    2007-05-01

    Guidance is presented that is used at the U.S. Department of Energy Hanford Site to identify the potential need for medical intervention in response to intakes of radioactivity. The guidance, based on ICRP Publication 30 models and committed effective dose equivalents of 20 mSv and 200 mSv, is expressed as numerical workplace measurements and derived first-day bioassay results for large intakes. It is used by facility radiation protection staff and on-call dosimetry support staff during the first few days following an intake. PMID:17440323

  4. Electroantennographic bioassay as a screening tool for host plant volatiles.

    PubMed

    Beck, John J; Light, Douglas M; Gee, Wai S

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant. When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control. Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol

  5. An emergency bioassay method for (210)Po in urine.

    PubMed

    Guérin, Nicolas; Dai, Xiongxin

    2015-09-01

    A rapid method was developed to efficiently measure (210)Po in urine samples in an emergency situation. Polonium-210 in small urine samples (10 mL) was spontaneously deposited on a stainless steel disc in 1 M HCl at room temperature for 4 h in a polyethylene bottle. The metallic disc was then counted for 4 h by alpha spectrometry. The developed method allowed the preparation of large sample batch in a short time. The method meets the requirements for an emergency bioassay procedure. PMID:26115206

  6. How to Fabricate Functional Artificial Luciferases for Bioassays.

    PubMed

    Kim, Sung-Bae; Fujii, Rika

    2016-01-01

    The present protocol introduces fabrication of artificial luciferases (ALuc(®)) by extracting the consensus amino acids from the alignment of copepod luciferase sequences. The made ALucs have unique sequential identities that are phylogenetically distinctive from those of any existing copepod luciferase. Some ALucs exhibited heat stability, and strong and greatly prolonged optical intensities. The made ALucs are applicable to various bioassays as an optical readout, including live cell imaging, single-chain probes, and bioluminescent tags of antibodies. The present protocol guides on how to fabricate a unique artificial luciferase with designed optical properties and functionalities. PMID:27424894

  7. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    PubMed

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value < 0.001). Individual airborne particles were characterised morphologically and chemically via a combination of Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy (SEM-EDX). The subsequent image analysis revealed C-rich particles with shapes that pointed to combustion processes. Moreover, carbonaceous particles seemed to act as vehicles for sulphur compounds and metals (S, Na, Fe, Ca, Mg, K, Al, Mn, Zn and Cu). Coarse particles were found to be mainly constituted by crustal material and marine and carbonaceous particles. Although most of the studied individual particles in PM10 samples (86.0%) had a diameter within the 0.1-2.5 μm range, 1.8% of them had sizes lower than 0.1 μm 40.2% of the total studied particles were estimated to be inhaled and deposited in the human respiratory tract; 12.3% of these particles would reach the deepest zones, thereby posing a major risk to human health. PMID:27485798

  8. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    PubMed

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. PMID:25454229

  9. Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment

    NASA Astrophysics Data System (ADS)

    Amil, Norhaniza; Talib Latif, Mohd; Firoz Khan, Md; Mohamad, Maznorizan

    2016-04-01

    This study investigates the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind flow patterns) including haze events. The samples were analysed for various inorganic components and black carbon (BC). The chemical compositions were statistically analysed and the temporal aerosol pattern (seasonal) was characterised using descriptive analysis, correlation matrices, enrichment factor (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. In addition, secondary data of total suspended particulate (TSP) and coarse particulate matter (PM10) sampled at the same location and time with this study (collected by Malaysian Meteorological Department) were used for PM ratio assessment. The results showed that PM2.5 mass averaged at 28 ± 18 µg m-3, 2.8-fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 µg m-3 with the daily WHO guideline exceeded 43 % of the time. The north-east (NE) monsoon was the only season with less than 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate

  10. Sources of PM(10) and PM (2.5) in Cairo's ambient air.

    PubMed

    Abu-Allaban, M; Lowenthal, D H; Gertler, A W; Labib, M

    2007-10-01

    A source attribution study was performed to assess the contributions of specific pollutant source types to the observed particulate matter (PM) levels in the greater Cairo Area using the chemical mass balance (CMB) receptor model. Three intensive ambient monitoring studies were carried out during the period of February 21-March 3, 1999, October 27-November 27, 1999, and June 8-June 26, 2002. PM(10), PM(2.5), and polycyclic aromatic hydrocarbons (PAHs) were measured on a 24-h basis at six sampling stations during each of the intensive periods. The six intensive measurement sites represented background levels, mobile source impacts, industrial impacts, and residential exposure. Major contributors to PM(10) included geological material, mobile source emissions, and open burning. PM(2.5) tended to be dominated by mobile source emissions, open burning, and secondary species. This paper presents the results of the PM(10) and PM(2.5), source contribution estimates. PMID:17268919

  11. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan.

    PubMed

    Tsai, Jiun-Horng; Tsai, Su-Mei; Wang, Wei-Chi; Chiang, Hung-Lung

    2016-08-01

    Coarse and fine particulate matter (PM) were taken by a dichotomous sampler, and gas precursors were determined by a denuder sampler at two stations in central Taiwan. Water-soluble ionic constituents of PM and their precursor gases were analyzed by ionic chromatograph. In summer, the daytime/nighttime PM10 concentrations were 37 ± 10/41 ± 18 μg m(-3) and 36 ± 14/34 ± 18 μg m(-3) for Xitun and Jhushan, respectively. Average PM10 concentration in winter was 1.55 and 1.76 times that of summer for Xitun and Jhushan, respectively. PM mass concentrations were similar for both stations, although one station is located in the downtown area of Taichung, and the other is in a rural area with no heavy pollution sources. Water-soluble ionic species content was 38-53 % of PM2.5 and 43-48 % of PM10 mass concentration. HNO3, HCl, and SO2 were high in the daytime; the daytime-to-nighttime concentration ratio was 3.75-6.88 for HNO3,1.7-7.8 for HCl, and 1.45-2.77 for SO2. High NH3 levels were determined in the area, especially in winter, which could be a precursor of NH4 (+) to form particulate matter. In Xitun, motor vehicles downtown and in the industrial district could be sources of air pollution. In contrast, there are few industrial sources at Jhushan; therefore, the transport of air pollutants from upwind of other regions and the accumulation of pollutants could be important PM sources at Jhushan. PMID:27184148

  12. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region.

    PubMed

    Chuersuwan, Nares; Nimrat, Subuntith; Lekphet, Sukanda; Kerdkumrai, Tida

    2008-07-01

    This research was the first long-term attempt to concurrently measure and identify major sources of both PM(10) and PM(2.5) in Bangkok Metropolitan Region (BMR). Ambient PM(10) and PM(2.5) were evaluated at four monitoring stations and analyzed for elemental compositions, water-soluble ions, and total carbon during February 2002-January 2003. Fifteen chemical elements, four water-soluble ions, and total carbon were analyzed to assist major source identification by a receptor model approach, known as chemical mass balance. PM(10) and PM(2.5) were significantly different (p<0.05) at all sites and 24 h averages were high at traffic location while two separated residential sites were similar. Seasonal difference of PM(10) and PM(2.5) concentrations was distinct between dry and wet seasons. Major source of PM(10) at the traffic site indicated that automobile emissions and biomass burning-related sources contributed approximately 33% each. Automobiles contributed approximately 39 and 22% of PM(10) mass at two residential sites while biomass burning contributed about 36 and 28%. PM(10) from re-suspended soil and cooking sources accounted for 10 to 15% at a residential site. Major sources of PM(2.5) at traffic site were automobile and biomass burning, contributing approximately 32 and 26%, respectively. Biomass burning was the major source of PM(2.5) mass concentrations at residential sites. Meat cooking also accounted for 31% of PM(2.5) mass at a low impact site. Automobile, biomass burning, and road dust were less significant, contributed 10, 6, and 5%, respectively. Major sources identification at some location had difficulty to achieve performance criteria due to limited source profiles. Improved in characterize other sources profiles will help local authority to better air quality. PMID:18258301

  13. [Evaluation of Antilles fish ciguatoxicity by mouse and chick bioassays].

    PubMed

    Pottier, I; Vernoux, J P

    2003-03-01

    Ciguatera is a common seafood poisoning in Western Atlantic and French West Indies. Ciguatera fish poisoning in the Caribbean is a public health problem. A toxicological study was carried out on 178 Caribbean fish specimens (26 species) captured off Guadeloupe and Saint Barthelemy between 1993 and 1999. The mouse bioassay and the chick feeding test were used to control fish edibility. Ciguatoxins presence was assumed when symptomatology was typical of ciguatera in mouse and chick. Fishes were classified in three groups: non toxic fish (edible), low toxic fish (not edible) and toxic fish (not edible). 75% of fishes were non toxic. Toxic fish specimens belonged to four families of high trophic level carnivores: Carangidae, Lutjanidae, Serranidae et Sphyraenidae. Percentages of toxic fishes to humans reached 55% for Caranx latus and 33% for Caranx bartholomaei and Caranx lugubris. Only a significant correlation between weight and toxicity was only found for C. latus and snappers. Small carnivorous groupers (Serranidae) were also toxic. Atoxic fish species were (a) pelagic fish (Coryphaena hippurus, Auxis thazard and Euthynnus pelamis), (b) invertebrates feeders (Malacanthus plumieri, Balistes vetula), (c) small high-risk fish or (d) fish of edible benthic fish families. Liver of four fishes (Mycteroperca venenosa, Caranx bartholomaei, Seriola rivoliana, Gymnothorax funebris) contained ciguatoxins at a significant level although their flesh was safe. This study confirms the usefulness of mouse and chick bioassays for sanitary control of fish. PMID:12784589

  14. A Bioassay for Lafora Disease and Laforin Glucan Phosphatase Activity

    PubMed Central

    Sherwood, Amanda R.; Johnson, Mary Beth; Delgado-Escueta, Antonio V.; Gentry, Matthew S.

    2013-01-01

    Objectives Lafora disease is a rare yet invariably fatal form of progressive neurodegenerative epilepsy resulting from mutations in the phosphatase laforin. Several therapeutic options for Lafora disease patients are currently being explored, and these therapies would benefit from a biochemical means of assessing functional laforin activity following treatment. To date, only clinical outcomes such as decreases in seizure frequency and severity have been used to indicate success of epilepsy treatment. However, these qualitative measures exhibit variability and must be assessed over long periods of time. In this work, we detail a simple and sensitive bioassay that can be used for the detection of functional endogenous laforin from human and mouse tissue. Design and methods We generated antibodies capable of detecting and immunoprecipitating endogenous laforin. Following laforin immunoprecipitation, laforin activity was assessed via phosphatase assays using para-nitrophenylphosphate (pNPP) and a malachite green-based assay specific for glucan phosphatase activity. Results We found that antibody binding to laforin does not impede laforin activity. Furthermore, the malachite green-based glucan phosphatase assay used in conjunction with a rabbit polyclonal laforin antibody was capable of detecting endogenous laforin activity from human and mouse tissue. Importantly, this assay discriminated between laforin activity and other phosphatases. Conclusions The bioassay that we have developed utilizing laforin antibodies and an assay specific for glucan phosphatase activity could prove valuable in the rapid detection of functional laforin in patients to which novel Lafora disease therapies have been administered. PMID:24012855

  15. Dichloromethane attracts diabroticite larvae in a laboratory behavioral bioassay.

    PubMed

    Jewett, D K; Bjostad, L B

    1996-07-01

    A two-choice laboratory behavioral bioassay was used to demonstrate that dichloromethane elicits the dose-dependent attraction of secondinstar western and southern corn rootworms. Preliminary data suggest that second-instar banded cucumber beetles are also attracted to dichloromethane. An eluotropic series of 10 materials, including distilled water, ethanol, methanol, acetone, ethyl dichloroacetate, dichloromethane, diethyl ether, benzene, hexadecane, and hexane, was tested for attraction of western corn rootworm larvae. Dichloromethane was the only one attractive at all doses tested, and orthogonal comparisons revealed a quadratic trend (convex) for responses of larvae to increasing dose. Benzene and hexadecane also attracted larvae, but significantly fewer than dichloromethane, and only at three doses and one dose, respectively. Orthogonal comparisons revealed no linear or quadratic trend for responses of larvae to increasing doses of either compound. Dichloromethane is the first organic compound demonstrated to attract western corn rootworm larvae in the absence of carbon dioxide. Carbon dioxide has previously been reported to attract western corn rootworm larvae either independently or when combined with other organic compounds, and the sensitivity of our bioassay was tested by demonstrating the dose-dependent attraction of western corn rootworm larvae to carbonated water as a carbon dioxide source. We have also demonstrated the attraction of southern corn rootworm larvae to carbon dioxide and propose that carbon dioxide and dichloromethane behave analogously when they interact with chemoreceptor sites on larvae. PMID:24226089

  16. Vicia faba bioassay for environmental toxicity monitoring: A review.

    PubMed

    Iqbal, Munawar

    2016-02-01

    Higher plants are recognized as excellent genetic models to detect cytogenetic and mutagenic agents and are frequently used in environmental monitoring studies. Vicia faba (V. faba) bioassay have been used to study DNA damages i.e., chromosomal and nuclear aberrations induced by metallic compounds, pesticides, complex mixtures, petroleum derivates, toxins, nanoparticles and industrial effluents. The main advantages of using V. faba is its availability round the year, economical to use, easy to grow and handle; its use does not require sterile conditions, rate of cell division is fast, chromosomes are easy to score, less expensive and more sensitive as compared to other short-term tests that require pre-preparations. The V. faba test offers evaluation of different endpoints and tested agents can be classified as cytotoxic/genotoxic/mutagenic. This test also provides understanding about mechanism of action, whether the tested agent is clastogenic or aneugenic in nature. In view of advantages offered by V. faba test system, it is used extensively to assess toxic agents and has been emerged as an important bioassay for ecotoxicological studies. Based on the applications of V. faba test to assess the environmental quality, this article offers an overview of this test system and its efficiency in assessing the cytogenetic and mutagenic agents in different classes of the environmental concerns. PMID:26414739

  17. Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation.

    PubMed

    Watanabe, Shigeru; Yoshida, Kazuma; Shinkawa, Keitarou; Kumagawa, Daisuke; Seguchi, Hideki

    2010-12-01

    Gold nanoparticles stabilized with thioglucose (TGlu-AuNPs), which have carboxyl groups on the particle surface as anchoring sites for covalent immobilization of biomolecules, were prepared by the chemical reduction of HAuCl4 using 1-thio-β-D-glucose as a reducing and stabilizing agent, and their application to colorimetric bioassay was demonstrated using the carbohydrate-lectin system. p-Aminophenyl α-D-mannose (Man-NH2) was covalently attached by a conventional method to the activated carboxyl groups on the TGlu-AuNPs. On addition of Con A to the Man-AuNPs, multiple binding events occurred between Con A and the mannoses immobilized on the particle surface. This Con A-induced aggregation resulted in a significant red shift in local surface plasmon resonance. The binding isotherm showed a sigmoidal curve, indicating cooperativity in the binding of Con A and the Man-AuNPs. In addition, Hill plots showed two nonequivalent binding modes, with the Kd values for high- and low-affinity binding of 11.3 and 66.5 pM, respectively, which was significantly lower than that for methyl-α-D-mannose binding to Con A. The enhanced binding affinity between Man-AuNPs and Con A involves the cluster effect of the carbohydrate groups on the AuNPs. A linear correlation curve was obtained in the range 10-100 nM (R2=0.983). The limit of detection (LOD) for Con A was 9.0 nM in aqueous buffer, which is comparable to that of other conventional methods such as ELISA. PMID:20801619

  18. Size fractionation in mercury-bearing airborne particles (HgPM 10) at Almadén, Spain: Implications for inhalation hazards around old mines

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Higueras, Pablo; Jones, Tim; McDonald, Iain; Gibbons, Wes

    Almadén has a >2000y mining history and an unprecedented legacy of mercury contamination. Resuspended airborne particles were extracted from mine waste (Las Cuevas), retort site soil (Almadenejos), and urban car park dust (Almadén), separated into fine (PM 10) and coarse (PM >10 μm ) fractions, analysed for mercury using ICP-MS, and individual HgPM characterised using SEM. Cold extractable mercury concentrations in PM 10 range from 100 to 150 μg g -1 (car parks), to nearly 6000 μg g -1 (mine waste), reaching a world record of 95,000 μg g -1 above the abandoned retort at Almadenejos where ultrafine HgPM have pervaded the brickwork and soil and entered the food chain: edible wild asparagus stem material from here contains 35-65 μg g -1 Hg, and pig hair from animals living, inhaling and ingesting HgPM 10 at the site yielded 8-10 μg g -1. The PM 10 fraction (dusts easily wind transported and deeply inhaled) contains much more mercury than the coarser fraction. The contribution of HgPM 10 to ecosystem contamination and potential human health effects around old mercury mines has been underestimated.

  19. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles

    PubMed Central

    Hasheminassab, Sina; Pakbin, Payam; Delfino, Ralph J.; Schauer, James J.; Sioutas, Constantinos

    2014-01-01

    Diurnal and seasonal variations in the apparent density of ambient fine and coarse particulate matter (PM2.5 and CPM [PM2.5-10], respectively) were investigated in a location near downtown Los Angeles. The apparent densities, determined by particle mass-to-volume ratios, showed strong diurnal and seasonal variations, with higher values during the warm phase (June to August 2013) compared to cold phase (November 2012 to February 2013). PM2.5 apparent density showed minima during the morning and afternoon rush hours of the cold phase (1.20 g cm−3), mainly due to the increased contribution of traffic-emitted soot particles, and highest values were found during the midday in the warm phase (2.38 g cm−3). The lowest CPM apparent density was observed during the morning rush hours of the cold phase (1.41 g cm−3), while highest in early afternoon during the warm phase (2.91 g cm−3), most likely due to the increased wind-induced resuspension of road dust. PMID:24413160

  20. Coarse-grained interaction potentials for anisotropic molecules.

    PubMed

    Babadi, M; Everaers, R; Ejtehadi, M R

    2006-05-01

    We have proposed an efficient parametrization method for a recent variant of the Gay Berne potential for dissimilar and biaxial particles [Phys. Rev. E 67, 041710 (2003)] and demonstrated it for a set of small organic molecules. Compared with the previously proposed coarse-grained models, the new potential exhibits a superior performance in close contact and large distant interactions. The repercussions of thermal vibrations and elasticity have been studied through a statistical method. The study justifies that the potential of mean force is representable with the same functional form, extending the application of this coarse-grained description to a broader range of molecules. Moreover, the advantage of employing coarse-grained models over truncated atomistic summations with large distance cutoffs has been briefly studied. PMID:16689591

  1. Size-fractionated PM10 monitoring in relation to the contribution of endotoxins in different polluted areas

    NASA Astrophysics Data System (ADS)

    Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.

    2011-07-01

    Particulate pollution is an environmental concern that is widespread and difficult to resolve. Recently various regulatory improvements around the world have been agreed upon to tackle this problem, especially as related to the fine fraction of particulates, which more closely correlates to human health effects than other fractions. The size-fractionation of inhalable particles and their organic composition represent a new area of research that has been poorly explored thus far. Endotoxins are a type of natural organic compound that can be found in particulate matter. They are correlated with Gram-negative bacterial contamination. Health outcomes associated with exposure to these toxins are not specific and often overlap with the health effects of PM (Particulate Matter) exposure, including asthma, bronchitis, acute respiratory distress syndrome and organic dust toxic syndrome. Very little information is available on the endotoxin distribution in different PM10 size fractions. This study examined PM10 size fractions and their endotoxin content. Sampling was conducted at five different locations: one urban, two rural and two rural sites that were highly influenced by large-scale farm animal production facilities. For each location, six different PM10 fractions were evaluated. PM10 sub-fractions were categorised as follows: PM 10-7.2 (1.15-31.30 μg m -3); PM 7.2-3.0 (1.86-30.73 μg m -3); PM 3.0-1.5 (1.74-13.90 μg m -3); PM 1.5-0.95 (0.24-10.57 μg m -3); PM 0.95-0.49 (1.22-14.33 μg m -3) and PM <0.49 (13.15-85.49 μg m -3). The ranges of endotoxin levels determined were: PM 10-7.2 (0.051-5.401 endotoxin units (EU) m -3); PM 7.2-3.0 (0.123-7.801 EU m -3); PM 3.0-1.5 (0.057-1.635 EU m -3); PM 1.5-0.95 (0.040-2.477 EU m -3); PM 0.95-0.49 (0.007-3.159 EU m -3) and PM <0.49 (0.039-3.975 EU m -3). Our results indicated consistency of the PM1 fraction at all of the sites and the predominant presence of endotoxins in the coarse fraction. The observed abatement of the PM

  2. A Transferable Coarse-Grained Model for Hydrogen Bonding Liquids

    PubMed Central

    Golubkov, Pavel A.; Wu, Johnny C.; Ren, Pengyu

    2008-01-01

    We present here a recent development of a generalized coarse-grained model for use in molecular simulations. In this model, interactions between coarse-grained particles consist of both van der Waals and explicit electrostatic components. As a result, the coarse-grained model offers the transferability that is lacked by most current effectivepotential based approaches. The previous center-of-mass framework1 is generalized here to include arbitrary off-center interaction sites for both Gay-Berne and multipoles. The new model has been applied to molecular dynamic simulations of neat methanol liquid. By placing a single point multipole at the oxygen atom rather than at the center of mass of methanol, there is a significant improvement in the ability to capture hydrogen-bonding. The critical issue of transferability of the coarse-grained model is verified on methanol-water mixtures, using parameters derived from neat liquids without any modification. The mixture density and internal energy from coarse-grained molecular dynamics simulations show good agreement with experimental measurements, on a par with what has been obtained from more detailed atomic models. By mapping the dynamics trajectory from the coarse-grained simulation into the all-atom counterpart, we are able to investigate atomic .level structure and interaction. Atomic radial distribution functions of neat methanol, neat water and mixtures compare favorably to experimental measurements. Furthermore, hydrogen-bonded 6- and 7-molecule chains of water and methanol observed in the mixture are in agreement with previous atomic simulations. PMID:18688358

  3. Coarse-grid selection for parallel algebraic multigrid

    SciTech Connect

    Cleary, A. J., LLNL

    1998-06-01

    The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity

  4. Resistance monitoring of Heliothis virescens to pyramided cotton varieties with a hydrateable, artificial cotton leaf bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proof of concept was demonstrated for a practical, off the shelf bioassay to monitor for tobacco budworm resistance to pyramided Bt cotton using plant eluants. The bioassay was based on a previously described feeding disruption test using hydrateable artificial diet containing a blue indicator dye, ...

  5. Comparison of two mosquito bioassay methods for the estimate of minimum effective dose in repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is expected that laboratory-based repellent bioassays should reliably evaluate the efficacy of compounds that deter mosquito feeding behavior. The variety of repellent bioassays available allows for flexibility in design, but makes it difficult to compare any two methods, including in vitro and i...

  6. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology

    PubMed Central

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175

  7. Effects of Wind Speed on Aerosol Spray Penetration in Adult Mosquito Bioassay Cages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay cages are commonly used to assess efficacy of insecticides against adult mosquitoes in the field. To properly correlate adult mortality readings to insecticidal efficacy and/or spray application parameters, it is important to know how the cage used in the bioassay interacts with the spray ...

  8. LIFE CYCLE BIOASSAY FOR ASSESSMENT OF THE EFFECTS OF TOXIC CHEMICALS USING RAPID CYCLING OF BRASSICA

    EPA Science Inventory

    Initial evaluation of a new plant life cycle bioassay for the assessment of the effects of toxic chemicals is presented. he bioassay features a rapid cycling Brassica species that can complete its life cycle in as little as 36 days. he herbicide dalapon (2,2 dichloropropionic aci...

  9. Immunochemical technologies for replacement of rodent bioassays in sensitive detection of toxins in foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid sensitive assays for biothreat toxins that can be used to detect intentionally contaminated foods are now typically performed via bioassay in live mice. While bioassay provides essential data on bioavailability, animal models are technically, fiscally, and ethically challenging. Through carefu...

  10. Improved high-throughput bioassay for Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As we gain more information through functional genomic studies of Rhyzopertha dominica (F.), we need a high throughput bioassay system to screen potential biopesticides. R. dominica is an internal feeder during immature stages and presents unique challenges with traditional bioassay methods. Our pri...

  11. Development of a High Throughput Translational Bioassay for Plant Biofuel Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the well developed microbial system, Clostridium phytofermentans, we have developed a robust bioassay for biomass digestibility and conversion to biofuels. The bioassay can be used to measure the impact of plant genetic diversity on digestibility, and thereby determine the potential effects of...

  12. A Bioassay for Determining Resistance Levels in Tarnished Plant Bug Populations to Neonicotinoid Insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed and used to test field populations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), for resistance development to the neonicitinoid insecticides imidacloprid (Trimax®) and thiamethoxam (Centric®). The bioassay determined LC50 values by feeding...

  13. A LABORATORY BIOASSAY FOR MONITORING RESISTANCE IN TARNISHED PLANT BUG POPULATIONS TO NEONICOTINOID INSECTICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory bioassay was developed for testing tarnished plant bug populations for resistance development to the neonicotinoid insecticides imidacloprid and thiamethoxam. The bioassay allows for the determination of LC50 values by feeding known doses of the insecticides to adult tarnished plant bu...

  14. An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM.

    PubMed

    Bramwell, Lisa; Qian, Jing; Howard-Reed, Cynthia; Mondal, Sumona; Ferro, Andrea R

    2016-01-01

    Typical resuspension activities within the home, such as walking, have been estimated to contribute up to 25% of personal exposures to PM10. Chamber studies have shown that for moderate walking intensities, flooring type can impact the rate at which particles are re-entrained into the air. For this study, the impact of residential flooring type on incremental average daily (24 h) time-averaged exposure was investigated. Distributions of incremental time-averaged daily exposures to fine and coarse PM while walking within the residential micro-environment were predicted using CONTAM, the multizone airflow and contaminant transport program of the National Institute of Standards and Technology. Knowledge of when and where a person was walking was determined by randomly selecting 490 daily diaries from the EPA's consolidated human activity database (CHAD). On the basis of the results of this study, residential flooring type can significantly impact incremental time-averaged daily exposures to coarse and fine particles (α=0.05, P<0.05, N=490, Kruskal-Wallis test) with high-density cut pile carpeting resulting in the highest exposures. From this study, resuspension from walking within the residential micro-environment contributed 6-72% of time-averaged daily exposures to PM10. PMID:25967067

  15. Benthic invertebrate bioassays with toxic sediment and pore water

    USGS Publications Warehouse

    Giesy, John P.; Rosiu, Cornell J.; Graney, Robert L.; Henry, Mary G.

    1990-01-01

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. The assays studied were: (a) Microtox®, a 15-min assay ofPhotobacterium phosphoreum bioluminescence inhibition by pore water; (b) 48-h Daphnia magnalethality test in pore water; (c) 10-d subchronic assay of lethality to and reduction of weight gain by Chironomus tentans performed in either whole sediment or pore water; (d) 168-h acute lethality assay of Hexagenia limbata in either whole sediment or pore water. The three methods of diluting sediments were: (a) extracting pore water from the toxic location and dilution with pore water from the control station; (b) diluting whole sediment from the toxic location with control whole sediment from a reference location, then extracting pore water; and (c) diluting toxic, whole sediment with whole sediment from a reference location, then using the whole sediment in bioassays. Based on lethality, H. limbata was the most sensitive organism to the toxicity of Detroit River sediment. Lethality of D. magna in pore water was similar to that of H. limbata in whole sediment and can be used to predict effects of whole sediment toxicity to H. limbata. The concentration required to cause a 50% reduction in C. tentans growth (10-d EC50) was approximately that which caused 50% lethality of D. magna (48-h LC50) and was similar to the toxicity that restricts benthic invertebrate colonization of contaminated sediments. While the three dilution techniques gave similar results with some assays, they gave very different results in other assays. The dose-response relationships determined by the three dilution techniques would be expected to vary with sediment, toxicant and bioassay type, and the dose-response relationship derived from each technique needs to be interpreted accordingly.

  16. The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; He, Jiang; Zhao, Boyi; Zhang, Lijun; Fan, Qingyun; Lü, Changwei; Dudagula; Liu, Tao; Yuan, Yinghui

    2016-09-01

    Particulate matter (PM), including PM10 and PM2.5, is one of the major impacts on air quality, visibility, climate change, earth radiation balance, and public health. Organic carbon (OC) and elemental carbon (EC) are the major components of PM. 804 samples (PM10 and PM2.5) were simultaneously collected from six urban sites covering 3 districts in Baotou, in January, April, September, and November 2014. As to a long-term study on the effects of carbonaceous aerosol, data were collected annually at Environmental Protection Agency of Baotou (EPB). The concentrations of PM10 and PM2.5, the spatial distribution and content of OC and EC, the relationship between OC and EC, and the formation of secondary organic carbon (SOC) have been investigated. The findings indicated that the concentrations of these particle matter are higher than that in US or European standards. The average concentrations of OC in PM10 and PM2.5 follow the order: January > November > April > September; and for EC in PM10 and PM2.5 follow the order: January > November > September > April. Affected by metrological factors, it was indicated that high wind speed and low relative humidity were beneficial for removal of OC and EC in January and November. Pearson correlations and cluster analysis on OC and EC concentrations in PM10 and PM2.5 with gaseous pollutants (SO2, NO2, and CO) suggested that OC shared the same emission sources with SO2 and CO from combustion, while EC's sources mainly came from vehicles exhaust and combustion which contributed to NO2 as well. The OC concentration is mainly primary in warm months, while it appears secondary in cold months in Baotou. There is a common characteristic among the cities with higher SOC in winter, wherever the coal combustion can lead to the severe pollution. This work is important for the construction of the database of OC and EC concentrations in PM10 and PM2.5 at spatial and time intervals, and it can provide scientific suggestion for similar PM

  17. Evaluation of the mutagenicity and carcinogenicity of motor vehicle emissions in short-term bioassays.

    PubMed Central

    Lewtas, J

    1983-01-01

    Incomplete combustion of fuel in motor vehicles results in the emission of submicron carbonaceous particles which, after cooling and dilution, contain varying quantities of extractable organic constituents. These organics are mutagenic in bacteria. Confirmatory bioassays in mammalian cells provide the capability of detecting chromosomal and DNA damage in addition to gene mutations. In order to evaluate the mutagenicity of these organics in mammalian cells, extractable organics from particle emissions from several diesel and gasoline vehicles were compared in a battery of microbial, mammalian cell and in vivo bioassays. The mammalian cell mutagenicity bioassays were selected to detect gene mutations, DNA damage, and chromosomal effects. Carcinogenesis bioassays conducted included short-term assays for oncogenic transformation and skin tumorigenesis. The results in different assay systems are compared both qualitatively and quantitatively. Good quantitative correlations were observed between several mutagenesis and carcinogenesis bioassays for this series of diesel and gasoline emissions. PMID:6186475

  18. Kerb and urban increment of highly time-resolved trace elements in PM10, PM2.5 and PM1.0 winter aerosol in London during ClearfLo 2012

    NASA Astrophysics Data System (ADS)

    Visser, S.; Slowik, J. G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Dressler, R.; Flechsig, U.; Appel, K.; Green, D. C.; Tremper, A. H.; Young, D. E.; Williams, P. I.; Allan, J. D.; Herndon, S. C.; Williams, L. R.; Mohr, C.; Xu, L.; Ng, N. L.; Detournay, A.; Barlow, J. F.; Halios, C. H.; Fleming, Z. L.; Baltensperger, U.; Prévôt, A. S. H.

    2014-06-01

    Ambient concentrations of trace elements with 2 h time resolution were measured in PM10-2.5, PM2.5-1.0 and PM1.0-0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 11.6 to 18.5 for SW winds (3.6-9.4 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.6 to 8.0 for SW (2.6-6.5 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10-2.5 mass fraction, roughly 3 times that of the PM1.0-0.3 fraction. These elements also showed the highest urban increments (∼3.0), although no difference was observed between brake wear and other traffic-related elements. Traffic-related elements exhibited higher concentrations during morning and evening rush hour, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (2.0-4.1 for SW, 1.4-2.1 for NE) and urban (1.7-2.3) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10-2.5 sea salt (factor of 1.5-2.0), which may be influenced by traffic

  19. Kerb and urban increment of highly time-resolved trace elements in PM10, PM2.5 and PM1.0 winter aerosol in London during ClearfLo 2012

    NASA Astrophysics Data System (ADS)

    Visser, S.; Slowik, J. G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Dressler, R.; Flechsig, U.; Appel, K.; Green, D. C.; Tremper, A. H.; Young, D. E.; Williams, P. I.; Allan, J. D.; Herndon, S. C.; Williams, L. R.; Mohr, C.; Xu, L.; Ng, N. L.; Detournay, A.; Barlow, J. F.; Halios, C. H.; Fleming, Z. L.; Baltensperger, U.; Prévôt, A. S. H.

    2015-03-01

    Ambient concentrations of trace elements with 2 h time resolution were measured in PM10-2.5, PM2.5-1.0 and PM1.0-0.3 size ranges at kerbside, urban background and rural sites in London during winter 2012. Samples were collected using rotating drum impactors (RDIs) and subsequently analysed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). Quantification of kerb and urban increments (defined as kerb-to-urban and urban-to-rural concentration ratios, respectively), and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure. Traffic-related elements yielded the highest kerb increments, with values in the range of 10.4 to 16.6 for SW winds (3.3-6.9 for NE) observed for elements influenced by brake wear (e.g. Cu, Sb, Ba) and 5.7 to 8.2 for SW (2.6-3.0 for NE) for other traffic-related processes (e.g. Cr, Fe, Zn). Kerb increments for these elements were highest in the PM10-2.5 mass fraction, roughly twice that of the PM1.0-0.3 fraction. These elements also showed the highest urban increments (~ 3.0), although no difference was observed between brake wear and other traffic-related elements. All elements influenced by traffic exhibited higher concentrations during morning and evening rush hours, and on weekdays compared to weekends, with the strongest trends observed at the kerbside site, and additionally enhanced by winds coming directly from the road, consistent with street canyon effects. Elements related to mineral dust (e.g. Al, Si, Ca, Sr) showed significant influences from traffic-induced resuspension, as evidenced by moderate kerb (3.4-5.4 for SW, 1.7-2.3 for NE) and urban (~ 2) increments and increased concentrations during peak traffic flow. Elements related to regional transport showed no significant enhancement at kerb or urban sites, with the exception of PM10-2.5 sea salt (factor of up to 2), which may be influenced by

  20. Efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers to collect PM10, PM2.5 and PM1

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Funk, Roger; Buschiazzo, Daniel E.

    2016-06-01

    The internal efficiency of Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers for trapping PM10, PM2.5 and PM1 were tested in a wind tunnel, at two wind speeds (3.0 and 6.8 m s-1) in the saltation zone (SAZ) and the suspension zone (SAZ). PM concentrations measured in the inlet and the outlet of both samplers were correlated and the slopes of fitting equations were used for calculating sampling efficiencies. Results showed that BSNE efficiencies ranged from 12% to 32% for PM10, from 0% to 19% for PM2.5 and from 0% to 12% for PM1. The BSNE's efficiency decreased with decreasing particle sizes in SAZ and SUZ at both wind speeds as a consequence of the very low deposition velocity of the finest size particles. The BSNE's efficiency increased with increasing wind speed in SAZ for PM10 and PM2.5 and in SUZ for PM2.5. The MWAC's efficiency ranged from 1% to 20% for PM10, from 0% to 15% for PM2.5 and from 0% to 16% for PM1. The MWAC efficiency was 0% for PM10, PM2.5 and PM1 in the SUZ at 3 m s-1 and for PM2.5 and PM1 in the SUZ at 6.8 m s-1. These results provide evidence that the efficiency of BSNE and MWAC for trapping PM10 change with wind speed and position of the sampler. Results also show that BSNEs and MWACs can potentially be used for PM10 emission studies but more research is needed in order to understand and improve their efficiency.

  1. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5...

  2. 40 CFR Table C-4 to Subpart C of... - Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5...

  3. The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models

    PubMed Central

    Noid, W. G.; Liu, Pu; Wang, Yanting; Chu, Jhih-Wei; Ayton, Gary S.; Izvekov, Sergei; Andersen, Hans C.; Voth, Gregory A.

    2008-01-01

    The multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005);J. Chem. Phys. 123, 134105 (2005)] employs a variational principle to determine an interaction potential for a CG model from simulations of an atomically detailed model of the same system. The companion paper proved that, if no restrictions regarding the form of the CG interaction potential are introduced and if the equilibrium distribution of the atomistic model has been adequately sampled, then the MS-CG variational principle determines the exact many-body potential of mean force (PMF) governing the equilibrium distribution of CG sites generated by the atomistic model. In practice, though, CG force fields are not completely flexible, but only include particular types of interactions between CG sites, e.g., nonbonded forces between pairs of sites. If the CG force field depends linearly on the force field parameters, then the vector valued functions that relate the CG forces to these parameters determine a set of basis vectors that span a vector subspace of CG force fields. The companion paper introduced a distance metric for the vector space of CG force fields and proved that the MS-CG variational principle determines the CG force force field that is within that vector subspace and that is closest to the force field determined by the many-body PMF. The present paper applies the MS-CG variational principle for parametrizing molecular CG force fields and derives a linear least squares problem for the parameter set determining the optimal approximation to this many-body PMF. Linear systems of equations for these CG force field parameters are derived and analyzed in terms of equilibrium structural correlation functions. Numerical calculations for a one-site CG model of methanol and a molecular CG model of the EMIM+∕NO3− ionic liquid are provided to illustrate the method. PMID:18601325

  4. Long term PM2.5 estimation and its impact on human health in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Pozzer, Andrea; Cao, Chunxiang

    2014-05-01

    Due to the economic growth and urbanization, the emissions of pollutants have increased significantly in the North China Plain (NCP). Beijing, the capital of China, is located at the northern tip of NCP, and it is considered one of the most densely populated cities with the poorest air quality. This is of major concerns, because of the impact of high pollutants concentration on human health. The present study analyses the characteristics of AOD and the particulate matter with diameter < 2.5 μm (PM2.5) and its impact on human health in the central Beijing areas. We acquire AOD from Aerosol Robotic Network (AERONET) in Beijing from 2001 to 2012. The AOD data are fitted with a lognormal distribution, and the 95% of the cumulative probability is used as the threshold for episodes of high AOD. Most episodes occur in summer, mostly in June, though this is combined with high precipitation. Episodes of high AOD caused by coarse pollutants occur only in March and April, and they are mostly caused by dust from the north. According to wind direction, wind speed, boundary layer height (BLH) and pollutant emission distribution, episodes of high AOD are due to the anthropogenic pollutants from the south (Hebei province). Based on ground PM2.5 observation from the US embassy in Beijing from 2010 to 2011, we establish a relationship between PM2.5and AERONET AOD, including BLH and relative humidity (RH) correction. Thanks to this method, 12 years of PM2.5 are estimated for the Beijing central area, allowing the estimation of long term concentrations of this pollutant. Since there is no obvious difference among the daily PM2.5 of six stations lying in Chaoyang, Dongcheng, and Xicheng district, we use the daily PM2.5 from US embassy station to represent the PM2.5 concentration in these three districts, and calculate yearly premature mortality due to long term exposure to PM2.5among the population with an age of ≥ 30 yr in these three districts.

  5. Chronic and Initiation/Promotion Skin Bioassays of Petroleum Refinery Streams.

    PubMed Central

    Skisak, C; Furedi-Machacek, EM; Schmitt, SS; Swanson, MS; Vernot, EH

    1994-01-01

    Nine refinery streams were tested in both chronic and initiation/promotion (I/P) skin bioassays. In the chronic bioassay, groups of 50 C3H/HeJ mice received twice weekly applications of 50 microl of test article for at least 2 years. In the initiation phase of the I/P bioassay, groups of CD-1 mice received an initiating dose of 50 microl of test article for 5 consecutive days, followed by promotion with 50 microl of phorbol-12-myristate-13-acetate (0.01% w/v in acetone) for 25 weeks. In the promotion phase of the I/P bioassay, CD-1 mice were initiated with 50 microl of 7,12-dimethylbenzanthracene (0.1% w/v in acetone) or acetone, followed by promotion with 50 microl of test article twice weekly for 25 weeks. The most volatile of the streams, sweetened naphtha, and the least volatile, vacuum residuum, were noncarcinogenic in both assays. Middle distillates, with a boiling range of 150 degrees-370 degreesC, demonstrated carcinogenic activity in the chronic bioassay and acted as promoters but not initiators in the I/P bioassay. Untreated mineral oil streams displayed initiating activity and were carcinogenic in the chronic bioassay, presumably due to the presence of polycyclic aromatic hydrocarbons of requisite size and structure. A highly solvent-refined mineral oil stream lacked initiating activity. These results indicate that the I/P bioassay, which takes 6 months to complete, may be a good qualitative predictor of the results of a chronic bioassay, at least for petroleum streams. Furthermore, the I/P bioassay can provide insight into possible mechanisms of tumor development. Images p82-a PMID:9719673

  6. PM2.5 and PM10 concentrations in four dairies on the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air quality was determined in 4 dairies at the boundary, commodity barn, and compost field. Two laser DustTrak PM10 aerosol monitors and four RAAS -300 gravimetric monitors, 2 PM2.5 and 2 PM10 were employed. The DustTrak flow rate was set at 1.7 L/min and the RAAS were set at 16.6 L/min. Monitors we...

  7. Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city

    NASA Astrophysics Data System (ADS)

    Massoud, Rawad; Shihadeh, Alan. L.; Roumié, Mohamed; Youness, Myriam; Gerard, Jocelyne; Saliba, Nada; Zaarour, Rita; Abboud, Maher; Farah, Wehbeh; Saliba, Najat Aoun

    2011-09-01

    The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m - 3 for PM10 and between 8.4 and 72.2 μg m - 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7-35.6 μg m - 3 and 46.0-53.5 μg m - 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km 2), one PM monitoring site does not reflect an accurate PM level in Beirut.

  8. 75 FR 26898 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...EPA is proposing under the Clean Air Act (CAA) to determine that the Fort Hall PM-10 nonattainment area on the Fort Hall Indian Reservation in Idaho has attained the National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10). EPA's proposed finding that the Fort Hall PM-10 nonattainment area has attained the......

  9. Harvester ant bioassay for assessing hazardous chemical waste sites

    SciTech Connect

    Gano, K.A.; Carlile, D.W.; Rogers, L.E.

    1984-12-01

    A technique was developed for using harvester ants, Pogonomyrmex owhyeei, in terrestrial bioassays. Procedures were developed for maintaining stock populations, handling ants, and exposing ants to toxic materials. Relative toxicities were determined by exposing ants to 10 different materials. These materials included three insecticides, Endrin, Aldrin, and Dieldrin; one herbicide, 2,4-D; three oil-like compounds, wood preservative, drilling fluid, and slop oil; and three heavy metals, copper, zinc, and cadmium. Ants were exposed in petri dishes containing soil amended with a particular toxicant. Under these test conditions, ants showed no sensitivity to the metals or 2,4-D. Ants were sensitive to the insecticides and oils in repeated tests, and relative toxicity remained consistent throughout. Aldrin was the most toxic material, followed by Dieldrin, Endrin, wood preservative, drilling fluid, and slop oil. 10 refs., 2 figs., 2 tabs.

  10. Acute bioassays with benthic macroinvertebrates conducted in situ

    SciTech Connect

    Whaley, M.; Garcia, R.; Sy, J. )

    1989-10-01

    Several methods of toxicity testing using macroinvertebrates in controlled laboratory experiments have been reported. Researchers conducted bioassays with natural assemblages of benthic macroinvertebrates exposed to several petroleum refinery effluents. They found that the populations of invertebrates declined after only a few days of exposure. The objective of the study was to determine the acute toxic effects of discharge water from a petrochemical complex on a natural assemblage of benthic macroinvertebrates. The discharge water consisted of refinery wastewater and sanitary wastewater, as well as brine discharge from a power/desalination plant. The benthic macroinvertebrates were transplanted from a healthy reef area to the outfall channel receiving the discharge water. The study began on October 7, 1985, and concluded that same week. Any decrease in specific species would indicate that the discharge was toxic to these species. These species could also serve as indicators of toxic conditions at other locations.

  11. A sediment suspension system for bioassays with small aquatic organisms

    USGS Publications Warehouse

    Schmidt-Dallmier, M. J.; Atchison, G.J.; Steingraeber, M.T.; Knights, B.C.

    1992-01-01

    Exposure of aquatic organisms to suspended sediments can impair growth and survival and increase bioaccumulation of sediment-associated contaminants. However, evaluation of the effects of suspended sediments and their associated contaminants on aquatic organisms has been hampered by the lack of a practical and inexpensive exposure system for conducting bioassays. We present a cost-effective system for assessing the effects of suspended sediments and associated contaminants on small aquatic organisms. A 7-day suspension test was conducted with nominal sediment concentrations ranging from 0.0 To 5.0 g 1-1. The system maintained relatively constant suspended sediment concentrations, as measured by turbidity, and caused minimal mortality to test organisms.

  12. Use of bioassay methods to evaluate incinerator emissions

    SciTech Connect

    Watts, R.R.; DeMarini, D.M.; Linak, W.P.; Lemieux, P.M.; McSorley, J.A.

    1989-01-01

    The organic components in combustion emissions are composed of thousands of chemicals. Analyzing such a complex mixture for the presence of even a few selected chemicals is difficult and provides information on only a fraction of the chemicals present. Reliance on such limited chemical analysis for determining possible health effects may ignore the contribution of many other chemical components of the effluent. Because combustion emissions are complex mixtures, they have been evaluated as such, rather than by studying a few selected chemicals that might be present. The Salmonella (Ames) assay was used to determine the mutagenicity associated with particles from the effluent of municipal-waste combustors, from ambient air collected near a municipal-waste combustor, and from the effluent of a pilot-sized rotary kiln in which polyethylene was combusted. Filter samples were extracted with dichloromethane, and concentrated extracts were solvent exchanged into dimethyl sulfoxide for bioassay.

  13. Toxicity assessment using different bioassays and microbial biosensors.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. PMID:27071051

  14. On relationship between aerosols and PM2.5

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Nakata, Makiko

    2015-04-01

    of aerosols, i.e., AOT, volume fraction of fine and coarse mode particles, also single scattering albedo. Here is brief description of our aerosol retrieval and PM2.5 estimation. 1. Atmospheric correction is applied for each channel image based on AERONET measurements, Averaged surface albedo is calculated based on 1 month window, 2. Aerosol optical properties are estimated by using surface albedo and satellite imagery. 3. Obtained columnar AOT information is converted to surface AOT with LIDAR data. 4. PM2.5 distribution is obtained from the relationship given in the above item 3. [Holben et al., 1998] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET - A federated instrument network and data archive for aerosol characterization," Rem. Sens. Environ., Vol. 66, pp. 1-16, 1998. [Smirnov et al., 2000] A. Smirnov, B.N. Holben, D. Savoie, J.M. Prospero, Y.J. Kaufman, D. Tanré, T.F. Eck, and I. Slutsker, "Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados," Geophy. Res. Lett., Vol. 27, pp. 1643-1646, 2000. [Wang and Christopher, 2003] J. Wang and S. A. Christopher, "Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies," Geophys. Res. Lett., Vol. 30, 2095, doi:10.1029/2003GL018174, 2003. [Sano et al., 2010] I. Sano, M. Mukai (Nakata), N. Iguchi, and S. Mukai, "Suspended particulate matter sampling at an urban AERONET site in Japan, part 2: relationship between column aerosol optical thickness and PM2.5 concentration," J. Appl. Remote Sens., Vol. 4, 043504, doi:10.1117/1.3327930, 2010.

  15. A novel bioassay using root re-growth in Lemna.

    PubMed

    Park, Areum; Kim, Youn-Jung; Choi, Eun-Mi; Brown, Murray T; Han, Taejun

    2013-09-15

    A new phytotoxicity test method based on root elongation of three Lemna species (Lemna gibba, L. minor, and L. paucicostata) has been developed. Tests with aquatic plants have, typically, favored measurements on fronds (e.g. frond number, area, biomass) rather than on roots, due, in part, to issues associated with handling fragile roots and the time-consuming procedures of selecting roots with identical root lengths. The present method differs in that roots were excised prior to exposure with subsequent measurements on newly developed roots. Results show that there were species-specific difference in sensitivity to the five metals tested (Ag, Cd, Cr, Cu and Hg), with Ag being the most toxic (EC50=5.3-37.6 μgL(-1)) to all three species, and Cr the least toxic for L. gibba and L. minor (1148.3 and 341.8 μgL(-1), respectively) and Cu for L. paucicostata (470.4 μgL(-1)). Direct comparisons were made with measurements of frond area, which were found to be less sensitive. More generally, root re-growth was shown to reflect the toxic responses of all three Lemna species to these five important metals. The root growth bioassay differs from three internationally standardized methods (ISO, OCED and US EPA) in that it is completed in 48 h, the required volume of test solutions is only 3 ml and non-axenic plants are used. Our results show that the Lemna root method is a simple, rapid, cost-effective, sensitive and precise bioassay to assess the toxic risks of metals and has practical application for monitoring municipal and industrial waste waters where metals are common constituents. PMID:23917640

  16. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading.

    PubMed

    Godino, Neus; Gorkin, Robert; Linares, Ana V; Burger, Robert; Ducrée, Jens

    2013-02-21

    This work for the first time presents the full integration and automation concept for a range of bioassays leveraged by cascading a centrifugo-pneumatic valving scheme to sequentially move several liquids through shared channel segments for multi-step sample preparation into the detection zone. This novel centrifugo-pneumatic liquid handling significantly simplifies system manufacture by obviating the need for complex surface functionalization procedures or hybrid material integration, as it is common in conventional valving methods such as capillary burst valves or sacrificial valves. Based on the centrifugo-pneumatic valving scheme, this work presents a toolkit of operational elements implementing liquid loading/transfer, metering, mixing and sedimentation in a microstructured polymer disc. As a proof of concept for the broad class of homogeneous bioassays, the full integration and automation of a colorimetric nitrate/nitrite test for the detection of clinically relevant nitric oxide (NO) in whole blood is implemented. First, 40 μL of plasma is extracted from a 100 μL sample of human blood, incubated for one hour with the enzymatic mixture (60 μL), and finally reacted with 100 μL of colorimetric (Greiss) reagents. Following just a single loading phase at the beginning of the process, all of these steps are automated through the centrifugo-pneumatic cascade with a high level of flow control and synchronization. Our system shows good correlation with controls up to 50 μM of nitrate, which adequately covers the healthy human range (4 to 45.3 μM). PMID:23250328

  17. Evolving BioAssay Ontology (BAO): modularization, integration and applications

    PubMed Central

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  18. Evolving BioAssay Ontology (BAO): modularization, integration and applications.

    PubMed

    Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  19. Validation of PM6 & PM7 semiempirical methods on polarizability calculations

    SciTech Connect

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2015-06-24

    Modern semiempirical methods such as PM6 and PM7 are often used to explore the electronic structure dependent properties of molecules. In this work we report the evaluation of PM6 and PM7 methods towards linear and nonlinear optical polarizability calculations for different molecules and solid nanoclusters. The results are compared with reported experimental results as well as theoretical results from other high level theories for the same systems. It is found that both methods produce accurate results for small molecules and the accuracy increases with the increase in asymmetry of the medium sized organic molecules and accuracy reduces for solid nanoclusters.

  20. Quantum particles from coarse grained classical probabilities in phase space

    SciTech Connect

    Wetterich, C.

    2010-07-15

    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.

  1. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    SciTech Connect

    Nemenman, Ilya; Sinitsyn, Nikolai; Hengartner, Nick

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  2. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    NASA Astrophysics Data System (ADS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-09-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains.

  3. On coarse projective integration for atomic deposition in amorphous systems

    NASA Astrophysics Data System (ADS)

    Chuang, Claire Y.; Han, Sang M.; Zepeda-Ruiz, Luis A.; Sinno, Talid

    2015-10-01

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the "equation-free" framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the "lifting" operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO2 using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  4. On coarse projective integration for atomic deposition in amorphous systems.

    PubMed

    Chuang, Claire Y; Han, Sang M; Zepeda-Ruiz, Luis A; Sinno, Talid

    2015-10-01

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the "equation-free" framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the "lifting" operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO2 using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system. PMID:26450324

  5. Multiscale coarse graining of liquid-state systems

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Voth, Gregory A.

    2005-10-01

    A methodology is described to systematically derive coarse-grained (CG) force fields for molecular liquids from the underlying atomistic-scale forces. The coarse graining of an interparticle force field is accomplished by the application of a force-matching method to the trajectories and forces obtained from the atomistic trajectory and force data for the CG sites of the targeted system. The CG sites can be associated with the centers of mass of atomic groups because of the simplicity in the evaluation of forces acting on these sites from the atomistic data. The resulting system is called a multiscale coarse-grained (MS-CG) representation. The MS-CG method for liquids is applied here to water and methanol. For both liquids one-site and two-site CG representations without an explicit treatment of the long-ranged electrostatics have been derived. In addition, for water a two-site model having the explicit long-ranged electrostatics has been developed. To improve the thermodynamic properties (e.g., pressure and density) for the MS-CG models, the constraint for the instantaneous virial was included into the force-match procedure. The performance of the resulting models was evaluated against the underlying atomistic simulations and experiment. In contrast with existing approaches for coarse graining of liquid systems, the MS-CG approach is general, relies only on the interatomic interactions in the reference atomistic system.

  6. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  7. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  8. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains— Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  9. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  10. On coarse projective integration for atomic deposition in amorphous systems

    SciTech Connect

    Chuang, Claire Y. E-mail: meister@unm.edu Sinno, Talid; Han, Sang M. E-mail: meister@unm.edu; Zepeda-Ruiz, Luis A. E-mail: meister@unm.edu

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  11. 7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ORE BIN AND CHUTE TO BEGINNING OF CONVEYOR BELT, SOUTH VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  12. Coarse-Grained and Atomistic Modeling of Polyimides

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Hinkley, Jeffrey A.

    2004-01-01

    A coarse-grained model for a set of three polyimide isomers is developed. Each polyimide is comprised of BPDA (3,3,4,4' - biphenyltetracarboxylic dianhydride) and one of three APB isomers: 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene or 1,3-bis(3-aminophenoxy)benzene. The coarse-grained model is constructed as a series of linked vectors following the contour of the polymer backbone. Beads located at the midpoint of each vector define centers for long range interaction energy between monomer subunits. A bulk simulation of each coarse-grained polyimide model is performed with a dynamic Monte Carlo procedure. These coarsegrained models are then reverse-mapped to fully atomistic models. The coarse-grained models show the expected trends in decreasing chain dimensions with increasing meta linkage in the APB section of the repeat unit, although these differences were minor due to the relatively short chains simulated here. Considerable differences are seen among the dynamic Monte Carlo properties of the three polyimide isomers. Decreasing relaxation times are seen with increasing meta linkage in the APB section of the repeat unit.

  13. Using lone star ticks, Amblyomma americanum (Acari: Ixodidae) in in vitro laboratory bioassays of repellents: dimensions, duration, and variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vitro bioassay is an important tool in repellent discovery and development, with a variety of bioassays used in recent years. Several factors, such as the dimensions and configuration of test surfaces and duration of tick exposure, can influence the outcome of bioassays. We tested two tick re...

  14. Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.

    PubMed

    Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R

    2015-12-01

    The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics. PMID:26458901

  15. Chemical-mineralogical characterisation of coarse recycled concrete aggregate

    SciTech Connect

    Limbachiya, M.C. . E-mail: m.limbachiya@kingston.ac.uk; Marrocchino, E.; Koulouris, A.

    2007-07-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO{sub 2}, Al{sub 2}O{sub 3} and CaO) of concrete, but thereafter there was a marginal decrease in SiO{sub 2} and increase in Al{sub 2}O{sub 3} and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  16. Apparatus for alternatives to PM-10 sampling

    SciTech Connect

    Wente, M.; Wente, W.E.; Moore, M.E.

    1995-12-31

    Because of questions of whether PM-10 adequately characterizes the size fraction that is a challenge to human health, we have developed devices and samplers that will provide PM-2.5 and PM-1 size fractions. Each of these systems utilizes a cyclone for the fractionation process. Models have been developed to predict both the cutpoint and the fractional efficiency curves for single inlet cyclones are geometrically similar to a form that was utilized by Lapple. Modeling has been done with two geometrical forms of multiple inlet cyclones. Each form has six inlets, and one form has the body shape of a Lapple cyclone, while the other has a shortened body. The models for cutpoints are based on log-linear correlations between D{sub 0.5}/d{sub o} and a flow Reynolds number; where D{sub 0.5} = cutpoint size, d{sub o} = cyclone body diameter, and the flow Reynolds number is based on the inlet velocity and the outlet tube diameter. PM-1 and PM-2.5 fractionators with flow rates of 16.7 L/min have been tested in both laboratory and field environments. One version of the fractionator is a stand-alone cylone that has been commercialized by URG, Inc., and a second version is made as an adaptor to the Graseby Andersen Inc. Model 246 inlet for the dichotomous sampler. A third version of the PM-2.5 inlet is one that includes its own wind speed decelerator, bug screen and cyclonic pre-fractionator, where the latter device is used for reducing the aerosol mass that will be deposited in the PM-2.5 cyclone. A prototype field sampler has been developed that incorporates flow control, and a easily changeable filter cartridge.

  17. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools

    NASA Astrophysics Data System (ADS)

    Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.

    2014-05-01

    The mass concentration, chemical composition and sources of quasi-ultrafine (quasi-UFP, PM0.25), accumulation (PM0.25-2.5) and coarse mode (PM2.5-10) particles were determined in indoor and outdoor air at 39 schools in Barcelona (Spain). Quasi-UFP mass concentrations measured (25.6 μg m-3 outdoors, 23.4 μg m-3 indoors) are significantly higher than those reported in other studies, and characterised by higher carbonaceous and mineral matter contents and a lower proportion of secondary inorganic ions. Results suggest that quasi-UFPs in Barcelona are affected by local sources in the schools, mainly human activity (e.g. organic material from textiles, etc., contributing 23-46% to total quasi-UFP mass) and playgrounds (in the form of mineral matter, contributing about 9% to the quasi-UFP mass). The particle size distribution patterns of toxicologically relevant metals and major aerosol components was characterised, displaying two modes for most elements and components, and one mode for inorganic salts (ammonium nitrate and sulfate) and elemental carbon (EC). Regarding metals, Ni and Cr were partitioned mainly in quasi-UFPs and could thus be of interest for epidemiological studies, given their high redox properties. Exposure of children to quasi-UFP mass and chemical species was assessed by comparing the concentrations measured at urban background and traffic areas schools. Finally, three main indoor sources across all size fractions were identified by assessing indoor / outdoor ratios (I / O) of PM species used as their tracers: human activity (organic material), cleaning products, paints and plastics (Cl- source), and a metallic mixed source (comprising combinations of Cu, Zn, Co, Cd, Pb, As, V and Cr). Our results support the need to enforce targeted legislation to determine a minimum "safe" distance between major roads and newly built schools to reduce exposure to traffic-derived metals in quasi-UFPs.

  18. Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor

    NASA Astrophysics Data System (ADS)

    Hu, S.; Polidori, A.; Arhami, M.; Shafer, M. M.; Schauer, J. J.; Cho, A.; Sioutas, C.

    2008-11-01

    In this study, two different types of assays were used to quantitatively measure the redox activity of PM and to examine its intrinsic toxicity: 1) in vitro exposure to rat alveolar macrophage (AM) cells using dichlorofluorescin diacetate (DCFH-DA) as the fluorescent probe (macrophage ROS assay), and: 2) consumption of dithiothreitol (DTT) in a cell-free system (DTT assay). Coarse (PM10-2.5), accumulation (PM2.5-0.25), and quasi-ultrafine (quasi-UF, PM0.25) mode particles were collected weekly at five sampling sites in the Los Angeles-Long Beach harbor and at one site near the University of Southern California campus (urban site). All PM samples were analyzed for organic (total and water-soluble) and elemental carbon, organic species, inorganic ions, and total and water-soluble elements. Quasi-UF mode particles showed the highest redox activity at all Long Beach sites (on both a per-mass and per-air volume basis). A significant association (R2=0.61) was observed between the two assays, indicating that macrophage ROS and DTT levels are affected at least partially by similar PM species. Relatively small variation was observed for the DTT measurements across all size fractions and sites, whereas macrophage ROS levels showed more significant ranges across the three different particle size modes and throughout the sites (coefficients of variation, or CVs, were 0.35, 0.24 and 0.53 for quasi-UF, accumulation, and coarse mode particles, respectively). Association between the PM constituents and the redox activity was further investigated using multiple linear regression models. The results showed that OC was the most important component influencing the DTT activity of PM samples. The variability of macrophage ROS was explained by changes in OC concentrations and water-soluble vanadium (probably originating from ship emissions bunker oil combustion). The multiple regression models were used to predict the average diurnal DTT levels as a function of the OC concentration at

  19. Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles - Long Beach Harbor

    NASA Astrophysics Data System (ADS)

    Hu, S.; Polidori, A.; Arhami, M.; Shafer, M. M.; Schauer, J. J.; Cho, A.; Sioutas, C.

    2008-06-01

    In this study, two different types of assays were used to quantitatively measure the redox activity of PM and to examine its intrinsic toxicity: 1) in vitro exposure to rat alveolar macrophage (AM) cells using dichlorofluorescin diacetate (DCFH-DA) as the fluorescent probe (macrophage ROS assay), and: 2) consumption of dithiothreitol (DTT) in a cell-free system (DTT assay). Coarse (PM10-2.5), accumulation (PM2.5-0.25), and quasi-ultrafine (quasi-UF, PM0.25) mode particles were collected weekly at five sampling sites in the Los Angeles-Long Beach Harbor and at one site near the University of Southern California campus (urban site). All PM samples were analyzed for organic (total and water-soluble) and elemental carbon, organic species, inorganic ions, and total and water-soluble elements. Quasi-UF mode particles showed the highest redox activity at all Long Beach sites (on both a per-mass and per-air volume basis). A significant association (R2=0.61) was observed between the two assays, indicating that macrophage ROS and DTT levels are affected at least partially by similar PM species. Relatively small variation was observed for the DTT measurements across all size fractions and sites, whereas macrophage ROS levels showed more significant ranges across the three different particle size modes and throughout the sites (coefficients of variation, or CVs, were 0.35, 0.24 and 0.53 for quasi-UF, accumulation, and coarse mode particles, respectively). Association between the PM constituents and the redox activity was further investigated using multiple linear regression models. The results showed that OC was the most important component influencing the DTT activity of PM samples. The variability of macrophage ROS was explained by changes in OC concentrations and water-soluble vanadium (probably originating from ship emissions - bunker oil combustion). The multiple regression models were used to predict the average diurnal macrophage ROS and DTT levels as a function of the

  20. Size resolved metal distribution in the PM matter of the city of Turin (Italy).

    PubMed

    Malandrino, Mery; Casazza, Marco; Abollino, Ornella; Minero, Claudio; Maurino, Valter

    2016-03-01

    A work on the characterization of the air quality in the city of Turin was carried out in different sampling periods, reflecting early autumn and winter conditions, including a snow episode during the early 2012 European cold wave. The concentrations of 13 elements in eight size fractions of the aerosol were determined using inductively coupled plasma-mass spectrometry. The collection was carried out with a Andersen MkII cascade impactor. The size distribution of elements allowed the identification of three main behavioural types: (a) elements associated with coarse particles (Cd, Cr, Cu, Fe, Mn, Mo and Sn); (b) elements found within fine particles (As, Co, Pb and V) and (c) elements spread throughout the entire size range (Ni and Zn). Principal Component Analysis allowed to examine the relationships between the inorganic elements and to infer about their origin. Chemometric investigation and assessment of similarity in the distribution led to similar conclusions on the sources. The concentration of gaseous trace pollutants (O3, NOx and VOCs) was determined. The concentrations of these pollutants are scarcely correlated with the metal contents of all the size classes of the PM. The differences found in the O3, NO2 and VOCs levels of the two winter campaigns due to the high photochemical reactivity in the period after the snow episode, do not reflect in differences in the metals distribution in the PM. Since PM metals, NOx and VOC have common sources, this behaviour is due to relevant differences in the transformation and deposition processes. PMID:26802934

  1. An in vitro rainbow trout cell bioassay for AhR-mediated toxins

    SciTech Connect

    Richter, C.A.; Giesy, J.P.; Denison, M.S.

    1995-12-31

    The toxicity of PCBs, dioxins, and other halogenated aromatic hydrocarbons (HAHS) at environmentally relevant concentrations is in large part mediated through the aromatic hydrocarbon receptor (AhR). Bioassays which measure the activity of genes regulated by the receptor provide an integrative measure of the total AhR-mediated toxicity of a sample. The authors have recently developed and characterized a bioassay using recombinant rainbow trout hepatoma cells containing the firefly luciferase reporter gene under the regulation of the AhR. The cell line is designated Remodulated Lightning Trout (RLT). The RLT bioassay is relevant to fish, and is useful as a rapid screening device, a guide for chemical analysis, and a tool for studies of the AhR mechanism. The responses of the RLT cell line to various PCB congeners are similar to responses of in vivo fish bioassays. The authors now report on the responses of the bioassay to dioxins, dibenzofurans, and other related compounds as compared to in vivo fish bioassays. The authors will also report on the utility of the RLT bioassay in measuring the total TEQ of complex mixtures.

  2. Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.

    PubMed

    Kaplan, L A; Bott, T L; Reasoner, D J

    1993-05-01

    A modified assimilable organic carbon (AOC) bioassay is proposed. We evaluated all aspects of the AOC bioassay technique, including inoculum, incubation water, bioassay vessel, and enumeration technique. Other concerns included eliminating the need to prepare organic carbon-free glassware and minimizing the risks of bacterial and organic carbon contamination. Borosilicate vials (40 ml) with Teflon-lined silicone septa are acceptable incubation vessels. Precleaned vials are commercially available, and the inoculum can be injected directly through the septa. Both bioassay organisms, Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX, are available from the American Type Culture Collection and grow well on R2A agar, making this a convenient plating medium. Turbid raw waters need to be filtered prior to an AOC analysis. Glass fiber filters used with either a peristaltic pump or a syringe-type filter holder are recommended for this purpose. A sampling design that emphasizes replication of the highest experimental level, individual batch cultures, is the most efficacious way to reduce the total variance associated with the AOC bioassay. Quality control for the AOC bioassay includes an AOC blank and checks for organic carbon limitation and inhibition of the bioassay organisms. PMID:8517748

  3. Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings

    NASA Astrophysics Data System (ADS)

    Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Yahaya, Ahmad Shukri Bin; Al Madhoun, Wesam; Ul-Saufie, Ahmed Zia

    2014-09-01

    In this study the concentrations of PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air temperature, and relative humidity) were employed to predict the annual and seasonal indoor concentration of PM10 and PM2.5 using multivariate statistical methods. The data have been collected in twelve naturally ventilated schools in Gaza Strip (Palestine) from October 2011 to May 2012 (academic year). The bivariate correlation analysis showed that the indoor PM10 and PM2.5 were highly positive correlated with outdoor concentration of PM10 and PM2.5. Further, Multiple linear regression (MLR) was used for modelling and R2 values for indoor PM10 were determined as 0.62 and 0.84 for PM10 and PM2.5 respectively. The Performance indicators of MLR models indicated that the prediction for PM10 and PM2.5 annual models were better than seasonal models. In order to reduce the number of input variables, principal component analysis (PCA) and principal component regression (PCR) were applied by using annual data. The predicted R2 were 0.40 and 0.73 for PM10 and PM2.5, respectively. PM10 models (MLR and PCR) show the tendency to underestimate indoor PM10 concentrations as it does not take into account the occupant's activities which highly affect the indoor concentrations during the class hours.

  4. Identification of Pm8 Suppressor at Pm3 Locus in Soft 1 Red Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1BL.1RS wheat-rye translocation possesses the Pm8, Yr9, Lr26, and Sr31 genes for resistance to several major fungal pathogens of small grains. However, not all wheat cultivars with the 1RS translocation are resistant to Pm8-avirulent isolates of Blumeria graminis f. sp. tritici (Bgt), the causal...

  5. PM2.5 and PM10 Emission from Agricultural Soils by Wind Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  6. 75 FR 64162 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...-based standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary standards for PM 10 : A 24... December 18, 2006, EPA revoked the annual PM 10 standard but retained the 24-hour PM 10 standard. 71 FR... 50, appendix K, section 1.0. ] B. The Eagle River PM10 Nonattainment Area On August 7, 1987 (52...

  7. 75 FR 45485 - Determination of Attainment for PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... standards. On July 1, 1987 (52 FR 24634), EPA promulgated two primary standards for PM 10 : A 24-hour..., 2006, EPA revoked the annual PM 10 standard but retained the 24-hour PM 10 standard. 71 FR 61144...). These areas included all former Group I PM 10 planning areas identified in 52 FR 29383 (August 7,...

  8. Functional specification of the Performance Measurement (PM) module

    NASA Technical Reports Server (NTRS)

    Berliner, J. E.

    1980-01-01

    The design of the Performance Measurement Module is described with emphasis on what the PM Module would do, and what it would look like to the user. The PM Module as described could take several man-years to develop. An evolutionary approach to the implementation of the PM Module is presented which would provide an operational baseline PM Module within a few months.

  9. Monitoring trace elements by nuclear techniques in PM10 and PM2.5

    NASA Astrophysics Data System (ADS)

    Freitas, M. Carmo; Almeida, S. Marta; Reis, Miguel A.; Oliveira, Orlando R.

    2003-06-01

    As part of a contract for air quality monitoring at an urban waste incinerator neighborhood, measurements of PM10 and PM2.5 are being routinely evaluated. Two samples are collected for 24 h at the weekend and a working day, using a Gent collector, which separates the particulate in two fractions: PM2.5 and PM2.5-10. Filters are polycarbonate Nuclepore, sized 47 mm, which, for analysis, are cut as: one half to be analyzed by instrumental neutron activation analysis (INAA) and one quarter for proton induced X-rays emission (PIXE). Both techniques are multielemental determining together around 25 chemical elements. Comparison of results is just possible for potassium, iron and zinc, which are compared in this work. A better agreement is obtained in PM2.5 suggesting a homogeneity trend. Fe and K compare quite well and Zn may show quite different results.

  10. Systematic biases in measured PM10 values with U.S. Environmental Protection Agency-approved samplers at Owens Lake, California.

    PubMed

    Ono, D M; Hardebeck, E; Parker, J; Cox, B G

    2000-07-01

    From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the "clean" Wedding sampler consistently measured the same concentration as the "dirty" Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 microns under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources

  11. Sensitive, Rapid, and Specific Bioassay for the Determination of Antilipogenic Compounds

    PubMed Central

    Ulitzur, S.; Goldberg, I.

    1977-01-01

    A sensitive and rapid bioassay for the determination of the antilipogenic compounds cerulenin and CM-55 is described. The bioassay is based on the inhibitory effect of cerulenin and CM-55 on the in vivo luminescence of an aldehyde-requiring mutant of the marine bacterium Beneckea harveyi. A total quantity as low as 0.1 μg of cerulenin can be determined within 15 min with an error of ±2%. The bioassay, as presented, is specific for compounds that are known to inhibit fatty acid biosynthesis and, as such, it might be used as a general screening method for the detection of antilipogenic compounds. PMID:303076

  12. Markers of Inflammation and Coagulation after Long-Term Exposure to Coarse Particulate Matter: A Cross-Sectional Analysis from the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    D’Souza, Jennifer; Mendelsohn-Victor, Kari; Jacobs, David R.; Cushman, Mary; Sheppard, Lianne; Thorne, Peter S.; Burke, Gregory L.; Daviglus, Martha L.; Szpiro, Adam A.; Roux, Ana V. Diez; Kaufman, Joel D.; Larson, Timothy V.

    2015-01-01

    Background Toxicological research suggests that coarse particles (PM10–2.5) are inflammatory, but responses are complex and may be best summarized by multiple inflammatory markers. Few human studies have investigated associations with PM10–2.5 and, of those, none have explored long-term exposures. Here we examine long-term associations with inflammation and coagulation in the Multi-Ethnic Study of Atherosclerosis. Methods Participants included 3,295 adults (45–84 years of age) from three metropolitan areas. Site-specific spatial models were used to estimate 5-year concentrations of PM10–2.5 mass and copper, zinc, phosphorus, silicon, and endotoxin found in PM10–2.5. Outcomes included interleukin-6, C-reactive protein, fibrinogen, total homocysteine, D-dimer, factor VIII, plasmin–antiplasmin complex, and inflammation and coagulation scores. We used multivariable regression with multiply imputed data to estimate associations while controlling for potential confounders, including co-pollutants such as fine particulate matter. Results Some limited evidence was found of relationships between inflammation and coagulation and PM10–2.5. Endotoxin was the PM10–2.5 component most strongly associated with inflammation, with an interquartile range (IQR) increase (0.08 EU/m3) associated with 0.15 (95% CI: 0.01, 0.28; p = 0.03) and 0.08 (95% CI: –0.07, 0.23; p = 0.28) higher inflammation scores before and after control for city, respectively. Copper was the component with the strongest association with coagulation, with a 4-ng/m3 increase associated with 0.19 (95% CI: 0.08, 0.30; p = 0.0008) and 0.12 (95% CI: –0.05, 0.30; p = 0.16) unit higher coagulation scores before and after city adjustment, respectively. Conclusions Our cross-sectional analysis provided some evidence that long-term PM10–2.5 exposure was associated with inflammation and coagulation, but associations were modest and depended on particle composition. Citation Adar SD, D’Souza J

  13. 40 CFR 52.378 - Control strategy: PM10.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintenance plan (2006-2015). The State of Connecticut has committed to: maintain a PM10 monitoring network in... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  14. 40 CFR 52.378 - Control strategy: PM10.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maintenance plan (2006-2015). The State of Connecticut has committed to: maintain a PM10 monitoring network in... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  15. 40 CFR 52.378 - Control strategy: PM10

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous PM10 monitor are less than the site-specific critical design value (CDV). If the LMP criteria are... in the event the PM10 design value in the maintenance area exceeds 98 µgm/m3 for the 24-hour PM10... on maintaining levels of ambient PM10 below a PM10 design value criteria of 98 µgm/m3 for the...

  16. A nucleotide-level coarse-grained model of RNA

    SciTech Connect

    Šulc, Petr; Ouldridge, Thomas E.; Louis, Ard A.; Romano, Flavio; Doye, Jonathan P. K.

    2014-06-21

    We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

  17. Coarse-graining of proteins based on elastic network models

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2013-08-01

    To simulate molecular processes on biologically relevant length- and timescales, coarse-grained (CG) models of biomolecular systems with tens to even hundreds of residues per CG site are required. One possible way to build such models is explored in this article: an elastic network model (ENM) is employed to define the CG variables. Free energy surfaces are approximated by Taylor series, with the coefficients found by force-matching. CG potentials are shown to undergo renormalization due to roughness of the energy landscape and smoothing of it under coarse-graining. In the case study of hen egg-white lysozyme, the entropy factor is shown to be of critical importance for maintaining the native structure, and a relationship between the proposed ENM-mode-based CG models and traditional CG-bead-based models is discussed. The proposed approach uncovers the renormalizable character of CG models and offers new opportunities for automated and computationally efficient studies of complex free energy surfaces.

  18. A nucleotide-level coarse-grained model of RNA

    NASA Astrophysics Data System (ADS)

    Šulc, Petr; Romano, Flavio; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2014-06-01

    We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

  19. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  20. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.

    PubMed

    Kolandaivelu, Kumaran; O'Brien, Caroline C; Shazly, Tarek; Edelman, Elazer R; Kolachalama, Vijaya B

    2015-03-01

    Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes--a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion. PMID:25652458

  1. Coarse pointing mechanism assembly for satellite interlink experiment

    NASA Technical Reports Server (NTRS)

    Maeusli, P. A.; Ivorra, M. T.; Gass, V.; Berthoud, J. F.

    1996-01-01

    Since 1975, MECANEX S.A. has been manufacturing components for solar array drives and mechanisms used in space applications. In 1991, work was started in an early phase C (Engineering Model) on a Coarse Pointing Mechanism Assembly (CPMA) for the Semiconductor-laser Inter-satellite Link EXperiment (SILEX). This paper deals with the history, the evolution, and the lessons learned from taking over a pre-design in 1991 to the delivery of last flight models (FM 5 & 6) in 1995.

  2. Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes

    SciTech Connect

    Rudd, R E

    2001-12-21

    We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.

  3. Enhancing physiologic simulations using supervised learning on coarse mesh solutions

    PubMed Central

    Kolandaivelu, Kumaran; O'Brien, Caroline C.; Shazly, Tarek; Edelman, Elazer R.; Kolachalama, Vijaya B.

    2015-01-01

    Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes—a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion. PMID:25652458

  4. Coarse graining of force fields for metal-organic frameworks.

    PubMed

    Dürholt, Johannes P; Galvelis, Raimondas; Schmid, Rochus

    2016-03-14

    We have adapted our genetic algorithm based optimization approach, originally developed to generate force field parameters from quantum mechanic reference data, to derive a first coarse grained force field for a MOF, taking the atomistic MOF-FF as a reference. On the example of the copper paddle-wheel based HKUST-1, a maximally coarse grained model, using a single bead for each three and four coordinated vertex, was developed as a proof of concept. By adding non-bonded interactions with a modified Buckingham potential, the resulting MOF-FF-CGNB is able to predict local deformation energies of the building blocks as well as bulk properties like the tbovs.pto energy difference or elastic constants in a semi-quantitative way. As expected, the negative thermal expansion of HKUST-1 is not reproduced by the maximally coarse grained model. At the expense of atomic resolution, substantially larger systems (up to tens of nanometers in size) can be simulated with respect to structural and mechanical properties, bridging the gap to the mesoscale. As an example the deformation of the [111] surface of HKUST-1 by a "tip" could be computed without artifacts from periodic images. PMID:26732756

  5. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  6. Moving Beyond Watson-Crick Models of Coarse Grained DNA

    NASA Astrophysics Data System (ADS)

    Dorfman, Kevin; Linak, Margaret; Tourdot, Richard

    2012-02-01

    DNA structure possesses several levels of complexity, ranging from the sequence of bases (primary structure) to base pairing (secondary structure) to its three-dimensional shape (tertiary structure) and can produce a wide variety of conformations in addition to canonical double stranded DNA. By including non-Watson-Crick interactions in a coarse-grained model, we developed a system that not only can capture the traditional B-form double helix, but also can adopt a wide variety of other DNA conformations. In our experimentally parameterized, coarse-grained DNA model we are able to reproduce the microscopic features of double-stranded DNA without the need for explicit constraints and capture experimental melting curves for a number of short DNA hairpins. We demonstrate the utility of the model by simulating more complex tertiary structures such as the folding of the thrombin aptamer, which includes G-quartets, and strand invasion during triplex formation. Our results highlight the importance of non-canonical interactions in DNA coarse- grained models.

  7. Bayesian calibration of coarse-grained forces: Efficiently addressing transferability

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.

    2016-04-01

    Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f0. In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.

  8. Components and activity of polysaccharides from coarse tea.

    PubMed

    Wang Dongfeng, W; Wang Chenghong, W; Li Jun, L; Zhao Guiwen, Z

    2001-01-01

    Coarse tea contained a high content of polysaccharide complex. Composed of polysaccharide and protein, the polysaccharide complex from tea (TPS) belonged to glycoprotein with the molecular weight () of (10.7-11.0) x 10(4). When mice (7 weeks old, C57BL/8) were injected with TPS, the levels of blood glucose (BG) in normal mice and model mice with high BG were decreased significantly by averages of 13.54 and 22.18%, respectively. The antibody concentration (OD(413 nm)) in the mice injected with 2.4 mg/mL TPS was increased evidently by 44.93% (p < 0.01). TPS treatment was beneficial not only for the subsequent production of interleukin (IL) 2 in spleen cells of adjuvant arthritis (AA) rats but also because it prohibited the body from producing too much IL-1 in AA rats. Treatment of diabetes with coarse tea in both China and Japan may be related to TPS and the content of TPS in coarse tea. PMID:11170619

  9. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  10. Coarse-Grained Model of SNARE-Mediated Docking

    PubMed Central

    Fortoul, Nicole; Singh, Pankaj; Hui, Chung-Yuen; Bykhovskaia, Maria; Jagota, Anand

    2015-01-01

    Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4–6 SNAREs actually increases the equilibrium distance. PMID:25954883

  11. Biomolecular pleiomorphism probed by spatial interpolation of coarse models.

    PubMed

    Rusu, Mirabela; Birmanns, Stefan; Wriggers, Willy

    2008-11-01

    In low resolution structures of biological assemblies one can often observe conformational deviations that require a flexible rearrangement of structural domains fitted at the atomic level. We are evaluating interpolation methods for the flexible alignment of atomic models based on coarse models. Spatial interpolation is well established in image-processing and visualization to describe the overall deformation or warping of an object or an image. Combined with a coarse representation of the biological system by feature vectors, such methods can provide a flexible approximation of the molecular structure. We have compared three well-known interpolation techniques and evaluated the results by comparing them with constrained molecular dynamics. One method, inverse distance weighting interpolation, consistently produced models that were nearly indistinguishable on the alpha carbon level from the molecular dynamics results. The method is simple to apply and enables flexing of structures by non-expert modelers. This is useful for the basic interpretation of volumetric data in biological applications such as electron microscopy. The method can be used as a general interpretation tool for sparsely sampled motions derived from coarse models. PMID:18757874

  12. The Theory of Ultra-Coarse-Graining. 2. Numerical Implementation.

    PubMed

    Davtyan, Aram; Dama, James F; Sinitskiy, Anton V; Voth, Gregory A

    2014-12-01

    The increasing interest in the modeling of complex macromolecular systems in recent years has spurred the development of numerous coarse-graining (CG) techniques. However, many of the CG models are constructed assuming that all details beneath the resolution of CG degrees of freedom are fast and average out, which sets limits on the resolution of feasible coarse-grainings and on the range of applications of the CG models. Ultra-coarse-graining (UCG) makes it possible to construct models at any desired resolution while accounting for discrete conformational or chemical changes within the CG sites that can modulate the interactions between them. Here, we discuss the UCG methodology and its numerical implementation. We pay particular attention to the numerical mechanism for including state transitions between different conformations within CG sites because this has not been discussed previously. Using a simple example of 1,2-dichloroethane, we demonstrate the ability of the UCG model to reproduce the multiconfigurational behavior of this molecular liquid, even when each molecule is modeled with only one CG site. The methodology can also be applied to other molecular liquids and macromolecular systems with time scale separation between conformational transitions and other intramolecular motions and rotations. PMID:26583210

  13. Is Coarse-to-Fine Strategy Sensitive to Normal Aging?

    PubMed Central

    Musel, Benoit; Chauvin, Alan; Guyader, Nathalie; Chokron, Sylvie; Peyrin, Carole

    2012-01-01

    Theories on visual perception agree that visual recognition begins with global analysis and ends with detailed analysis. Different results from neurophysiological, computational, and behavioral studies all indicate that the totality of visual information is not immediately conveyed, but that information analysis follows a predominantly coarse-to-fine processing sequence (low spatial frequencies are extracted first, followed by high spatial frequencies). We tested whether such processing continues to occur in normally aging subjects. Young and aged participants performed a categorization task (indoor vs. outdoor scenes), using dynamic natural scene stimuli, in which they resorted to either a coarse-to-fine (CtF) sequence or a reverse fine-to-coarse sequence (FtC). The results show that young participants categorized CtF sequences more quickly than FtC sequences. However, sequence processing interacts with semantic category only for aged participants. The present data support the notion that CtF categorization is effective even in aged participants, but is constrained by the spatial features of the scenes, thus highlighting new perspectives in visual models. PMID:22675568

  14. Coarse bedload routing and dispersion through tributary confluences

    NASA Astrophysics Data System (ADS)

    Imhoff, Kurt S.; Wilcox, Andrew C.

    2016-07-01

    Sediment routing fundamentally influences channel morphology and the propagation of disturbances such as debris flows. The transport and storage of bedload particles across headwater channel confluences, which may be significant nodes of the channel network in terms of sediment routing, morphology, and habitat, are poorly understood, however. We investigated patterns and processes of sediment routing through headwater confluences by comparing them to published results from lower-gradient confluences and by comparing the dispersive behavior of coarse bedload particles between headwater confluence and non-confluence reaches. We addressed these questions with a field tracer experiment using passive-integrated transponder and radio-frequency identification technology in the East Fork Bitterroot River basin, Montana, USA. Within the confluence zone, tracers tended to be deposited towards scour-hole and channel margins, suggesting narrow, efficient transport corridors that mirror those observed in prior studies, many of which are from finer-grained systems. Coarse particles in some confluence reaches experienced reduced depositional probabilities within the confluence relative to upstream and downstream of the confluence. Analysis of particle transport data suggests that variation in the spatial distribution of coarse-sediment particles may be enhanced by passing through confluences, though further study is needed to evaluate confluence effects on dispersive regimes and sediment routing on broader spatial and temporal scales.

  15. Coarse-graining the electrostatic potential via distributed multipole expansions

    PubMed Central

    Gramada, Apostol; Bourne, Philip E.

    2011-01-01

    Multipole expansions offer a natural path to coarse-graining the electrostatic potential. However, the validity of the expansion is restricted to regions outside a spherical enclosure of the distribution of charge and, therefore, not suitable for most applications that demand accurate representation at arbitrary positions around the molecule. We propose and demonstrate a distributed multipole expansion approach that resolves this limitation. We also provide a practical algorithm for the computational implementation of this approach. The method allows the partitioning of the charge distribution into subsystems so that the multipole expansion of each component of the partition, and therefore of their superposition, is valid outside an enclosing surface of the molecule of arbitrary shape. The complexity of the resulting coarse-grained model of electrostatic potential is dictated by the area of the molecular surface and therefore, for a typical three-dimensional molecule, it scale as N2/3 with N, the number of charges in the system. This makes the method especially useful for coarse-grained studies of biological systems consisting of many large macromolecules provided that the configuration of the individual molecules can be approximated as fixed. PMID:21572587

  16. Insights on protein-DNA recognition by coarse grain modelling

    PubMed Central

    Poulain, Pierre; Saladin, Adrien; Hartmann, Brigitte; Prévost, Chantal

    2008-01-01

    Coarse grain modelling of macromolecules is a new approach potentially well adapted to answer numerous issues, ranging from physics to biology. We propose here an original DNA coarse grain model specifically dedicated to protein–DNA docking, a crucial, but still largely unresolved, question in molecular biology. Using a representative set of protein–DNA complexes, we first show that our model is able to predict the interaction surface between the macromolecular partners taken in their bound form. In a second part, the impact of the DNA sequence and electrostatics, together with the DNA and protein conformations on docking is investigated. Our results strongly suggest that the overall DNA structure mainly contributes in discriminating the interaction site on cognate proteins. Direct electrostatic interactions between phosphate groups and amino acids side chains strengthen the binding. Overall, this work demonstrates that coarse grain modelling can reveal itself a precious auxiliary for a general and complete description and understanding of protein–DNA association mechanisms. PMID:18478582

  17. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGESBeta

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films withmore » up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  18. High capacitance of coarse-grained carbide derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  19. Penetration Test Modelling in a Coarse Granular Medium

    NASA Astrophysics Data System (ADS)

    Breul, P.; Benz, M.; Gourvès, R.; Saussine, G.

    2009-06-01

    Penetration test is a simple and useful test to characterize soils and granular materials. Several studies have shown the link between cone penetration resistance and density for a given material if the relation connecting these two parameters has been established beforehand. A granular materials bank currently including more than 35 granular materials has been developed to this end. Unfortunately, to be able to generalize and cover the broadest possible material range, it would be necessary to multiply the tests and the number of materials. Moreover in coarse granular media, it is necessary to carry out a large number of tests in order to achieve a reliable relation between density and cone resistance.Consequently, being able to model this test in a realistic way will enable increasing the number of tests on a material and carry out more precise parametric studies to evaluate the influence of any parameter on the test response. This article presents the work carried out to model a penetration test within a coarse granular medium. The penetrometer used is a light penetrometer with a 2 cm2 cone. The first part will present the experimental protocol developed with the material bank in order to establish the relation between cone resistance and material density. The results obtained on a coarse material of a railway ballast type will be presented. The second part will present the test modelling using discrete elements and parameter identification to obtain the relation found in the experimental tests and connecting cone resistance to material density.

  20. Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.

    PubMed

    Mereghetti, Paolo; Maccari, Giuseppe; Spampinato, Giulia Lia Beatrice; Tozzini, Valentina

    2016-08-25

    The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course. PMID:27150459

  1. Coarse-Grained Model of SNARE-Mediated Docking.

    PubMed

    Fortoul, Nicole; Singh, Pankaj; Hui, Chung-Yuen; Bykhovskaia, Maria; Jagota, Anand

    2015-05-01

    Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼ 3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4-6 SNAREs actually increases the equilibrium distance. PMID:25954883

  2. Coarse-grained models for aqueous polyethylene glycol solutions.

    PubMed

    Choi, Eunsong; Mondal, Jagannath; Yethiraj, Arun

    2014-01-01

    A new coarse-grained force field is developed for polyethylene glycol (PEG) in water. The force field is based on the MARTINI model but with the big multipole water (BMW) model for the solvent. The polymer force field is reparameterized using the MARTINI protocol. The new force field removes the ring-like conformations seen in simulations of short chains with the MARTINI force field; these conformations are not observed in atomistic simulations. We also investigate the effect of using parameters for the end-group that are different from those for the repeat units, with the MARTINI and BMW/MARTINI models. We find that the new BMW/MARTINI force field removes the ring-like conformations seen in the MARTINI models and has more accurate predictions for the density of neat PEG. However, solvent-separated-pairs between chain ends and slow dynamics of the PEG reflect its own artifacts. We also carry out fine-grained simulations of PEG with bundled water clusters and show that the water bundling can lead to ring-like conformations of the polymer molecules. The simulations emphasize the pitfalls of coarse-graining several molecules into one site and suggest that polymer-solvent systems might be a stringent test for coarse-grained force fields. PMID:24350686

  3. Experimental investigation of coarse particle conveying in pipes

    NASA Astrophysics Data System (ADS)

    Vlasak, Pavel; Chara, Zdenek; Konfrst, Jiri; Krupička, Jan

    2015-05-01

    The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle - water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  4. Reconciling PM10 analyses by different sampling methods for Iron King Mine tailings dust.

    PubMed

    Li, Xu; Félix, Omar I; Gonzales, Patricia; Sáez, Avelino Eduardo; Ela, Wendell P

    2016-03-01

    The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler. As and Pb concentrations of the PM10 fraction in the MOUDI sample were much lower than in tailing samples produced by the dust generator, indicating a dilution of Iron King tailing dust by dust from other sources. For source apportionment purposes, single element concentration method was used based on the assumption that the PM10 fraction comes from a background source plus the Iron King tailing source. The method's conclusion that nearly all arsenic and lead in the PM10 dust fraction originated from the tailings substantiates our previous Pb and Sr isotope study conclusion. As and Pb showed a similar mass fraction from Iron King for all sites suggesting that As and Pb have the same major emission source. Further validation of this simple source apportionment method is needed based on other elements and sites. PMID:26820180

  5. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    PubMed

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy. PMID:19924947

  6. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt. percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt. percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Friction coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity in PM212/Au was not determined, it may be due to particle morphology differences between the gold and silver and their effect on powder metallurgy processing.

  7. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Frictions coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity PM212/Au was not determined, it may be due to practice morphology differences between the gold and silver and their effect on powder metallurgy processing.

  8. Analyzing bioassay data using Bayesian methods -- A primer

    SciTech Connect

    Miller, G.; Inkret, W.C.; Schillaci, M.E.

    1997-10-16

    The classical statistics approach used in health physics for the interpretation of measurements is deficient in that it does not allow for the consideration of needle in a haystack effects, where events that are rare in a population are being detected. In fact, this is often the case in health physics measurements, and the false positive fraction is often very large using the prescriptions of classical statistics. Bayesian statistics provides an objective methodology to ensure acceptably small false positive fractions. The authors present the basic methodology and a heuristic discussion. Examples are given using numerically generated and real bioassay data (Tritium). Various analytical models are used to fit the prior probability distribution, in order to test the sensitivity to choice of model. Parametric studies show that the normalized Bayesian decision level k{sub {alpha}}-L{sub c}/{sigma}{sub 0}, where {sigma}{sub 0} is the measurement uncertainty for zero true amount, is usually in the range from 3 to 5 depending on the true positive rate. Four times {sigma}{sub 0} rather than approximately two times {sigma}{sub 0}, as in classical statistics, would often seem a better choice for the decision level.

  9. Target organs in chronic bioassays of 533 chemical carcinogens

    SciTech Connect

    Gold, L.S.; Slone, T.H.; Manley, N.B. ); Bernstein, L. )

    1991-06-01

    A compendium of carcinogenesis bioassay results organized by target organ is presented for 533 chemicals that are carcinogenic in at least one species. This compendium is based primarily on experiments in rats or mice; results in hamsters, nonhuman primates, and dogs are also reported. The compendium can be used to identify chemicals that induce tumors at particular sites, and to determine whether target sites are the same for chemicals positive in more than one species. The Carcinogenic Potency Database (CPDB), which includes results of 3969 experiments, is used in the analysis. The published CPDB includes details on each test, and literature references. Chemical carcinogens are reported for 35 different target organs in rats or mice. More than 80% of the carcinogens in each of these species are positive in at least one of the 8 most frequent target sites; liver, lung, mammary gland, stomach, vascular system, kidney, hematopoietic system, and urinary bladder. An analysis is presented of how well one can predict the carcinogenic response in mice from results in rats, or vice versa. Among chemicals tested in both species, 76% of rat carcinogens are positive in mice, and 71% of mouse carcinogens are positive in rats. Prediction is less accurate to the same target site: 52% of rat carcinogens are positive in the same site in mice, and 48% of mouse carcinogens are positive in the same site in rats. The liver is the most frequent site in common between rats and mice.

  10. Using enzyme bioassays as a rapid screen for metal toxicity

    USGS Publications Warehouse

    Choate, LaDonna M.; Ross, P.E.; Blumenstein, E. P.; Ranville, James F.

    2005-01-01

    Mine tailings piles and abandoned mine soils are often contaminated by a suite of toxic metals, which were released in the mining process. Traditionally, toxicity of such areas has been determined by numerous chemical methods including the Toxicity Characteristic Leachate Procedure (TCLP) and traditional toxicity tests using organisms such as the cladoceran Ceriodaphnia dubia. Such tests can be expensive and time-consuming. Enzymatic bioassays may provide an easier, less costly, and more time-effective toxicity screening procedure for mine tailings and abandoned mine soil leachates. This study evaluated the commercially available MetPLATE™ enzymatic toxicity assay test kit. The MetPLATE™ assay uses a modified strain of Escherichia coli bacteria as the test organism. Toxicity is defined by the activity of β-galactosidase enzyme which is monitored colorometrically with a 96-well spectrophotometer. The study used water samples collected from North Fork Clear Creek, a mining influenced water (MIW) located in Colorado. A great benefit to using the MetPLATE™ assay over the TCLP is that it shows actual toxicity of a sample by taking into account the bioavailability of the toxicants rather than simply measuring the metal concentration present. Benefits of the MetPLATE™ assay over the use of C. dubia include greatly reduced time for the testing process (∼2 hours), a more continuous variable due to a greater number of organisms present in each sample (100,000+), and the elimination of need to maintain a culture of organisms at all times.

  11. Bioassays on Illinois waterway dredged material. Final report

    SciTech Connect

    Moore, D.W.; Gibson, A.B.; Dillon, T.M.

    1992-12-01

    Sediment from the Illinois Waterway navigation channel is hydraulically dredged by the US Army Engineer District, Rock Island, and placed in the nearshore environment via pipeline. Water returning to the river can have a high-suspended solids load approaching fluid mud consistency. There is a concern that this return water may exceed the State of Illinois water quality standards for ammonia and have adverse effects on aquatic life. To address these concerns, composite sediment samples and site water collected from selected sites in the Illinois Waterway were evaluated in toxicity tests. Acute (48-hr) toxicity tests were conducted with two species, Pimephales promelas (the fathead minnow) and Daphnia magna (a freshwater cladoceran). A chronic (21-day) toxicity test was also conducted using Daphnia magna. Animals were exposed separately to different concentrations of filtered and unfiltered elutriates prepared from Acute, Cadmium, Daphnia magna, Pimephales promela, Ammonia, Chronic, Elutriate, Sediment, Bioassay, Cladoceran, Fathead minnow. Illinois Waterway edged material. Total ammonia concentrations were measured in all tests and the un-ionized fraction was calculated by adjusting for temperature and pH. Tests were conducted at the US Army Engineer Waterways Experiment Station, Vicksburg, MS. In addition, as part of an interlaboratory effort, a 48-hr acute toxicity test with Pimephales pomelas fry was conducted concurrently by the Hygienic Laboratory of the University of Iowa, Des Moines, IA.

  12. Long-wavelength-emitting nanocrystals for bioassay applications

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie J.; Harvey, Ashley S.; McCool, Geoff D.; Quinlan, Forest T.; Feng, Jun; Shan, Guomin; Stroeve, Pieter; Risbud, Subhash H.; Hammock, Bruce D.; Kennedy, Ian M.

    2002-11-01

    New fluorophores that can be excited using visible or near-infrared radiation are of considerable interest for application in environmental and complex bioassays, where background fluorescence is exacerbated by ultra-violet or blue excitation. Useful labels for biomolecules include infrared emitting semiconductor nanoparticles that can be blue-shifted into the near-infrared and visible through quantum confinement effects, oxides of iron, and rare earth oxides. In this work, the synthesis of 6 nm average diameter lead selenide nanocrystals (well below the Bohr exciton diameter of 92 nm) through a reverse micelle technique; and the synthesis of iron and europium oxides with particles less than 5 nm in diameter by pulsed laser ablation is reported. The europium oxide nanoparticles' emission showed a large Stokes shift (144 nm or 216 nm, depending on excitation wavelength); a narrow, symmetric emission line at 610 nm (FWHM of 8 nm); and long lifetime (300 μs). The Eu2O3 nanoparticles, which were coated with silica for functionalization, displayed a greatly enhanced sensitivity over a conventional ELISA (0.025 ng ml-1 vs. 0.1 ng ml-1) when run in an atrazine immunoassay.

  13. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    PubMed Central

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  14. Bioassay-based risk assessment of complex mixtures

    SciTech Connect

    Donnelly, K.C.; Safe, S.H.; Randerath, K.; Randerath, E.

    1994-12-31

    To compare the standard chemical-based risk assessment with in vitro genotoxicity assays, two complex environmental mixtures from a wood preserving site were analyzed in the Salmonella/microsome and E. coli prophage induction assays. Using GC/MS, sample 003 was found to contain relatively low levels of polycyclic aromatic hydrocarbons (PNAs) and elevated levels of polychlorinated dibenzo-p-dioxins (PCDDs), while sample 005 had higher levels of PNAs and relatively low levels of PCDDs. The complex mixtures were sequentially extracted with methylene chloride and methanol for analysis in Salmonella, or extracted with 1:1 hexane: acetone mixture for analysis in the prophage induction assay. At a dose of 1.0 mg/plate in Salmonella strain TA98 with metabolic activation, the methanol extract of sample 003 induced 197 net revertants, while sample 005 induced 436 net revertants. In the prophage induction assay, with activation, the hexane:acetone extract of sample 003 induced a fold increase that was slightly lower than that observed with sample 005. The estimated incremental carcinogenic risk for dermal adsorption and ingestion was 1.5E-3 for sample 003, while for sample 005 the estimated risk was 1.5E-2. Thus, the sample which induced the maximum response in both bioassays also had the highest estimated cancer risk. However, the frequency of PNA-DNA adducts in both skin and liver tissues was appreciably higher with sample 005 than with sample 003.

  15. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    SciTech Connect

    Anstey, Mitchell; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves %22Click%22 chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  16. Target organs in chronic bioassays of 533 chemical carcinogens.

    PubMed Central

    Gold, L S; Slone, T H; Manley, N B; Bernstein, L

    1991-01-01

    A compendium of carcinogenesis bioassay results organized by target organ is presented for 533 chemicals that are carcinogenic in at least one species. This compendium is based primarily on experiments in rats or mice; results in hamsters, nonhuman primates, and dogs are also reported. The compendium can be used to identify chemicals that induce tumors at particular sites, and to determine whether target sites are the same for chemicals positive in more than one species. The Carcinogenic Potency Database (CPDB), which includes results of 3969 experiments, is used in the analysis. The published CPDB includes details on each test, and literature references. Chemical carcinogens are reported for 35 different target organs in rats or mice. More than 80% of the carcinogens in each of these species are positive in at least one of the 8 most frequent target sites: liver, lung, mammary gland, stomach, vascular system, kidney, hematopoietic system, and urinary bladder. An analysis is presented of how well one can predict the carcinogenic response in mice from results in rats, or vice versa. Among chemicals tested in both species, 76% of rat carcinogens are positive in mice, and 71% of mouse carcinogens are positive in rats. Prediction is less accurate to the same target site: 52% of rat carcinogens are positive in the same site in mice, and 48% of mouse carcinogens are positive in the same site in rats. The liver is the most frequent site in common between rats and mice. PMID:1773795

  17. Bioassay-based risk assessment of complex mixtures

    SciTech Connect

    Donnelly, K.C.; Huebner, H.J.

    1996-12-31

    The baseline risk assessment often plays an integral role in various decision-making processes at Superfund sites. The present study reports on risk characterizations prepared for seven complex mixtures using biological and chemical analysis. Three of the samples (A, B, and C) were complex mixtures of polycyclic aromatic hydrocarbons (PAHs) extracted from coal tar; while four samples extracted from munitions-contaminated soil contained primarily nitroaromatic hydrocarbons. The chemical-based risk assessment ranked sample C as least toxic, while the risk associated with samples A and B was approximately equal. The microbial bioassay was in general agreement for the coal tar samples. The weighted activity of the coal tar extracts in Salmonella was 4,960 for sample C, and 162,000 and 206,000 for samples A and B, respectively. The bacterial mutagenicity of 2,4,6-trinitrotoluene contaminated soils exhibited an indirect correlation with chemical-based risk assessment. The aqueous extract of sample 004 induced 1,292 net revertants in Salmonella, while the estimated risk to ingestion and dermal adsorption was 2E-9. The data indicate that the chemical-based risk assessment accurately predicted the genotoxicity of the PAHs, while the accuracy of the risk assessment for munitions contaminated soils was limited due to the presence of metabolites of TNT degradation. The biological tests used in this research provide a valuable compliment to chemical analysis for characterizing the genotoxic risk of complex mixtures.

  18. Colorimetric paper bioassay for the detection of phenolic compounds.

    PubMed

    Alkasir, Ramiz S J; Ornatska, Maryna; Andreescu, Silvana

    2012-11-20

    A new type of paper based bioassay for the colorimetric detection of phenolic compounds including phenol, bisphenol A, catechol and cresols is reported. The sensor is based on a layer-by-layer (LbL) assembly approach formed by alternatively depositing layers of chitosan and alginate polyelectrolytes onto filter paper and physically entrapping the tyrosinase enzyme in between these layers. The sensor response is quantified as a color change resulting from the specific binding of the enzymatically generated quinone to the multilayers of immobilized chitosan on the paper. The color change can be quantified with the naked eye but a digitalized picture can also be used to provide more sensitive comparison to a calibrated color scheme. The sensor was optimized with respect to the number of layers, pH, enzyme, chitosan and alginate amounts. The colorimetric response was concentration dependent, with a detection limit of 0.86 (±0.1) μg/L for each of the phenolic compounds tested. The response time required for the sensor to reach steady-state color varied between 6 and 17 min depending on the phenolic substrate. The sensor showed excellent storage stability at room temperature for several months (92% residual activity after 260 days storage) and demonstrated good functionality in real environmental samples. A procedure to mass-produce the bioactive sensors by inkjet printing the LbL layers of polyelectrolyte and enzyme on paper is demonstrated. PMID:23113670

  19. USING BIOASSAYS TO EVALUATE THE PERFORMANCE OF EDC RISK MANAGEMENT METHODS

    EPA Science Inventory

    In Superfund risk management research, the performance of risk management techniques is typically evaluated by measuring "the concentrations of the chemicals of concern before and after risk management efforts. However, using bioassays and chemical data provides a more robust und...

  20. COMPARATIVE POTENCY OF COMPLEX MIXTURES: USE OF SHORT-TERM GENETIC BIOASSAYS IN CANCER RISK ASSESSMENT

    EPA Science Inventory

    The primary problem regarding the introduction of new energy sources is whether they will alter the mutagenicity, carcinogenicity and potential human cancer risk from combustion emissions. New risk assessment methodologies utilizing data from short-term bioassays, therefore, are ...

  1. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  2. DEVELOPMENT OF BIOASSAY PROCEDURES FOR DEFINING POLLUTION OF HARBOR SEDIMENTS. PART I

    EPA Science Inventory

    This research investigates bioassay methods which may be useful in assessing the degree of pollution of harbor sediments. Procedures studied include 96 hr. toxicity tests employing Hexagenia limbata, Daphnia magna and Pontoporeia affinis as biological probes, monitoring cough fre...

  3. CHARACTERIZING THE GENOTOXICITY OF HAZARDOUS INDUSTRIAL WASTES AND EFFLUENTS USING SHORT-TERM BIOASSAYS

    EPA Science Inventory

    This chapter demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. etrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile a...

  4. EVALUATION OF THE MUTAGENICITY AND CARCINOGENICITY OF MOTOR VEHICLE EMISSIONS IN SHORT-TERM BIOASSAYS

    EPA Science Inventory

    Incomplete combustion of fuel in motor vehicles results in the emission of submicron carbonaceous particles which, after cooling and dilution, contain varying quantities of extractable organic constituents. These organics are mutagenic in bacteria. Confirmatory bioassays in mamma...

  5. Comparative susceptibility of bemisia tabaci to imidacloprid in field- and laboratory-based bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci biotype B is a resistance-prone pest of protected and open agriculture. Systemic uptake bioassays used in resistance monitoring programs have provided important information on susceptibility to neonicotinoid insecticides, but have remained decoupled from field performance. Simultaneou...

  6. EVALUATION OF THREE FISH SPECIES AS BIOASSAY ORGANISMS FOR DREDGED MATERIAL TESTING

    EPA Science Inventory

    Three fish species, Cyprinodon variegatus, Fundulus similis, and Menidia menidia, were evaluated to determine which is most suitable as a bioassay organism for solid phase testing of dredged material. Acute toxicity and bioaccumulation of polychlorinated biphenyls (PCBs) were mon...

  7. Harmonia Axyridis Adults Avoid Catnip and Grapefruit-derived Terpenoids in Laboratory Bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We observed the avoidance behavior of the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), when adults were exposed to volatiles derived from catnip oil and grapefruit seed. In replicated laboratory bioassays, beetles avoided contact with volatiles emanating f...

  8. Evaluation of toxicity of selected insecticides against thrips on cotton in laboratory bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult vial technique (AVT) and spray table bioassays were conducted to evaluate toxicity of selected insecticides against immature and adult Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). In AVT, technical insecticides comprising of organophosphates (d...

  9. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    SciTech Connect

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  10. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects. PMID:18855153

  11. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio

    2012-11-01

    The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.

  12. Chemical Characterisation of the Coarse and Fine Particulate Matter in the Environment of an Underground Railway System: Cytotoxic Effects and Oxidative Stress—A Preliminary Study

    PubMed Central

    Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa

    2015-01-01

    Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm) and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air. PMID:25872016

  13. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe

    SciTech Connect

    Happo, M.S.; Hirvonen, M.R.; Halinen, A.I.; Jalava, P.I.; Pennanen, A.S.; Sillanpaa, M.; Hillamo, R.; Salonen, R.O.

    2008-07-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM2.5-0.2) and coarse (PM10-2.5) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM2.5-0.2 correlated positively and some secondary inorganic ions (NO{sub 3}{sup -}, NH{sub 4}{sup +}) negatively with the inflammatory activity. Total organic matter and SO{sub 4}{sup 2-} had no consistent correlations. In addition, the soil-derived constituents (Ca{sup 2+}, Al, Fe, Si) showed positive correlations with the PM2.5-0.2-induced inflammatory activity, but their role in PM10 (2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM2.5 (0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  14. INTERPOLATING VANCOUVER'S DAILY AMBIENT PM 10 FIELD

    EPA Science Inventory

    In this article we develop a spatial predictive distribution for the ambient space- time response field of daily ambient PM10 in Vancouver, Canada. Observed responses have a consistent temporal pattern from one monitoring site to the next. We exploit this feature of the field b...

  15. P/M Materials for Wear Applications

    SciTech Connect

    Hawk, Jeffrey A.

    2000-10-01

    Wear resistant materials usually consist of either very hard homogeneous single phase materials (e.g., ceramics like Al2O3, SiC, etc.) or heterogenous materials (e.g., white cast irons, composites or cermets, or composite-type materials), typically with a hard reinforcing phase dispersed in a softer matrix. In both instances, the result is the same, less penetration of the abrasive into the surface of the material being worn. Composite type materials can be produced using either a melting/solidification scheme or through powder metallurgy (P/M) techniques. In either case the result is the same, a microstructure that consists of a high volume fraction of hard, usually brittle, second phase particles in a softer matrix. However, P/M can be used to create a wider range of these materials than can melting/solidification, because in P/M processing, the desired phase does not have to be precipitated during solidification. Thus, more materials can be produced with higher volume fractions of reinforcing phases. Obviously, other factors like reinforcement size, matrix-particle interfacial strength, plastic accommodation of the matrix, etc. become important in the wear behavior of these materials. Various categories of P/M wear resistant materials will be discussed, and their wear behavior will be compared against traditional wear resistant cast materials like white cast iron and tool steels.

  16. Characterisation of PM 10 atmospheric aerosols for the wet season 2005 at two sites in East Africa

    NASA Astrophysics Data System (ADS)

    Mkoma, Stelyus L.; Maenhaut, Willy; Chi, Xuguang; Wang, Wan; Raes, Nico

    Ambient daily PM 10 aerosol samples were collected at two sites in Tanzania in May and June 2005 (during the wet season), and their chemical characteristics were studied. The sites were a rural site in Morogoro and an urban kerbside site in Dar es Salaam. A Gent PM 10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing fine and coarse size fractions, and a PM 10 sampler with quartz fibre filters were deployed. Parallel collections of 24 h were made with the two samplers and the number of these collections was 13 in Morogoro and 16 in Dar es Salaam. The average mass concentration of PM 10 was 27 ± 11 μg/m 3 in Morogoro and 51 ± 21 μg/m 3 in Dar es Salaam. In Morogoro, the mean concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were 6.8, 0.51, and 2.8 μg/m 3, respectively. In contrast, higher mean concentrations (11.9, 4.6, and 3.3 μg/m 3, respectively) were obtained for Dar es Salaam. At both sites, species and elements, such as black carbon, NH 4+, non-sea-salt SO 42-, K, and Ni (and at Dar es Salaam also V, As, Br, and Pb) were mainly present in the fine size fraction. The common crustal and sea-salt elements, including Na, Mg, Al, Si, Cl, Ca, Ti, Mn, Fe, and Sr, and also NO 3- and P (and to a lesser extent Cu and Zn) were concentrated in the coarse particles. Aerosol chemical mass closure indicated that the PM 10 mass in Morogoro consisted, on average, of 48% organic matter (OM), 44% crustal matter, 4% sea salt, and 2% EC, while in Dar es Salaam OM, crustal matter, sea salt, and EC represented 37%, 32%, 9%, and 9% of the PM 10 mass. The contributions of the secondary inorganic aerosol (non-sea-salt sulphate, nitrate, and ammonium) were small, i.e., only 5% in total at each site. Carbonaceous materials and crustal matter were thus the most important components of the PM 10 mass. It is suggested that biomass burning is a major contributor to the OM; at Dar es Salaam there is

  17. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites

    SciTech Connect

    Cao, Zhen; Voth, Gregory A.

    2015-12-28

    It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operator are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.

  18. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by

  19. Modeling Reluctance-Assisted PM Motors

    SciTech Connect

    Otaduy, P.J.

    2006-01-13

    This report contains a derivation of the fundamental equations used to calculate the base speed, torque delivery, and power output of a reluctance-assisted PM motor which has a saliency ratio greater than 1 as a function of its terminal voltage, current, voltage-phase angle, and current-phase angle. The equations are applied to model Motor X using symbolically-oriented methods with the computer tool Mathematica to determine: (1) the values of current-phase angle and voltage-phase angle that are uniquely determined once a base speed has been selected; (2) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and current-phase angle; (3) the attainable current in the voltage-limited region above base speed as a function of terminal voltage, speed, and voltage-phase angle; (4) the maximum-power output in the voltage-limited region above base speed as a function of speed; (5) the optimal voltage-phase angle in the voltage-limited region above base speed required to obtain maximum-power output; (6) the maximum-power speed curve which was linear from rest to base speed in the current limited region below base speed; (7) the current angle as a function of saliency ratio in the current-limited region below base speed; and (8) the torque as a function of saliency ratio which is almost linear in the current-limited region below base speed. The equations were applied to model Motor X using numerically-oriented methods with the computer tool LabVIEW. The equations were solved iteratively to find optimal current and voltage angles that yield maximum power and maximum efficiency from rest through the current-limited region to base speed and then through the voltage-limited region to high-rotational speeds. Currents, voltages, and reluctance factors were all calculated and external loops were employed to perform additional optimization with respect to PM pitch angle (magnet fraction) and with respect to magnet strength

  20. A Standardized Lepidopteran Bioassay to Investigate the Bioactivity of Insecticidal Proteins Produced in Transgenic Crops.

    PubMed

    Graser, Gerson; Walters, Frederick S

    2016-01-01

    Insecticidal bioassays are the only reliable method to investigate the biological activity of an insecticidal protein and therefore provide an essential toolkit for the characterization and potency determination of these proteins. Here we present a standardized method for a lepidopteran larval bioassay, which is optimized to specifically estimate activity of insecticidal proteins produced in transgenic plants. The treatment can be either applied to the surface of the artificial diet, or blended into the diet. PMID:26614295