Science.gov

Sample records for coastal ecosystems management

  1. Geoscience research databases for coastal Alabama ecosystem management

    USGS Publications Warehouse

    Hummell, Richard L.

    1995-01-01

    Effective management of complex coastal ecosystems necessitates access to scientific knowledge that can be acquired through a multidisciplinary approach involving Federal and State scientists that take advantage of agency expertise and resources for the benefit of all participants working toward a set of common research and management goals. Cooperative geostatic investigations have led toward building databases of fundamental scientific knowledge that can be utilized to manage coastal Alabama's natural and future development. These databases have been used to assess the occurrence and economic potential of hard mineral resources in the Alabama EFZ, and to support oil spill contingency planning and environmental analysis for coastal Alabama.

  2. An ecological and economic assessment methodology for coastal ecosystem management.

    PubMed

    Nobre, Ana M

    2009-07-01

    An adaptation of the Drivers-Pressure-State-Impact-Response methodology is presented in this work. The differential DPSIR (DeltaDPSIR) was developed to evaluate impacts on the coastal environment and as a tool for integrated ecosystem management. The aim of the DeltaDPSIR is to provide scientifically-based information required by managers and decision-makers to evaluate previously adopted policies, as well as future response scenarios. The innovation of the present approach is to provide an explicit link between ecological and economic information related to the use and management of a coastal ecosystem within a specific timeframe. The application of DeltaDPSIR is illustrated through an analysis of developments in a Southwest European coastal lagoon between 1985 and 1995. The value of economic activities dependent on the lagoon suffered a significant reduction (ca. -60%) over that period, mainly due to a decrease in bivalve production. During that decade the pressures from the catchment area were managed (ca. 176 million Euros), mainly through the building of waste water treatment plants. Notwithstanding this, the ecosystem state worsened with respect to abnormal clam mortalities due to a parasite infection and to benthic eutrophication symptoms in specific problematic areas. The negative economic impacts during the decade were estimated between -565 and -315 million Euros, of which 9-49% represent the cost of environmental externalities. Evaluation of these past events indicates that future management actions should focus on reducing the limitation on local clam seeds, which should result in positive impacts to both the local socio-economy and biodiversity. PMID:19471999

  3. An Ecological and Economic Assessment Methodology for Coastal Ecosystem Management

    NASA Astrophysics Data System (ADS)

    Nobre, Ana M.

    2009-07-01

    An adaptation of the Drivers-Pressure-State-Impact-Response methodology is presented in this work. The differential DPSIR (ΔDPSIR) was developed to evaluate impacts on the coastal environment and as a tool for integrated ecosystem management. The aim of the ΔDPSIR is to provide scientifically-based information required by managers and decision-makers to evaluate previously adopted policies, as well as future response scenarios. The innovation of the present approach is to provide an explicit link between ecological and economic information related to the use and management of a coastal ecosystem within a specific timeframe. The application of ΔDPSIR is illustrated through an analysis of developments in a Southwest European coastal lagoon between 1985 and 1995. The value of economic activities dependent on the lagoon suffered a significant reduction (ca. -60%) over that period, mainly due to a decrease in bivalve production. During that decade the pressures from the catchment area were managed (ca. 176 million Euros), mainly through the building of waste water treatment plants. Notwithstanding this, the ecosystem state worsened with respect to abnormal clam mortalities due to a parasite infection and to benthic eutrophication symptoms in specific problematic areas. The negative economic impacts during the decade were estimated between -565 and -315 million Euros, of which 9-49% represent the cost of environmental externalities. Evaluation of these past events indicates that future management actions should focus on reducing the limitation on local clam seeds, which should result in positive impacts to both the local socio-economy and biodiversity.

  4. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  5. Assessment of coastal management options by means of multilayered ecosystem models

    NASA Astrophysics Data System (ADS)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  6. Global climate change impacts on coastal ecosystems in the Gulf of Mexico: considerations for integrated coastal management

    USGS Publications Warehouse

    Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.

    2013-01-01

    Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.

  7. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  8. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.

    Aquatic ecosystems, water resources and their management are some of the main problems facing humanity. These problems vary from water scarcity and deteriorating quality for human consumption and use, to floods in areas with torrential rainfall, rising sea levels in coastal zones, the overexploitation of living resources and the loss of ecological quality and biodiversity. Proper water management needs to follow a hierarchical perspective, ranging from the whole planet to individual water bodies. Spatio-temporal scales change at each level, as do driving forces, impacts, and the processes and responses involved. Recently, the European Union adopted the Water Framework Directive (WFD) to establish the basic principles of sustainable water policy in member states, one of the main concerns being the need to consider the vulnerability of coastal aquatic ecosystems and to establish their ecological status. However, from a Mediterranean point of view, the actions of European countries (under the WFD regulations) and non-EU countries need to be coordinated. There are more than 100 coastal lagoons in the Mediterranean. They are habitats with an important ecological role, but also provide essentials goods and services for humans. In the present work, we look at the problems involved in understanding their definition and management. At water body management level, we emphasise that scientific cooperation is necessary to deal with the conceptual and ecological difficulties derived from inter and intra-lagoon variability in hydrology and biological assemblages, inherent factors in the functioning of these complex ecosystems.

  9. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  10. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    NASA Astrophysics Data System (ADS)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  11. Managing wastewater effluent to enhance aquatic receiving ecosystem productivity: a coastal lagoon in Western Australia.

    PubMed

    Machado, Daniel A; Imberger, Jörg

    2012-05-30

    Large amounts of waste are generated in urban centers that if properly managed could promote ecological services. In order to promote nutrient cycling and productivity without endangering aquatic ecosystems, management of wastewater treatment and effluent discharges to receiving waters must be assessed on a case-by-case basis. We applied this premise to examine a municipal wastewater treated effluent discharge in a shallow oligotrophic coastal lagoon in Western Australia. Three-dimensional hydrodynamic-ecological modeling (ELCOM-CAEDYM) was used to assess the reaction of ecosystem for effluent quality. Two scenarios were evaluated for the summer 2000-2001 period, the actual or "current" (conventional secondary treatment) and an "alternative" (involving substitution of biological nutrient removal by advanced treatment). The residence time of the simulated numerical domain averaged 8.4 ± 1.3 days. For the current scenario the model successfully estimated phytoplankton biomass, as chlorophyll-a concentration (Chl-a), that is within field-measured ranges and previously recorded levels. The model was able to reproduce nitrogen as the main limiting nutrient for primary production in the coastal ecosystem. Simulated surface Chl-a means were 0.26 (range 0.19-0.38) μg Chl-a/L for the current scenario and 0.37 (range 0.19-0.67) μg Chl-a/L for the alternative one. Comparison of the alternative scenario with field-measured Chl-a levels suggests moderate primary production increase (16-42%), within local historical variability. These results, suggest that such a scenario could be used, as part of a comprehensive wastewater management optimization strategy, to foster receiving ecosystem's productivity and related ecological services maintaining its oligotrophic state. PMID:22322127

  12. Is economic valuation of ecosystem services useful to decision-makers? Lessons learned from Australian coastal and marine management.

    PubMed

    Marre, Jean-Baptiste; Thébaud, Olivier; Pascoe, Sean; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-08-01

    Economic valuation of ecosystem services is widely advocated as being useful to support ecosystem management decision-making. However, the extent to which it is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of economic valuation of ecosystem services, in support of coastal and marine management, are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across groups of decision-makers. However, most decision-makers never or rarely use economic valuation. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent's use of economic valuation. Such findings concur with conclusions from other studies on the usefulness and use of ESV in environmental management decision-making. They also demonstrate the strength of the survey-based approach developed in this application to examine this issue in a variety of contexts. PMID:27136617

  13. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  14. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    NASA Astrophysics Data System (ADS)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data

  15. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    NASA Astrophysics Data System (ADS)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  16. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services. PMID:26286204

  17. Coastal wetlands: an integrated ecosystem approach

    USGS Publications Warehouse

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  18. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  19. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    NASA Astrophysics Data System (ADS)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  20. DIAGNOSING CAUSES OF IMPAIRMENT IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Engle, Virginia D. and Stephen J. Jordan. In press. Diagnosing Causes of Impairment in Coastal Ecosystems (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1008).

    Estuarine and coastal ecosystems are challenge...

  1. Exploring new issues for coastal lagoons monitoring and management

    NASA Astrophysics Data System (ADS)

    Gaertner-Mazouni, Nabila; De Wit, Rutger

    2012-12-01

    Coastal lagoons are productive and highly vulnerable ecosystems, but their management is still problematic mostly because they constitute transitional interface between terrestrial and marine domains. The "4th European Conference on Coastal Lagoon Research - Research and Management for the conservation of coastal lagoon ecosystems, South North comparisons", was focused on the scientific research on coastal lagoons and the management for their conservation and sustainable use. Selected contributions were considered in this special issue of Estuarine Coastal and Shelf Science "Research and Management for the conservation of coastal lagoon ecosystems" as they deal with three important aspects for coastal lagoons management: (1) the design of monitoring programmes using biological compartments, (2) the ecosystem functioning and the impacts of perturbations and (3) ecosystem trajectories particularly after ecosystem restoration. Here we introduce the selected papers published in this issue, place these contributions in the perspective of the science-management interface and discuss new issues for coastal lagoon management.

  2. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): a tool for coastal ecosystem management.

    PubMed

    Díaz-Asencio, M; Alvarado, J A Corcho; Alonso-Hernández, C; Quejido-Cabezas, A; Ruiz-Fernández, A C; Sanchez-Sanchez, M; Gómez-Mancebo, M B; Froidevaux, P; Sanchez-Cabeza, J A

    2011-11-30

    Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the (210)Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90 s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90 s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90 s, which dismissed catchment erosion and pollution. PMID:21978587

  3. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation

    PubMed Central

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-01-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100

  4. E-estuary: A Decision Support System for Coastal Water and Ecosystem Management in the US (CZ09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  5. Coastal Intelligence - A national infrastructure to support decision-making for coastal communities, economies and ecosystems

    NASA Astrophysics Data System (ADS)

    Weston, Neil D.

    2015-04-01

    The National Ocean Service (NOS), a Line Office within NOAA, is primarily responsible for fostering healthy and sustainable marine resources, habitats and ecosystems, strengthening the resiliency of communities, as well as being the nation's leader in observing, modeling and managing coastal, ocean and Great Lakes areas. NOS and numerous partners also play a critical role along the coasts and in marine ecosystems by providing science-based products and services to support a wide variety of applications. Coastal Intelligence however, goes one step further to support ecosystems, economies and communities by providing the infrastructure to integrate numerous observing systems and interpreting the scientific data into information that people can use. This poster will focus primarily on the science, observing systems and data modeling that support Coastal Intelligence and how accurate information can ensure timely and actionable decision-making for coastal communities and ecosystems.

  6. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  7. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  8. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): A Long-Term Remote Sensing, Hydrologic, Ecologic, and Socio-Economic Assessment with Management Implications

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto-Orta, M.; Ortiz, J.; Santiago, L.; Setegn, S. G.; Guild, L. S.; Ramos-Scharron, C. E.; Armstrong, R.; Detres, Y.

    2014-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs) have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Coral reefs, for instance, have been impacted by sedimentation, increased eutrophication, and coastal water contamination. Here we present an overview of a new NASA project to study human impacts in two priority watersheds (Manatí and Guánica). The project uses an interdisciplinary approach that includes historic and recent remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change in coral reefs, seagrass beds, mangroves and sandy beaches. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. Methods include assessments of coral reefs benthic communities cover, monitoring of short- and long-term beach geomorphological changes associated with riverine and sediment input, calculation of the economical value of selected CMEs, establish permanent monitoring transects in never before studied coral reef areas, provide recommendations to enhance current coastal policy management practices, and disseminate the results to local stakeholders. This project will include imagery from the Operational Land Imager of Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Our results and the generality of the methodology will provide for its application to other similar tropical locations.

  9. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. PMID:26763325

  10. Coastal Ecosystems and Climate Change: Is Modeling and Monitoring Enough?

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Walker, H. A.

    2005-05-01

    Many coastal ecosystems are severely degraded due to a variety of human factors, requiring large and expensive monitoring and modeling efforts for restoration and management. Climate variability, including abrupt climate change, is seldom factored into coastal ecosystem management despite growing evidence for climate forcing of precipitation, river discharge, water quality, salinity, turbidity, faunal and phytoplankton dynamics, dissolved oxygen, and other ecosystem processes. We will review evidence from long-term monitoring records, multi-proxy paleoclimatic and paleoecological records, and climatic modeling that suggests that the effects of climate can override local and regional human activities and may potentially diminish the success of restoration efforts. Because ecosystem restoration often involves long-term objectives requiring decades to achieve, our focus will be on examples from sub-tropical and temperate estuaries in North America that show ecosystem response over decadal timescales to variability related to El Niño-Southern Oscillation, the Pacific Decadal Oscillation and the North Atlantic Oscillation. Climatic variability evident from paleo-records of the past few centuries exceeds that recorded in most 20th century monitoring records. This raises issues about the efficacy of local and regional ecosystem and hydrodynamic models designed to simulate ecosystem response to anthropogenic changes in sediment and nutrient input, fresh-water discharge, and land-use because such models, though tested with rigorous validation procedures, use calibration data sets limited to a few years. Thus, they might not be appropriate for simulating response to climatic extremes on the scale and duration of past events outside their calibration range. Understanding the complexities of ecosystem response to climatic forcing, especially in the context of local and regional ecosystem disturbance, raises formidable challenges, but attempts to integrate climate

  11. Integrated Research Approaches to Coastal Zone Management

    NASA Astrophysics Data System (ADS)

    Nandini Menon, N.; Singh, Tanya; Pettersson, Lasse H.

    2014-12-01

    Coastal zones around the world are extremely vulnerable today because of the unprecedented pressures of industrial and urban development as well as climate change related devastations, such as the growing intensities of cyclonic storms, the rise in sea surface temperature, sea surges, and sea level rise. In India, where about 35% of the population lives within 100 kilometers of the coastline, fisheries are a major driver and safety net for economic development and coastal livelihoods. Coastal ecosystems are closely linked with socio-economic systems, which require carefully planned coastal zone management (CZM) actions.

  12. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  13. Managed island ecosystems

    USGS Publications Warehouse

    McEachern, Kathryn; Atwater, Tanya; Collins, Paul W.; Faulkner, Kate R.; Richards, Daniel V.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  14. USGS: Science to understand and forecast change in coastal ecosystems

    USGS Publications Warehouse

    Myers, M.

    2007-01-01

    The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.

  15. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    EPA Science Inventory

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  16. Global patterns of phytoplankton dynamics in coastal ecosystems

    USGS Publications Warehouse

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  17. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. PMID:24975091

  18. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS), National Oceanic...

  19. The Economic Value of Coastal Ecosystems in California

    EPA Science Inventory

    The status of marine ecosystems affects the well being of human societies. These ecosystems include but are not limited to estuaries, lagoons, reefs, and systems further offshore such as deep ocean vents. The coastal regions that connect terrestrial and marine ecosystems are of p...

  20. Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts.

    PubMed

    Rönnbäck, Patrik; Kautsky, Nils; Pihl, Leif; Troell, Max; Söderqvist, Tore; Wennhage, Håkan

    2007-11-01

    Coastal areas are exposed to a variety of threats due to high population densities and rapid economic development. How will this affect human welfare and our dependence on nature's capacity to provide ecosystem goods and services? This paper is original in evaluating this concern for major habitats (macroalgae, seagrasses, blue mussel beds, and unvegetated soft bottoms) in a temperate coastal setting. More than 40 categories of goods and services are classified into provisional, regulating, and cultural services. A wide variety of Swedish examples is described for each category, including accounts of economic values and the relative importance of different habitats. For example, distinguishing characteristics would be the exceptional importance of blue mussels for mitigation of eutrophication, sandy soft bottoms for recreational uses, and seagrasses and macroalgae for fisheries production and control of wave and current energy. Net changes in the provision of goods and services are evaluated for three cases of observed coastal ecosystem shifts: i) seagrass beds into unvegetated substrate; ii) unvegetated shallow soft bottoms into filamentous algal mat dominance; and iii) macroalgae into mussel beds on hard substrate. The results are discussed in a management context including accounts of biodiversity, interconnectedness of ecosystems, and potential of economic valuation. PMID:18074889

  1. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance. PMID:24849111

  2. Decreasing nitrate-N loads to coastal ecosystems with innovative drainage management strategies in agricultural landscapes: An experimental approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drainage in agricultural ditches contributes to a drainage management strategy with potential environmental and production benefits. Innovative drainage strategies including spatially orientated low-grade weirs show promise to significantly improve nutrient (e.g. nitrate-N) reductions by...

  3. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  4. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  5. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    PubMed

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  6. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature

    PubMed Central

    Arkema, Katie K.; Verutes, Gregory M.; Wood, Spencer A.; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M.; Griffin, Robert; Guerry, Anne D.

    2015-01-01

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize’s coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions. PMID:26082545

  7. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  8. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  9. DEVELOPING SCIENCE-BASED INFORMATION FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, J. Kevin. In press. Developing Science-Based Information for Coastal Ecosystems (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington, DC. 1 p. (ERL,GB R989).

    The purpose of the session will be the dem...

  10. Ecosystem modeling of coastal acidification and hypoxia and structural uncertainties in the representation of sediment-water exchanges

    EPA Science Inventory

    Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...

  11. Understanding and managing human threats to the coastal marine environment.

    PubMed

    Crain, Caitlin M; Halpern, Benjamin S; Beck, Mike W; Kappel, Carrie V

    2009-04-01

    Coastal marine habitats at the interface of land and sea are subject to threats from human activities in both realms. Researchers have attempted to quantify how these various threats impact different coastal ecosystems, and more recently have focused on understanding the cumulative impact from multiple threats. Here, the top threats to coastal marine ecosystems and recent efforts to understand their relative importance, ecosystem-level impacts, cumulative effects, and how they can best be managed and mitigated, are briefly reviewed. Results of threat analysis and rankings will differ depending on the conservation target (e.g., vulnerable species, pristine ecosystems, mitigatable threats), scale of interest (local, regional, or global), whether externalities are considered, and the types of management tools available (e.g., marine-protected areas versus ecosystem-based management). Considering the cumulative effect of multiple threats has only just begun and depends on spatial analysis to predict overlapping threats and a better understanding of multiple-stressor effects and interactions. Emerging conservation practices that hold substantial promise for protecting coastal marine systems include multisector approaches, such as ecosystem-based management (EBM), that account for ecosystem service valuation; comprehensive spatial management, such as ocean zoning; and regulatory mechanisms that encourage or require cross-sector goal setting and evaluation. In all cases, these efforts require a combination of public and private initiatives for success. The state of our ecological understanding, public awareness, and policy initiatives make the time ripe for advancing coastal marine management and improving our stewardship of coastal and marine ecosystems. PMID:19432644

  12. VIIRS Ocean Color Data For Coastal Management

    NASA Astrophysics Data System (ADS)

    Fargion, G. S.; Arnone, R. A.; Lander, S.; Martinolich, P.; Bowers, J.; Lawson, A.

    2012-12-01

    Nine months ago, the Visible Infrared Imager Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (NPP) began actively generating data. Preliminary data from the on-going JPSS-NASA-NOAA and NRL calibration/validation activities indicate that ocean color products are of high quality and comparable with Moderate Advanced Very High Resolution Radiometer (MODIS) and other heritage missions. VIIRS 750 m resolution across the entire scan is providing twice the coverage of MODIS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which is a substantial improvement for coastal, estuarine studies and inland lake management, in particular. As an outcome, this study will produce VIIRS data products relevant to ecosystem managers [Harmful Algal Blooms (HABs) monitoring and ecosystem dynamics]. We will present examples of VIIRS ocean color products for US lakes and estuaries with river runoff that could be used by coastal and ecosystem managers and policy makers. Acknowledgements: We greatly appreciate the support we have received from our sponsors from the JPSS Program Office, NOAA and to NRL. VIIRS Chlorophyll OC3 Algorithm (July 17, 2012)

  13. Issues in Coastal Zone Management.

    ERIC Educational Resources Information Center

    Davis, Derrin

    1992-01-01

    Addresses the following issues relevant to coastal zone management: overcrowding, resource exploitation, pollution, agriculture, fisheries, industrial, and other uses. Describes conflicts and trade-offs in management typified by fragmented agency decision making. Discusses implications of the greenhouse effect, sustainable development, and the…

  14. MANAGING COASTAL DATA

    EPA Science Inventory

    To answer broad-scale questions on environmental conditions, the Environmental Monitoring and Assessment Program (EMAP) and its partners have collected estuarine and coastal data from hundreds of stations along the coasts of the continental United States. Types of data include w...

  15. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd J.; Olenin, Sergej; Reise, Karsten; Ysebaert, Tom

    2009-03-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore

  16. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  17. Adaptive Management of Ecosystems

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management. As such, management may be treated as experiment, with replication, or management may be conducted in an iterative manner. Although the concept has resonated with many...

  18. Linking integrated water resources management and integrated coastal zone management.

    PubMed

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents. PMID:16114636

  19. Australian and Chinese Scientists Discuss Coastal Zone Management

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Hua; Xu, Xiangmin

    2010-03-01

    Integrated Coastal Zone Management Workshop; Canberra, Australian Capital Territory, Australia, 11-14 November 2009; A 3-day workshop was held in Australia to discuss problems and issues facing coastal zones, including degradation of coastal ecosystems and the impacts of climate change such as sea level rise and changed weather patterns, and to formulate a collaborative research strategy to improve the coastal zone management (CZM) system to tackle these problems. The workshop, which brought together experts from University of New South Wales (UNSW) and Ocean University of China (OUC), highlighted the similarities in topics important to Australia and China. This workshop focused on science, policy, and the legal framework required to manage sustainable development of these coastal zones. Many parallels exist between the difficult issues facing CZM in both countries. Significant research into changes in coastal areas and their causes has been undertaken, but this research effort has not been fully reflected in coastal zone planning and management activities. Workshop participants reviewed current progress in understanding scientific, engineering, and socioeconomic processes in the coastal zones, brainstormed challenges in developing a multidisciplinary research framework capable of integrating science into coastal zone management, and identified a cross-institutional approach to addressing these issues.

  20. Coastal Ecosystems. Project CAPE Teaching Module [with Student Materials].

    ERIC Educational Resources Information Center

    Cowal, Michael; And Others

    Intended for grades K-2, this science unit on coastal ecosystems aids teachers in helping students to: (1) identify marine organisms; (2) learn their basic characteristics; and (3) understand the web of interdependence among organisms of the same habitat. The teacher's guide is divided into four sections. The first section gives background…

  1. DEVELOPING INDICATORS OF NITROGEN SOURCE IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Several studies have linked stable isotope ratios of biota to nitrogen source. In particular, ribbed mussels show promise as sensitive indicators of the origins of nitrogen inputs to coastal ecosystems. Here we expand on previous work which demonstrated that mussel isotope ratios...

  2. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    PubMed Central

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  3. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    NASA Astrophysics Data System (ADS)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  4. Climatic Impacts and resilience of coastal ecosystems and fisheries

    NASA Astrophysics Data System (ADS)

    Micheli, F.

    2012-12-01

    Marine and coastal ecosystems and human communities around the world are impacted by local anthropogenic pressures and by climate change, resulting in decreased ocean productivity, altered food web dynamics, habitat degradation, economic losses, and health and safety risks as a consequence of the changing and more variable climate. Climatic impacts occur both through altered physical conditions and variability, e.g., seawater temperature and sea level, and through a suite of chemical changes, including ocean acidification and hypoxia. In particular, time series analyses have highlighted declines in dissolved oxygen (DO) concentration in the ocean over the last several decades. In addition to these global trends of decreasing DO, hypoxic conditions have been documented at several coastal locations within productive upwelling-driven ecosystems, including the California Current region, resulting in high mortality of ecologically and commercially important nearshore marine species and significant economic losses. The capacity of local ecosystems and associated human communities to adapt to these pressures depends on their resilience, that is the ability of ecosystems to absorb disturbance while retaining function and continuing to provide ecosystem services, and the ability of people to adapt to change in their environment by altering their behaviors and interactions. I will present global assessments of the cumulative impacts of climatic and local anthropogenic pressures on marine ecosystems, and results of interdisciplinary research investigating the current impacts of climate change on coastal marine ecosystems and human communities of the Pacific coast of Baja California, Mexico, and the influences of local and global feedbacks on the resilience and adaptive capacity of these systems.

  5. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Keough, Janet R.; Thompson, Todd A.; Guntenspergen, Glenn R.; Wilcox, Douglas A.

    1999-01-01

    Gauging the impact of manipulative activities, such as rehabilitation or management, on wetlands requires having a notion of the unmanipulated condition as a reference. And understanding of the reference condition requires knowledge of dominant factors influencing ecosystem processes and biological communities. In this paper, we focus on natural physical factors (conditions and processes) that drive coastal wetland ecosystems of the Laurentian Great Lakes. Great Lakes coastal wetlands develop under conditions of large-lake hydrology and disturbance imposed at a hiearchy of spatial and temporal scales and contain biotic communities adapted to unstable and unpredictable conditions. Coastal wetlands are configured along a continuum of hydrogeomorphic types: open coastal wetlands, drowned river mouth and flooded delta wetlands, and protected wetlands, each developing distinct ecosystem propertics and biotic communities. Hydrogeomorphic factors associated with the lake and watershed operate at a hierarchy of scales: a) local and short-term (seiches and ice action), b) watershed / lakewide / annual (seasonal water-level change), and c) larger or year-to-year and longer (regional and/or greater than one-year). Other physical factors include the unique water quality features of each lake. The aim of this paper is to provide scientists and managers with a framework for considering regional and site-specific geomorphometry and a hierarchy of physical processes in planning management and conservation projects.

  6. Economic Tools for Managing Nitrogen in Coastal Watersheds

    EPA Science Inventory

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  7. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    PubMed

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management. PMID:23076973

  8. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    PubMed

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. PMID:24992461

  9. Coastal flood management in Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Marfai, Muh Aris; King, Lorenz

    2008-10-01

    Semarang is one of the biggest cities in Indonesia and is nowadays suffering from coastal flooding. Land subsidences, high water tide, and inadequate structural measures play important roles in the coastal inundations. Structural and non-structural methods for controlling coastal flooding including dykes, drainage systems, pump stations, polder systems, coastal-land reclamations, coastal planning and management, public education, as well as the establishment of an institutional framework for disaster management have been implemented in the Semarang coastal area. Although some improvements have been made, the current flood management system has generally failed to address a wide range of coastal inundation problems. Some improvement actions have been proposed including stakeholders involvement on the disaster mitigation. For a long period coastal management, accelerated sea level rises due to global warming should also be taken into account.

  10. Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Diefenderfer, Heida L.

    2005-03-01

    The global human population is growing exponentially, a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People want and need the economics provided by coastal development but they also want and need the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in the design and mitigation of nearshore structures has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology and adaptive management to incorporate science into decisions about use of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize estuarine areas for preservation, conservation and restoration. Case studies of Clinton, WA and Port Townsend, WA demonstrate the incorporation of an ecological perspective and technological solutions into design projects that affect the nearshore. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think that these kinds of methods can contribute to the net improvement of already degraded ecosystems. The challenges include applied science to understand the issues, education, incentives, empirical data (not rehashing of reviews), cumulative impact analysis, and an effective adaptive management program. Because the option

  11. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, John C.; Purkis, Samuel J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.

  12. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    USGS Publications Warehouse

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  13. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  14. Emerging methods for the study of coastal ecosystem landscape structure and change

    USGS Publications Warehouse

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  15. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    van de Koppel, Johan; van der Heide, Tjisse; Altieri, Andrew H.; Eriksson, Britas Klemens; Bouma, Tjeerd J.; Olff, Han; Silliman, Brian R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that interactions that operate at long distances, beyond the direct neighborhood of individual organisms, are more common and have much more far-reaching implications for coastal ecosystems than was previously realized. We review studies from a variety of ecosystem types—including cobble beaches, mussel beds, coral reefs, seagrass meadows, and mangrove forests—that reveal a startling interplay of positive and negative interactions between habitats across distances of up to a kilometer. In addition to classical feeding relations, alterations of physical conditions constitute an important part of these long-distance interactions. This entanglement of habitats has crucial implications for how humans manage coastal ecosystems, and evaluations of anthropogenic impact should explicitly address long-distance and system-wide effects before we deem these human activities to be causing little harm.

  16. Biodiversity and Industry Ecosystem Management

    PubMed

    COLEMAN

    1996-11-01

    / The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish "near-trump" (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  17. The impact of climate change on coastal ecosystems: chapter 6

    USGS Publications Warehouse

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  18. RADICALLY CONTESTED ASSERTIONS IN ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is a magnet for controversy, in part because some of its formulations rest on questionable assertions that are radically contested. These assertions are important to understanding much of the conflict surrounding ecosystem management and, therrefore, deserve...

  19. Contributions of Participatory Modeling to Development and Support of Coastal and Marine Management Plans

    EPA Science Inventory

    The role of participatory modeling- at various scales- to assist in developing shared visions, understanding the decision landscape, identifying and selecting management options, and monitoring outcomes will be explored in the context of coastal and marine planning, ecosystem ser...

  20. Accelerating loss of seagrasses across the globe threatens coastal ecosystems.

    PubMed

    Waycott, Michelle; Duarte, Carlos M; Carruthers, Tim J B; Orth, Robert J; Dennison, William C; Olyarnik, Suzanne; Calladine, Ainsley; Fourqurean, James W; Heck, Kenneth L; Hughes, A Randall; Kendrick, Gary A; Kenworthy, W Judson; Short, Frederick T; Williams, Susan L

    2009-07-28

    Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km(2) yr(-1) since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr(-1) before 1940 to 7% yr(-1) since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth. PMID:19587236

  1. Estimating Pesticide Retention Efficacy for Edge of Field Buffers Using the Riparian Ecosystem Management Model (REMM) in Southern Atlantic Coastal Plain Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Southern Atlantic Coastal Plain croplands are vulnerable to runoff; thus agricultural pesticide use may adversely impact surface water quality. Our research group has collected data over the past 5 years indicating that this is not the case in Little River Experimental Watershed (LREW) located in co...

  2. 76 FR 57022 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... National Oceanic And Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA... Impact Statement (DEIS) prepared by NOAA's Office of Ocean and Coastal Resource Management. The...

  3. Biodiversity and industry ecosystem management

    NASA Astrophysics Data System (ADS)

    Coleman, William G.

    1996-11-01

    The term biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they comprise, and the variety of ecosystems of which they are functioning parts. Ecosystem health, a closely related concept, is described in terms of a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability and sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the face of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish “near-trump” (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-wide, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute

  4. Impact of petroleum pollution on aquatic coastal ecosystems in Brazil

    SciTech Connect

    Silva, E.M. da; Peso-Aguiar, M.C.; Navarro, M.F.T.; Chastinet, C.B.A.

    1997-01-01

    Although oil activities generate numerous forms of environmental impact on biological communities, studies of these impacts on Brazilian coastal ecosystems are rate. Results of tests for the content of oil in sediments and organisms indicate a substantially high rate of degradation. Results for uptake of polycyclic aromatic hydrocarbons in bivalves suggested the recent occurrence of oil spills and that these organisms differed in their capabilities to bioconcentrate oil. The mangrove community has suffered constant inputs of oil and has responded with increased numbers of aerial roots, generation of malformed leaves and fruits by plants, and a decrease in litter production. Studies of the impact of oil on rocky shore communities and the toxicity of oil and its by-products to marine organisms have confirmed the results reported in the literature. Presently most of the available studies deal with the macroscopic effects of oil on organisms and have indicated that the nature of oil, climate characteristics, the physical environment, and the structure of the community influence the symptoms of oil contamination in organisms of coastal waters. Long-term studies should be carried out to assess changes in community structure, sublethal effects in populations, and the resilience of contaminated ecosystems.

  5. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea

    PubMed Central

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950

  6. Coastal Ecosystem Integrated Compartment Model (ICM): Modeling Framework

    NASA Astrophysics Data System (ADS)

    Meselhe, E. A.; White, E. D.; Reed, D.

    2015-12-01

    The Integrated Compartment Model (ICM) was developed as part of the 2017 Coastal Master Plan modeling effort. It is a comprehensive and numerical hydrodynamic model coupled to various geophysical process models. Simplifying assumptions related to some of the flow dynamics are applied to increase the computational efficiency of the model. The model can be used to provide insights about coastal ecosystems and evaluate restoration strategies. It builds on existing tools where possible and incorporates newly developed tools where necessary. It can perform decadal simulations (~ 50 years) across the entire Louisiana coast. It includes several improvements over the approach used to support the 2012 Master Plan, such as: additional processes in the hydrology, vegetation, wetland and barrier island morphology subroutines, increased spatial resolution, and integration of previously disparate models into a single modeling framework. The ICM includes habitat suitability indices (HSIs) to predict broad spatial patterns of habitat change, and it provides an additional integration to a dynamic fish and shellfish community model which quantitatively predicts potential changes in important fishery resources. It can be used to estimate the individual and cumulative effects of restoration and protection projects on the landscape, including a general estimate of water levels associated with flooding. The ICM is also used to examine possible impacts of climate change and future environmental scenarios (e.g. precipitation, Eustatic sea level rise, subsidence, tropical storms, etc.) on the landscape and on the effectiveness of restoration projects. The ICM code is publically accessible, and coastal restoration and protection groups interested in planning-level modeling are encouraged to explore its utility as a computationally efficient tool to examine ecosystem response to future physical or ecological changes, including the implementation of restoration and protection strategies.

  7. ECOSYSTEM MANAGEMENT: DESPERATELY SEEKING A PARADIGM

    EPA Science Inventory

    Two competing views of ecosystem management have emerged. One is that ecosystem management is another stage in the continual evolution of the basic management paradigm - one that natural resource managers have followed in North America for a century. The other view is that ecosys...

  8. Biodiversity and industry ecosystem management

    SciTech Connect

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8 figs.

  9. Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management

    PubMed Central

    Levin, Phillip S.; Möllmann, Christian

    2015-01-01

    Regime shifts have been observed in marine ecosystems around the globe. These phenomena can result in dramatic changes in the provision of ecosystem services to coastal communities. Accounting for regime shifts in management clearly requires integrative, ecosystem-based management (EBM) approaches. EBM has emerged as an accepted paradigm for ocean management worldwide, yet, despite the rapid and intense development of EBM theory, implementation has languished, and many implemented or proposed EBM schemes largely ignore the special characteristics of regime shifts. Here, we first explore key aspects of regime shifts that are of critical importance to EBM, and then suggest how regime shifts can be better incorporated into EBM using the concept of integrated ecosystem assessment (IEA). An IEA uses approaches that determine the likelihood that ecological or socio-economic properties of systems will move beyond or return to acceptable bounds as defined by resource managers and policy makers. We suggest an approach for implementing IEAs for cases of regime shifts where the objectives are either avoiding an undesired state or returning to a desired condition. We discuss the suitability and short-comings of methods summarizing the status of ecosystem components, screening and prioritizing potential risks, and evaluating alternative management strategies. IEAs are evolving as an EBM approach that can address regime shifts; however, advances in statistical, analytical and simulation modelling are needed before IEAs can robustly inform tactical management in systems characterized by regime shifts.

  10. Analytical perspectives of cooperative coastal management.

    PubMed

    Davos, C A; Lejano, R P; Lajano, R P

    2001-06-01

    We accept the thesis that coastal management, as any other form of environmental management, can be effective only with the cooperation of a multitude of stakeholders with conflicting interests. At present, cooperation is forced upon stakeholders by a paternalistic (top-down) coastal management that is outcome oriented and coercive in nature. Forced cooperation is difficult to maintain, however. The alternative is to seek voluntary cooperation with a process-oriented, cooperative (bottom-up) coastal management approach. After a brief review of these arguments, we address the major analytical challenge of cooperative coastal management, which is to search for solutions that can be negotiated and implemented with maximum voluntary cooperation. The main property of these solutions, which are also referred to as core solutions, is that they are preferable to individual stakeholders or coalitions of stakeholders over acting-alone alternatives. Our analysis is applicable to any other form of environmental management. PMID:11434027

  11. Western rock lobsters ( Panulirus cygnus) in Western Australian deep coastal ecosystems (35-60 m) are more carnivorous than those in shallow coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Waddington, Kris I.; Bellchambers, Lynda M.; Vanderklift, Mathew A.; Walker, Diana I.

    2008-08-01

    The western rock lobster ( Panurilus cygnus George.) is a conspicuous consumer in the coastal ecosystems of temperate Western Australia. We used stable isotope analysis and gut content analysis to determine the diet and trophic position of western rock lobsters from mid-shelf coastal ecosystems (35-60 m depth) at three locations. Lobsters were primarily carnivorous, and no consistent differences in diet were detected with varying lobster size, sex or among locations. The main components of the diet were bait (from the fishery) and small crustaceans - crabs and amphipods/isopods. Foliose red algae, bivalves/gastropods and sponges were minor contributors to diet. The diet of lobsters in deep coastal ecosystems differed from the results of previous studies of diets of lobsters from shallow coastal ecosystems. In particular, coralline algae and molluscs - important prey in studies of lobsters from shallow coastal ecosystems - were minor components of the diet. These differences are likely to reflect differences in food availability between these systems and potentially, differences in choice of prey by lobsters that inhabit deeper water. Given the high contribution of bait to lobster diet, bait is likely to be subsidizing lobster production in deep coastal ecosystems during the fishing season.

  12. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the "adaptive cycle". Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  13. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the “adaptive cycle”. Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  14. Integrating natural and socio-economic science in coastal management

    NASA Astrophysics Data System (ADS)

    Turner, R. Kerry

    2000-07-01

    The future more sustainable management of coastal resources is an important policy goal for all governments of countries with coastlines. Coastal areas are under intense environmental change pressure with extensive feedback effects between the natural systems and the human systems. It could be argued that there is just one jointly determined and coevolving system that needs to be studied and managed. Understanding the interactions between the coastal zone and environmental change cannot be achieved by observational studies alone. Modelling of key environmental and socio-economic processes is a vital tool, required to buttress coastal management institutions and practice. Three overlapping procedural stages can be identified in the coastal resource assessment process. The scoping and auditing stage, implemented via a 'pressure-state-impact-response' framework, details, among other thing, problems, system boundaries and value conflicts. The framework is itself based on a conceptual model, which lays stress on functional value diversity and the links between ecosystem processes, functions and outputs of goods and services which are deemed 'valuable' by society. The two subsequent stages are integrated modelling, combining natural and social science methodologies, and evaluation of management options and related gains and losses. An overview of a research project, which utilised the pressure-state-impacts-response (P-S-I-R) framework and supporting concepts and methods, is presented in the last section of the paper, together with some generic 'lessons' for interdisciplinary research.

  15. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  16. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  17. The concept of biotope in marine ecology and coastal management.

    PubMed

    Olenin, Sergej; Ducrotoy, Jean-Paul

    2006-01-01

    The term "biotope" was introduced by a German scientist, Dahl in 1908 as an addition to the concept of "biocenosis" earlier formulated by Möbius (1877). Initially it determined the physical-chemical conditions of existence of a biocenosis ("the biotope of a biocenosis"). Further, both biotope and biocenosis were respectively considered as abiotic and biotic parts of an ecosystem. This notion ("ecosystem = biotope + biocenosis") became accepted in German, French, Russian and other European "continental" ecological literature. The new interpretation of the term ("biotope = habitat + community") appeared in the United Kingdom in the early 1990s while classifying "marine habitats" of the coastal zone. Since then, this meaning was also used in international European environmental documents. This paper examines the evolution of the biotope notion. It is concluded that the contemporary concept is robust and may be used not only for the classification and mapping but also for functional marine ecology and coastal zone management. PMID:16600815

  18. Managing riverine landscapes as meta-ecosystems

    NASA Astrophysics Data System (ADS)

    Tockner, K.

    2014-12-01

    Aquatic and terrestrial ecosystems are tightly linked through energy, material, information, and organism flows. At the landscape scale, these reciprocal flows are controlled by the composition, configuration, boundary conditions and linkage of individual ecosystem types, thereby forming so-called meta-ecosystems. The relative importance of individual ecosystem types depends on the intrinsic properties (so-called "ecosystem traits"), the setting within the landscape, and the characteristics of interfaces that control cross-system fluxes. For example, the juxtaposition of particular ecosystem types (i.e. their composition and configuration) may alter the magnitude of landscape processes as well as the directions of flow among ecosystem types. Therefore, the meta-ecosystem concept provides a framework to quantify ecosystem diversity, a neglected component of biodiversity, and to test its effects on genetic and species diversity as well as the functional performance in coupled ecosystems. Given their topographic position at the lowest point in the landscape, aquatic ecosystems are particularly susceptible to influences exerted by their surrounding terrestrial environment, both the immediately adjacent riparian zones and the entire catchment that they drain. Questions that need to be tackled may include: What are the consequences of exchange pulses between aquatic and terrestrial ecosystems on the functional performance of individual ecosystems? What are the mechanisms and processes underlying structural and functional biodiversity at aquatic-terrestrial interfaces? In this respect, the meta-ecosystem concept might be very helpful in landscape management and in ecosystem design and engineering.

  19. Physical and human dimensions for integrated coastal management: Assessment of coastal changes and resident knowledge base in coastal areas of the Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Euan-Avila, Jorge Ivan

    Coastal zones are under severe pressure as a result of multiple human activities. Environmental degradation, coastal ecosystems' importance and resource depletion require alternative policy for long-term sustainable development. This study focuses on physical and human dimensions involved in ecosystem perturbation and management. This research analyzed data collected with remote sensors to determine land cover changes in tropical mangrove wetlands and their spatial relationships with roads and town developments. It also analyzed data of 139 interviews with residents in the area to assess their knowledge base regarding: (i) the use and non-use values of mangrove wetlands, (ii) attitudes in resource use, (iii) awareness of environmental impacts of urban expansion, solid waste disposal in wetlands, and coastal road networks, and (iv) acceptance of regulation. Findings indicated: (i) a significant loss of vegetation and soils, (ii) increasing urban growth and (iii) differences between urban and rural residents regarding the use, knowledge and attitudes towards coastal ecosystems and resources. To receive the future benefits from these ecosystems, specially for those whose daily survival depend upon them requires an integrated management program that accounts for: (i) the size and location of land cover changes in the area, and (ii) the heterogeneity between the urban (Progreso and Prochub) and rural (Chuburna and Chelem) coastal resident knowledge base.

  20. Status of coastal zone management techniques

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    Remote panchromatic imagery was applied to develop a coastal zone management atlas that provides for land cover or vegetation surveys as well as land use stereographic mapping for regional planning purposes.

  1. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2014-05-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of

  2. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  3. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  4. Invasiveness of Galenia pubescens (Aizoaceae): A new threat to Mediterranean-climate coastal ecosystems

    NASA Astrophysics Data System (ADS)

    García-de-Lomas, Juan; Cózar, Andrés; Dana, Elías D.; Hernández, Ignacio; Sánchez-García, Íñigo; García, Carlos M.

    2010-01-01

    Blanket weed Galenia pubescens (Aizoaceae) is a prostrate perennial species native to South Africa. The naturalization in other Mediterranean-climate ecosystems has recently been noted in South-western Australia, California, and Southern Spain. In this paper, the invasiveness of G. pubescens was evaluated by testing a variety of stochastic and biological features and by studying the incipient impacts in two well-differentiated coastal ecosystems of Southern Spain- dunes and salty wetlands. Several features of G. pubescens were found as indicators of invasiveness: (i) the genus Galenia was not represented in native flora, and the majority of the species of the family (Aizoaceae) were alien or invasive; (ii) the growth type of G. pubescens (dense prostrate mats) was not found among the native species; (iii) resprouting ability, growth rates and seed production were within the range of well-known invaders such as Carpobrotus spp and Mesembryanthemum crystallinum L.; (iv) the overlapping in flowering periods (73-94%) with those of native flora and the effective shading (99%) of the G. pubescens mats were considerably high. A significant lower native richness and Shannon's diversity index was found in the invaded plant communities. These results demand the consideration of G. pubescens into the management plans of the Mediterranean-climate coastal ecosystems in order to prevent further dispersal and impacts.

  5. The emerging role of lidar remote sensing in coastal research and resource management

    USGS Publications Warehouse

    Brock, J.C.; Purkis, S.J.

    2009-01-01

    Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.

  6. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. PMID:25354555

  7. Linking ecosystem processes to sustainable wetland management

    USGS Publications Warehouse

    Euliss, Ned H.; Smith, Loren M.; Wilcox, Douglas A.; Browne, Bryant A.

    2009-01-01

    As a result of concern over problems associated with the future of managed wetlands in North America, nearly two dozen wetland scientists and managers met in February 2006 at Bosque del Apache National Wildlife Refuge in New Mexico and discussed a sustainable approach to wetland management. This approach links science with management by focusing on underlying wetland processes. From that meeting, several papers were developed and published in Wetlands to address these concerns (Euliss et al. 2008, Smith et al. 2008, Wilcox 2008). This article summarizes our first paper, Euliss et al. (2008), and a future Newsletter article will summarize Smith et al. (2008). Realization of the role that complex interactions play in maintaining ecosystems, coupled with increasing demands of humans for ecosystem services, has prompted much interest in ecosystem management. Not surprisingly, sustainability of ecosystems has become an explicitly stated goal of many natural resource agencies and, in some cases, has been legislatively mandated to ensure provision of resources for future generations. However, examples of sustainable ecosystem management are uncommon because management goals often focus on specific deliverables rather than processes that sustain ecosystems. This paper has three sections: (1) perspectives in which we provide a bit of history, (2), ecological consequences of a static view, and (3) suggestions to aid wetland managers link management goals with critical ecosystem processes responsible for provision of wetland services.

  8. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment

    PubMed Central

    Carpenter, Stephen R.; Mooney, Harold A.; Agard, John; Capistrano, Doris; DeFries, Ruth S.; Díaz, Sandra; Dietz, Thomas; Duraiappah, Anantha K.; Oteng-Yeboah, Alfred; Pereira, Henrique Miguel; Perrings, Charles; Reid, Walter V.; Sarukhan, José; Scholes, Robert J.; Whyte, Anne

    2009-01-01

    The Millennium Ecosystem Assessment (MA) introduced a new framework for analyzing social–ecological systems that has had wide influence in the policy and scientific communities. Studies after the MA are taking up new challenges in the basic science needed to assess, project, and manage flows of ecosystem services and effects on human well-being. Yet, our ability to draw general conclusions remains limited by focus on discipline-bound sectors of the full social–ecological system. At the same time, some polices and practices intended to improve ecosystem services and human well-being are based on untested assumptions and sparse information. The people who are affected and those who provide resources are increasingly asking for evidence that interventions improve ecosystem services and human well-being. New research is needed that considers the full ensemble of processes and feedbacks, for a range of biophysical and social systems, to better understand and manage the dynamics of the relationship between humans and the ecosystems on which they rely. Such research will expand the capacity to address fundamental questions about complex social–ecological systems while evaluating assumptions of policies and practices intended to advance human well-being through improved ecosystem services. PMID:19179280

  9. Interacting Coastal Based Ecosystem Services: Recreation and Water Quality in Puget Sound, WA

    PubMed Central

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments. PMID:23451067

  10. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  11. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  12. Coastal Zone Management program in Kerala, India

    SciTech Connect

    Mallik, T.K. )

    1987-01-01

    The physiographic setting of Kerala State, India, is unique. A narrow strip of the state contains a chain of lagoons and estuaries with a very high population density. The strip is subjected to severe coastal erosion during the monsoon season. A number of other problems are also associated with the coastal zone of Kerala, such as irregular dredging of black sands from the beaches, coastal flooding, hazards due to developmental activities, etc. A Coastal Zone Management Program was developed and administered by the Centre for Earth Science Studies, Trivandrum, to provide efficient coastal management and solve some of these problems. Various programs included under the Coastal Zone Management are the following: (1) Sedimentological, bathymetric, and geochemical studies of lagoons and estuaries; (2) monitoring of planimetric changes of beaches by profiling beaches during different seasons all along the coast; (3) studies of the nature, distribution, and provenance of black sand deposits from beaches; (4) studies of the peculiar occurrence of patchy, calm, turbid areas of water in the offshore containing high suspended sediment concentrate known as mud banks; (5) wave studies involving continuous monitoring of wave data all along the coast in order to understand wave climate and erosion; (6) sediment movement studies using fluorescent tracer to aid in the development of ports and harbors; (7) studies on various aspects of offshore. The outlines of the various programs discussed in this article will help other states and countries to develop a coastal zone management program according to the needs of the state or country and the nature of the problem occurring in the coastal zone.

  13. Multimedia Delivery of Coastal Zone Management Training.

    ERIC Educational Resources Information Center

    Clark, M. J.; And Others

    1995-01-01

    Describes Coastal Zone Management (CZM) multimedia course modules, educational software written by the GeoData Institute at the University of Southamptom for an environmental management undergraduate course. Examines five elements that converge to create CZM multimedia teaching: course content, source material, a hardware/software delivery system,…

  14. Panel Discussion: U.S. EPA Using Modeling and Ecosystem Services to Enhance Coastal Decision Making

    EPA Science Inventory

    This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more compreh...

  15. Estimating the Provision of Ecosystem Services by Gulf of Mexico Coastal Wetlands.

    EPA Science Inventory

    Gulf of Mexico (GOM) coastal wetlands contribute to human well-being by providing many ecosystem services (e.g., commercial and recreational fishery support, protection of coastal communities from storm surge, water quality improvement, and carbon sequestration). The GOM region c...

  16. A Review of Selected Ecosystem Services Supplied by Coastal Wetlands of the Laurentian Great Lakes

    EPA Science Inventory

    Significant ecosystem services derive from the coastal wetlands of the Laurentian Great Lakes even though they have undergone substantial declines since European settlement. Basin-wide, two-thirds of the original coastal wetlands have been lost, and the remaining 126,000 ha of US...

  17. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    NASA Technical Reports Server (NTRS)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  18. Management-driven evolution in a domesticated ecosystem

    PubMed Central

    Vandvik, Vigdis; Töpper, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Velle, Liv Guri

    2014-01-01

    Millennia of human land-use have resulted in the widespread occurrence of what have been coined ‘domesticated ecosystems’. The anthropogenic imprints on diversity, composition, structure and functioning of such systems are well documented. However, evolutionary consequences of human activities in these ecosystems are enigmatic. Calluna vulgaris (L.) is a keystone species of coastal heathlands in northwest Europe, an ancient semi-natural landscape of considerable conservation interest. Like many species from naturally fire-prone ecosystems, Calluna shows smoke-adapted germination, but it is unclear whether this trait arose prior to the development of these semi-natural landscapes or is an evolutionary response to the anthropogenic fire regime. We show that smoke-induced germination in Calluna is found in populations from traditionally burnt coastal heathlands but is lacking in naturally occurring populations from other habitats with infrequent natural fires. Our study thus demonstrates evolutionary imprints of human land-use in semi-natural ecosystems. Evolutionary consequences of historic anthropogenic impacts on wildlife have been understudied, but understanding these consequences is necessary for informed conservation and ecosystem management. PMID:24522633

  19. Guidelines, processes and tools for coastal ecosystem restoration, with examples from the United States

    SciTech Connect

    Thom, Ronald M.; Diefenderfer, Heida L.; Adkins, Jeffery E.; Judd, Chaeli; Anderson, Michael G.; Buenau, Kate E.; Borde, Amy B.; Johnson, Gary E.

    2011-02-01

    This paper presents a systematic approach to coastal restoration projects in five phases: planning, implementation, performance assessment, adaptive management, and dissemination of results. Twenty features of the iterative planning process are synthesized. The planning process starts with a vision, a description of the ecosystem and landscape, and goals. A conceptual model and planning objectives are developed, a site is selected using prioritization techniques, and numerical models contribute to preliminary designs as needed. Performance criteria and reference sites are selected and the monitoring program is designed. The monitoring program is emphasized as a tool to assess project performance and identify problems affecting progression toward project goals, in an adaptive management framework. Key approaches to aspects of the monitoring program are reviewed and detailed with project examples. Within the planning process, cost analysis involves budgeting, scheduling, and financing. Finally, documentation is peer reviewed prior to making construction plans and final costing.

  20. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  1. Urbanization, Climate Change, and Changes to Ecosystem Services in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Sutton, P. C.; Costanza, R.; Roman, J.; Kubiszewski, I.

    2011-12-01

    We examine the history and status of ecosystem services in low-lying coastal areas (LLCA's), how they might change in the future in particular because of urbanization and wider environmental and social changes, and what the implications of these changes might be for the migration of humans. We synthesized information from a number of sources on the status and value of ecosystem services in LLCA's, including information about key ecosystems that are likely to be particularly vulnerable to environmental change. We created maps of ecosystem and human population changes in LLCA's and then estimated changes in ecosystem services. We developed four scenarios for future ecosystem and ecosystem services conditions in 2060, based on the four SRES (Special Report on Emissions Scenarios) scenarios with additional reference to the Millennium Ecosystem Assessment and the Great Transition Initiative scenarios. The two axes of the SRES scenarios are global vs. regional and material economy vs. environment foci. This allowed an assessment of the plausible range of future uncertainty about ecosystem services in LLCA's and the potential for changes in ecosystem services to drive human migration. Major findings include: 1) Coastal ecosystems are among the most productive on the planet. They provide more than 70% of total global ecosystem services; 2) At the same time, these systems are the most threatened by climate change, human settlement and potential coastward migration; 3) In the mid 1990's, approximately 25 million people were forced to leave their homelands due to the inability to secure a livelihood as ecosystem services declined; 4) In the coming decades, one estimate puts the number at 240-525 million people who may feel impelled to migrate due to loss of ecosystem services; 5) Risk factors for coastal populations include overexploitation of resources, including fisheries; destruction of mangroves, wetlands, and other natural infrastructure; increased storm activity and

  2. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  3. Ecosystem services in sustainable groundwater management.

    PubMed

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. PMID:24739892

  4. Impact of groundwater use as heat energy on coastal ecosystem and fisheries

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto

    2016-04-01

    Demands for groundwater as a heat energy source to melt snow is increasing in many coastal snowy areas in Japan because of the lack of laborers for snow removal and the abundance of groundwater resources. The temperature of groundwater is relatively higher in winter than that of the air and river water, therefore it is a useful heat source to melt snow. However, groundwater is also beneficial for the coastal ecosystem and fishery production because of the nutrient discharge by submarine groundwater discharge (SGD), which is one of the water and dissolved material pathways from land to the ocean. Therefore, groundwater is involved in the tradeoff and management conflict existing between energy and food (fisheries). In this study, the impact of groundwater, used as a heat energy source for the melting of snow accumulated on roads, on the coastal ecosystem and fisheries has been analyzed in the snowy areas of Obama City, Fukui Prefecture, Japan. Positive correlation has been found between primary production rates in Obama Bay and radon concentrations which show the magnitude of the submarine groundwater discharge. Therefore, the increase in groundwater pumping on land reduces fishery production in the ocean. Results of 3D numerical simulations of the basin scale groundwater model show a reduction of SGD by 5 percent due to an increase in groundwater pumping by 1.5 times. This reduction of SGD caused a 3.7 ton decrease in fishery production under the aforementioned assumptions. The groundwater-energy-fishery nexus was found in Obama Bay, Japan and the tradeoff between water and food was evaluated.

  5. Salinization of Freshwater-Dependent Coastal Ecosystems: Understanding Landscapes in Transition Along the Leading Edge of Climate Change

    NASA Astrophysics Data System (ADS)

    Emanuel, R. E.; Bernhardt, E. S.; Ardón, M.; Wright, J. P.; BenDor, T.; Bhattachan, A.

    2015-12-01

    Climate change is transforming the outer edge of the Southern US coastal plain. Lower-lying parts of this region, characterized by extensive freshwater-dependent ecosystems, will be largely inundated by gradual sea level rise by the end of this century. In the interim, however, ocean waters are already penetrating and influencing freshwater-dependent coastal landscapes due to a combination of human and natural factors. This landward movement of salinity from the coast onto the coastal plain or "saltwater intrusion" is a critical water resource issue representing the leading edge of climate change for many coastal areas. The salinization of surface waters and adjacent lands has implications for crop and timber yields in managed ecosystems, ecosystem carbon sequestration in unmanaged ecosystems, and degradation of coastal water quality due to extraction of soil nutrients by seasalts. With this in mind, we seek to understand more broadly how vulnerability of coastal landscapes to saltwater intrusion shapes and is shaped by both natural and anthropogenic processes. We present a novel framework that couples intensive, in situ monitoring of hydrological and ecological conditions with a geospatial saltwater intrusion vulnerability index (SIVI). We discuss application of this framework to the Albemarle-Pamlico region of coastal North Carolina, where we are learning how climate, natural landscape structure, and human activities interact to mediate or exacerbate the vulnerability of freshwater-dependent lands to saltwater intrusion. We discuss the involvement of stakeholders and local knowledge in the research process as well. This work advances understanding of vulnerability to climate change in coastal regions by moving beyond simple inundation models to gain a more sophisticated understanding of the human and natural processes influencing salinization of surface waters and adjacent lands. As the Albemarle-Pamlico and similar regions worldwide transform in response to and

  6. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  7. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    PubMed

    Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme. PMID:27008421

  8. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities

    PubMed Central

    Atkinson, Scott C.; Jupiter, Stacy D.; Adams, Vanessa M.; Ingram, J. Carter; Narayan, Siddharth; Klein, Carissa J.; Possingham, Hugh P.

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme. PMID:27008421

  9. Effluents of shrimp farms and its influence on the coastal ecosystems of Bahía de Kino, Mexico.

    PubMed

    Barraza-Guardado, Ramón H; Arreola-Lizárraga, José A; López-Torres, Marco A; Casillas-Hernández, Ramón; Miranda-Baeza, Anselmo; Magallón-Barrajas, Francisco; Ibarra-Gámez, Cuauhtemoc

    2013-01-01

    The impact on coastal ecosystems of suspended solids, organic matter, and bacteria in shrimp farm effluents is presented. Sites around Bahía de Kino were selected for comparative evaluation. Effluent entering Bahia Kino (1) enters Laguna La Cruz (2). A control site (3) was outside the influence of effluents. Water quality samples were collected every two weeks during the shrimp culture period. Our data show that the material load in shrimp farm effluents changes biogeochemical processes and aquatic health of the coastal ecosystem. Specifically, the suspended solids, particulate organic matter, chlorophyll a, viable heterotrophic bacteria, and Vibrio-like bacteria in the bay and lagoon were two- to three-fold higher than the control site. This can be mitigated by improvements in the management of aquaculture systems. PMID:23861653

  10. Effluents of Shrimp Farms and Its Influence on the Coastal Ecosystems of Bahía de Kino, Mexico

    PubMed Central

    Barraza-Guardado, Ramón H.; Arreola-Lizárraga, José A.; López-Torres, Marco A.; Casillas-Hernández, Ramón; Miranda-Baeza, Anselmo; Magallón-Barrajas, Francisco; Ibarra-Gámez, Cuauhtemoc

    2013-01-01

    The impact on coastal ecosystems of suspended solids, organic matter, and bacteria in shrimp farm effluents is presented. Sites around Bahía de Kino were selected for comparative evaluation. Effluent entering Bahia Kino (1) enters Laguna La Cruz (2). A control site (3) was outside the influence of effluents. Water quality samples were collected every two weeks during the shrimp culture period. Our data show that the material load in shrimp farm effluents changes biogeochemical processes and aquatic health of the coastal ecosystem. Specifically, the suspended solids, particulate organic matter, chlorophyll a, viable heterotrophic bacteria, and Vibrio-like bacteria in the bay and lagoon were two- to three-fold higher than the control site. This can be mitigated by improvements in the management of aquaculture systems. PMID:23861653

  11. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  12. Bubble Stripping as a Tool To Reduce High Dissolved CO2 in Coastal Marine Ecosystems.

    PubMed

    Koweek, David A; Mucciarone, David A; Dunbar, Robert B

    2016-04-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism, shallow water, and long residence times. Many important coastal species may have adapted to this natural variability over time, but eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use a process-based model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a nonbubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. We argue that shallow water CO2 bubble stripping should be considered among the growing list of engineering approaches intended to increase coastal resilience in a changing ocean. PMID:26988138

  13. INTERIOR COLUMBIA BASIN ECOSYSTEM MANAGEMENT PROJECT (ICBEMP)

    EPA Science Inventory

    A geographic information system (GIS) spatial data library is maintained through the Interior Columbia Basin Ecosystem Management Project. Sponsored by the Bureau of Land Management, the library contains more than 200 products which include the following types of data: aquatic, a...

  14. Managing Soil Biodiversity and Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices impact soil organisms by altering their environment and therefore favoring some species over others. Management only rarely results in the elimination of an entire functional group that then impacts an ecosystem service, as in the example of repeated tillage eliminating earthwo...

  15. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XU54 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS announces that on February 4, 2010, the Atlantic States Marine Fisheries...

  16. Top 10 principles for designing healthy coastal ecosystems like the Salish Sea

    USGS Publications Warehouse

    Gaydos, Joseph K.; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E.

    2008-01-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  17. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences. PMID:23500022

  18. Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management.

    PubMed

    Convertino, Matteo; Valverde, L James

    2013-01-01

    Management of natural resources in coastal ecosystems is a complex process that is made more challenging by the need for stakeholders to confront the prospect of sea level rise and a host of other environmental stressors. This situation is especially true for coastal military installations, where resource managers need to balance conflicting objectives of environmental conservation against military mission. The development of restoration plans will necessitate incorporating stakeholder preferences, and will, moreover, require compliance with applicable federal/state laws and regulations. To promote the efficient allocation of scarce resources in space and time, we develop a portfolio decision analytic (PDA) framework that integrates models yielding policy-dependent predictions for changes in land cover and species metapopulations in response to restoration plans, under different climate change scenarios. In a manner that is somewhat analogous to financial portfolios, infrastructure and natural resources are classified as human and natural assets requiring management. The predictions serve as inputs to a Multi Criteria Decision Analysis model (MCDA) that is used to measure the benefits of restoration plans, as well as to construct Pareto frontiers that represent optimal portfolio allocations of restoration actions and resources. Optimal plans allow managers to maintain or increase asset values by contrasting the overall degradation of the habitat and possible increased risk of species decline against the benefits of mission success. The optimal combination of restoration actions that emerge from the PDA framework allows decision-makers to achieve higher environmental benefits, with equal or lower costs, than those achievable by adopting the myopic prescriptions of the MCDA model. The analytic framework presented here is generalizable for the selection of optimal management plans in any ecosystem where human use of the environment conflicts with the needs of

  19. Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management

    PubMed Central

    Convertino, Matteo; Valverde, L. James

    2013-01-01

    Management of natural resources in coastal ecosystems is a complex process that is made more challenging by the need for stakeholders to confront the prospect of sea level rise and a host of other environmental stressors. This situation is especially true for coastal military installations, where resource managers need to balance conflicting objectives of environmental conservation against military mission. The development of restoration plans will necessitate incorporating stakeholder preferences, and will, moreover, require compliance with applicable federal/state laws and regulations. To promote the efficient allocation of scarce resources in space and time, we develop a portfolio decision analytic (PDA) framework that integrates models yielding policy-dependent predictions for changes in land cover and species metapopulations in response to restoration plans, under different climate change scenarios. In a manner that is somewhat analogous to financial portfolios, infrastructure and natural resources are classified as human and natural assets requiring management. The predictions serve as inputs to a Multi Criteria Decision Analysis model (MCDA) that is used to measure the benefits of restoration plans, as well as to construct Pareto frontiers that represent optimal portfolio allocations of restoration actions and resources. Optimal plans allow managers to maintain or increase asset values by contrasting the overall degradation of the habitat and possible increased risk of species decline against the benefits of mission success. The optimal combination of restoration actions that emerge from the PDA framework allows decision-makers to achieve higher environmental benefits, with equal or lower costs, than those achievable by adopting the myopic prescriptions of the MCDA model. The analytic framework presented here is generalizable for the selection of optimal management plans in any ecosystem where human use of the environment conflicts with the needs of

  20. South Florida Ecosystem Program: quantifying freshwater discharge for coastal hydraulic control structures in eastern Dade County, Florida

    USGS Publications Warehouse

    Kapadia, Amit; Swain, Eric D.

    1996-01-01

    The South Florida Ecosystem Restoration Program is an intergovernmental effort, involving a number of agencies, to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making. The U.S. Geological Survey (USGS), one of the agencies, provides scientific information as part of the South Florida Ecosystem Restoration Program. The USGS began their ow program, called the South Florida Ecosystem Program, in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. As part of the South Florida Ecosystem Program, the USGS, in cooperation with the South Florida Water Management District (SFWMD), has conducted a study to determine discharge ratings for 16 coastal hydraulic control structures in eastern Dade County, Fla. (fig. 1 ). Discharge data are needed to quantify water that can be made available for water supply and ecosystem restoration and to calibrate regional hydrologic models.

  1. Impacts of climate-driven changes on coastal lagoon ecosystem and related good and services

    NASA Astrophysics Data System (ADS)

    Solidoro, Cosimo; Libralato, Simone; Melaku Canu, Donata; Cossarini, Gianpiero; Giorgi, FIlippo

    2014-05-01

    Effects of IPCC climate change scenarios on a temperate coastal lagoon ecosystem, the lagoon of Venice (Italy), along with goods and services provided by this ecosystem are assessed though a downscaling experiment linking regional atmospheric model to local hydrodynamical, biogeochemical, ecosystem and target species population dynamic models. Simulations of spatio-temporal dynamics of biogeochemical properties provide evidence of significant impacts of climate change. Under both the A2 and B2 scenarios we observe a modification of the seasonal precipitation pattern which affects the timing of nutrient inputs to the lagoon and causes a reduction in plankton productivity. Simulations indicate that this changes propagate -along the food web through a multi-path cascade and that overall ecosystem good and services resulting from climatic scenarios significantly differ depending on the dynamics of the extremes (yearly maximum) values. Changes in the nutrient load maximum discharge (scenario A2) favors primary producers that have higher maximum values (peaks) that propagate up in the food web to groups directly related to the grazing food chain. Conversely, small modifications of the timing of the nutrient peaks (as in B2 scenario) implies less exploitation of nutrients by primary producers due to temperature limitations and the enhancement of the groups in the food web that are more related to detritus-based food chain. This implies significant differences on on fisheries landings in future scenarios, even assuming same fishing effort.. Ecological indicators highlighted also divergent changes in food web biodiversity and complexity in the two future scenarios. Simulations also shows that economic activity directly related to target species, such as clam aquaculture activity will suffer , and point to the need for management policies to mitigate the adverse effects of climate change.

  2. Adaptive governance, ecosystem management, and natural capital.

    PubMed

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-06-16

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social-ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  3. Adaptive governance, ecosystem management, and natural capital

    PubMed Central

    Schultz, Lisen; Folke, Carl; Österblom, Henrik; Olsson, Per

    2015-01-01

    To gain insights into the effects of adaptive governance on natural capital, we compare three well-studied initiatives; a landscape in Southern Sweden, the Great Barrier Reef in Australia, and fisheries in the Southern Ocean. We assess changes in natural capital and ecosystem services related to these social–ecological governance approaches to ecosystem management and investigate their capacity to respond to change and new challenges. The adaptive governance initiatives are compared with other efforts aimed at conservation and sustainable use of natural capital: Natura 2000 in Europe, lobster fisheries in the Gulf of Maine, North America, and fisheries in Europe. In contrast to these efforts, we found that the adaptive governance cases developed capacity to perform ecosystem management, manage multiple ecosystem services, and monitor, communicate, and respond to ecosystem-wide changes at landscape and seascape levels with visible effects on natural capital. They enabled actors to collaborate across diverse interests, sectors, and institutional arrangements and detect opportunities and problems as they developed while nurturing adaptive capacity to deal with them. They all spanned local to international levels of decision making, thus representing multilevel governance systems for managing natural capital. As with any governance system, internal changes and external drivers of global impacts and demands will continue to challenge the long-term success of such initiatives. PMID:26082542

  4. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  5. 15 CFR 930.153 - Coordination between States in developing coastal management policies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... developing coastal management policies. 930.153 Section 930.153 Commerce and Foreign Trade Regulations..., DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency of Federal Activities Having Interstate Coastal Effects §...

  6. Modeling for Policy Change: A Feedback Perspective on Improving the Effectiveness of Coastal and Marine Management

    ERIC Educational Resources Information Center

    Robadue, Donald D., Jr.

    2012-01-01

    Those advocating for effective management of the use of coastal areas and ecosystems have long aspired for an approach to governance that includes information systems with the capability to predict the end results of various courses of action, monitor the impacts of decisions and compare results with those predicted by computer models in order to…

  7. Responses of coastal ecosystems to environmental variability in emerging countries from the Americas

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar

    2015-12-01

    Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).

  8. California's Summer and Winter Coastal Upwelling Impact on the Terrestrial Ecosystem

    NASA Astrophysics Data System (ADS)

    Garcia Reyes, M.; Sydeman, W. J.; Black, B.

    2014-12-01

    The terrestrial ecosystem along the California coastal region depends on the water that winter rain and year-round fog brings. The location and strength of the North Pacific Ocean high pressure system off the California coast determine the amount of rain during winter by blocking or allowing the pass of winter storms through the region. It also determines the strength and timing of alongshore winds that drive coastal upwelling, which in turns lead to cool coastal water during the spring and summer that is closely relate to fog formation. Timing and intensity of coastal upwelling vary year to year due to a number of climate processes impacting the high pressure system and the coastal atmospheric and ocean conditions. Notably, persistent summer upwelling varies independently from the sporadic winter/early spring upwelling events (as well as other weather patterns), and in turn they impact differently the marine and terrestrial ecosystems. Here, we review the variability and source of variability of the North Pacific High, its impact on the upwelling conditions along the California coast, and investigate their influence on terrestrial rain and fog during winter and summer, highlighting their impact on coastal and terrestrial ecosystems.

  9. Evaluating Ecosystem Services Provided by the Albemarle-Pamlico (NC) Estuary System in Response to Watershed Nitrogen Management

    EPA Science Inventory

    The Albemarle-Pamlico Watershed and Estuary Study (APWES) is part of the USEPA Ecosystem Services Research Program. The mission of the APWES is to develop ecosystem services science to inform watershed and coastal management decisions in the Albemarle-Pamlico watershed and estuar...

  10. Effective Best Management Practices for Nitrogen Removal in Aquatic Ecosystems

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater are detrimental to human and ecosystem health. The Ground Water and Ecosystems Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) that enhance nitrogen removal in aquatic ecosystems througho...

  11. Trophic interactions in the coastal ecosystem of Sri Lanka: An ECOPATH preliminary approach

    NASA Astrophysics Data System (ADS)

    Haputhantri, S. S. K.; Villanueva, M. C. S.; Moreau, J.

    2008-01-01

    This study attempts to assemble and summarize existing information in order to build a general representation of the trophic interactions within the shallow coastal ecosystem of Sri Lanka. A multispecific ecosystem-based approach on trophic relationships and their possible variations was performed using ECOPATH. Thirty-nine functional groups were considered representing all trophic levels in the food web. Time-dynamic simulation was carried out using the ECOSIM routine to evaluate the impact of the 1998 El Niño event on key functional groups. Results show that the time needed for any impacted functional group to recover to its initial abundance increased with the trophic level. Two time-series data sets derived from commercial catch and effort statistics were used for validation of ECOSIM results. The El Niño simulation results validated by the time-series data confirmed the ability of the proposed multispecies model to describe the sudden environmental changes. Possible impacts due to increase of fishing effort were also simulated by separately considering frequently used fishing gears. The analysis revealed that small-mesh gillnet fishery operates independently from the other existing developing fisheries in the same area and can be managed accordingly. Fishing-effort simulations suggest that the increase of fishing intensity by small-mesh gillnets would contribute to the decline of small pelagic catch. This was also found to influence the overall catch. The present level of exploitation of small pelagic fishery resources does not seem sustainable.

  12. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-01

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale. PMID:24305151

  13. Water quality assessment in the Mexican Caribbean: Impacts on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Hernández-Terrones, Laura M.; Null, Kimberly A.; Ortega-Camacho, Daniela; Paytan, Adina

    2015-07-01

    Coastal zones are dominated by economically important ecosystems, and excessive urban, industrial, agricultural, and tourism activities can lead to rapid degradation of those habitats and resources. Groundwater in the Eastern Yucatan Peninsula coastal aquifer discharges directly into the coastal ocean affecting the coral reefs, which are part of the Mesoamerican Coral Reef System. The composition and impacts of groundwater were studied at different coastal environments around Akumal (SE Yucatan Peninsula). Radium isotopes and salinity were used to quantify fresh groundwater and recirculated seawater contributions to the coastal zone. Excess Ra distribution suggests spatially variable discharge rates of submarine groundwater. High NO3- levels and high coliform bacteria densities indicate that groundwater is polluted at some sites. Dissolved phosphorous content is elevated in the winter and during the high tourism season, likely released from untreated sewage discharge and from aquifer sediments under reducing conditions.

  14. Capturing ecosystem services, stakeholders' preferences and trade-offs in coastal aquaculture decisions: a Bayesian belief network application.

    PubMed

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  15. Capturing Ecosystem Services, Stakeholders' Preferences and Trade-Offs in Coastal Aquaculture Decisions: A Bayesian Belief Network Application

    PubMed Central

    Schmitt, Laetitia Helene Marie; Brugere, Cecile

    2013-01-01

    Aquaculture activities are embedded in complex social-ecological systems. However, aquaculture development decisions have tended to be driven by revenue generation, failing to account for interactions with the environment and the full value of the benefits derived from services provided by local ecosystems. Trade-offs resulting from changes in ecosystem services provision and associated impacts on livelihoods are also often overlooked. This paper proposes an innovative application of Bayesian belief networks - influence diagrams - as a decision support system for mediating trade-offs arising from the development of shrimp aquaculture in Thailand. Senior experts were consulted (n = 12) and primary farm data on the economics of shrimp farming (n = 20) were collected alongside secondary information on ecosystem services, in order to construct and populate the network. Trade-offs were quantitatively assessed through the generation of a probabilistic impact matrix. This matrix captures nonlinearity and uncertainty and describes the relative performance and impacts of shrimp farming management scenarios on local livelihoods. It also incorporates export revenues and provision and value of ecosystem services such as coastal protection and biodiversity. This research shows that Bayesian belief modeling can support complex decision-making on pathways for sustainable coastal aquaculture development and thus contributes to the debate on the role of aquaculture in social-ecological resilience and economic development. PMID:24155876

  16. Ecosystem service value assessment of coastal area in Lianyungang City using LANDSAT images

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Ma, Anqing; Chen, Shang; Tang, Xuexi

    2006-12-01

    This study aims at discovering changes of ecosystem service value based on spatial-temporal variety of land use features on the coastal area in Lianyungang City from 1978 to 2000. Three LANDSAT images (1978 MSS, 1987 TM and 2000 ETM) were used to estimate changes in the size of six land-use categories (forest, cropland, urban, wetland, lakes/rivers and coastal water). Coefficients which integrated from Costanza et al.'s (1997) ecosystem services valuation model and Xie Gaodi et al.'s (2003) "ecosystem services value unit area of Chinese terrestrial ecosystems" were used to estimate changes in ecosystem services delivered by each land categories, and a sensitivity analysis was conducted to determine the affecting factors of ecosystem service value. The total annual ecosystem service values in coastal area of Lianyungang City decreased from RMB 8.23×10^9 in 1978 to RMB 7.53×10^9 in 1987, however it increased from RMB 7.53×10^9 in 1987 to RMB 10.73×10^9 in 2000. The decline of ecosystem service value from 1978 to 1987 is largely attributable to 53.49% loss of forest at the same period, while the increase of service value is contributed by 147.70% increase of wetland from 1987 to 2000. Change of wetland and forest has the major contribution to the change of total ecosystem service value of Liangyungang city. Waste treatment, water supply and climate regulation are the dominant ecosystem services of this area. Forest and wetland should be strictly conserved in further urban development.

  17. Ecosystem management for parks and wilderness

    SciTech Connect

    Agee, J.K.; Johnson, D.R.

    1988-01-01

    The purpose of this book is to indicate why a new vision is necessary for park and wilderness management and to discuss strategies for cooperative management. It is not intended to define precisely what those goals should be. The workshop participants represented too narrow a group to set those goals even in a preliminary way, a fact recognized early in the workshop. However, this group was able to define a framework for future management to serve as a forum for park and wilderness ecosystem management. There will never be a single blueprint, a cookbook approach that will fit every park and wilderness situation. Unique legal, biological, and social situations guarantee that individualistic solutions be defined, and that those solutions remain flexible to incorporate new information and values within the intent of Congress. These themes comprise the common thread of the chapters to follow. The first and last chapters synthesize the workshop discussions. The intervening chapters are organized in a disciplinary fashion discussing legal issues, vegetation, wildlife, effects on terrestrial and aquatic resources from long-range air transport, perspectives on economics and human ecology, and finally three management perspectives. Each recognizes the problems of managing these park and wilderness ecosystems through past, outmoded paradigms, and the dangers of defining a rigid set of new paradigms. As a whole, the book provides a comprehensive view of our current problems and future opportunities for ecosystem management in parks and wilderness.

  18. Grazing management and ecosystem health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivore activity interacts with weather and vegetation to markedly affect soil condition, biotic activity, and nutrient cycling in pasture and range. In turn, soil condition regulates the impact of environment on nutrient cycling, vegetation, herd or flock management, and animal productivity. Ther...

  19. Managing Perennial Monocultures for Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) are perennial grasses that can provide both renewable energy and ecosystem services, but the extent to which they do depends strongly on crop management. Nutrient use efficiency and wildlife habitat provision are influenced pr...

  20. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    NASA Astrophysics Data System (ADS)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  1. Coastal Ecosystems of Latin America and the Caribbean. Objectives, Priorities and Activities of Unesco's COMAR Project for the Latin American and Caribbean Region, Caracas, Venezuela, 15-19 November 1982. Unesco Reports in Marine Science 24.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    To further the knowledge of the resources of coastal ecosystems and the general lines along which they function, Unesco implemented a "Major Interregional Project on Research and Training Leading to the Integrated Management of Coastal Systems" (COMAR). In addition, a proposed regional cooperative program called the "Regional Project for Research…

  2. Update on Washington initiatives on ecosystem management

    SciTech Connect

    Kostka, D.

    1995-12-01

    A biological {open_quotes}revolution{close_quotes} is in progress. Due to initiatives of the Clinton-Gore administration, biologists across the nation are trying to define and use a new concept called ecosystem management. {open_quotes}Ecosystem management{close_quotes} was born in the frustration of trying to deal with the spotted owl controversy in the Northwest. Biologists could not agree on what should be done. And the biologists and economists rarely got together to try to solve problems. Some astute individuals realized that to achieve a sustainable development, ecosystems would have to be managed on a much larger scale than merely small plots of lands. And people from many different backgrounds and disciplines would need to come together to find solutions. This paper will present the views of a Washington insider who has been a player (although too frequently a minor league player!) in administration initiatives to infuse ecosystem management principles and practices in our national conscience. Today, federal agency staff talk to those in other offices within their own agency. Federal agency staff also work on joint projects across federal agencies. In addition, state government, nonprofits, universities, interested individuals, and tribal governments are becoming involved. This is the biological {open_quotes}revolution{close_quotes} that is in progress. The emphasis is shifting from looking at the life history and problems of single species to a much broader approach of examining many species, including humans. The author will present a report on results of the ecosystem management initiative in the last year and point out some of the hurdles still ahead.

  3. Simulating coastal to offshore interactions around the South Florida coastal seas and implications on management issues

    NASA Astrophysics Data System (ADS)

    Kang, H.; Kourafalou, V. H.; Hogan, P. J.; Smedstad, O.

    2008-12-01

    The South Florida coastal seas include shelf areas and shallow water bodies around ecologically fragile environments and Marine Protected Areas, such as Florida Bay, the Florida Keys National Marine Sanctuary (around the largest coral reef system of the continental U.S.) and the Dry Tortugas Ecological Reserve. Man- made changes in the hydrology of the Everglades have caused dramatic degradation of the coastal ecosystem through discharge in Florida Bay. New management scenarios are under way to restore historical flows. The environmental impacts of the management propositions are examined with an inter-disciplinary, multi-nested modeling system. The HYbrid Coordinate Ocean Model (HYCOM) has been employed for the Regional Model for South Florida Coastal Seas (SoFLA-HYCOM, 1/25 degree resolution) and for the embedded, high resolution coastal Florida Keys model (FKEYS- HYCOM, 1/100 degree). Boundary conditions are extracted from GODAE products: the large scale North Atlantic model (ATL-HYCOM, 1/12 degree) and the intermediate scale Gulf of Mexico model (GOM-HYCOM, 1/25 degree). The study targets the impacts of large scale oceanic features on the coastal dynamics. Eddies that travel along the Loop Current/Florida Current front are known to be an important mechanism for the interaction of nearshore and offshore flows. The high resolution FKEYS simulations reveal both mescoscale and sub- mesoscale eddy passages during a targeted 2-year simulation period (2004-2005), forced with high resolution/high frequency atmospheric forcing. Eddies influence sea level changes in the vicinity of Florida Bay with possible implications on current and future flushing patterns. They also enable upwelling of cooler, nutrient-rich waters in the vicinity of the Reef Tract and they influence transport and recruitment pathways for coral fish larvae, as they carry waters of different properties (such as river-borne low-salinity/nutrient-rich waters from as far as the Mississippi River) and

  4. ECOLOGICAL RESPONSES TO POLLUTION ABATEMENT: A FRAMEWORK FOR MEASUREMENT AND ASSESSMENT FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Ecological Responses to Pollution Abatement: A Framework for Measurement and Assessment for Coastal Ecosystems (Abstract). To be presented at the 16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. ...

  5. 32 CFR 643.33 - Policy-Coastal zone management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Policy-Coastal zone management. 643.33 Section... affecting land or water uses in the coastal zone of a state will include a certification that the proposed... manner consistent with the law. (c) An activity affecting land or water uses in the coastal zone of...

  6. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management.

    PubMed

    Weijerman, Mariska; Fulton, Elizabeth A; Brainard, Russell E

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated 'full regulation' scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  7. Management Strategy Evaluation Applied to Coral Reef Ecosystems in Support of Ecosystem-Based Management

    PubMed Central

    Weijerman, Mariska; Fulton, Elizabeth A.; Brainard, Russell E.

    2016-01-01

    Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario. PMID:27023183

  8. Who's Minding the Shore? A Citizens' Guide to Coastal Management.

    ERIC Educational Resources Information Center

    Beers, Roger; And Others

    This citizen's guide is designed to illustrate the ways that citizens can participate in their state's development of a coastal management program. The Provisions of the Coastal Zone Management Act are discussed and the requirements of an effective management program are considered. Some background information outlining the ecological factors…

  9. 75 FR 22103 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...In accordance with the Atlantic Coastal Fisheries Cooperative Management Act (Act), NMFS, upon a delegation of authority from the Secretary of Commerce (Secretary), has determined that the State of New Jersey has failed to carry out its responsibilities under the Atlantic States Marine Fisheries Commission's (Commission) Interstate Fishery Management Plan for Atlantic Coastal Sharks (Plan) and......

  10. Quantifying species trait-function relationships for ecosystem management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of the world's ecosystems are managed to provide ecosystem functions and services on which we rely. Even with recent advances, ecosystem managers lack a clear methodology for applying basic knowledge of plant traits to meet management goals. Questions: Can we develop a methodology to a...

  11. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model.

    PubMed

    Watters, G M; Hill, S L; Hinke, J T; Matthews, J; Reid, K

    2013-06-01

    Decision-makers charged with implementing ecosystem-based management (EBM) rely on scientists to predict the consequences of decisions relating to multiple, potentially conflicting, objectives. Such predictions are inherently uncertain, and this can be a barrier to decision-making. The Convention on the Conservation of Antarctic Marine Living Resources requires managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health and resilience of the ecosystem, and the performance of the fisheries themselves. The managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have requested advice on candidate management measures consisting of a regional catch limit and options for subdividing this among smaller areas. We developed a spatially resolved model that simulates krill-predator-fishery interactions and reproduces a plausible representation of past dynamics. We worked with experts and stakeholders to identify (1) key uncertainties affecting our ability to predict ecosystem state; (2) illustrative reference points that represent the management objectives; and (3) a clear and simple way of conveying our results to decision-makers. We developed four scenarios that bracket the key uncertainties and evaluated candidate management measures in each of these scenarios using multiple stochastic simulations. The model emphasizes uncertainty and simulates multiple ecosystem components relating to diverse objectives. We summarize the potentially complex results as estimates of the risk that each illustrative objective will not be achieved (i.e., of the state being outside the range specified by the reference point). This approach allows direct comparisons between objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model predictions. Management measures that reduce coastal fishing, relative to

  12. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    PubMed

    Cloern, James E; Abreu, Paulo C; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T; Xu, Jie; Yin, Kedong

    2016-02-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. PMID:26242490

  13. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  14. Variability and management of large marine ecosystems

    SciTech Connect

    Sherman, K.; Alexander, L.

    1986-01-01

    Large marine ecosystems (LMEs) are being subjected to increasing stress from industrial and urban wastes, aerosol contaminants, and heavy exploitation of renewable resources. Recent studies suggest that the population structure of LMEs can be altered by these factors, resulting in a negative economic impact. Ecosystem perturbations have been documented from the Bering Sea to the Antarctic, from the Gulf of Thailand to the El Nino region off the Peruvian coast. This bood is a review of effective means for measuring changes in populations and productivity, physical-chemical environments, and management options for LMEs. LMEs are treated holistically as regional management units, bringing together fragmented efforts to optimize ocean resources. Strategies for measuring natural variability are examined against a background of anthropogenically induced pollution and over-exploitation.

  15. Biomanipulation: a tool in marine ecosystem management and restoration?

    PubMed

    Lindegren, Martin; Möllmann, Christian; Hansson, Lars-Anders

    2010-12-01

    Widespread losses of production and conservation values make large-scale ecosystem restoration increasingly urgent. Ecological restoration by means of biomanipulation, i.e., by fishing out planktivores to reduce the predation pressure on herbivorous zooplankton, has proved to be an effective tool in restoring degraded lakes and coastal ecosystems. Whether biomanipulation may prove a useful restoration method in open and structurally complex marine ecosystems is, however, still unknown. To promote a recovery of the collapsed stock of Eastern Baltic cod (Gadus morhua), large-scale biomanipulation of sprat (Sprattus sprattus), the main planktivore in the Baltic Sea, has been suggested as a possible management approach. We study the effect of biomanipulation on sprat using a statistical food-web model, which integrates internal interactions between the main fish species of the Central Baltic Sea, with external forcing through commercial fishing, zooplankton, and climate. By running multiple, stochastic simulations of reductions in sprat spawning stock biomass (SSB) only minor increases in cod SSB were detected, none of which brought the cod significantly above ecologically safe levels. On the contrary, reductions in cod fishing mortality and/or improved climatic conditions would promote a significant recovery of the stock. By this we demonstrate that an ecosystem-scale biomanipulation, with the main focus of reinstating the dominance of cod in the Baltic Sea may likely be ecologically ineffective, operationally difficult, and costly. We argue that reducing exploitation pressure on Eastern Baltic cod to ecologically sound levels is a far more appealing management strategy in promoting a long-term recovery and a sustainable fishery of the stock. PMID:21265454

  16. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  17. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    PubMed Central

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  18. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    NASA Astrophysics Data System (ADS)

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-03-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  19. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    PubMed

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-01-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping. PMID:26964892

  20. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  1. Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.

    2010-01-01

    Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.

  2. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    PubMed

    Nava, Héctor; Ramírez-Herrera, M Teresa

    2011-12-01

    Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (%) of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI). Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV = 14.2). However, coral reefs face elevated sedimentation rates (up to 1.16 kg/m2d) and low water transparency (less of 5m) generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6%) and algae (up to 29%) confirm the low values in conservation status of coral reefs (MI = 0.5), reflecting a poorly-planned management

  3. Spatial patterns of fishing effort off San Diego: implications for zonal management and ecosystem function.

    PubMed

    Parnell, P Ed; Dayton, Paul K; Fisher, Rachelle A; Loarie, Cina C; Darrow, Ryan D

    2010-12-01

    The essence of ecosystem-based management is managing human practices to conserve the ecosystem. Ecologists focus on understanding the ecosystem, but there are fundamental information gaps including patterns of human exploitation. In particular, the spatial distribution of fishing effort must be known at the scales needed for ecologically relevant management. Fishing is a primary impact on coastal ecosystems, yet catch distribution at scales relevant to habitats and processes are not well known for many fisheries. Here we utilized photographic time series, logbook records, and angler surveys to estimate the intensity and spatial pattern of commercial and recreational fishing. Effort was clearly aggregated for most types of fishing, the motivating factors for effort distribution varied among areas, and effort was coupled or uncoupled to habitat depending on the area and type of fishing. We estimated that approximately 60% and approximately 74% of private recreational and recreational charter vessel fishing effort, respectively, were concentrated into two small areas that also included approximately 78% of commercial sea urchin effort. Exploitation and effort were considerably greater in one kelp forest, which has important implications for patterns of kelp persistence, productivity, and ecosystem function. Areas subject to the greatest recreational fishing pressure appeared to have lower diversity. Our results indicate that fine-scale patterns of fishing effort and exploitation have profound consequences for ecosystem functioning and biodiversity. 'Ecosystem-based management of nearshore ecosystems depends on an understanding of the fine-scale patterns of exploitation. PMID:21265452

  4. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. PMID:26648483

  5. Developing a NIDIS Drought Early Warning Information System for Coastal Ecosystems in the Carolinas

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Dow, K.; Lackstrom, K.; Brennan, A.; Tufford, D. L.; Conrads, P.; Pulwarty, R. S.; Webb, R. S.; Verdin, J. P.; Mcnutt, C. A.; Deheza, V.

    2013-12-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the coordination of drought information is critically needed. These regional drought early warning systems will become the backbone of a national drought early warning information system. Plans for the first drought early warning system started in the fall of 2008 in the Upper Colorado River Basin (UCRB), with an initial focus on the water supply in the head waters region of the Colorado River and the impacts of changes in the water supply on the UCRB. Since the establishment of the UCRB drought early warning system, other regional programs have begun in the Apalachicola-Chattahoochee-Flint River Basin, four regions in the state of California, the Southern Plains, and the Four Corners region. (At this time these are considered pilot drought early warning programs, not full-fledged drought early warning systems such as the UCRB.) Activities in each of these regions are tailored to the needs of stakeholders, and all incorporate hydrometeorological predictions. However, in all of these areas NIDIS has not focused on the specific needs of coastal ecosystems during times of drought. Over the past year, NIDIS has started a pilot drought early warning system that addresses drought in the coastal ecosystems of North and South Carolina. This pilot is being developed in partnership with the Carolinas Integrated Sciences and Assessments (CISA), a NOAA Regional Sciences and Assessments program housed at the University of South Carolina. Currently the focus of the Carolinas pilot includes the promotion of enhanced drought impact reporting to better understand the impacts of low flows on coastal ecosystems and the development of a USGS real-time salinity network for a few coastal gage stations in the Carolinas. The roles of the enhanced drought impact assessments in coastal ecosystems and the knowledge gained from a real

  6. Location, Location, Location: Management Uses of Marine Benthic Biogeographical Information in Coastal Waters of the Northeastern USA

    EPA Science Inventory

    Ecosystem-based management practices, along with coastal and marine spatial planning, have been adopted as foundational principles for ocean management in the United States. The success of these practices depends in large measure on a solid foundation of biogeographical informati...

  7. Transforming management of tropical coastal seas to cope with challenges of the 21st century.

    PubMed

    Sale, Peter F; Agardy, Tundi; Ainsworth, Cameron H; Feist, Blake E; Bell, Johann D; Christie, Patrick; Hoegh-Guldberg, Ove; Mumby, Peter J; Feary, David A; Saunders, Megan I; Daw, Tim M; Foale, Simon J; Levin, Phillip S; Lindeman, Kenyon C; Lorenzen, Kai; Pomeroy, Robert S; Allison, Edward H; Bradbury, R H; Corrin, Jennifer; Edwards, Alasdair J; Obura, David O; Sadovy de Mitcheson, Yvonne J; Samoilys, Melita A; Sheppard, Charles R C

    2014-08-15

    Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods. We show how trends in demography and in several local and global anthropogenic stressors are progressively degrading capacity of coastal waters to sustain these people. Far more effective approaches to environmental management are needed if the loss in provision of ecosystem goods and services is to be stemmed. We propose expanded use of marine spatial planning as a framework for more effective, pragmatic management based on ocean zones to accommodate conflicting uses. This would force the holistic, regional-scale reconciliation of food security, livelihoods, and conservation that is needed. Transforming how countries manage coastal resources will require major change in policy and politics, implemented with sufficient flexibility to accommodate societal variations. Achieving this change is a major challenge - one that affects the lives of one fifth of humanity. PMID:24997002

  8. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    PubMed Central

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  9. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  10. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  11. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China

    PubMed Central

    Chuai, Xiaowei; Huang, Xianjin; Wang, Wanjing; Wu, Changyan; Zhao, Rongqin

    2014-01-01

    This paper optimises projected land-use structure in 2020 with the goal of increasing terrestrial ecosystem carbon storage and simulates its spatial distribution using the CLUE-S model. We found the following: The total carbon densities of different land use types were woodland > water area > cultivated land > built-up land > grassland > shallows. Under the optimised land-use structure projected for 2020, coastal Jiangsu showed the potential to increase carbon storage, and our method was effective even when only considering vegetation carbon storage. The total area will increase by reclamation and the original shallows will be exploited, which will greatly increase carbon storage. For built-up land, rural land consolidation caused the second-largest carbon storage increase, which might contribute the most as the rural population will continue to decrease in the future, while the decrease of cultivated land will contribute the most to carbon loss. The area near the coastline has the greatest possibility for land-use change and is where land management should be especially strengthened. PMID:25011476

  12. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  13. Achieving conservation goals in managed forests of the southeastern coastal plain.

    PubMed

    Loehle, Craig; Wigley, T Bently; Schilling, Erik; Tatum, Vickie; Beebe, John; Vance, Eric; Van Deusen, Paul; Weatherford, Philip

    2009-12-01

    Managed forests are a primary land use within the Coastal Plain of the southern United States. These forests are generally managed under standards, guidelines, or regulations to conserve ecosystem functions and services. Economic value of commercial forests provides incentives for landowners to maintain forests rather than convert them to other uses that have substantially reduced environmental benefits. In this review, we describe the historical context of commercial forest management in the southern United States Coastal Plain, describe how working forests are managed today, and examine relationships between commercial forest management and maintenance of functional aquatic and wetland systems and conservation of biological diversity. Significant challenges for the region include increasing human population and urbanization and concomitant changes in forest area and structure, invasive species, and increased interest in forest biomass as an energy feedstock. Research needs include better information about management of rare species and communities and quantification of relationships between ecosystem attributes and forest management, including biomass production and harvest. Incentives and better information may help commercial forest managers in the Coastal Plain more efficiently contribute to landscape-scale conservation goals. PMID:19856021

  14. 77 FR 8219 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... ICMP was published December 23, 2011 for a 30-day comment period (76 FR 80342). The comment period... National Oceanic and Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA),...

  15. 76 FR 80342 - Coastal Zone Management Program: Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... October 14, 2011 (76 FR 57022). The comment period expired on October 31, 2011. The FEIS includes... National Oceanic and Atmospheric Administration Coastal Zone Management Program: Illinois AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration...

  16. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Anh, Pham Viet; Everaert, Gert; Goethals, Peter; Vinh, Chu Tien; De Laender, Frederik

    2015-11-01

    Fishing effort in the Vietnamese coastal ecosystem has rapidly increased from the 1990s to the 2000s, with unknown consequences for local ecosystem structure and functioning. Using ecosystem models that integrate fisheries and food webs we found profound differences in the production of six functional groups, the food web efficiency, and eight functional food web indices between the 1990s (low fishing intensity) and the 2000s (high fishing intensity). The functional attributes (e.g. consumption) of high trophic levels (e.g. predators) were lower in the 2000s than in the 1990s while primary production did not vary, causing food web efficiency to decrease up to 40% with time for these groups. The opposite was found for lower trophic levels (e.g. zooplankton): the functional attributes and food web efficiency increased with time (22 and 10% for the functional attributes and food web efficiency, respectively). Total system throughput, a functional food web index, was about 10% higher in the 1990s than in the 2000s, indicating a reduction of the system size and activity with time. The network analyses further indicated that the Vietnamese coastal ecosystem in the 1990s was more developed (higher ascendancy and capacity), more stable (higher overhead) and more mature (higher ratio of ascendancy and capacity) than in the 2000s. In the 1990s the recovery time of the ecosystem was shorter than in 2000s, as indicated by a higher Finn's cycling index in the 1990s (7.8 and 6.5% in 1990s and 2000s, respectively). Overall, our results demonstrate that the Vietnamese coastal ecosystem has experienced profound changes between the 1990s and 2000s, and emphasise the need for a closer inspection of the ecological impact of fishing.

  17. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  18. Contrasting Patterns of Carbon Flux and Storage in Pine Forest Ecosystems of the Atlantic Coastal Plain: Implications for Ecosystem Restoration and Climate Change Mitigation.

    NASA Astrophysics Data System (ADS)

    Mitchell, S. R.; Christensen, N.; Cohen, S.; Cunningham, P.

    2015-12-01

    Forest ecosystems in the Southeastern US have high rates of productivity but are underutilized as a medium for the mitigation of atmospheric CO2. In the lower Atlantic coastal plain, three pine species (longleaf [Pinus palustris], loblolly [P. taeda] and pond [P. serotina]) are the dominant overstory trees in a variety of wetland and upland ecosystems. These forest types can exist in close proximity throughout coastal plain landscapes, but exhibit contrasting patterns of productivity, pyrogenic C emissions, and mortality, thereby creating contrasting patterns of C assimilation and long-term C storage. Here, we combine field-based estimates of forest C storage and pyrogenic C emissions with LiDAR-based estimates of forest canopy heights in three contrasting forest ecosystems to 1) model their respective patterns of forest growth, mortality, and decomposition, 2) estimate the contribution of pyrogenic C fluxes to the ecosystem C budget, 3) estimate their potential upper bounds of forest C storage, and 4) model the impacts of current forest management practices and disturbance regimes on long-term forest C storage. Our results suggest that even though longleaf pine forests store comparatively little C in soil or belowground biomass, these forests nevertheless have the highest capacity for long-term C storage, in part due to their longevity. By contrast, while pond pine ecosystems have the highest capacity for long-term belowground C storage, they also have the lowest capacity for long-term aboveground C storage, one that is rarely achieved due to infrequent, high-severity disturbance regimes. Loblolly pine forests, while capable of higher growth rates than either longleaf or pond pine when in early stages of succesion, lack the long-term C storage capabilities of longleaf pine due to earlier senescence. Pyrogenic C emissions in these ecosystems are dominated by the combustion of ground and duff materials and occur over timescales ranging from rapid combustion in fire

  19. Aquatic polymers can drive pathogen transmission in coastal ecosystems

    PubMed Central

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F. M.; Conrad, Patricia A.; Largier, John L.; Mazet, Jonna A. K.; Silver, Mary W.

    2014-01-01

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  20. Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    PubMed

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F M; Conrad, Patricia A; Largier, John L; Mazet, Jonna A K; Silver, Mary W

    2014-11-22

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  1. Benefits of coastal recreation in Europe: identifying trade-offs and priority regions for sustainable management.

    PubMed

    Ghermandi, Andrea

    2015-04-01

    This paper examines the welfare dimension of the recreational services of coastal ecosystems through the application of a meta-analytical value transfer framework, which integrates Geographic Information Systems (GIS) for the characterization of climate, biodiversity, accessibility, and anthropogenic pressure in each of 368 regions of the European coastal zone. The relative contribution of international, domestic, and local recreationists to aggregated regional values is examined. The implications of the analysis for prioritization of conservation areas and identification of good management practices are highlighted through the comparative assessment of estimated recreation values, current environmental pressures, and existing network of protected sites. PMID:25656628

  2. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... on April 27, 2010 (75 FR 22103), and are not repeated here. Activities Pursuant to the Atlantic... Management Act Provisions; Atlantic Coastal Shark Fishery AGENCY: National Marine Fisheries Service (NMFS... coastal sharks in the State waters of New Jersey. NMFS canceled the moratorium, as required by...

  3. Balancing Tradeoffs in Ecosystem Functions and Services in Grassland Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managed grasslands are increasingly expected to provide ecosystem services beyond the traditional provision of food, feed, and fiber. Grassland systems can provide ecosystem services such as soil conservation, water quality protection, wildlife conservation, pleasing landscapes, soil carbon storage,...

  4. DETERMINING THE CAUSES OF ADVERSE EFFECTS IN NEAR COASTAL ECOSYSTEMS: FROM TOXICITY IDENTIFICATION EVALUATIONS TO WATERSHED DIAGNOTICS

    EPA Science Inventory

    Several approaches are available for evaluating adverse effects in near coastal ecosystems. These range from performing toxicity tests with individual organisms on water column and sediment samples to conducting macrofaunal compositional analyses on pelagic and benthic communiti...

  5. Knowledge Management in Preserving Ecosystems: The Case of Seoul

    ERIC Educational Resources Information Center

    Lee, Jeongseok

    2009-01-01

    This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…

  6. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  7. Ecosystem carbon balance and vulnerability of soil carbon in a drained lower coastal plain loblolly pine plantation

    NASA Astrophysics Data System (ADS)

    Noormets, A.; McNulty, S. G.; Gavazzi, M.; Domec, J.; Sun, G.; King, J. S.; Chen, J.

    2008-12-01

    Coastal plain ecosystems comprise only about 5% of total U.S. land area, but the soil carbon density in these ecosystems is about 10-fold higher than in upland ecosystems and they may therefore play a disproportionately large role in ecosystem-climate feedbacks. The role of these ecosystems in continental carbon exchange is largely unclear because they have been underrepresented in flux monitoring networks. We monitored ecosystem carbon fluxes and pools for three years in two lower coastal plain loblolly pine plantations (3 and 17 years of age). The contribution of soil to ecosystem respiration decreased from over 90% immediately following a harvest to about 50% by age 17. The replenishment of soil C through litterfall exceeded heterotrophic respiration (Rh) by 2-9% in two years, but was 30% lower than Rh in the third year, highlighting the vulnerability of soil carbon stocks to interannual climate variability.

  8. Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem.

    PubMed

    Wood, M D; Leah, R T; Jones, S R; Copplestone, D

    2009-06-15

    International intercomparisons of models to assess the impact of ionising radiation on wildlife have identified radionuclide transfer assumptions as a significant source of uncertainty in the modelling process. There is a need to improve the underpinning data sets on radionuclide transfer to reduce this uncertainty, especially for poorly-studied ecosystems such as coastal sand dunes. This paper presents the results of the first published study of radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Activity concentrations of (137)Cs, (238)Pu, (239+240)Pu and (241)Am are reported for detritivorous, herbivorous, carnivorous and omnivorous biota. Differences in activity concentrations measured in the sand dune biota are related to the trophic level of the organisms and the influence of sea-to-land transfer is apparent in the food chain transfer observed at the site. There are notable differences in the concentration ratios (CRs) calculated for the sand dune biota compared to other terrestrial ecosystems, especially for the small mammals which have CRs that are two orders of magnitude lower than the generic terrestrial ecosystem CRs published by the recent EC EURATOM ERICA project. The lower CRs at the sand dunes may be due to the influence of other cations from the marine environment (e.g. K and Na) on the net radionuclide transfer observed, but further research is required to test this hypothesis. PMID:19345398

  9. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    PubMed Central

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be

  10. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems.

    PubMed

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39-44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2-11 m for UV-B (313 nm), 4-27 m for UV-A (395 nm), and 7-30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further

  11. Cumulative environmental impacts and integrated coastal management: the case of Xiamen, China.

    PubMed

    Xue, Xiongzhi; Hong, Huasheng; Charles, Anthony T

    2004-07-01

    This paper examines the assessment of cumulative environmental impacts and the implementation of integrated coastal management within the harbour of Xiamen, China, an urban region in which the coastal zone is under increasing pressure as a result of very rapid economic growth. The first stage of analysis incorporates components of a cumulative effects assessment, including (a) identification of sources of environmental impacts, notably industrial expansion, port development, shipping, waste disposal, aquaculture and coastal construction, (b) selection of a set of valued ecosystem components, focusing on circulation and siltation, water quality, sediment, the benthic community, and mangrove forests, and (c) use of a set of key indicators to examine cumulative impacts arising from the aggregate of human activities. In the second stage of analysis, the paper describes and assesses the development of an institutional framework for integrated coastal management in Xiamen, one that combines policy and planning (including legislative and enforcement mechanisms) with scientific and monitoring mechanisms (including an innovative 'marine functional zoning' system). The paper concludes that the integrated coastal management framework in Xiamen has met all relevant requirements for 'integration' as laid out in the literature, and has explicitly incorporated consideration of cumulative impacts within its management and monitoring processes. PMID:15158289

  12. 77 FR 62494 - Proposed Information Collection; Comment Request; Evaluations of Coastal Zone Management Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...; Evaluations of Coastal Zone Management Act Programs--State Coastal Management Programs and National Estuarine... Management Act of 1972, as amended (CZMA; 16 U.S.C. 1451 et seq.) requires that state coastal management... state coastal management programs be evaluated concerning the extent to which the state has...

  13. REGION 4-SESD COASTAL PROGRAM PROJECTS

    EPA Science Inventory

    Region 4 Science and Ecosystem Support Division (SESD) coastal activities include projects to support the Region 4 Water Management Division Coastal programs. These field investigations include development of a Quality Assurance Project Plan for field sample collection and a sub...

  14. Historical overfishing and the recent collapse of coastal ecosystems

    USGS Publications Warehouse

    Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.; Cooke, R.; Erlandson, J.; Estes, J.A.; Hughes, T.P.; Kidwell, S.; Lange, C.B.; Lenihan, H.S.; Pandolfi, J.M.; Peterson, C.H.; Steneck, R.S.; Tegner, M.J.; Warner, R.

    2001-01-01

    A method for calculating parameters necessary to maintain stable populations is described and the management implications of the method are discussed. This method depends upon knowledge of the population mortality rate schedule, the age at which the species reaches maturity, and recruitment rates or age ratios in the population. Four approaches are presented which yield information about the status of the population: (1) necessary production for a stable population, (2) allowable mortality for a stable population, (3) annual rate of change in population size, and (4) age ratios in the population which yield a stable condition. General formulas for these relationships, and formulas for several special cases, are presented. Tables are also presented showing production required to maintain a stable population with the simpler (more common) mortality and fecundity schedules.

  15. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    NASA Astrophysics Data System (ADS)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  16. A Citizen's Guide to Coastal Water Resource Management.

    ERIC Educational Resources Information Center

    Kennedy, Jim; Miller, Todd

    More people than ever are using coastal waters for recreation and business activities and living along the shores. This puts more pressure on natural resources and creates more conflicts between the people using the resources. This guidebook is designed to help citizens develop an understanding of how coastal management works. Four chapters in…

  17. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  18. Ecology of a key ecosystem engineer on hard coastal infrastructure and natural rocky shores.

    PubMed

    Martins, Gustavo M; Neto, Ana I; Cacabelos, Eva

    2016-02-01

    The numbers of hard coastal artificial structures is increasing worldwide and there is now cumulative evidence that they support assemblages that are less diverse than natural shores. Here we investigated patterns of distribution and demography of the native barnacle Chthamalus stellatus on hard coastal structures and on natural rocky shores. Barnacles were 35% less abundant on hard structures regardless of substratum type (concrete or basalt). On a subset of sites we found that temporal population stability, growth and mortality were similar on natural rocky shores and hard structures. In contrast, barnacles were significantly larger and recruited more onto natural rocky shores. These results emphasise the important role of recruitment in determining the abundance of a key space occupier on hard coastal structures. Experimental work building on these results may generate insights that can be used as guidelines for the management of urbanised coastal areas. PMID:26686564

  19. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. PMID:23504786

  20. Turf wars: experimental tests for alternative stable states in a two-phase coastal ecosystem.

    PubMed

    Brownstein, Gretchen; Lee, William G; Pritchard, Daniel W; Wilson, J Bastow

    2014-02-01

    Alternative stable states have long been thought to exist in natural communities, but direct evidence for their presence and for the environmental switches that cause them has been scarce. Using a combination of greenhouse and field experiments, we investigated the environmental drivers associated with two distinctive herbaceous communities in coastal ecosystems in New Zealand. In a mosaic unrelated to micro-topography, a community dominated largely by native turf species (notably Leptinella dioica, Samolus repens, and Selliera radicans) alternates with vegetation comprising exotic (i.e., nonnative) pasture species (notably Agrostis stolonifera, Holcus lanatus, Lolium perenne, and Trifolium repens). The species of these two communities differ in functional characters related to leaf longevity and growth rate, and occupy soils of differing nitrogen levels. Both spatial and environmental factors influenced the species composition locally. Reciprocal transplants of soil, with and without associated vegetation, showed that a native turf community developed when sward or soil from either community was bounded by turf, and a pasture community developed when sward or soil from either community was surrounded by pasture. In artificial mixed communities in the greenhouse, turf was able to invade the pasture community where the vegetation was clipped to simulate grazing, and also where Trifolium was removed and/or salt spray was applied. The pasture community invaded the turf where Trifolium was present or nitrogen was added. These results were supported by trends in experimentally manipulated field plots, where the amount of turf cover increased when nitrogen was kept low and when salt spray was applied, whereas pasture cover increased in the absence of salt spray. Thus, persistence of the native turf community is dependent on grazing, both directly and via its effect on keeping nitrogen levels low by excluding the exotic, nitrogen-fixing Trifolium, and by exposing the

  1. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  2. Australia's TERN: Advancing Ecosystem Data Management in Australia

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Christensen, R.; Guru, S.

    2013-12-01

    Globally, there is a consistent movement towards more open, collaborative and transparent science, where the publication and citation of data is considered standard practice. Australia's Terrestrial Ecosystem Research Network (TERN) is a national research infrastructure investment designed to support the ecosystem science community through all stages of the data lifecycle. TERN has developed and implemented a comprehensive network of ';hard' and ';soft' infrastructure that enables Australia's ecosystem scientists to collect, publish, store, share, discover and re-use data in ways not previously possible. The aim of this poster is to demonstrate how TERN has successfully delivered infrastructure that is enabling a significant cultural and practical shift in Australia's ecosystem science community towards consistent approaches for data collection, meta-data, data licensing, and data publishing. TERN enables multiple disciplines, within the ecosystem sciences to more effectively and efficiently collect, store and publish their data. A critical part of TERN's approach has been to build on existing data collection activities, networks and skilled people to enable further coordination and collaboration to build each data collection facility and coordinate data publishing. Data collection in TERN is through discipline based facilities, covering long term collection of: (1) systematic plot based measurements of vegetation structure, composition and faunal biodiversity; (2) instrumented towers making systematic measurements of solar, water and gas fluxes; and (3) satellite and airborne maps of biophysical properties of vegetation, soils and the atmosphere. Several other facilities collect and integrate environmental data to produce national products for fauna and vegetation surveys, soils and coastal data, as well as integrated or synthesised products for modelling applications. Data management, publishing and sharing in TERN are implemented through a tailored data

  3. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  4. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  5. 75 FR 16747 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...The NOAA Office of Ocean and Coastal Resource Management (OCRM) announces its intent to evaluate the performance of the Louisiana Coastal Management Program and the Great Bay (New Hampshire) National Estuarine Research Reserve. The Coastal Zone Management Program evaluation will be conducted pursuant to section 312 of the Coastal Zone Management Act of 1972, as amended (CZMA) and regulations......

  6. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    PubMed Central

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  7. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    PubMed

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. PMID:20576347

  8. Ecosystem Services in Risk Assessment and Management

    EPA Science Inventory

    The ecosystem services concept provides a comprehensive framework for considering ecosystems in decision making, for valuing the services they provide, and for ensuring that society can maintain a healthy and resilient natural environment now and for future generations. A global ...

  9. Effect of rising sea level on runoff and groundwater discharge to coastal ecosystems

    USGS Publications Warehouse

    Nuttle, W.K.; Portnoy, J.W.

    1992-01-01

    Rising sea level can cause an increase in surface runoff from coastal areas by raising the watertable and thus increasing the incidence of saturated soil conditions in low-lying areas. As surface runoff increases, less rainfall will infiltrate into the ground and groundwater discharge to the coast will decrease. The link between sea level rise and runoff is critically dependent on the sensitivity of surface runoff to changes in the elevation of the watertable. A significant relation between the two is demonstrated for a coastal watershed on Cape Cod, where it is estimated that a 10 cm rise in the watertable will increase surface runoff by 70% and decrease groundwater discharge by 20%. Effects on near-shore ecosystems include changes in nutrient fluxes and in the salinity of the sediments.

  10. Prioritising coastal zone management issues through fuzzy cognitive mapping approach.

    PubMed

    Meliadou, Aleka; Santoro, Francesca; Nader, Manal R; Dagher, Manale Abou; Al Indary, Shadi; Salloum, Bachir Abi

    2012-04-30

    Effective public participation is an essential component of Integrated Coastal Zone Management implementation. To promote such participation, a shared understanding of stakeholders' objectives has to be built to ultimately result in common coastal management strategies. The application of quantitative and semi-quantitative methods involving tools such as Fuzzy Cognitive Mapping is presently proposed for reaching such understanding. In this paper we apply the Fuzzy Cognitive Mapping tool to elucidate the objectives and priorities of North Lebanon's coastal productive sectors, and to formalize their coastal zone perceptions and knowledge. Then, we investigate the potential of Fuzzy Cognitive Mapping as tool for support coastal zone management. Five round table discussions were organized; one for the municipalities of the area and one for each of the main coastal productive sectors (tourism, industry, fisheries, agriculture), where the participants drew cognitive maps depicting their views. The analysis of the cognitive maps showed a large number of factors perceived as affecting the current situation of the North Lebanon coastal zone that were classified into five major categories: governance, infrastructure, environment, intersectoral interactions and sectoral initiatives. Furthermore, common problems, expectations and management objectives for all sectors were exposed. Within this context, Fuzzy Cognitive Mapping proved to be an essential tool for revealing stakeholder knowledge and perception and understanding complex relationships. PMID:22325583

  11. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  12. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  13. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem

    PubMed Central

    Hensel, Marc J. S.; Silliman, Brian R.

    2013-01-01

    The global biodiversity crisis impairs the valuable benefits ecosystems provide humans. These nature-generated benefits are defined by a multitude of different ecosystem functions that operate simultaneously. Although several studies have simulated species loss in communities and tracked the response of single functions such as productivity or nutrient cycling, these studies have involved relatively similar taxa, and seldom are strikingly different functions examined. With the exception of highly managed ecosystems such as agricultural fields, rarely are we interested in only one function being performed well. Instead, we rely on ecosystems to deliver several different functions at the same time. Here, we experimentally investigated the extinction impacts of dominant consumers in a salt marsh. These consumers are remarkably phylogenetically diverse, spanning two kingdoms (i.e., Animalia and Fungi). Our field studies reveal that a diverse consumer assemblage significantly enhances simultaneous functioning of disparate ecosystem processes (i.e., productivity, decomposition, and infiltration). Extreme functional and phylogenetic differences among consumers underlie this relationship. Each marsh consumer affected at least one different ecosystem function, and each individual function was affected by no more than two consumers. The implications of these findings are profound: If we want ecosystems to perform many different functions well, it is not just number of species that matter. Rather, the presence of species representing markedly different ecologies and biology is also essential to maximizing multiple functions. Moreover, this work emphasizes the need to incorporate both microcomponents and macrocomponents of food webs to accurately predict biodiversity declines on integrated-ecosystem functioning. PMID:24297926

  14. RISK MANAGEMENT RESEARCH PLAN FOR ECOSYSTEM RESTORATION IN WATERSHEDS

    EPA Science Inventory

    This document outlines the scope of National Risk Management Laboratory (NRMRL) risk management research in the area of ecosystem restoration. NRMRL is uniquely positioned to make substantial contributions to ecosystem science because of its in-house expertise relative to surfac...

  15. [Species diversity and managed ecosystem stability].

    PubMed

    Feng, Yaozong

    2003-06-01

    Based on partial experimental data of the studies on managed communities over 40 years, various managed communities in terms of ecological structures, e.g., rubber or tea plantation in one species with one community layer, rubber-tea and rubber-coffee of two species with two community layers, rubber-luofumu-qiannianjian of three species with three community layers, and artificial rain forest with multiple species and layers (hundred species with five layers) were discussed. The differences in systematic functions among three structures of the community were discussed, mainly from the followint spects: Biomass, productivity, and economical productivity; capability of protection and improvement of community environment (microclimate, soil etc.); capability of resistant to natural disaster (chilling and storm). The biomass and productivity in the system were significantly increased, as there were more species and vertical layers in the community. As the community structure became complicated, the microclimatic factors inside the system were marked changed: relative humidity was higher, maximum temperature was lower, minimum temperature was higher, wind slowdown velocity was slowed down, soil erosion reduced, and the resistance to chilling and storm become stronger. It is concluded that the stability of the system could be greatly affected by an artificial ecosystem. PMID:12973982

  16. Climate change impacts on stream carbon export from coastal temperate rainforest ecosystems in Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Hood, E. W.

    2013-12-01

    Coastal temperate rainforests (CTR) in Alaska contain about 10% of the total carbon in the forests of the conterminous United States. CTR ecosystems span a large environmental gradient that ranges from icefields mantling the Coast Mountains to carbon-rich conifer forests along the coastal margin and within the islands of the Alexander Archipelago in the Gulf of Alaska. Riverine dissolved organic carbon (DOC) export from Alaskan CTR ecosystems, which can exceed 2 Tg C yr-1, is large relative to other northern ecosystems as a result of high rates of specific discharge (~2.5 m yr-1) and an abundance of organic soils found in peatlands and forested wetlands. Runoff from glaciers, which are rapidly thinning and retreating, has also been shown to an important contributor to land-to-ocean fluxes of DOC in this region. Downscaled regional climate models suggest that CTR ecosystems in Alaska will become warmer and wetter in coming decades, with uncertain effects on riverine organic matter (OM) export. Changes in watershed OM export are likely to be driven by changes in both hydrology and the availability of OM in terrestrial source pools. However, the impacts of these climate driven changes will vary with watershed landcover across the continuum from icefields to coastal temperate forests. Expected hydrological perturbations include changes in the timing and magnitude of streamflow associated with shifts in: 1) the extent and duration of seasonal snowcover and 2) the mass balance of glaciers and icefields in the Coast Mountains. The availability of OM for export along hydrologic flowpaths will likely be altered by increased soil temperatures and shifts in water table elevations during the summer/fall runoff season. This will be particularly true for organic carbon export from peatlands in which changes in temperature and oxygen availability can strongly impact rates of organic matter decomposition. This talk will explore how climate-driven changes in hydrology and

  17. Assessing and managing freshwater ecosystems vulnerable to global change

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  18. Impacts of marsh management on coastal-marsh bird habitats

    USGS Publications Warehouse

    Mitchell, L.R.; Gabrey, S.; Marra, P.P.; Erwin, R.M.

    2006-01-01

    The effects of habitat-management practices in coastal marshes have been poorly evaluated. We summarize the extant literature concerning whether these manipulations achieve their goals and the effects of these manipulations on target (i.e., waterfowl and waterfowl food plants) and non-target organisms (particularly coastal-marsh endemics). Although we focus on the effects of marsh management on birds, we also summarize the scant literature concerning the impacts of marsh manipulations on wildlife such as small mammals and invertebrates. We address three common forms of anthropogenic marsh disturbance: prescribed fire, structural marsh management, and open-marsh water management. We also address marsh perturbations by native and introduced vertebrates.

  19. Sustainable Management of Coastal Environments Through Coupled Terrestrial-Coastal Ocean Models

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W.; Tian, H.; He, R.; Xue, Z.; Fennel, K.; Hopkinson, C.; Howden, S. D.

    2012-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. The large spatial extent of such systems necessitates a combination of satellite observations and model-based approaches coupled with targeted ground-based site studies to adequately characterize relationships among climate forcing (e.g., wind, precipitation, temperature, solar radiation, humidity, extreme weather), land use practice/land cover change, and transport of materials through watersheds and, ultimately, to coastal regions. Here, we describe a NASA Interdisciplinary Science project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The objectives of this effort are to 1) assemble and evaluate long term datasets for the assessment of impacts of climate variability, extreme weather events, and land use practices on transport of water, carbon and nitrogen within terrestrial systems and the delivery of materials to waterways and rivers; 2) using the Mississippi River as a testbed, develop and evaluate an integrated suite of models to describe linkages between terrestrial and riverine systems, transport of carbon and nutrients in the Mississippi river and its tributaries, and associated cycling of carbon and nutrients in coastal ocean waters; and 3) evaluate uncertainty in model products and parameters and identify areas where improved model performance is needed through model refinement and data assimilation. The effort employs the Dynamic Land

  20. Analysis of trophic networks and carbon flows in south-eastern Baltic coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Tomczak, Maciej T.; Müller-Karulis, Bärbel; Järv, Leili; Kotta, Jonne; Martin, Georg; Minde, Atis; Põllumäe, Arno; Razinkovas, Arturas; Strake, Solvita; Bucas, Martynas; Blenckner, Thorsten

    2009-04-01

    Carbon flows in five south-eastern Baltic coastal ecosystems (Puck Bay, Curonian Lagoon, Lithuanian coast, Gulf of Riga coast and Pärnu Bay) were compared on the basis of ECOPATH models using 12 common functional groups. The studied systems ranged from the hypertrophic Curonian Lagoon to the mesotrophic Gulf of Riga coast. Interestingly, we found that macrophytes were not consumed by grazers, but rather channelled into the detritus food chain. In all ecosystems fisheries had far reaching impacts on their target species and on the food-web in general. In particular, benthic food-webs were partly affected by indirect fisheries effects. For example, fisheries tend to change the biomass of piscivorous fish, causing a cascading effect on benthivorous fish and macrozoobenthos. These cascades are ecosystem specific and need to be considered when using benthic invertebrates as productivity and eutrophication indicators. Odum’s maturity attributes allowed a ranking of costal ecosystems according to their maturity. Namely, the community development decreased in the following order: Pärnu Bay > Gulf of Riga coast > Lithuanian coast > Puck Bay > Curonian Lagoon.

  1. Modeling evapotranspiration in Arctic coastal plain ecosystems using a modified BIOME-BGC model

    NASA Astrophysics Data System (ADS)

    Engstrom, Ryan; Hope, Allen; Kwon, Hyojung; Harazono, Yoshinobu; Mano, Masayoshi; Oechel, Walter

    2006-06-01

    Modeling evapotranspiration (ET) in Arctic coastal plain ecosystems is challenging owing to the unique conditions present in this environment, including permafrost, nonvascular vegetation, and a large standing dead vegetation component. In this study the ecosystem process model, BIOME-BGC, was adapted to represent these unique conditions in Arctic ecosystems by including a new water storage and evaporation routine that accounts for nonvascular vegetation and the effects of permafrost, adding ground heat flux as an input, and representing ground shading by dead vegetation. The new Arctic version and the original BIOME-BGC models are compared to observed ET from two eddy flux towers in Barrow, Alaska over four summer seasons (1999-2002). The two towers are located less than 1 km apart, yet represent contrasting moisture conditions. One is located in a drained thaw lake, marsh area, while the other is located in a drier, upland area characterized by mesic tundra. Results indicate that the original BIOME-BGC model substantially underestimated ET, while the Arctic version slightly overestimated ET at both sites. The new Arctic model version worked particularly well at the wet tower because the model was able to capture energy limitations better than water limitations. Errors in the simulation of snowmelt date led to errors in the ET estimates at both sites. Finally, the substantial differences in soil moisture led to substantially different ET rates between the sites that were difficult to simulate and indicates that soil moisture heterogeneity is a strong controller on ET in these ecosystems.

  2. Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters

    NASA Astrophysics Data System (ADS)

    Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.

    2013-11-01

    Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.

  3. Assessing the impact of edaphic factors on coastal ecosystem functions in a tropical island using electromagnetic-induction

    NASA Astrophysics Data System (ADS)

    Lynch, N. E.; Wuddivira, M.; Oatham, M.

    2013-12-01

    The small islands in the low-lying states of the Caribbean Basin are among the most vulnerable to sea level rise caused by climate change. Bequia, a tropical Grenadine island, is particularly susceptible due to its small land mass, limited natural resources and an economy that is touristic and marine based. Consultation with stakeholders on sustainable livelihoods revealed that degradation of the coastal ecosystem is occurring with progressing time. Consequently, the island is losing its beneficial ecosystem services and its natural attractiveness leading to declining revenue base, increasing food security risk and job losses. We propose that with sea level rise, soil salinity increases further inland leading to degradation of coastal zones and ecosystem functions. Using geophysical techniques and standard sampling procedures we observationally investigated the spatial and temporal impacts of soil salinization due to sea level changes on the ecosystem functions of five coastal areas in the seven square mile island of Bequia. We analyzed soil, tidal, rainfall data and historical aerial imagery to assess the impact of soil salinity on the ecosystem of Bequia. Our results show extreme seasonal salinity variability with increased salinity inland during the dry season months of January to May. This was significantly influenced by the fluctuation of seasonal water content and temperature. A complete time-based analysis ensures the development of adaptation strategies to coastal change for sustainable provisioning of ecosystem services for Bequia and other Caribbean Islands with minimum ecological and economic losses.

  4. The future of coastal upwelling ecosystems: the impact of potential wind changes on ocean acidification and coastal hypoxia

    NASA Astrophysics Data System (ADS)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    The upwelling of deep, low pH, and low oxygen water to the surface makes eastern boundary upwelling systems (EBUS) naturally prone to global change induced perturbations such as ocean acidification and ocean deoxygentation related to decreased ocean ventilation. The severity of these chemical perturbations may further be exacerbated in EBUS by the potential increase in upwelling favorable winds induced by global warming. Here, we explore the impact of upwelling-favorable wind changes on modern and future ocean acidification and coastal hypoxia through a comparative study of the California Current System (California CS) and the Canary Current System (Canary CS). To this end, we undertook a series of idealized wind perturbation studies for present-day and year 2050 conditions with eddy-resolving setups of the Regional Oceanic Modeling System - ROMS- to which a nitrogen-based Nutrient-Phytoplankton-Detritus-Zooplankton (NPDZ) biogeochemical model was coupled. Our results show that the increase of upwelling favorable winds leads to a substantial shoaling of the hypoxic boundary in the California CS, while the same wind perturbation results in a reduction of the hypoxic water volume in the Canary CS. This is because coastal hypoxia is driven by local remineralization of organic matter on the shelf in the Canary CS, while it is essentially driven by large-scale advection of low oxygen water in the California CS. The intensification of upwelling tends to acerbate ocean acidification in the surface ocean, but mediates it below it, leading to complex change pattern reflecting the intricate interplay between biologically and physically -driven changes in calcium carbonate saturation state. Additionally, our results reveal differential biogeochemical responses to upwelling intensification in the water column and on the continental shelf with, therefore, contrasting implications for the benthic and the pelagic communities of these ecosystems.

  5. Managing oil and gas activities in coastal environments: refuge manual

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1981-09-01

    A study was undertaken to determine the impacts of all aspects of oil and gas development upon coastal ecological systems and to assess the safeguards used in protecting refuge lands. Wildlife refuges along the coasts of Texas and Louisiana were selected for intensive study. These refuges were characterized by (1) a diversity of ecosystems, (2) oil exploration, extraction, and transport, and (3) oil and gas development periods of varying durations.

  6. Coastal zone and Continental Shelf conflict resolution: improving ocean use and resource dispute management

    SciTech Connect

    Nyhart, J.D.; Harding, E.T.

    1985-11-01

    Contents include: An overview of coastal zone and continental shelf conflicts; Experience in coastal zone management conflict; Future coastal zone conflicts; Outer continental shelf conflicts; Georges Bank and Gulf of Maine; and Future considerations.

  7. A Model for Experiential Learning: Coastal Ecosystems of Micronesia in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Ladd, N.; Sachs, J. P.

    2013-12-01

    An intensive undergraduate course taught in Pohnpei (Federated States of Micronesia) June 22nd - July 19, 2013 through the University of Washington Study Abroad Program allowed students to intimately explore estuary, mangrove, seagrass, and coral habitat from a systems perspective. The curriculum was developed in 2010 and 2011 during a similar course taught in nearby Kosrae (Federated States of Micronesia). The course was based on field surveys of several sites from each habitat with assistance from local non-profit groups and Pohnpei government partners. Field surveys were supplemented by lectures from these local agencies or the course instructors. Classroom activities explored the connectivity of coastal ecosystems and how each habitat may be impacted by climate change. The instructors' tropical paleoclimate research objectives further supplemented the curriculum. Additionally, cultural activities facilitated an understanding of social interactions with coastal ecosystems. Students wrote field reports for each habitat and communicated the data to local agencies in an oral presentation. The class activities allowed students to engage in data analysis, interpretation, and communication while being immersed in the unique culture and environment of Micronesia.

  8. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they

  9. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

    PubMed

    Exton, Dan A; McGenity, Terry J; Steinke, Michael; Smith, David J; Suggett, David J

    2015-04-01

    Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level. PMID:25311223

  10. Managing coastal area resources by stated choice experiments

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Wirtz, Kai W.

    2010-02-01

    In many coastal regions, oil spills can be considered as one of the most important and certainly the most noticeable forms of marine pollution. Efficient contingency management responding to oil spills on waters, which aims at minimizing pollution effects on coastal resources, turns out to be critically important. Such a decision making highly depends on the importance attributed to different coastal economic and ecological resources. Economic uses can, in principal, be addressed by standard measures such as value added. However, there is a missing of market in the real world for natural goods. Coastal resources such as waters and beach cannot be directly measured in money terms, which increases the risk of being neglected in a decision making process. This paper evaluates these natural goods of coastal environment in a hypothetical market by employing stated choice experiments. Oil spill management practice in German North Sea is used as an example. Results from a pilot survey show that during a combat process, beach and eider ducks are of key concerns for households. An environmental friendly combat option has to be a minor cost for households. Moreover, households with less children, higher monthly income and a membership of environmental organization are more likely to state that they are willing to pay for combat option to prevent coastal resources from an oil pollution. Despite that choice experiments require knowledge of designing questionnaire and statistical skills to deal with discrete choices and conducting a survey is time consumed, the results have important implications for oil spill contingency management. Overall, such a stated preference method can offer useful information for decision makers to consider coastal resources into a decision making process and can further contribute to finding a cost-effective oil preventive measure, also has a wide application potential in the field of Integrated Coastal Zone Management (ICZM).

  11. Organic management systems to enhance ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic grain cropping systems can enhance a number of ecosystem services compared to conventional tilled systems. Recent results from a limited number of long-term agricultural research (LTAR) studies suggest that organic grain cropping systems can also increase several ecosystem services relative...

  12. Comparison between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. Results and Scientific Papers of a Unesco/COMAR Workshop (Suva, Fiji, March 24-29, 1986). Unesco Reports in Marine Science 46.

    ERIC Educational Resources Information Center

    Birkeland, Charles, Ed.

    This report presents the Unesco workshop conclusions concerning important differences among tropical seas in terms of ecological processes in coastal marine ecosystems, and the corresponding implications for resource management guidelines. The conclusions result from the presentation and discussion of eight review papers which are included in this…

  13. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. PMID:23900082

  14. Managing bay and estuarine ecosystems for multiple services

    USGS Publications Warehouse

    Needles, Lisa A.; Lester, Sarah E.; Ambrose, Richard; Andren, Anders; Beyeler, Marc; Connor, Michael S.; Eckman, James E.; Costa-Pierce, Barry A.; Gaines, Steven D.; Lafferty, Kevin D.; Lenihan, Junter S.; Parrish, Julia; Peterson, Mark S.; Scaroni, Amy E.; Weis, Judith S.; Wendt, Dean E.

    2013-01-01

    Managers are moving from a model of managing individual sectors, human activities, or ecosystem services to an ecosystem-based management (EBM) approach which attempts to balance the range of services provided by ecosystems. Applying EBM is often difficult due to inherent tradeoffs in managing for different services. This challenge particularly holds for estuarine systems, which have been heavily altered in most regions and are often subject to intense management interventions. Estuarine managers can often choose among a range of management tactics to enhance a particular service; although some management actions will result in strong tradeoffs, others may enhance multiple services simultaneously. Management of estuarine ecosystems could be improved by distinguishing between optimal management actions for enhancing multiple services and those that have severe tradeoffs. This requires a framework that evaluates tradeoff scenarios and identifies management actions likely to benefit multiple services. We created a management action-services matrix as a first step towards assessing tradeoffs and providing managers with a decision support tool. We found that management actions that restored or enhanced natural vegetation (e.g., salt marsh and mangroves) and some shellfish (particularly oysters and oyster reef habitat) benefited multiple services. In contrast, management actions such as desalination, salt pond creation, sand mining, and large container shipping had large net negative effects on several of the other services considered in the matrix. Our framework provides resource managers a simple way to inform EBM decisions and can also be used as a first step in more sophisticated approaches that model service delivery.

  15. Contribution of Submarine Groundwater on the Water-Food Nexus in Coastal Ecosystems: Effects on Biodiversity and Fishery Production

    NASA Astrophysics Data System (ADS)

    Shoji, J.; Sugimoto, R.; Honda, H.; Tominaga, O.; Taniguchi, M.

    2014-12-01

    Economic values of the ecosystem services of coastal ecosystems have been evaluated as among the highest of those the world's ecosystems. Recently more attentions have been paid on the mechanisms how the freshwater contribute to the high productivity and species diversity of the coastal ecosystems. In the present study, results from physical and biological surveys conducted at four locations (Yuza, Otsuchi, Obama and Beppu) in Japan in order to examine effects of river water and submarine groundwater on productivity and species diversity of fishery resources are introduced. Fish sampling was conducted by the use of small seine net (2 x 1 mm, 2 mm mesh). Invertebrates (crustaceans and polychaetes, as prey for the fishes) were collected with a plankton net (0.3 x 0.4 m, 1 mm mesh) and a core sampler (10 x 10 cm circular cylinder). In addition, underwater camera recording was conducted by four digital cameras (1 min interval, for 3 hours) to analyze abundance and species composition of fishes around each sampling site. Relationships between physical parameters (water temperature, salinity and Rn concentration) and biological parameters (abundance, biomass and species diversity of fish, crustaceans and polychaetes) were investigated. Significant increase in abundance and number of species of fishes and some invertebrate species were observed in three of the four locations, indication submarine groundwater promote biological production and species diversity in coastal ecosystems. The mechanisms how the freshwater input from the land contributes to the high productivity and species diversity in the coastal ecosystems will be examined through wood web analysis (e.g. stomach contents and stable isotopes) in the ongoing study. Possible effects of climatic changes (including the global warming) through spatio-temporal variability in submarine groundwater discharge on the productivity and species diversity in coastal ecosystems are predicted based on the species interactions

  16. Carbon Cycling Studies in Forest and Rangeland Ecosystems of Northern and Central Coastal California

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Gross, P.; Hiatt, S.; Genovese, V.

    2008-12-01

    The varied topography and micro-climates of northern and central coastal California result in high biodiversity and many different levels of primary production driving regional carbon cycles. Coastal mountains trap moisture from low clouds and fog in summer to supplement rainfall in winter. This creates a favorable micro-environment for coniferous forests, including the southernmost habitat of the coast redwood (Sequoia sempervirens), which grows mainly on lower north-facing slopes in Big Sur. In rain shadows, forests transition to open oak woodland, and then into the more fire-tolerant chaparral and coast scrub. Field sites for our on-going climate change studies on the California northern and central coasts currently include the University of California Santa Cruz Campus Natural Reserve, the US Forest Service Brazil Ranch, and the University of California Big Creek Reserve. We are conducting research at each of these sites to better understand possible impacts of climate change, including: (1) biological and physical capacity of soils to capture carbon and retain plant-essential nutrients; (2) rates of plant-soil water and carbon cycling and energy flow; and (3) recovery mechanisms for disturbances such as invasive weed species, grazing, and wildfire. The NASA-CASA simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate carbon cycling for much of the central coast as far north as Mendocino County. Net primary production (NPP) of all vegetation cover was mapped at 30-meter resolution for selected years by combining MODIS and Landsat images across the region. Results show annual NPP predictions of between 200-400 grams C per square meter for coastal scrub and 800-1200 grams C per square meter for coastal evergreen forests, Net ecosystem fluxes of carbon will be presented for the region based on NASA-CASA modeling and field measurements of soil respiration fluxes.

  17. Ecosystem management: A comparison of greater yellowstone and georges bank

    NASA Astrophysics Data System (ADS)

    Burroughs, Richard H.; Clark, Tim W.

    1995-09-01

    Ecosystem management links human activities with the functioning of natural environments over large spatial and temporal scales. Our examination of Greater Yellowstone and Georges Bank shows similarities exist between human uses, administrative characteristics, and some biophysical features. Each region faces growing pressures to replace traditional extractive uses with more sustainable extractive or noncommodity uses coupled with concern about endangered species. Ecosystem management as a set of practical guidelines for making decisions under evolving expectations is far from complete, and it embodies new demands on individuals and institutions. In each system these challenges are considered relative to: the public's symbolic understanding of the management challenge, ecosystem management ambiguities, information availability, information use, administrative setting, and learning capabilities of governance organizations Progress in making ecosystem management operational may occur as refinements in content and approach make it an increasingly attractive option for resource users, the public, and government officials.

  18. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    PubMed

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. PMID:27559058

  19. Decision-making in Coastal Management and a Collaborative Governance Framework

    EPA Science Inventory

    Over half of the US population lives in coastal watersheds, creating a regional pressure for coastal ecosystems to provide a broad spectrum of services while continuing to support healthy communities and economies. The National Ocean Policy, issued in 2010, and Coastal and Marin...

  20. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  1. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    SciTech Connect

    Not Available

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  2. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem

    NASA Astrophysics Data System (ADS)

    Walker, Ian J.; Eamer, Jordan B. R.; Darke, Ian B.

    2013-10-01

    A shift from restoring coastal dunes as stabilized landscapes toward more morphodynamic ecosystems is underway. This paper uses results from a recent case study where invasive vegetation was removed from a coastal dune complex in western Canada as a first step in a dynamic ecosystem restoration project. Spatial statistical methods, used in the natural sciences to quantify patterns of significant spatial-temporal changes, are reviewed and the local Moran's Ii spatial autocorrelation statistic is explored for detecting and assessing significant changes. Cluster maps of positive (depositional) and negative (erosional) changes were used to derive statistically significant volumetric changes within discrete geomorphic units (beach, foredune, transgressive dune) over one year following vegetation removal. All units experienced net increases in sediment budgets compared to a pre-restoration surface. The beach experienced the highest episodic erosion and volumetric change and greatest net annual sediment budget. Compared to the beach, the annual sediment budget of the foredune was 19% whereas the transgressive dune was 33%. The foredune recovered rapidly to initial erosion during restoration and subsequent natural events with consistently positive sediment volumes and attained a form similar to that pre-restoration. Aeolian deflation and sand bypassing through the foredune was greatest in the two months following vegetation removal and peak accretion in the transgressive dune resulted from depositional lobes extending from the foredune, smaller dunes migrating within the complex, and growth of a precipitation ridge along the eastern margin. Several methodological and logistical considerations for detecting significant change in dynamic dune landscapes are discussed including sampling strategy design, data normalization and control measures, and incorporating uncertainty and inherent spatial relations within acquired datasets to ensure accuracy and comparability of results

  3. Stable Isotope Evidence of Variation in Nitrogen Fixation by Cyanobacteria in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paul, V.; Clementz, M.

    2006-12-01

    Increased nutrient loading via both natural and anthropogenic factors has been reported as one possible mechanism for the recent increase in the occurrence and intensity of harmful algal blooms (HAB) in coastal ecosystems. Influx of iron, phosphorous, and organic carbon have proven to be significant stimulating factors for HAB, since the benthic cyanobacteria that often make up these blooms are capable of nitrogen-fixation and require these nutrients for this process as well as photosynthesis. These cyanobacteria can switch to direct uptake of dissolved inorganic nitrogen (DIN), however, when concentrations are high enough to energetically favor this source, suggesting that high nitrogen input may also stimulate HAB. Given the distinct isotope differences between atmospheric N2 (0‰) and anthropogenic sources of DIN (>6‰), measurement of the δ15N composition of cyanobacteria can provide a means of gauging the relative significance of anthropogenic versus atmospheric nitrogen to the growth of these blooms. Likewise, the δ13C composition of these primary producers is controlled by the δ13C composition of the DIC, and can be a second tracer of anthropogenic influx into marine ecosystems. A combined approach using both isotope tracers was employed to determine the significance of anthropogenic nitrogen on HAB in subtropical/tropical coastal marine ecosystems. Samples of cyanobacteria and associated macroalgae were collected from three coastal sites in Guam (Facpi Point, Tanguisson, and Ypao Beach), one locality in Hawaii, and three sites in southern Florida (Pepper Park, Fort Lauderdale, Florida Keys). Following removal of marine carbonates via an acid rinse, the δ13C and δ15N values were determined for each species. Cyanobacterial δ15N values ranged from -2.3‰ to 7.7‰ with the highest values reported from sites in Guam. Only cyanobacteria sampled from Hawaii showed no isotope evidence of an anthropogenic source for nitrogen. A strong negative correlation

  4. Towards sustainable management of louisiana's coastal wetland forests: Problems, constraints, and a new beginning

    USGS Publications Warehouse

    Chambers, J.L.; Conner, W.H.; Keim, R.F.; Faulkner, S.P.; Day, J.W.; Gardiner, E.S.; Hughes, M.S.; King, S.L.; McLeod, K.W.; Miller, C.A.; Nyman, J.A.; Shaffer, G.P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  5. Towards sustainable management of Louisiana’s coastal wetland forests: problems, constraints, and a new beginning

    SciTech Connect

    Chambers, J. L.; Keim, R. F.; Faulkner, S. P.; Day Jr., J. W.; Gardiner, E. S.; Hughes, M. S.; King, S. L.; McLeod, K. W.; Miller, C. A.; Nyman, J. A.; Shaffer, G. P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  6. Groundwater-surface water interactions and their effects on ecosystem metabolism in a coastal wetland: example from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Price, R. M.; Zapata, X.; Koch, G. R.

    2013-05-01

    Groundwater typically has higher concentrations of salts and nutrients as compared to surface waters in coastal wetlands affected by saltwater intrusion. Discharge of the nutrient-laden brackish groundwater is expected to influence ecosystem function in the overlying surface water. In the coastal Everglades, elevated concentrations of phosphorus have been observed in the underlying groundwater due to water-rock interactions occurring as seawater intrudes into the coastal carbonate aquifer. The objective of this research was to determine the timing and amount of brackish groundwater discharge to the coastal wetlands of the Everglades and to evaluate the effects of the groundwater discharge on the surface water chemistry and ecosystem metabolism. The timing of groundwater discharge was determined by four techniques including a water balance, hydraulic gradient, temperature, and geochemical tracers. Groundwater discharge rates were quantified from well data using Darcy's Law. Ecosystem metabolism was estimated as daily rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) from free-water, diel changes in dissolved oxygen. Over 2 years, all four groundwater discharge techniques converged as to the timing of groundwater discharge which was greatest between May and July. Surface water chemistry was fresh from September through February, but became brackish to hypersaline between March and July, concurrent with the times of highest brackish groundwater discharge. Phosphorus concentrations as well as GPP and R were observed to spike in the surface water during the times of greatest groundwater discharge. The results of this research support the conclusions that brackish groundwater discharge effects surface water chemistry and ecosystem function in the coastal Everglades.

  7. Tools and methods for evaluating and refining alternative futures for coastal ecosystem management—the Puget Sound Ecosystem Portfolio Model

    USGS Publications Warehouse

    Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.

    2011-01-01

    The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.

  8. Major ecosystems in China: dynamics and challenges for sustainable management.

    PubMed

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded. PMID:21553106

  9. Sound management may sequester methane in grazed rangeland ecosystems.

    PubMed

    Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo

    2014-01-01

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly. PMID:24658176

  10. Sound management may sequester methane in grazed rangeland ecosystems

    PubMed Central

    Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M.; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo

    2014-01-01

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly. PMID:24658176

  11. Managing for ecosystem services and livestock production: Are there tradeoffs?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most all rangelands have traditionally been managed to provide food and fiber through management practices to achieve sustainable forage and livestock production (Dunn et al. 2010). Yet, society is desiring that these lands also be managed for multiple ecosystem services (defined as provisioning, re...

  12. Input- and output-oriented approaches to implementing ecosystem management

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.

    1995-03-01

    Input- and output-oriented approaches to landscape management have distinct roles for resource protection, environmental restoration, and sustainable land management. Implementing recent proposals for ecosystem management in the western United States involves a synthesis of input and output management. Within the broader context of ecosystem management, input management focuses on tailoring land use to the landscape, whereas output management employs assessments of resource condition to trigger modified management activity once resources are degraded to specified threshold conditions. Current approaches to landscape-scale management, however, tend to rely primarily on output-oriented strategies that are most effective for monitoring environmental conditions. Current uses of input management focus on environmental impact assessments, which generally are site- or project-specific analyses. The compeexity and dynamic nature of ecosystems, and the range of scales over which ecological processes operate, imply that development and incorporation of input-oriented approaches into landscape-scale management is necessary to implement ecosystem management as a strategy for sustainable land use.

  13. Information preferences for the evaluation of coastal development impacts on ecosystem services: A multi-criteria assessment in the Australian context.

    PubMed

    Marre, Jean-Baptiste; Pascoe, Sean; Thébaud, Olivier; Jennings, Sarah; Boncoeur, Jean; Coglan, Louisa

    2016-05-15

    Ecosystem based management requires the integration of various types of assessment indicators. Understanding stakeholders' information preferences is important, in selecting those indicators that best support management and policy. Both the preferences of decision-makers and the general public may matter, in democratic participatory management institutions. This paper presents a multi-criteria analysis aimed at quantifying the relative importance to these groups of economic, ecological and socio-economic indicators usually considered when managing ecosystem services in a coastal development context. The Analytic Hierarchy Process (AHP) is applied within two nationwide surveys in Australia, and preferences of both the general public and decision-makers for these indicators are elicited and compared. Results show that, on average across both groups, the priority in assessing a generic coastal development project is for the ecological assessment of its impacts on marine biodiversity. Ecological assessment indicators are globally preferred to both economic and socio-economic indicators regardless of the nature of the impacts studied. These results are observed for a significantly larger proportion of decision-maker than general public respondents, questioning the extent to which the general public's preferences are well reflected in decision-making processes. PMID:26861223

  14. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil.

    PubMed

    Bornatowski, H; Braga, R R; Abilhoa, V; Corrêa, M F M

    2014-08-01

    The diets of six shark species, Sphyrna lewini, Sphyrna zygaena, Carcharhinus obscurus, Carcharhinus limbatus, Rhizoprionodon lalandii and Galeocerdo cuvier, were investigated in a subtropical coastal ecosystem of southern Brazil. Stomach content data were obtained to assess foraging niche segregation and ontogenetic shifts in the diets of these sharks. Five of the shark species off the Paraná coast were ichthyophagous, with the exception of S. zygaena, which was teutophagous. With the exception of G. cuvier, which had a generalist diet, the other five species displayed specialization in their feeding. Ontogenetic shifts were observed in C. obscurus and S. lewini with large individuals consuming elasmobranchs. Owing to the diet overlap between C. obscurus and S. lewini, C. obscurus and C. limbatus and R. lalandii and C. limbatus, future studies on the spatial and temporal distributions of these species are needed to understand the extent of competitive interactions. PMID:24919949

  15. *d13C composition of primary producers and role of detritus in a freshwater coastal ecosystem

    USGS Publications Warehouse

    Keough, J.R.; Hagley, C.A.; Sierszen, M.

    1998-01-01

    Stable-isotope ratio signatures of primary producers in a coastal wetland and in adjacent offshore waters of western Lake Superior indicated that phytoplankton are the primary source of carbon for the grazing food web of this ecosystem. This study outlines the possible roles of other autotrophs in this regard. Isotopic signatures of macrophytes reflected their life-form-associated constraints on diffusion of inorganic carbon. Data indicated that differences between wetland and lake phytoplankton may be explained by the isotopic signatures of their dissolved inorganic carbon (DIC) sources. Results of an in situ experiment showed that respiration associated with macrophyte decomposition is capable of enriching surrounding water with significant amounts of *d13C-depleted DIC and lowering the net *d13C ratio of DIC in water in low-turbulence situations. The *d13C ratio for wetland phytoplankton may be depleted relative to pelagic algae because the fixed carbon is derived from decomposing detritus.

  16. Evolving demand for ecosystem services and their impact in a coastal New England watershed

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Green, M. B.; Pellerin, B. A.; Duncan, J. M.; Gettel, G. M.; Hopkinson, C.; Polsky, C.; Pontius, R.

    2009-12-01

    Human demands for ecosystem services (e.g. provision of food and water; regulation of waste) change over space and time as society, economy, and environment evolve. The distribution of population relative to watershed boundaries determines supply and demand of ecosystem services, which in turn affects watershed water and nutrient budgets. A watershed perspective is helpful to assess whether such services are sustainable with respect to freshwater and coastal ecosystems. We determined how demand for three ecosystem services (ES): food production, clean water supply, and removal of excess nutrients has changed over the last two hundred years (1800-present) in the watersheds draining to Plum Island Sound (drainage area = ~600 km2), located in Essex County MA., part of the Boston Metropolitan Area. The watersheds have gone through three distinct phases of ES demand over this period: 1) provision of food and fiber during the agricultural period (1600-1800’s), 2) increasing provision of water during the period of forest regrowth and agricultural abandonment (1880 - 1950), and 3) regulation of nitrogen pollution and provision of water during the suburban period (1950-present). As a result of changing ES, net interbasin nitrogen transfers out of the basin peaked in the mid 1800’s, water exports peaked 1960-1980 (averaging 27% of annual runoff), and net nitrogen transfers into the basin peaked in the 1960’s and stabilized thereafter (averaging 2.5x atmospheric deposition rates). ES provided by the Plum Island basins disproportionately benefited people living outside the basin prior to 1950 (e.g. internal water use was < 10% of total water extracted for domestic consumption), but were increasingly used by people living within the basin in the late 20th century (e.g. internal water use about 25-30% of total withdrawal). However, demands for ES from the Plum Island watersheds have not been accelerating in the recent suburban period despite continued population growth

  17. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  18. Temporal distribution of genetically homogenous ‘free-living’ Hematodinium sp. in a Delmarva coastal ecosystem

    PubMed Central

    2012-01-01

    Background Significant damage to crustacean fisheries worldwide has been associated with Hematodinium sp. It has been postulated that Hematodinium sp. requires passage through the water column and/or intermediate hosts to complete its life cycle. Thus, an understanding of the prevalence and seasonality of Hematodinium sp. within environmentally-derived samples should yield insight into potential modes of disease transmission, and how these relate to infection cycles in hosts. Results We conducted a two year survey, from 2010–2011, in which 48 of 546 (8.8%) of environmental samples from the Maryland and Virginia coastal bays were positive for Hematodinium sp. between April and November, as based upon endpoint PCR analysis specific to blue crab isolates. Detection in both water and sediment was roughly equivalent, and there were no obvious seasonal patterns. However, there was a high detection in April water samples, which was unanticipated owing to the fact that crabs infected with Hematodinium sp. have not been observed in this early month of the seasonal disease cycle. Focusing on three sites of high prevalence (Sinnickson, VA; Tom’s Cove, VA; and Newport Bay, MD) Hematodinium sp. population diversity was analyzed using standard cloning methods. Of 131 clones, 109 (83.2%) were identical, 19 displayed a single nucleotide substitution, and 4 contain two nucleotide substitutions. Conclusions Our data suggests a continuous presence of Hematodinium sp. in both water and sediment of a combined Maryland and Virginia coastal bay ecosystem. The detection of Hematodinium sp. in the water column in April is an earlier manifestation of the parasite than predicted, pointing to an as yet unknown stage in its development prior to infection. That the population is relatively homogenous ranging from April to November, at three distinct sites, supports a hypothesis that one species of Hematodinium is responsible for infections within the ecosystem. PMID:22828185

  19. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  20. A systematic review of socio-economic assessments in support of coastal zone management (1992-2011).

    PubMed

    Le Gentil, Eric; Mongruel, Rémi

    2015-02-01

    Cooperation between the social and natural sciences has become essential in order to encompass all the dimensions of coastal zone management. Socio-economic approaches are increasingly recommended to complement integrated assessment in support of these initiatives. A systematic review of the academic literature was carried out in order to analyze the main types of socio-economic assessments used to inform the coastal zone management process as well as their effectiveness. A corpus of 1682 articles published between 1992 and 2011 was identified by means of the representative coverage approach, from which 170 were selected by applying inclusion/exclusion criteria and then classified using a content analysis methodology. The percentage of articles that mention the use of socio-economic assessment in support of coastal zone management initiatives is increasing but remains relatively low. The review examines the links between the issues addressed by integrated assessments and the chosen analytical frameworks as well as the various economic assessment methods which are used in the successive steps of the coastal zone management process. The results show that i) analytical frameworks such as 'risk and vulnerability', 'DPSIR', 'valuation', 'ecosystem services' and 'preferences' are likely to lead to effective integration of social sciences in coastal zone management research while 'integration', 'sustainability' and 'participation' remain difficult to operationalize, ii) risk assessments are insufficiently implemented in developing countries, and iii) indicator systems in support of multi-criteria analyses could be used during more stages of the coastal zone management process. Finally, it is suggested that improved collaboration between science and management would require that scientists currently involved in coastal zone management processes further educate themselves in integrated assessment approaches and participatory methodologies. PMID:25463574

  1. Effects of land use changes on the ecosystem service values of coastal wetlands.

    PubMed

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A; Nunes, Paulo A L D

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from $215 to $233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions. PMID:25069582

  2. Controls of Carbon Preservation in Coastal Wetlands of Texas: Mangrove vs. Saltmarsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Sterne, A. M. E.; Louchouarn, P.; Norwood, M. J.; Kaiser, K.

    2014-12-01

    The estimated magnitude of the carbon (C) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire C stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of C under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze total hydrolysable carbohydrates, amino acids, phenols and stable isotopic data (δ13C) at two study sites located on the Texas coastline to investigate chemical compositions and the stage of decomposition in mangrove and marsh grass dominated wetlands. Carbohydrates are used as specific decomposition indicators of the polysaccharide component of wetland plants, whereas amino acids are used to identify the contribution of microbial biomass, and acid/aldehyde ratios of syringyl (S) and vanillyl (V) phenols (Ac/AlS,V) follow the decomposition of lignin. Preliminary results show carbohydrates account for 30-50 % of organic carbon in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Ecological differences (between marsh grass and mangrove dominated wetlands) are discussed to better constrain the role of litter biochemistry and ecological shifts on C preservation in these anoxic environments.

  3. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  4. Remote Sensing and Ecosystem Modeling for Protected Area Management

    NASA Astrophysics Data System (ADS)

    Melton, F.; Michaelis, A.; Votava, P.; Milesi, C.; Hashimoto, H.; Hiatt, S.; Nemani, R.

    2007-12-01

    Managers of U.S. national parks and international protected areas are under increasing pressure to monitor changes in park ecosystems resulting from climate and land use change within and adjacent to park boundaries. Despite great interest in these areas and the fact that some U.S. parks receive as many as 3.5 million visitors per year, U.S. and international protected areas are often sparsely instrumented, making it difficult for resource managers to quickly identify trends and changes in landscape conditions. Remote sensing and ecosystem modeling offer protected area managers important tools for monitoring of ecosystem conditions and scientifically based decision-making. These tools, however, can generate large data volumes and can require labor-intensive data processing making them difficult for protected area managers to use. To overcome these obstacles, the Terrestrial Observation and Prediction System (TOPS) is currently being applied to automate the production, analysis, and delivery of a suite of data products from NASA satellites and ecosystem models to assist managers of U.S. national parks. TOPS uses ecosystem models to combine satellite data with ground-based observations to produce nowcasts and forecasts of ecosystem conditions. We are utilizing TOPS to deliver data products via a browser-based interface to NPS resource managers in near real- time for use in landscape monitoring and operational decision-making. Current products include measures of vegetation condition, ecosystem productivity, soil moisture, snow cover, climate, and fire occurrence. The use of TOPS component models and technologies streamlines the data processing chain and automates the process of ingesting and synthesizing heterogeneous data inputs. In addition, we describe the use of TOPS to automate the identification of trends and anomalies in ecosystem conditions, enabling protected area managers to track park-wide conditions daily, identify significant changes, focus monitoring

  5. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf

    2013-09-01

    The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

  6. Information Semantic Tools for Coastal Data Management

    NASA Astrophysics Data System (ADS)

    Durbha, S. S.; King, R. L.; Younan, N. H.; Rajender, S. K.; Bheemireddy, S.

    2007-12-01

    In a coastal disaster event, it is necessary to obtain information about water level (depth), winds, currents, waves, temperature-salinity stratification in real time and predictions of water level (12-24 hrs), storm surge (48-72 hours) in advance. It has been estimated that better preparation, response, and mitigation will reduce average costs of storm-related disasters by 10%. The dissemination of information that is time critical calls for systems that will facilitate quick assessment of the scenario from multiple perspectives. Sensor data are obtained from a multitude of distributed sensor networks. Our current work funded by Northern Gulf Institute (NGI) on Sensor Web tools for coastal buoys based on OGC sensor web enablement framework enables the use of real or near real time data derived from coastal sensor networks and dynamic selection and aggregation of multiple sensor systems, meteorological and oceanographic simulations and other decision support systems in a web services- based environment. In addition, we pursue the semantic web approaches to understand the context of the data, resolve the meaning, interpretation or usage of the same or related data and develop knowledge-based tools for access to the information sources. Observations from satellites provide a variety of measurements that are not otherwise available or affordable. However, the use of such valuable information in a rapid assessment scenario is hindered by the fact that it is cumbersome to explore huge image databases through manual or semi automated methods. The Rapid Image information mining (RIIM) tool that we developed for this purpose is demonstrated with imagery data from Landsat ETM+ of post Katrina hurricane.

  7. Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem

    NASA Astrophysics Data System (ADS)

    Buddington, Randal

    Natural and man-made ecosystems are routinely managed to increase productivity and provide desired characteristics. The management approaches most commonly used include the addition of desired organisms, provision of fertilizers or feeds to encourage desired species, alteration of the physical or chemical features of the environment, and the selective removal of undesirable species. The selection of specific management strategies and their success are dependent on a thorough understanding of existing ecosystem characteristics and the short and long-term responses to the management strategy.

  8. 75 FR 8649 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric......

  9. Managing oil and gas activities in coastal environments. Volume II: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities.

  10. Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    PubMed Central

    Seddon, Alistair W. R.; Froyd, Cynthia A.; Leng, Melanie J.; Milne, Glenn A.; Willis, Katherine J.

    2011-01-01

    Background The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Methodology/Principal Findings Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Conclusions/Significance Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study

  11. Activities of bioprotection systems of marine organisms representative of coastal ecosystems in the Mediterranean Sea

    SciTech Connect

    Narbonne, J.F.; Garrigues, P.; Monod, J.L.; Lafaurie, M. )

    1988-09-01

    With a view to applying the biochemical tests under study to the monitoring of sea pollutants, they have created, together with a number of laboratories, the G.I.C.B.E.M. (Groupe Interface Chimie Biologie Ecosystemes Marins). The special characteristic of this program is to provide a global evaluation of the health of a marine ecosystem by studying in situ the correlations existing between the activity levels of bioprotection systems (biotransformation of organic pollutants, induction of metallothioneins) in coastal benthic organisms and the presence of potentially toxic molecules in the environment. A discerning selection of sampling sites in the Mediterranean exhibiting well-known pollution of various origins (heavy metals, HAP, PCB, lindane {hor ellipsis}) and at various degrees, should allow the determination of the bioprotection systems as well as of their activity levels. Thus, a global evaluation of the health of a given system and a quick warning as to the presence of potentially toxic substances in the environment will be made possible by applying a battery of suitable and simple tests on representative organisms.

  12. Carbon Biogeochemistry: A Stable Isotope Approach to Trophic Dynamics in an Indian Coastal Ecosystem

    NASA Astrophysics Data System (ADS)

    Mathukumalli, B.; Alagappan, R.

    2005-12-01

    Stable isotope(δ13C & δ15N) approach was applied to understand carbon biogeochemistry and trophic dynamics in an Indian coastal mangrove wetland. The δ13C and δ15N values of potential nutrient sources (mangrove plant leaves, lichen, sediment and suspended material) and in seven species of consumers (invertebrates) were measured. The value of δ13C and δ15N isotopes of different potential nutrient sources and the consumers determine the sources of nutrients for the invertebrate consumer community of the mangrove. There is a significant variation in the stable carbon in the nutrient sources; however, δ15N signatures were not significantly different among the different potential nutrient sources. Organic matter in the sediments under the mangrove vegetation was characterized by relatively negatively fractionated and moderately high C:N ratios, indicating that mangrove derived organic matter was the principal diet source for the invertebrate consumer communities in the mangrove ecosystem. Invertebrates in the mangrove showed a wide range of δ13C signatures and are enriched relative to the mangrove leaf stable isotope values. Micro-environmental differences certainly drive the variability in the nutrient sources and consumable nature among the different regions of the ecosystem. Therefore, further research is needed to determine whether carbon assimilation is different from one zone to another.

  13. Ecosystem management for sage-grouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Basin area of the western United States faces a host of challenges and threats to the health of the ecosystem including invasion of exotic annual grasses, altered fire cycles and juniper encroachment. There is substantial and growing concern over a number of sagebrush obligate wildlife spe...

  14. Coastal Resources Management and Sustainable Development: A Southeast Asian Perspective.

    ERIC Educational Resources Information Center

    Tobin, Richard J.; White, Alan T.

    1993-01-01

    Discusses the goal of sustainable development among Southeast Asian countries in relation to aspects pertaining to coastal management efforts. Provides examples of the lack of interagency cooperation between relevant agencies, the problems with democratization, and unrealistic government expectation in Thailand, the Philippines, Indonesia, and…

  15. A MANAGEMENT SUPPORT SYSTEM FOR GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    The Great Lakes National Program Office in conjunction with the Great Lakes Commission and other researchers is leading a large scale collaborative effort that will yield, in unprecedented detail, a management support system for Great Lakes coastal wetlands. This entails the dev...

  16. Review: phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2013-11-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year-to-year (but we only found 8 APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of APPP, 958 come from sites

  17. Management and fertility control ecosystem carbon allocation to biomass production

    NASA Astrophysics Data System (ADS)

    Campioli, Matteo; Vicca, Sara; Janssens, Ivan

    2015-04-01

    Carbon (C) allocation within the ecosystem is one of the least understood processes in plant- and geo-sciences. The proportion of the C assimilated through photosynthesis (gross primary production, GPP) that is used for biomass production (BP) is a key variable of the C allocation process and it has been termed as biomass production efficiency (BPE). We investigated the potential drivers of BPE using a global dataset of BP, GPP, BPE and ancillary ecosystem characteristics (vegetation properties, climatic and environmental variables, anthropogenic impacts) for 131 sites comprising six major ecosystem types: forests, grasslands, croplands, tundra, boreal peatlands and marshes. We obtained two major findings. First, site fertility is the key driver of BPE across forests, with nutrient-rich forests allocating 58% of their photosynthates to BP, whereas this fraction is only 42% for nutrient-poor forests. Second, by disentangling the effect of management from the effect of fertility and by integrating all ecosystem types, we observed that BPE is globally not driven by the 'natural' site fertility, but by the positive effect brought by management on the nutrient availability. This resulted in managed ecosystems having substantially larger BPE than natural ecosystems. These findings will crucially improve our elucidation of the human impact on ecosystem functioning and our predictions of the global C cycle.

  18. Potential Impacts and Management Implications of Climate Change on Tampa Bay Estuary Critical Coastal Habitats

    NASA Astrophysics Data System (ADS)

    Sherwood, Edward T.; Greening, Holly S.

    2014-02-01

    The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida's west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in "Restoring the Balance" of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of "Restoring the Balance" may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope "refugia" may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.

  19. Marine spatial planning (MSP): a first step to ecosystem-based management (EBM) in the Wider Caribbean.

    PubMed

    Ogden, John C

    2010-10-01

    The rapid decline of coastal ecosystems of the Wider Caribbean is entering its fifth decade. Some of the best science documenting this decline and its causes has been done by the laboratories of the Association of Marine Laboratories of the Caribbean (AMLC). Alarmed at the trends, Caribbean conservation pioneers established marine protected areas (MPAs) which spread throughout the region. Unfortunately, many have little or no protection and are now known to be too small to be effective in sustaining coastal ecosystems. Marine spatial planning (MSP) holds much promise to encompass the large geographic scales of the ecological processes and human impacts that influence coastal ecosystems and adjacent lands. The AMLC, through the scientific expertise and the national political connections of its member institutions, is well-positioned to help implement a pilot project. MSP a first step in ecosystem-based management and has had considerable success elsewhere. It holds our best chance of sustaining human use and conserving the coral reefs and associated ecosystems. PMID:21299097

  20. Coastal zone - Terra (and aqua) incognita - Integrated Coastal Zone Management in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kosyan, R. D.; Velikova, V. N.

    2016-02-01

    In the Black Sea coastal states (Bulgaria, Georgia, Romania, Russian Federation, Turkey, and Ukraine), Integrated Coastal Zone Management (ICZM) has no properly established legal and institutional framework. The term "coastal zone" is undefined in national (reportedly with the exception of Bulgaria) and regional legislative documents. The interface between science and policy within ICZM remains poorly developed. Policies for streamlining efforts have been ill-managed and decisions taken in functional zoning and the balanced use and protection of coastal zones have often been shown to be incorrect. The observed proliferation of consultative committees and councils has not been much helpful, public participation has been widely neglected. Illegal practices are in place, and coastal developments continue being largely unsustainable. These problems are often explained by the low awareness of ICZM benefits, and hence, a shortage of political good will, but also by the lack of appropriate Black Sea scientific research, which would ensure a fundamental knowledge-base. There are hundreds of organizations involved in collection of data and information of relevance for ICZM, although there is a distinct lack of coordination. Consequently, there is a substantial overlap of activities, whilst important scientific and policy questions remain unanswered. We review the status of ICZM or mismanagement (ICZmisM) in the Black Sea region, building links between environmental problems and policy measures in response, and providing appropriate examples. Recommendations are put forward with regard to major gaps in ICZM at levels of its theoretical development and practical implementation within the region. The review is intended to remind of major disastrous consequences of present complacency and laissez-faire in the management of the Black Sea. This paper calls for urgent implementation of ICZM in the Black Sea at national and regional levels.

  1. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  2. Current status of coastal zone issues and management in China: a review.

    PubMed

    Cao, Wenzhi; Wong, Ming H

    2007-10-01

    This paper identifies and examines social-economic and environmental issues recently emerged in China's coastal zone. Evaluation of management scheme and progress in perspectives of coordinated legislation, institutional arrangement, public participation, capacity building, and scientific research (mainly coastal planning and functional zoning) in China's coastal zone are made. The Chinese government has made a significant effort in developing legislation for the coastal zone. Jurisdictional and zoning boundaries, and allocating use rights for coastal and marine resources have been established. State Oceanic Administration is the leading agency responsible for China's ocean policymaking and overall management of ocean and coastal affairs. A demonstrated project for integrated coastal management in Xiamen has been implemented, and is characterized as "decentralization" approach in decision-making process. In view of the above, comprehensive coastal management in China is a big challenge, facing with many difficulties. Finally, recommendations are raised for tackling these issues for China's coastal zone management. PMID:17532045

  3. Managing extreme natural disasters in coastal areas.

    PubMed

    Kesavan, P C; Swaminathan, M S

    2006-08-15

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a 'bottom-up' manner. The use of recombinant DNA technology for genetic shielding of agricultural

  4. Managing extreme natural disasters in coastal areas

    NASA Astrophysics Data System (ADS)

    Kesavan, P. C.; Swaminathan, M. S.

    2006-08-01

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a ‘bottom-up’ manner. The use of recombinant DNA technology for genetic shielding of agricultural

  5. Consistent drivers of plant biodiversity across managed ecosystems.

    PubMed

    Minden, Vanessa; Scherber, Christoph; Cebrián Piqueras, Miguel A; Trinogga, Juliane; Trenkamp, Anastasia; Mantilla-Contreras, Jasmin; Lienin, Patrick; Kleyer, Michael

    2016-05-19

    Ecosystems managed for production of biomass are often characterized by low biodiversity because management aims to optimize single ecosystem functions (i.e. yield) involving deliberate selection of species or cultivars. In consequence, considerable differences in observed plant species richness and productivity remain across systems, and the drivers of these differences have remained poorly resolved so far. In addition, it has remained unclear if species richness feeds back on ecosystem functions such as yield in real-world systems. Here, we establish N = 360 experimental plots across a broad range of managed ecosystems in several European countries, and use structural equation models to unravel potential drivers of plant species richness. We hypothesize that the relationships between productivity, total biomass and observed species richness are affected by management intensity, and that these effects differ between habitat types (dry grasslands, grasslands, and wetlands). We found that local management was an important driver of species richness across systems. Management caused system disturbance, resulting in reduced productivity yet enhanced total biomass. Plant species richness was directly and positively driven by management, with consistently negative effects of total biomass. Productivity effects on richness were positive, negative or neutral. Our study shows that management and total biomass drive plant species richness across real-world managed systems. PMID:27114585

  6. Applying the Ecosystem Services Concept to Public Land Management

    EPA Science Inventory

    We examine the challenges opportunities involved in applying ecosystem services to public lands management, with an emphasis on the work of the USDA Forest Service. We review the history of economics approaches to landscape management, outline a conceptual framework defining the ...

  7. State of knowledge of coastal aquifer management in South America

    NASA Astrophysics Data System (ADS)

    Bocanegra, Emilia; da Silva, Gerson Cardoso; Custodio, Emilio; Manzano, Marisol; Montenegro, Suzana

    2010-02-01

    A comparative analysis of the existing hydrogeological and management information from 15 coastal aquifers in South America was performed in order to obtain insight into common features of the sub-continent coastal zones. Some knowledge from other areas has been incorporated. There is a very variable degree of knowledge and management practice, ranging from almost no data and no action (the most common case), to sound conceptual models about aquifer behaviour and comprehensive management actions such as relocation of abstractions, pumping brackish groundwater, and aquifer vulnerability mapping. Some common features are: intensive groundwater exploitation; lack of characterization studies to support resource planning and management; lack of monitoring networks; and the need for raising awareness within society and its involvement in resource planning and management action programmes. Quality and quantity problems arising in heavily populated areas associated with coastal aquifers in South America point to unsustainable groundwater development. The sustainable use of those aquifers must rely on adequate evaluation of aquifer characteristics and monitoring.

  8. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat. PMID:23474896

  9. Effect of an Invasive Plant and Moonlight on Rodent Foraging Behavior in a Coastal Dune Ecosystem

    PubMed Central

    Johnson, Matthew D.; De León, Yesenia L.

    2015-01-01

    Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the ‘giving up density’ of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own. PMID:25679785

  10. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    PubMed

    Savina, Marie; Condie, Scott A; Fulton, Elizabeth A

    2013-01-01

    We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives. PMID:23593432

  11. The Role of Pre-Existing Disturbances in the Effect of Marine Reserves on Coastal Ecosystems: A Modelling Approach

    PubMed Central

    Savina, Marie; Condie, Scott A.; Fulton, Elizabeth A.

    2013-01-01

    We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia). The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species) experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure), and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives. PMID:23593432

  12. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  13. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Garneau, Marie-Ève; Vincent, Warwick F.; Terrado, Ramon; Lovejoy, Connie

    2009-01-01

    estuarine stations with highest POM content. Particle-associated bacteria are an important functional component of this Arctic ecosystem. Under a warmer climate, they are likely to play an increasing role in coastal biogeochemistry and carbon fluxes as a result of permafrost melting and increased particle transport from the tundra to coastal waters.

  14. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    PubMed

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  15. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  16. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review.

    PubMed

    He, Wei; Chen, Meilian; Schlautman, Mark A; Hur, Jin

    2016-05-01

    Dynamic exchanges between dissolved organic matter (DOM) and particulate organic matter (POM) plays a critical role in organic carbon cycling in coastal and inland aquatic ecosystems, interactions with aquatic organisms, mobility and bioavailability of pollutants, among many other ecological and geochemical phenomena. Although DOM-POM exchange processes have been widely studied from different aspects, little to no effort has been made to date to provide a comprehensive, mechanistic, and micro-spatial schema for understanding various exchange processes occurring in different aquatic ecosystems in a unified way. The phenomena occurring between DOM and POM were explained here with the homogeneous and heterogeneous mechanisms. In the homogeneous mechanism, the participating components are only organic matter (OM) constituents themselves with aggregation and dissolution involved, whereas OM is associated with other components such as minerals and particulate colloids in the heterogeneous counterpart. Besides the generally concerned processes of aggregation/dissolution and adsorption/desorption, other ecological factors such as sunlight and organisms can also participate in DOM-POM exchanges through altering the chemical nature of OM. Despite the limitation of current analytical technologies, many unknown and/or unquantified processes need to be identified to unravel the complicated exchanges of OM between its dissolved and particulate states. Based on the review of several previous mathematical models, we proposed a unified conceptual model to describe all major dynamic exchange mechanisms on the basis of exergy theory. More knowledge of dynamic DOM-POM exchanges is warranted to overcome the potential problems arising from a simple division of OM into dissolved versus particulate states and to further develop more sophisticated mathematic models. PMID:26881732

  17. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Maie, Nagamitsu; Parish, Kathleen J.; Watanabe, Akira; Knicker, Heike; Benner, Ronald; Abe, Tomonori; Kaiser, Karl; Jaffé, Rudolf

    2006-09-01

    Water samples were collected from rivers and estuarine environments within the Florida Coastal Everglades (FCE) ecosystem, USA, and ultrafiltered dissolved organic matter (UDOM; <0.7 μm, >1 kDa) was isolated for characterization of its source, bioavailability and diagenetic state. A combination of techniques, including 15N cross-polarization magic angle spinning nuclear magnetic resonance ( 15N CPMAS NMR) and X-ray photoelectron spectroscopy (XPS), were used to analyze the N components of UDOM. The concentrations and compositions of total hydrolysable amino acids (HAAs) were analyzed to estimate UDOM bioavailability and diagenetic state. Optical properties (UV-visible and fluorescence) and the stable isotope ratios of C and N were measured to assess the source and dynamics of UDOM. Spectroscopic analyses consistently showed that the major N species of UDOM are in amide form, but significant contributions of aromatic-N were also observed. XPS showed a very high pyridinic-N concentration in the FCE-UDOM (21.7 ± 2.7%) compared with those in other environments. The sources of this aromatic-N are unclear, but could include soot and charred materials from wild fires. Relatively high total HAA concentrations (4 ± 2% UDOC or 27 ± 4% UDON) are indicative of bioavailable components, and HAA compositions suggest FCE-UDOM has not undergone extensive diagenetic processing. These observations can be attributed to the low microbial activity and a continuous supply of fresh UDOM in this oligotrophic ecosystem. Marsh plants appear to be the dominant source of UDOM in freshwater regions of the FCE, whereas seagrasses and algae are the dominant sources of UDOM in Florida Bay. This study demonstrates the utility of a multi-technique and multi-proxy approach to advance our understanding of DON biogeochemistry.

  18. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    PubMed

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  19. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems

    PubMed Central

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  20. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  1. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems.

    PubMed

    Gong, Jun; Shi, Fei; Ma, Bin; Dong, Jun; Pachiadaki, Maria; Zhang, Xiaoli; Edgcomb, Virginia P

    2015-10-01

    Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans. PMID:25581721

  2. Effects of benthos, temperature, and dose on the fate of hexabromocyclododecane in experimental coastal ecosystems.

    PubMed

    Bradshaw, Clare; Strid, Anna; von Stedingk, Hans; Gustafsson, Kerstin

    2015-06-01

    The authors studied the fate of the brominated flame retardant hexabromocyclododecane (HBCDD) added in a particulate suspension to experimental ecosystems assembled from brackish (Baltic Sea) coastal bays. Two experiments examined how benthic macrofauna (over 21 d) and increased temperature (14 d) affected HBCDD concentrations and fractionation of α, β, and γ diastereomers in the water, sediment, and biota. A third experiment run over 3 seasons (231 d), studied the effect of HBCDD dose on the same endpoints. In all treatments of the 3 experiments, HBCDD partitioned mainly to the sediment, and this proportion increased with time. Presence of macrofauna tended to increase the HBCDD concentration in the sediment and decreased its concentration in the water. Increased temperature (+ 5°C) decreased the amount of HBCDD in sediment and water but not in the filter- and deposit-feeding infaunal bivalves (Macoma balthica). The partitioning between water, sediment, and biota was not concentration dependent. In all treatments, sediment became enriched in γ-HBCDD, M. balthica in α-HBCDD, and water in α- and β-HBCDD. Bioaccumulation of HBCDD in M. balthica was high in all experiments (log biota-sediment accumulation factor [BSAF] > 1.25), the α diastereomer contributing the most (log BSAF 2.1-5.2). There is a risk of trophic transfer of HBCDD from benthic to pelagic food webs, as well as secondary poisoning of marine consumers. PMID:25703626

  3. Hurricane impacts on tree mortality and carbon cycling in coastal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Negron-Juarez, R. I.; Zeng, H.; Henkel, T. K.; Baker, D. B.; Saatchi, S. S.

    2008-12-01

    Forests recovering from land-use, the encroachment of woody vegetation, and other ecological processes, cause terrestrial ecosystems to act as a net sinks for atmospheric carbon dioxide. Changes in the strength and sign of this sink over the coming decades are difficult to predict. One process that can act to diminish the terrestrial carbon sink is an increase in disturbance frequency and intensity, which transfers greater amounts of biomass from live to dead respiring pools, and shifts the forest size distribution toward smaller average tree size and lower biomass stocks. A number of studies predict an increase in the frequency of extreme weather events and the intensity of tropical cyclones under a warming climate, which may ultimately result in elevated forest disturbance regimes. Here we present a novel synthetic approach combining detailed ecological field investigations with remote sensing image analysis to provide spatially explicit estimates of forest damage, tree mortality, and biomass loss for U.S. landfalling hurricanes. Analysis results for Hurricane Katrina predicted the death and severe structural damage to about 320 million trees, representing a 100 Tg carbon transfer from live to dead biomass. Under the same wind-field, forest susceptibility to damage was highly tree species dependent, with cypress-tupelo swamp forests exhibiting the greatest resistance. Statistical models were useful for separating storm surge from wind effects on coastal forests. Similar analyses are currently underway for Hurricane Gustav, and will also be presented.

  4. Biological indicators of changes in water quality and habitats of the coastal and estuarine areas of the Greater Everglades Ecosystem; Chapter 11

    USGS Publications Warehouse

    Wachnicka, Anna; Wingard, Georgiana L.

    2015-01-01

    This chapter summarizes the application of various biological indicators to studying the anthropogenic and natural changes in water quality and habitats that have occurred in the coastal and estuarine areas of the Greater Everglades ecosystem.

  5. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  6. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-01-01

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components

  7. Linking ocean models to coastal management on Australia's north west shelf

    NASA Astrophysics Data System (ADS)

    Condie, Scott; Fandry, Chris; McDonald, David; Parslow, John; Sainsbury, Keith

    The need for integrated environmental studies to support the management of marine systems is now widely accepted. A significant number of such studies have been undertaken in the past two decades, particularly in coastal bays and estuaries; see, for example, Harris and Crossland [1999]. These studies have generally led to improved scientific understanding of various components of the natural ecosystem and direct impacts of human activities. However, the integration of this information into a single coherent framework has usually only been attempted in the final stages of a project or not at all [Knuttle, 2000]. Managers are then left with the daunting task of interpreting a disparate set of scientific results and incorporating them into a decision-making process.

  8. The Impacts Of The Indian Ocean Tsunami On Coastal Ecosystems And Resultant Effects On The Human Communities Of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ingram, J.; Rumbaitis-del Rio, C.; Franco, G.; Khazai, B.

    2005-12-01

    The devastating tsunami that hit Sri Lanka on December 26, 2004 has demonstrated vividly the inter-connections between social and ecological resilience. Before the tsunami, the coastal zone of Sri Lanka was inhabited by predominantly poor populations, most of whom were directly dependent upon coastal natural resources, such as fisheries and coconut trees, for supporting their livelihoods. Many of these people have now lost their livelihoods through the destruction of their boats and nets for fishing, the contamination of drinking sources, homes, family members and assets. This presentation focuses on observations of the tsunami impacts on both social and ecological communities made along the affected coastline of Sri Lanka in April-May 2005. This assessment recorded patterns of ecological resistance and damage resulting from the tsunami in relation to damage on the human environment, with an exploration of the physical factors that may have contributed to vulnerability or resistance. This work also involved a preliminary assessment of the resilience and recovery of different natural resource based livelihood strategies following the disaster and an exploration of livelihood possibilities in proposed resettlement sites. From observations made in this and other recent studies, it is apparent that intact ecosystems played a vital role in protection from the impact of the tsunami and are vital for supporting people as they seek to rebuild their livelihoods. However, certain structural and biological characteristics appear to offer certain tree species, such as coconut (Cocos nucifera), an advantage in surviving such events and have been important for providing food and drink to people in the days after the tsunami. Areas where significant environmental damage had occurred prior to the tsunami or where there were few natural defenses present to protect human communities, devastation of homes and lives was extremely high. Although, there is evidence that many previously

  9. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. PMID:26990671

  10. Managing Complex Problems in Rangeland Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of rangelands, and natural resources in general, has become increasingly complex. There is an atmosphere of increasing expectations for conservation efforts associated with a variety of issues from water quality to endangered species. We argue that many current issues are complex by their...

  11. ECOSYSTEM RESTORATION: MANAGEMENT PRACTICES FOR PROTECTING AND ENHANCING AQUATIC RESOURCES

    EPA Science Inventory

    This poster describes research that addresses the question: Which management practices are most successful for protection and restoration of ecological resources? The Ecosystem Restoration Research Program of EPA/ORD is designed to conduct basic and applied field research to eva...

  12. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    EPA Science Inventory

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  13. Sound management may sequester methane in grazed rangeland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implement...

  14. Management of Environmental Risks in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Caprioli, M.; Trizzino, R.; Pagliarulo, R.; Scarano, M.; Mazzone, F.; Scognamiglio, A.

    2015-08-01

    The present work deals with the assessment and management of environmental risk conditions in a typical costal area of Southern Italy. This area, located in the Salento peninsula, is subject to recurrent widespread instability phenomena due to the presence of steep rocky cliffs. Along the coast there are numerous beach resorts that are very crowded in the summer season. The environmental hazard deriving from the possible rock falls is unacceptably high for the people safety. Moreover, the land-based mapping of the dangerous natural structures is very difficult and time and resources expending. In this context, we carried out an UAV survey along about 1 km of coast, near the towns of San Foca, Torre dell'Orso and Sant' Andrea ( Lecce, Southern Italy). The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The total error obtained was of centimeter-order that is a very satisfactory result. The environmental information has been arranged in an ArcGIS platform in order to assess the risk levels. The possibility to repeat the survey at time intervals more or less close together depending on the measured levels of risk and to compare the output allows following the trend of the dangerous phenomena. In conclusion, for inaccessible locations of dangerous rocky bodies the UAV survey coupled with a GIS methodology proved to be a key engineering tool for the management of environmental risks.

  15. Sustainable wetland management and support of ecosystem services

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  16. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NASA Astrophysics Data System (ADS)

    van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.

    2015-09-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the

  17. Trophic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies

    NASA Astrophysics Data System (ADS)

    Rousseau, V.; Becquevort, S.; Parent, J.-Y.; Gasparini, S.; Daro, M.-H.; Tackx, M.; Lancelot, C.

    2000-08-01

    The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring

  18. Managing for interactions between local and global stressors of ecosystems.

    PubMed

    Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J

    2013-01-01

    Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems--seagrass and fish communities--where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities. PMID:23776542

  19. Experimental restoration of a salt marsh with some comments on ecological restoration of coastal vegetated ecosystems in Korea

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Je, Jong Geel; Woo, Han Jun

    2011-03-01

    Since the 1980s, the coastal wetlands in Korea have been rapidly degraded and destroyed mainly due to reclamation and landfills for coastal development. In order to recover damaged coastal environments and to develop wetland restoration technologies, a 4-year study on ecological the restoration of coastal vegetated ecosystems was started in 1998. As one of a series of studies, a small-scale experiment on salt marsh restoration was carried out from April 2000 to August 2001. The experiment was designed to find effective means of ecological restoration through a comparison of the changes in environmental components and species structure between two different experimental plots created using sediment fences, one with and one without small canals. Temporal variation in surface elevation, sedimentary facies, and benthic species were measured seasonally in each plot and in the adjacent natural reference sites. Monthly exposure occurred from 330 cm to mean sea level, which represents the critical tidal level (CTL) at which salt marsh plants colonize. Vegetation, especially Suaeda japonica, colonized the site the following spring and recovered to a similar extent in the natural marshes 16 months later. The sedimentary results indicated that the sediment fences had effects on particle size and sediment accumulation, especially in the plot with small canals. This experiment also showed that tidal height, especially that exceeding the CTL, is an important factor in the recovery of the benthic fauna of salt marshes. From these results, we suggested that designs for the restoration of salt marsh ecosystems must consider the inclusion of a tidal height exceeding CTL, as this may allow reconstruction of the previous natural ecosystem without artificial transplanting.

  20. Oceanographic implications of the Cabo Catoche (Northeast Yucatan) upwelling and its effects on the coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reyes-Mendoza, O.; Marino-Tapia, I.; Herrera Silveira, J.; Cárdenas-Palómo, N.; Ruiz, G.

    2013-05-01

    The coasts of the world where upwelling events occur are intrinsically related to the human population, mainly because of their large fisheries, socioeconomic repercussion and implications concerning the health of the ecosystem. In the northeast of the Yucatan Peninsula occurs an upwelling event known as the Yucatan upwelling (YU) associated with the current of the same name. The mechanisms that generate the YU are still under discussion. In terms of seasonality it is agreed that this is annual, occurring between April and September. During spring and summer, the northeast coast of the Peninsula between CaboCatoche and Isla Contoy becomes a productive and diverse pelagic ecosystem, unique to the region. It is classified as a priority marine zone host to close to 59 species protected by the national laws. It is also recognized as an important priority marine site because of its fishery. Also, the largest global aggregation of whale sharks, the world's biggest fish, is found at this site. There is a strong connection between the physical and the biological components of the system, however the coastal extent, seasonality, and magnitude of these processes need to be determined. Therefore an in-situ study was designed in the coastal region of CaboCatoche, where a 50 km transect was positioned along shelf and another across shelf 20 km, where water was collected to determine nutrient concentrations and CTD profiles were casted during the summer of 2007, 2008 and 2011. Two acoustic profilers were installed 12 km from the coast, which recorded currents and temperature by 2 years. Another profiler located 17 km from the coast to recorded data by 8 years. Atmospheric pressure and temperature were measured, as a wind fields from NOAA. Maps were created for the vertical distribution of temperature (18-31°C), salinity (35-38 psu), density (22-27 kg/m3) and chlorophyll (0.05-12.7 mg/m3). Frequency periods were estimated for temperature, currents, wind and atmospheric pressure

  1. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  2. Vertebrate herbivory in managed coastal wetlands: A manipulative experiment

    USGS Publications Warehouse

    Johnson, L.A.; Foote, A.L.

    1997-01-01

    Structural marsh management and nutria herbivory are both believed to strongly influence plant production in the brackish, deltaic marshes of coastal Louisiana, USA. Previous studies have tested the effects of structural management on aboveground biomass after implementing management, but very few studies have collected data before and after management. Thus, to test the effects of structural marsh management on Spartina patens (Ait.) Muhl. and Scirpus americanus Pers., the aboveground biomass of both species was estimated before and after the construction of shallow, leveed impoundments. The water level in each impoundment was managed with a single flap-gated culvert fitted with a variable crest weir. Additionally, the influence of nutria grazing on aboveground biomass was measured by nondestructively sampling fenced (ungrazed) and unfenced (grazed) plots in both managed and unmanaged areas. While there was no significant difference in S. patens production between managed and unmanaged areas, marsh management negatively affected Sc. americanus production the two species also differed in their responses to grazing. Grazing dramatically reduced the sedge, Sc. americanus, while the grass, S. patens, remained at similar biomass levels in grazed and ungrazed plant stands. These findings support the belief that herbivory has a strong influence on plant production, but do not support the claim that management increases plant production in the deltaic marshes of Louisiana.

  3. Parasites of the grouper fish Epinephelus coioides (Serranidae) as potential environmental indicators in Indonesian coastal ecosystems.

    PubMed

    Kleinertz, S; Palm, H W

    2015-01-01

    A total of 195 Epinephelus coioides (Hamilton, 1822) were studied for fish parasites from Javanese (Segara Anakan lagoon) and Balinese waters. Up to 25 different parasite species belonging to the following taxa: one Ciliata, one Microsporea, five Digenea, one Monogenea, four Cestoda, four Nematoda, one Acanthocephala, one Hirudinea and seven Crustacea were identified with four new host and locality records. The dominant parasites included the monogenean Pseudorhabdosynochus lantauensis (53.3-97.1%), the nematode Spirophilometra endangae (23.3-42.9%), the digenean Didymodiclinus sp. (2.9-40.0%), the nematodes Philometra sp. (22.6-34.3%) and Raphidascaris sp. (2.9-28.6%), and the isopod Alcirona sp. (6.7-31.4%). Regional differences for E. coioides were found in terms of endoparasite diversity, total diversity according to Shannon-Wiener, Simpson index and Evenness. A comparison with published data from Sumatera revealed highest endoparasite diversity (Shannon-Wiener: 1.86/1.67-2.04) and lowest ectoparasite/endoparasite ratio (0.73/0.57-0.88) off the Balinese coast, followed by Lampung Bay, Sumatera (1.84; 0.67), off the coast of Segara Anakan lagoon (1.71; 0.71), and in the lagoon (0.30/0.19-0.66; 0.85/0.67-1.00). The presented data demonstrate the natural range of these parameters and parasite prevalences according to habitat and region, allowing adjustment of the scale that has been used in the visual integration of the parasite parameters into a star graph. The parasite fauna of E. coioides in Segara Anakan lagoon 'improved' from 2004 until 2008/09, possibly related to earlier oil spill events in 2002 and 2004. The use of grouper fish parasites as an early warning system for environmental change in Indonesian coastal ecosystems is discussed. PMID:24018181

  4. Robust Modeling of Greenhouse Gas (GHG) Fluxes from Coastal Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2014-12-01

    Many critical wetland biogeochemical processes are still largely unknown or poorly understood at best. Yet, available models for predicting wetland greenhouse gas (GHG) fluxes (e.g., CO2, CH4, and N2O) are generally mechanistic in nature. This knowledge gap leads to inappropriate process descriptions or over-parameterizations in existing mechanistic models, which often fail to provide accurate and robust predictions across time and space. We developed a systematic data-analytics and informatics method to identify the dominant controls and quantify the relative linkages of wetland GHG fluxes in relation to various hydro-climatic, sea level, biogeochemical and ecological drivers. The method was applied to data collected from 2012-14 through an extensive field campaign from different blue carbon sites of Waquoit Bay, MA. Multivariate pattern recognition techniques of principal component and factor analyses were employed to identify the dominant controls of wetland GHG fluxes; classifying and grouping process variables based on their similarity and interrelation patterns. Power-law based partial least squares regression models were developed to quantify the relative linkages of major GHGs with different process drivers and stressors, as well as to achieve site-specific predictions of GHG fluxes. Wetland biogeochemical similitude and scaling laws were also investigated to unravel emergent patterns and organizing principles of wetland GHG fluxes. The research findings will guide the development of parsimonious empirical to appropriate mechanistic models for spatio-temporally robust predictions of GHGs fluxes and carbon sequestration from coastal wetland ecosystems. The research is part of two current projects funded by the National Oceanic and Atmospheric Administration and the National Science Foundation; focusing on wetland data collections, knowledge formation, formulation of robust GHGs prediction models, and development of ecological engineering tools.

  5. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. PMID:25112823

  6. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  7. Management Relevance of Benthic Biogeography at Multiple Scales in Coastal Waters of the Northeast U.S.

    NASA Astrophysics Data System (ADS)

    Hale, Stephen S.; Coté, Melville P.; Tedesco, Mark A.; Searfoss, Renee

    2013-04-01

    Continuing pressures from human activities have harmed the health of ocean ecosystems, particularly those near the coast. Current management practices that operate on one sector at a time have not resulted in healthy oceans that can sustainably provide the ecosystem services humans want and need. Now, adoption of ecosystem-based management (EBM) and coastal and marine spatial planning (CMSP) as foundational principles for ocean management in the United States should result in a more holistic approach. Recent marine biogeographical studies and benthic habitat mapping using satellite imagery, large-scale monitoring programs, ocean observation systems, acoustic and video techniques, landscape ecology, geographic information systems, integrated databases, and ecological modeling provide information that can support EBM, make CMSP ecologically meaningful, and contribute to planning for marine biodiversity conservation. Examples from coastal waters along the northeast coast of the United States from Delaware Bay to Passamaquoddy Bay, Maine, illustrate how benthic biogeography and bottom seascape diversity information is a useful lens through which to view EBM and CMSP in nearshore waters. The focus is on benthic communities, which are widely used in monitoring programs and are sensitive to many stresses from human activities.

  8. Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem. Beagle Channel (Southern Argentina).

    PubMed

    Gil, M N; Torres, A I; Amin, O; Esteves, J L

    2011-01-01

    In this study, baseline information about the environmental status of Ushuaia (UB) and Golondrina (GB) bays is presented. Surface and bottom seawater and freshwater discharged from land were evaluated. Multivariate analysis identified different water quality zones within the bays, two of them located next to the north and northwest coastlines of UB, where the majority of human activities are developed. Porosity, total organic matter, biochemical components, ammonium, and phytopigments were determined in sediment samples from each quality zone. Benthic fluxes of nutrients and dissolved oxygen were assessed in situ using opaque chambers. In northwest zone of UB, carbon equivalents of proteins and carbohydrates in surficial sediments were the same order as in hypertrophic ecosystems, whereas ammonium and phosphate released from sediment greatly exceeded the allochthonous sources. Management of municipal wastewater is required to remediate this chronic pollution. PMID:21071043

  9. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  10. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  11. The Role Of Coastal Management In Regulating Estuarine Fluxes

    NASA Astrophysics Data System (ADS)

    Jickells, T. D.

    2014-12-01

    Human activity is known to be increasing the fluxes of many nutrients and trace elements in many river systems. However, the impact of riverine inputs depends not only on the riverine nutrient flux, but also on its retention in estuaries and near shore coastal systems. The retention of nutrients and trace elements in coastal systems depends at least in part on particle water interactions. These interactions in turn depend on the physical configuration of the system which regulates processes such as resuspension and water-sediment interactions. Human activity is massively altering the shape of many estuaries by activities such as reclamation and flood defence. These changes have obvious and well documented ecological impacts. I will show using examples from UK systems how these changes in estuarine "geography" also greatly alter the effectiveness of estuaries as filters for nutrients and trace elements, with the potential to have a major impact on the fluxes of fluvial material to the continental shelf on regional scales. Rising sea levels are beginning to enforce a change of management strategy in coastal systems and this in turn may have major impacts on estuarine nutrient retention.

  12. Rangeland management for multiple outcomes: Explicity integrating ecosystem services into management models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent decades, there has been increased interest in ecosystem services among landowners, and a growing diversity of stakeholders on rangelands. Given these changes, management cannot focus solely on maximizing ranch proceeds, but must also incorporate ecosystem service goals to sustain resources...

  13. Managing oil and gas activities in coastal environments. Volume I: comprehensive report. Report for 1977-81

    SciTech Connect

    Longley, W.L.; Jackson, R.; Snyder, B.

    1982-03-01

    This report documents the management of oil and gas development on national wildlife refuges on the Louisiana and Texas coasts. It explains the nature of ownership, leasing rights, and legal considerations related to oil and gas extraction on refuges. The report describes five federal refuges selected for analysis and the different marsh and estuarine ecosystems found on the refuges and in the coastal zone. It explains oil and gas extraction and transport methods used in coastal systems, and examines how each habitat is affected by these activities. Existing regulations and guidelines are analyzed and new ones proposed. The report is a planning tool for refuge personnel to aid them in assessing impacts, issuing permits, and generally managing oil and gas activities.

  14. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Serena Moseman; Alyson Santoro; Kristine Hopfensperger; Amy Burgin

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  15. Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea)

    NASA Astrophysics Data System (ADS)

    Agawin, N. S. R.; Duarte, C. M.; Agustí, S.; McManus, L.

    2003-03-01

    The abundance, biomass and growth rates of Synechococcus sp. were estimated in a tropical coastal ecosystem (Philippines, South China Sea). The patterns of change of these parameters were further examined in relation to human-derived disturbance such as siltation, and by short-term episodic disturbances such as the typhoons, which are frequent in the region. The average abundance and biomass of Synechococcus sp. in the coastal ecosystem ranged from 0.13 to 21×10 6 cells l -1, and from 0.01 to l.6 mg C m -3, respectively, with higher biomass occurring near river sources rich in inorganic nutrients. There was, however, a significant decline of specific growth rates and maximum frequency of cells in division with increasing siltation, which suggests a deterioration of the environmental conditions to support picocyanobacterial populations. The low biomass of Synechococcus sp. in more pristine sites, in spite of relatively high growth rates there suggests that loss factors (i.e. grazing) are important in controlling the biomass in the area. The temporal pattern of picocyanobacterial abundance in the tropical ecosystem studied was tightly coupled with their temporal patterns of growth indicating that changes in abundance may result from changes in growth rate. There was not, however, a clear annual pattern of Synechococcus sp. abundance in the study site but there was some evidence for effects of storms on Synechococcus sp. abundance.

  16. 77 FR 59899 - Proposed Information Collection; Comment Request; Coastal Zone Management Act Walter B. Jones and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Zone Management Act Walter B. Jones and NOAA Excellence Awards AGENCY: National Oceanic and Atmospheric... of the Coastal Zone Management Act (CZMA) authorized an awards program to ``implement a program to promote excellence in coastal zone management by identifying and acknowledging outstanding...

  17. 75 FR 43145 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Discovery Center, 22 Hobcaw Road, Georgetown, South Carolina. The Pennsylvania Coastal Resources Management...: Copies of the States' most recent performance reports, as well as OCRM's evaluation notification...

  18. Modeling of Natural Coastal Hazards in Puerto Rico in Support of Emergency Management and Coastal Planning

    NASA Astrophysics Data System (ADS)

    Mercado, A., Jr.

    2015-12-01

    The island of Puerto Rico is not only located in the so-called Caribbean hurricane alley, but is also located in a tsunami prone region. And both phenomena have affected the island. For the past few years we have undergone the task of upgrading the available coastal flood maps due to storm surges and tsunamis. This has been done taking advantage of new Lidar-derived, high resolution, topography and bathymetry and state-of-the-art models (MOST for tsunamis and ADCIRC/SWAN for storm surges). The tsunami inundation maps have been converted to evacuation maps. In tsunamis we are also working in preparing hazard maps due to tsunami currents inside ports, bays, and marinas. The storm surge maps include two scenarios of sea level rise: 0.5 and 1.0 m above Mean High Water. All maps have been adopted by the Puerto Rico State Emergency Management Agency, and are publicly available through the Internet. It is the purpose of this presentation to summarize how it has been done, the spin-off applications they have generated, and how we plan to improve coastal flooding predictions.

  19. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    EPA Science Inventory

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  20. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results

  1. Shorebird use of South Carolina managed and natural coastal wetlands

    USGS Publications Warehouse

    Weber, Louise M.; Haig, Susan M.

    1996-01-01

    While many migrating and wintering shorebird (Charadriiformes) species face declines in quality and quantity of natural stopover sites, diked wetlands managed for shorebirds may provide supplemental habitat. We describe an integrative shorebird-waterfowl management strategy used at Tom Yawkey Wildlife Center on South Island, South Carolina, during 3 winter-spring seasons (1991-93). We compared shorebird use and invertebrate density between diked, managed wetlands and adjacent natural coastal mudflat areas. About 3,000 shorebirds overwintered each year at the site. Migration numbers peaked at 15,000-19,000 during late May. In 1991, shorebird density and absolute numbers were higher (P < 0.05) in managed wetlands at high tide than natural mudflats at low tide. In 1993, we counted shorebird density at low tide both in managed wetlands and Mother Norton Shoals, the largest natural area. During February, shorebird frequency was higher in Mother Norton Shoals and lower in managed wetlands than expected values based on area (P < 0.005). In contrast, from March to May, shorebird frequency was higher in managed wetlands and lower in natural mudflats than expected (P < 0.005 for each month). Invertebrate density from March to May was generally greater in managed wetlands than at Mother Norton Shoals, which may explain shorebird preference during that time. Greater invertebrate density did not explain the pattern in February. Mean water depth in managed wetlands for each shorebird species was <5 cm except for American avocet (Recurvirostra americana) which used deeper water (xI? = 8.4 cm, SD = 4.5). Results indicate that an integrative shorebird-waterfowl management strategy provides supplemental shorebird habitat at high tide, and managed wetlands can be preferred to local natural mudflat areas at low tide.

  2. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model

  3. E-Estuary: Developing a Decision-support System for Coastal Management in the Counterminous Untied States (Coastal Geotools 09)

    EPA Science Inventory

    Ready access to geographic information is needed to support management decisions for estuaries at local, state, regional, and national scales. The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary ...

  4. Investigating Ecosystem Pattern and Process Across a Land-Sea Gradient: A New Coastal Margin Observatory in the Pacific Coastal Temperate Rainforest

    NASA Astrophysics Data System (ADS)

    Giesbrecht, I.; Lertzman, K. P.; Oliver, A. A.; Tank, S. E.; Floyd, B. C.; Frazer, G. W.; Hunt, B. P.; Kellogg, C.; Heger, T.; Levy-Booth, D.; Mohn, W. H.; Hallam, S. J.; Keeling, P.; Sanborn, P.; Brunsting, R.; D'Amore, D. V.

    2015-12-01

    Terrestrial organic matter exported from coastal watersheds influences marine ecosystems and carbon budgets across the globe, yet much is unknown about the fundamental processes of land-sea carbon cycling or system response to climate change. On two outer-coast islands near the center of the Pacific Coastal Temperate Rainforest (PCTR), the Hakai Institute has established a coastal margin observatory to examine the flux of terrestrial organic matter from land to sea - the origins, pathways, processes and marine consequences - in the context of long-term environmental change. The outer-coast PCTR is characterized by an ocean-moderated climate, subdued terrain, extensive wetlands and lower forest productivity than the mountainous mainland coast. Here we give an overview of, and initial results from, a new long-term multi-disciplinary investigation of processes that link PCTR watersheds with the carbon balance and food web of northeastern subarctic Pacific coastal waters. Beginning in 2013, we established year-round sampling and a sensor network to quantify - at high temporal resolution - the amount and character of terrestrial exports from seven focal watersheds on Calvert and Hecate Islands, British Columbia. Early results show that freshwater dissolved organic carbon concentrations are high on average, fluctuate temporally and vary spatially across watersheds. A real-time hydrological sensor network shows rapid responses of stream stages and soil water tables to rainfall inputs. Carbon export can vary greatly with stream discharge in these flashy systems. We use paired marine monitoring stations at stream outlets to concurrently track ocean conditions and to trace terrestrial organic matter. Across a larger set of watersheds, we examine the role of catchment topography, hydrology and composition in controlling biogeochemical exports. On land, we use airborne LiDAR data to evaluate landscape controls on vegetation height - a proxy for forest productivity and biomass

  5. Editorial: Eutrophication and hypoxia and their impacts on the ecosystem of the Changjiang Estuary and adjacent coastal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Xiao, Tian; Huang, Daji; Liu, Su Mei; Fang, Jianguang

    2016-02-01

    The Changjiang (Yangtze River) Estuary plays an important role in the land-ocean interactions of East Asia, particularly in regard to the fate of land-derived materials and their impact on marine ecosystems in the Northwest Pacific Ocean. The 12 papers included in this special issue describe results from the MEcoPAM Study, an IMBER-China project, which occurred in 2011-2015. This project used a multi-disciplinary approach to understand ecosystem function of the Changjiang Estuary in response to multiple stressors (i.e. combined external forcings). The results presented here show that human activities in the watersheds have greatly changed the flux and variation of dissolved and particulate materials from the river. Further interactions between the Changjiang Watersheds and the East China Sea can dramatically modify the pathways of biogeochemistry and food web dynamics of the estuary and adjacent coastal environment at seasonal and inter-annual scales.

  6. Development of a decision support system to manage contamination in marine ecosystems.

    PubMed

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  7. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose

  8. On the use of drift bottle and seabed drifter data in coastal management

    NASA Technical Reports Server (NTRS)

    Welch, C. S.; Norcross, J. J.

    1973-01-01

    The use of drift bottle and seabed drifter information for use in coastal management is discussed. The drift bottle/seabed drifter portion of VIMS project MACONS (Mid Atlantic Continental Shelf) is described as an example of how a comprehensive survey using drift bottles and seabed drifters provides data useful for coastal management. The data from MACONS are analyzed to answer specific questions of interest to several different coastal managers: a manager siting a deep oil port, one siting a sewage outfall, a manager responsible for setting up emergency beach protection procedures before an accident occurs, and a manager responsible for the environmental quality of a particular small section of coastline.

  9. Can we manage ecosystems in a sustainable way?

    NASA Astrophysics Data System (ADS)

    Rice, Jake

    Fisheries have often become unsustainable, despite efforts of policy, management, and science. FAO has reviewed this undesirable pattern and identified six major factors contributing to unsustainability: inappropriate incentives, high demand for limited resources, poverty and lack of alternatives, complexity and lack of knowledge, lack of effective governance, and interactions of fisheries sector with other sectors and the environment. It also identified eight classes of actions that provide pathways to addressing the factors causing unsustainability of fisheries: allocation of rights; transparent, participatory management; support for science, enforcement and planning; equitable distribution of benefits; integrated policy development; application of precaution; building capacity and public understanding; and market incentives and economic instruments. The review highlighted that "sustainability" is a multi-dimensional concept (economic, social, ecological, and institutional), and measures implemented to address problems on one dimension of sustainability will move the fishery in a negative direction in at least one other dimension. In this paper I apply the FAO framework to the whole ecosystem. For each factor of unsustainability, I consider whether redefining the sustainability problem to the greater ecosystem makes the factor more or less serious as a threat to sustainability. For each pathway to improvement I consider whether the redefinition of the problem makes the pathway more or less effective as a management response to the threat. Few of the factors of unsustainability becomes easier to address at the ecosystem scale, and several of them become much more difficult. Of the combinations of pathways of responses and factors of unsustainability, more than two thirds of them become more difficult to apply, and/or have even greater negative impacts on other dimensions of sustainability. Importantly, the most promising pathways for addressing unsustainability of

  10. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation.

    PubMed

    Fulton, Elizabeth A; Smith, Anthony D M; Smith, David C; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  11. An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation

    PubMed Central

    Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  12. Nitrogen Flux in Watersheds: The Role of Soil Distributions and Climate in Nitrogen Flux to the Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Reyes, M. M.; Genna, B. J.

    2009-12-01

    Quantifying the flux of nitrate from different landscape sources in watersheds is important to understand the increased flux of nitrogen to coastal ecosystems. Recent technological advances in chemical sensor networks has demonstrated that chemical variability in aquatic environments are chronically under-sampled, and that many nutrient monitoring programs with monthly or daily sampling rates are inadequate to characterize the dominate seasonal, daily or semi-diurnal fluxes in watersheds. The RiverNet program has measured the nitrate flux in the Neuse River Basin, NC on a 15 minute interval over the past eight years. Significant diurnal variation has been observed in nitrate concentrations during high and low flow periods associated with waste water treatment plants in urban watersheds that are not present in agricultural watersheds. Discharge and N flux in the basin also has significant inter-annual variations associated with El Nino oscillations modified by the North Atlantic oscillation. Positive JMA and NAO indexes are associated with increased groundwater levels, nutrient fluxes, and estuary fish kills. To understand how climate oscillation affect discharge and nutrient fluxes, we have monitored runoff/drainages and groundwater inputs adjacent to a large waste application field over the past 4 years, and used the nitrate inputs as a tracer. Surface water run off is well correlated to precipitation patterns and is the largest nutrient flux into the river. Groundwater inputs are variable spatially and temporally, and are controlled by geology and groundwater levels. Hydric soil spatial distributions are an excellent predictor of nutrient transport across landscapes, and is related to the distribution of biogeochemical “hotspots” The isotopic composition of oxygen and nitrogen in dissolved nitrate indicate that sources change with discharge state, and that atmospherically deposited nitrogen is only important to river fluxes in forested and urban watersheds

  13. Anthropogenic chemicals as drivers of change for coastal ecosystems: wetlands, mangroves and seagrass habitats.

    EPA Science Inventory

    Coastal wetlands, mangrove and seagrass habitats are rapidly declining worldwide which reduces their many ecological services. This presentation summarizes the results of a literature survey conducted to determine scientific understanding of contaminant uptake and toxicity of non...

  14. Projected future climate change and Baltic Sea ecosystem management

    NASA Astrophysics Data System (ADS)

    Andersson, Agneta

    2015-04-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4oC warming and 50-80% decreasing ice cover by 2100. Precipitation may increase ~30% in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants. Salinity will decrease by about 2 units. Coupled physical-biogeochemical models indicate that in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favoured by AOM while phytoplankton may become hampered. More trophic levels in the food web will increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider effects of climate change on the ecosystem dynamics and functions, as well as effects of anthrophogenic nutrient and pollutant load. Monitoring should have a holistic approach and encompass both autotrophic (phytoplankton) and heterotrophic (e.g. bacterial) processes.

  15. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    USGS Publications Warehouse

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  16. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... the basis of how well they: (a) Accord with existing and planned land use, including management of...

  17. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... the basis of how well they: (a) Accord with existing and planned land use, including management of...

  18. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... the basis of how well they: (a) Accord with existing and planned land use, including management of...

  19. LANDSAT's role in state coastal management programs. [New Jersey and Texas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The framework for state programs found in the Coastal Zone Management Act and examples of state opportunities to use LANDSAT are presented. Present activities suggest that LANDSAT remote sensing can be an efficient, effective tool for land use planning and coastal zone management.

  20. Effect of Changes in Seasonal Rain Regime on Coastal Ecosystem Structure and Aquaculture Activities

    NASA Astrophysics Data System (ADS)

    Cosimo, S.; Melaku Canu, D.; Libralato, S.; Cossarini, G.; Giorgi, F.

    2008-12-01

    A downscaling experiment linked climate forcing produced by a Regional Climate Model for Europe to a 3D high resolution coupled transport biogeochemical model for the Lagoon of Venice, which in turn forced: a) a food web model for evaluation of cascading effects on ecosystem structure and b) a population dynamic bioenergetic filter feeders bivalvae model for evaluation of effects on aquaculture activities. The hierarchy of models was used to compare result for a reference situation (RF, 1961-1990) with results for two future IPCC scenarios (2071-2100), representing market oriented and local sustainability policies (scenarios A2 and B2, respectively). Future climate projections suggest that, locally, annual mean rain will not change much but the seasonal patterns will likely do so. Summer and spring will be more dry and winter and autumn more rainy. This will potentially increase winter nutrient concentrations but -because of unfavourable timing - primary and secondary productions will decrease, and nutrient surplus will be exported from the Lagoon of Venice to the Adriatic Sea. The impacts on higher trophic levels could be softened thanks to presence of alternative energy pathways and role of omnivory. However, in our future scenario of the lagoon food web the suitability for higher trophic level organisms seems lower. A more detailed analysis on clam aquaculture indicates that this activity will suffer the decrease of primary productivity, and point to the need of implementation of proper aquaculture management policies. In the light of adaptive management. These policies cannot be a straightfoward extrapolation of present practises, but need to be defined basing on future conditions.

  1. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    PubMed

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. PMID:25588455

  2. AMBI and M-AMBI indices as a robust tool for assessing the effluent stressed ecosystem in Nandgaon Coastal waters, Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Sivaraj, S.; Murugesan, P.; Muthuvelu, S.; Vivekanandan, K. E.; Vijayalakshmi, S.

    2014-06-01

    Due to industrialization, estuarine and coastal water receive a bulk amount of effluent/pollutant from various industries; therefore assessment of the health of the ecosystem is very much essential. Although the AMBI (Azti Marine Biotic index) indices have been used to predict the quality of European waters, no implementation of WFD (Water Framework Directives) has been made on Indian waters so far. In view of that, the present study was undertaken to assess the health of a stressed ecosystem of Nandgaon coastal waters, India. The results of AMBI were highly correlated with the total organic carbon in the heavily disturbed area with ecological groups IV and V. Thus, the result of the present study indicates that the AMBI indices could be useful to detect industrial effluent effects in Indian coastal waters and will provide a motivation to extend this kind of analysis over the entire coastal line of India.

  3. Managing troubled data: Coastal data partnerships smooth data integration

    USGS Publications Warehouse

    Hale, S.S.; Hale, Miglarese A.; Bradley, M.P.; Belton, T.J.; Cooper, L.D.; Frame, M.T.; Friel, C.A.; Harwell, L.M.; King, R.E.; Michener, W.K.; Nicolson, D.T.; Peterjohn, B.G.

    2003-01-01

    Understanding the ecology, condition, and changes of coastal areas requires data from many sources. Broad-scale and long-term ecological questions, such as global climate change, biodiversity, and cumulative impacts of human activities, must be addressed with databases that integrate data from several different research and monitoring programs. Various barriers, including widely differing data formats, codes, directories, systems, and metadata used by individual programs, make such integration troublesome. Coastal data partnerships, by helping overcome technical, social, and organizational barriers, can lead to a better understanding of environmental issues, and may enable better management decisions. Characteristics of successful data partnerships include a common need for shared data, strong collaborative leadership, committed partners willing to invest in the partnership, and clear agreements on data standards and data policy. Emerging data and metadata standards that become widely accepted are crucial. New information technology is making it easier to exchange and integrate data. Data partnerships allow us to create broader databases than would be possible for any one organization to create by itself.

  4. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    PubMed Central

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  5. 75 FR 26703 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... National Oceanic and Atmospheric Administration 50 CFR Part 697 RIN 0648-AY41 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS... Marine Fisheries Commission's (Commission) Interstate Fishery Management Plan (ISFMP) for weakfish....

  6. Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    PubMed Central

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  7. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies.

    PubMed

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12)± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  8. Supporting Coral Reef Ecosystem Management Decisions Appropriate to Climate Change

    NASA Astrophysics Data System (ADS)

    Hendee, J. C.; Fletcher, P.; Shein, K. A.

    2013-05-01

    There has been a perception that the myriad of environmental information products derived from satellite and other instrumental sources means ipso facto that there is a direct use for them by environmental managers. Trouble is, as information providers, for the most part we don't really know what decisions managers face daily, nor is it a trivial matter to ascertain the effect of management decisions on the environment, at least in a time frame that facilitates timely maintenance and enhancement of decision support software. To bridge this gap in understanding, we conducted a Needs Assessment (using methodology from the NOAA/Coastal Services Center's Product Design and Evaluation training program) from December, 2011 through May, 2012, in which we queried 15 resource managers in southeast Florida to identify the types of climate data and information products they needed to understand the effects of climate change in their region of purview, and how best these products should be delivered and subsequently enhanced or corrected. Our intent has been to develop a suite of software and information products customized specifically for environmental managers. This report summarizes our success to date, including a report on the development of software for gathering and presenting specific types of climate data, and a narrative about how some U.S. government sponsored efforts, such as Giovanni and TerraVis, as well as non-governmental sponsored efforts such as Marxan, Zonation, SimCLIM, and other off-the-shelf software might be customized for use in specific regions.

  9. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    SciTech Connect

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions.

  10. Waterfowl and wetlands management in the coastal zone of the Atlantic Flyway: Meeting and summary comments

    USGS Publications Warehouse

    Erwin, R.M.

    1986-01-01

    A conference on waterfowl and wetlands along the Atlantic coast of North America was held in Wilmington, Delaware in September 1986. Discussions centered around coastal impoundments and Open Marsh Water Management as methods of mosquito control and waterfowl enhancement. Single purpose management of coastal marshes, whether for mosquito control or waterfowl, may not be the most beneficial approach. Where management options are available, the management for habitat heterogeneity may be indicated.

  11. Towards Automated Ecosystem-based Management: A case study of Northern Gulf of Mexico Water

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Allee, R.; Gould, R.; Ko, D.

    2012-12-01

    The vast and dynamic nature of large systems limit the feasibility of the frequent in situ sampling needed to establish a robust long-term database. Satellite remote sensing offers an alternative to in situ sampling and is possibly the best solution to address the data collection needs at a regional scale. In this context, we have used an unsupervised machine learning (ML) technique, called a self-organizing map (SOM), to objectively provide a classification of the US Gulf of Mexico water using a suite of ocean data products. The input data that we used in this study were the sea surface temperature, the surface chlorophyll concentration, the sea surface salinity, the euphotic depth and the temperature difference between the sea surface and the sea floor. The SOM method uses the multivariate signature of the data records to classify the data into a specified number of classes. The output of the analysis is essentially a comprehensive two-dimensional map of the Gulf of Mexico. We analyzed the individual SOM classes over a five-year period from 2005 to 2009. We then used the machine learning results to established a correspondence between the SOM classification and the completely independent Coastal and Marine Ecological Classification Standard (CMECS), which accommodates the physical, biological, and chemical information to collectively characterize marine and coastal ecosystems. The CMECS water column component information is then fused with fish count data from the Southeast Area Monitoring and Assessment Program (SEAMAP) to produce an interactive map. The results can be used in providing online decision-support system, and tools for Ecosystem-based management.Figures shows the fish count distribution with respect to the SOM classes. The fish preference can be inferred from the plot. This information can be used to construct an online decision-support system for conservation as well as commercial purposes.

  12. Assessment of Eutrophication Quality in Greek Coastal Ecosystem (Eastern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pavlidou, Alexandra; Rousselaki, Eleni; Assimakopoulou, Georgia; Tsapakis, Manolis; Simboura, Nomiki

    2014-05-01

    The Mediterranean Sea has always been considered as one of the most oligotrophic areas in the world, especially in the Eastern part of the Sea. However, eutrophication problems occur in some coastal areas of the Mediterranean (e.g. eastern coasts of Spain, Gulf of Lions, northern Adriatic Sea, Apulian coasts, Saronikos Gulf, Thessaloniki Bay, northern coasts of Greece, etc.). This work is focused on the assessment of the Eutrophication Quality in different coastal areas of Greece affected by various anthropogenic and natural pressures and was performed under the Water Framework Directive. A network of 28 sampling stations was used during two relevant sampling periods, April - May 2012 and March - April 2013, in the framework of the National Monitoring Project of Greece. The Eutrophication assessment method integrates chemical and biological parameters of the water column. A synthetic Eutrophication Index (E.I.) was produced for the greek coastal areas by Primpas et al. quality classification scheme, combining the concentrations of nutrients (phosphate, nitrate, nitrite, ammonia) and chlorophyll-α biomass into a single formula. The E.I. assesses the eutrophication status using a five scale scheme according to the requirements of WFD: (High) less than 0.04; (Good) 0.04-0.38; (moderate) 0.38-0.85; (poor) 0.85-1.51; (bad) >1.51. Nutrient and chlorophyll-a concentrations revealed significant spatial variation among the various coastal areas of Greece influenced by different point and/or diffuse anthropogenic pressures (related to nutrient enrichment), reflecting the level of human-induced impairment where an increase in nutrient loads leads to increased water quality problems. The assessment of E.I showed that during 2012, 32% of the selected coastal areas were characterized as Good, 54% as Moderate and 14% of the selected greek coastal areas were characterized as Poor. During 2012, none of the study areas corresponded to High or Bad eutrophication status. During 2013

  13. High-resolution chemical and hydrologic records identify environmental factors that control coastal anchialine cave ecosystem function

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Lapham, L.; Casso, M.; Roth, E.; Lowell, N. S.; Iliffe, T. M.

    2015-12-01

    Anchialine caves host a coastal aquifer ecosystem occupied by cave-adapted crustaceans that reside within distinct fresh, brackish and marine waters. Our initial investigation of this subsurface ecotone in the Yucatan Peninsula (Mexico) provides stable isotope-based evidence that methane and dissolved organic carbon (DOC) are the primary sources of energy and carbon for the food web. However, the frequency of observations is sparse, leaving us 'in the dark' with respect to the temporal dynamics of the ecosystem function. In this study, we obtained undisturbed vertical profiles of methane, DOC and DIC concentration and isotopic composition with the 'Octopipi' water sampler from an anchialine cave located ~8 km from the coastline. To document the temporal variability of methane availability in the cave, we deployed an osmotically-driven pump (OsmoSampler). Data loggers recorded dissolved oxygen (DO), salinity, temperature and current velocities, and a rain gauge recorded precipitation. A high-methane water mass near the ceiling (up to 7795 nM) contained elevated concentration (900 µM), 13C-depleted (-27.8 to -28.2 ‰) DOC, suggesting terrestrial organic matter input from the overlying soils. Low-methane saline water (36 to 84 nM) had lower concentration DOC (15 to 97 µM) with a similar δ13C (-25.9 to -27.2 ‰), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. Our 6-month water chemistry record reveals high concentrations of methane in the wet season, especially following rainfall events, and relatively lower methane concentrations in the dry season. These observations suggest rain flushes methane generated in overlying anoxic soils into the cave. DO, water level, and groundwater flow patterns were also linked to the precipitation record. These data provide novel insight into the interconnections between external climate forcing and subterranean anchialine

  14. The Impact of the Danube River Mouths Geomorphological Processes on the Ecosystem, Coastal Development and Regional Navigation

    NASA Astrophysics Data System (ADS)

    Mateescu, Razvan; Malciu, Viorel; Spinu, Alina

    2013-04-01

    The anthropogenic influences on the Danube Delta Coast, with major effect on the evolution of its littoral processes are represented by the perturbation of the longshore sediment transport, due to coastal constructions, and as well due to the decrease of solid discharge, as a consequence of the hydro-technical works/dams extension in the reception basin, as well in the main course of the rivers. Certain vulnerable areas of the Danube Delta Coast are strongly influenced by inland works/development as well as Danube flow regime, at regional and local scale. In the Sulina arm area, the extension of the channel jetties had a double effect, representing the cut-off of the south coast current, carrier of a portion of the solid load on the Chilia arm, and removal of its own load out of the coastal circulation in the offshore currents. The sand dunes dynamics including the sediment changes between submerged shore and dunes system are major issues within the channel entrance. The work presents the results on the impacts of the coastal geomorphological processes of the Danube Delta on navigation and ecological areas. Thus, the variability of the sea-land interface, for a period of several decades, has been revisited on the basis of the historical maps, coastal survey of emerged beach profiles, sand dunes and recent GPS measurement, developed on the Romanian Danube Delta littoral, together with certain impact assessments in the delta areas, including the ecosystem response to shoreline variability, sediment transport on short and medium term, in the context in which the major factor is the Danube discharge, as well the sea-level rise.

  15. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  16. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  17. Contrasting perceptions of anthropogenic coastal agricultural landscape meanings and management in Italy and Canada

    NASA Astrophysics Data System (ADS)

    Targetti, Stefano; Sherren, Kate; Raggi, Meri; Viaggi, Davide

    2016-04-01

    The Anthropocene concept entails the idea that humans have become the most influential driving factor on the environment. In this context, it is useful to get insights from coastal areas that are affected by a huge impact of human activities in shaping the territory, are prone to several threats linked with climate change, and featured by interlinked economic, cultural and social systems. We compare evidence from three different methods focusing on the perceptions of coastal agricultural landscapes: i) a survey focusing on residents' perceptions of local rural landscape elements; ii) an expert-elicitation multicriteria exercise (Analytic Network Process) focusing on the relationship between economic actors, ecosystem services and local competitiveness; and iii) a Q-methodology survey to identify public discourses concerning management alternatives. The methods were applied in two coastal case studies characterized by land drainage, shoreline barriers and coastal armoring that represent high cultural heritage; created by humans they rely on active management to persist. Moreover, in both the case studies concerns have been raised about the role of agriculture in the rural development context and the perspectives of local stakeholders towards the management of the reclaimed lands. The first area is located on the southern side of the Po River Delta (Emilia Romagna, Italy). The area was reclaimed during the 19th and 20th centuries for agricultural production and is now characterized by intensive agriculture in the hinterlands, an urbanised coastal area with a developed tourism sector, and the presence of remnant wetlands which are mostly included in the Po Delta Natural Park (covering around 30% of the case study). The second area is located in the dykelands of the Bay of Fundy (Nova Scotia, Canada) whose origins go back to the 17th Century when French settlers built the first dykes to reclaim salt marshes for farmland. While some are still farmed, a range of

  18. The future ``Golden Age`` of predictive models for surface water quality and ecosystem management

    SciTech Connect

    Thomann, R.V.

    1998-02-01

    This paper is based on a Simon W. Freese lecture given at the ASCE North American Water and Environment Congress `96, Anaheim, California, on June 24, 1996. The role of water quality modeling in providing input to the decision-making process through understanding, dialogue, and consensus is discussed. The evolution of models is seen in three stages. During the first stage (1925 to about 1980), all sources (point, nonpoint, and sediment) were external to the model, but only point sources were directly linked to the originating input During the second stage (about 1980 to 1990), sediment models were coupled to the water column and hydrodynamic and watershed models were linked. A link was then established from watershed models to the input of the watershed. During the third stage (currently under way), airshed models are being incorporated with expansion to include other aspects of aquatic ecosystem. The Chesapeake Bay is used as an illustration. Issues of model credibility and confirmation are discussed; ultimately, the scientific and engineering community decides on the suitability of a modeling framework. The growth in model size over the history of modeling has been significant and parallels the increase in computing power. Future modeling challenges lie ahead in the areas of watershed models, airshed-watershed-estuarine-coastal ocean models, and whole ecosystem, living resources models. The success of water quality models will not necessarily be due to bigness and complexity but rather to increases in understanding, which can contribute to building consensus in water quality management decision-making.

  19. Migratory patterns of pelagic fishes and possible linkages between open ocean and coastal ecosystems off the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Beamish, R. J.; McFarlane, G. A.; King, J. R.

    2005-03-01

    We review studies relevant to the migration of pelagic fishes between the coastal and open-ocean ecosystems off the subarctic coast of North America. We review the life history strategies of these migratory fish and to compare to the life history strategies of major coastal migrants. The oceanography in this region is dominated by north and south currents that provide a boundary between the offshore and coastal waters. Commercial fisheries off the west coast of North America are virtually all inshore of this oceanographic separation. Migrations for some species in these major fisheries are also north and south rather than east and west. However, exceptions occur for Pacific salmon, species associated with seamounts, and for transitional pelagic species such as tuna, squid and sharks. Three species of Pacific salmon, sockeye, pink and chum salmon, migrate along the coast in their first marine year and move off shore in the fall and winter in their first marine year. Three other species, coho salmon, chinook salmon, and steelhead trout, also migrate offshore, although they are less abundant and some stocks remain within the coastal regions. Pacific salmon species are a dominant daytime biomass in the surface waters in the offshore areas. It is known that albacore tuna and some sharks migrate between the offshore and coastal areas, but more research is needed to assess the relative importance of these migrations. Although the biomass of species on seamounts is small relative to coastal areas, the similarity in fauna is evidence that there is recruitment from coastal ecosystems.

  20. Insecticide Resistance and Management Strategies in Urban Ecosystems

    PubMed Central

    Zhu, Fang; Lavine, Laura; O’Neal, Sally; Lavine, Mark; Foss, Carrie; Walsh, Douglas

    2016-01-01

    The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs. PMID:26751480

  1. Insecticide Resistance and Management Strategies in Urban Ecosystems.

    PubMed

    Zhu, Fang; Lavine, Laura; O'Neal, Sally; Lavine, Mark; Foss, Carrie; Walsh, Douglas

    2016-01-01

    The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs. PMID:26751480

  2. Combining ecosystem service relationships and DPSIR framework to manage multiple ecosystem services.

    PubMed

    Xue, Hui; Li, Shiyu; Chang, Jie

    2015-03-01

    Ecosystem service (ES) relationship occurs due to two types of mechanisms: (1) interact directly or (2) interact through the impact of a shared factor. Identifying such mechanisms behind ES relationship within a single land-use/land-cover category and combining it with a system thinking framework is especially necessary for effective decision-making to manage multiple ESs generated by this land-use/land-cover. In this study, we use tea plantations in China to investigate mechanisms behind ES relationships. We find that tea production is positively correlated with four regulating services (i.e., carbon sequestration, soil N protection, soil P protection, and water conservation). Several regulating services, such as carbon sequestration and soil N, P, and K protection, have positive correlations with each other. Tea production, carbon sequestration, and soil retention are significantly correlated with local annual mean temperature and precipitation. We then establish driver-pressure-state-impact-response (DPSIR) framework for tea plantations, which has been widely used for environmental management issues. Integrating our findings of ES relationship into DPSIR framework, we can estimate how ES change is responding to two types of responses: response to control drivers and response to maintain or restore state. Scenario analysis showed that the responses to control drivers have a larger impact on ES. We discuss that DPSIR would favor managing multiple ES because it enables a more precise understanding of how ES interacts through the effects of factors from various hierarchies. Finally, we suggest integrating ES direct interaction into DPSIR framework. We think such integration could improve the ability of DPSIR framework to support decision-making in multiple ES management, specifically in at least three aspects: (1) favor to identify all possible response alternatives, (2) enable us to evaluate ES which cannot be assessed if without such combining, and (3) help to

  3. Marine Habitat Classification for Ecosystem-Based Management: A Proposed Hierarchical Framework

    NASA Astrophysics Data System (ADS)

    Guarinello, Marisa L.; Shumchenia, Emily J.; King, John W.

    2010-04-01

    Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework’s inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.

  4. Human health-related ecosystem services of avian-dense coastal wetlands adjacent to a Western Lake Erie swimming beach.

    PubMed

    Rea, Chris L; Bisesi, Michael S; Mitsch, William; Andridge, Rebecca; Lee, Jiyoung

    2015-03-01

    Wetlands provide many valuable ecosystem services, including water quality improvement to protect downstream aquatic ecosystems such as lakes, rivers, and estuaries. However, their ability to improve water quality to safe levels for direct human exposure while largely surrounded by agricultural lands and hosting large wildlife populations remains unknown. Our aim was to examine the ecosystem service capabilities of an avian-dense coastal wetland surrounded by agricultural lands along the southwestern shore of Lake Erie in Ohio by assessing the quality of water as it flows through the wetland (Ottawa National Wildlife Refuge (ONWR)) and into Lake Erie beach waters. Our study used total phosphorus and fecal indicator (Escherichia coli) concentrations as water quality metrics across the wetland and at an adjacent Lake Erie swimming beach during the 2012 summer swim season. E. coli and total P levels were consistently highest at the site, where water enters the ONWR (mean E. coli = 507 CFU/100 mL; mean total P = 535 μg/L), and steadily decreased as water flowed through the wetland and into the adjacent beach (mean E. coli = 10 CFU/100 mL; mean total P = 41 μg/L). E. coli and total P showed statistically significant (α = 0.01) correlations with phycocyanin, chlorophyll-a, turbidity, specific conductivity, dissolved oxygen, and pH; total P was also significantly correlated with total N. The results suggest that this wetland may be contributing to improving water quality, which is beneficial for human health as well as to downstream ecosystem health (e.g., limiting eutrophication promoting conditions, etc.). PMID:25582638

  5. Use of SPOT images as a tool for coastal zone management and monitoring of environmental impacts in the coastal zone

    NASA Astrophysics Data System (ADS)

    Almeida-Guerra, Paola

    2002-09-01

    Modern techniques such as remote sensing have been one of the main factors leading toward the achievement of serious plans regarding coastal management. A multitemporal analysis of land use in certain areas of the Colombian Caribbean Coast is described. It mainly focuses on environmental impacts caused by anthropogenic activities, such as deforestation of mangroves due to shrimp farming. Selection of sensitive areas, percentage of destroyed mangroves, possible endangered areas, etc., are some of the results of this analysis. Recommendations for a coastal management plan in the area have also resulted from this analysis. Some other consequences of the deforestation of mangroves in the coastal zone and the construction of shrimp ponds are also analyzed, such as the increase of erosion problems in these areas and water pollution, among others. The increase of erosion in these areas has also changed part of their morphology, which has been studied by the analysis of SPOT images in previous years. A serious concern exists about the future of these areas. For this reason new techniques like satellite images (SPOT) have been applied with good results, leading to more effective control and coastal management in the area. The use of SPOT images to study changes of the land use of the area is a useful technique to determine patterns of human activities and suggest solutions for severe problems in these areas.

  6. Use of SPOT images as a tool for coastal zone management and monitoring of environmental impacts in the coastal zone

    NASA Astrophysics Data System (ADS)

    Almeida-Guerra, Paola

    2001-12-01

    Use of modern techniques like remote sensing has been without doubts one of the main factors to take a forward step towards the achievement of serious plans regarding Coastal Management. A multi-temporal analysis of the land- use, in some areas of the Colombian Caribbean Coast, was done mainly focused in environmental impacts caused by anthropogenic activities like deforestation of mangroves due to shrimp farming. Selection of sensitive areas, percentage of destroyed mangroves, possible endangered areas, etc. have been some of the results of this analysis as well as some advises for a coastal management plan in the area. Some other consequences of the deforestation of mangroves in the coastal zone and the construction of shrimp ponds were also analyzed like increase of erosion problems in these areas and water pollution among others. The increase of erosion in these areas has also changed part of their morphology, which has also been studied by the analysis of SPOT images in different years. A serious concern exists about the future of these areas, for this reason new techniques like satellite images (SPOT) have been applied with good results and in this way a more effective control and coastal management in the area is taking place. The use of SPOT images to study changes in the land-use of the area was a useful technique in order to determine patterns of human activities and suggest solutions for severe problems in these areas.

  7. GIS supported solid waste management in coastal areas.

    PubMed

    Sarptas, H; Alpaslan, N; Dolgen, D

    2005-01-01

    Planning of solid waste management (SWM) facilities in terrestrial as well as coastal areas addresses several situations, and requires considering numerous factors. This leads to large amounts of data and information that must be organized and analyzed. However, in many SWM systems, all of the relevant information cannot be managed properly due to insufficiencies in methods/tools and/or resources. To assist the solid waste decision making process, GIS-based decision support systems can be applied to deal with the multi-attribute and spatial nature of SWM systems. In this study, the application potential of GIS based decision support systems to functional elements of the SWM system are reviewed first. Then particular emphasis is given to landfill site selection. In this context, landfill siting process and key siting criteria were developed to incorporate the environmental, socio-political, engineering, and economic factors for an appropriate solution. To aid decision makers to determine landfill area requirements, an area estimation model, containing population projection and waste quantity forecasting modules, was developed in Visual Basic. Following the development of a graphical user interface, suitable areas for proposed landfill were determined in an IDRISI environment. PMID:16114635

  8. Development of an integrated methodology for the sustainable environmental and socio-economic management of river ecosystems.

    PubMed

    Koundouri, P; Ker Rault, P; Pergamalis, V; Skianis, V; Souliotis, I

    2016-01-01

    The development of the Water Framework Directive aimed to establish an integrated framework of water management at European level. This framework revolves around inland surface waters, transitional waters, coastal waters and ground waters. In the process of achieving the environment and ecological objectives set from the Directive, the role of economics is put in the core of the water management. An important feature of the Directive is the recovery of total economic cost of water services by all users. The total cost of water services can be disaggregated into environmental, financial and resource costs. Another important aspect of the directive is the identification of major drivers and pressures in each River Basin District. We describe a methodology that is aiming to achieve sustainable and environmental and socioeconomic management of freshwater ecosystem services. The Ecosystem Services Approach is in the core of the suggested methodology for the implementation of a more sustainable and efficient water management. This approach consists of the following three steps: (i) socio-economic characterization of the River Basin area, (ii) assessment of the current recovery of water use cost, and (iii) identification and suggestion of appropriate programs of measures for sustainable water management over space and time. This methodology is consistent with a) the economic principles adopted explicitly by the Water Framework Directive (WFD), b) the three-step WFD implementation approach adopted in the WATECO document, c) the Ecosystem Services Approach to valuing freshwater goods and services to humans. Furthermore, we analyze how the effects of multiple stressors and socio-economic development can be quantified in the context of freshwater resources management. We also attempt to estimate the value of four ecosystem services using the benefit transfer approach for the Anglian River Basin, which showed the significance of such services. PMID:26277441

  9. Overview about polluted sites management by mining activities in coastal-desertic zones

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Letelier, María Victoria; Arenas, Franko; Cuevas, Jacqueline; Fuentes, Bárbara

    2016-04-01

    In Chile the main mining operations as well as artisanal and small-scale mining (copper, gold and silver) are located in desert areas. A large number of abandoned polluted sites with heavy metals and metalloids (Hg, Pb, Cu, Sb, As) remain in coastal areas close to human centers. The aim of this work was to identify the best remediation alternatives considering the physic-chemical characteristics of the coastal-desertic soils. The concentrations of above mentioned pollutants as well as soil properties were determined. The results showed variable concentration of the pollutants, highest detected values were: Hg (46.5 mg kg-1), Pb (84.7 mg kg-1), Cu (283.0 mg kg-1), Sb (90 mg kg-1), As (2,691 mg kg-1). The soils characteristic were: high alkalinity with pH: 7.75-9.66, high electric conductivity (EC: 1.94-118 mScm-1), sodium adsorption ratio (SAR: 5.07-8.22) and low permeability of the soils. Coastal-desertic sites are potential sources of pollution for population, and for terrestrial and marine ecosystems. Exposure routes of pollution for the population include: primary, by incidental ingestion and inhalation of soil and dust and secondary, by the ingestion of marine sediments, sea food and seawater. Rehabilitation of coastal-desertic sites, by using techniques like soil washing in situ, chemical stabilization, or phytostabilization, is conditioned by physic-chemical properties of the soils. In these cases the recommendation for an appropriate management, remediation and use of the sites includes: 1) physic chemical characterization of the soils, 2) evaluation of environmental risk, 3) education of the population and 3) application of a remediation technology according to soil characteristic and the planned use of the sites. Acknowledgments: Funding for this study was supported by the Regional Council of Antofagasta under Project Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de

  10. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  11. Edaphic and climatic effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Wynne, R. H.; Seiler, J. R.

    2008-03-01

    We used SECRETS-3PG to simulate net primary production (NPP) and net ecosystem productivity (NEP) of loblolly pine (Pinus taeda L.) growing on the Virginia Coastal Plain, focusing on the effects of soils and climate, and stand age over a 30-year rotation. Soil type was influential, with heavier soils having greater NEP earlier in the rotation than lighter, sandier soils, although these differences disappeared by the rotation end. Climate had only a small effect. Stand age had the largest effect, with simulated annual NEP strongly negative during the first 5 to 8 years of development but peaking at +600 g C m-2 a-1 by age 13. Modest declines in NEP after 13 years were associated with declines in LAI as stands aged. The 30-year mean annual NEP was positive over most of the study area but in a few cases was indistinguishable from zero for northwestern portions of the study. Simulated annual NPP rose from zero to over 2300 g biomass m-2 a-1 by age 12, after which it declined to ˜1700 g biomass m-2 a-1 by rotation end. These results suggest that loblolly pine plantations on the Coastal Plain of Virginia may become net annual C sinks 5 to 9 years after planting but that when averaged over a whole rotation the net carbon accumulation during the baseline rotation simulated here is indistinguishable from zero. Our results also suggest, however, that this finding is sensitive to the length of the rotation, soil type (and thus fertility), and climate, implying that changes in management practices could significantly influence the carbon balance in managed loblolly pine plantations.

  12. Impacts Of Climate Change On Ecosystems Management In Africa: An Assessment Of Disaster Risk Management And Adaptation

    NASA Astrophysics Data System (ADS)

    Ndebele-Murisa, M. R.

    2015-12-01

    This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.

  13. A keystone mutualism underpins resilience of a coastal ecosystem to drought.

    PubMed

    Angelini, Christine; Griffin, John N; van de Koppel, Johan; Lamers, Leon P M; Smolders, Alfons J P; Derksen-Hooijberg, Marlous; van der Heide, Tjisse; Silliman, Brian R

    2016-01-01

    Droughts are increasing in severity and frequency, yet the mechanisms that strengthen ecosystem resilience to this stress remain poorly understood. Here, we test whether positive interactions in the form of a mutualism between mussels and dominant cordgrass in salt marshes enhance ecosystem resistance to and recovery from drought. Surveys spanning 250 km of southeastern US coastline reveal spatially dispersed mussel mounds increased cordgrass survival during severe drought by 5- to 25-times. Surveys and mussel addition experiments indicate this positive effect of mussels on cordgrass was due to mounds enhancing water storage and reducing soil salinity stress. Observations and models then demonstrate that surviving cordgrass patches associated with mussels function as nuclei for vegetative re-growth and, despite covering only 0.1-12% of die-offs, markedly shorten marsh recovery periods. These results indicate that mutualisms, in supporting stress-resistant patches, can play a disproportionately large, keystone role in enhancing ecosystem resilience to climatic extremes. PMID:27534803

  14. On the use of Local Sea Level Scenarios for Managing and Mitigating the Impact of Coastal Inundation

    NASA Astrophysics Data System (ADS)

    Plag, H.; Hammond, W. C.

    2007-12-01

    Coastal inundation is increasingly recognized at national and international levels as an issue with potentially extreme societal impact. Consequently, there is an urgent need for decision-support tools that would help to manage and mitigate the impacts of coastal inundation, storm surges, and human activities on coastal communities and ecosystems. Decision making with respect to mitigation in the coastal zone is an extremely complicated issue for various reasons, including but not limited to: (i) The time scales involved are long from a human perspective, with coastal engineering typically dealing with infrastructure with a life time of 50 to 200 years. (ii) The economic scale of the problem is extreme: For example, the costs for increasing the height of the coastal dikes in Germany by 1 m are estimated to be of the order of 300 billion Euro; the flood gates being built in Venice are an estimated 5 billion Euro. The scale of the required investments is often seen as prohibitive for precautionary action without solid scientific basis, and failing to invest where needed may lead to large economic losses as demonstrated in New Orleans. (iii) Coastal zones are a magnet for human activities (one could say that society tends to put its "jewelry" in the coastal zone): the main increase in vulnerability in the coastal zone is not expected to come from increased hazards due to climate change but rather from increased risks due to continuing migration of population into the coastal zone and an associated increase in key infrastructure. Decisions on mitigation and adaptation in the coastal zone are likely to affect the life and prosperity of people in the future. Reliable and precise predictions of coastal inundation risks, for example through local sea level rise, would be invaluable for decision support. However, considering the aleatory and epistemic uncertainties in the processes that contribute to the hazards and risks in coastal zones over the 50 to 100 year time scale

  15. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  16. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment

    USGS Publications Warehouse

    Cloern, J.E.

    1999-01-01

    Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.

  17. 32 CFR 644.318 - Compliance with State Coastal Zone Management Programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Compliance with State Coastal Zone Management... amended (16 U.S.C. 1451 et seq.). These provisions also apply to the disposal of land or water resources... (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal § 644.318 Compliance with State Coastal...

  18. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... evaluated on the basis of how well they: (a) Accord with existing and planned land use, including...

  19. 33 CFR 148.730 - What are the land use and coastal zone management criteria?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What are the land use and coastal... Criteria for Deepwater Ports § 148.730 What are the land use and coastal zone management criteria? In... evaluated on the basis of how well they: (a) Accord with existing and planned land use, including...

  20. Remote-sensing applications as utilized in Florida's coastal zone management program

    NASA Technical Reports Server (NTRS)

    Worley, D. R.

    1975-01-01

    Land use maps were developed from photomaps obtained by remote sensing in order to develop a comprehensive state plan for the protection, development, and zoning of coastal regions. Only photographic remote sensors have been used in support of the coastal council's planning/management methodology. Standard photointerpretation and cartographic application procedures for map compilation were used in preparing base maps.

  1. A whole plant approach to evaluate the water use of mediterranean maquis species in a coastal dune ecosystem

    NASA Astrophysics Data System (ADS)

    Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.

    2009-02-01

    An integrated approach has been used to analyse the water relations of three Mediterranean species, A. unedo L., Q. ilex L. and P. latifolia L. co-occurring in a coastal dune ecosystem. The approach considered leaf level gas exchange, sap flow measurements and structural adaptations between 15 May and 31 July 2007, and was necessary to capture the different response of the three species to the same environment. The complexity of the response was proportional to the complexity of the system, characterized by a sandy soil with a low water retention capacity and the presence of a water table. The latter did not completely prevent the development of a drought response, and species differences in this responses have been partially attributed to a different root distribution. Sap flow of A. unedo decreased rapidly in response to the decline of Soil Water Content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo was between 2.2 and 2.7 MPa through the measuring period, while in Q. ilex it reached a value of 3.4 MPa at the end of the season. A. unedo was the only species to decrease the leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July), as a response to drought. A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss didn't occur for Q. ilex, while P. latifolia was able to slightly increase hydraulic conductivity, showing how different plant compartments coordinate differently between species as a response to drought. Such different coordination affects the gas exchange between vegetation and the atmosphere, and has implications for the response of the Mediterranean coastal dune ecosystems to climate change.

  2. Soil erosion, policy and management in China coastal zone

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Chen, Qiao; Ning, Jicai; Shi, Runhe; Gao, Wei

    2013-09-01

    The coastal zone is very important in the world. China coastal zone was granted the first priority of developing economy in the late 1980s. Since then, high population density and rapid economic development hace caused intensive changes of LUCC in this zone. Those changes have lead to land degradation. Besides, China governments launched series of projects and policy to improve such problems. Those will inevitably cause to diverse spatial dynamics of land degradtion. However, the state of land degradation in certain time is still unknown. Soil erosion is an important indicator of land degradation.Therefore, we use RS images,RUSLE model to anlyze the spatial pattern of soil erosion for 2000. By spatial analysis, we found that soil erosion in China coastal zone is not serious. Widespread soil erosion is only occurred on coastal zones in Shandong, Hainan and werstern Guangdong Province. Although rainfall eosivity factor(R) is higher in southern coastal zone, erosion tends to occur on the slopes with lower LS values in northern coastal zone than southern coastal zone. Goevernments have enforced some policy to reduce the extent of soil erosion by conversion of farmland to woodland and barren mountains to woodland. But the difference between southern and northern coastal zone is still not realized. To improve soil eorosion in those areas, we should let governments put more funds to increase vegetation cover in north. Such study will provide helpful suggestions for governments to prevent soil erosion in coastal zone.

  3. Genetic information and ecosystem health: arguments for the application of chaos theory to identify boundary conditions for ecosystem management.

    PubMed

    Stomp, A M

    1994-12-01

    To meet the demands for goods and services of an exponentially growing human population, global ecosystems will come under increasing human management. The hallmark of successful ecosystem management will be long-term ecosystem stability. Ecosystems and the genetic information and processes which underlie interactions of organisms with the environment in populations and communities exhibit behaviors which have nonlinear characteristics. Nonlinear mathematical formulations describing deterministic chaos have been used successfully to model such systems in physics, chemistry, economics, physiology, and epidemiology. This approach can be extended to ecotoxicology and can be used to investigate how changes in genetic information determine the behavior of populations and communities. This article seeks to provide the arguments for such an approach and to give initial direction to the search for the boundary conditions within which lies ecosystem stability. The identification of a theoretical framework for ecotoxicology and the parameters which drive the underlying model is a critical component in the formulation of a prioritized research agenda and appropriate ecosystem management policy and regulation. PMID:7713038

  4. Genetic information and ecosystem health: arguments for the application of chaos theory to identify boundary conditions for ecosystem management.

    PubMed Central

    Stomp, A M

    1994-01-01

    To meet the demands for goods and services of an exponentially growing human population, global ecosystems will come under increasing human management. The hallmark of successful ecosystem management will be long-term ecosystem stability. Ecosystems and the genetic information and processes which underlie interactions of organisms with the environment in populations and communities exhibit behaviors which have nonlinear characteristics. Nonlinear mathematical formulations describing deterministic chaos have been used successfully to model such systems in physics, chemistry, economics, physiology, and epidemiology. This approach can be extended to ecotoxicology and can be used to investigate how changes in genetic information determine the behavior of populations and communities. This article seeks to provide the arguments for such an approach and to give initial direction to the search for the boundary conditions within which lies ecosystem stability. The identification of a theoretical framework for ecotoxicology and the parameters which drive the underlying model is a critical component in the formulation of a prioritized research agenda and appropriate ecosystem management policy and regulation. PMID:7713038

  5. Ecosystem-based river basin management: its approach and policy-level application

    NASA Astrophysics Data System (ADS)

    Nakamura, Takehiro

    2003-10-01

    Integrated Water Resources Management is an approach aimed at achieving sustainable development with a focus on water resources. This management concept is characterized by its catchment approach, inter-sectoral and interdisciplinary approach and multiple management objectives. There is an effort to widen the management scope to include multiple resources and environmental considerations in the river basin management schemes. In order to achieve river basin management objectives and multiple global environmental benefits, an ecosystem approach to river basin management is promoted. The Ecosystem-based River Basin Management aims to maximize and optimize the total value of the ecosystem functions relevant to classified ecosystems within a river basin by conserving and even enhancing these functions for the next generations. A procedure to incorporate such ecosystem functions into policy framework is presented in this paper. Based on this policy framework of the Ecosystem-based River Basin Management, a case study is introduced to apply the concept to the Yangtze River basin. According to the United Nations Environment Programme (UNEP) assessment report, this basin suffers from frequent floods of large magnitudes, which are due to the degradation of ecosystem functions in the basin. In this case, the government of the People's Republic of China introduced Ecosystem Function Conservation Areas to conserve ecosystem functions related to flood events and magnitude, such as soil conservation, agricultural practices and forestry, while producing economic benefits for the local population. Copyright

  6. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem.

    PubMed

    Simon, Holly M; Smith, Maria W; Herfort, Lydie

    2014-01-01

    Our previously published research was one of the pioneering studies on the use of metagenomics to directly compare taxonomic and metabolic properties of aquatic microorganisms from different filter size-fractions. We compared size-fractionated water samples representing free-living and particle-attached communities from four diverse habitats in the Columbia River coastal margin, analyzing 12 metagenomes consisting of >5 million sequence reads (>1.6 Gbp). With predicted peptide and rRNA data we evaluated eukaryotic, bacterial and archaeal populations across size fractions and related their properties to attached and free-living lifestyles, and their potential roles in carbon and nutrient cycling. In this focused review, we expand our discussion on the use of high-throughput sequence data to relate microbial community structure and function to the origin, fate and transport of particulate organic matter (POM) in coastal margins. We additionally discuss the potential impact of the priming effect on organic matter cycling at the land-ocean interface, and build a case for the importance, in particle-rich estuaries and coastal margin waters, of microbial activities in low-oxygen microzones within particle interiors. PMID:25250019

  7. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem

    PubMed Central

    Simon, Holly M.; Smith, Maria W.; Herfort, Lydie

    2014-01-01

    Our previously published research was one of the pioneering studies on the use of metagenomics to directly compare taxonomic and metabolic properties of aquatic microorganisms from different filter size-fractions. We compared size-fractionated water samples representing free-living and particle-attached communities from four diverse habitats in the Columbia River coastal margin, analyzing 12 metagenomes consisting of >5 million sequence reads (>1.6 Gbp). With predicted peptide and rRNA data we evaluated eukaryotic, bacterial and archaeal populations across size fractions and related their properties to attached and free-living lifestyles, and their potential roles in carbon and nutrient cycling. In this focused review, we expand our discussion on the use of high-throughput sequence data to relate microbial community structure and function to the origin, fate and transport of particulate organic matter (POM) in coastal margins. We additionally discuss the potential impact of the priming effect on organic matter cycling at the land-ocean interface, and build a case for the importance, in particle-rich estuaries and coastal margin waters, of microbial activities in low-oxygen microzones within particle interiors. PMID:25250019

  8. Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England

    NASA Astrophysics Data System (ADS)

    Njue, C. N.; Cundy, A. B.; Smith, M.; Green, I. D.; Tomlinson, N.

    2012-12-01

    Uncontrolled landfill disposal can cause the release of significant contamination. In Southern England and in other parts of the UK, historical landfills are located along many coastal and estuarine marshes and mudflats. At these sites waste, often significantly contaminated with heavy metals and other contaminants, was dumped with little engineering control and without regard to the surrounding environment. The aim of this study is to investigate the degree to which heavy metals from these historical sites may have contaminated adjacent marshes and mudflats, using the Lodmoor marsh, Dorset, UK as a test site. Surface and sediment core samples were collected from brackish marsh and mudflat areas around the former landfill at Lodmoor, which was operational between 1949 and 1990. Sediment samples were investigated for metallic pollutants, grain size, and mineralogy, and core samples dated via 137Cs and 210Pb. To examine the transfer of heavy metals through the food chain, Phragmites australis leaves were analysed for metallic pollutants. Geochemical data revealed that sediments from the Lodmoor marsh are probably contaminated with Pb. 137Cs dating indicates that concentration maxima for heavy metals correlate to the 1950s and 1960s when landfill activities commenced in Lodmoor. Shallow electromagnetic surveys indicate potential continued leaching from the historic landfill complex. This study indicates the potential for possible landfill-derived contaminants to persist in coastal systems for decades after landfill closure. Over the longer term, it is possible that salinisation and enhanced coastal erosion may cause significant metal release from the landfills and their surrounding sedimentary systems into adjacent ecosystems.

  9. Transformation of Silicon in a Coastal Sandy Beach Ecosystem: Insights from Stable Silicon Isotopes in Ground- and Porewaters

    NASA Astrophysics Data System (ADS)

    Ehlert, C.; Paffrath, R.; Reckhardt, A.; Pahnke, K.

    2014-12-01

    Wave and tide dominated sandy beach ecosystems have a major effect on coastal carbon, nutrient, and trace element cycling. The coarse-grained sediments are characterized by a high permeability, which permits advective porewater transport. Due to the fast porewater flow in the sandy sediment, organic matter remineralization products (i.e. nutrients and trace metals) are only slightly enriched in the porewater and rapidly discharged to the coastal zone where they can potentially stimulate primary production. Here we present stable silicon isotope (δ30Si) data from groundwaters and porewaters from Spiekeroog Island, a barrier island in the southern North Sea, Germany. Groundwater was sampled in the freshwater lens down to 70 m depth in the center of the island. The beach porewaters were taken along a transect from the dune belt to the low water line at depths between 0.5 and 5.2 m. This transect represents the mixing zone of fresh and saline groundwater with seawater, whereby the terrestrial driven groundwater flow provides a potential source of terrestrially derived Si isotope compositions resulting in a modification of the marine-dominated porewater composition. The groundwater is characterized by high Si concentrations of up to 750 µM and rather low δ30Si signatures between +0.6‰ and +1.2‰, which decrease with depth (and age) within the freshwater lens. The porewaters have much lower Si concentrations around 50-60 µM and higher and more variable δ30Si between +1.0‰ and +2.5‰. The lower δ30Si values are found closer to the dunes and at greater depths in the beach sediments. These signatures possibly reflect the outflow of the fresh groundwater to the coastal zone. The higher values represent the influence of seawater, which delivers water with a high δ30Si signature previously enriched by phytoplankton growth.

  10. Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management

    NASA Astrophysics Data System (ADS)

    Thatje, Sven; Heilmayer, Olaf; Laudien, Jürgen

    2008-03-01

    The El Niño Southern Oscillation (ENSO) significantly influences marine ecosystems and the sustained exploitation of marine resources in the coastal zone of the Humboldt Current upwelling system. Both its warm (El Niño: EN) and cold (La Niña: LN) phase have drastic implications for the ecology, socio-economy and infrastructure along most of Pacific South America. Local artisanal fisheries, which especially suffer from the effects of EN, represent a major part for the domestic economy of Chile and Peru and in consequence a huge amount of published and unpublished studies exists aiming at identifying effects of EN and LN. However, most processes and underlying mechanisms fostering the ecology of organisms along Pacific South America have not been analyzed yet and for the marine realm most knowledge is traditionally based on rather descriptive approaches. We herein advocate that small-scale comparative and interdisciplinary process studies work as one possible solution to understand better the variability observed in EN/LN effects at local scale. We propose that differences in small-scale impacts of ENSO along the coast rather than the macro-ecological and oceanographic view are essential for the sustainable management of costal ecosystems and the livelihood of the people depending on it. Based on this, we summarize the conceptual approach from the EU-funded International Science and Technology Cooperation (INCO) project “Climate variability and El Niño Southern Oscillation: Implications for Natural Coastal Resources and Management (CENSOR)” that aims at enhancing the detection, compilation, and understanding of EN and LN effects on the coastal zone and its natural resources. We promote a multidisciplinary avenue within present international funding schemes, with the intention to bridge the traditional gap between basic and applied coastal research. The long-term aim is an increased mitigation of harm caused by EN as well as a better use of beneficial effects

  11. Projected future climate change and Baltic Sea ecosystem management.

    PubMed

    Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar

    2015-06-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes. PMID:26022318

  12. Trade-offs between objectives for ecosystem management of fisheries.

    PubMed

    Andersen, Ken H; Brander, Keith; Ravn-Jonsen, Lars

    2015-07-01

    The strategic objectives for fisheries, which are enshrined in international conventions, are to maintain or restore stocks to produce maximum sustainable yield (MSY) and to implement the ecosystem approach, requiring that interactions between species be taken into account and conservation constraints be respected. While the yield and conservation aims are, to some extent, compatible when a fishery for a single species is considered, species interactions entail that MSY for a species depends on the species with which it interacts, and the yield and conservation objectives therefore conflict when an ecosystem approach to fisheries management is required. We applied a conceptual size- and trait-based model to clarify and resolve these issues by determining the fishing pattern that maximizes the total yield of an entire fish community in terms of catch biomass or economic rent under acceptable conservation constraints. Our results indicate that the eradication of large, predatory fish species results in a potential maximum catch at least twice as high as if conservation constraints are imposed. However, such a large catch could only be achieved at a cost of forgone rent; maximum rent extracts less than half of the potential maximum catch mass. When a conservation constraint is applied, catch can be maximized at negligible cost in forgone rent, compared with maximizing rent. Maximization of rent is the objective that comes closest to respecting conservation concerns. PMID:26485963

  13. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-03-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  14. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  15. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  16. Effects of Tanglehead (Heteropogon contortus) invasion on ecosystem processes in the Texas Coastal Sandsheet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    South Texas has experienced increases of several invasive grasses including tanglehead (Heteropogon contortus [L.] P. Beauv. ex Roem & Schult.). There is relatively little research concerning the effects of tanglehead on ecosystem processes such as energy cycling, nutrient cycling, and microbial soi...

  17. An alert system for triggering different levels of coastal management urgency: Tunisia case study using rapid environmental assessment data.

    PubMed

    Price, A R G; Jaoui, K; Pearson, M P; Jeudy de Grissac, A

    2014-03-15

    Rapid environmental assessment (REA) involves scoring abundances of ecosystems/species groups and magnitude of pressures, concurrently, using the same logarithmic (0-6) assessment scale. We demonstrate the utility of REA data for an alert system identifying different levels of coastal management concern. Thresholds set for abundances/magnitudes, when crossed, trigger proposed responses. Kerkennah, Tunisia, our case study, has significant natural assets (e.g. exceptional seagrass and invertebrate abundances), subjected to varying levels of disturbance and management concern. Using REA thresholds set, fishing, green algae/eutrophication and oil occurred at 'low' levels (scores 0-1): management not (currently) necessary. Construction and wood litter prevailed at 'moderate' levels (scores 2-4): management alerted for (further) monitoring. Solid waste densities were 'high' (scores 5-6): management alerted for action; quantities of rubbish were substantial (20-200 items m⁻¹ beach) but not unprecedented. REA is considered a robust methodology and complementary to other rapid assessment techniques, environmental frameworks and indicators of ecosystem condition. PMID:24512758

  18. Vulnerability assessment for preliminary flood risk mapping and management in coastal areas

    NASA Astrophysics Data System (ADS)

    Greco, Michele; Martino, Giovanni

    2013-04-01

    Planning and management of coastal environment, both terrestrial and marine, is affected by several actions in environment resource conservation and improvement paying specific attention to risk forecasting and preventing. In such context the EU flood Directive 2007/60/EC, which requires Member States the assessment and management of flood risk, and the EU water framework Directive (2000/60/EC) are the key factors in the integrated river basin management to assure an efficient and rational use of resources. Afterwards, coastal risk assessment and mapping is a propaedeutic phase to plan and manage coastal areas. In this work risk analysis refers to the results obtained by the combined application of coastal flooding and erosion risks in the activities carried out to prepare Regional Coast Management Plan for the Ionian coast of Basilicata Region located in the south of Italy. In order to define the driving forces acting on the shore, high resolution lidar data, bathymetric information and wave climate statistics acquired by meteorological analyses on wind field data referred to different acquisition times are used. The systemic vulnerability estimation is achieved by composing both hazard factors combined in the Criticality Coastal Index depending on of the assessment of Coastal Flood Index and Coastal Erosion Index based on morphologic and socio-economic variables.

  19. Mapping potential groundwater-dependent ecosystems for sustainable management.

    PubMed

    Gou, Si; Gonzales, Susana; Miller, Gretchen R

    2015-01-01

    Ecosystems which rely on either the surface expression or subsurface presence of groundwater are known as groundwater-dependent ecosystems (GDEs). A comprehensive inventory of GDE locations at an appropriate management scale is a necessary first-step for sustainable management of supporting aquifers; however, this information is unavailable for most areas of concern. To address this gap, this study created a two-step algorithm which analyzed existing geospatial and remote sensing data to identify potential GDEs at both state/province and aquifer/basin scales. At the state/province scale, a geospatial information system (GIS) database was constructed for Texas, including climate, topography, hydrology, and ecology data. From these data, a GDE index was calculated, which combined vegetative and hydrological indicators. The results indicated that central Texas, particularly the Edwards Aquifer region, had highest potential to host GDEs. Next, an aquifer/basin scale remote sensing-based algorithm was created to provide more detailed maps of GDEs in the Edwards Aquifer region. This algorithm used Landsat ETM+ and MODIS images to track the changes of NDVI for each vegetation pixel. The NDVI dynamics were used to identify the vegetation with high potential to use groundwater--such plants remain high NDVI during extended dry periods and also exhibit low seasonal and inter-annual NDVI changes between dry and wet seasons/years. The results indicated that 8% of natural vegetation was very likely using groundwater. Of the potential GDEs identified, 75% were located on shallow soil averaging 45 cm in depth. The dominant GDE species were live oak, ashe juniper, and mesquite. PMID:24571583

  20. Shifting paradigms in coastal restoration: Six decades' lessons from China.

    PubMed

    Liu, Zezheng; Cui, Baoshan; He, Qiang

    2016-10-01

    With accelerating degradation of coastal environment worldwide, restoration has been elevated as a global strategy to enhance the functioning and social services of coastal ecosystems. While many developing countries suffer from intense coastal degradation, current understanding of the science and practice of their coastal restorations is extremely limited. Based on analysis of >1000 restoration projects, we provide the first synthesis of China's coastal restorations. We show that China's coastal restoration has recently entered a rapidly developing stage, with an increasing number of restoration projects carried out in multiple types of coastal ecosystems. While long-term, national-level restorations enforced by the government appear promising for some coastal ecosystems, especially mangroves, restorations of many other coastal ecosystems, such as salt marshes, seagrasses and coral reefs, have been much less implemented, likely due to under-appreciation of their ecosystem services values. Furthermore, the planning, techniques, research/assessment, and participation models underlying current restorations remain largely inadequate for restoration to effectively halt rapid coastal degradation. To promote success, we propose a framework where paradigms in current restorations from planning to implementation and assessment are transformed in multiple ways. Our study has broad implications for coastal environmental management policies and practices, and should inform sustainable development of coupled human-ocean systems in many countries. PMID:27220097

  1. Coastal Zone Management Act and related legislation: Revision 3. Environmental Guidance Program Reference Book

    SciTech Connect

    Not Available

    1993-10-15

    In recognition of the increasing pressures upon the nation`s coastal resources, Congress enacted the Coastal Zone Management Act in 1972. Its purpose is to encourage states to preserve, protect, develop, and, where possible, restore or enhance such valuable natural resources as wetlands, floodplains, estuaries, beaches, dunes, barrier islands, and coral reefs, as well as the fish and wildlife utilizing those habitats. A unique feature of the Act is that participation by states is voluntary. One key provision for encouraging states to participate is the availability of federal financial assistance to any coastal state or territory, including those on the Great Lakes, which is willing to develop and implement a comprehensive coastal management program. Additionally, the Coastal Barrier Resources Act (CBRA) was passed in 1983. This report contains the legislative history and statues associated with each Act. Regulations for implementation and other guidance are included.

  2. Impact of Forest Management on Future Forest Carbon Storage in Alaska Coastal Forests

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Kushch, S. A.

    2014-12-01

    The forest in Coastal Alaska are unique in many ways. Two groups of forest types occur in the Alaska region: boreal and temperate rain forests. About eighty-eight percent of these forests are in public ownership. High proportations of reserved forests and old-growth forests make the forests in coastal Alaska differ from that in other coastal regions. This study is focused on how forest management actions may impact the future carbon stocks and flux in coastal Alaska forests. The Forest Inventory and Analysis (FIA) data collected by US Forest Service are the primary data used for estimation of current carbon storage and projections of future forest carbon storage for all forest carbon pools in Alaska coastal forests under different management scenarios and climate change effect.

  3. The coastal use structure within the coastal system. A sustainable development-consistent approach

    NASA Astrophysics Data System (ADS)

    Vallega, A.

    1996-01-01

    To contribute to the development of methodological approaches to coastal area management consistent with the sustainable development concept and guidelines provided by UNCED Agenda 21, Chapter 17, first the classifications of coastal uses provided by literature and those adopted by coastal management programmes are presented and discussed. Moving from this basis and reasoning in terms of general system-sustained approach the following concepts and methodological issues are considered: a goal-oriented concept of coastal use; the sustainable development-grounded coastal use framework and the role of discriminants through which it is conceived and described; the relationships between coastal uses; in particular, conflicting relationships focusing attention on conflicts between decision-making centres, as well as users, motivations and tractability of uses; the relationships between coastal uses and the ecosystem; the basic options for sustainability-consistent coastal use development.

  4. Habitat relationships of birds overwintering in a managed coastal prairie

    USGS Publications Warehouse

    Baldwin, H.Q.; Grace, J.B.; Barrow, W.C., Jr.; Rohwer, F.C.

    2007-01-01

    Grassland birds are considered to be rapidly declining in North America. Management approaches for grassland birds frequently rely on prescribed burning to maintain habitat in suitable condition. We evaluated the relationships among years since burn, vegetation structure, and overwintering grassland bird abundance in coastal prairie. Le Conte's Sparrows (Ammodramus leconteii) were most common in areas that had: (1) been burned within the previous 2 years, (2) medium density herbaceous vegetation, and (3) sparse shrub densities. Savannah Sparrows (Passerculus sandwichensis) were associated with areas: (1) burned within 1 year, (2) with sparse herbaceous vegetation, and (3) with sparse shrub densities. Sedge Wrens (Cistothorus platensis) were most common in areas that had: (1) burned greater than 2 years prior and (2) dense herbaceous vegetation. Swamp Sparrows (Melospiza georgiana): (1) were most common in areas of dense shrubs, (2) not related to time since burnings, and (3) demonstrated no relationship to herbaceous vegetation densities. The relationships to fire histories for all four bird species could be explained by the associated vegetation characteristics indicating the need for a mosaic of burn rotations and modest levels of woody vegetation.

  5. 75 FR 69399 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... Chesapeake Bay (Maryland) National Estuarine Research Reserves. The Coastal Zone Management Program... terms of financial assistance awards funded under the CZMA. The National Estuarine Research...

  6. 76 FR 14376 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... its intent to evaluate the performance of the ACE Basin (South Carolina) National Estuarine Research Reserve and the Georgia Coastal Management Program. The National Estuarine Research Reserve...

  7. 75 FR 33242 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... National Oceanic and Atmospheric Administration RIN 0648-XW45 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: On May 6, 2010, the Atlantic States Marine Fisheries Commission (Commission) found the State...

  8. Effects of management of ecosystem carbon pools and fluxes in grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Silver, W. L.

    2010-12-01

    Grasslands represent a large land-use footprint and have considerable potential to sequester carbon (C) in soil. Climate policies and C markets may provide incentives for land managers to pursue strategies that optimize soil C storage, yet we lack robust understanding of C sequestration in grasslands. Previous research has shown that management approaches such as organic amendments or vertical subsoiling can lead to larger soil C pools. These management approaches can both directly and indirectly affect soil C pools. We used well-replicated field experiments to explore the effects of these management strategies on ecosystem C pools and fluxes in two bioclimatic regions of California (Sierra Foothills Research and Extension Center (SFREC) and Nicasio Ranch). Our treatments included an untreated control, compost amendments, plowed (vertical subsoil), and compost + plow. The experiment was conducted over two years allowing us to compare dry (360 mm) and average (632 mm) rainfall conditions. Carbon dioxide (CO2) fluxes were measured weekly using a LI-8100 infrared gas analyzer. Methane (CH4) and nitrous oxide (N2O) fluxes were measured monthly using static flux chambers. Aboveground and belowground biomass were measured at the end of the growing season as an index of net primary productivity (NPP) in the annual plant dominated system. Soil moisture and temperature were measured continuously and averaged on hourly and daily timescales. Soil organic C and N concentrations were measured prior to the application of management treatments and at the ends of each growing season. Soils were collected to a 10 cm depth in year one and at four depth increments (0-10, 10-30, 30-50, and 50-100 cm) in year two. Soil C and N concentrations were converted to content using bulk density values for each plot. During both growing seasons, soil respiration rates were higher in the composted plots and lower in the plowed plots relative to controls at both sites. The effects on C loss via

  9. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community

    PubMed Central

    Gifford, Scott M.; Sharma, Shalabh; Moran, Mary Ann

    2014-01-01

    For bacterial communities containing hundreds to thousands of distinct populations, connecting functional processes and environmental dynamics at high taxonomic resolution has remained challenging. Here we use the expression of ribosomal proteins (%RP) as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in a coastal ocean time series encompassing both seasonal variability and diel dynamics. %RP patterns grouped the taxa into seven activity clusters with distinct profiles in functional gene expression and correlations with environmental gradients. Clusters 1–3 had their highest potential activity in the winter and fall, and included some of the most active taxa, while Clusters 4–7 had their highest potential activity in the spring and summer. Cluster 1 taxa were characterized by gene expression for motility and complex carbohydrate degradation (dominated by Gammaproteobacteria and Bacteroidetes), and Cluster 2 taxa by transcription of genes for amino acid and aromatic compound metabolism and aerobic anoxygenic phototrophy (Roseobacter). Other activity clusters were enriched in transcripts for proteorhodopsin and methylotrophy (Cluster 4; SAR11 and methylotrophs), photosynthesis and attachment (Clusters 5 and 7; Synechococcus, picoeukaryotes, Verucomicrobia, and Planctomycetes), and sulfur oxidation (Cluster 7; Gammaproteobacteria). The seasonal patterns in activity were overlain, and sometimes obscured, by large differences in %RP over shorter day-night timescales. Seventy-eight taxa, many of them heterotrophs, had a higher %RP activity index during the day than night, indicating a strong diel activity rhythm at this coastal site. Emerging from these taxonomically- and time-resolved estimates of in situ microbial activity are predictions of specific ecological groupings of microbial taxa in a dynamic coastal environment. PMID:24795712

  10. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes

    PubMed Central

    Kaniewski, D.; Paulissen, E.; Van Campo, E.; Al-Maqdissi, M.; Bretschneider, J.; Van Lerberghe, K.

    2008-01-01

    The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100–800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C. PMID:18772385

  11. What is Novel About Novel Ecosystems: Managing Change in an Ever-Changing World.

    PubMed

    Truitt, Amy M; Granek, Elise F; Duveneck, Matthew J; Goldsmith, Kaitlin A; Jordan, Meredith P; Yazzie, Kimberly C

    2015-06-01

    Influenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems. Current literature identifies several definitions of these ecosystems but lacks an unambiguous definition and framework for categorizing what constitutes a novel ecosystem and for informing decisions around best management practices. Here we explore the various definitions used for novel ecosystems, present an unambiguous definition, and propose a framework for identifying the most appropriate management option. We identify and discuss three approaches for managing novel ecosystems: managing against, tolerating, and managing for these systems, and we provide real-world examples of each approach. We suggest that this framework will allow managers to make thoughtful decisions about which strategy is most appropriate for each unique situation, to determine whether the strategy is working, and to facilitate decision-making when it is time to modify the management approach. PMID:25822888

  12. What is Novel About Novel Ecosystems: Managing Change in an Ever-Changing World

    NASA Astrophysics Data System (ADS)

    Truitt, Amy M.; Granek, Elise F.; Duveneck, Matthew J.; Goldsmith, Kaitlin A.; Jordan, Meredith P.; Yazzie, Kimberly C.

    2015-06-01

    Influenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems. Current literature identifies several definitions of these ecosystems but lacks an unambiguous definition and framework for categorizing what constitutes a novel ecosystem and for informing decisions around best management practices. Here we explore the various definitions used for novel ecosystems, present an unambiguous definition, and propose a framework for identifying the most appropriate management option. We identify and discuss three approaches for managing novel ecosystems: managing against, tolerating, and managing for these systems, and we provide real-world examples of each approach. We suggest that this framework will allow managers to make thoughtful decisions about which strategy is most appropriate for each unique situation, to determine whether the strategy is working, and to facilitate decision-making when it is time to modify the management approach.

  13. The nearshore western Beaufort Sea ecosystem: Circulation and importance of terrestrial carbon in arctic coastal food webs

    NASA Astrophysics Data System (ADS)

    Dunton, Kenneth H.; Weingartner, Thomas; Carmack, Eddy C.

    2006-10-01

    . Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. The δ15N values of lagoon fish were also 4‰ lower than coastal specimens, reflective of the lower δ15N values of terrestrially derived nitrogen (0-1.5‰ compared to 5-7‰ for phytoplankton). The role of terrestrial carbon in arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore shelf. Biogeochemical studies of the arctic coastal estuarine environment may provide more insights into the function of these biologically complex ecosystems.

  14. A keystone mutualism underpins resilience of a coastal ecosystem to drought

    PubMed Central

    Angelini, Christine; Griffin, John N.; van de Koppel, Johan; Lamers, Leon P. M.; Smolders, Alfons J. P.; Derksen-Hooijberg, Marlous; van der Heide, Tjisse; Silliman, Brian R.

    2016-01-01

    Droughts are increasing in severity and frequency, yet the mechanisms that strengthen ecosystem resilience to this stress remain poorly understood. Here, we test whether positive interactions in the form of a mutualism between mussels and dominant cordgrass in salt marshes enhance ecosystem resistance to and recovery from drought. Surveys spanning 250 km of southeastern US coastline reveal spatially dispersed mussel mounds increased cordgrass survival during severe drought by 5- to 25-times. Surveys and mussel addition experiments indicate this positive effect of mussels on cordgrass was due to mounds enhancing water storage and reducing soil salinity stress. Observations and models then demonstrate that surviving cordgrass patches associated with mussels function as nuclei for vegetative re-growth and, despite covering only 0.1–12% of die-offs, markedly shorten marsh recovery periods. These results indicate that mutualisms, in supporting stress-resistant patches, can play a disproportionately large, keystone role in enhancing ecosystem resilience to climatic extremes. PMID:27534803

  15. CAN BIVALVES BE USEFUL INDICATORS OF ECOSYSTEM CONDITION?

    EPA Science Inventory

    Numerous management decisions are made to sustain multiple, and often competing, products and services from coastal ecosystems. Scientific support for these decisions emanate from environmental indicators or selected measurements used in a monitoring program. Indicators are surro...

  16. Polychlorinated biphenyls in coastal tropical ecosystems: Distribution, fate and risk assessment

    SciTech Connect

    Dodoo, D.K.; Essumang, D.K.; Jonathan, J.W.A.; Bentum, J.K.

    2012-10-15

    Polychlorinated biphenyls (PCBs) though banned still find use in most developing countries including Ghana. PCB congener residues in sediments in the coastal regions of Ghana were determined. Sediment samples (n=80) were collected between June 2008 and March 2009, extracted by the continuous soxhlet extraction using (1:1) hexane-acetone mixture for 24 h and analyzed with a CP 3800 gas chromatogram equipped with {sup 65}Ni electron capture detector (GC-ECD) and a mixed PCBs standard of the ICES 7 as marker, after clean-up. Validation of the efficiency and precision of the extraction and analytical methods were done by extracting samples spiked with 2 ppm ICES PCB standard and a certified reference material 1941b for marine sediments from NIST, USA, and analyzed alongside the samples. Total PCBs detected in sediments during the dry and wet seasons were, respectively, 127 and 112 {mu}g/kg dry weight (dw), with a mean concentration of 120 {mu}g/kg (dw). The composition of PCB homologues in the sediments were dominated by tri-, penta- and tetra-PCBs. There was no correlation between organic carbon (OC) of the sediments and total PCBs content. Risk assessments conducted on the levels indicated that PCB levels in sediments along the coastal region of Ghana poses no significant health risk to humans.

  17. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    PubMed

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands. PMID

  18. Maritime Cultural Resource Investigation, Management, and Mitigation in Coastal Ghana

    NASA Astrophysics Data System (ADS)

    Horlings, Rachel L.

    2012-10-01

    Four field seasons of maritime archaeological research in coastal Ghana offer insights into submerged cultural heritage, but also highlight serious concerns for its preservation and protection. A discussion of cultural heritage legislation and its ineffective implementation, as well as imminent and potential threats to submerged cultural heritage frames the argument for the mitigation and protection of submerged sites in coastal Ghana. Work on the Benya Lagoon vessel and the Elmina Wreck site is presented here as both documentation and mitigation in terms of the context of threats to submerged heritage in coastal Ghana, and preventative mitigation is proposed for its protection.

  19. Determining the Effectiveness of Aquatic Ecosystem Restoration, Conservation, and Management Practices.

    EPA Science Inventory

    The science of aquatic ecosystem restoration and management is still in its infancy, largely because most projects are inadequately tracked and monitored for assessing their success. Historically, evaluating the effectiveness of best management practices (BMPs) has relied heavily...

  20. Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

    USGS Publications Warehouse

    Brock, John C.; Barras, John A.; Williams, S. Jeffress

    2013-01-01

    The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the world's most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.

  1. Data access and decision tools for coastal water resources management

    EPA Science Inventory

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...

  2. Urban ecosystem services for resilience planning and <