Science.gov

Sample records for coatings superficial hardening

  1. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  2. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  3. Microstructural Evolution of the 55 Wt Pct Al-Zn Coating During Press Hardening

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; De Cooman, Bruno Charles

    2014-09-01

    Press hardening is increasingly being used to produce ultra-high strength steel parts for passenger cars. Al-Si, Zn, and Zn-alloy coatings have been used to provide corrosion protection to press hardening steel grades. The use of coatings has drawbacks such as coating delamination or liquid metal-induced embrittlement. In the present work, the microstructural evolution of Al-Zn coating during press hardening was studied. The 55 wt pct Al-Zn coating can in principle provide both Al barrier protection and Zn cathodic protection to press hardened steel. During the heat treatment associated with the press hardening, the 55 wt pct Al-Zn alloy coating is converted to an intermetallic surface layer of Fe2Al5 and a FeAl intermetallic diffusion layer. The Zn is separated from both intermetallic compounds and accumulates at grain boundaries and at the surface. This Zn separation process is beneficial in terms of providing cathodic protection to Al-Zn coated press hardening steel.

  4. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-06-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  5. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-03-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  6. A superficial coating to improve oxidation and decarburization resistance of bearing steel at high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Wei, Lianqi; Zhou, Xun; Zhang, Xiaomeng; Ye, Shufeng; Chen, Yunfa

    2012-03-01

    The coating material consisted of aqueous slurry of dolomite, bauxite and silicon carbide mixture. Such a coating material when applied superficially on the steel surface not only enhances oxidation resistance but also helps in inhibiting the decarburization even up to 1250 °C. Metalloscope, XRD and TG-DTA thermal analysis revealed that the formation of a newly densified coating comprised of spinels and the reducing atmosphere formed by the oxidation of SiC improved the resistance of oxidation and decarburization.

  7. Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.; Pustovalov, AS

    2016-01-01

    This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.

  8. Nuclear hardening of optical coatings: enhanced energy sharing concept. Revision 1

    SciTech Connect

    Edwards, D.F.; Gillespie, C.H.; Saito, T.T.; Wirtenson, G.R.; Schall, P.; Childs, W.

    1986-01-15

    Satellite component hardening requirements in the early 1970's led to the development of the enhanced energy sharing concept (EESC) for optical mirror coatings. The idea was to increase the survivability of aluminum coated fused silica mirrors to prompt energy deposition by interposing a thick layer of beryllium between the aluminum and the substrate. Separating the materials of higher Z by the low Z beryllium redistributes the deposited heat load over a larger volume and reduces the maximum temperature in the aluminum film. Theoretical analyses of heat transfer during and after an energy input pulse supported this concept and subsequent above-ground and underground tests confirmed the greater survivability of this mirror design. In the sections that follow we give an insight into the physical mechanisms responsible for nuclear radiation deposition and temperature rise. This is followed by a review of calculations of melt fluence for several mirror constructions taking into account only the dominant deposition mechanisms and heat flow.

  9. Hardening of Ti-coated 4145 steel following boron ion implantation

    NASA Astrophysics Data System (ADS)

    Knystautas, Emile J.; Singh, Amatjit; Fiseti, Michel

    Mechanically polished 4145 steel surfaces coated with a 400 Å layer of titanium were studied for surface hardening following implantation with boron ions. The steel surfaces overlaid with a titanium coating were implanted with 110 keV 11B ions to a constant dose of 10 17 ions/cm 2. The microhardness of the titanium-coated specimens was compared with that of implanted but uncoated 4145 steel specimens. In both cases an increase in microhardness of some 20% for 10 g loads was observed. Annealing characteristics were determined by carefully annealing the titanium-coated specimens at different temperatures and times in a vacuum of less than 10 -6 Torr. The optimum annealing condition was found to be 200°C for 5 h, which yielded a 48% increase in microhardness for a 5 g load, while no significant increase was observed at 150°C. On the other hand, annealing at higher temperature (350°C) resulted in a decrease in the microhardness for all loads.

  10. Drug-coated balloons are replacing the need for nitinol stents in the superficial femoral artery.

    PubMed

    Kitrou, Panagiotis; Karnabatidis, Dimitrios; Katsanos, Konstantinos

    2016-08-01

    Amassed evidence from several randomized controlled trials and high quality meta-analyses clearly support the primary use of paclitaxel-coated balloons (PCB) in the superficial femoral artery over traditional plain balloon angioplasty or primary bare nitinol stenting with significantly lower vascular restenosis, less need for repeat procedures, improved quality of life and potential cost savings for the healthcare system. Stents may be reserved for bail-out in case of a suboptimal dilatation result, and for selected more complex lesions, or in case of critical limb ischemia in order to eliminate vessel recoil and maximize immediate hemodynamic gain. Debulking atherectomy remains unproven, but holds a lot of promise in particular in combination with PCBs, in order to improve compliance of the vessel wall by plaque removal, allow for a better angioplasty result and optimize drug transfer and bioavailability. The present overview summarizes and discusses current evidence about femoropopliteal PCB angioplasty compared to the historical standard of plain old balloon angioplasty and bare nitinol stents. Available evidence is appraised in the context of clinically meaningful results, relevant unresolved issues are highlighted, and future trends are discussed. PMID:27128105

  11. Microstructural characterisation of nanocomposite nc-MeC/a-C coatings on oxygen hardened Ti-6Al-4V alloy

    SciTech Connect

    Moskalewicz, T.; Wendler, B.; Czyrska-Filemonowicz, A.

    2010-10-15

    Nanocomposite coatings are novel, important systems composed of two or more nanocrystalline, or nanocrystalline and amorphous, phases. Such coatings offer a possibility of tailoring the coating microstructure and achieving new improved properties of coated materials. In this work a duplex surface treatment, consisting of an oxygen diffusion treatment and deposition of low friction nanocomposite nc-MeC/a-C (Me = transition metal, Ti, W or Cr) coatings, was applied for improvement of the Ti-6Al-4V alloy properties. The coatings composed of nanocrystallites of transition metal carbides (TiC or Cr{sub x}C{sub y} or WC) embedded in hydrogen-free amorphous carbon (a-C) matrix were deposited onto the surface of an oxygen hardened Ti-6Al-4 V alloy substrate by means of a simple DC magnetron sputtering. A nano/microstructure of the substrate material and coatings has been examined by scanning- and transmission electron microscopy complemented with the results of X-ray diffraction analyses. It was found that the nanocomposite coatings are composed of different carbide nanocrystals (with sizes of a few nanometres) embedded in an amorphous carbon matrix. The results of qualitative and quantitative analyses of the nanocrystalline phase in the coatings with use of high-resolution transmission electron microscopy combined with image analysis are given in the paper. An effect of the nano/microstructure parameters of the coated alloy onto its micro-mechanical (nanohardness and Young's modulus) and tribological properties (wear resistance and friction coefficient) is discussed in the paper.

  12. Drug-Coated Balloon Versus Standard Percutaneous Transluminal Angioplasty for the Treatment of Superficial Femoral and Popliteal Peripheral Artery Disease

    PubMed Central

    Tepe, Gunnar; Schneider, Peter; Brodmann, Marianne; Krishnan, Prakash; Micari, Antonio; Metzger, Christopher; Scheinert, Dierk; Zeller, Thomas; Cohen, David J.; Snead, David B.; Alexander, Beaux; Landini, Mario; Jaff, Michael R.

    2015-01-01

    Background— Drug-coated balloons (DCBs) have shown promise in improving the outcomes for patients with peripheral artery disease. We compared a paclitaxel-coated balloon with percutaneous transluminal angioplasty (PTA) for the treatment of symptomatic superficial femoral and popliteal artery disease. Methods and Results— The IN.PACT SFA Trial is a prospective, multicenter, single-blinded, randomized trial in which 331 patients with intermittent claudication or ischemic rest pain attributable to superficial femoral and popliteal peripheral artery disease were randomly assigned in a 2:1 ratio to treatment with DCB or PTA. The primary efficacy end point was primary patency, defined as freedom from restenosis or clinically driven target lesion revascularization at 12 months. Baseline characteristics were similar between the 2 groups. Mean lesion length and the percentage of total occlusions for the DCB and PTA arms were 8.94±4.89 and 8.81±5.12 cm (P=0.82) and 25.8% and 19.5% (P=0.22), respectively. DCB resulted in higher primary patency versus PTA (82.2% versus 52.4%; P<0.001). The rate of clinically driven target lesion revascularization was 2.4% in the DCB arm in comparison with 20.6% in the PTA arm (P<0.001). There was a low rate of vessel thrombosis in both arms (1.4% after DCB and 3.7% after PTA [P=0.10]). There were no device- or procedure-related deaths and no major amputations. Conclusions— In this prospective, multicenter, randomized trial, DCB was superior to PTA and had a favorable safety profile for the treatment of patients with symptomatic femoropopliteal peripheral artery disease. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique Identifiers: NCT01175850 and NCT01566461. PMID:25472980

  13. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  14. Superficial thrombophlebitis

    MedlinePlus

    ... a prolonged period Use of birth control pills Varicose veins Superficial thrombophlebitis may be associated with: Abdominal cancers ( ... affected vein are occasionally needed to treat large varicose veins or to prevent further episodes of thrombophlebitis in ...

  15. Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes.

    PubMed

    Chang, Ming-Ling; Chen, Jeng-Chang; Yeh, Chau-Ting; Chang, Ming-Yu; Liang, Chun-Kai; Chiu, Cheng-Tang; Lin, Deng-Yn; Liaw, Yun-Fan

    2008-04-01

    Although in vivo nonviral gene delivery to the liver is critical for hepatic gene therapy, there are a number of technical obstacles. Enhanced green fluorescent protein (EGFP)-encoding DNA was coated onto gold particles (gold-DNA), dissolved in phosphate-buffered saline (pure DNA), and prepared as a polymer adjuvant (jetPEI)-galactosidase solution (polymer-DNA). Murine liver transfection was attempted by nonviral approaches, which included hydrodynamics-based transfection (HBT) of pure DNA, transport and transhepatic injection of polymer-DNA, and gene gun bombardment with pure DNA, gold-DNA, and polymer-DNA. Only HBT and gene gun bombardment yielded significant numbers of EGFP(+) hepatocytes. With the exception of the edge of the liver, HBT had a whole-liver transfection rate of 20% under optimized conditions. HBT resulted in marked hepatic infarctions, most prominently at the edge of the liver. For gene gun bombardment, the transfection rate was pressure dependent and limited to 15% for gold-DNA. Triple or quadruple bombardment at 30 psi resulted in a transfection rate comparable to that of a single bombardment at higher pressure, but was associated with minimal scattered hepatic necrosis. The EGFP(+) hepatocytes were located mainly in the superficial layers. We conclude that both HBT and gene gun bombardment yielded efficient murine hepatocyte transfection in vivo. Severe hepatic infarction impedes foreign gene expression in the superficial hepatocytes after HBT. Repeated bombardment with gold-DNA, using an accelerated particle gene gun at 30 psi, is a potential alternative to HBT for delivering genes to superficial hepatocytes in vivo, although gold-related hepatic necrosis is a persistent problem. PMID:18366343

  16. Superficial thrombophlebitis

    MedlinePlus

    Brown KR, Rossi PJ. Superficial venous disease. Surg Clin N Am. 2012;93:963-982. PMID: 23885940 www.ncbi.nlm.nih.gov/pubmed/23885940 . James WD, Berger TG, Elston DM. Andrews' Diseases of the Skin: Clinical Dermatology . 11th ed. Philadelphia, PA: ...

  17. Hydrothermal durability of Ca-complexed methylmethacrylate-trimethylolpropane trimethacrylate copolymer films and coatings containing superficially formed CaO-SiO/sub 2/-H/sub 2/O type inorganic macromolecules

    SciTech Connect

    Sugama, T.; Kukacka, L.E.

    1983-12-01

    A CaO-SiO/sub 2/-H/sub 2/O macromolecular-ionomer complex was found to be formed in the superficial layers of MMA-TMPTMA copolymer composite films made with filler containing hydraulic cement during exposure in an autoclave at temperatures up to 200/sup 0/C. This superficially formed complex in terms of self-healing protective layers, acted to prevent the hydrothermal deterioration of the original composite films, which is important if the films are used as protective layers on metals. Studies of the adhesion of the complex composite coatings to chemically treated metal surfaces were also performed. It was found that the surface topography of hopeite crystalline layers results in an increase in wetting forces and mechanical interlocking forces.

  18. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  19. Hardening treatment of friction surfaces of ball journal bearings

    NASA Astrophysics Data System (ADS)

    Gorlenko, A. O.; Davidov, S. V.

    2016-04-01

    The article presents the technology of finishing plasma hardening by the application of the multi-layer nanocoating Si-O-C-N system to harden the friction surfaces of the ball journal bearings. The authors of the paper have studied the applied wear-resistant anti-friction coating tribological characteristics, which determine the increase in wear resistance of the ball journal bearings.

  20. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  1. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... Hardening of the arteries often occurs with aging. As you grow older, ... narrows your arteries and makes them stiffer. These changes ...

  2. Superficial acral fibromyxoma.

    PubMed

    Sawaya, Jennifer L; Khachemoune, Amor

    2015-01-01

    Superficial acral fibromyxoma (SAF), also known as digital fibromyxoma, is a rare soft tissue tumor with a predilection for acral surfaces. Superficial acral fibromyxoma classically presents as a pink to flesh-colored nodule located on the subungual or periungual region of the hands or feet. It is typically slow-growing and asymptomatic, which, coupled with its nonspecific clinical appearance, presents a diagnostic dilemma to the dermatologist. As these features overlap with those of a multitude of differential diagnoses, it is imperative to have a good understanding of the characteristics on which the diagnosis of SAF is based. Superficial acral fibromyxoma was initially described in 2001, since when several case reports and literature reviews have contributed to our current understanding of these tumors. In this article, we will review the history, clinical features, diagnosis, and management of SAF. It is our hope that this systematic approach will help to facilitate the recognition and management of this distinct dermatologic entity. PMID:25772615

  3. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  4. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  5. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  6. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  7. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  8. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  9. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  10. Practical aspects of systems hardening

    SciTech Connect

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system.

  11. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  12. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  13. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida.

    PubMed

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-11-01

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. PMID:22675161

  14. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  15. Superficial ulnar artery perforator flap.

    PubMed

    Schonauer, Fabrizio; Marlino, Sergio; Turrà, Francesco; Graziano, Pasquale; Dell'Aversana Orabona, Giovanni

    2014-09-01

    Superficial ulnar artery is a rare finding but shows significant surgical implications. Its thinness and pliability make this flap an excellent solution for soft tissue reconstruction, especially in the head and neck region. We hereby report a successful free superficial ulnar artery perforator forearm flap transfer for tongue reconstruction. A 64-year-old man presenting with a squamous cell carcinoma of the left tongue underwent a wide resection of the tumor, left radical neck dissection, and reconstruction of the tongue and the left tonsillar pillar with the mentioned flap. No complications were observed postoperatively. The flap survived completely; no recurrence at 6 months of follow-up was detected. Superficial ulnar artery perforator flap has shown to be a safe alternative to other free tissue flaps in specific forearm anatomic conditions. PMID:25102397

  16. Onycholysis induced by nail hardener.

    PubMed

    Helsing, Per; Austad, Joar; Talberg, Hans Jørgen

    2007-10-01

    Nail hardeners appeared in the market during the 1960s. They were basically solutions of formaldehyde. The first adverse effects were published in 1966 (1). Reactions were onycholysis, chromonychia, subungual haemorrhage, and hyperkeratosis. Onycholysis may be non-inflammatory or inflammatory, and is accompanied by throbbing pain. Inflammatory reactions are followed by paronychia and occasional dermatitis on the digital pulpa. PMID:17868227

  17. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of…

  18. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  19. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  20. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  1. Design and characterisation of a new duplex surface system based on S-phase hardening and carbon-based coating for ASTM F1537 Co-Cr-Mo alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xia; Li, Xiaoying

    2014-02-01

    Co-Cr-Mo alloys are one of the most widely used metallic biomaterials for metal-on-metal joint prostheses. However, concerns over increased revision rates mainly due to nano-sized wear debris have been raised. This study was aimed at enhancing the friction, wear and load-bearing properties of Co-Cr-Mo alloys by developing a new duplex surface system combining super hard and wear-resistant S-phase layer with self-lubricating, low-friction carbon-based coating. To this end, ASTM

  2. Diamond films for laser hardening

    NASA Technical Reports Server (NTRS)

    Albin, S.; Watkins, L.; Ravi, K.; Yokota, S.

    1989-01-01

    Laser-damage experiments were performed on free-standing polycrystalline diamond films prepared by plasma-enhanced CVD. The high laser-induced stress resistance found for this material makes it useful for thin-film coatings for laser optics. Results for diamond-coated silicon substrates demonstrate the enhanced damage threshold imparted by diamond thin-film coatings to materials susceptible to laser damage.

  3. Management of superficial vein thrombosis.

    PubMed

    Cosmi, B

    2015-07-01

    Superficial vein thrombosis (SVT) is less well studied than deep vein thrombosis (DVT), because it has been considered to be a minor, self-limiting disease that is easily diagnosed on clinical grounds and that requires only symptomatic relief. The most frequently involved sites of the superficial vein system are the lower limbs, especially the saphenous veins, mostly in relation to varicosities. Lower-limb SVT shares the same risk factors as DVT; it can propagate into the deep veins, and have a complicated course with pulmonary embolism. Clinical diagnosis may not be accurate, and ultrasonography is currently indicated for both confirmation and evaluation of SVT extension. Treatment aims are symptom relief and prevention of venous thromboembolism (VTE) in relation to the thrombotic burden. SVT of the long saphenous vein within 3 cm of the saphenofemoral junction (SFJ) is considered to be equivalent to a DVT, and thus deserving of therapeutic anticoagulation. Less severe forms of lower-limb SVT not involving the SFJ have been included in randomized clinical trials of surgery, compression hosiery, non-steroidal anti-inflammatory drugs, unfractionated heparin, and low molecular weight heparins, with inconclusive results. The largest randomized clinical trial available, on 3004 patients with lower-limb SVT not involving the SFJ, showed that fondaparinux 2.5 mg once daily for 6 weeks is more effective than placebo in reducing the risk of the composite of death from any cause and symptomatic VTE (0.9% versus 5.9%). Further studies are needed to define the optimal management strategies for SVT of the lower limbs and other sites, such as the upper limbs. PMID:25903684

  4. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  5. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  6. Intraoral Superficial Angiomyxoma: A Case Report.

    PubMed

    Anehosur, Venkatesh; Adirajaiah, Sahana; Ghosh, Rajarshi

    2016-07-01

    Angiomyxomas are a group of relatively uncommon myxoid mesenchymal tumors associated with a high risk of local recurrence without any metastatic potential. Till date only five cases of intraoral superficial angiomyxoma have been reported. This is a case report of a middle aged Indian male patient diagnosed with superficial angiomyxoma of lower left buccal vestibule. PMID:27408472

  7. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  8. Vapor deposition of hardened niobium

    DOEpatents

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  9. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  10. Superficial mycoses in Saudi Arabia.

    PubMed

    Venugopal, P V; Venugopal, T V

    1992-01-01

    Between June 1988 and December 1990, 1018 cases of superficial mycoses were investigated. Diagnosis was confirmed by microscopic examination in 503 cases and the causal agent was isolated in 490 cases. Tinea capitis accounted for 47.7% (92.5% in children below 10 years of age). The frequency of other clinical types in descending order was pityriasis versicolor 25.8%, tinea corporis 9%, onychomycosis 5.8%, tinea pedis 4%, intertrigo 3.9% and tinea cruris 2.8%. Erythrasma was encountered three times and mixed piedra and trichomycosis axillaris once. Microsporum canis was the commonest aetiological agent, responsible for 46.9% of ringworm infections. Malassezia furfur was the next most common agent (26.5%) followed by Candida albicans (8.6%) and Trichophyton violaceum (8.2%). Other species were found less frequently. T.simii was isolated from four cases of tinea cruris and one each of tinea capitis and tinea corporis, and Piedraia hortae and Trichosporon beigelii from a case of mixed piedra infection. PMID:1445094

  11. Kinematic hardening of a porous limestone

    NASA Astrophysics Data System (ADS)

    Cheatham, J. B.; Allen, M. B.; Celle, C. C.

    1984-10-01

    A concept for a kinematic hardening yield surface in stress space for Cordova Cream limestone (Austin Chalk) developed by Celle and Cheatham (1981) has been improved using Ziegler's modification of Prager's hardening rule (Ziegler, 1959). Data to date agree with the formulated concepts. It is shown how kinematic hardening can be used to approximate the yield surface for a wide range of stress states past the initial yield surface. The particular difficulty of identifying the yield surface under conditions of unloading or extension is noted. A yield condition and hardening rule which account for the strain induced anisotropy in Cordova Cream Limestone were developed. Although the actual yield surface appears to involve some change of size and shape, it is concluded that true kinematic hardening provides a basis for engineering calculations.

  12. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  13. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    Levin, B. F.; Dupont, J. N.; Marder, A. R.

    1994-01-01

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in circulated fluidized beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  14. Scanning electron microscopy of superficial white onychomycosis.

    PubMed

    Almeida, Hiram Larangeira de; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques E; Castro, Luis Antonio Suita de

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  15. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  16. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  17. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  18. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  19. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  20. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  1. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  2. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  3. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  4. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  5. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  6. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  7. Laser Surface Hardening of AISI 1045 Steel

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Jin, Yajuan; Li, Zhuguo; Qi, Kai

    2014-09-01

    The study investigates laser surface hardening in the AISI 1045 steel using two different types of industrial laser: a high-power diode laser (HPDL) and a CO2 laser, respectively. The effect of process parameters such as beam power, travel speed on structure, case depth, and microhardness was examined. In most cases, a heat-affected zone (HAZ) formed below the surface; a substantial increase in surface hardness was achieved. In addition, big differences were found between the hardened specimens after HPDL surface hardening and CO2 laser surface hardening. For HPDL, depths of the HAZ were almost equal in total HAZ o, without surface melting. For CO2 laser, the depths changed a lot in the HAZ, with surface melting in the center. To better understand the difference of laser hardening results when use these two types of laser, numerical (ANSYS) analysis of the heat conduction involved in the process was also studied. For HPDL method, a rectangular beam spot and uniform energy distribution across the spot were assumed, while for CO2 laser, a circular beam spot and Gaussian energy distribution were assumed. The results showed that the energy distribution variety altered the thermal cycles of the HAZ dramatically. The rectangular HPDL laser beam spot with uniform energy distribution is much more feasible for laser surface hardening.

  8. Superficial Temporal Artery Pseudoaneurysm: A Case Report

    PubMed Central

    Younus, Syed Muneeb; Imran, Muhammad; Qazi, Rabia

    2015-01-01

    Pseudoaneurysms of the superficial temporal artery are an uncommon vascular lesion of the external carotid system and most often the result of blunt head trauma. The frequency of pseudoaneurysms of the superficial temporal artery developing after craniotomy is exceedingly low and only a few cases have been reported. We present a case of pseudoaneurysm of this type in a 45-year-old male who underwent craniotomy for excision of meningioma. One month postoperatively, the craniotomy flap exhibited an enormous diffuse pulsate swelling. The suspected diagnosis of pseudoaneurysm arising from superficial temporal artery was confirmed on angiography. Surgical excision was done and no recurrences of the tumor or aneurysm were noted on subsequent follow up. PMID:26501064

  9. Treatment of superficial mycoses: review - part II*

    PubMed Central

    Dias, Maria Fernanda Reis Gavazzoni; Bernardes-Filho, Fred; Quaresma-Santos, Maria Victória Pinto; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new, antifungal therapeutic alternatives are also highlighted, as well as available options on the Brazilian and world markets. PMID:24474103

  10. Etizolam-induced superficial erythema annulare centrifugum.

    PubMed

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  11. Vasculitis resulting from a superficial femoral artery angioplasty with a paclitaxel-eluting balloon.

    PubMed

    Thomas, Shannon D; McDonald, Robert R A; Varcoe, Ramon L

    2014-02-01

    Drug-eluting balloons (DEBs) coated with the antiproliferative agent paclitaxel may improve primary patency by reducing recurrent luminal stenosis. A proportion of the active drug and excipient coating are known to embolize distally, but until now, there have been no reports of adverse events resulting from their use. We report an unusual case of a painful nodular, biopsy specimen-proven vasculitic rash that afflicted the ipsilateral lower limb of a patient after superficial femoral artery treatment with a DEB. This adverse event may have implications for the use of DEB in this and other vascular territories. PMID:23642919

  12. The superficial white matter in Alzheimer's disease.

    PubMed

    Phillips, Owen R; Joshi, Shantanu H; Piras, Fabrizio; Orfei, Maria Donata; Iorio, Mariangela; Narr, Katherine L; Shattuck, David W; Caltagirone, Carlo; Spalletta, Gianfranco; Di Paola, Margherita

    2016-04-01

    White matter abnormalities have been shown in the large deep fibers of Alzheimer's disease patients. However, the late myelinating superficial white matter comprised of intracortical myelin and short-range association fibers has not received much attention. To investigate this area, we extracted a surface corresponding to the superficial white matter beneath the cortex and then applied a cortical pattern-matching approach which allowed us to register and subsequently sample diffusivity along thousands of points at the interface between the gray matter and white matter in 44 patients with Alzheimer's disease (Age: 71.02 ± 5.84, 16M/28F) and 47 healthy controls (Age 69.23 ± 4.45, 19M/28F). In patients we found an overall increase in the axial and radial diffusivity across most of the superficial white matter (P < 0.001) with increases in diffusivity of more than 20% in the bilateral parahippocampal regions and the temporal and frontal lobes. Furthermore, diffusivity correlated with the cognitive deficits measured by the Mini-Mental State Examination scores (P < 0.001). The superficial white matter has a unique microstructure and is critical for the integration of multimodal information during brain maturation and aging. Here we show that there are major abnormalities in patients and the deterioration of these fibers relates to clinical symptoms in Alzheimer's disease. PMID:26801955

  13. Extensive metabolmic change precedes superficial scald development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superficial scald development and metabolomic changes were compared in peel tissue of diphenylamine (DPA) treated, 1-methylcyclopropene (1-MCP) treated, or untreated ‘Granny Smith’ apples stored for up to 6 months at 1 oC in air. Metabolomic evaluation, including 600+ metabolites, was employed to c...

  14. Metabolomic Change Precedes Apple Superficial Scald Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling of 621 metabolites was employed to characterize metabolomic changes associated with ‘Granny Smith’ apple superficial scald development following 1-MCP or DPA treatment. Partial least squares-discriminant analyses were used to link metabolites with scald, postharvest treatments, ...

  15. Influence of slip system hardening assumptions on modeling stress dependence of work hardening

    NASA Astrophysics Data System (ADS)

    Miller, Matthew; Dawson, Paul

    1997-11-01

    Due to the discrete directional nature of processes such as crystallographic slip, the orientation of slip planes relative to a fixed set of loading axes has a direct effect on the magnitude of the external load necessary to induce dislocation motion (yielding). The effect such geometric or textural hardening has on the macroscopic flow stress can be quantified in a polycrystal by the average Taylor factor M¯. Sources of resistance to dislocation motion such as interaction with dislocation structures, precipitates, and grain boundaries, contribute to the elevation of the critically resolved shear strength τcrss. In continuum slip polycrystal formulations, material hardening phenomena are reflected in the slip system hardness equations. Depending on the model, the hardening equations and the mean field assumption can both affect geometric hardening through texture evolution. In this paper, we examine continuum slip models and focus on how the slip system hardening model and the mean field assumption affect the stress-strain response. Texture results are also presented within the context of how the texture affects geometric hardening. We explore the effect of employing slip system hardnesses averaged over different size scales. We first compare a polycrystal simulation employing a single hardness per crystal to one using a latent hardening formulation producing distinct slip system hardnesses. We find little difference between the amplitude of the single hardness and a crystal-average of the latent hardening values. The geometric hardening is different due to the differences in the textures predicted by each model. We also find that due to the high degree of symmetry in an fcc crystal, macroscopic stress-strain predictions using simulations employing crystal- and aggregateaveraged hardnesses are nearly identical. We find this to be true for several different mean field assumptions. An aggregate-averaged hardness may be preferred in light of the difficulty

  16. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  17. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  18. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  19. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  20. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  1. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  2. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  3. Irradiation hardening of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Morimura, T.; Narui, M.; Matsui, H.

    1996-10-01

    Irradiation response on the tensile properties of 9Cr2W steels has been investigated following FFTF/MOTA irradiations at temperatures between 646 and 873 K up to doses between 10 and 59 dpa. The largest irradiation hardening accompanied by the largest decrease in the elongation is observed for the specimens irradiated at 646 K at doses between 10 and 15 dpa. The irradiation hardening appears to saturate at a dose of around 10 dpa at the irradiation temperature. No hardening but softening was observed in the specimens irradiated at above 703 K to doses of 40 and 59 dpa. Microstructural observation by transmission electron microscope (TEM) revealed that the dislocation loops with the a<100> type Burgers vector and small precipitates which were identified to be M 6C type carbides existed after the irradiation at below 703 K. As for the void formation, the average size of voids increased with increasing irradiation temperature from 646 to 703 K. No voids were observed above 703 K. Irradiation softening was attributed to the enhanced recovery of martensitic structure under the irradiation. Post-irradiation annealing resulted in hardening by the annealing at 673 K and softening by the annealing at 873 K.

  4. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  5. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  6. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  7. Deformation in metals after low temperature irradiation: Part II - Irradiation hardening, strain hardening, and stress ratios

    SciTech Connect

    Byun, Thak Sang; Li, Meimei

    2008-03-01

    Effects of irradiation at temperatures 200oC on tensile stress parameters are analyzed for dozens of bcc, fcc, and hcp pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type; typically, the irradiation-hardening rates are large, in the range 100 - 1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa − (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.

  8. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  9. What factors control superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-09-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  10. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  11. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  12. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  13. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  14. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  15. [Hardened anodized aluminum as a replacement material for bracket manufacture].

    PubMed

    Fischer-Brandies, H; Bönhoff, M

    1994-12-01

    Attention has been repeatedly drawn to the problem of corrosion and the risk of allergic reaction to nickel resulting from the use of stainless steel brackets. In the search for a suitable alternative, manufacturers have turned to thin coating technology using hardened anodized aluminium. Applying resistance to corrosion and abrasion as the criteria to be met, they have selected aluminium alloy type 6082 as the material of choice. Purpose of this study is to examine the physical suitability of this material. Using the above noted alloy, 60 prototype brackets were made with a hardened anodized surface. They were then subjected to the following 3 stress tests: first an abrasion test using a tooth polishing machine, second, a deformation test using a device designed to simulate torque movement, and, third, a corrosion test. The effects on the brackets resulting from the three types of stress were evaluated by light microscopy. A quantitative analysis of the corrosion test was performed by ICP spectrometry. The control group consisted of conventional stainless steel brackets. The light microscopic analysis revealed no evidence of surface damage or signs of deformation in the prototype brackets. The steel brackets, on the other hand, showed clear signs of wear and corrosion. The quantitative analysis of the corrosion solution revealed metallic ion wear of 1.75 ng x mm-2 x h-1 for the prototypes subjected to abrasion. The steel brackets showed at a factor of around 104.6 metallic ion wear of 183 ng x mm-2 x h-1. In addition to this, no Ni ions were found in the corrosion solution of the prototype brackets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7851828

  16. Effectiveness of hardening threaded parts by plastic deformation

    SciTech Connect

    Pyshkin, V.A.; Belai, S.V.; Dyad'kova, I.G.

    1983-03-01

    The rules of hardening threaded parts by roller burning the root of the inner diameter of a thread are studied. The effectiveness of hardening increases where the allowance for the inner diameter increases. By equations, a change in the inner diameter can be used to determine the depth of work hardening residual compressive stress, fatigue limit, and the mechanical properties of the threaded part. The effective stress concentration factor, increase in transmission load, and average tensile stress in cyclic loading, are also calculated. Equations help to determine the depth of hardening necessary; the optimum conditions of burnishing; and the maximum increase in fatigue strength, with optimum hardening conditions.

  17. Organic coatings in simulated flue gas desulfurization environments: Final report

    SciTech Connect

    Leidheiser, H. Jr.; White, M.L.; Mills, D.J.

    1987-10-01

    Coatings prepared from the following resin systems and applied to steel were evaluated in simulated flue gas desulfurization environments: nine combinations of epoxy resin and amine hardeners, three vinyl systems, a polyester, a fluoropolymer, a urethane/asphalt and an electrostatically sprayed, fusion-bonded epoxy. The evaluation techniques used on the coatings before and after environmental exposure included: corrosion potential, AC conductance at 2 kHz, DC resistance, weight gain and tensile adhesion. The results for the nine combinations of three epoxy resins and three hardeners exposed to 0.1M H/sub 2/SO/sub 4/, and to H/sub 2/SO/sub 4/ containing other salts and adjusted to pH 0.5, showed that the hardener had more effect on behavior than the resin; a bisphenol A and two novolac resins showed the poorest performance when hardened with a mixed aromatic/aliphatic amine, and the best performance when hardened with an aliphatic or cycloaliphatic amine. Two epoxy systems showed particularly good performance: a bisphenol A hardened with a cycloaliphatic amine and a novolac hardened with an aliphatic amine. The electrostatically applied, fusion-bonded epoxy coating showed no evidence of deterioration of the coating nor corrosion of the substrate after 5000 h exposure to 0.1M H/sub 2/SO/sub 4/. Epoxy and vinyl coatings exhibited no cracking and no corrosion in welded and non-welded areas after thermal cycling twelve times between room temperature and 100 to 120/sup 0/C followed by exposure to acid. The epoxy coatings had better impact resistance after thermal cycling than the vinyl coatings. 15 refs., 20 figs., 23 tabs.

  18. Modeling the Case Hardening of Automotive Components

    NASA Astrophysics Data System (ADS)

    Munikamal, Tiruttani; Sundarraj, Suresh

    2013-04-01

    A generalized framework has been developed within ABAQUS to model the surface hardening heat treatment processes for automotive steel components. The macro-scale heat transfer and stress calculations during the heating and quenching are coupled with the microstructural phase calculations, defined through a user routine, to estimate key process parameters such as case depth and surface hardness. This model has been applied to predict these parameters in two key industrial processes, i.e., case hardening of crankshafts and case carburization of gears. The results of the case depth and hardness calculations have been validated with the literature and in-house plant data. The effect of varying quench conditions on the overall stress distribution changes within the component has been outlined.

  19. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  20. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  1. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  2. Work hardening: occupational therapy in industrial rehabilitation.

    PubMed

    Matheson, L N; Ogden, L D; Violette, K; Schultz, K

    1985-05-01

    Work hardening, presented in this paper as a "new" service for the industrially injured, is actually well grounded in the traditional models and practices of occupational therapy. From the profession's early roots in industrial therapy to the development of a variety of programs for the industrially injured through the 1950s and 1960s, the historical and philosophical bases of occupational therapy support the use of work as an evaluative and therapeutic medium. What is actually new is the adoption of terminology, technology, and a program format that fits in with the needs of consumers in the 1980s. Recent developments that created the need for the specialized services that occupational therapists are uniquely qualified to provide include growth of private sector vocational rehabilitation, changes in workers' compensation laws, and increasing costs of vocational rehabilitation. This paper describes work hardening in its present form. A case example is given that demonstrates how work hardening can be a cost-effective and time-saving bridge which spans the gap between curative medicine and the return to work. PMID:4014411

  3. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  4. [Photodynamic therapy of superficial bladder tumors].

    PubMed

    Misaki, T; Hisazumi, H; Hirata, A; Kunimi, K; Yamamoto, H; Amano, T; Kumaki, O; Koshida, K; Nishino, A; Nakazima, K

    1986-12-01

    Photodynamic therapy (PDT), using hematoporphyrin derivative (HPD) and the red light (wavelength 630 nm) of an argon-dye laser as the source of excitation energy was performed on 46 patients with superficial bladder tumors. Two methods of laser irradiation, (1) focal PDT using a 400 micron quartz fiber through a cystourethroscope in 22 patients with superficial bladder tumors and (2) whole bladder wall total PDT using a motor-driven laser light scattering device in 24 patients with multifocal carcinoma in situ and/or dysplasia of bladder mucosa associated with multicentric concurrent superficial tumors, were used. The patients in (2) had been referred for total cystectomy, and 19 of these 24 patients had a history of several transurethral resections, hyperthermia and/or instillation therapy. HPD 2-4 mg/kg was i.v. injected 48 to 72 hours before PDT. Judging from the results of 60 protrusions treated by focal PDT, the light power should be 200 mW/cm2 for 5-10 minutes or more and the total light energy should be 100 J/cm2 or more in tumors up to 2 cm in size. With focal PDT, 4 of the 22 patients had no recurrence with the mean tumor free time of 20.8 months. In 6 of the 24 patients treated with total PDT using 10, 20 or 30 J/cm2 of light energy, there was no recurrence with a mean tumor-free time of 7.5 months and there was no significant relationship between the recurrence rate and total light energy used. PMID:3825831

  5. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  6. Intumescent coatings containing 4,4'-dinitrosulfanilide

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1977-01-01

    A coating which is stable to the environment and to exposure to water, and which intumesces at a favorable temperature was developed. The composition comprises a mixture of 4, 4 prime dinitrousulfanilide as the intumescent agent in a polymer binder mixture of a chlorinated polyolefin, a bisphenol A epoxy resin, and a rubber-like amine hardener.

  7. Calculation of the temperature stresses in carburized parts during friction hardening

    SciTech Connect

    Kolyanko, Y.M.; Babei, Y.I.; Maksimishin, M.D.; Pryimak, V.I.

    1985-05-01

    For development of rational methods of friction hardening of parts subjected to chemicothermal treatment (guideways, lower blanking dies, drill bits, internal combustion engine crankshafts, etc.), it is necessary to know the distributions of temperature and stresses occurring in their surface layers. For this purpose the authors consider the problem in which a part is simulated by a half-space z > d with a coating 0less than or equal tozless than or equal tod, the physicomechanical properties of which, with the exception of Poisson's ratio, differ substantially.

  8. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  9. Principles of the creation and features of the formation of eutectic coatings from a liquid phase

    SciTech Connect

    Golubets, V.M.; Pashchenko, M.I.

    1985-05-01

    For the purpose of hardening steel with eutectic coatings, the corresponding composition of powders, pastes, daubings or solid metal element is fused directly on the surface of the part, or prepared eutectic alloys are applied to the surface to be hardened. The purpose of this study was an investigation of the features of the formation on steel of thick (more than 1mm) diffusion-fused eutectic coatings from powder mixtures.

  10. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  11. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  12. Radiation hardening of diagnostics for fusion reactors

    SciTech Connect

    Baur, J.F.; Engholm, B.A.; Hacker, M.P.; Maya, I.; Miller, P.H.; Toffolo, W.E.; Wojtowicz, S.S.

    1981-12-01

    A list of the diagnostic systems presently used in magnetic confinement fusion experiments is compiled herein. The radiation-sensitive components are identified, and their locations in zones around the machine are indicated. A table of radiation sensitivities of components is included to indicate the data available from previous work in fission reactor, space probe, and defense-related programs. Extrapolation and application to hardening of fusion diagnostic systems requires additional data that are more specific to the fusion radiation environment and fusion components. A list is also given of present radiation-producing facilities where near-term screening tests of materials and components can be performed.

  13. Corneal endothelial changes in superficial epithelial keratopathy.

    PubMed

    Brooks, A M; Grant, G; Gillies, W E

    1986-05-01

    A series of five cases is described in which superficial punctate keratopathy was associated with endothelial cell changes. The most striking change was the presence of dark areas or blebs, usually two to four cell diameters in extent. There was also distortion and crumpling of the corneal endothelium, mild pleomorphism and polymegathism of the endothelial cells, with a reduced cell count in some cases. These blebs have previously been reported in hard and soft contact lens wearers and are due to intercellular oedema with separation of endothelial cells from Descemet's membrane. Anoxia and interference with osmosis have been proposed as possible mechanisms for the production of these blebs, but our cases demonstrate that fine disruption of the corneal epithelium can affect the integrity of the corneal endothelium and may lead to significant damage over a long period of time. PMID:3801208

  14. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints

    PubMed Central

    KUMAR, P.; OKA, M.; TOGUCHIDA, J.; KOBAYASHI, M.; UCHIDA, E.; NAKAMURA, T.; TANAKA, K.

    2001-01-01

    The uppermost superficial surface layer of articular cartilage, the ‘lamina splendens’ which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at −10 °C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 μm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  15. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints.

    PubMed

    Kumar, P; Oka, M; Toguchida, J; Kobayashi, M; Uchida, E; Nakamura, T; Tanaka, K

    2001-09-01

    The uppermost superficial surface layer of articular cartilage, the 'lamina splendens' which provides a very low friction lubrication surface in articular joints, was investigated using atomic force microscopy (AFM). Complementary specimens were also observed under SEM at -10 degrees C without dehydration or sputter ion coating. Fresh adult pig osteochondral specimens were prepared from the patellas of pig knee joints and digested with the enzymes, hyaluronidase, chondroitinase ABC and alkaline protease. Friction coefficients between a pyrex glass plate and the osteochondral specimens digested by enzymes as well as natural (undigested) specimens were measured, using a thrust collar apparatus. Normal saline, hyaluronic acid (HA) and a mixture of albumin, globulin, HA (AGH) were used as lubrication media. The surface irregularities usually observed in SEM studies were not apparent under AFM. The articular cartilage surface was resistant to hyaluronidase and also to chondroitinase ABC, but a fibrous structure was exhibited in alkaline protease enzymes-digested specimens. AFM analysis revealed that the thickness of the uppermost superficial surface layer of articular cartilage was between 800 nm and 2 microm in adult pig articular cartilage. The coefficient of friction (c.f.) was significantly higher in chondroitinase ABC and alkaline protease enzymes digested specimens. Generally, in normal saline lubrication medium, c.f. was higher in comparison to HA and AGH lubrication media. The role of the uppermost, superficial surface layer of articular cartilage in the lubrication mechanism of joints is discussed. PMID:11554503

  16. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  17. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    PubMed

    Brinkman, Romy J; Hage, J Joris

    2016-02-01

    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre. PMID:26761152

  18. Hardened Client Platforms for Secure Internet Banking

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  19. Hardness variability in commercial and hardened technologies

    SciTech Connect

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  20. Hardness variability in commercial and hardened technologies

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Winokur, P. S.; Meisenheimer, T. L.; Sexton, F. W.; Roeske, S. B.; Knoll, M. G.

    1994-01-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is 'built-in' through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  1. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  2. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  3. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  4. Precipitation hardening in 350 grade maraging steel

    SciTech Connect

    Viswanathan, U.K. . Radiometallurgy Div.); Dey, G.K. . Metallurgy Division); Asundi, M.K. )

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  5. Hardening and yielding in colloidal gels

    NASA Astrophysics Data System (ADS)

    Del Gado, Emanuela; Colombo, Jader; Bouzid, Mehdi

    Attractive colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. With interaction strengths comparable to the thermal energy, their stress-bearing network can locally restructure via breaking and reforming inter-particle bonds. We use molecular dynamics simulations of a model system to investigate the strain hardening and the yielding process. During shear start up protocol, the system exhibits strong localization of tensile stresses that may be released through the breaking and formation of new bonds. In this regime, the small amplitude oscillatory shear analysis shows that the storage and the loss modulus follow a power law behavior that are closely reminiscent of experimental observations. At large accumulated strains, the strain-induced reorganization of the gel may trigger flow heterogeneities and eventually lead to the yielding of the gel via a quasi brittle damage of its structure.

  6. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  7. Laser hardening process simulation for mechanical parts

    NASA Astrophysics Data System (ADS)

    Tani, G.; Orazi, L.; Fortunato, A.; Campana, G.; Cuccolini, G.

    2007-02-01

    In this paper a numerical simulation of laser hardening process is presented. The Finite Difference Method (FDM) was used to solve the heat transfer and the carbon diffusion equations for a defined workpiece geometry. The model is able to predict the thermal cycle into the target material, the phase transformations and the resulting micro-structures according to the laser parameters, the workpiece dimensions and the physical properties of the workpiece. The effects of the overlapping tracks of the laser beam on the resulting micro-structures is also considered. The initial workpiece micro-structure is taken into account in the simulation by a digitized photomicrograph of the ferrite perlite distribution before the thermal cycle. Experimental tests were realized on a C43 plate and the good agreement between the theoretical and experimental results is shown.

  8. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  9. Dilatant hardening of fluid-saturated sandstone

    NASA Astrophysics Data System (ADS)

    Makhnenko, Roman Y.; Labuz, Joseph F.

    2015-02-01

    The presence of pore fluid in rock affects both the elastic and inelastic deformation processes, yet laboratory testing is typically performed on dry material even though in situ the rock is often saturated. Techniques were developed for testing fluid-saturated porous rock under the limiting conditions of drained, undrained, and unjacketed response. Confined compression experiments, both conventional triaxial and plane strain, were performed on water-saturated Berea sandstone to investigate poroelastic and inelastic behavior. Measured drained response was used to calibrate an elasto-plastic constitutive model that predicts undrained inelastic deformation. The experimental data show good agreement with the model: dilatant hardening in undrained triaxial and plane strain compression tests under constant mean stress was predicted and observed.

  10. Performance characteristics of new superficially porous particles☆

    PubMed Central

    DeStefano, Joseph J.; Schuster, Stephanie A.; Lawhorn, Jason M.; Kirkland, Joseph J.

    2013-01-01

    Superficially porous particles (also called Fused-Core, core shell or porous shell particles) show distinct advantages over comparable totally porous particles for separating small molecules. Columns of Fused-Core particles exhibit very high efficiency because of superior eddy dispersion properties (smaller van Deemter A term). The efficiency for columns of 2.7 μm Fused-Core particles actually rivals that for sub-2 μm totally porous particles with only about one-half the back pressure. These Fused-Core particles show special advantages with larger molecules for fast separations at high mobile phase velocities because of superior mass transfer (kinetic) properties (smaller van Deemter C term). This report describes the effect of different particle size and porous shell thicknesses on chromatographic performance for Fused-Core particles. Particle characteristics can significantly affect factors of separation importance. For example, the reduced plate height of packed columns is affected by particle diameter. Interestingly, larger Fused-Core particles show smaller reduced plate heights than smaller Fused-Core particles. Also, porous shell thickness has a strong effect on solute retention as well as separation efficiency, and particle surface area has a direct influence on sample loading characteristics. Fused-Core particles with a wide range of physical characteristics have been developed that allows the preparation of stable, efficient packed columns. PMID:22939204

  11. YSGG 2790-nm superficial ablative and fractional ablative laser treatment.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    The 2790-nm wavelength YSGG laser was introduced for aesthetic purposes under the trade name Pearl by Cutera in 2007. In clinical use, the Pearl superficial resurfacing laser has proved effective and well tolerated for the correction of superficial brown epidermal dyschromia and superficial fine lines and scars, and the Pearl Fractional laser produces excellent improvement in both dyschromia and improvement of deeper lines and moderately deep acne scarring. The two laser treatments can be combined in a single treatment session on different parts of the face or on the entire face, depending on patient needs and priorities. PMID:21763987

  12. Superficial Cancer in the Sudan. A Study of 1225 Primary Malignant Superficial Tumours

    PubMed Central

    Malik, M. O. A.; Hidaytalla, A.; Daoud, E. H.; el Hassan, A. M.

    1974-01-01

    Superficial cancer in the Sudan accounted for 17·2% of all malignant tumours examined histologically during the period 1962-72 inclusive. Of the 4 pathological types studied, squamous cell carcinoma was the commonest (63·3% of all superficial cancers) followed by malignant melanoma (18·8%) and basal cell carcinoma (14·9%) whilst Kaposi's sarcoma formed only 3% of the total. Generally, twice as many cases occurred in males as in females, with the exception of Kaposi's sarcoma where all the patients were males. Although a relatively high proportion of cases occurred in the young age groups, the age-specific incidence was noted to increase with age. Similarities and differences in the anatomical site of tumours compared with European and African series were noted. Certain differences emerged in the geographical distribution of these tumours in the Northern and Southern regions of the Sudan—regions which differ both ethnologically and geographically—thus suggesting possible roles played by racial and environmental factors in this respect. PMID:4447778

  13. Robotic weld overlay coatings for erosion control. Quarterly progress report, October 1993--December 1993

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1994-01-20

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was to correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  14. Improved wound healing in blue LED treated superficial abrasions

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Bacci, Stefano; De Siena, Gaetano; Cicchi, Riccardo; Pavone, Francesco; Alfieri, Domenico

    2013-06-01

    A blue-LED photocoagulator device was designed in order to induce a selective photocoagulation effect in superficial bleeding. An in vivo study in rat back skin evidenced an improved healing process in the LED treated abrasions.

  15. Properties of modified anhydride hardener and its cured resin

    NASA Astrophysics Data System (ADS)

    Qiang, Chen; Bingjun, Gao; Jinglin, Chen; Tongzhao, Xu

    2000-01-01

    Methyl-nadic-tetrahydric-methylanhydride (MNA), nadic-tetrahydric-methylanhydride (NA), anhydride hardener was modified by solid diol molecule to improve the impregnation resin fracture toughness in cryogenic temperature. The lap-shear strength, transverse tension as well as the thermal shock test showed that the resin cured by the modified anhydride hardener had higher bond strength and more toughness at 77 K. After the experiment of vacuum pressure impregnation (VPI) processing, it was found that this resin had a longer usable life, better impregnating properties, but higher initial viscosity than the resin hybrid HY925 as hardener.

  16. Strain hardening of metal parts with use of impulse wave

    NASA Astrophysics Data System (ADS)

    Kirichek, A. V.; Soloviev, D. L.

    2016-04-01

    This work describes a strain hardening method with the use of impulse waves. This method increases energy transfer to the strained material extending its technological capabilities with development of a deep strengthened layer and allowing formation of a heterogeneous hardened structure using plastic deformation. This structure has specified distribution of the hard and soft (visco-plastic) areas. Due to development of the heterogeneous structure in the surface layer created by strain hardening with impulse wave, durability of parts that suffer contact fatigue loading is significantly increased.

  17. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers

    PubMed Central

    Minni, John; Herold, David

    2015-01-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas. PMID:26705443

  18. Altered Superficial White Matter on Tractography MRI in Alzheimer's Disease

    PubMed Central

    Reginold, William; Luedke, Angela C.; Itorralba, Justine; Fernandez-Ruiz, Juan; Islam, Omar; Garcia, Angeles

    2016-01-01

    Background/Aims Superficial white matter provides extensive cortico-cortical connections. This tractography study aimed to assess the diffusion characteristics of superficial white matter tracts in Alzheimer's disease. Methods Diffusion tensor 3T magnetic resonance imaging scans were acquired in 24 controls and 16 participants with Alzheimer's disease. Neuropsychological test scores were available in some participants. Tractography was performed by the Fiber Assignment by Continuous Tracking (FACT) method. The superficial white matter was manually segmented and divided into frontal, parietal, temporal and occipital lobes. The mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AxD) and fractional anisotropy (FA) of these tracts were compared between controls and participants with Alzheimer's disease and correlated with available cognitive tests while adjusting for age and white matter hyperintensity volume. Results Alzheimer's disease was associated with increased MD (p = 0.0011), increased RD (p = 0.0019) and increased AxD (p = 0.0017) in temporal superficial white matter. In controls, superficial white matter was associated with the performance on the Montreal Cognitive Assessment, Stroop and Trail Making Test B tests, whereas in Alzheimer's disease patients, it was not associated with the performance on cognitive tests. Conclusion Temporal lobe superficial white matter appears to be disrupted in Alzheimer's disease. PMID:27489557

  19. Beam Hardening Corrections in Quantitative Computed Tomography

    SciTech Connect

    Vedula, Venumadhav; Venugopal, Manoharan; Raghu, C.; Pandey, Pramod

    2007-03-21

    Volumetric computed tomography (VCT) is the emerging 3D NDE inspection technique that gives highest throughput and better image quality. Industrial components in general demands higher x-ray energy for inspection for which polychromatic x-ray sources are used in common. Polychromatic nature of the x-rays gives rise to non-linear effects in the VCT projection data measurements called to be the beam hardening (BH) effects. BH produces prominent artifacts in the reconstructed images thereby deteriorating the image quality. Quantitative analysis such as density quantification, dimensional analysis etc., becomes difficult with the presence of these artifacts. This paper describes the BH correction using preprocessing technique for the homogeneous materials. Selection of effective energy at which the monoenergetic linear attenuation coefficient of a particular material equals to that of the polyenergetic beam is critical for BH correction. Various methods to determine the effective energy and their consequence in the quantitative measurements have been investigated in the present study. In this paper, BH corrections for heterogeneous materials have also been explored.

  20. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  1. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  2. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  3. Thermomechanical Behavior of Developmental Thermal Barrier Coating Bond Coats

    NASA Astrophysics Data System (ADS)

    Pandey, Amit; Tolpygo, Vladimir K.; Hemker, Kevin J.

    2013-04-01

    Thermal expansion, microtensile, and stress relaxation experiments have been performed to contrast and compare the thermal and mechanical response of two experimental (L1 and H1) coatings provided by Honeywell Corporation (Morristown, NY). Thermal expansion experiments reveal that both coatings have coefficients of thermal expansion (CTE) that vary with temperature and that the CTE mismatch between the coatings and superalloy substrate is significant in the case of L1 as compared to H1. Values of the 0.2% offset yield stress (YS), Young's modulus ( E), and hardening exponent ( n) are reported. Room-temperature microtensile experiments show higher strain hardening and a very low value of failure strain for L1 as compared to H1. At elevated temperatures, there is a significant decrease in the YS of as-received L1 for (924 MPa at room temperature to 85 MPa at 1000°C) as compared to H1. Finally, a power law creep description for high-temperature stress relaxation is developed and the measured values of the stress exponent ( n = 3) and activation energies ( Q creep = 200-250 kJ/mol) are shown to be consistent with power law creep.

  4. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  5. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  6. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  7. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  8. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  9. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  10. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis

    PubMed Central

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-01-01

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  11. Fabrication of a superhydrophobic coating with high adhesive effect to substrates and tunable wettability

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Zhang, Zhaozhu; Zhu, Xiaotao; Men, Xuehu; Ge, Bo; Zhou, Xiaoyan

    2015-02-01

    In this paper, a new superhydrophobic coating was successfully prefabricated by a facile sol-gel process which was made up of first the surface chemical reaction of (3-Glycidyloxypropyl) trimethoxysilane (A-187) and SiO2 particles and subsequent spray-coating onto the substrate. Further hardening treatment and surface fluorination allowed the SiO2 coating with the optimum mass ratio of 2.0:1 to exhibit nice superhydrophobic property and high adhesive effect to substrates. Our researches indicated that the mass ratio of A-187 and SiO2 particles could significantly control the surface morphology (or the wettability) and affect adhesion force of the superhydrophobic coating to substrates. In the process, hardening temperature was quite important for rapid evaporation of the solvent and then fast hardening of the coating despite the absence of the similar effect to the mass ratio of A-187 and SiO2 particles on the superhydrophobic coating, and moreover, a higher hardening temperature could also highly improve transparency of the superhydrophobic coating. These findings suggest that the superhydrophobic coating should have promising commercial applications as a self-cleaning product.

  12. Strain hardening of fcc metal surfaces induced by microploughing

    SciTech Connect

    Day, R.D.; Dickerson, R.M.; Russell, P.E.

    1998-12-01

    Microploughing experiments were used as a method for better understanding the ploughing mechanism in gold and iridium single crystals. The plough depths ranged from 20 nm in iridium to 1,600 nm in gold. Yield stress profiles and TEM analyses indicate that both materials strain harden even when very small volumes of material are involved. Strain hardening theory, as applied to bulk material, is useful in analyzing the results.

  13. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  14. Role of fibronectin in intravesical BCG therapy for superficial bladder cancer.

    PubMed

    Ratliff, T L; Kavoussi, L R; Catalona, W J

    1988-02-01

    Intravesical bacillus Calmette-Guerin (BCG) has been demonstrated to be effective both for prophylaxis and treatment of superficial bladder cancer. In order to identify the progression of events that result in BCG-mediated antitumor activity, studies were performed to evaluate the mechanism of binding of BCG within the bladder. Histological and quantitative studies in a mouse model revealed that BCG attached to the bladder wall only in areas of urothelial damage. Preliminary in vitro data showed that BCG attached to surfaces coated with extracellular matrix proteins. Further studies were then performed using purified extracellular matrix proteins to identify the proteins responsible for attachment. BCG were observed to attach to surfaces coated only with purified fibronectin (FN) but not to other purified proteins including laminin, collagen or fibrinogen. The attachment of BCG to purified FN in vitro was dose dependent and was inhibited by anti-FN antibodies. Moreover, BCG attachment in vivo to bladders with damaged urothelial surfaces was inhibited more than 95% by anti-FN antibodies, but binding was not affected by anti-laminin antibodies or preimmune serum. A survey of commercially available BCG vaccines (Pasteur, Tice, Glaxo, Connaught) showed that only Glaxo BCG did not attach to FN-coated surfaces. Glaxo BCG also was shown to express inferior antitumor activity suggesting that the absence of FN binding by Glaxo may have been associated with the absence of antitumor activity of the vaccine. PMID:3276931

  15. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  16. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  17. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  18. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  19. Fluorescence photodetection of urothelial neoplastic foci in superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Jichlinski, Patrice; Forrer, Martin; Mizeret, Jerome C.; Braichotte, Daniel; Wagnieres, Georges A.; Zimmer, Georges; Guillou, Louis; Schmidlin, Franz R.; Graber, Peter; van den Bergh, Hubert; Leisinger, Hans-Juerg

    1997-05-01

    The prognosis of superficial bladder cancer in terms of recurrence and disease progression is related to the bladder tumor multiplicity and the presence of concomitant 'plane' tumors such as high grade dysplasia and carcinoma in situ (CIS). This study on 33 patients tries to demonstrate the interest of fluorescence cystoscopy in transurethral resection of superficial bladder cancer The method is based on the detection of the protoporphyrin IX (PpIX) induced fluorescence in urothelial cancer cells by topical administration of 5- aminolevulinic acid (ALA). The sensitivity and the specificity of this procedure on apparently normal mucosa in superficial bladder cancer is respectively estimated at 82.9% and 81.3%. Thus, fluorescence cystoscopy is a simple and reliable method in mapping the bladder mucosa, especially in case of multifocal bladder disease and it facilitates the screening of occult dysplasia.

  20. Engineering Superficial Zone Features in Tissue Engineered Cartilage

    PubMed Central

    Chen, Tony; Hilton, Matthew J.; Brown, Edward B.; Zuscik, Michael J.; Awad, Hani A.

    2013-01-01

    A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. PMID:23239161

  1. [Origin of the differences of superficial potentials in Rana esculenta].

    PubMed

    Fontas, B; Mambrini, J

    1977-07-18

    The spatial distributions of superficial D.C. potentials on the skin of Rana esculenta have been compared to those of the intensity of short-circuit current (S.C.C.) expressing the transcutaneous active transport of sodium ions. It has been observed that the sites of maximum D.C. potentials coincide with the localisations of maximum S.C.C. values. Moreover, superficial D.C. potentials and S.C.C. are similarly modified by the depression of metabolic activity due to lowered temperature or poisoning by dinitrophenol (DNP). It is thus proposed that the spatial distribution of the transcutaneous active transport system for sodium ions is the origin of the electric generator of superficial D.C. potentials. PMID:409557

  2. Rationale of subdermal superficial liposuction related to the anatomy of subcutaneous fat and the superficial fascial system.

    PubMed

    Gasperoni, C; Salgarello, M

    1995-01-01

    The liposuction technique has changed greatly over the years. In 1989, the authors presented subdermal superficial liposuction which treats the superficial fat layer and yields better skin retraction. With this technique the surgeon can treat thin adipose layers to obtain better results in more cases than the traditional liposuction technique. The technique can be used in cases with difficult skin adjustment and in secondary cases when "deep only" liposuction has been performed and there were residual adiposities. Subdermal superficial liposuction evolved so that one could obtain good skin retraction by performing massive liposuction of all the fat layers. The authors named this technique MALL (Massive All Layer Liposuction). The technique is applied in body areas where the fat layer is very thick and stretches the skin because of its volume and weight such as in the abdomen, posterior arms, and internal surface of the upper third of the thighs. MALL liposuction drastically reduces the indications for abdominoplasty and inner thigh and arm dermolipectomies. Knowledge of the anatomy of the subcutaneous fat and the superficial fascial system allows one to explain the subdermal superficial liposuction from an anatomical point of view, to perform a more rational and effective procedure, and to differentiate the technique depending on the area of the body. PMID:7900550

  3. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  4. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  5. Injection therapy for the management of superficial subcutaneous lipomas.

    PubMed

    Amber, Kyle T; Ovadia, Steven; Camacho, Ivan

    2014-06-01

    Superficial subcutaneous lipomas are common benign tumors of the subcutaneous adipose tissue. Removal of superficial subcutaneous lipomas is achieved with simple surgical excision for the purposes of improved cosmesis, removing painful lipomas, or for the removal of a lipoma affecting function through mass effect. As research in localized fat reduction has improved, therapies successful in this domain have been applied to the management of lipomas as a surgical alternative. In this review article, the authors review the basic science of injection therapies used in the management of lipomas as well as their potential efficacy and limitations. PMID:25013540

  6. Injection Therapy for the Management of Superficial Subcutaneous Lipomas

    PubMed Central

    Ovadia, Steven; Camacho, Ivan

    2014-01-01

    Superficial subcutaneous lipomas are common benign tumors of the subcutaneous adipose tissue. Removal of superficial subcutaneous lipomas is achieved with simple surgical excision for the purposes of improved cosmesis, removing painful lipomas, or for the removal of a lipoma affecting function through mass effect. As research in localized fat reduction has improved, therapies successful in this domain have been applied to the management of lipomas as a surgical alternative. In this review article, the authors review the basic science of injection therapies used in the management of lipomas as well as their potential efficacy and limitations. PMID:25013540

  7. Update on therapy for superficial mycoses: review article part I*

    PubMed Central

    Dias, Maria Fernanda Reis Gavazzoni; Quaresma-Santos, Maria Victória Pinto; Bernardes-Filho, Fred; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new, antifungal therapeutic alternatives are also highlighted, as well as available options on the Brazilian and world markets. PMID:24173183

  8. Anisotropic hardening model based on non-associated flow rule and combined nonlinear kinematic hardening for sheet materials

    NASA Astrophysics Data System (ADS)

    Taherizadeh, Aboozar; Green, Daniel E.; Yoon, Jeong W.

    2013-12-01

    A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill's 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill's 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger's effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multi-stage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.

  9. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  10. Dynamic bake hardening of interstitial-free steels

    SciTech Connect

    Dehghani, K.; Jonas, J.J.

    2000-05-01

    Two types of dynamic strain aging (DSA) strengthening methods were investigated to determine their potentials for industrial use. They are referred to here as dynamic-static bake hardening (DSBH) and dynamic bake hardening (DBH). For this purpose, a 0.06 pct Ti interstitial-free (IF) steel was reheated to 900 C and cooled at 12 C/s to room temperature. It was then dynamically bake hardened in the temperature range 100 C to 250 C to strains of 2 to 8 pct at a strain rate of 10{sup {minus}3} s{sup {minus}1}. The tensile properties were determined before and after these treatments. It was found that the occurrence of DSA during dynamic baking led to significant increases in work-hardening rate as well as in the final strength. The results indicate that, for a given solute carbon level, the dynamically and then statically aged samples have higher strengths than those that are bake hardened in the conventional way.

  11. General analytical shakedown solution for structures with kinematic hardening materials

    NASA Astrophysics Data System (ADS)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-04-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  12. Oxide dispersion hardened mechanically alloyed materials for high temperatures

    NASA Technical Reports Server (NTRS)

    Benjamin, J. S.; Strassburg, F. W.

    1982-01-01

    The procedure of mechanical alloying makes it possible to obtain, with the aid of powder-metallurgy techniques, alloys that consist of a metallic matrix in which very fine oxide particles are dispersed. Mechanically alloyed compound powders can be used for making either forged or hot-rolled semifinished products. For these products, dispersion strengthening and precipitation hardening has been combined. At high temperatures, the strength characteristics of the alloy are determined by both dispersion hardening and by precipitation hardening processes. The effect produced by each process is independent of that due to the other. Attention is given to the principle of mechanical alloying developed by Benjamin (1970, 1976), the strength characteristics of mechanically alloyed materials, the corrosion resistance of mechanically alloyed material at high temperatures, and the preparation and characteristics of the alloy MA 6000 E.

  13. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  14. Crack resistance of tungsten hardened by dispersed refractory oxides

    SciTech Connect

    Babak, A.V.; Uskov, E.I.

    1985-05-01

    The authors present the results of an investigation of the crack resistance in a wide temperature range of the production types of tungsten VMP-S (conditionally designated technical purity tungsten with a higher degree of deformation than type VMP tungsten), VMP-3 (hardened with refractory oxides), and VMP-4 (with the addition of copper and hardened with refractory oxides) produced using the same method. It is reported that hardening of technical purity tungsten with refractory oxides increases the resistance of the material to crack development in the 20-2000C range, but the upper boundary of the temperature area of the ductile-to-brittle transition is shifted in the direction of higher temperatures, which must be taken into consideration in the use of the investigated alloys as structural materials for objects of new technology.

  15. Engineering design guidelines for electromagnetic pulse hardening of naval equipment

    NASA Astrophysics Data System (ADS)

    Rogers, S. R.; Perala, R. A.; Rosich, R. K.; Cook, R. B.; Rudolph, T. H.

    1981-07-01

    This document is intended to be used by engineers who design and manufacture shipboard equipment. It is complete in the sense that both the EMP hazard and the means of mitigating the hazard (hardening) are presented. The hazard is described, which not only discusses EMP generation in a general sense, but it also presents specific threat levels for EMP fields and transient currents and voltages included on cables and antennas which are connected to electronic equipment. This specific threat constitutes an EMP survivability criteria which must be met by the mission critical equipment. The necessary hardening technology areas include volume shielding, cable shielding and connectors, interface susceptibility analysis, terminal protective devices, upset and upset hardening, common mode rejection techniques, optical isolation, and grounding/bonding techniques. Test techniques which can verify equipment hardness are presented along with methods to observe the equipment's hardness and maintain the hardness.

  16. Defect Detection in Composite Coatings by Computational Simulation Aided Thermography

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Souza, M. P. V.; Rebello, J. M. A.

    2010-02-01

    Thermography is based on the measurement of superficial temperature distribution of an object inspected subjected to tension, normally thermal heat. This measurement is performed with a thermographic camera that detects the infrared radiation emitted by every object. In this work thermograph was simulated by COMSOL software for optimize experimental parameters in composite material coatings inspection.

  17. Aquarius: Tour de la salinidad superficial del mar

    NASA Video Gallery

    Recorrido narrado de la información sobre la salinidad superficial de los océanos recogida por el instrumento Aquarius de la NASA durante su primer año de funcionamiento. Algunas de las caracte...

  18. On the hardening and softening of nanocrystalline materials

    SciTech Connect

    Fougere, G.E.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. . Materials Science Div.)

    1993-04-01

    Nanocrystalline Pd and Cu samples have been thermally treated to determine whether the relation between hardness and grain size depend on the method used to vary the grain sizes. Previous reports indicate that hardening with decreasing grain size resulted from data obtained using individual samples, while softening with decreasing grain size resulted from data from a given sample that had been thermally treated. Hardening and softening regimes were evident for the nanocrystalline cu, and the hardness improvements over the original as-consolidated state were maintained throughout the thermal treatments. This review examines our hardness results for Cu and Pd and those for other nanocrystalline materials.

  19. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  20. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  1. Laser hardening techniques on steam turbine blade and application

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Qunli; Kong, Fanzhi; Ding, Qingming

    Different laser surface hardening techniques, such as laser alloying and laser solution strengthening were adopted to perform modification treatment on the local region of inset edge for 2Cr13 and 17-4PH steam turbine blades to prolong the life of the blades. The microstructures, microhardness and anti-cavitation properties were investigated on the blades after laser treatment. The hardening mechanism and technique adaptability were researched. Large scale installation practices confirmed that the laser surface modification techniques are safe and reliable, which can improve the properties of blades greatly with advantages of high automation, high quality, little distortion and simple procedure.

  2. Hardenability of austenite in a dual-phase steel

    SciTech Connect

    Sarwar, M.; Priestner, R.

    1999-06-01

    A low-carbon, low-alloy steel was intercritically heat treated and thermomechanically processed to study the martensitic hardenability of austenite present. Rolling of the two-phase ({alpha} + {gamma}) microstructure elongated austenite particles and reduced their martensitic hardenability because the {alpha}/{gamma} interface where new ferrite forms during cooling was increased by the particle elongation. The martensite particles obtained in rolled material were also elongated or fibered in the rolling direction. Therefore, the thermomechanical processing of a two-phase ({alpha} + {gamma}) mixture has the detrimental effect of increasing the quenching power needed to yield a specific amount of martensite.

  3. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. Statistical thermodynamics of strain hardening in polycrystalline solids

    SciTech Connect

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  5. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  6. Statistical thermodynamics of strain hardening in polycrystalline solids

    SciTech Connect

    Langer, James S.

    2015-01-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  7. Modelling work hardening of aluminium alloys containing dispersoids

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn

    2013-08-01

    The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.

  8. Why semiconductors must be hardened when used in space

    SciTech Connect

    Winokur, P. S.

    2000-01-04

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

  9. Statistical thermodynamics of strain hardening in polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010), 10.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  10. Major Superficial White Matter Abnormalities in Huntington's Disease

    PubMed Central

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  11. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    NASA Astrophysics Data System (ADS)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  12. Estudio del comportamiento tribologico y de las interacciones de superficie de nuevos nanofluidos ionicos

    NASA Astrophysics Data System (ADS)

    Espinosa Rodriguez, Tulia

    tribocorrosion processes. The formation of a coating layer on magnesium alloys from phosphonate imidazolium ionic liquids by immersion and by chronoamperometry has been described. The new coatings reduce the abrasive wear in the magnesium-aluminium alloy but they are not effective in the magnesium-zinc alloy, which prevent the formation of continuous coatings. Los liquidos ionicos son sales liquidas a temperatura ambiente o bajas temperaturas que presentan excelentes propiedades fisico-quimicas. En el presente trabajo se estudian como lubricantes en problemas tribologicos complejos como la lubricacion de metales contra si mismos, el desarrollo de lubricantes base agua y de nuevas superficies autolubricadas. Cuando no es posible reducir la friccion y desgaste mediante lubricacion, como en las aleaciones de magnesio, los liquidos ionicos se han estudiado como precursores de recubrimientos protectores. Se han determinado las interacciones superficiales y los procesos de corrosion sobre cobre y sobre acero con diferentes liquidos ionicos proticos y aproticos para desarrollar nuevos lubricantes y aditivos. En el contacto cobre/cobre, excepto el liquido ionico protico derivado del oleato, todos los liquidos ionicos estudiados presentan mejor comportamiento tribologico que el lubricante comercial Polialfaolefina 6. En el contacto acero/zafiro, los nuevos liquidos ionicos proticos son buenos lubricantes cuando se utilizan en estado puro, y, como aditivos en agua, generan peliculas adsorbidas sobre la superficie del metal reduciendo la friccion y el desgaste tras la evaporacion del agua. Para evitar el periodo de alta friccion inicial en presencia de agua, se han generado peliculas superficiales de liquido ionico sobre el acero en condiciones estaticas. El mejor comportamiento lubricante tanto en el contacto cobre/cobre como en el contacto acero/zafiro se obtiene para el liquido ionico protico derivado del anion adipato, con dos grupos carboxilicos. Las interacciones de los grupos

  13. Potential of photon and particle beams for surface treatment of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Celis, J. P.; Franck, M.; Roos, J. R.; Kreutz, E. W.; Gasser, A.; Wehner, M.; Wissenbach, K.; Pattyn, N.

    1992-01-01

    Laser irradiation and ion implantation have been investigated in order to modify in a two-step process the characteristics of TiN ceramic coatings obtained by physical vapour deposition (PVD) on steel surfaces. Depending on the beam properties and processing variables used, material modifications can be induced either in the coating itself, at the coating/substrate interface, or in the underlying substrate material. Laser irradiation and ion implantation offer possibilities of tailoring the functional surface properties of coated steels with respect to friction and wear resistance by the modification of surface roughness, by the alloying of ceramic coatings with either metallic or metalloid elements, and by inducing substrate hardening.

  14. Coating Process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A black chrome coating, originally developed for spacecraft solar cells, led to the development of an efficient flat plate solar collector. The coating, called Chromonyx, helps the collector absorb more heat. Olympic Solar Corporation was formed to electroplate the collector. The coating technique allows 95% of the sun's energy to be utilized. The process is widely used.

  15. An SEU-hardened CMOS data latch design

    SciTech Connect

    Rockett, L.R. Jr.

    1988-12-01

    A Single Event Upset (SEU)-hardened Complementary Metal-Oxide Semiconductor (CMOS) data latch design is described. The hardness is achieved by virtue of the latch design, thus no fabrication process or design groundrule development is required. Hardness is gained with comparatively little adverse impact on performance. Cyclotron tests provided hardness verification.

  16. SEU-hardened storage cell validation using a pulsed laser

    SciTech Connect

    Velazco, R.

    1996-12-01

    Laser tests performed on a prototype chip to validate new SEU-hardened storage cell designs revealed unexpected latch-up and single-event upset phenomena. The investigations that identified their location show the existence of a topology-dependent dual node upset mechanism. Design solutions are suggested to avoid its occurrence.

  17. Overcoming scaling concerns in a radiation-hardening CMOS technology

    SciTech Connect

    Maimon, J.; Haddad, N.

    1999-12-01

    Scaling efforts to develop an advanced radiation-hardened CMOS process to support a 4M SRAM are described. Issues encountered during scaling of transistor, isolation, and resistor elements are discussed, as well as the solutions used to overcome these issues. Transistor data, total dose radiation results, and the performance of novel resistors for prevention of single event upsets (SEU) are presented.

  18. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  19. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  20. SEGR response of a radiation-hardened power MOSFET technology

    SciTech Connect

    Wheatley, C.F.; Titus, J.L.; Burton, D.I.; Carley, D.R.

    1996-12-01

    SEGR response curves are presented for eighteen different device types of radiation-hardened power MOSFETs. Comparisons are made to demonstrate the technology`s insensitivity to die size, rated blocking voltage, channel conductivity, and temperature. From this data, SEGR cross-sectional area curves are inferred.

  1. A radiation-hardened 16/32-bit microprocessor

    SciTech Connect

    Hass, K.J.; Treece, R.K.; Giddings, A.E.

    1989-01-01

    A radiation-hardened 16/32-bit microprocessor has been fabricated and tested. Our initial evaluation has demonstrated that it is functional after a total gamma dose of 5Mrad(Si) and is immune to SEU from Krypton ions. 3 refs., 2 figs.

  2. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  3. Iterative Beam Hardening Correction for Multi-Material Objects

    PubMed Central

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  4. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  5. Review of radiation hardening techniques for EDFAs in space environment

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Tian, CuiPing; Wang, YingYing; Wang, Pu

    2015-03-01

    The damage mechanism and test technology of space radiation environment to space equipment was classified and the radiation protection demand of active fiber for space application was analyzed. The radiation hardening techniques of Ce doping, hydrogen loading and pre-radiation exposure and thermal annealing for Er:Yb co-doped fiber was surveyed.

  6. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  7. Effect of Hf on structure and age hardening of Ti–Al-N thin films

    PubMed Central

    Rachbauer, R.; Blutmager, A.; Holec, D.; Mayrhofer, P.H.

    2012-01-01

    Protective coatings for high temperature applications, as present e.g. during cutting and milling operations, require excellent mechanical and thermal properties during work load. The Ti1 − xAlxN system is industrially well acknowledged as it covers some of these requirements, and even exhibits increasing hardness with increasing temperature in its cubic modification, known as age hardening. The thermally activated diffusion at high temperatures however enables for the formation of wurtzite AlN, which causes a rapid reduction of mechanical properties in Ti1 − xAlxN coatings. The present work investigates the possibility to increase the formation temperature of w-AlN due to Hf alloying up to 10 at.% at the metal sublattice of Ti1 − xAlxN films. Ab initio predictions on the phase stability and decomposition products of quaternary Ti1 − x − yAlxHfyN alloys, as well as the ternary Ti1 − xAlxN, Hf1 − xAlxN and Ti1 − zHfzN systems, facilitate the interpretation of the experimental findings. Vacuum annealing treatments from 600 to 1100 °C indicate that the isostructural decomposition, which is responsible for age hardening, of the Ti1 − x − yAlxHfyN films starts at lower temperatures than the ternary Ti1 − xAlxN coating. However, the formation of a dual phase structure of c-Ti1 − zHfzN (with z = y/(1 − x)) and w-AlN is shifted to ~ 200 °C higher temperatures, thus retaining a film hardness of ~ 40 GPa up to ~ 1100 °C, while the Hf free films reach the respective hardness maximum of ~ 38 GPa already at ~ 900 °C. Additional annealing experiments at 850 and 950 °C for 20 h indicate a substantial improvement of the oxidation resistance with increasing amount of Hf in Ti1 − x − yAlxHfyN. PMID:22319223

  8. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  9. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  10. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    SciTech Connect

    Krivezhenko, Dina S. Drobyaz, Ekaterina A. Bataev, Ivan A. Chuchkova, Lyubov V.

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  11. Common superficial fungal infections in patients with AIDS.

    PubMed

    Aly, R; Berger, T

    1996-05-01

    Superficial mycotic infections such as seborrheic dermatitis, tinea pedis, tinea corporis, and onychomycosis are common in patients infected with human immunodeficiency virus (HIV). In communities where HIV infections are frequent, some of these clinical presentations serve as markers of the stage of HIV infection. The diagnosis of superficial fungal infection in HIV-positive patients may be difficult because of atypical clinical manifestations. Therefore, to ensure a correct diagnosis, skin scrapings should be collected for potassium hydroxide preparations and cultures. Most forms of dermatophytosis in HIV-positive patients respond well to many topical antifungal agents, such as azoles, terbinafine, and ciclopirox olamine. If the disease is chronic and extensive, then ketoconazole, fluconazole, and itraconazole are each effective. PMID:8722840

  12. A traumatic superficial temporal artery aneurysm after a bicycle accident

    PubMed Central

    Veen, Egbert J.D.; Poelmann, Floris B.; IJpma, Frank F.A.

    2014-01-01

    A male cyclist presented with a swelling on the forehead. Six weeks before, he fell of his bike and smashed his head on the ground while wearing a helmet. A smooth lump of 1 cm had evolved on the temporal side of his forehead in a few weeks. Duplex ultrasonography demonstrated a dilated vessel with a minor defect in the luminal wall. Surgical exploration revealed an aneurysm of the superficial temporal artery (STA). The aneurysm was surgically removed and the patient recovered uneventfully. Owing to its superficial course, the STA is vulnerable to blunt head trauma. Traumatic aneurysms of the STA should be a differential diagnostic consideration in patients with a history of trauma and a swelling on their head. PMID:25352578

  13. Effects of superficial gas velocity on process dynamics in bioreactors

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  14. A traumatic superficial temporal artery aneurysm after a bicycle accident.

    PubMed

    Veen, Egbert J D; Poelmann, Floris B; IJpma, Frank F A

    2014-01-01

    A male cyclist presented with a swelling on the forehead. Six weeks before, he fell of his bike and smashed his head on the ground while wearing a helmet. A smooth lump of 1 cm had evolved on the temporal side of his forehead in a few weeks. Duplex ultrasonography demonstrated a dilated vessel with a minor defect in the luminal wall. Surgical exploration revealed an aneurysm of the superficial temporal artery (STA). The aneurysm was surgically removed and the patient recovered uneventfully. Owing to its superficial course, the STA is vulnerable to blunt head trauma. Traumatic aneurysms of the STA should be a differential diagnostic consideration in patients with a history of trauma and a swelling on their head. PMID:25352578

  15. Disseminated Superficial Porokeratosisin a Patient with Gastric Cancer

    PubMed Central

    Kim, Shin Woo; Min, Seong Uk; Won, Chong Hyun

    2008-01-01

    Disseminated superficial porokeratosis (DSP) is a rare variant of porokeratosis, which is characterized histologically by cornoid lamella and clinically by central atrophy with elevated borders. DSP is usually associated with immunosuppressive states and hematopoietic malignancies, but rarely with malignancies of visceral organs. A 65-year-old male presented with numerous brownish macules with elevated borders on the trunk and limbs that had been present for 1 year. Before the visit to our clinic, gastric cancer was diagnosed at about the same time the skin lesions suddenly increased in size and number. Clinical and histopathological examination revealed that the lesions were consistent with DSP. We herein report a rare case of disseminated superficial porokeratosis that occurred in association with gastric cancer.

  16. Measurement of the angle of superficial tension by images

    NASA Astrophysics Data System (ADS)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  17. Cytological diagnosis of superficial acral fibromyxoma: A case report

    PubMed Central

    Raghupathi, Divakar Sullery; Krishnamurthy, Jayashree; Kakoti, Lopa Mudra

    2015-01-01

    Superficial acral fibromyxoma (SAF) is a rare, distinctive benign soft tissue lesion that often involves the fingers and toes, with the great toe being the most frequently affected site. We report a case of SAF diagnosed by fine needle aspiration cytology and confirmed by histopathology. The pre-operative cytological diagnosis will help the surgeon to plan for a wider excision that prevents recurrence. PMID:25948945

  18. Embedding of Cortical Representations by the Superficial Patch System

    PubMed Central

    Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.

    2011-01-01

    Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233

  19. Superficial lightning injuries--their "fractal" shape and origin.

    PubMed

    ten Duis, H J; Klasen, H J; Nijsten, M W; Pietronero, L

    1987-04-01

    The origin of superficial lightning burns was studied. A recently developed mathematical model was invoked to identify fern-shaped burns as 'so-called' fractals. On the basis of this model and discharge experiments, we conclude that 'fractal burns' are caused by surface discharges of a positive polarity. The recognition of such burns can help to elucidate the type and mechanism of the lightning strike. PMID:3580938

  20. Superficial venous insufficiency from the infernal to the endothermal.

    PubMed

    Carradice, D

    2014-01-01

    This review presents the common diseases associated with superficial venous insufficiency of the leg. These include varicose veins, swelling, skin damage and ulceration. The benefits and rationale behind treatment are discussed, followed by the historical advances from ancient mortality and prayer to the modern endovenous revolution. Finally, an overview of modern treatment options will discuss the evidence supporting the gold standard of endothermal ablation and the cost effectiveness of treatment at this time of challenging resource limitation. PMID:24417822

  1. Nucleic acid separations using superficially porous silica particles

    PubMed Central

    Close, Elizabeth D.; Nwokeoji, Alison O.; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M.; Hook, Elliot C.; Wood, Helen; Dickman, Mark J.

    2016-01-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80 Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19 mers) was observed with pore sizes of 150 Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400 Å. Furthermore, we have utilised 150 Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  2. Adjuvant photodynamic therapy (PDT) of the superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Russakov, I. G.; Teplov, A. A.; Filonenko, E. V.; Ul'yanov, R. V.; Bystrov, A. A.

    2005-08-01

    Superficial transitional cell carcinoma represents 50 to 80% of newly diagnosed bladder cancer in various countries. Transurethral resection of the urinary bladder is the standard procedure for biopsy and treatment superficial bladder cancer. However recurrence tumors after transurethral resection alone is high enough (50-90%). Intravesical chemotherapy for prophylaxis after complete transurethral resection is reducing recurrence rate about 1 5%. Adjuvant intravesical Bacillus of Calmette and Guerin (BCG) is reducing recurrence rate about 30%, but frequency side effects of this therapy is very high. Purpose of this study is appreciate efficacy adjuvant PDT with photosensitizer Photogeme (Russia) of superficial bladder cancer for prophylaxis after complete transurethral resection. The follow up was from 3 to 63 months (27 months, on average). Sixty-five patients (75.6%) showed no recurrence. For the follow up period, the recurrence was revealed in 21 (24.4%) patient, in two of them it was progressing (one case of invasive growth and one case of remote metastases). Four cases of recurrence were revealed 4 months after the surgery. In other cases, the recurrence was diagnosed from 9 to 18 months.

  3. Interdigital foot infections: Corynebacterium minutissimum and agents of superficial mycoses

    PubMed Central

    Sariguzel, Fatma Mutlu; Koc, A. Nedret; Yagmur, Gülhan; Berk, Elife

    2014-01-01

    Interdigital foot infections are mostly caused initially by dermatophytes, yeasts and less frequently by bacteria. Erythrasma caused by Corynebacterium minutissimum can be confused with superficial mycoses. The aim of the study was to determine the prevalence of the etiologic agents of superficial mycoses and the frequency of Corynebacterium minutissimum in interdigital foot infections. All the samples obtained from the 121 patients with interdigital foot infections were examined directly with the use of 20% potassium hydroxide mounts and Gram stain under the microscope and cultured on Sabouraud’s dextrose agar plates. In identification of superficial mycoses, the rate was found to be 14% with the cultural method and 14% with direct microscopic examination. Using a combination of direct microscopic examination and culture, a 33.8% ratio was achieved. In the culture of these samples, the most isolated factor was Trichophyton rubrum (33.7%). In 24 of the patients (19.8%) Corynebacterium minutissimum was detected by Gram staining, in 6 of these patients Trichophyton rubrum was found, Trichophyton mentagrophytes was found in 2 and Trichosporon spp. was found in 1. The examination of interdigital foot lesions in the laboratory, the coexistence of erythrasma with dermatophytes and yeast should be considered. PMID:25477907

  4. MALL liposuction: the natural evolution of subdermal superficial liposuction.

    PubMed

    Gasperoni, C; Salgarello, M

    1994-01-01

    Subdermal superficial liposuction, first presented by the authors at the ISAPS Congress at Zurich in 1989, is performed with thin three-hole Mercedes cannulas (diameter ranges from 1.8 to 2 mm) to treat small and secondary adiposities and to allow better skin retraction. Suction of the subdermal layer of fat reduces the thickness and consistency of the superficial fat and enhances the possibility of skin retraction. In cases where there is a large adiposity of the abdomen, arms, or inner thighs, there is a conspicuous volume of fat whose weight tends to overstretch and to carry the overlying skin downward. In these cases we need to reduce the large fat volume to permit effective skin retraction. Therefore, we apply the principles of traditional liposuction with those of subdermal superficial liposuction to aspirate large amounts of fat from all the adipose layers. We call this technique Massive All Layer Liposuction (MALL). The amount of skin shrinkage after this "defatting" procedure is remarkable and the clinical results are very good. The MALL technique can be applied to other areas as well. In our experience this new liposuction technique has dramatically reduced the indications of abdominoplasties and dermolipectomies of inner thighs and arms. PMID:7976757

  5. Interdigital foot infections: Corynebacterium minutissimum and agents of superficial mycoses.

    PubMed

    Sariguzel, Fatma Mutlu; Koc, A Nedret; Yagmur, Gülhan; Berk, Elife

    2014-01-01

    Interdigital foot infections are mostly caused initially by dermatophytes, yeasts and less frequently by bacteria. Erythrasma caused by Corynebacterium minutissimum can be confused with superficial mycoses. The aim of the study was to determine the prevalence of the etiologic agents of superficial mycoses and the frequency of Corynebacterium minutissimum in interdigital foot infections. All the samples obtained from the 121 patients with interdigital foot infections were examined directly with the use of 20% potassium hydroxide mounts and Gram stain under the microscope and cultured on Sabouraud's dextrose agar plates. In identification of superficial mycoses, the rate was found to be 14% with the cultural method and 14% with direct microscopic examination. Using a combination of direct microscopic examination and culture, a 33.8% ratio was achieved. In the culture of these samples, the most isolated factor was Trichophyton rubrum (33.7%). In 24 of the patients (19.8%) Corynebacterium minutissimum was detected by Gram staining, in 6 of these patients Trichophyton rubrum was found, Trichophyton mentagrophytes was found in 2 and Trichosporon spp. was found in 1. The examination of interdigital foot lesions in the laboratory, the coexistence of erythrasma with dermatophytes and yeast should be considered. PMID:25477907

  6. Microstrip-antenna design for hyperthermia treatment of superficial tumors.

    PubMed

    Montecchia, F

    1992-06-01

    Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative conditions: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicate that: i) the operating frequency is either single or multiple according to the applicator-mode, "resonant" or "traveling-wave," and can be chosen in the useful frequency range for hyperthermia (200-1000 MHz) according to the tumor cross-section and depth; ii) the heating pattern flexibility increases going from the simple geometry disk to the annular-slot and spiral applicators; iii) a distilled-water bolus is required; iv) the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance. PMID:1601439

  7. Microstrip-antenna design for hyperthermia treatment of superficial tumors

    SciTech Connect

    Montecchia, F. )

    1992-01-01

    Microstrip antennas have many different advantages over other RF/MW radiative applicators employed for superficial hyperthermia treatment. This is mainly due to their compact and body-conformable structure as well as to printed circuit board techniques, both of which allow a wide design flexibility for superficial tumor heating. Among the wide variety of radiator configurations, three microstrip antennas of increasing complexity with electromagnetic and heating characteristics potentially suitable as applicators for superficial hyperthermia have been designed, developed, and tested in different radiative condition: a microstrip disk, a microstrip annular-slot, and a microstrip spiral. Electromagnetic design criteria are presented together with the determinations of the applicator return loss versus frequency and thermograms of the near-field heating pattern in muscle-like phantom. The results are in good agreement with theory and indicated that: the operating frequency is either single or multiple according to the applicator-mode, 'resonant' or 'traveling-wave', and can be chosen in the useful frequency range for hyperthermia according to the tumor cross-section and depth; the heating pattern flexibility increases going form the simple geometry disk to the annular-slot and spiral applicators; a distilled-water bolus is required; the annular-slot applicator exhibits the highest efficiency, while the spiral applicator provides the best performance.

  8. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI). PMID:24945369

  9. High-Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Edmonds, Brian J.

    2010-01-01

    NASA PS400 is a solid lubricant coating invented for high-temperature tribological applications. This plasma-sprayed coating is a variant of the previously patented PS304 coating, and has been formulated to provide higher density, smoother surface finish, and better dimensional stability. This innovation is a new composite material that provides a means to reduce friction and wear in mechanical components. PS400 is a blend of a nickel-molybdenum binder, chrome oxide hardener, silver lubricant, and barium fluoride/calcium fluoride eutectic lubricant that can either be sprayed or deposited by other means, such as powder metallurgy. The resulting composite material is then finished by grinding and polishing to produce a smooth, self-lubricating surface.

  10. Automated superficial lamellar keratectomy augmented by excimer laser masked PTK in the management of severe superficial corneal opacities

    PubMed Central

    Alio, J L; Javaloy, J; Merayo, J; Galal, A

    2004-01-01

    Aim: To assess superficial lamellar keratectomy augmented by excimer laser smoothening with sodium hyaluronate 0.25%, for the management of superficial corneal opacities. Methods: Consecutive procedure performed in 14 eyes (13 patients) with an automated microkeratome and excimer laser phototherapeutic keratectomy (PTK) smoothening using sodium hyaluronate 0.25%. Main outcome measures: UCVA, BCVA, pachymetry, degree of haze, ray tracing analysis, and complications. Mean follow up was 12 (SD 1.6) months. Results: Mean preoperative haze from previous corneal refractive surgeries was 3.5 (SD 0.5) (11/14 cases). In one case, opacity was caused by ocular trauma and in two by infectious keratitis. The mean preoperative UCVA was 0.7 logMAR (0.2 (SD 0.13) decimal value). BCVA was 0.4 logMAR (0.4 (SD 0.17) decimal value). Mean preoperative corneal pachymetry was 508 (SD 62.5) µm and mean opacity depth measured by corneal confocal microscopy was 115.2 (SD 49.4) µm. At 6 months, 71.4% of the eyes with previous corneal refractive surgery showed grade I haze or less. Mean postoperative corneal pachymetry at 6 months was 352.36 (SD 49.05) µm. Conclusions: Automated superficial lamellar keratectomy combined with excimer laser PTK smoothening assisted by sodium hyaluronate 0.25% induces a significant improvement of corneal transparency and visual acuity in cases of corneal opacity caused by previous refractive surgery, ocular trauma, and keratitis. PMID:15377553

  11. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  12. Precipitation hardening in a dental low-gold alloy.

    PubMed

    Kim, Hyung-Il; Park, Young-Hwan; Lee, Hee-Kyung; Seol, Hyo-Joung; Shiraishi, Takanobu; Hisatsune, Kunihiro

    2003-03-01

    Age-hardening characteristics in a dental low-gold alloy composed of 40.0 wt% Au-35.0 wt% Ag-7.9 wt% Pd-7.0 wt% Cu-5.0 wt% In-3.5 wt% Zn-1.5 wt% Sn, were investigated by means of the hardness test, XRD study, SEM observations and EPMA. The following results were obtained. The age-hardening was characterized by a precipitation of Cu-rich alpha2 phase in the a phase. The softening that occurred following prolonged ageing was due to the heterogeneous formation of the fine nodular precipitates composed of the Ag-rich alpha1 phase and the Cu-rich alpha2 phase at the grain boundaries of the a phase. PMID:12790292

  13. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  14. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  15. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  16. Stress and Distortion Evolution During Induction Case Hardening of Tube

    NASA Astrophysics Data System (ADS)

    Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Ferguson, Lynn; Li, Zhichao

    2013-07-01

    Simulation of stresses during heat treatment relates usually to furnace heating. Induction heating provides a very different evolution of temperature in the part and therefore different stresses. This may be positive for service properties or negative, reducing component strength or even causing cracks. A method of coupled simulation between electromagnetic, thermal, structural, stress, and deformation phenomena during induction tube hardening is described. Commercial software package ELTA is used to calculate the power density distribution in the load resulting from the induction heating process. The program DANTE is used to predict temperature distribution, phase transformations, stress state, and deformation during heating and quenching. Analyses of stress and deformation evolution were made on a simple case of induction hardening of external (1st case) and internal (2nd case) surfaces of a thick-walled tubular body.

  17. Magnetic hardening in FePt nanostructured films

    SciTech Connect

    Liu, J.P.; Liu, Y.; Luo, C.P.; Shan, Z.S.; Sellmyer, D.J.

    1997-04-01

    FePt films have been prepared by sputtering Fe/Pt multilayers onto glass or silicon substrates. The thickness of the Fe and Pt layers was adjusted with the Fe:Pt atomic ratio from about 1:1 to 2:1. Magnetic hardening is observed after heat treatment at elevated temperatures, which led to coercivity values exceeding 20 kOe in samples with an Fe:Pt ratio around 1.2:1. The hardening originates from the formation of the tetragonal FePt phase with high magnetocrystalline anisotropy and a favorable microstructure. Two-phase composite films containing hard and soft phases were obtained when the Fe:Pt ratio increased. Under optimized processing conditions, composite films with energy products larger than 30 MGOe at room temperature have been successfully produced. {copyright} {ital 1997 American Institute of Physics.}

  18. Magnetic hardening in FePt nanostructured films

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Liu, Y.; Luo, C. P.; Shan, Z. S.; Sellmyer, D. J.

    1997-04-01

    FePt films have been prepared by sputtering Fe/Pt multilayers onto glass or silicon substrates. The thickness of the Fe and Pt layers was adjusted with the Fe:Pt atomic ratio from about 1:1 to 2:1. Magnetic hardening is observed after heat treatment at elevated temperatures, which led to coercivity values exceeding 20 kOe in samples with an Fe:Pt ratio around 1.2:1. The hardening originates from the formation of the tetragonal FePt phase with high magnetocrystalline anisotropy and a favorable microstructure. Two-phase composite films containing hard and soft phases were obtained when the Fe:Pt ratio increased. Under optimized processing conditions, composite films with energy products larger than 30 MG Oe at room temperature have been successfully produced.

  19. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  20. CMOS inverter design-hardened to the total dose effect

    SciTech Connect

    Roche, F.M.; Salager, L.

    1996-12-01

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to {sup 60}Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption.

  1. Springback After the Lateral Bending of T-Section Rails of Work-Hardening Materials

    NASA Astrophysics Data System (ADS)

    Song, Youshuo; Yu, Zhonghua

    2013-11-01

    This paper studies the springback after the lateral bending of T-section rails, considering the work-hardening materials. A linear-hardening model and an elastic-plastic power-exponent hardening model of the material are adopted and compared with the real experimental stress-strain curve obtained from the uniaxial tension tests. The analytical formulas for the springback and residual curvatures are given. The numerical results indicate that the material hardening directly affects the accuracy of springback prediction compared with the experimental results. Besides, springback prediction is not sensitive to hardening parameters in the beginning of elastic-plastic bending deformation. Although there is an apparent yield stage in the true stress-strain curve, the adopted hardening models can achieve an allowable relative error, if hardening parameters are properly selected.

  2. Morbus Coats

    PubMed Central

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  3. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  4. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, D.

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line {Theta} = {Theta}{sub 0} {minus} K{sub 2}{sigma}, where {Theta}{sub 0} is theoretical work hardening rate at zero stress and K{sub 2} is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of {Theta}{sub 0} and K{sub 2} and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The {Theta}{sub 0} and K{sub 2} associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of {Theta}{sub 0} and K{sub 2}. The actual value of K{sub 2} in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K{sub 2} than microstructures that remain partially or fully unrecrystallized. The higher K{sub 2} value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  5. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    DOEpatents

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  6. A beam hardening correction method based on HL consistency

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Tang, Shaojie; Yu, Hengyong

    2006-08-01

    XCT with polychromatic tube spectrum causes artifact called beam hardening effect. The current correction in CT device is carried by apriori polynomial from water phantom experiment. This paper proposes a new beam hardening correction algorithm that the correction polynomial depends on the relativity of projection data in angles, which obeys Helgasson-Ludwig Consistency (HL Consistency). Firstly, a bi-polynomial is constructed to characterize the beam hardening effect based on the physical model of medical x-ray imaging. In this bi-polynomial, a factor r(γ,β) represents the ratio of the attenuation contributions caused by high density mass (bone, etc.) to low density mass (muscle, vessel, blood, soft tissue, fat, etc.) respectively in the projection angle β and fan angle γ. Secondly, let r(γ,β)=0, the bi-polynomial is degraded as a sole-polynomial. The coefficient of this polynomial can be calculated based on HL Consistency. Then, the primary correction is reached, which is also more efficient in theoretical than the correction method in current CT devices. Thirdly, based on the result of a normal CT reconstruction from the corrected projection data, r(γ,β) can be estimated. Fourthly, the coefficient of bi-polynomial can also be calculated based HL Consistency and the final correction are achieved. Experiments of circular cone beam CT indicate this method an excellent property. Correcting beam hardening effect based on HL Consistency, not only achieving a self-adaptive and more precise correction, but also getting rid of regular inconvenient water phantom experiments, will renovate the correction technique of current CT devices.

  7. Mechanism and technological particular features of thermomagnetic hardening

    NASA Astrophysics Data System (ADS)

    Borovskij, S. M.; Mukhin, V. S.

    1993-10-01

    The particular features of mechanism associated with piece hardening of gas-turbine engines are analyzed. This mechanism is connected with the change of conditions for phase equilibrium and kinetics of transformations. It is important to estimate the nature of the formation of new ferromagnetic centers at phase transitions, when permanent, pulsed, or periodic magnetic fields act. Two factors should be taken into account: the power effect of the magnetic field and the increase of 'magnetic segregation' of a source nonferromagnetic matrix.

  8. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  9. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  10. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.