Sample records for cochlear blood flow

  1. Disorders of cochlear blood flow.

    PubMed

    Nakashima, Tsutomu; Naganawa, Shinji; Sone, Michihiko; Tominaga, Mitsuo; Hayashi, Hideo; Yamamoto, Hiroshi; Liu, Xiuli; Nuttall, Alfred L

    2003-09-01

    The cochlea is principally supplied from the inner ear artery (labyrinthine artery), which is usually a branch of the anterior inferior cerebellar artery. Cochlear blood flow is a function of cochlear perfusion pressure, which is calculated as the difference between mean arterial blood pressure and inner ear fluid pressure. Many otologic disorders such as noise-induced hearing loss, endolymphatic hydrops and presbycusis are suspected of being related to alterations in cochlear blood flow. However, the human cochlea is not easily accessible for investigation because this delicate sensory organ is hidden deep in the temporal bone. In patients with sensorineural hearing loss, magnetic resonance imaging, laser-Doppler flowmetry and ultrasonography have been used to investigate the status of cochlear blood flow. There have been many reports of hearing loss that were considered to be caused by blood flow disturbance in the cochlea. However, direct evidence of blood flow disturbance in the cochlea is still lacking in most of the cases.

  2. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

    PubMed

    Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J

    2006-02-01

    We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with

  3. Blood flow to the promontory in cochlear otosclerosis.

    PubMed

    Nakashima, T; Sone, M; Fujii, H; Teranishi, M; Yamamoto, H; Otake, H; Sugiura, M; Naganawa, S

    2006-04-01

    To investigate Schwartze sign with measurements of blood flow to the promontory in patients with cochlear otosclerosis. Prospective clinical study. Tertiary referral centre. Five patients with cochlear otosclerosis and five control subjects. Significant decalcification around the cochlea was observed by computed tomography (CT) in patients with cochlear otosclerosis. However, no recognizable lesion was observed at the oval window in two patients. One patient had mixed hearing loss and four patients had sensorineural hearing loss without an air-bone gap. The relationship between CT findings and the presence or absence of Schwartze sign was investigated. Blood flow to the promontory was measured through the tympanic membrane using laser speckle flowgraphy and laser Doppler flowmetry. The Schwartze sign correlated significantly with otosclerotic lesions invading the promontory. Patients with otosclerosis exhibited elevated and pulsating blood flow to the promontory with the Schwartze sign. Computed tomography demonstrated that cochlear otosclerosis can exist without the oval window lesion. Schwartze sign can be used as a sign of the otosclerotic invasion to the promontory. The reddening of the Schwartze sign is likely due to increased blood flow.

  4. Betahistine metabolites, aminoethylpyridine, and hydroxyethylpyridine increase cochlear blood flow in guinea pigs in vivo.

    PubMed

    Bertlich, Mattis; Ihler, Fritz; Sharaf, Kariem; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2014-10-01

    Betahistine is a histamine-like drug that is used in the treatment of Ménière's disease. It is commonly believed that betahistine increases cochlear blood flow and thus decreases the endolymphatic hydrops that is the cause of Ménière's. Despite common clinical use, there is little understanding of the kinetics or effects of its metabolites. This study investigated the effect of the betahistine metabolites aminoethylpyridine, hydroxyethylpyridine, and pyridylacetic acid on cochlear microcirculation. Guinea pigs were randomly assigned to one of the groups: placebo, betahistine, or equimolar amounts of aminoethylpyridine, hydroxyethylpyridine, or pyridylacetic acid. Cochlear blood flow and mean arterial pressure were recorded for three minutes before and 15 minutes after treatment. Thirty Dunkin-Hartley guinea pigs assigned to one of five groups with six guinea pigs per group. Betahistine, aminoethylpyridine, and hydroxyethylpyridine caused a significant increase in cochlear blood flow in comparison to placebo. The effect seen under aminoethylpyridin was greatest. The group treated with pyridylacetic acid showed no significant effect on cochlear blood flow. Aminoethylpyridine and hydroxyethylpyridine are, like betahistine, able to increase cochlear blood flow significantly. The effect of aminoethylpyridine was greatest. Pyridylacetic acid had no effect on cochlear microcirculation.

  5. Histaminergic H3-Heteroreceptors as a Potential Mediator of Betahistine-Induced Increase in Cochlear Blood Flow.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Freytag, Saskia; Weiss, Bernhard G; Strupp, Michael; Canis, Martin

    2015-01-01

    Betahistine is a histamine-like drug that is considered beneficial in Ménière's disease by increasing cochlear blood flow. Acting as an agonist at the histamine H1-receptor and as an inverse agonist at the H3-receptor, these receptors as well as the adrenergic α2-receptor were investigated for betahistine effects on cochlear blood flow. A total of 54 Dunkin-Hartley guinea pigs were randomly assigned to one of nine groups treated with a selection of H1-, H3- or α2-selective agonists and antagonists together with betahistine. Cochlear blood flow and mean arterial pressure were recorded for 3 min before and 15 min after infusion. Blockage of the H3- or α2-receptors caused a suppression of betahistine-mediated typical changes in cochlear blood flow or blood pressure. Activation of H3-receptors caused a drop in cochlear blood flow and blood pressure. H1-receptors showed no involvement in betahistine-mediated changes of cochlear blood flow. Betahistine most likely affects cochlear blood flow through histaminergic H3-heteroreceptors. © 2015 S. Karger AG, Basel.

  6. Fingolimod (FTY-720) is Capable of Reversing Tumor Necrosis Factor Induced Decreases in Cochlear Blood Flow.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Weiss, Bernhard G; Freytag, Saskia; Jakob, Mark; Strupp, Michael; Pellkofer, Hannah; Canis, Martin

    2017-09-01

    The potential of Fingolimod (FTY-720), a sphingosine-1-phosphate analogue, to revoke the changes in cochlear blood flow induced by tumor necrosis factor (TNF) was investigated. Impairment of cochlear blood flow has often been considered as the common final pathway of various inner ear pathologies. TNF, an ubiquitous cytokine, plays a major role in these pathologies, reducing cochlear blood flow via sphingosine-1-phosphate-signaling. Fifteen Dunkin-Hartley guinea pigs were randomly assigned to one of three groups (placebo/placebo, TNF/placebo, TNF/FTY-720). Cochlear microcirculation was quantified over 60 minutes by in vivo fluorescence microscopy before and after topical application of placebo or TNF (5 ng/ml) and after subsequent application of placebo or FTY-720 (200 μg/ml). Treatment with TNF led to a significant decrease of cochlear blood flow.Following this, application of placebo caused no significant changes while application of FTY-720 caused a significant rise in cochlear blood flow. FTY-720 is capable of reversing changes in cochlear blood flow induced by application of TNF. This makes FTY-720 a valid candidate for potential treatment of numerous inner ear pathologies.

  7. Fibro-vascular coupling in the control of cochlear blood flow.

    PubMed

    Dai, Min; Shi, Xiaorui

    2011-01-01

    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained. We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation. The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity.

  8. Acute hyperfibrinogenemia impairs cochlear blood flow and hearing function in guinea pigs in vivo.

    PubMed

    Ihler, Fritz; Strieth, Sebastian; Pieri, Nicos; Göhring, Peter; Canis, Martin

    2012-03-01

    Impairment of microcirculation is a possible cause of sudden sensorineural hearing loss (SSNHL). Fibrinogen is known as a risk factor for both microvascular dysfunction and SSNHL. Therefore, the aim of this study was to investigate the effect of elevated serum levels of fibrinogen on cochlear blood flow and hearing function in vivo. One group of guinea pigs received two consecutive injections of 100 mg fibrinogen while a control group received equimolar doses of albumin. Measurements of cochlear microcirculation by intravital microscopy and of hearing thresholds by auditory brainstem response (ABR) recordings were carried out before, after first and after second injection. Ten healthy guinea pigs were randomly assigned to a treatment group or a control group of five animals each. Serum fibrinogen levels were elevated after the first and second injections of fibrinogen compared to basal values and control group respectively. Increasing levels of fibrinogen were paralleled by decreasing cochlear blood flow as well as increasing hearing thresholds. Hearing threshold correlated negatively with cochlear blood flow. The effect of microcirculatory impairment on hearing function could be explained by a malfunction of the cochlear amplifier. Further investigation is needed to quantify cochlear potentials under elevated serum fibrinogen levels.

  9. Comparative effects of glycerol and Urografin on cochlear blood flow and serum osmolarity.

    PubMed

    Noi, O; Makimoto, K

    1998-09-01

    Glycerol, an osmotic diuretic, has been used for the diagnosis and treatment of endolymphatic hydrops. Hearing improvements in hydropic ears are attributed to its dehydrating effect. In addition to this effect, glycerol also increases cochlear blood flow. Urografin, another hyperosmotic agent used for vasography, is similarly known to increase local blood flow. The present study compared these two hyperosmotic agents, glycerol and Urografin, in their effects on cochlear blood flow and serum osmolarity. Laser Doppler flowmetry on the lateral wall of the cochlea revealed that the increase in cochlear blood flow with a 30-min infusion (0.025 ml/min) of 76% Urografin continued for a longer time than with a 30-min infusion (0.025 ml/min) of 50% (v/v) glycerol. The significant increases appeared at 20 and 30 min after the infusion with the former; 10, 20, 30, 40, 50 and 60 min after the infusion with the latter. Intravenous infusion of these agents also caused elevation in serum osmolarity. This elevation was appreciably greater with Urografin infusion (maximal increase: about 30 mOsm on average) than with glycerol infusion (maximal increase: about 6 mOsm on average), and the former elevation appeared to be longer lasting than the latter. These differences were ascribed to differences between glycerol and Urografin with respect to the creation of an osmotic gradient across the capillary walls of cochlear blood vessels. Since glycerol penetrates the interstitial space and moves into inner ear fluids, the gradient may decline faster. It would be assumed that a higher concentration of the hyperosmotic agent in the capillary blood causes more vasodilatation and lowering of blood viscosity. Alternatively, direct action of these agents on the vascular wall may affect some biological processes, leading to vasodilatation in different degrees and durations with different agents. Hearing improvement with glycerol administration in hydropic ears was also discussed from the

  10. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography.

    PubMed

    Dziennis, Suzan; Reif, Roberto; Zhi, Zhongwei; Nuttall, Alfred L; Wang, Ruikang K

    2012-10-01

    Reduced cochlear blood flow (CoBF) is a main contributor to hearing loss. Studying CoBF has remained a challenge due to the lack of available tools. Doppler optical microangiography (DOMAG), a method to quantify single-vessel absolute blood flow, and laser Doppler flowmetry (LDF), a method for measuring the relative blood flow within a large volume of tissue, were used for determining the changes in CoBF due to systemic hypoxia in mice. DOMAG determined the change in blood flow in the apical turn (AT) with single-vessel resolution, while LDF averaged the change in the blood flow within a large volume of the cochlea (hemisphere with ∼1 to 1.5 mm radius). Hypoxia was induced by decreasing the concentration of oxygen-inspired gas, so that the oxygen saturation was reduced from >95% to ∼80%. DOMAG determined that during hypoxia the blood flow in two areas of the AT near and far from the helicotrema were increased and decreased, respectively. The LDF detected a decrease in blood flow within a larger volume of the cochlea (several turns averaged together). Therefore, the use of DOMAG as a tool for studying cochlear blood flow due to its ability to determine absolute flow values with single-vessel resolution was proposed.

  11. Effects of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography

    NASA Astrophysics Data System (ADS)

    Dziennis, Suzan; Reif, Roberto; Zhi, Zhongwei; Nuttall, Alfred L.; Wang, Ruikang K.

    2012-10-01

    Reduced cochlear blood flow (CoBF) is a main contributor to hearing loss. Studying CoBF has remained a challenge due to the lack of available tools. Doppler optical microangiography (DOMAG), a method to quantify single-vessel absolute blood flow, and laser Doppler flowmetry (LDF), a method for measuring the relative blood flow within a large volume of tissue, were used for determining the changes in CoBF due to systemic hypoxia in mice. DOMAG determined the change in blood flow in the apical turn (AT) with single-vessel resolution, while LDF averaged the change in the blood flow within a large volume of the cochlea (hemisphere with ˜1 to 1.5 mm radius). Hypoxia was induced by decreasing the concentration of oxygen-inspired gas, so that the oxygen saturation was reduced from >95% to ˜80%. DOMAG determined that during hypoxia the blood flow in two areas of the AT near and far from the helicotrema were increased and decreased, respectively. The LDF detected a decrease in blood flow within a larger volume of the cochlea (several turns averaged together). Therefore, the use of DOMAG as a tool for studying cochlear blood flow due to its ability to determine absolute flow values with single-vessel resolution was proposed.

  12. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo.

    PubMed

    Ihler, Fritz; Bertlich, Mattis; Sharaf, Kariem; Strieth, Sebastian; Strupp, Michael; Canis, Martin

    2012-01-01

    Betahistine is a histamine H(1)-receptor agonist and H(3)-receptor antagonist that is administered to treat Menière's disease. Despite widespread use, its pharmacological mode of action has not been entirely elucidated. This study investigated the effect of betahistine on guinea pigs at dosages corresponding to clinically used doses for cochlear microcirculation. Thirty healthy Dunkin-Hartley guinea pigs were randomly assigned to five groups to receive betahistine dihydrochloride in a dose of 1,000 mg/kg b. w. (milligram per kilogram body weight), 0.100 mg/kg b. w., 0.010 mg/kg b. w., 0.001 mg/kg b. w. in NaCl 0.9% or NaCl 0.9% alone as placebo. Cochlear blood flow and mean arterial pressure were continuously monitored by intravital fluorescence microscopy and invasive blood pressure measurements 3 minutes before and 15 minutes after administration of betahistine. When betahistine was administered in a dose of 1.000 mg/kg b. w. cochlear blood flow was increased to a peak value of 1.340 arbitrary units (SD: 0.246; range: 0.933-1.546 arb. units) compared to baseline (p<0.05; Two Way Repeated Measures ANOVA/Bonferroni t-test). The lowest dosage of 0.001 mg/kg b. w. betahistine or NaCl 0.9% had the same effect as placebo. Nonlinear regression revealed that there was a sigmoid correlation between increase in blood flow and dosages. Betahistine has a dose-dependent effect on the increase of blood flow in cochlear capillaries. The effects of the dosage range of betahistine on cochlear microcirculation corresponded well to clinically used single dosages to treat Menière's disease. Our data suggest that the improved effects of higher doses of betahistine in the treatment of Menière's disease might be due to a corresponding increase of cochlear blood flow.

  13. Effects of nitric oxide synthase inhibitor on cochlear blood flow.

    PubMed

    Hoshijima, Hideaki; Makimoto, Kazuo; Noi, Osamu; Ohinata, Yoshimitsu; Takenaka, Hiroshi

    2002-09-01

    We observed in rats the changes in cochlear blood flow (CoBF) and cutaneous blood flow of the abdominal wall (AbBF) after the administration of the NO synthase inhibitor, N-nitro-L-arginine-methyl ester (L-NAME). Ten minutes after i.v. infusion of L-NAME (0.2, 1, 5, 10 mg/kg), L-arginine, which is a substrate of NO, was infused (100 mg/kg) i.v. Employing a laser Doppler flowmeter, the changes in blood flow were recorded from the basal turn of the right cochlea or the abdominal wall and blood pressure (BP) was recorded from the left femoral artery simultaneously. Vascular conductance (VC) was calculated from CoBF/mean BP (cochlear VC) or AbBF/mean BP (abdominal VC). The findings in rats generally agreed with those in guinea pigs [Brechtelsbauer et al., Hear. Res. 77 (1994) 38-42]. Intravenous infusion of L-NAME produced a dose-dependent depression of cochlear VC at 0.2 mg/kg (-18.9), 1 mg/kg (-37.9%), 5 mg/kg (-45.8%) and 10 mg/kg (-48.3%). AbBF also decreased after infusion of L-NAME (5 mg/kg) but to a lesser degree (-41.1% in VC) with no significance compared to CoBF (5 mg/kg). Infusion of L-arginine partially reversed the CoBF decrease caused by L-NAME. The group of 0.2 mg/kg infusion of L-NAME showed the largest degree of recovery with L-arginine, while the 10 mg/kg group showed the smallest. The decrease in AbBF did not recover substantially with L-arginine, the degree being less than that of each group in the CoBF experiment. It was suggested that the NO/soluble guanylate cyclase/cGMP system is more active in the cochlear microcirculation. With the round window (RW) application of 1% L-NAME (2 microl), cochlear VC was decreased by 21.6%, which was closest to that of the 0.2 mg/kg group of L-NAME i.v. infusion. The cochlear VC depression after local application of L-NAME did not show any recovery (-0.3%) by RW application of 5% L-arginine (2 microl) 25 min after L-NAME application; a slight gradual increase was observed when a higher concentration (20%) of L

  14. Etanercept prevents decrease of cochlear blood flow dose-dependently caused by tumor necrosis factor alpha.

    PubMed

    Ihler, Friedrich; Sharaf, Kariem; Bertlich, Mattis; Strieth, Sebastian; Reichel, Christoph A; Berghaus, Alexander; Canis, Martin

    2013-07-01

    Tumor necrosis factor alpha (TNF-alpha) is a mediator of inflammation and microcirculation in the cochlea. This study aimed to quantify the effect of a local increase of TNF-alpha and study the effect of its interaction with etanercept on cochlear microcirculation. Cochlear lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. First, 24 animals were randomly distributed into 4 groups of 6 each. Exposed vessels were superfused repeatedly either with 1 of 3 different concentrations of TNF-alpha (5.0, 0.5, and 0.05 ng/mL) or with placebo (0.9% saline solution). Second, 12 animals were randomly distributed into 2 groups of 6 each. Vessels were pretreated with etanercept (1.0 microg/ mL) or placebo (0.9% saline solution), and then treated by repeated superfusion with TNF-alpha (5.0 ng/mL). TNF-alpha was shown to be effective in decreasing cochlear blood flow at a dose of 5.0 ng/mL (p < 0.01, analysis of variance on ranks). Lower concentrations or placebo treatment did not lead to significant changes. After pretreatment with etanercept, TNF-alpha at a dose of 5.0 ng/mL no longer led to a change in cochlear blood flow. The decreasing effect that TNF-alpha has on cochlear blood flow is dose-dependent. Etanercept abrogates this effect.

  15. Microsurgical laser Doppler probe for simultaneous intraoperative monitoring of cochlear blood flow and electrocochleography from the round window

    NASA Astrophysics Data System (ADS)

    Abiy, Lidet; Telischi, Fred; Parel, Jean-Marie A.; Manns, Fabrice; Saettele, Ralph; Morawski, Krzysztof; Ozdamar, Ozcan; Borgos, John; Delgado, Rafael; Miskiel, Edward; Yavuz, Erdem

    2003-06-01

    The aim of this project is the development of a microsurgical laser Doppler (LD) probe that simultaneously monitors blood flow and Electrocochleography (ECochG) from the round window of the ear. The device will prevent neurosensory hearing loss during acoustic neuroma surgery by preventing damage to the internal auditory nerve and to the cochlear blood flow supply. A commercially available 0.5 mm diameter Laser-Doppler velocimetry probe (LaserFlo, Vasamedics) was modified to integrate an ECochG electrode. A tube for suction and irrigation was incorporated into a sheath of the probe shaft, to facilitate cleaning of the round window (RW) and allow drug delivery to the round window membrane. The prototype microprobe was calibrated on a single vessel model and tested in vivo in a rabbit model. Preliminary results indicate that the microprobe was able to measure changes in cochlear blood flow (CBF) and ECochG potentials from the round window of rabbits in vivo. The microprobe is suitable for monitoring cochlear blood flow and auditory cochlear potentials during human surgery.

  16. The effect of topically administered latanoprost on the cochlear blood flow and hearing.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Choi, Cheol Hee; Um, Jae-Young; Wang, Pa-Chun; Pak, Sok Cheon

    2013-06-01

    The application of intratympanic latanoprost (PGF2α analog) has been recently used to alleviate vertigo, disequilibrium and to improve hearing in Meniere's disease patients. However, there is no known report on the effect of topically applied latanoprost on hearing and cochlear hemodynamic parameters including cochlear blood flow (CBF) and vascular conductance. Our goal was to assess the influence of topically applied latanoprost on cochlear blood flow (CBF) and hearing. Twenty male Sprague-Dawley rats were randomly divided into the group A, 50 μl of latanoprost (1 ml containing 50 μg, n=10) and group B, 100 μl (1 ml containing 50 μg, n=10). Topical application of latanoprost was performed at the right side, and the left side was applied with phosphate buffered saline (PBS) as a negative control. Five rats at each group were used to measure cochlear blood flow (CBF). And the others at each group were used for hearing test by auditory brainstem response (ABR). After physiological examination, bullas were extracted. The changes of cochlear hair cells were observed by performing the field emission-scanning electron microscopy (FE-SEM). The CBF of both groups was found to be decreased compared to the PBS applied left side. Significant decrement of CBF was observed in group B compared to the group A. Significant elevation of hearing threshold at high frequencies was observed in both groups compared to the PBS applied group. However, inner and outer hair cells were intact. Topically administered latanoprost decreased the CBF and impaired hearing. Based on our findings, additional studies are required to evaluate the side effects of intratympanic latanoprost before its use in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Betahistine Exerts a Dose-Dependent Effect on Cochlear Stria Vascularis Blood Flow in Guinea Pigs In Vivo

    PubMed Central

    Ihler, Fritz; Bertlich, Mattis; Sharaf, Kariem; Strieth, Sebastian

    2012-01-01

    Objective Betahistine is a histamine H1-receptor agonist and H3-receptor antagonist that is administered to treat Menière’s disease. Despite widespread use, its pharmacological mode of action has not been entirely elucidated. This study investigated the effect of betahistine on guinea pigs at dosages corresponding to clinically used doses for cochlear microcirculation. Methods Thirty healthy Dunkin-Hartley guinea pigs were randomly assigned to five groups to receive betahistine dihydrochloride in a dose of 1,000 mg/kg b. w. (milligram per kilogram body weight), 0.100 mg/kg b. w., 0.010 mg/kg b. w., 0.001 mg/kg b. w. in NaCl 0.9% or NaCl 0.9% alone as placebo. Cochlear blood flow and mean arterial pressure were continuously monitored by intravital fluorescence microscopy and invasive blood pressure measurements 3 minutes before and 15 minutes after administration of betahistine. Results When betahistine was administered in a dose of 1.000 mg/kg b. w. cochlear blood flow was increased to a peak value of 1.340 arbitrary units (SD: 0.246; range: 0.933–1.546 arb. units) compared to baseline (p<0.05; Two Way Repeated Measures ANOVA/Bonferroni t-test). The lowest dosage of 0.001 mg/kg b. w. betahistine or NaCl 0.9% had the same effect as placebo. Nonlinear regression revealed that there was a sigmoid correlation between increase in blood flow and dosages. Conclusions Betahistine has a dose-dependent effect on the increase of blood flow in cochlear capillaries. The effects of the dosage range of betahistine on cochlear microcirculation corresponded well to clinically used single dosages to treat Menière’s disease. Our data suggest that the improved effects of higher doses of betahistine in the treatment of Menière’s disease might be due to a corresponding increase of cochlear blood flow. PMID:22745706

  18. Cochlear blood flow and speech perception ability in cochlear implant users.

    PubMed

    Nakashima, Tsutomu; Hattori, Taku; Sone, Michihiko; Asahi, Kiyomitsu; Matsuda, Naoko; Teranishi, Masaaki; Yoshida, Tadao; Kato, Ken; Sato, Eisuke

    2012-02-01

    The effect of cochlear blood flow (CBF) on speech perception ability in cochlear implant (CI) users has not been reported. We investigated various factors influencing speech perception including CBF in CI users. Eighty-two patients who received CI surgery at an academic hospital. CBF was measured during CI surgery using laser Doppler flowmetry. The speech perception level was measured after a sufficient interval after CI surgery. Multivariate analysis was used to evaluate the influences of age, duration of deafness, sex, cause of deafness, and CBF on the speech perception level. CBF decreased significantly with age but was not related to the speech perception level. In patients with congenital hearing loss, the speech perception level was significantly worse in children who received a CI at 3 years of age than in those who received a CI at 2 years of age or younger. Duration of deafness before CI surgery had deteriorative effects on the speech perception level. CBF may be associated with progression of hearing loss. However, measuring CBF during CI surgery is not useful for predicting postoperative speech perception.

  19. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry.

    PubMed

    Reif, Roberto; Zhi, Zhongwei; Dziennis, Suzan; Nuttall, Alfred L; Wang, Ruikang K

    2013-10-01

    In this work we determined the contributions of loud sound exposure (LSE) on cochlear blood flow (CoBF) in an in vivo anesthetized mouse model. A broadband noise system (20 kHz bandwidth) with an intensity of 119 dB SPL, was used for a period of one hour to produce a loud sound stimulus. Two techniques were used to study the changes in blood flow, a Doppler optical microangiography (DOMAG) system; which can measure the blood flow within individual cochlear vessels, and a laser Doppler flowmetry (LDF) system; which averages the blood flow within a volume (a hemisphere of ~1.5 mm radius) of tissue. Both systems determined that the blood flow within the cochlea is reduced due to the LSE stimulation.

  20. Resistance of Gerbil Auditory Function to Reversible Decrease in Cochlear Blood Flow.

    PubMed

    El Afia, Fahd; Giraudet, Fabrice; Gilain, Laurent; Mom, Thierry; Avan, Paul

    2017-01-01

    The objective was to design in gerbils a model of reversible decrease in cochlear blood flow (CBF) and analyze its influence on cochlear function. In Mongolian gerbils injected with ferromagnetic microbeads, a magnet placed near the porus acusticus allowed CBF to be manipulated. The cochlear microphonic potential (CM) from the basal cochlea was monitored by a round-window electrode. In 13 of the 20 successfully injected gerbils, stable CBF reduction was obtained for 11.5 min on average. The CM was affected only when CBF fell to less than 60% of its baseline, yet remained >40% of its initial level in about 2/3 of such cases. After CBF restoration, CM recovery was fast and usually complete. Reduced CM came with a 35- to 45-dB threshold elevation of neural responses determined by compound action potentials. This method allowing reversible changes of CBF confirms the robustness of cochlear function to decreased CBF. It can be used to study whether a hypovascularized cochlea is abnormally sensitive to stress. © 2017 S. Karger AG, Basel.

  1. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.

    PubMed

    Zhao, Jing; Sun, Jianjun; Liu, Yang

    2012-10-01

    Disturbances of microcirculation and hemorheological changes in the inner ear are the results of noise-induced hearing loss (NIHL). Both the disturbances of microcirculation and hemorheological changes are the etiologies of NIHL development, but they are also the results. Although previous reports that inhalation of high concentration of CO(2) may increase cochlear blood flow (CoBF), the effects of carbogen on the cochlear microcirculation and NIHL remain unclear. Changes induced by noise, carbogen and pure oxygen within the cochlear lateral wall microvasculature and in hearing thresholds were observed in guinea pigs using intravital microscopy and the auditory brainstem response. At the same time, arterial oxygen saturation and morphologic changes of cochlear hair cells were observed. Carbogen inhalation increased vessel diameters and blood flow velocities. Hearing thresholds elevation in the carbogen group was smaller than those in the control and oxygen group (p <0.05). Carbogen inhalation produced a trend toward less threshold shift after noise exposure, which reached statistical significance after day 3 (p <0.01). Respiratory acidosis was not found in our study. The segmented basal membranes of Corti in three groups indicated that no losses or discorders of hair cells were found. Carbogen inhalation can preserve hearing in animal models after acute acoustic trauma. Copyright © 2012 IMSS. All rights reserved.

  2. Guinea pig cochlear blood flow under definite sound exposure-hydrogen clearance measurement.

    PubMed

    Meyer, P; Kuhl, K D; Schmidt, R; Grützmacher, W

    1991-01-01

    Blood flow measurements were carried out on 18 coloured guinea pigs (8 animals served as control group) before and during definite sound exposure (12 kHz, 110 dB SPL). The exposure time amounted to 60 min. The anaesthesia was carried out according to the following schedule: a mixture consisting of 70 mg alpha-chloralose/kg b.w. and 400 mg urethane/kg b.w. was injected intraperitoneally. The relaxation was performed by means of i.p. application of 3 mg Tricuran/kg b.w./h. The hydrogen clearance measurements (HCM) were carried out under artificial respiration with control of arterial pH, endexpiratory CO2 content, as well as blood pressure and body temperature. After a duration of noise exposure of 30-45 min the cochlear blood flow reached an average level of 80% of the initial point. This level remained mainly unchanged until the end of noise exposure (60 min). Our HMC's confirm Laser Doppler flowmetry findings.

  3. Relationship between changes in the cochlear blood flow and disorder of hearing function induced by blast injury in guinea pigs.

    PubMed

    Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang

    2013-01-01

    The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.

  4. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow

    PubMed Central

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2014-01-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131

  5. Tumor Necrosis Factor-induced Decrease of Cochlear Blood Flow Can Be Reversed by Etanercept or JTE-013.

    PubMed

    Sharaf, Kariem; Ihler, Friedrich; Bertlich, Mattis; Reichel, Christoph A; Berghaus, Alexander; Canis, Martin

    2016-08-01

    This study aimed to quantify the effects of tumor necrosis factor (TNF) inhibitor Etanercept and sphingosine-1-phosphate receptor 2 antagonist JTE-013 on cochlear blood flow in guinea pigs after TNF-induced decrease. Sudden sensorineural hearing loss is a common cause for disability and reduced quality of life. Good understanding of the pathophysiology and strong evidence-based therapy concepts are still missing. In various inner ear disorders, inflammation and impairment of cochlear blood flow (CBF) have been considered factors in the pathophysiology. A central mediator of inflammation and microcirculation in the cochlea is TNF. S1P acts downstream in one TNF pathway. Cochlea lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. Twenty-eight animals were randomly distributed into four groups of seven each. Exposed vessels were superfused by TNF (5.0 ng/ml) and afterward repeatedly either by Etanercept (1.0 μg/ml), JTE-013 (10 μmol/L), or vehicle (0.9 % NaCl solution or ethanol: phosphate-buffered saline buffer, respectively). After decreasing CBF with TNF (p <0.001, two-way RM ANOVA), both treatments reversed CBF, compared with vehicle (p <0.001, two-way RM ANOVA). The comparison of the vehicle groups showed no difference (p = 0.969, two-way RM ANOVA), while there was also no difference between the treatment groups (p = 0.850, two-way RM ANOVA). Both Etanercept and JTE-013 reverse the decreasing effect of TNF on cochlear blood flow and, therefore, TNF and the S1P-signalling pathway might be targets for treatment of microcirculation-related hearing loss.

  6. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.

    PubMed

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L

    2014-07-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. An animal model for the analysis of cochlear blood flow [corrected] disturbance and hearing threshold in vivo.

    PubMed

    Canis, Martin; Arpornchayanon, Warangkana; Messmer, Catalina; Suckfuell, Markus; Olzowy, Bernhard; Strieth, Sebastian

    2010-02-01

    Impairment of cochlear blood flow (CBF) is considered to be important in inner ear pathology. However, direct measurement of CBF is difficult and has not been investigated in combination with hearing function. Six guinea pigs were used to show feasibility of an animal model for the analysis of cochlear microcirculation by intravital microscopy in combination with investigation of the hearing threshold by brainstem response audiometry (ABR). By the application of sodium nitroprusside (SNP), CBF was increased over 30 min. Reproducibility of measurements was shown by retest measurements. Mean baseline velocity of CBF was 109 +/- 19 mum/s. Vessel diameters had a mean value of 9.4 +/- 2.7 mum. Mean hearing threshold was 19 +/- 6 dB. In response to SNP, CBF velocity increased significantly to 161 +/- 26 mum/s. Mean arterial pressure decreased significantly to 36 +/- 11 mmHg. After the end of the application, CBF velocity recovered to a minimum of 123 +/- 17 microm/s. Within the retest, CBF velocity significantly increased to a maximum of 160 +/- 31 microm/s. Second recovery of CBF velocity was 125 +/- 14 mum/s. Within the second retest, CBF increased significantly to 157 +/- 25 microm/s. ABR thresholds did not change significantly. The increase in blood flow velocity occurred in spite of substantial hypotension as induced by a vasodilator. This may explain the fact that ABR threshold remained unchanged reflecting a maintained blood supply in this part of the brain. This technique can be used to evaluate effects of treatments aimed at cochlear microcirculation in inner ear pathologies.

  8. [The effect of nimodipine on cochlear blood flow in the guinea pig].

    PubMed

    Meyer, P; Werner, E; Schmidt, R; Grützmacher, W; Gehrig, W; Seuter, F

    1994-10-01

    The influence of nimodipine (Nimotop, CAS 66085-59-4), a selectively cerebrovascularly acting 1,4-dihydropyridine calcium antagonist, on the cochlear blood flow (CBF) was studied in 19 guinea pigs (6 controls). The hydrogen clearance measurements were carried out under alpha-chloralose-ethylurethane anaesthesia, artificial respiration with simultaneous control of electrocardiogram, blood pressure, body temperature and arterial pH (hourly). The indirect measurement of CBF was carried out by means of hydrogen clearance in the perilymphatic space (basal turn) before and after intravenous application of 1 microgram nimodipine/kg/min. The mean arterial blood pressure remained within the +/- 5% range of the initial value during the experiment. Under treatment with nimodipine the CBF showed a non-significant average increase of 4.69% and under placebo (20% ethanol, 17% polyethylenglycol 400, citrate buffer), a non-significant average decrease of 6.16%. The influence of nimodipine on CBF was underlined by the overcompensation of the placebo effect.

  9. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system.

    PubMed

    Reif, Roberto; Qin, Jia; Shi, Lei; Dziennis, Suzan; Zhi, Zhongwei; Nuttall, Alfred L; Wang, Ruikang K

    2012-01-01

    A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI) system and a Doppler optical microangiography (DOMAG) system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.

  10. TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo.

    PubMed

    Arpornchayanon, Warangkana; Canis, Martin; Ihler, Friedrich; Settevendemie, Claudia; Strieth, Sebastian

    2013-08-01

    Exposure to loud noise can impair cochlear microcirculation and cause noise-induced hearing loss (NIHL). TNF-α signaling has been shown to be activated in NIHL and to control spiral modiolar artery vasoconstriction that regulates cochlear microcirculation. It was the aim of this experimental study to analyse the effects of the TNF-α inhibitor etanercept on cochlear microcirculation and hearing threshold shift in NIHL in vivo. After assessment of normacusis using ABR, loud noise (106 dB SPL, 30 minutes) was applied on both ears in guinea pigs. Etanercept was administered systemically after loud noise exposure while control animals received a saline solution. In vivo fluorescence microscopy of strial capillaries was performed after surgical exposure of the cochlea for microcirculatory analysis. ABR measurements were derived from the contralateral ear. Guinea pigs (n = 6, per group). Compared to controls, cochlear blood flow in strial capillary segments was significantly increased in etanercept-treated animals. Additionally, hearing threshold was preserved in animals receiving the TNF-α inhibitor in contrast to a significant threshold raising in controls. TNF-α inhibition using etanercept improves cochlear microcirculation and protects hearing levels after loud noise exposure and appears as a promising treatment strategy for human NIHL.

  11. Blood flow-independent accumulation of cisplatin in the guinea pig cochlea.

    PubMed

    Miettinen, S; Laurell, G; Andersson, A; Johansson, R; Laurikainen, E

    1997-01-01

    Considerable interindividual variability in the ototoxic effect of cisplatin has become the unpredictable dose-limiting factor in its use as curative as well as palliative therapy. The drug accumulates in highly vascular areas in the cochlea, causing dose-related hair cell loss. The purpose of this study was to assess blood flow-dependent aspects of cisplatin absorption in the cochlea in order to better understand factors that may influence cisplatin-induced ototoxicity. The effect of reduced cochlear blood flow on the ototoxic action of cisplatin was studied in guinea pigs. Before cisplatin administration the cochlear vasculature in each animal was unilaterally pre-constricted, by the application of 2% epinephrine to the round window. A 20-30% reduction in cochlear blood flow, assessed by laser Doppler flowmetry, was maintained before and after intravenous infusion of 0.1% cisplatin. Cisplatin infusion affected cochlear blood flow but not vessel conductivity. The cochlear blood flow decrease, maintained by local epinephrine application to the round window during cisplatin infusion, did not alter the cisplatin-induced hearing loss. In addition, the concentration of free cisplatin in scala tympani perilymph did not differ between epinephrine-treated and non-treated ears. Our results indicate that cisplatin transport into the cochlea is not an energy-dependent process in the lateral wall vasculature.

  12. Physiopathology of the Cochlear Microcirculation

    PubMed Central

    Shi, Xiaorui

    2011-01-01

    Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. PMID:21875658

  13. Physiopathology of the cochlear microcirculation.

    PubMed

    Shi, Xiaorui

    2011-12-01

    Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. Published by Elsevier B.V.

  14. Response of cochlear blood flow to prostaglandin E1 applied topically to the round window.

    PubMed

    Tominaga, Mitsuo; Yamamoto, Hiroshi; Sone, Michihiko; Teranishi, Masa-aki; Nakashima, Tsutomu

    2006-03-01

    The increase in cochlear blood flow (CBF) after administration of prostaglandin E1 (PGE1) to the round window depends on increased blood flow through the anterior inferior cerebellar artery (AICA). To evaluate the response of CBF to PGE1 applied topically to the round window, and to investigate the origin of blood flow changes after this topical application. The response of CBF to topically applied PGE1 was measured by placing the tip of a laser Doppler probe on the bony wall of the basal turn of the cochlea after the middle ear mucosa over the cochlea had been removed in guinea pigs and rats. In rats, the CBF response to PGE1 administration was investigated after occlusion of the AICA or stapedial artery. CBF increased following PGE1 administration in both guinea pigs and rats. In rats, CBF increased from 100% to 132%+/-10% (mean+/-SD) after the topical application of 0.5 microl of a 0.014% PGE1 solution. CBF decreased after occlusion of the AICA or stapedial artery but did not increase after PGE1 administration during occlusion of the AICA. The CBF response to PGE1 administration was similar before and after occlusion of the stapedial artery.

  15. Effects of Cerebral Blood Flow and Vessel Conditions on Speech Recognition in Patients With Postlingual Adult Cochlear Implant: Predictable Factors for the Efficacy of Cochlear Implant.

    PubMed

    Ishino, Takashi; Ragaee, Mahmoud Ali; Maruhashi, Tatsuya; Kajikawa, Masato; Higashi, Yukihito; Sonoyama, Toru; Takeno, Sachio; Hirakawa, Katsuhiro

    Cochlear implantation (CI) has been the most successful procedure for restoring hearing in a patient with severe and profound hearing loss. However, possibly owing to the variable brain functions of each patient, its performance and the associated patient satisfaction are widely variable. The authors hypothesize that peripheral and cerebral circulation can be assessed by noninvasive and globally available methods, yielding superior presurgical predictive factors of the performance of CI in adult patients with postlingual hearing loss who are scheduled to undergo CI. Twenty-two adult patients with cochlear implants for postlingual hearing loss were evaluated using Doppler sonography measurement of the cervical arteries (reflecting cerebral blood flow), flow-mediated dilation (FMD; reflecting the condition of cerebral arteries), and their pre-/post-CI best score on a monosyllabic discrimination test (pre-/post-CI best monosyllabic discrimination [BMD] score). Correlations between post-CI BMD score and the other factors were examined using univariate analysis and stepwise multiple linear regression analysis. The prediction factors were calculated by examining the receiver-operating characteristic curve between post-CI BMD score and the significantly positively correlated factors. Age and duration of deafness had a moderately negative correlation. The mean velocity of the internal carotid arteries and FMD had a moderate-to-strong positive correlation with the post-CI BMD score in univariate analysis. Stepwise multiple linear regression analysis revealed that only FMD was significantly positively correlated with post-CI BMD score. Analysis of the receiver-operating characteristic curve showed that a FMD cutoff score of 1.8 significantly predicted post-CI BMD score. These data suggest that FMD is a convenient, noninvasive, and widely available tool for predicting the efficacy of cochlear implants. An FMD cutoff score of 1.8 could be a good index for determining whether

  16. Improvement in cochlear flow with Pycnogenol® in patients with tinnitus: a pilot evaluation.

    PubMed

    Grossi, M G; Belcaro, G; Cesarone, M R; Dugall, M; Hosoi, M; Cacchio, M; Ippolito, E; Bavera, P

    2010-06-01

    The aim of this preliminary evaluation was to study the efficacy of Pycnogenol in improving cochlear flow in patients with mild-to-moderate tinnitus present for at least two weeks (without vertigo or important hearing loss), possibly associated with cochlear hypo-perfusion. Patients with mild-to-moderate, idiopatic, monolateral tinnitus present for at least 2 weeks were included; no vertigo or important hearing loss had been found in a specific examination. The origin of tinnitus had been sudden (hours or days). Fifty-eight patients used Pycnogenol: 24 used 150 mg/day (group A; mean age 43.2+/-4.3) and 34 patients 100 mg/day (group B: mean age 42.4+/-3.8). Controls included 24 patients (mean age 42.3+/-4.5). The groups were comparable for their clinical problem and age and sex. The average duration of treatment was 34.3+/-3.1 days. No side effects were observed and no drop-outs occurred. The variations in cochlear flow velocity (in cm/s at the cochlear artery), at inclusion and after four weeks of treatment indicated that flow velocity at the level of the affected ear was significantly lower (both the diastolic and systolic components; P<0.05) in comparison with the other ear. The treatment favored an improvement in systolic (P<0.05) and diastolic flow velocity (P<0.05) in the two treatment groups A+B. The increase in flow velocity was very limited and not significant in controls. These results suggest that in selected patients with tinnitus and altered perfusion, Pycnogenol is effective in a short period of time in relieving tinnitus symptoms by improving cochlear blood flow. The effect is more pronounced with higher Pycnogenol dosage. More studies should be planned to better evaluate the pathology and potential applications of Pycnogenol in a larger number of patients who are currently without a real therapeutic solution.

  17. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    PubMed

    Li, Xu; Mao, Xiao-Bo; Hei, Ren-Yi; Zhang, Zhi-Bin; Wen, Li-Ting; Zhang, Peng-Zhi; Qiu, Jian-Hua; Qiao, Li

    2011-01-01

    A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2)S in cochlear blood flow regulation and noise protection. The gene and protein expression of the H(2)S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Our results suggest that H(2)S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  18. Different effects of propofol and isoflurane on cochlear blood flow and hearing function in Guinea pigs.

    PubMed

    Xiao, Ying; Wen, Jian; Bai, Yanxia; Duan, Na; Jing, G X

    2014-01-01

    To investigate the effects of isoflurane and propofol on mean arterial pressure (MAP), cochlear blood flow (CoBF), distortion-product otoacoustic emission (DPOAE), and the ultrastructure of outer hair cells (OHCs) in guinea pig cochleae. Forty-eight male guinea pigs were randomly assigned to one of six treatment groups. Groups 1 to 3 were infused (i.v.) with a loading dose of propofol (5 mg/kg) for 5 min and three maintenance doses (10, 20, or 40 mg kg-1·h-1, respectively) for 115 min. Groups 4 to 6 were inhaled with isoflurane at concentrations of 1.15 vol%, 2.30 vol% or 3.45 vol% respectively for 120 min. CoBF and MAP were recorded prior to and at 5 min intervals during drug administration. DPOAE was measured before, immediately after, and 1 h after administration. Following the final DPOAE test, cochleae were examined using scanning electron microscopy. Propofol treatment reduced MAP in a dose-dependent manner. CoBF and DPOAE showed increases at propofol maintenance doses of 10 and 20 mg kg-1·h-1. Inhalation of isoflurane at concentrations of 2.30 vol% and 3.45 vol% reduced MAP and CoBF. DPOAE amplitude increased following inhalation of 1.15 vol% isoflurane, but decreased following inhalations of 2.30 vol% and 3.45 vol%. Cochlear structure was changed following inhalation of either 2.30 vol% or 3.45 vol% isoflurane. Propofol could decrease MAP and increase both CoBF and DPOAE without affecting OHC structure. Inhalation of isoflurane at concentrations >2.30 vol% decreased CoBF and DPOAE, and produced injury to OHCs.

  19. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament.

    PubMed

    Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui

    2009-08-01

    Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.

  20. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system

    PubMed Central

    Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849

  1. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system.

    PubMed

    Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.

  2. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling.

    PubMed

    Scherer, Elias Q; Yang, Jingli; Canis, Martin; Reimann, Katrin; Ivanov, Karolina; Diehl, Christian D; Backx, Peter H; Wier, W Gil; Strieth, Sebastian; Wangemann, Philine; Voigtlaender-Bolz, Julia; Lidington, Darcy; Bolz, Steffen-Sebastian

    2010-11-01

    We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling

  3. Improvement in symptoms and cochlear flow with pycnogenol in patients with Meniere's disease and tinnitus.

    PubMed

    Luzzi, R; Belcaro, G; Hu, S; Dugall, M; Hosoi, M; Cacchio, M; Ippolito, E; Corsi, M

    2014-06-01

    The aim of this supplement registry was to evaluate the efficacy of the Pycnogenol® in improving cochlear flow and symptoms in a 6-month follow-up for patients with Meniere's disease (MD), tinnitus and cochlear hypoperfusion. Main signs/symptoms were considered: Spontaneous vertigo, positional vertigo, hearing loss, tinnitus, pressure in the ear, unsteady gait, associated clinical problems, alterations in daily life. All subjects were managed with the best available management (BM); one group used the supplement Pycnogenol (150 mg/day). Cochlear flow and tinnitus were also evaluated. Out of 120 patients incuded in the registry, 55 used Pycnogenol and 52 (controls) were managed only with BM. There was a more significant improvement in all registry items at 3 and 6 months in the Pycnogenol group (P<0.05). The number of lost working days was lower in the Pycnogenol group. At 3 months, 45.4% of subjects using Pycnogenol were completely asymptomatic in comparison with 23.07% of controls. At 6 months 87.3% of the Pycnogenol subjects were asymptomatic compared with 34.6% of controls. Cochlear flow velocity was significantly better (higher flow, higher diastolic component) in the Pycnogenol group (P<0.05). The subjective tinnitus scale decreased in both groups (P<0.05); the decrease was more significant in Pycnogenol subjects (P<0.05) at 3 and 6 months. Symptoms of Meniere's disease, flow at cochlear level and tinnitus improved in Pycnogenol subjects in comparison with best management.

  4. The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Lee, Jun Sik; Kim, Geun Hyung; Jung, Won-Kyo; Pak, Sok Cheon

    2016-12-01

    Propofol is the most commonly used intravenous (IV) anesthetic agent and is associated with hypotension upon induction of anesthesia. Intravenous propofol infusion has several properties that may be beneficial to patients undergoing middle ear surgery. Topical application of concentrated epinephrine is a valuable tool for achieving hemostasis in the middle ear and during mastoid surgery. The purpose of the present study was to determine the effects of propofol infusion with topical epinephrine on cochlear blood flow (CBF) and hearing in rats. Twenty one male Sprague-Dawley rats were divided into three groups. The rate of intravenous infusion of propofol was 4-6 ml/kg/hour. The first group (control group, n = 7) was given IV infusion of phosphate buffered saline (PBS) with topical application of PBS in the round window. In study group A (n = 7), the effect of topical phosphate buffered saline with IV infusion of propofol on CBF and hearing was evaluated. In study group B (n = 7), additional effects of topical epinephrine with IV infusion of propofol on CBF and hearing were evaluated. The laser Doppler blood flowmeter, CBF, and the mean arterial blood pressure (MAP) were measured and analyzed. Additionally, hearing test using auditory brainstem response (ABR) was performed in both groups. In both groups, infusion of propofol induced a time-dependent decrease in MAP. Approximately 30 min after the start of the propofol infusion, the CBF started to decrease slowly. The decrease in CBF was significantly greater in the study group compared to the control group. The threshold was elevated in the study group relative to the control group. During middle ear surgery, use of IV infusion of propofol with topical epinephrine cotton ball or cottonoid application is not recommended. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Preventing hearing damage using topical dexamethasone during reversible cochlear ischemia: an animal model.

    PubMed

    Morawski, Krzysztof; Telischi, Fred F; Bohorquez, Jorge; Niemczyk, Kazimierz

    2009-09-01

    Local application of dexamethasone to the round window (RW) niche prevents cochlear damage caused by local reversible ischemia. Cochlear ischemia induced by internal auditory artery (IAA) compression/stretching is thought to cause postoperative sensory hearing loss after attempted hearing preservation removal of acoustic neuroma tumors. Dexamethasone administered to the RW niche traveling through the membrane to the cochlear fluids may prevent ischemic damage. Ten young albino rabbits were used for this study. Ischemic episodes were induced by compressing the IAA. Laser Doppler cochlear blood flow was measured using a probe positioned at the RW niche. Transtympanic electrocochleography was measured at 4, 8, and 12 kHz. In 5 test ears, dexamethasone was administered topically at the RW for approximately 50 minutes before the IAA compressions, whereas in 5 control ears, saline was applied in the same way. Each ear underwent one 10-minute IAA compression with a 60-minute postischemic period of transtympanic electrocochleography monitoring. In both control- and dexamethasone-treated ears, ischemic episodes measured by Laser Doppler cochlear blood flow were comparable. Fifty minutes after IAA decompression, in dexamethasone-pretreated ears, cochlear microphonic and compound action potential amplitudes at all test frequencies were 10 to 15% less reduced than those in control ears. Compound action potential latencies in dexamethasone-pretreated ears resulted in shorter latency delay than in control ears. The RW seems to be an efficacious route for the administration of dexamethasone into the inner ear. Dexamethasone showed a protective effect on cochlear function after local ischemia. Transtympanic electrocochleography was found to be a sufficient and effective tool in monitoring hearing.

  6. Cochlear dysfunction in hyperuricemia: otoacoustic emission analysis.

    PubMed

    Hamed, Sherifa A; El-Attar, Amal M

    2010-01-01

    The objective of this study is to provide evidence that primary hyperuricemia is associated with cochlear dysfunction as other metabolic diseases that interfere with cell metabolism. Cochlear function was evaluated in 25 subjects with asymptomatic hyperuricemia using routine diagnostic audiometry along with transient evoked and distortion product otoacoustic emissions (TEOAE and DPOAE, respectively). To support the notion that vascular compromise was a significant underlying factor for such cochlear dysfunction, we assessed vascular anatomical and functional states through measuring the common carotid artery intima-media thickness and flow velocity of the basal intracranial vessels. Compared with control subjects, reduced response levels of TEOAEs (P < .01) and amplitudes of DPOAEs (P < .001) were detected at higher frequencies. The reduced DPOAE levels at 5 kHz and TEOAEs at 4 kHz correlated significantly with uric acid (P < .05; P < .01), patients' age (P < .06; P < .05), duration since diagnosis of hyperuricemia (P < .05; P < .001), common carotid artery intima-media thickness (P < .05), mean flow velocities of middle cerebral arteries (P < .05), and vertebral arteries (P < .01). Multivariate analysis showed that the abnormalities at higher frequencies were significantly correlated with the duration and degree of hyperuricemia. These data suggest that subclinical changes in cochlear function are associated with hyperuricemia. They support the usefulness of otoacoustic emissions in early detection of cochlear dysfunction. It is possible that hyperuricemia could be accompanied by increased stiffness and/or compromise of blood supply of the outer hair cells, which will impair their electromotile response. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter.

    PubMed

    Wu, T; Dai, M; Shi, X R; Jiang, Z G; Nuttall, A L

    2011-07-01

    The cochlear lateral wall generates the endocochlear potential (EP), which creates a driving force for the hair cell transduction current and is essential for normal hearing. Blood flow at the cochlear lateral wall is critically important for maintaining the EP. The vulnerability of the EP to hypoxia suggests that the blood flow in the cochlear lateral wall is dynamically and precisely regulated to meet the changing metabolic needs of the cochlear lateral wall. It has been reported that ATP, an important extracellular signaling molecule, plays an essential role in regulating cochlear blood flow. However, the cellular mechanism underlying ATP-induced regional blood flow changes has not been investigated. In the current study, we demonstrate that 1) the P2X4 receptor is expressed in endothelial cells (ECs) of spiral ligament (SL) capillaries. 2) ATP elicits a characteristic current through P2X4 on ECs in a dose-dependent manner (EC(50) = 0.16 mM). The ATP current has a reversal potential at ∼0 mV; is inhibited by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD), LaCl(3), pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), and extracellular acidosis; and is less sensitive to α,β-methyleneadenosine 5'-triphosphate (α,β-MeATP) and 2'- and 3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate (BzATP). 3) ATP elicits a transient increase of intracellular Ca(2+) in ECs. 4) In accordance with the above in vitro findings, perilymphatic ATP (1 mM) caused dilation in SL capillaries in vivo by 11.5%. N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nonselective inhibitor of nitric oxide synthase, or 5-BDBD, the specific P2X4 inhibitor, significantly blocked the dilation. These findings support our hypothesis that extracellular ATP regulates cochlear lateral blood flow through P2X4 activation in ECs.

  8. Cochlear blood flow during occlusion and reperfusion of the anterior inferior cerebellar artery--effect of topical application of dexamethasone to the round window.

    PubMed

    Otake, Hironao; Yamamoto, Hiroshi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu

    2009-02-01

    Topical application of dexamethasone may support autoregulation of cochlear blood flow (CBF), although it had no direct effect on CBF. Although intratympanic steroid therapy for patients with inner ear disorders is common, the mechanism by which steroids exert their effect is unclear. We investigated the response of CBF to topical application of dexamethasone onto the round window. Two concentrations of dexamethasone (3.3 mg/ml and 33 mg/ml dexamethasone in 0.5 microl saline) were applied to the round windows of rats, and CBF responses were measured using a laser Doppler flowmeter. The effects on CBF of a 2 h occlusion of the anterior inferior cerebellar artery (AICA) and subsequent release of the clamp with or without previous dexamethasone application were investigated. No significant change in CBF was observed after topical application of dexamethasone, and it did not affect the decrease in CBF caused by AICA occlusion. However, recovery of CBF after release of the AICA clamp was better in animals treated with dexamethasone than in those that did not receive dexamethasone.

  9. The role of viscous fluid flow in active cochlear partition vibration

    NASA Astrophysics Data System (ADS)

    Svobodny, Thomas

    2001-11-01

    Sound transduction occurs via the forcing of the basilar membrane by a traveling wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number (because of the tiny size). The actual transduction occurs through the mechanism of stereocilia of hair cells. Analysis and simulation of the interaction between the microhydrodynamical flow and the basilar membrane vibration will be presented in this talk. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection.

  10. Improvement in cochlear flow in patients with tinnitus with the complex supplement Acustop: a product evaluation.

    PubMed

    Grossi, M G; Belcaro, G; Cesarone, M R; Dugall, M; Hosoi, M; Cacchio, M; Ippolito, E; Bavera, P

    2011-09-01

    Patients with tinnitus constitute a very large group without a real, specific therapeutic solution. With noninvasive, color duplex it is possible to measure flow in the cochlear artery and to follow duplex flow changes due to treatments in most patients. The aim of this preliminary evaluation was to study flow variations in patients with "mild-to-moderate" tinnitus, possibly associated to cochlear hypo-perfusion, after administration of Acustop (used as a food supplement). The aim was to improve cochlear flow decreasing the level of tinnitus. Patients with "mild-to-moderate", "idiopathic", monolateral tinnitus, present for at least 4 weeks were included; no vertigo or important hearing loss had been observed. The origin of tinnitus had been sudden (hours or days). The tinnitus was associated to a decrease in cochlear flow measured by color Duplex at the affected ear. A group of 42 patients was evaluated; 25 used Acustop; there were 17 controls (follow-up only). Groups were comparable for their clinical problem and other details. The average duration of treatment was 4 weeks. No side effects were observed and no drop-outs were recorded. Flow velocity at the level of the affected inner ear was significantly lower (both the diastolic and systolic components; P<0.05) in comparison with the other ear. This was considered an indication of the vascular origin of the tinnitus. With Acustop treatment there was a significant improvement in systolic (P<0.05) and diastolic flow velocity (P<0.05). The increase in flow velocity was not significant in controls. An analogue scale line was used to measure symptoms in the Acustop group: it was 8.2;2 at inclusion; it decreased to 3.1;1.5 at 4 weeks (P<0.05). The score was 8.4;2 in controls at inclusion; at 4 weeks the score was 7.1;2.2 (not significant). Tinnitus scale: the value at inclusion of the tinnitus scale in the Acustop group a was 8.5;1.1 versus 8.3;1.2 in controls. After 4 weeks the score was 3.1;1.1 (P<0.05) in the

  11. The role of viscous fluid flow in cochlear partition transduction

    NASA Astrophysics Data System (ADS)

    Svobodny, Thomas

    2002-11-01

    Sound transduction occurs via the forcing of the basilar membrane by a wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number. The actual transduction occurs through the mechanism of stereocilia of hair cells. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection due to the influence of the dynamics of the endothelial fluid. This talk will emphasis the results of two-dimensional and three-dimensional simulations and will relate these to the analytical solutions previously reported.

  12. Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration.

    PubMed

    Chang, Hao; Telang, Ravindra S; Sreebhavan, Sreevalsan; Tingle, Malcolm; Thorne, Peter R; Vlajkovic, Srdjan M

    2017-01-01

    Noise-induced hearing loss (NIHL) is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A 1 adenosine receptor agonist adenosine amine congener (ADAC) has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous) administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise.

  13. Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration

    PubMed Central

    Sreebhavan, Sreevalsan; Thorne, Peter R.

    2017-01-01

    Noise-induced hearing loss (NIHL) is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A1 adenosine receptor agonist adenosine amine congener (ADAC) has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous) administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise. PMID:28194422

  14. Cochlear Pericytes Are Capable of Reversibly Decreasing Capillary Diameter In Vivo After Tumor Necrosis Factor Exposure.

    PubMed

    Bertlich, Mattis; Ihler, Friedrich; Weiss, Bernhard G; Freytag, Saskia; Strupp, Michael; Canis, Martin

    2017-12-01

    The aim of this work was to evaluate the effect of tumor necrosis factor (TNF) and its neutralization with etanercept on the capability of cochlear pericytes to alter capillary diameter in the stria vascularis. Twelve Dunkin-Hartley guinea pigs were randomly assigned to one of three groups. Each group was treated either with placebo and then placebo, TNF and then placebo, or TNF and then etanercept. Cochlear pericytes were visualized using diaminofluorescein-2-diacetate and intravasal blood flow by fluorescein-dextrane. Vessel diameter at sites of pericyte somas and downstream controls were quantified by specialized software. Values were obtained before treatment, after first treatment with tumor necrosis factor or placebo and after second treatment with etanercept or placebo. Overall, 199 pericytes in 12 animals were visualized. After initial treatment with TNF, a significant decrease in vessel diameter at sites of pericyte somas (3.6 ±4.3%, n = 141) compared with placebo and downstream controls was observed. After initial treatment with TNF, the application of etanercept caused a significant increase (3.3 ±5.5%, n = 59) in vessel diameter at the sites of pericyte somata compared with placebo and downstream controls. We have been able to show that cochlear pericytes are capable of reducing capillary diameter after exposition to TNF. Moreover, the reduction in capillary diameter observed after the application of TNF is revertible after neutralization of tumor necrosis factor by the application of etanercept. It seems that contraction of cochlear pericytes contributes to the regulation of cochlear blood flow.

  15. Is the Cochlear Amplifier a Fluid Pump?

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. D.; Mountain, D. C.

    2003-02-01

    We have visualized and quantified the effects of electrically evoked motility of outer hair cells (OHCs) within the organ of Corti using an excised cochlear preparation. We found that OHC motility induces oscillatory fluid flow in the tunnel of Corti (TC) and this flow is present at physiologically relevant frequencies. We also show, using a simple one-dimensional hydromechanical model of the TC, that a fluid wave within the tunnel can travel without significant attenuation for distances larger than the wavelength of the cochlear traveling wave. These results in combination with a recent hypothesis that fluid flow within the tunnel is necessary for cochlear amplification suggest that the function of the OHCs is to act as a fluid pump.

  16. Ischemia-reperfusion injury of the cochlea: pharmacological strategies for cochlear protection and implications of glutamate and reactive oxygen species.

    PubMed

    Tabuchi, Keiji; Nishimura, Bungo; Tanaka, Shuho; Hayashi, Kentaro; Hirose, Yuki; Hara, Akira

    2010-06-01

    A large amount of energy produced by active aerobic metabolism is necessary for the cochlea to maintain its function. This makes the cochlea vulnerable to blockade of cochlear blood flow and interruption of the oxygen supply. Although certain forms of human idiopathic sudden sensorineural hearing loss reportedly arise from ischemic injury, the pathological mechanism of cochlear ischemia-reperfusion injury has not been fully elucidated. Recent animal studies have shed light on the mechanisms of cochlear ischemia-reperfusion injury. It will help in the understanding of the pathology of cochlear ischemia-reperfusion injury to classify this injury into ischemic injury and reperfusion injury. Excitotoxicity, mainly observed during the ischemic period, aggravates the injury of primary auditory neurons. On the other hand, oxidative damage induced by hydroxyl radicals and nitric oxide enhances cochlear reperfusion injury. This article briefly summarizes the generation mechanisms of cochlear ischemia-reperfusion injury and potential therapeutic targets that could be developed for the effective management of this injury type.

  17. [The effects of carbogen inhalation on microvascular within lateral wall of cochlear following acute acoustic trauma].

    PubMed

    Zhao, Jing; Sun, Jianjun; Kong, Weijia

    2008-11-01

    To explore the influence of carbogen on lateral wall microvascular of cochlear after acute acoustic trauma. Forty guinea pigs were divided into 4 groups: group A (noise damage), group B (carbogen inhalation), group C (noise damage + carbogen inhalation), and the control group without any treatment. The diameter of the column of RBCs (RBC column diameter, RBCCD), blood flow velocity (BFV) and blood flow states(BFS) in microvasculature were measured and described under microscope. The microvascular in group A demonstrated a blood flow in contrary direction, granuliform flow, and granular slow flow. The erythrocytes aggregated in the microvascular of the cochlea. The RBCCD decreased 12.1% compared with the control group (P < 0.05). The blood flow in group B showed a laminar flow or laminar granular flow, and the RBCCD increased 20.7% compared with the control group. The blood condition in group C was the same as the control group-laminar granular blood flow; the blood flow with contrary direction was less than group A, and the RBCCD was 17.4% lager than that of group A. Carbogen can dilate the RBCCD and increase the BFV in stria vascular. So carbogen can alleviate the harm from noise.

  18. Use of suprathreshold stochastic resonance in cochlear implant coding

    NASA Astrophysics Data System (ADS)

    Allingham, David; Stocks, Nigel G.; Morse, Robert P.

    2003-05-01

    In this article we discuss the possible use of a novel form of stochastic resonance, termed suprathreshold stochastic resonance (SSR), to improve signal encoding/transmission in cochlear implants. A model, based on the leaky-integrate-and-fire (LIF) neuron, has been developed from physiological data and use to model information flow in a population of cochlear nerve fibers. It is demonstrated that information flow can, in principle, be enhanced by the SSR effect. Furthermore, SSR was found to enhance information transmission for signal parameters that are commonly encountered in cochlear implants. This, therefore, gives hope that SSR may be implemented in cochlear implants to improve speech comprehension.

  19. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  20. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  1. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine

    PubMed Central

    Delp, Michael D; Armstrong, R B; Godfrey, Donald A; Laughlin, M Harold; Ross, C David; Wilkerson, M Keith

    2001-01-01

    The purpose of these experiments was to use radiolabelled microspheres to measure blood flow distribution within the brain, and in particular to areas associated with motor function, maintenance of equilibrium, cardiorespiratory control, vision, hearing and smell, at rest and during exercise in miniature swine. Exercise consisted of steady-state treadmill running at intensities eliciting 70 and 100 % maximal oxygen consumption (). Mean arterial pressure was elevated by 17 and 26 % above that at rest during exercise at 70 and 100 %, respectively. Mean brain blood flow increased 24 and 25 % at 70 and 100 %, respectively. Blood flow was not locally elevated to cortical regions associated with motor and somatosensory functions during exercise, but was increased to several subcortical areas that are involved in the control of locomotion. Exercise elevated perfusion and diminished vascular resistance in several regions of the brain related to the maintenance of equilibrium (vestibular nuclear area, cerebellar ventral vermis and floccular lobe), cardiorespiratory control (medulla and pons), and vision (dorsal occipital cortex, superior colliculi and lateral geniculate body). Conversely, blood flow to regions related to hearing (cochlear nuclei, inferior colliculi and temporal cortex) and smell (olfactory bulbs and rhinencephalon) were unaltered by exercise and associated with increases in vascular resistance. The data indicate that blood flow increases as a function of exercise intensity to several areas of the brain associated with integrating sensory input and motor output (anterior and dorsal cerebellar vermis) and the maintenance of equilibrium (vestibular nuclei). Additionally, there was an intensity-dependent decrease of vascular resistance in the dorsal cerebellar vermis. PMID:11410640

  2. Ion flow in cochlear hair cells and the regulation of hearing sensitivity.

    PubMed

    Patuzzi, Robert

    2011-10-01

    This paper discusses how ion transport proteins in the hair cells of the mammalian cochlea work to produce a sensitive but stable hearing organ. The transport proteins in the inner and outer hair cells are summarized (including their current voltage characteristics), and the roles of these proteins in determining intracellular Ca(2+), membrane potential, and ultimately cochlear sensitivity are discussed. The paper also discusses the role of the Ca(2+) sequestration sacs in outer hair cells in the autoregulation of hair cell membrane potential and cochlear gain, and how the underdamped control of Ca(2+) within these sacs may produce the observed slow oscillations in cochlear sensitivity and otoacoustic emissions after cochlear perturbations, including perilymphatic perfusions and prolonged low-frequency tones. The relative insensitivity of cochlear gain to short-term changes in the endocochlear potential is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  4. Cochlear Implants (For Parents)

    MedlinePlus

    ... nerve, and send it to the brain. The cochlear implant package is made up of: a receiver-stimulator that contains all of the electronic circuits that control the flow of electrical pulses into the ear an antenna ...

  5. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Armstrong, R. B.; Godfrey, D. A.; Laughlin, M. H.; Ross, C. D.; Wilkerson, M. K.

    2001-01-01

    1. The purpose of these experiments was to use radiolabelled microspheres to measure blood flow distribution within the brain, and in particular to areas associated with motor function, maintenance of equilibrium, cardiorespiratory control, vision, hearing and smell, at rest and during exercise in miniature swine. Exercise consisted of steady-state treadmill running at intensities eliciting 70 and 100 % maximal oxygen consumption (V(O(2),max)). 2. Mean arterial pressure was elevated by 17 and 26 % above that at rest during exercise at 70 and 100 % V(O(2),max), respectively. 3. Mean brain blood flow increased 24 and 25 % at 70 and 100 % V(O(2),max), respectively. Blood flow was not locally elevated to cortical regions associated with motor and somatosensory functions during exercise, but was increased to several subcortical areas that are involved in the control of locomotion. 4. Exercise elevated perfusion and diminished vascular resistance in several regions of the brain related to the maintenance of equilibrium (vestibular nuclear area, cerebellar ventral vermis and floccular lobe), cardiorespiratory control (medulla and pons), and vision (dorsal occipital cortex, superior colliculi and lateral geniculate body). Conversely, blood flow to regions related to hearing (cochlear nuclei, inferior colliculi and temporal cortex) and smell (olfactory bulbs and rhinencephalon) were unaltered by exercise and associated with increases in vascular resistance. 5. The data indicate that blood flow increases as a function of exercise intensity to several areas of the brain associated with integrating sensory input and motor output (anterior and dorsal cerebellar vermis) and the maintenance of equilibrium (vestibular nuclei). Additionally, there was an intensity-dependent decrease of vascular resistance in the dorsal cerebellar vermis.

  6. Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo.

    PubMed

    Ihler, Friedrich; Bertlich, Mattis; Weiss, Bernhard; Dietzel, Steffen; Canis, Martin

    2015-01-01

    Impairment of cochlear blood flow has been discussed as factor in the pathophysiology of various inner ear disorders. However, the microscopic study of cochlear microcirculation is limited due to small scale and anatomical constraints. Here, two-photon fluorescence microscopy is applied to visualize cochlear microvessels. Guinea pigs were injected with Fluorescein isothiocyanate- or Texas red-dextrane as plasma marker. Intravital microscopy was performed in four animals and explanted cochleae from four animals were studied. The vascular architecture of the cochlea was visualized up to a depth of 90.0±22.7 μm. Imaging yielded a mean contrast-to-noise ratio (CNR) of 3.3±1.7. Mean diameter in vivo was 16.5±6.0 μm for arterioles and 8.0±2.4 μm for capillaries. In explanted cochleae, the diameter of radiating arterioles and capillaries was measured with 12.2±1.6 μm and 6.6±1.0 μm, respectively. The difference between capillaries and arterioles was statistically significant in both experimental setups (P<0.001 and P=0.022, two-way ANOVA). Measured vessel diameters in vivo and ex vivo were in agreement with published data. We conclude that two-photon fluorescence microscopy allows the investigation of cochlear microvessels and is potentially a valuable tool for inner ear research.

  7. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    PubMed

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Blood flow

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    A heuristic treatment of blood flow in the heart and the aorta together with some of the main branches considers the effects of fluid viscosity and vessel elasticity as well as pressure distribution in the typical pulsating flow.

  9. Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery.

    PubMed

    Wangemann, Philine; Wonneberger, Kai

    2005-11-01

    The cochlea receives its main blood supply from the basilar artery via the anterior inferior cerebellar artery and the spiral modiolar artery. Morphologic studies have shown sympathetic innervation along the spiral modiolar artery of the gerbil and the guinea pig and functional studies in the isolated in vitro superfused spiral modiolar artery of the gerbil have demonstrated norepinephrine-induced vasoconstrictions via alpha(1A)-adrenergic receptors. It is current unclear whether the sympathetic innervation is physiologically relevant. Stimulation of sympathetic ganglia in guinea pigs has been shown to alter cochlear blood flow in situ. Whether these changes originated from local or more systemic changes in the vascular diameter remained uncertain. The goal of the present study was to demonstrate the presence or absence of neurogenic changes in the diameter of the isolated in vitro superfused spiral modiolar artery, anterior inferior cerebellar artery and basilar artery from the gerbil and the guinea pig. Vascular diameter was monitored by videomicroscopy. Electric field stimulation was used to elicit neurotransmitter release. A reversible inhibitory effect of 10(-6) M tetrodotoxin was taken as criterion to discriminate between neurogenic and myogenic changes in vascular diameter. Mesentery arteries of comparable diameter, which are known to respond with a neurogenic vasoconstriction to electric field stimulation, served as controls. Basilar artery, anterior inferior cerebellar artery, spiral modiolar artery and mesentery arteries constricted in response to electric field stimulation. No dilations were observed. Myogenic and neurogenic vasoconstrictions were observed in all vessels. These observations suggest that the sympathetic innervation of the basilar artery, the anterior inferior cerebellar artery and branch points of the spiral modiolar artery is involved in a physiologically relevant control of the vascular diameter in the gerbil and the guinea pig.

  10. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  11. Effects of dorzolamide on choroidal blood flow, ciliary blood flow, and aqueous production in rabbits.

    PubMed

    Reitsamer, Herbert A; Bogner, Barbara; Tockner, Birgit; Kiel, Jeffrey W

    2009-05-01

    To determine the effects of topical dorzolamide (a carbonic anhydrase inhibitor) on choroidal and ciliary blood flow and the relationship between ciliary blood flow and aqueous flow. The experiments were performed in four groups of pentobarbital-anesthetized rabbits treated with topical dorzolamide (2%, 50 microL). In all groups, intraocular pressure (IOP) and mean arterial pressure (MAP) at the eye level were measured continuously by direct cannulation. In group 1, aqueous flow was measured by fluorophotometry before and after dorzolamide treatment. In group 2, aqueous flow was measured after dorzolamide at normal MAP and while MAP was held constant at 80, 55, or 40 mm Hg with occluders on the aorta and vena cava. In group 3, the same MAP levels were used, and ciliary blood flow was measured transsclerally by laser Doppler flowmetry (LDF). In group 4, choroidal blood flow was measured by LDF with the probe tip positioned in the vitreous over the posterior pole during ramp increases and decreases in MAP before and after dorzolamide. Dorzolamide lowered IOP by 19% (P < 0.01) and aqueous flow by 17% (P < 0.01), and increased ciliary blood flow by 18% (P < 0.01), which was associated with a significant reduction in ciliary vasculature resistance (-7%, P < 0.01). Dorzolamide shifted the relationship between ciliary blood flow and aqueous flow downward relative to the previously determined control relationship in the rabbit. Dorzolamide did not alter choroidal blood flow, choroidal vascular resistance, or the choroidal pressure flow relationship. Acute topical dorzolamide is a ciliary vasodilator and has a direct inhibitory effect on aqueous production, but it does not have a detectable effect on choroidal hemodynamics at the posterior pole in the rabbit.

  12. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  13. Effects of perilymphatic pressure, sodium nitroprusside, and bupivacaine on cochlear fluid pH of guinea pigs.

    PubMed

    Suzuki, Masaaki; Kotani, Ryosuke

    2015-01-01

    Hydrostatic positive pressure and vasoconstrictor acidified the cochlear fluids, whereas the vasodilator made the fluids alkaline. CBF might play a role in regulating cochlea fluid pH. Cochlea fluid pH is highly dependent on the HCO3(-)/CO2 buffer system. Cochlear blood flow (CBF) supplies O2 and removes CO2. It is speculated that cochlear blood flow changes might affect the balance of the HCO3(-)/CO2 buffer system in the cochlea. It is known that the elevation of inner ear pressure decreases the CBF, and local application of vasodilating or vasoconstricting agents directly to the cochlea changes the CBF. The purpose of this study was to elucidate the effect of positive hydrostatic inner ear pressure and application of a vasodilator and vasoconstrictor of cochlear vessels on the pH of the endolymph and perilymph. The authors performed animal physiological experiments on 30 guinea pigs. Hydrostatic positive pressure was infused through a glass capillary tube inserted into the scala tympani of the basal turn. The vasodilator, nitric oxide donor (sodium nitroprusside; SNP), and the vasoconstrictor, bupivacaine, were placed topically onto the round window of the guinea pig cochlea. Endolymph pH (pHe) and endocochlear potential (EP) were monitored by double-barreled ion-selective microelectrodes in the second turn of the guinea pig cochlea. During the topical application study, scala vestibuli perilymph pH (pHv) was also measured simultaneously in the second turn. The application of hydrostatic positive pressure caused a decrease in pHe and EP. Positive perilymphatic pressure caused the endolymph to become acidic pressure-dependently. Application of 3.0% SNP evoked an increase in both the pHe and pHv, following by a gradual recovery to baseline levels. On the other hand, 0.5% bupivacaine caused a decrease in both the pHe and pHv. The EP during topical application showed slight, non-significant changes.

  14. Cochlear implantation in patients with bilateral cochlear trauma.

    PubMed

    Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar

    2010-01-01

    Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.

  15. Matrix metalloproteinase inhibitor attenuates cochlear lateral wall damage induced by intratympanic instillation of endotoxin.

    PubMed

    Choi, Cheol Hee; Jang, Chul Ho; Cho, Yong Bum; Jo, Si Young; Kim, Min Young; Park, Byung Young

    2012-04-01

    Oxytetracycline and ilomastat are inhibitors of matrix metalloproteinases (MMPs). Their efficacy in protecting against cochlear damage induced by the intratympanic instillation of lipopolysaccharide (LPS), as a means of inducing labyrinthitis, was investigated. Experiments were performed in 21 young male guinea pigs. Intratympanic instillation of LPS was done in the control group (n=7). Intratympanic instillation of oxytetracycline or ilomastat was done after LPS instillation in the experimental group. Measurements of auditory brainstem response (ABR) and cochlear blood flow (CBF) were performed. The organ of Corti was evaluated by field emission scanning electron microscopy (FE-SEM). The blood-labyrinth barrier (BLB) integrity was evaluated with Evans blue uptake. Gelatin zymography was used to assess the expression of active MMP-2 and MMP-9. Ears treated with MMP inhibitors were significantly protected from hearing loss compared to the LPS group. In LPS group, there was a significant decrease of CBF. However, experimental group displayed a statistically significant recovery of CBF. FE-SEM revealed hair cell damage in the LPS-treated group, but hair cells presented a normal appearance in MMP inhibitors. The LPS group showed a marked increase of Evans blue extravasation in the cochlea. However, MMP inhibitors significantly reduced the BLB opening. Active MMP-9 was expressed in the LPS group. Treatment with MMP inhibitors attenuated active MMP-9 expression. The MMP inhibitors oxytetracycline and ilomastat protect from cochlear lateral wall damage caused by LPS-induced labyrinthitis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral.

    PubMed

    Lichtenhan, J T; Hartsock, J; Dornhoffer, J R; Donovan, K M; Salt, A N

    2016-11-01

    Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Drug delivery into the cochlear apex: Improved control to sequentially affect finely spaced regions along the entire length of the cochlear spiral

    PubMed Central

    Lichtenhan, JT; Hartsock, J; Dornhoffer, JR; Donovan, KM; Salt, AN

    2016-01-01

    Background Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. New method Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Results Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Conclusions Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. PMID:27506463

  18. Regulation of coronary blood flow

    PubMed Central

    Gorlin, Richard

    1971-01-01

    Coronary blood flow is dependent upon arterial pressure, diastolic time, and small vessel resistance. The system is regulated to achieve a low flow high oxygen extraction and low myocardial Po2. This setting is sensitive to change in oxygen needs. Regulation of blood flow occurs primarily through local intrinsic regulation, most likely through production of vasodilating metabolites in response to minimal degrees of ischaemia. Local regulation appears to dominate over remote regulation in most circumstances. Blood flow distribution to the myocardium is depth dependent as well as regional in variation. Both types of distribution of blood flow are profoundly disturbed in the presence of obstructive coronary atherosclerosis. This results in either concentric myocardial shells or patchy transmural zones of selective ischaemia with clear-cut but local abnormalities in metabolism and performance. Images PMID:4929442

  19. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  20. Preventing Ototoxic Synergy of Prior Noise Trauma During Aminoglycoside Therapy

    DTIC Science & Technology

    2015-12-01

    cochlear blood flow . Hearing Research 313, 38-46 (2014). 12. Koo, J.-W. et al. Endotoxemia-mediated inflammation potentiates cochlear uptake of...event in response to a need for higher cochlear blood flow . A 3.7% dilation was adequate for a 20% increase of blood flow 10. On the contrary...summation of the two insults. We have found that prior sound exposure enhances cochlear uptake of aminoglycosides, providing a mechanistic basis for the

  1. Energy flow in passive and active 3D cochlear model

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  2. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.

    PubMed

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter

    2004-07-01

    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  3. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS.

    PubMed

    Dai, Min; Yang, Yue; Shi, Xiaorui

    2011-10-01

    Transduction of sound in the inner ear demands tight control over delivery of oxygen and glucose. However, the mechanisms underlying the control of regional blood flow are not yet fully understood. In this study, we report a novel local control mechanism that regulates cochlear blood flow to the stria vascularis, a high energy-consuming region of the inner ear. We found that extracellular lactate had a vasodilatory effect on the capillaries of the spiral ligament under both in vitro and in vivo conditions. The lactate, acting through monocarboxylate transporter 1 (MCT1), initiated neuronal nitric oxide (NO) synthase (nNOS) and catalyzed production of NO for the vasodilation. Blocking MCT1 with the MCT blocker, α-cyano-4-hydroxycinnamate (CHC), or a suppressing NO production with either the nonspecific inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME), or either of two selective nNOS inhibitors, 3-bromo-7-nitroindazole or (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine (TFA), totally abolished the lactate-induced vasodilation. Pretreatment with the selective endothelial NO synthase inhibitor, L-N(5)-(1-iminoethyl)ornithine (L-NIO), eliminated the inhibition of lactate-induced vessel dilation. With immunohistochemical labeling, we found the expression of MCT1 and nNOS in capillary-coupled type V fibrocytes. The data suggest that type V fibrocytes are the source of the lactate-induced NO. Cochlear microvessel tone, regulated by lactate, is mediated by an NO-signaled coupling of fibrocytes and capillaries.

  4. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2014-01-01

    2013b), increase expression of deafness genes (Valiyaveettil et al., 2012), and alter cochlear blood flow (Chen et al., 2013b), as well as result in...Intense noise exposure has been shown to reduce partial oxygen pressure and cochlear blood flow (Scheibe et al., 1992, 1993, Lamm and Arnold, 1999...found in the cochlear microvasculature and spiral ganglia (Gosepath, 1997; Franz, 1996) and has been shown to maintain cerebral blood flow and blood

  5. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    PubMed

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  6. Libyan cochlear implant programme: achievements, difficulties, and future goals

    PubMed Central

    Salamat, Ali; Esriti, Anwer; Ehtuish, Asia; El-Ogbi, Samya

    2011-01-01

    Cochlear implantation has become established worldwide as a safe and effective method of auditory rehabilitation of selected severely and profound deaf children and adults. Over 100,000 patients have received cochlear implants worldwide with the paediatric population proving to be the main beneficiaries. The Libyan cochlear implant programme was set up in 2004. Data relating to the patients who received cochlear implantation at Tripoli Medical Centre between October 2007 and February 2010 were analysed. Implant operations were performed on 37 patients. All patients received Med-El SONATATI100 devices. Thirty-four (91.9%) of these patients were children, whilst three (8.1%) were adults. Combined, congenital hearing loss (56.8%) and perinatal/neonatal (29.7%) were the two main aetiological factors in children. Seventeen patients (45.9%) had a positive family history of deafness. Sixteen patients (43.2%) were born to blood-related parents. The overall rate of minor and major complications was 16.2%, which is comparable to previous studies. PMID:21694783

  7. Libyan cochlear implant programme: achievements, difficulties, and future goals.

    PubMed

    Salamat, Ali; Esriti, Anwer; Ehtuish, Asia; El-Ogbi, Samya

    2011-01-01

    Cochlear implantation has become established worldwide as a safe and effective method of auditory rehabilitation of selected severely and profound deaf children and adults. Over 100,000 patients have received cochlear implants worldwide with the paediatric population proving to be the main beneficiaries. The Libyan cochlear implant programme was set up in 2004. Data relating to the patients who received cochlear implantation at Tripoli Medical Centre between October 2007 and February 2010 were analysed. Implant operations were performed on 37 patients. All patients received Med-El SONATA(TI) (100) devices. Thirty-four (91.9%) of these patients were children, whilst three (8.1%) were adults. Combined, congenital hearing loss (56.8%) and perinatal/neonatal (29.7%) were the two main aetiological factors in children. Seventeen patients (45.9%) had a positive family history of deafness. Sixteen patients (43.2%) were born to blood-related parents. The overall rate of minor and major complications was 16.2%, which is comparable to previous studies.

  8. Energy flow in passive and active 3D cochlear model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Steele, Charles; Puria, Sunil

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scalamore » vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.« less

  9. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  10. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  11. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  12. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  13. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in a...

  14. Ultrasonic Blood Flow Measurement in Haemodialysis

    PubMed Central

    Sampson, D.; Papadimitriou, M.; Kulatilake, A. E.

    1970-01-01

    A 5-megacycle Doppler flow meter, calibrated in-vitro, was found to give a linear response to blood flow in the ranges commonly encountered in haemodialysis. With this, blood flow through artificial kidneys could be measured simply and with a clinically acceptable error. The method is safe, as blood lines do not have to be punctured or disconnected and hence there is no risk of introducing infection. Besides its value as a research tool the flow meter is useful in evaluating new artificial kidneys. Suitably modified it could form the basis of an arterial flow alarm system. PMID:5416812

  15. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  16. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  17. A novel perfusion-based method for cochlear implant electrode insertion.

    PubMed

    Kale, Sushrut; Cervantes, Vanessa M; Wu, Mailing R; Pisano, Dominic V; Sheth, Nakul; Olson, Elizabeth S

    2014-08-01

    A cochlear implant (CI) restores partial hearing to profoundly deaf individuals. CI electrodes are inserted manually in the cochlea and surgeons rely on tactile feedback from the implant to determine when to stop the insertion. This manual insertion method results in a large degree of variability in surgical outcomes and intra-cochlear trauma. Additionally, implants often span only the basal turn. In the present study we report on the development of a new method to assist CI electrode insertion. The design objectives are (1) an automated and standardized insertion technique across patients with (2) more apical insertion than is possible by the contemporary methods, while (3) minimizing insertion trauma. The method relies on a viscous fluid flow through the cochlea to carry the electrode array with it. A small cochleostomy (∼100-150 um in diameter) is made in scala vestibuli (SV) and the round window (RW) membrane is opened. A flow of diluted Sodium Hyaluronate (also known as Hyaluronic Acid, (HA)) is set up from the RW to the SV opening using a perfusion pump that sets up a unidirectional flow. Once the flow is established an implant is dropped into the ongoing flow. Here we present a proof-of-concept study where we used this technique to insert silicone implants all the way to the cochlear apex in rats and gerbils. In light-microscopic histology, the implantation occurred without cochlear trauma. To further assess the ototoxicity of the HA perfusion, we measured compound action potential (CAP) thresholds following the perfusion of HA, and found that the CAP thresholds were substantially elevated. Thus, at this point the method is promising, and requires further development to become clinically viable. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  19. Finger blood flow in Antarctica

    PubMed Central

    Elkington, E. J.

    1968-01-01

    1. Finger blood flow was estimated, by strain-gauge plethysmography, before and during a 1 hr immersion in ice water, on twenty-five men throughout a year at Wilkes, Antarctica. A total of 121 satisfactory immersions were made. 2. Blood flow before and during immersion decreased significantly in the colder months of the year, and the increase caused by cold-induced vasodilatation (CIVD) became less as the year progressed. The time of onset, blood flow at onset, and frequency of the cycles of CIVD showed no significant relation to the coldness of the weather (as measured by mean monthly wind chill) or the time in months. Comparisons of blood flow before and after five field trips (average duration 42 days), on which cold exposure was more severe than at Wilkes station, gave similar results. 3. The results suggest that vasoconstrictor tone increased. This interpretation agrees with previous work on general acclimatization in Antarctica, but contrasts with work elsewhere on local acclimatization of the hands. PMID:5684034

  20. Modified Beer-Lambert law for blood flow

    NASA Astrophysics Data System (ADS)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  1. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  2. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  3. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively.

  4. Blood cell interactions and segregation in flow.

    PubMed

    Munn, Lance L; Dupin, Michael M

    2008-04-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.

  5. Blood Cell Interactions and Segregation in Flow

    PubMed Central

    Munn, Lance L.; Dupin, Michael M.

    2009-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702

  6. The effect of partial portal decompression on portal blood flow and effective hepatic blood flow in man: a prospective study.

    PubMed

    Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J

    1995-12-01

    With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.

  7. Increased hippocampal blood volume and normal blood flow in schizophrenia

    PubMed Central

    Talati, Pratik; Rane, Swati; Skinner, Jack; Gore, John; Heckers, Stephan

    2015-01-01

    Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia. PMID:25896442

  8. Blood flow patterns underlie developmental heart defects

    PubMed Central

    Midgett, Madeline; Thornburg, Kent

    2017-01-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. PMID:28062416

  9. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  10. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.

    PubMed

    Chung, King; McKibben, Nicholas

    2011-10-01

    Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before

  11. Heterogeneity of human adipose blood flow

    PubMed Central

    Levitt, David G

    2007-01-01

    Background The long time pharmacokinetics of highly lipid soluble compounds is dominated by blood-adipose tissue exchange and depends on the magnitude and heterogeneity of adipose blood flow. Because the adipose tissue is an infinite sink at short times (hours), the kinetics must be followed for days in order to determine if the adipose perfusion is heterogeneous. The purpose of this paper is to quantitate human adipose blood flow heterogeneity and determine its importance for human pharmacokinetics. Methods The heterogeneity was determined using a physiologically based pharmacokinetic model (PBPK) to describe the 6 day volatile anesthetic data previously published by Yasuda et. al. The analysis uses the freely available software PKQuest and incorporates perfusion-ventilation mismatch and time dependent parameters that varied from the anesthetized to the ambulatory period. This heterogeneous adipose perfusion PBPK model was then tested by applying it to the previously published cannabidiol data of Ohlsson et. al. and the cannabinol data of Johansson et. al. Results The volatile anesthetic kinetics at early times have only a weak dependence on adipose blood flow while at long times the pharmacokinetics are dominated by the adipose flow and are independent of muscle blood flow. At least 2 adipose compartments with different perfusion rates (0.074 and 0.014 l/kg/min) were needed to describe the anesthetic data. This heterogeneous adipose PBPK model also provided a good fit to the cannabinol data. Conclusion Human adipose blood flow is markedly heterogeneous, varying by at least 5 fold. This heterogeneity significantly influences the long time pharmacokinetics of the volatile anesthetics and tetrahydrocannabinol. In contrast, using this same PBPK model it can be shown that the long time pharmacokinetics of the persistent lipophilic compounds (dioxins, PCBs) do not depend on adipose blood flow. The ability of the same PBPK model to describe both the anesthetic and

  12. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.

    PubMed

    Polska, Elzbieta; Ehrlich, Paulina; Luksch, Alexandra; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2003-07-01

    There is evidence from a variety of animal studies that the adenosine system plays a role in the control of intraocular pressure (IOP) and ocular blood flow. However, human data on the effect of adenosine on IOP and choroidal and optic nerve blood flow are not available. The effect of stepwise increases in doses of adenosine (10, 20, and 40 micro g/kg per minute, 30 minutes per infusion step) on optic nerve head blood flow, choroidal blood flow, and IOP was determined in a placebo-controlled double-masked clinical trial in 12 healthy male volunteers. Blood flow in the optic nerve head and choroid was measured with laser Doppler flowmetry. In addition, fundus pulsation amplitude in the macula (FPAM) and the optic nerve head (FPAO) were assessed with laser interferometry. Adenosine induced a small but significant decrease in IOP (at 40 microg/kg per minute: 12% +/- 13%), which was significant versus placebo (P = 0.046). In addition, adenosine induced a significant increase in choroidal blood flow (P < 0.001) and optic nerve head blood flow (P = 0.037), and FPAM (P = 0.0014) and tended to increase FPAO (P = 0.057). At the highest administered dose, the effect on choroidal hemodynamic parameters between 14% and 17%, whereas the effect on optic nerve hemodynamic parameters was between 3% and 11%. These data are consistent with adenosine inducing choroidal and optic nerve head vasodilatation and reducing IOP in healthy humans. Considering the neuroprotective properties of adenosine described in previous animal experiments the adenosine system is an attractive target system for therapeutic approaches in glaucoma.

  13. Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography.

    PubMed

    Naito, Y; Okazawa, H; Honjo, I; Hirano, S; Takahashi, H; Shiomi, Y; Hoji, W; Kawano, M; Ishizu, K; Yonekura, Y

    1995-07-01

    Six postlingually deaf patients using multi-channel cochlear implants were examined by positron emission tomography (PET) using 15O-labeled water. Changes in regional cerebral blood flow (rCBF) were measured during different sound stimuli. The stimulation paradigms employed consisted of two sets of three different conditions; (1) no sound stimulation with the speech processor of the cochlear implant system switched off, (2) hearing white noise and (3) hearing sequential Japanese sentences. In the primary auditory area, the mean rCBF increase during noise stimulation was significantly greater on the side contralateral to the implant than on the ipsilateral side. Speech stimulation caused significantly greater rCBF increase compared with noise stimulation in the left immediate auditory association area (P < 0.01), the bilateral auditory association areas (P < 0.01), the posterior part of the bilateral inferior frontal gyri; the Broca's area (P < 0.01) and its right hemisphere homologue (P < 0.05). Activation of cortices related to verbal and non-verbal sound recognition was clearly demonstrated in the current subjects probably because complete silence was attained in the control condition.

  14. Modeling the measurements of cochlear microcirculation and hearing function after loud noise.

    PubMed

    Arpornchayanon, Warangkana; Canis, Martin; Suckfuell, Markus; Ihler, Fritz; Olzowy, Bernhard; Strieth, Sebastian

    2011-09-01

    Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Randomized controlled trial. Setting. Animal study. Subjects and Methods. After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2 dB SPL (60 minutes) only in animals exposed to loud noise. With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo.

  15. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise.

    PubMed

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-04-01

    We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow in healthy subjects during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior cerebral blood flow, were continuously measured during an exercise trial using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high-intensity dynamic exercise, -11.5 ± 12.2% and -18.0 ± 16.8%, means ± SD, respectively) despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to carefully consider which cerebral artery to measure, regardless of exercise mode. NEW & NOTEWORTHY We examined whether transcranial Doppler-determined flow velocity in the posterior cerebral artery can be used as an index of cerebral blood flow during exercise. However, the changes in posterior cerebral artery flow velocity during exercise do not reflect vertebral artery blood flow. Copyright © 2017 the American Physiological Society.

  16. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  17. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    NASA Astrophysics Data System (ADS)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  18. Blood flow and microgravity

    NASA Astrophysics Data System (ADS)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  19. Guideline on cochlear implants.

    PubMed

    Manrique, Manuel; Ramos, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo, Elisa; Lassaleta, Luis; Sanchez-Cuadrado, Isabel; Espinosa, Juan Manuel; Batuecas, Ángel; Cenjor, Carlos; Lavilla, María José; Núñez, Faustino; Cavalle, Laura; Huarte, Alicia

    2018-03-26

    In the last decade numerous hospitals have started to work with patients who are candidates for a cochlear implant (CI) and there have been numerous and relevant advances in the treatment of sensorineural hearing loss that extended the indications for cochlear implants. To provide a guideline on cochlear implants to specialists in otorhinolaryngology, other medical specialities, health authorities and society in general. The Scientific Committees of Otology, Otoneurology and Audiology from the Spanish Society of Otolaryngology and Head and Neck Surgery (SEORL-CCC), in a coordinated and agreed way, performed a review of the current state of CI based on the existing regulations and in the scientific publications referenced in the bibliography of the document drafted. The clinical guideline on cochlear implants provides information on: a) Definition and description of Cochlear Implant; b) Indications for cochlear implants; c) Organizational requirements for a cochlear implant programme. A clinical guideline on cochlear implants has been developed by a Committee of Experts of the SEORL-CCC, to help and guide all the health professionals involved in this field of CI in decision-making to treathearing impairment. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Regional Blood Volume and Peripheral Blood Flow in the Postural Tachycardia Syndrome

    PubMed Central

    Stewart, Julian M.; Montgomery, Leslie D.

    2015-01-01

    Variants of postural tachycardia syndrome (POTS) are associated with increased (“high flow” POTS, HFP), decreased (“low flow POTS”, LFP) and normal (“normal flow POTS”, NFP) blood flow measured in the lower extremities while supine. We propose that postural tachycardia is related to thoracic hypovolemia during orthostasis but that the patterns of peripheral blood flow relate to different mechanisms for thoracic hypovolemia. We studied 37 POTS patients aged 14-21 years: 14 LFP, 15 NFP and 8 HFP patients and 12 healthy control subjects. Peripheral blood flow was measured supine by venous occlusion strain gauge plethysmography of the forearm and calf in order to subgroup patients. Using indocyanine green techniques we showed decreased cardiac index (CI) and increased total peripheral resistance (TPR) in LFP, increased CI and decreased TPR in HFP, and unchanged CI and TPR in NFP while supine compared to control subjects. Blood volume tended to be decreased in LFP compared to control subjects. We used impedance plethysmography to assess regional blood volume redistribution during upright tilt. Thoracic blood volume decreased while splanchnic, pelvic and leg blood volumes increased for all subjects during orthostasis, but were markedly lower than control for all POTS groups. Splanchnic volume was increased in NFP and LFP. Pelvic blood volume was increased in HFP only. Calf volume was increased above control in HFP and LFP. The results support the hypothesis of [at least] three pathophysiologic variants of POTS distinguished by peripheral blood flow related to characteristic changes in regional circulations. The data demonstrate enhanced thoracic hypovolemia during upright tilt and confirm that POTS is related to inadequate cardiac venous return during orthostasis. PMID:15117717

  1. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    NASA Astrophysics Data System (ADS)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  2. Modeling microcirculatory blood flow: current state and future perspectives.

    PubMed

    Gompper, Gerhard; Fedosov, Dmitry A

    2016-01-01

    Microvascular blood flow determines a number of important physiological processes of an organism in health and disease. Therefore, a detailed understanding of microvascular blood flow would significantly advance biophysical and biomedical research and its applications. Current developments in modeling of microcirculatory blood flow already allow to go beyond available experimental measurements and have a large potential to elucidate blood flow behavior in normal and diseased microvascular networks. There exist detailed models of blood flow on a single cell level as well as simplified models of the flow through microcirculatory networks, which are reviewed and discussed here. The combination of these models provides promising prospects for better understanding of blood flow behavior and transport properties locally as well as globally within large microvascular networks. © 2015 Wiley Periodicals, Inc.

  3. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  4. Cochlear perfusion with a viscous fluid

    PubMed Central

    Wang, Yi; Olson, Elizabeth S.

    2016-01-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed

  5. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  6. Mammary blood flow regulation in the nursing rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, M.; Creasy, R.K.

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary bloodmore » flow in the nursing rabbit.« less

  7. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    PubMed

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  8. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    DTIC Science & Technology

    2015-06-01

    K.C. and Hu, B.H. 2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1): 1-19. Hillerdal, M. 1987. Cochlear blood flow ...Larsen, H.C., Angelborg, C. and Slepecky, N. 1984. Determination of the regional cochlear blood flow in the rat cochlea using non-radioactive...24-Hour JP-8 Exposure using a Cochlear Cell Model and Cellular Pathway Modulation

  9. Perilymph Kinetics of FITC-Dextran Reveals Homeostasis Dominated by the Cochlear Aqueduct and Cerebrospinal Fluid.

    PubMed

    Salt, A N; Gill, R M; Hartsock, J J

    2015-06-01

    Understanding how drugs are distributed in perilymph following local applications is important as local drug therapies are increasingly used to treat disorders of the inner ear. The potential contribution of cerebrospinal fluid (CSF) entry to perilymph homeostasis has been controversial for over half a century, largely due to artifactual contamination of collected perilymph samples with CSF. Measures of perilymph flow and of drug distribution following round window niche applications have both suggested a slow, apically directed flow occurs along scala tympani (ST) in the normal, sealed cochlea. In the present study, we have used fluorescein isothiocyanate-dextran as a marker to study perilymph kinetics in guinea pigs. Dextran is lost from perilymph more slowly than other substances so far quantified. Dextran solutions were injected from pipettes sealed into the lateral semicircular canal (SCC), the cochlear apex, or the basal turn of ST. After varying delays, sequential perilymph samples were taken from the cochlear apex or lateral SCC, allowing dextran distribution along the perilymphatic spaces to be quantified. Variability was low and findings were consistent with the injection procedure driving volume flow towards the cochlear aqueduct, and with volume flow during perilymph sampling driven by CSF entry at the aqueduct. The decline of dextran with time in the period between injection and sampling was consistent with both a slow volume influx of CSF (~30 nL/min) entering the basal turn of ST at the cochlear aqueduct and a CSF-perilymph exchange driven by pressure-driven fluid oscillation across the cochlear aqueduct. Sample data also allowed contributions of other processes, such as communications with adjacent compartments, to be quantified. The study demonstrates that drug kinetics in the basal turn of ST is complex and is influenced by a considerable number of interacting processes.

  10. Hemodilution increases cerebral blood flow in acute ischemic stroke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorstrup, S.; Andersen, A.; Juhler, M.

    1989-07-01

    We measured cerebral blood flow in 10 consecutive, but selected, patients with acute ischemic stroke (less than 48 hours after onset) before and after hemodilution. Cerebral blood flow was measured by xenon-133 inhalation and emission tomography, and only patients with focal hypoperfusion in clinically relevant areas were included. Hemodilution was done according to the hematocrit level: for a hematocrit greater than or equal to 42%, 500 ml whole blood was drawn and replaced by the same volume of dextran 40; for a hematocrit between 37% and 42%, only 250 ml whole blood was drawn and replaced by 500 cc ofmore » dextran 40. Mean hematocrit was reduced by 16%, from 46 +/- 5% (SD) to 39 +/- 5% (SD) (p less than 0.001). Cerebral blood flow increased in both hemispheres by an average of 20.9% (p less than 0.001). Regional cerebral blood flow increased in the ischemic areas in all cases, on an average of 21.4 +/- 12.0% (SD) (p less than 0.001). In three patients, a significant redistribution of flow in favor of the hypoperfused areas was observed, and in six patients, the fractional cerebral blood flow increase in the hypoperfused areas was of the same magnitude as in the remainder of the brain. In the last patient, cerebral blood flow increased relatively less in the ischemic areas. Our findings show that cerebral blood flow increases in the ischemic areas after hemodilution therapy in stroke patients. The marked regional cerebral blood flow increase seen in some patients could imply an improved oxygen delivery to the ischemic tissue.« less

  11. Preliminary Mathematical Model for Jet Fuel Exacerbated Noise-Induced Hearing Loss

    DTIC Science & Technology

    2013-01-01

    and blood vessel damage (stria vascularis) with reductions in cochlear blood flow , which in turn mediates further damage as a result of reductions in...2006. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 27:1-19. Hillerdal, M. 1987. Cochlear blood flow in the rat. A...OF TABLES Table 1. Bodyweight and combined cochlea weight and fractions from F344 rat kinetic study ....7 Table 2. Blood flow values for rat

  12. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  13. Cerebral blood flow regulation during cognitive tasks

    PubMed Central

    Sorond, Farzaneh A.; Schnyer, D.M.; Serrador, J.M.; Milberg, W.P.; Lipsitz, L.A.

    2008-01-01

    Aging is associated with frontal subcortical microangiopathy and executive cognitive dysfunction, suggesting that elderly individuals may have impaired metabolic activation of cerebral blood flow to the frontal lobes. We used transcranial Doppler (TCD) ultrasound to examine the cerebral blood flow response to executive control and visual tasks in the anterior and posterior cerebral circulations and to determine the effects of healthy aging on cerebral blood flow regulation during cognitive tasks. Continuous simultaneous anterior cerebral artery (ACA) and posterior cerebral artery (PCA) blood flow velocities (BFVs) and mean arterial pressure (MAP) were measured in response to word stem completion (WSC) and a visual search (VS) task in 29 healthy subjects (14 young, 30 ± 1.5 years; 15 old, 74 ± 1.4 years). We found that: (1) ACA and PCA blood flow velocities are both significantly increased during WSC and VS cognitive tasks, (2) ACA and PCA activations were task specific in our young volunteers, with ACA > PCA BFV during the WSC task and PCA > ACA BFV during the VS task, (3) while healthy elderly subjects also had PCA > ACA BFV during the VS task, they did not have ACA > PCA activation during the WSC task, and (4) healthy elderly subjects tend to have overall greater increases in BFV during both cognitive tasks. We conclude that TCD can be used to monitor cerebrovascular hemodynamics during the performance of cognitive tasks. Our data suggest that there is differential blood flow increase in the ACA and PCA in young versus elderly subjects during cognitive tasks. PMID:18387547

  14. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  15. Monitoring blood flow responses during topical ALA-PDT

    PubMed Central

    Becker, Theresa L.; Paquette, Anne D.; Keymel, Kenneth R.; Henderson, Barbara W.; Sunar, Ulas

    2011-01-01

    Photodynamic therapy (PDT) using topical 5-aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular disruption early in treatment must be identified and prevented. We present blood flow responses to topical ALA-PDT in a preclinical model and basal cell carcinoma patients assessed by diffuse correlation spectroscopy (DCS). Our results show that ALA-PDT induced early blood flow changes and these changes were irradiance dependent. It is clear that there exists considerable variation in the blood flow responses in patients from lesion to lesion. Monitoring blood flow parameter may be useful for assessing ALA-PDT response and planning. PMID:21326642

  16. Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement.

    PubMed

    Liu, Xinqin; Zheng, Gang; Wu, Yongxiang; Shen, Xuefeng; Jing, Jinfei; Yu, Tao; Song, Han; Chen, Jingyuan; Luo, Wenjing

    2013-12-01

    This study was designed to investigate the impact of lead (Pb(2+)) on the auditory system and its molecular mechanisms. Pb(AC)2 was administrated to male SD rats aged 21-22 d for 8 weeks at a dose of 300ppm. Male guinea pigs were also administrated with 50mg/kg Pb(AC)2 two times a week for 8 weeks. The auditory nerve-brainstem evoked responses (ABR) was recorded and the morphological changes of the outer hair cells (OHCs) were observed with Phallodin-FITC staining. In addition, the integrity of the blood-labyrinth barrier was observed by TEM and the expression of tight junction proteins (TJPs) in the cochlear stria vascularis was determined by immunofluorescence. Our results showed that Pb(2+) exposure resulted in increased ABR threshold in both rats and guinea pigs. Abnormal shapes and loss of OHCs were found in the cochlear basilar membrane following the Pb(2+) exposure. TEM study showed that the tight junctions between the endothelial cells and the border cells were lost and disrupted. Down-regulation of the occludin, ZO-1 and claudin-5 in the stria vascularis suggested that the increased permeability of the blood-labyrinth barrier may attribute to the Pb(2+)-induced decrease of TJPs' expression. Additionally, Fe(2+) supplement partly reversed the Pb(2+)-induced hearing loss and down-regulation of TJPs. Taken together, these data indicate that the disruption of blood-labyrinth barrier by down-regulating the expression of TJPs plays a role in the Pb(2+)-induced hearing loss, and Fe(2+) supplement protects the auditory system against Pb(2+)-induced toxicity and may have significant clinical implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  18. MUSCLE METABOLISM WITH BLOOD FLOW RESTRICTION IN CHRONIC FATIGUE SYNDROME

    PubMed Central

    McCully, Kevin K.; Smith, Sinclair; Rajaei, Sheeva; Leigh, John S.; Natelson, Benjamin H.

    2009-01-01

    The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to CDC criteria (n=19) were compared to normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle using 31P magnetic resonance spectroscopy (MRS). Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50,60,70,80,and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients. Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow. In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery, but no evidence that this impaired muscle metabolism. Thus, CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Further, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms. PMID:14578362

  19. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.

  20. Blood Flow After Exercise-Induced Muscle Damage

    PubMed Central

    Selkow, Noelle M.; Herman, Daniel C.; Liu, Zhenqi; Hertel, Jay; Hart, Joseph M.; Saliba, Susan A.

    2015-01-01

    Context: The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. Objective: To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). Intervention(s): To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. Main Outcome Measure(s): Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. Results: We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. Conclusions: Whereas eccentric muscle damage

  1. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  2. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  3. Trends in cochlear implants.

    PubMed

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  4. Methods of blood flow measurement in the arterial circulatory system.

    PubMed

    Tabrizchi, R; Pugsley, M K

    2000-01-01

    The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.

  5. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  6. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  7. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  8. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  9. Intraoperative seizure and cerebrospinal fluid leak during adult cochlear implant surgery.

    PubMed

    Musser, Alexander B; Golub, Justin S; Samy, Ravi N; Phero, James C

    2016-01-01

    To report a rare case of cerebrospinal fluid gusher and subsequent seizure immediately after cochlear implant electrode insertion. After the cochlear implant electrode was inserted, brisk flow of 10 mL of cerebrospinal fluid was seen. The electrode was promptly inserted and the leak was additionally sealed with fascia. Seconds later, the patient had a tonic-clonic seizure lasting 30 seconds. Two additional episodes occurred during the case. Her postoperative course was uneventful with no subsequent seizures. The device has been successfully activated. Intervention & Technique: Postoperative imaging showed correct intracochlear placement of the electrode as well as an incidental enlarged vestibular aqueduct. Neurology consultation including electroencephalogram was unremarkable. To our knowledge, this is the first report of a seizure temporally associated with cochlear implant electrode insertion. The significance and possible casual relationship between these two events is discussed.

  10. Cochlear implant revision surgeries in children.

    PubMed

    Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2018-02-16

    The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  12. Collision Based Blood Cell Distribution of the Blood Flow

    NASA Astrophysics Data System (ADS)

    Cinar, Yildirim

    2003-11-01

    Introduction: The goal of the study is the determination of the energy transferring process between colliding masses and the application of the results to the distribution of the cell, velocity and kinetic energy in arterial blood flow. Methods: Mathematical methods and models were used to explain the collision between two moving systems, and the distribution of linear momentum, rectilinear velocity, and kinetic energy in a collision. Results: According to decrease of mass of the second system, the velocity and momentum of constant mass of the first system are decreased, and linearly decreasing mass of the second system captures a larger amount of the kinetic energy and the rectilinear velocity of the collision system on a logarithmic scale. Discussion: The cause of concentration of blood cells at the center of blood flow an artery is not explained by Bernoulli principle alone but the kinetic energy and velocity distribution due to collision between the big mass of the arterial wall and the small mass of blood cells must be considered as well.

  13. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    PubMed

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P < 0.005). Percentage of changes in flow and pressure were slightly but insignificantly greater after gavage with air vs. empty tube (P < 0.005). In portal-hypertensive rats, blood in the stomach lumen significantly increases splanchnic blood flow and PP. Splanchnic hyperemia from absorption of blood's calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  14. L-N-Acetylcysteine protects against radiation-induced apoptosis in a cochlear cell line.

    PubMed

    Low, Wong-Kein; Sun, Li; Tan, Michelle G K; Chua, Alvin W C; Wang, De-Yun

    2008-04-01

    L-N-Acetylcysteine (L-NAC) significantly reduced reactive oxygen species (ROS) generation and cochlear cell apoptosis after irradiation. The safe and effective use of L-NAC in reducing radiation-induced sensorineural hearing loss (SNHL) should be verified by further in vivo studies. Radiation-induced SNHL is a common complication after radiotherapy of head and neck tumours. There is growing evidence to suggest that ROS play an important role in apoptotic cochlear cell death from ototoxicity, resulting in SNHL. The aim of this study was to evaluate the effectiveness of L-NAC, an antioxidant, on radiation-induced apoptosis in cochlear cells. The OC-k3 cochlear cell line was studied after 0 and 20 Gy of gamma-irradiation. Cell viability assay was performed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Flow cytometry and TUNEL assay were done with and without the addition of 10 mmol/L of L-NAC. Intracellular generation of ROS was detected by 2',7'-dichlorofluorescein diacetate, with comparisons made using fluorescence intensity. L-NAC increased the viability of cells after irradiation. Generation of ROS was demonstrated at 1 h post-irradiation and was significantly reduced by L-NAC (p<0.0001). Flow cytometry and TUNEL assay showed cell apoptosis at 72 h post-irradiation, which was diminished by the addition of L-NAC.

  15. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  16. One dimensional blood flow in a planetocentric orbit

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  17. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  18. Regulation of Coronary Blood Flow

    PubMed Central

    Goodwill, Adam G.; Dick, Gregory M.; Kiel, Alexander M.; Tune, Johnathan D.

    2018-01-01

    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. PMID:28333376

  19. Blood flow patterns during incremental and steady-state aerobic exercise.

    PubMed

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  20. Cerebral blood flow in humans following resuscitation from cardiac arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohan, S.L.; Mun, S.K.; Petite, J.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and maymore » indicate the onset of irreversible brain damage.« less

  1. Local viscosity distribution in bifurcating microfluidic blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  2. Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo

    PubMed Central

    Nyman, Lara R.; Ford, Eric

    2010-01-01

    Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas. PMID:20071562

  3. Penile blood flow by xenon-133 washout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haden, H.T.; Katz, P.G.; Mulligan, T.

    1989-06-01

    Penile erectile failure is often attributed to abnormalities of vascular supply or drainage, but few direct measurements of penile blood flow have been made. We describe the xenon washout method for measurement of penile blood flow, and present the results obtained in a group of normal and impotent subjects. The procedure was performed with standard nuclear imaging equipment. Flaccid-state penile blood flow in the impotent patients studied was not significantly different from the normal group, suggesting that flaccid-state measurements may not be helpful in evaluation of erectile failure. However, this method can be used to measure penile venous outflow withmore » stimulated or induced erection, and may provide a method for detecting abnormal venous leakage.« less

  4. Gingival blood flow measurement with a non-contact laser flowmeter.

    PubMed

    Matsuki, M; Xu, Y B; Nagasawa, T

    2001-07-01

    A non-contact laser flowmeter was used to measure the changing of the gingival blood flow. Five university students with healthy oral condition were selected in this study. The blood flow measurement on the extensor digitorum (above the head of third metacarpal), with the changing of distance and angle between the probe and the tissue was used as a pre-study experiment. Blood flow rate was determined in the labial gingiva (2 mm above the cervical line) of upper central incisor using a stent fixing the probe at a 3-mm distance from the tissue. A basal level of gingival blood flow was taken two times each day for 5 days. The effects of water of different temperatures on the gingival blood flow are discussed. With the changing of distance, the blood flow rate became smaller, but there was no significant effect from the angle. The reproducibility was acceptable through the 5-day measurement. After stimulating with warm and body temperature water, the blood flow first increased significantly and then went back to the basal line (faster with the body temperature water). With cold water, different reactions between the subjects were observed.

  5. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  6. Topical Menthol, Ice, Peripheral Blood Flow, and Perceived Discomfort

    PubMed Central

    Topp, Robert; Ledford, Elizabeth R.; Jacks, Dean E.

    2013-01-01

    Context: Injury management commonly includes decreasing arterial blood flow to the affected site in an attempt to reduce microvascular blood flow and edema and limit the induction of inflammation. Applied separately, ice and menthol gel decrease arterial blood flow, but the combined effects of ice and menthol gel on arterial blood flow are unknown. Objectives: To compare radial artery blood flow, arterial diameter, and perceived discomfort before and after the application of 1 of 4 treatment conditions. Design: Experimental crossover design. Setting: Clinical laboratory. Participants or Other Participants: Ten healthy men, 9 healthy women (mean age = 25.68 years, mean height = 1.73 m, mean weight = 76.73 kg). Intervention(s): Four treatment conditions were randomly applied for 20 minutes to the right forearm of participants on 4 different days separated by at least 24 hours: (1) 3.5 mL menthol gel, (2) 0.5 kg of crushed ice, (3) 3.5 mL of menthol gel and 0.5 kg of crushed ice, or (4) no treatment (control). Main Outcome Measure(s): Using high-resolution ultrasound, we measured right radial artery diameter (cm) and blood flow (mL/min) every 5 minutes for 20 minutes after the treatment was applied. Discomfort with the treatment was documented using a 1-to-10 intensity scale. Results: Radial artery blood flow decreased (P < .05) from baseline in the ice (−20% to −24%), menthol (−17% to −24%), and ice and menthol (−36% to −39%) treatments but not in the control (3% to 9%) at 5, 10, and 15 minutes. At 20 minutes after baseline, only the ice (−27%) and combined ice and menthol (−38%) treatments exhibited reductions in blood flow (P < .05). Discomfort was less with menthol than with the ice treatment at 5, 10, and 20 minutes after application (P < .05). Arterial diameter and heart rate did not change. Conclusions: The application of 3.5 mL of menthol was similar to the application of 0.5 kg of crushed ice in reducing peripheral blood flood. Combining

  7. Regional blood flow volume in the eustachian tube.

    PubMed

    Minami, T; Kubo, N; Tomoda, K; Yamashita, T; Kumazawa, T

    1993-01-01

    Measurements of regional blood flow around the pharyngeal orifice of the Eustachian tube were carried out after topical administration of various inflammatory mediators in 14 mongrel dogs by the hydrogen clearance method. Histamine and platelet-activating factor (PAF) resulted in a significant alteration of blood flow volume. Histamine was found to induce a dose-response related increase, whereas blood flow volume tended to decrease in each concentration range in the series of PAF administration. There was no significant difference in blood flow between topical application of leukotriene C4 and leukotriene D4. It is likely that in upper respiratory tract inflammation, such as in otitis media and in nasal allergy, activated histamine and PAF affect the microcirculation of the tubal orifice. These results suggest that disturbance of the microcirculatory system in the Eustachian tube mucosa could be involved in the pathogenesis of chronic otitis media with effusion.

  8. [Echocardiography in Boid snakes: Demonstration and blood flow measurements].

    PubMed

    Schroff, S; Starck, J M; Krautwald-Junghanns, M-E; Pees, M

    2012-01-01

    Comparative echocardiography and blood flow measurements in different boid species. 51 healthy snakes from seven different species were examined echocardiographically under standardized conditions. The heart and the great vessels were displayed using 2-D-ultrasonography. Pulsed-wave doppler technique measurements of the blood flow within the vessels were performed and results analyzed statistically. The examinations could be performed in non-sedated snakes in ventral recumbency. The best image quality was obtained using the ventrolateral coupling site. An examination scheme applicable to all examined snake species was established. Diversity in the anatomy of vessels could be detected in different snake species. A characteristic shape of the curve demonstrating the blood flow against time could be shown for the respective vessels. There were positive correlations between the size of the snakes and the absolute blood flow (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=0.770; r=0.627; r=0.766; respectively to body mass: p<0.001; r=0.815; r=0.698; r=0.788), as well as negative correlations between the size of the animals and the blood flow relative to body mass (total flow, systemic flow, pulmonary flow to body length: p<0.001; r=-0.533; r=-0.512; r=-0.478; respectively total flow to body mass: p<0.001; r=-0.768). When using standardized conditions, echocardiography in boid snakes is a useful diagnostic tool for the assessment of cardiac function. Reference values provided in this study serve as a basis for ultrasound examination in veterinary practice.

  9. Cochlear Implants Special Issue Article: Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users

    PubMed Central

    Luo, Xin; Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    The present study investigated the ability of normal-hearing listeners and cochlear implant users to recognize vocal emotions. Sentences were produced by 1 male and 1 female talker according to 5 target emotions: angry, anxious, happy, sad, and neutral. Overall amplitude differences between the stimuli were either preserved or normalized. In experiment 1, vocal emotion recognition was measured in normal-hearing and cochlear implant listeners; cochlear implant subjects were tested using their clinically assigned processors. When overall amplitude cues were preserved, normal-hearing listeners achieved near-perfect performance, whereas listeners with cochlear implant recognized less than half of the target emotions. Removing the overall amplitude cues significantly worsened mean normal-hearing and cochlear implant performance. In experiment 2, vocal emotion recognition was measured in listeners with cochlear implant as a function of the number of channels (from 1 to 8) and envelope filter cutoff frequency (50 vs 400 Hz) in experimental speech processors. In experiment 3, vocal emotion recognition was measured in normal-hearing listeners as a function of the number of channels (from 1 to 16) and envelope filter cutoff frequency (50 vs 500 Hz) in acoustic cochlear implant simulations. Results from experiments 2 and 3 showed that both cochlear implant and normal-hearing performance significantly improved as the number of channels or the envelope filter cutoff frequency was increased. The results suggest that spectral, temporal, and overall amplitude cues each contribute to vocal emotion recognition. The poorer cochlear implant performance is most likely attributable to the lack of salient pitch cues and the limited functional spectral resolution. PMID:18003871

  10. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    PubMed

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  11. Cimetidine and hepatic blood flow in polytrauma patients.

    PubMed

    Ivatury, R R; Khan, M B; Nallathambi, M; Davis, K; Stahl, W M

    1985-05-01

    Recent reports suggest that cimetidine acutely reduces liver blood flow in normal healthy subjects. To determine whether this finding is applicable to critically ill patients, we studied nine polytrauma patients admitted to a surgical ICU. All patients were being monitored with pulmonary artery catheters; all were stable with normal liver function. Liver blood flow was estimated by indocyanine green clearance, before and after administration of a single dose of 600 mg cimetidine. Hemodynamic variables were measured at the same times. Cimetidine did not significantly alter either hepatic blood flow or cardiovascular status in these critically ill patients.

  12. Connexin 36 mediates blood cell flow in mouse pancreatic islets

    PubMed Central

    Short, Kurt W.; Head, W. Steve

    2013-01-01

    The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36−/−). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36+/− and Cx36−/− mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology. PMID:24326425

  13. Methods for determination of optic nerve blood flow.

    PubMed Central

    Glazer, L. C.

    1988-01-01

    A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres. PMID:3284212

  14. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    PubMed

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  15. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Effect of hindlimb unweighting on tissue blood flow in the rat

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    This study characterized distribution of blood flow in the rat during hindlimb unweighting (HU), and post-HU standing and exercise. The relationship between reduced hindlimb blood flow and the previously observed elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was examined (Witzmann et al., 1992). Blood flow was measured during unweighting, normal standing, and running on a treadmill (15 m/min), after 15 days of HU or cage control. For another group blood flow was measured during preexercise treadmill standing and treadmill running. During unweighting, PE standing, and running no difference in soleus blood flow was observed between groups. Muscles composed mainly of fast twitch glycolytic fibers received greater blood flow during chronic unweighting. With exercise blood flow to visceral organs was reduced in control animals, a similar change was not seen in 15 day HU rats. These changes suggest a reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. A reduction in blood flow to the soleus during exercise was not observed after HU and so does not explain the increased dependence of the atrophied soleus on anerobic energy production during contractile activity.

  17. Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake.

    PubMed

    Pitkanen, O P; Laine, H; Kemppainen, J; Eronen, E; Alanen, A; Raitakari, M; Kirvela, O; Ruotsalainen, U; Knuuti, J; Koivisto, V A; Nuutila, P

    1999-12-15

    1. The role of blood flow as a determinant of skeletal muscle glucose uptake is at present controversial and results of previous studies are confounded by possible direct effects of vasoactive agents on glucose uptake. Since increase in muscle blood flow can be due to increased flow velocity or recruitment of new capillaries, or both, it would be ideal to determine whether the vasoactive agent affects flow distribution or only increases the mean flow. 2. In the present study blood flow, flow distribution and glucose uptake were measured simultaneously in both legs of 10 healthy men (aged 29 +/- 1 years, body mass index 24 +/- 1 kg m-2) using positron emission tomography (PET) combined with [15O]H2O and [18F]fluoro-2-deoxy-D-glucose (FDG). The role of blood flow in muscle glucose uptake was studied by increasing blood flow in one leg with sodium nitroprusside (SNP) and measuring glucose uptake simultaneously in both legs during euglycaemic hyperinsulinaemia (insulin infusion 6 pmol kg-1 min-1). 3. SNP infusion increased skeletal muscle blood flow by 86 % (P < 0.01), but skeletal muscle flow distribution and insulin-stimulated glucose uptake (61.4 +/- 7. 5 vs. 67.0 +/- 7.5 micromol kg-1 min-1, control vs. SNP infused leg, not significant), as well as flow distribution between different tissues of the femoral region, remained unchanged. The effect of SNP infusion on blood flow and distribution were unchanged during infusion of physiological levels of insulin (duration, 150 min). 4. Despite a significant increase in mean blood flow induced by an intra-arterial infusion of SNP, glucose uptake and flow distribution remained unchanged in resting muscles of healthy subjects. These findings suggest that SNP, an endothelium-independent vasodilator, increases non-nutritive, but not nutritive flow or capillary recruitment.

  18. Regulation of exercise blood flow: Role of free radicals.

    PubMed

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. Published by Elsevier Inc.

  19. Regulation of Exercise Blood Flow: Role of Free Radicals

    PubMed Central

    Trinity, Joel D.; Broxterman, Ryan M.; Richardson, Russell S.

    2016-01-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an “optimal” redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  20. Cutaneous Microvascular Blood Flow and Reactivity in Hypoxia

    PubMed Central

    Treml, Benedikt; Kleinsasser, Axel; Stadlbauer, Karl-Heinz; Steiner, Iris; Pajk, Werner; Pilch, Michael; Burtscher, Martin; Knotzer, Hans

    2018-01-01

    As is known, hypoxia leads to an increase in microcirculatory blood flow of the skin in healthy volunteers. In this pilot study, we investigated microcirculatory blood flow and reactive hyperemia of the skin in healthy subjects in normobaric hypoxia. Furthermore, we examined differences in microcirculation between hypoxic subjects with and without short-term acclimatization, whether or not skin microvasculature can acclimatize. Fourty-six healthy persons were randomly allocated to either short-term acclimatization using intermittent hypoxia for 1 h over 7 days at an FiO2 0.126 (treatment, n = 23) or sham short-term acclimatization for 1 h over 7 days at an FiO2 0.209 (control, n = 23). Measurements were taken in normoxia and at 360 and 720 min during hypoxia (FiO2 0.126). Microcirculatory cutaneous blood flow was assessed with a laser Doppler flowmeter on the forearm. Reactive hyperemia was induced by an ischemic stimulus. Measurements included furthermore hemodynamics, blood gas analyses and blood lactate. Microcirculatory blood flow increased progressively during hypoxia (12.3 ± 7.1–19.0 ± 8.1 perfusion units; p = 0.0002) in all subjects. The magnitude of the reactive hyperemia was diminished during hypoxia (58.2 ± 14.5–40.3 ± 27.4 perfusion units; p = 0.0003). Short-term acclimatization had no effect on microcirculatory blood flow. When testing for a hyperemic response of the skin's microcirculation we found a diminished signal in hypoxia, indicative for a compromised auto-regulative circulatory capacity. Furthermore, hypoxic short-term acclimatization did not affect cutaneous microcirculatory blood flow. Seemingly, circulation of the skin was unable to acclimatize using a week-long short-term acclimatization protocol. A potential limitation of our study may be the 7 days between acclimatization and the experimental test run. However, there is evidence that the hypoxic ventilatory response, an indicator of acclimatization, is increased for 1 week after

  1. Effect of prolonged hypokinesia on tissue blood flow

    NASA Technical Reports Server (NTRS)

    Levites, Z. P.; Fedotova, V. F.

    1979-01-01

    The influence of hypokinesia on the blood flow in the tissues of rabbits was studied. Motor activity of animals was restricted during 90 days and blood flow recorded through resorption rate of NaI-131. Perfusion of tissues under the influence of hypokinesia was found to be reduced.

  2. Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow.

  3. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  4. Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

    PubMed

    Söderström, V; Renshaw, G M; Nilsson, G E

    1999-04-01

    The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

  5. Gender differences in myogenic regulation along the vascular tree of the gerbil cochlea.

    PubMed

    Reimann, Katrin; Krishnamoorthy, Gayathri; Wier, Withrow Gil; Wangemann, Philine

    2011-01-01

    Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.

  6. Boundary-integral modeling of cochlear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2008-04-01

    A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.

  7. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  8. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  9. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    NASA Astrophysics Data System (ADS)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  10. Thermographic venous blood flow characterization with external cooling stimulation

    NASA Astrophysics Data System (ADS)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  11. Cochlear implant in Hong Kong Cantonese.

    PubMed

    Tang, S O; Luk, W S; Lau, C C; So, K W; Wong, C M; Yiu, M L; Kwok, C L

    1990-11-01

    Cochlear implant surgery was performed in four Cantonese-speaking postlingually deaf Chinese adults, using the House/3M single channel device. This article outlines the methodology, including preoperative assessment and postoperative rehabilitation; and explains the necessary modifications in speech and audiologic work-up in Cantonese-speaking patients. Salient features of Cantonese phonetics, especially its tonal characteristics, are described. The findings of the study are presented. The results of the cochlear implant would suggest a performance superior to that of the hearing aid. Furthermore, the cochlear implant is able to detect tonal cues. This quality of the cochlear implant may prove to be a valuable asset to a tonal language-speaking cochlear implantee.

  12. Altered vesicular glutamate transporter distributions in the mouse cochlear nucleus following cochlear insult

    PubMed Central

    Heeringa, Amarins N.; Stefanescu, Roxana A.; Raphael, Yehoash; Shore, Susan E.

    2015-01-01

    Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to the sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. This indicates cross-modal compensation that is of potential importance in somatic tinnitus. To examine whether this effect is consistent across species and to provide a background for future studies, using transgenesis, the current study examines VGLUT expression profiles upon cochlear insult by intracochlear kanamycin injections in the mouse. Intracochlear kanamycin injections abolished ipsilateral ABR responses in all animals and reduced ipsilateral spiral ganglion neuron densities in animals that were sacrificed after four weeks, but not in animals that were sacrificed after three weeks. In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e. in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration. PMID:26705736

  13. Altered vesicular glutamate transporter distributions in the mouse cochlear nucleus following cochlear insult.

    PubMed

    Heeringa, A N; Stefanescu, R A; Raphael, Y; Shore, S E

    2016-02-19

    Vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) have distinct distributions in the cochlear nucleus that correspond to sources of the labeled terminals. VGLUT1 is mainly associated with terminals of auditory nerve fibers, whereas VGLUT2 is mainly associated with glutamatergic terminals deriving from other sources that project to the cochlear nucleus (CN), including somatosensory and vestibular terminals. Previous studies in guinea pig have shown that cochlear damage results in a decrease of VGLUT1-labeled puncta and an increase in VGLUT2-labeled puncta. This indicates cross-modal compensation that is of potential importance in somatic tinnitus. To examine whether this effect is consistent across species and to provide a background for future studies, using transgenesis, the current study examines VGLUT expression profiles upon cochlear insult by intracochlear kanamycin injections in the mouse. Intracochlear kanamycin injections abolished ipsilateral ABR responses in all animals and reduced ipsilateral spiral ganglion neuron densities in animals that were sacrificed after four weeks, but not in animals that were sacrificed after three weeks. In all unilaterally deafened animals, VGLUT1 density was decreased in CN regions that receive auditory nerve fiber terminals, i.e., in the deep layer of the dorsal cochlear nucleus (DCN), in the interstitial region where the auditory nerve enters the CN, and in the magnocellular region of the antero- and posteroventral CN. In contrast, density of VGLUT2 expression was upregulated in the fusiform cell layer of the DCN and in the granule cell lamina, which are known to receive somatosensory and vestibular terminals. These results show that a cochlear insult induces cross-modal compensation in the cochlear nucleus of the mouse, confirming previous findings in guinea pig, and that these changes are not dependent on the occurrence of spiral ganglion neuron degeneration. Copyright © 2015 IBRO. Published by Elsevier Ltd

  14. Cochlear implants in Waardenburg syndrome.

    PubMed

    Cullen, Robert D; Zdanski, Carlton; Roush, Patricia; Brown, Carolyn; Teagle, Holly; Pillsbury, Harold C; Buchman, Craig

    2006-07-01

    Waardenburg syndrome is an autosomal-dominant syndrome characterized by dystopia canthorum, hyperplasia of the eyebrows, heterochromia irides, a white forelock, and sensorineural hearing loss in 20% to 55% of patients. This patient population accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with Waardenburg syndrome who have undergone cochlear implantation. Pediatric cochlear implant recipients with documented evidence of Waardenburg syndrome underwent retrospective case review. All patients received their cochlear implants at the study institution followed by outpatient auditory habilitation. Charts were reviewed for etiology and duration of deafness, age at time of cochlear implantation, perioperative complications, duration of use, and performance outcomes. Results of standard tests batteries for speech perception and production administered as a part of the patients' auditory habilitation were reviewed. Seven patients with Waardenburg syndrome and cochlear implants were identified. The average age at implantation was 37 months (range, 18-64 months) and the average duration of use was 69 months (range, 12-143 months). All of these patients are active users of their devices and perform very well after implantation. There were no major complications in this small group of patients. Children with congenital sensorineural hearing loss without other comorbidities (e.g., developmental delay, inner ear malformations) perform well when they receive cochlear implantation and auditory habilitation. Patients with Waardenburg syndrome can be expected to have above-average performance after cochlear implantation.

  15. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.

    1989-04-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mmmore » Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass.« less

  16. Distribution of intrarenal blood flow consequent to left atrial balloon inflation.

    PubMed

    Passmore, J C; Stremel, R W; Hock, C E; Allen, R L; Bradford, W B

    1985-01-01

    The effects of inflation of a balloon within, and consequent distension of, the left atrium (LABI, left atrial balloon inflation) on total renal blood flow (RBF) and intrarenal blood flow distribution were measured and compared to values obtained from another group of dogs that were hemorrhaged (HEM) to the same level of hypotension as that produced by LABI, a mean systemic arterial pressure of 88 mm Hg. Kidney wt/kg, RBF/kg body wt, and urine flow were markedly reduced during the hemorrhage period in the HEM group when compared to values obtained during the experimental period for the LABI group. Data from the freeze-dissection (133Xe) analysis revealed that the percentage distribution of blood flow as renal outer cortical (OC) blood flow was less (26%) in the HEM group than in the LABI group (50%), this latter value being very similar to that of control dogs that experienced no hypotension (49%). LABI better maintains OC blood flow and urine flow when compared to HEM at the same systemic blood pressure, suggesting a role for cardiopulmonary receptors in reflex sympathetic control of renal blood flow distribution during hypotension.

  17. Serotonin projection patterns to the cochlear nucleus.

    PubMed

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  18. Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.

    PubMed

    Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh

    2017-10-01

    Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep

  19. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  20. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  1. Segmental Blood Flow and Hemodynamic State of Lymphedematous and Nonlymphedematous Arms

    PubMed Central

    Montgomery, Leslie D.; Dietrich, Mary S.; Armer, Jane M.; Stewart, B. R.

    2011-01-01

    Abstract Background Findings regarding the influence hemodynamic factors, such as increased arterial blood flow or venous abnormalities, on breast cancer treatment-related lymphedema are mixed. The purpose of this study was to compare segmental arterial blood flow, venous blood return, and blood volumes between breast cancer survivors with treatment-related lymphedema and healthy normal individuals without lymphedema. Methods and Results A Tetrapolar High Resolution Impedance Monitor and Cardiotachometer were used to compare segmental arterial blood flow, venous blood return, and blood volumes between breast cancer survivors with treatment-related lymphedema and healthy normal volunteers. Average arterial blood flow in lymphedema-affected arms was higher than that in arms of healthy normal volunteers or in contralateral nonlymphedema affected arms. Time of venous outflow period of blood flow pulse was lower in lymphedema-affected arms than in healthy normal or lymphedema nonaffected arms. Amplitude of the venous component of blood flow pulse signal was lower in lymphedema-affected arms than in healthy or lymphedema nonaffected arms. Index of venular tone was also lower in lymphedema-affected arms than healthy or lymphedema nonaffected arms. Conclusions Both arterial and venous components may be altered in the lymphedema-affected arms when compared to healthy normal arms and contralateral arms in the breast cancer survivors. PMID:21417765

  2. Coronary blood flow during cardiopulmonary resuscitation in swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied:more » 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic (EMF) and radiomicrosphere (RMS)) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal.« less

  3. Limb Blood Flow After Class 4 Laser Therapy

    PubMed Central

    Larkin, Kelly A.; Martin, Jeffrey S.; Zeanah, Elizabeth H.; True, Jerry M.; Braith, Randy W.; Borsa, Paul A.

    2012-01-01

    Context: Laser therapy is purported to improve blood flow in soft tissues. Modulating circulation would promote healing by controlling postinjury ischemia, hypoxia, edema, and secondary tissue damage. However, no studies have quantified these responses to laser therapy. Objective: To determine a therapeutic dose range for laser therapy for increasing blood flow to the forearm. Design: Crossover study. Setting: Controlled laboratory setting. Patients or Other Participants: Ten healthy, college-aged men (age = 20.80 ± 2.16 years, height = 177.93 ± 3.38 cm, weight = 73.64 ± 9.10 kg) with no current history of injury to the upper extremity or cardiovascular conditions. Intervention(s): A class 4 laser device was used to treat the biceps brachii muscle. Each grid point was treated for 3 to 4 seconds, for a total of 4 minutes. Each participant received 4 doses of laser therapy: sham, 1 W, 3 W, and 6 W. Main Outcome Measure(s): The dependent variables were changes in blood flow, measured using venous occlusion plethysmography. We used a repeated-measures analysis of variance to analyze changes in blood flow for each dose at 2, 3, and 4 minutes and at 1, 2, 3, 4, and 5 minutes after treatment. The Huynh-Feldt test was conducted to examine differences over time. Results: Compared with baseline, blood flow increased over time with the 3-W treatment (F3,9 = 3.468, P < .011) at minute 4 of treatment (2.417 ± 0.342 versus 2.794 ± 0.351 mL/min per 100 mL tissue, P = .032), and at 1 minute (2.767 ± 0.358 mL/min per 100 mL tissue, P < .01) and 2 minutes (2.657 ± 0.369 mL/min per 100 mL tissue, P = .022) after treatment. The sham, 1-W, and 6-W treatment doses did not change blood flow from baseline at any time point. Conclusions: Laser therapy at the 3-W (360-J) dose level was an effective treatment modality to increase blood flow in the soft tissues. PMID:22488283

  4. Influence of Dai-kenchu-to (DKT) on human portal blood flow.

    PubMed

    Ogasawara, Takashi; Morine, Yuji; Ikemoto, Tetsuya; Imura, Satoru; Fujii, Masahiko; Soejima, Yuji; Shimada, Mitsuo

    2008-01-01

    Dai-kenchu-to (DKT) is known as an herbal medicine used for postoperative ileus. However, no report exists about the effect of DKT on portal blood flow. The aim of this study is to clarify the influence of DKT on portal blood flow. To healthy volunteers (Healthy; n = 6), cirrhotic patients (Cirrhosis; n = 7) and liver-transplant patients (LTx; n = 3), DKT (2.5g) with 100mL of warm water was orally administrated in the DKT group, and only warm water was administrated in the control group. The portal blood flow rate (M-VEL: cm/sec.) and portal blood flow (Flow volume: mL/min.) was measured each time after administration using an ultrasonic Doppler method. Furthermore, the arterial blood pressure and heart rate was measured at the same time points. In the DKT group, a significant increase of M-VEL (120%) and flow volume (150%) 30 minutes after administration was observed in both Healthy and Cirrhosis in comparison with the control group. In LTx, there was also a significant increase of flow volume (128%) 30 minutes after administration. However, there was no change in average blood pressure and heart rate in all groups. DKT increases portal blood flow in early phase after oral administration without any significant changes in the blood pressure and heart rate.

  5. Investigation of spiral blood flow in a model of arterial stenosis.

    PubMed

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  6. Effect of sumatriptan on cerebral blood flow in the baboon model.

    PubMed

    Oliver, D W; Dormehl, I C; Hugo, N

    1994-08-01

    Changes in cerebral blood flow are implicated to be important in the pathophysiology of migraine. Furthermore, serotonin (5-HT) is known to be the most important substance in the etiology of migraine. Sumatriptan (CAS 103628-46-2), a 5-HTID receptor agonist was recently introduced in the treatment of migraine. In the present study a baboon model was used to investigate the changes in cerebral blood flow due to anaesthesia and pharmacological interventions using 99mTc-labelled hexamethylpropylene amine oxime (99mTc-HMPAO) and single photon emission computed tomography (SPECT). The effect of sumatriptan on cerebral blood flow was investigated after 10 min and again after 23 min, with the animal under anaesthesia, i.e. induction with ketamine and maintenance on thiopental. Sumatriptan did not alter the cerebral blood flow during the 10 min procedure. However, sumatriptan reversed the increased cerebral blood flow due to the prolonged anaesthesia (23 min), lowering the cerebral blood flow by more than 20%. No significant changes in the biochemical parameters (blood pressure, heart rate, pO2 and pCO2) were observed. These results also suggest that sumatriptan reverses the increased cerebral blood flow most likely via 5-HTID receptor stimulation.

  7. Sound-direction identification with bilateral cochlear implants.

    PubMed

    Neuman, Arlene C; Haravon, Anita; Sislian, Nicole; Waltzman, Susan B

    2007-02-01

    The purpose of this study was to compare the accuracy of sound-direction identification in the horizontal plane by bilateral cochlear implant users when localization was measured with pink noise and with speech stimuli. Eight adults who were bilateral users of Nucleus 24 Contour devices participated in the study. All had received implants in both ears in a single surgery. Sound-direction identification was measured in a large classroom by using a nine-loudspeaker array. Localization was tested in three listening conditions (bilateral cochlear implants, left cochlear implant, and right cochlear implant), using two different stimuli (a speech stimulus and pink noise bursts) in a repeated-measures design. Sound-direction identification accuracy was significantly better when using two implants than when using a single implant. The mean root-mean-square error was 29 degrees for the bilateral condition, 54 degrees for the left cochlear implant, and 46.5 degrees for the right cochlear implant condition. Unilateral accuracy was similar for right cochlear implant and left cochlear implant performance. Sound-direction identification performance was similar for speech and pink noise stimuli. The data obtained in this study add to the growing body of evidence that sound-direction identification with bilateral cochlear implants is better than with a single implant. The similarity in localization performance obtained with the speech and pink noise supports the use of either stimulus for measuring sound-direction identification.

  8. Muscle blood flow at onset of dynamic exercise in humans.

    PubMed

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P < 0.006) with the first relaxation of passive and voluntary exercise, whereas the arterial-venous pressure difference was unaltered [P = not significant (NS)]. During steady-state exercise, and with arterial pressure as a superimposed influence, blood velocity was affected by the muscle pump, peaking (P < 0.001) at approximately 2.5 +/- 0.3 m/s as the relaxation coincided with peak systolic arterial blood pressure; blood velocity decreased (P < 0.001) to 44.2 +/- 8.6 and 28.5 +/- 5.5% of peak velocity at the second dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P < 0.001) during the contraction phase at blood pressures less than or equal to that at the second dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle

  9. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    PubMed

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  10. Increased blood flow and vasculature in solar lentigo.

    PubMed

    Hasegawa, Kiyotaka; Fujiwara, Rumiko; Sato, Kiyoshi; Park, Ji-Youn; Kim, Sang Jin; Kim, Misun; Kang, Hee Young

    2016-10-01

    Solar lentigo (SL) is a hallmark of ultraviolet (UV)-induced photoaged skin and growing evidence implicates blood vessels in UV-associated pigmentation. In this study, we investigated whether the vasculatures are modified in SL. Twenty-five women with facial SL were enrolled and colorimetric and blood flow studies were performed. There was a significant increase in erythema which was associated with increased blood flow in the lesional skin compared with perilesional normal skin. Immunohistochemical studies with 24 facial SL biopsies consistently revealed a significant increase in vessel density accompanied by increased levels of vascular endothelial growth factor expression. CD68 immunoreactivity was significantly higher in lesional skin suggesting increased macrophage infiltration in SL. In conclusion, SL is characterized by increased blood flow and vasculature. These findings suggest the possible influence of the characteristics of vasculature on development of SL. © 2016 Japanese Dermatological Association.

  11. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  12. Synchronization patterns in cerebral blood flow and peripheral blood pressure under minor stroke

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen C.; Hu, Kun; Stanley, H. Eugene; Novak, Vera

    2003-05-01

    Stroke is a leading cause of death and disability in the United States. The autoregulation of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase synchronization method. We find an increase in the vascular resistance and a much stronger cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment of the BFV and BP signals for the subjects with stroke compared to healthy subjects.

  13. Follicle vascularity coordinates corpus luteum blood flow and progesterone production.

    PubMed

    de Tarso, S G S; Gastal, G D A; Bashir, S T; Gastal, M O; Apgar, G A; Gastal, E L

    2017-03-01

    Colour Doppler ultrasonography was used to compare the ability of preovulatory follicle (POF) blood flow and its dimensions to predict the size, blood flow and progesterone production capability of the subsequent corpus luteum (CL). Cows (n=30) were submitted to a synchronisation protocol. Follicles ≥7mm were measured and follicular wall blood flow evaluated every 12h for approximately 3.5 days until ovulation. After ovulation, cows were scanned daily for 8 days and similar parameters were evaluated for the CL. Blood samples were collected and plasma progesterone concentrations quantified. All parameters were positively correlated. Correlation values ranged from 0.26 to 0.74 on data normalised to ovulation and from 0.31 to 0.74 on data normalised to maximum values. Correlations between calculated ratios of both POF and CL in data normalised to ovulation and to maximum values ranged from moderate (0.57) to strong (0.87). Significant (P<0.0001) linear regression analyses were seen in all comparisons. In conclusion, higher correlations were observed between the dimensions of POF and/or CL and blood flow of both structures, as well as POF and/or CL blood flow with plasma progesterone concentrations of the resultant CL. These findings indicate that follicle vascularity coordinates CL blood flow and progesterone production in synchronised beef cows.

  14. Amino Acids That Centrally Influence Blood Pressure and Regional Blood Flow in Conscious Rats

    PubMed Central

    Takemoto, Yumi

    2012-01-01

    Functional roles of amino acids have increasingly become the focus of research. This paper summarizes amino acids that influence cardiovascular system via the brain of conscious rats. This paper firstly describes why amino acids are selected and outlines how the brain regulates blood pressure and regional blood flow. This section includes a concise history of amino acid neurotransmitters in cardiovascular research and summarizes brain areas where chemical stimulations produce blood pressure changes mainly in anesthetized animals. This is followed by comments about findings regarding several newly examined amino acids with intracisternal stimulation in conscious rats that produce changes in blood pressure. The same pressor or depressor response to central amino acid stimulations can be produced by distinct mechanisms at central and peripheral levels, which will be briefly explained. Thereafter, cardiovascular actions of some of amino acids at the mechanism level will be discussed based upon findings of pharmacological and regional blood flow measurements. Several examined amino acids in addition to the established neurotransmitter amino acids appear to differentially activate brain structures to produce changes in blood pressure and regional blood flows. They may have physiological roles in the healthy brain, but pathological roles in the brain with cerebral vascular diseases such as stroke where the blood-brain barrier is broken. PMID:22690328

  15. Blood Flow Modulation of Vascular Dynamics

    PubMed Central

    Lee, Juhyun; Sevag Packard, René R.; Hsiai, Tzung K.

    2015-01-01

    Purpose of review Blood flow is intimately linked with cardiovascular development, repair, and dysfunction. The current review will build on the fluid mechanical principle underlying hemodynamic shear forces, mechanotransduction, and metabolic effects. Recent findings Pulsatile flow produces both time- (∂τ /∂t)and spatial-varying shear stress (∂τ /∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of hemodynamic shear forces; namely, steady laminar (∂τ /∂t= 0), pulsatile (PSS: unidirectional forward flow), and oscillatory shear stress (OSS: bidirectional with a near net 0 forward flow) modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes anti-oxidant, anti-inflammatory, and anti-thrombotic responses, whereas atherogenic OSS induces NADPH oxidase–JNK signaling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase (MnSOD), and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in re-activation of developmental genes; namely, Wnt and Notch signaling, for vascular development and repair. Summary Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and re-activation of developmental signaling pathways for regeneration. PMID:26218416

  16. Cerebral blood flow changes during sodium-lactate-induced panic attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.S.; Devous, M.D. Sr.; Rush, A.J.

    1988-04-01

    Dynamic single-photon emission computed axial tomography (CAT) with inhaled xenon-133 was used to measure regional cerebral blood flow in 10 drug-free patients with DSM-III-diagnosed panic disorder and in five normal control subjects. All subjects underwent regional cerebral blood flow studies while at rest or during normal saline infusion and during sodium lactate infusion. Six of the 10 patients and none of the control subjects experienced lactate-induced panic attacks. Lactate infusion markedly raised hemispheric blood flow levels in both control subjects and patients who did not panic. Patients who did panic experienced either a minimal increase or a decrease in hemisphericmore » blood flow.« less

  17. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  18. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    PubMed Central

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity

  19. Regulation of human retinal blood flow by endothelin-1.

    PubMed

    Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold

    2003-05-01

    There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.

  20. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  1. Cochlear implants and medical tourism.

    PubMed

    McKinnon, Brian J; Bhatt, Nishant

    2010-09-01

    To compare the costs of medical tourism in cochlear implant surgery performed in India as compared to the United States. In addition, the cost savings of obtaining cochlear implant surgery in India were compare d to those of other surgical interventions obtained as a medical tourist. Searches were conducted on Medline and Google using the search terms: 'medical tourism', 'medical offshoring', 'medical outsourcing', 'cochlear implants' and 'cochlear implantation'. The information regarding cost of medical treatment was obtained from personal communication with individuals familiar with India's cochlear implantation medical tourism industry. The range of cost depended on length of stay as well as the device chosen. Generally the cost, inclusive of travel, surgery and device, was in the range of $21,000-30,000, as compared to a cost range of $40,000-$60,000 in the US. With the escalating cost of healthcare in the United States, it is not surprising that some patients would seek to obtain surgical care overseas at a fraction of the cost. Participants in medical tourism often have financial resources, but lack health insurance coverage. While cardiovascular and orthopedic surgery performed outside the United States in India at centers that cater to medical tourists are often performed at one-quarter to one-third of the cost that would have been paid in the United States, the cost differential for cochlear implants is not nearly as favorable.

  2. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-20

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  3. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  4. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  5. Cochlear implants: system design, integration, and evaluation.

    PubMed

    Zeng, Fan-Gang; Rebscher, Stephen; Harrison, William; Sun, Xiaoan; Feng, Haihong

    2008-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants.

  6. Modeling Blood Flow in the Aorta.

    ERIC Educational Resources Information Center

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  7. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  8. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  9. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  10. Evaluating anesthetic protocols for functional blood flow imaging in the rat eye

    NASA Astrophysics Data System (ADS)

    Moult, Eric M.; Choi, WooJhon; Boas, David A.; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Fujimoto, James G.

    2017-01-01

    The purpose of this study is to evaluate the suitability of five different anesthetic protocols (isoflurane, isoflurane-xylazine, pentobarbital, ketamine-xylazine, and ketamine-xylazine-vecuronium) for functional blood flow imaging in the rat eye. Total retinal blood flow was measured at a series of time points using an ultrahigh-speed Doppler OCT system. Additionally, each anesthetic protocol was qualitatively evaluated according to the following criteria: (1) time-stability of blood flow, (2) overall rate of blood flow, (3) ocular immobilization, and (4) simplicity. We observed that different anesthetic protocols produced markedly different blood flows. Different anesthetic protocols also varied with respect to the four evaluated criteria. These findings suggest that the choice of anesthetic protocol should be carefully considered when designing and interpreting functional blood flow studies in the rat eye.

  11. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    PubMed

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  12. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    PubMed

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  13. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  14. Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.

    PubMed

    Yoon, M J; Lee, S J; Kim, E; Park, S H

    2012-01-01

      To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia.   Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection.   The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely.   Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.

  15. Brain Perfusion and Arterial Blood Flow Velocity During Prolonged Body Tilting.

    PubMed

    Montero, David; Rauber, Sven

    2016-08-01

    It remains unknown whether brain perfusion is preserved and mirrored by middle cerebral blood flow velocity (MCA BFV) during prolonged changes in body posture. Herein, we examined the impact of sustained (180 min) 30° head-up (HUT) and head-down (HDT) tilt on brain perfusion, as determined by MCA BFV and blood flow in the extracranial arteries. In 10 healthy male subjects, arterial diameters, BFVs, and blood flows were determined in the left internal carotid (ICA) and vertebral (VA) arteries using duplex Doppler ultrasound in supine rest, and 5, 20, 60, 120, and 180 min following 30° HUT and HDT. MCA BFV was recorded throughout with transcranial Doppler ultrasound. ICA as well as VA diameters and blood flows were unaltered during HUT. Likewise, brain blood flow and MCA BFV were preserved with HUT. In the HDT protocol, ICA and VA diameters were gradually increased, although ICA, VA, and brain blood flows were preserved. MCA BFV was progressively reduced during HDT. In addition, MCA BFV was positively associated with ICA BFV (β = 0.9) and negatively associated with ICA diameter (β = -125.5). MCA BFV was positively associated with brain blood flow during HUT (β = 0.2) but not HDT. Brain perfusion is preserved whereas MCA BFV is progressively decreased and associated with extracranial arterial BFV during sustained 30° HDT. Therefore, MCA BFV may not be a surrogate of brain perfusion in conditions including prolonged HDT. Montero D, Rauber S. Brain perfusion and arterial blood flow velocity during prolonged body tilting. Aerosp Med Hum Perform. 2016; 87(8):682-687.

  16. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  17. Measurement of bronchial blood flow in the sheep by video dilution technique.

    PubMed Central

    Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E

    1985-01-01

    Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564

  18. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  19. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  20. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex.

    PubMed

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  1. In vivo lateral blood flow velocity measurement using speckle size estimation.

    PubMed

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  2. Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.

    PubMed

    Sersa, I; Vidmar, J; Grobelnik, B; Mikac, U; Tratar, G; Blinc, A

    2007-06-07

    Axially directed blood plasma flow can significantly accelerate thrombolysis of non-occlusive blood clots. Viscous forces caused by shearing of blood play an essential role in this process, in addition to biochemical fibrinolytic reactions. An analytical mathematical model based on the hypothesis that clot dissolution dynamics is proportional to the power of the flowing blood plasma dissipated along the clot is presented. The model assumes cylindrical non-occlusive blood clots with the flow channel in the centre, in which the flow is assumed to be laminar and flow rate constant at all times during dissolution. Effects of sudden constriction on the flow and its impact on the dissolution rate are also considered. The model was verified experimentally by dynamic magnetic resonance (MR) microscopy of artificial blood clots dissolving in an in vitro circulation system, containing plasma with a magnetic resonance imaging contrast agent and recombinant tissue-type plasminogen activator (rt-PA). Sequences of dynamically acquired 3D low resolution MR images of entire clots and 2D high resolution MR images of clots in the axial cross-section were used to evaluate the dissolution model by fitting it to the experimental data. The experimental data fitted well to the model and confirmed our hypothesis.

  3. Cerebral blood flow in patients with congestive heart failure treated with captopril.

    PubMed

    Paulson, O B; Jarden, J O; Godtfredsen, J; Vorstrup, S

    1984-05-31

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of 133xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure, cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.

  4. Mesoscale Simulation of Blood Flow in Small Vessels

    PubMed Central

    Bagchi, Prosenjit

    2007-01-01

    Computational modeling of blood flow in microvessels with internal diameter 20–500 μm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20–300 μm at discharge hematocrit of 10–60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation. PMID:17208982

  5. Validation of thermal techniques for measurement of pelvic organ blood flows in the nonpregnant sheep: comparison with transit-time ultrasonic and microsphere measurements of blood flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, N.J.; Beard, R.W.; Sutherland, I.A.

    1988-03-01

    Data obtained from a thermal system capable of measuring changes in organ temperature as well as tissue thermal clearance in the uterus and vagina have been compared with blood flow measured continuously with a transit-time ultrasound volume-flow sensor placed around the common internal iliac artery and intermittently with radioactive microspheres in the chronically instrumented nonpregnant sheep. Temperature changes in both the uterus and the vagina correlated well with blood flow changes measured by both techniques after intravenous administration of estradiol or norepinephrine. Thermal clearance did not correlate well with blood flow in the vagina or uterus. These methods may havemore » value in the investigation of blood flow patterns in various clinical situations such as the pelvic pain syndrome and early pregnancy.« less

  6. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  7. Parental expectations and outcomes of pediatric cochlear implantation.

    PubMed

    Piazza, Elizabeth; Kandathil, Cherian; Carron, Jeffrey D

    2009-10-01

    Cochlear implants have been used with increasing frequency over the past twenty years, including very young patients. To determine if parents are satisfied with their children's performance after cochlear implantation. Survey mailed to parents of children receiving cochlear implants. 31 questionnaires were returned out of 69 mailed (45 %). The vast majority of responding parents felt that their children benefited substantially from cochlear implant surgery. Cochlear implantation is effective in helping children develop auditory-oral communication skills. Access to auditory/oral communication programs in this state remains an obstacle in postoperative habilitation.

  8. Red blood cell microparticles and blood group antigens: an analysis by flow cytometry

    PubMed Central

    Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel

    2012-01-01

    Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266

  9. Insight of Human Stroke from blood flow and blood pressure

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen Ch.; Hu, Kun; Stanley, H. Eugene

    2003-03-01

    Stroke is is one of the leading cause of death and disability in the world. It is well believed that stroke is caused by the disturbance of cerebrovascular autoregulation. We investigate the blood flow on the left and right middle cerebral artery and beat-to-beat blood pressure simultaneously measured from the finger, for both subjects with stroke and healthy subjects. Synchronization technique is used to distinguish the difference between these two groups.

  10. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  11. Blood Flow in the Stenotic Carotid Bifurcation

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy

    2005-11-01

    The carotid artery is prone to atherosclerotic disease and the growth of plaque in the vessel, leading often to severe occlusion or plaque rupture, resulting in emboli and thrombus, and, possibly, stroke. Modeling the flow in stenotic blood vessels can elucidate the influence of the flow on plaque growth and stability. Numerical simulations are carried out to model the complex flows in anatomically realistic, patient-specific geometries constructed from magnetic resonance images. The 3-D unsteady Navier-Stokes equations are solved in a finite-volume formulation, using an iterative pressure-correction algorithm. The flow field computed is highly three-dimensional, with high-speed jets and strong recirculating secondary flows. Sharp spatial and temporal variations of the velocities and shear stresses are observed. The results are in a good agreement with the available experimental and clinical data. The influence of non-Newtonian blood behavior and arterial wall compliance are considered. Transitional and turbulent regimes have been looked at using LES. This work supports the conjecture that numerical simulations can provide a diagnostic tool for assessing plaque stability.

  12. Influence of Gravity on Blood Volume and Flow Distribution

    NASA Technical Reports Server (NTRS)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  13. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  14. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-06-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferretmore » was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of /sup 137/Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system.« less

  15. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  16. Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects.

    PubMed

    Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L

    2004-04-01

    To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency.

  17. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to

  18. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  19. Simulating Nailfold Capillaroscopy Sequences to Evaluate Algorithms for Blood Flow Estimation

    PubMed Central

    Tresadern, P. A.; Berks, M.; Murray, A. K.; Dinsdale, G.; Taylor, C. J.; Herrick, A. L.

    2016-01-01

    The effects of systemic sclerosis (SSc) – a disease of the connective tissue causing blood flow problems that can require amputation of the fingers – can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions. PMID:24110268

  20. Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation.

    PubMed

    Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L

    2013-01-01

    The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.

  1. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    NASA Astrophysics Data System (ADS)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  2. Importance of cochlear health for implant function.

    PubMed

    Pfingst, Bryan E; Zhou, Ning; Colesa, Deborah J; Watts, Melissa M; Strahl, Stefan B; Garadat, Soha N; Schvartz-Leyzac, Kara C; Budenz, Cameron L; Raphael, Yehoash; Zwolan, Teresa A

    2015-04-01

    Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia.

    PubMed

    Garhöfer, Gerhard; Kopf, Andreas; Polska, Elzbieta; Malec, Magdalena; Dorner, Guido T; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    Short term hyperglycemia has previously been shown to induce a blood flow increase in the retina. The mechanism behind this effect is poorly understood. We set out to investigate whether exercise-induced hyperlactatemia may alter the response of retinal blood flow to hyperglycemia. We performed a randomized, controlled two-way cross over study comprising 12 healthy subjects, performed a 6-minutes period of dynamic exercise during an euglcaemic or hyperglycaemic insulin clamp. Retinal blood flow was assessed by combined vessel size measurement with the Zeiss retinal vessel analyzer and measurement of red blood cell velocities using bi-directional laser Doppler velocimetry. Retinal and systemic hemodynamic parameters were measured before, immediately after and 10 and 20 minutes after isometric exercise. On the euglycemic study day retinal blood flow increased after dynamic exercise. The maximum increase in retinal blood flow was observed 10 minutes after the end of exercise when lactate plasma concentration peaked. Hyperglycemia increased retinal blood flow under basal conditions, but had no incremental effect during exercise induced hyperlactatemia. Our results indicate that both lactate and glucose induce an increase in retinal blood flow in healthy humans. This may indicate a common pathway between glucose and lactate induced blood flow changes in the human retina.

  4. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  5. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    PubMed

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  6. The effects of hypoxemia on myocardial blood flow during exercise.

    PubMed

    Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J

    1989-03-01

    We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.

    PubMed

    Gliemann, Lasse; Mortensen, Stefan P; Hellsten, Ylva

    2018-06-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.

  8. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  9. [Cochlear implantation through the middle fossa approach].

    PubMed

    Szyfter, W; Colletti, V; Pruszewicz, A; Kopeć, T; Szymiec, E; Kawczyński, M; Karlik, M

    2001-01-01

    The inner part of cochlear implant is inserted into inner ear during surgery through mastoid and middle ear. It is a classical method, used in the majority cochlear centers in the world. This is not a suitable method in case of chronic otitis media and middle ear malformation. In these cases Colletti proposed the middle fossa approach and cochlear implant insertion omitting middle ear structures. In patient with bilateral chronic otitis media underwent a few ears operations without obtaining dry postoperative cavity. Cochlear implantation through the middle fossa approach was performed in this patient. The bone fenster was cut, temporal lobe was bent and petrosus pyramid upper surface was exposed. When the superficial petrosal greater nerve, facial nerve and arcuate eminence were localised, the cochlear was open in the basal turn and electrode were inserted. The patient achieves good results in the postoperative speech rehabilitation. It confirmed Colletti tesis that deeper electrode insertion in the cochlear implantation through the middle fossa approach enable use of low and middle frequencies, which are very important in speech understanding.

  10. Analysis of blood flow in the long posterior ciliary artery of the cat.

    PubMed

    Koss, M C

    1999-03-01

    Experiments were undertaken to use a new technique for direct on-line measurement of blood flow in the long posterior ciliary artery (LPCA) in cats and to evaluate possible physiological mechanisms controlling blood flow in the vascular beds perfused by this artery. Blood flow in the temporal LPCA was measured on a continuous basis using ultrasonic flowmetry in anesthetized cats. Effects of acute sectioning of the sympathetic nerve and changes in LPCA and cerebral blood flows in response to altered levels of inspired CO2 and O2 were tested in some animals. In others, the presence of vascular autoregulatory mechanisms in response to stepwise elevations of intraocular pressure was studied. Blood flow in the temporal LPCA averaged 0.58+/-0.03 ml/min in 45 cats anesthetized with pentobarbital. Basal LPCA blood flow was not altered by acute sectioning of the sympathetic nerve or by changes in low levels of inspired CO2 and O2, although 10% CO2 caused a modest increase. Stepwise elevations of intraocular pressure resulted in comparable stepwise decreases of LPCA blood flow, with perfusion pressure declining in a linear manner throughout the perfusion-pressure range. Ultrasonic flowmetry seems to be a useful tool for continuous on-line measurement of LPCA blood flow in the cat eye. Blood flow to vascular beds perfused by this artery does not seem to be under sympathetic neural control and is refractory to modest alterations of blood gas levels of CO2 and O2. Blood vessels perfused by the LPCA show no clear autoregulatory mechanisms.

  11. Facial skin blood flow responses during exposures to emotionally charged movies.

    PubMed

    Matsukawa, Kanji; Endo, Kana; Ishii, Kei; Ito, Momoka; Liang, Nan

    2018-03-01

    The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P < 0.05) with the subjective ratings of pleasantness and consciousness. The changes in lip skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of pleasantness, while the changes in infraorbital, subnasal, and chin skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of consciousness. However, none of the changes in limb skin blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.

  12. An estimation of intracranial blood flow in the new-born infant.

    PubMed Central

    Cross, K W; Dear, P R; Hathorn, M K; Hyams, A; Kerslake, D M; Milligan, D W; Rahilly, P M; Stothers, J K

    1979-01-01

    1. A non-invasive method for the estimation of the intracranial blood flow of the new-born infant is described, and results obtained with it are presented. 2. The technique is a novel application of the principle of blood flow measurement by venous occlusion plethysmography. It is possible to apply a plethysmographic technique to the neonatal cranium because the presence of open sutures between the component bones permits small, but readily measurable, changes in intracranial volume to occur. 3. Skull volume changes are calculated from changes in the occipito-frontal circumference of the cranium as recorded and measured with a mercury-in-Silastic strain gauge. 4. The jugular veins in the baby's neck are occluded by finger pressure and there follows an increase in skull volume, which is rapid at first, but which decreases exponentially as venous drainage diverts to non-occluded channels such as the vertebral venous plexus. At the instant of jugular occlusion the rate of skull volume increase is representative of the rate of flow in the jugular vessels prior to occlusion, and so provides an index of the relative magnitude of the intracranial blood flow. The method thus allows changes in intracranial blood flow to be followed. When occlusion is released cranial volume decreases, initially rapidly, but slowing exponentially as resting volume is regained. 5. A theoretical model of the events occurring during the inflow and outflow phases has been developed, and a formula derived which allows an estimation to be made of the flow of blood through uncompressed channels. The measured value of jugular blood flow can then be augmented to an estimate of total intracranial flow. 6. The mean cerebral blood flow of sixteen normal babies was estimated to be 40 ml. 100 g-1.min-1 (S.D. = +/- 11.63). Images Fig. 2 Fig. 6 PMID:458665

  13. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis.

    PubMed

    Games, Kenneth E; Sefton, JoEllen M; Wilson, Alan E

    2015-05-01

    The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or

  14. Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects

    PubMed Central

    Polska, E; Polak, K; Luksch, A; Fuchsjager-Mayrl, G; Petternel, V; Findl, O; Schmetterer, L

    2004-01-01

    Aims/background: To investigate the reproducibility and potential diurnal variation of choroidal blood flow parameters in healthy subjects over a period of 12 hours. Methods: The choroidal blood flow parameters of 16 healthy non-smoking subjects were measured at five time points during the day (8:00, 11:00, 14:00, 17:00, and 20:00). Outcome parameters were pulsatile ocular blood flow as assessed by pneumotonometry, fundus pulsation amplitude as assessed by laser interferometry, blood velocities in the opthalmic and posterior ciliary arteries as assessed by colour Doppler imaging, and choroidal blood flow, volume, and velocity as assessed by fundus camera based laser Doppler flowmetry. The coefficient of variation and the maximum change from baseline in an individual were calculated for each outcome parameter. Results: None of the techniques used found a diurnal variation in choroidal blood flow. Coefficients of variation were within 2.9% and 13.6% for all outcome parameters. The maximum change from baseline in an individual was much higher, ranging from 11.2% to 58.8%. Conclusions: These data indicate that in healthy subjects the selected techniques provide adequate reproducibility to be used in clinical studies. Variability may, however, be considerably higher in older subjects or subjects with ocular disease. The higher individual differences in flow parameter readings limit the use of the techniques in clinical practice. To overcome problems with measurement validity, a clinical trial should include as many choroidal blood flow outcome parameters as possible to check for consistency. PMID:15031172

  15. Biohybrid cochlear implants in human neurosensory restoration.

    PubMed

    Roemer, Ariane; Köhl, Ulrike; Majdani, Omid; Klöß, Stephan; Falk, Christine; Haumann, Sabine; Lenarz, Thomas; Kral, Andrej; Warnecke, Athanasia

    2016-10-07

    The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in

  16. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  17. Progress in Cochlear Physiology after Békésy

    PubMed Central

    Guinan, John J.; Salt, Alec; Cheatham, Mary Ann

    2012-01-01

    In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future. PMID:22633944

  18. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    PubMed

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  20. Photon activation-15O decay studies of tumor blood flow.

    PubMed

    Ten Haken, R K; Nussbaum, G H; Emami, B; Hughes, W L

    1981-01-01

    A direct, noninvasive method for measuring absolute values of specific capillary blood flow in living tissue is described. The method is based on the photon activation, in situ, of tissue elements and the measurement of the subsequent decay of the positron activity induced, employing coincidence detection of the photon pairs produced in positron annihilation. Analysis of the time-dependent coincidence spectrum reveals the contribution to the total signal from the decay of 15O, from which the specific capillary blood flow in the imaged, activated volume is ultimately determined. By virtue of its introduction of the radioisotope of interest (15O) directly and uniformly into the tissue volume under investigation, the method described permits both the nonperfused and well perfused fractions of an activated volume to be estimated and hence, the average specific blood flow within imaged tumor volumes to be computed. The model employed to describe and analyze the data is discussed in detail. Results of application of the technique to measurement of specific blood flow in rhabdomyosarcoma tumors grown in WAG/Rij rats are presented and discussed. The method is shown to be reliable and well suited to studies designed to determined the effects of various agents, such as heat, radiation and drugs, on tumor blood flow.

  1. Regulation of coronary blood flow during exercise.

    PubMed

    Duncker, Dirk J; Bache, Robert J

    2008-07-01

    Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains

  2. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    PubMed Central

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790

  3. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.

    PubMed

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-06-01

    Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

  4. Noise alters guinea pig's blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin.

    PubMed

    Wu, Yong-Xiang; Zhu, Guo-Xia; Liu, Xin-Qin; Sun, Fei; Zhou, Ke; Wang, Shuang; Wang, Chun-Mei; Jia, Jin-Wen; Song, Jian-Tao; Lu, Lian-Jun

    2014-12-24

    Noise exposure (NE) is a severe modern health hazard that induces hearing impairment. However, the noise-induced ultrastructural changes of blood-labyrinth barrier (BLB) and the potential involvements of tight junction proteins (TJP) remain inconclusive. We investigated the effects of NE on not only the ultrastructure of cochlea and permeability of BLB but also the expression of TJP within the guinea pig cochlea. Male albino guinea pigs were exposed to white noise for 4 h or 2 consecutive days (115 dB sound pressure level, 6 hours per day) and the hearing impairments and light microscopic change of BLB were evaluated with auditory brainstem responses (ABR) and the cochlear sensory epithelia surface preparation, respectively. The cochlear ultrastructure and BLB permeability after NE 2d were revealed with transmission electron microscope (TEM) and lanthanum nitrate-tracing techniques, respectively. The potential alterations of TJPs Claudin-5 and Occludin were quantified with immunohistochemistry and western blot. NE induced significant hearing impairment and NE 2d contributed to significant outer hair cell (OHC) loss that is most severe in the first row of outer hair cells. Furthermore, the loosen TJ and an obvious leakage of lanthanum nitrate particles beneath the basal lamina were revealed with TEM. Moreover, a dose-dependent decrease of Claudin-5 and Occludin was observed in the cochlea after NE. All these findings suggest that both decrease of Claudin-5 and Occludin and increased BLB permeability are involved in the pathologic process of noise-induced hearing impairment; however, the causal relationship and underlying mechanisms should be further investigated.

  5. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    PubMed

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  6. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

    PubMed

    Wang, Lin; Cull, Grant A; Fortune, Brad

    2015-04-01

    To test the hypothesis that blood flow autoregulation in the optic nerve head has less reserve to maintain normal blood flow in the face of blood pressure-induced ocular perfusion pressure decrease than a similar magnitude intraocular pressure-induced ocular perfusion pressure decrease. Twelve normal non-human primates were anesthetized by continuous intravenous infusion of pentobarbital. Optic nerve blood flow was monitored by laser speckle flowgraphy. In the first group of animals (n = 6), the experimental eye intraocular pressure was maintained at 10 mmHg using a saline reservoir connected to the anterior chamber. The blood pressure was gradually reduced by a slow injection of pentobarbital. In the second group (n = 6), the intraocular pressure was slowly increased from 10 mmHg to 50 mmHg by raising the reservoir. In both experimental groups, optic nerve head blood flow was measured continuously. The blood pressure and intraocular pressure were simultaneously recorded in all experiments. The optic nerve head blood flow showed significant difference between the two groups (p = 0.021, repeat measures analysis of variance). It declined significantly more in the blood pressure group compared to the intraocular pressure group when the ocular perfusion pressure was reduced to 35 mmHg (p < 0.045) and below. There was also a significant interaction between blood flow changes and the ocular perfusion pressure treatment (p = 0.004, adjusted Greenhouse & Geisser univariate test), indicating the gradually enlarged blood flow difference between the two groups was due to the ocular perfusion pressure decrease. The results show that optic nerve head blood flow is more susceptible to an ocular perfusion pressure decrease induced by lowering the blood pressure compared with that induced by increasing the intraocular pressure. This blood flow autoregulation capacity vulnerability to low blood pressure may provide experimental evidence related to the

  7. Analysis of the cochlear amplifier fluid pump hypothesis.

    PubMed

    Zagadou, Brissi Franck; Mountain, David C

    2012-04-01

    We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.

  8. Analysis of Hepatic Blood Flow Using Chaotic Models

    PubMed Central

    Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.

    1990-01-01

    The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3

  9. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.

    PubMed

    Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert

    2008-10-01

    Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  10. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  11. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  12. [Effect of caffeine on myocardial blood flow during pharmacological vasodilation].

    PubMed

    Wielepp, J P; Fricke, E; Horstkotte, D; Burchert, W

    2005-02-01

    Pharmacologic stress with adenosine is frequently used for noninvasive detection of coronary artery disease. Dietary intake of caffeinated food, beverages or medications might alter adenosine-induced hyperemic blood flow, thereby compromising the diagnostic sensitivity of adenosine stress testing. In this case we report on a male patient with CAD. Myocardial blood flow at rest and during adenosine-induced hyperemia 2 hours after consumption of decaffeinated coffee and again without caffeine intake were quantified by ammonia PET. After caffeine intake there was a clearly diminished increase of myocardial blood flow during adenosine. The average coronary flow reserve in the myocardium was 1.3 after caffeine. In the baseline study without caffeine the coronary flow reserve has been improved to 2.3. Caffeine intake alters the coronary vasodilatory capacity. These findings emphasize the importance of carefully screening patients for intake of caffeinated food prior to adenosine stress testing.

  13. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke.

    PubMed

    Xiao, Ming; Li, Qiang; Feng, Hua; Zhang, Le; Chen, Yujie

    2017-01-01

    During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  14. Factors associated with respiration induced variability in cerebral blood flow velocity.

    PubMed Central

    Coughtrey, H; Rennie, J M; Evans, D H; Cole, T J

    1993-01-01

    A consecutive cohort of 73 very low birthweight infants was studied to determine the presence or absence of beat to beat variability in the velocity of blood flow in the cerebral circulation and its relation with respiration. One minute epochs of information included recordings of cerebral blood flow velocity estimated with Doppler ultrasound, blood pressure, spontaneous respiratory activity, and ventilator cycling. Fourier transformation was used to resolve the frequencies present within the one minute epochs and to classify the cerebral blood flow velocity as showing the presence or absence of any respiratory associated variability. A total of 249 recordings was made on days 1, 2, 3, and 7. Forty seven infants showed respiratory variability in cerebral blood flow velocity on 97 occasions, usually during the first day of life. The infants with respiratory associated variability were of lower gestational age and when the respiratory associated variability was present they were more likely to be ventilated and receiving higher inspired oxygen; these associations were shown to be independent of gestational age. There was no significant independent association with brain injury, cerebral blood flow velocity (cm/s), or blood pressure (mm Hg). The findings suggest that artificial ventilation may entrain normal respiratory associated variability in the cerebral circulation but do not provide evidence that it is harmful. PMID:8466269

  15. Relationship between preoperative radial artery and postoperative arteriovenous fistula blood flow in hemodialysis patients.

    PubMed

    Sato, Michiko; Io, Hiroaki; Tanimoto, Mitsuo; Shimizu, Yoshio; Fukui, Mitsumine; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    It is recommended that arteriovenous fistula (AVF) blood flow should be more than 425 ml/min before cannulation. However, the relationship between preoperative radial artery flow (RAF) and postoperative AVF blood flow has still not been examined. Sixty-one patients with end-stage kidney disease (ESKD) were examined. They had an AVF prepared at Juntendo University Hospital from July 2006 through August 2007. Preoperative RAF and postoperative AVF blood flows were measured by ultrasonography. AVF blood flow gradually increased after the operation. AVF blood flow was significantly correlated with preoperative RAF. When preoperative RAF exceeded 21.4 ml/min, AVF blood flow rose to more than 425 ml/min. The postoperative AVF blood flow in the group with RAF of more than 20 ml/min was significantly higher than that in those with less than 20 ml/min. Preoperative RAF of less than 20 ml/min had a significantly high risk of primary AVF failure within 8 months compared with that of more than 20 ml/min. It appears that measurement of RAF by ultrasonography is useful for estimating AVF blood flow postoperatively and can predict the risk of complications in ESKD patients.

  16. Evidence for altered placental blood flow and vascularity in compromised pregnancies

    PubMed Central

    Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E

    2006-01-01

    The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783

  17. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    PubMed

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  18. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    PubMed Central

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation

  19. Post-exercise blood flow restriction attenuates hyperemia similarly in males and females.

    PubMed

    Dankel, Scott J; Mouser, J Grant; Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Loenneke, Jeremy P

    2017-08-01

    Our laboratory recently demonstrated that post-exercise blood flow restriction attenuated muscle hypertrophy only in females, which we hypothesized may be due to alterations in post-exercise blood flow. The aim of this study is to test our previous hypothesis that sex differences in blood flow would exist when employing the same protocol. Twenty-two untrained individuals (12 females; 10 males) performed two exercise sessions, each involving one set of elbow flexion exercise to volitional failure on the right arm. The experimental condition had blood flow restriction applied for a 3 min post-exercise period, whereas the control condition did not. Blood flow was measured using an ultrasound at the brachial artery and was taken 1 and 4 min post-exercise. This corresponded to 1 min post inflation and 1 min post deflation in the experimental condition. There were no differences in the alterations in blood flow between the control and experimental conditions when examined across sex. Increases in blood flow [mean (standard deviation)] were as follows: males 1 min [control 764 (577) %; experimental 113 (108) %], males 4 min [control 346 (313) %; experimental 449 (371) %], females 1 min [control 558 (367) %; experimental 87 (105) %], and females 4 min [control 191 (183) %; experimental 328 (223) %]. It does not appear that the sex-specific attenuation of muscle hypertrophy we observed previously can be attributed to different alterations in post-exercise blood flow. Future studies may wish to replicate our previous training study, or examine alternative mechanisms which may be sex specific.

  20. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  1. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  2. Transcutaneous measurement of volume blood flow

    NASA Technical Reports Server (NTRS)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  3. Viral infection potentiates the increase in airway blood flow produced by substance P.

    PubMed

    Yamawaki, I; Geppetti, P; Bertrand, C; Chan, B; Massion, P; Piedimonte, G; Nadel, J A

    1995-08-01

    We examined the effect of respiratory tract infection with Sendai virus on the responsiveness of airway blood flow to substance P (SP) in rats. Pathogen-free rats were inoculated with either Sendai virus suspension or sterile viral growth medium into each nostril. Five days later, we measured airway and esophageal blood flows before and immediately after injection of SP or histamine into the left ventricle of rats in both groups using a modification of the reference-sample microsphere technique. Viral infection potentiated the increase in airway blood flow evoked by SP but not by histamine. We also examined the effect of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) on the SP-induced increase in airway blood flow. Both phosphoramidon (NEP inhibitor) and captopril (ACE inhibitor) potentiated the increase in airway blood flow produced by SP in pathogen-free rats. In the presence of both peptidase inhibitors, a submaximal dose of SP increased blood flow to a similar level in infected and pathogen-free rats. Thus decreased activity of both ACE and NEP may be involved in the exaggerated increase in airway blood flow evoked by SP in virus-infected rats.

  4. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  5. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  6. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be

  7. What Does Music Sound Like for a Cochlear Implant User?

    PubMed

    Jiam, Nicole T; Caldwell, Meredith T; Limb, Charles J

    2017-09-01

    Cochlear implant research and product development over the past 40 years have been heavily focused on speech comprehension with little emphasis on music listening and enjoyment. The relatively little understanding of how music sounds in a cochlear implant user stands in stark contrast to the overall degree of importance the public places on music and quality of life. The purpose of this article is to describe what music sounds like to cochlear implant users, using a combination of existing research studies and listener descriptions. We examined the published literature on music perception in cochlear implant users, particularly postlingual cochlear implant users, with an emphasis on the primary elements of music and recorded music. Additionally, we administered an informal survey to cochlear implant users to gather first-hand descriptions of music listening experience and satisfaction from the cochlear implant population. Limitations in cochlear implant technology lead to a music listening experience that is significantly distorted compared with that of normal hearing listeners. On the basis of many studies and sources, we describe how music is frequently perceived as out-of-tune, dissonant, indistinct, emotionless, and weak in bass frequencies, especially for postlingual cochlear implant users-which may in part explain why music enjoyment and participation levels are lower after implantation. Additionally, cochlear implant users report difficulty in specific musical contexts based on factors including but not limited to genre, presence of lyrics, timbres (woodwinds, brass, instrument families), and complexity of the perceived music. Future research and cochlear implant development should target these areas as parameters for improvement in cochlear implant-mediated music perception.

  8. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  9. Melodic contour identification by cochlear implant listeners.

    PubMed

    Galvin, John J; Fu, Qian-Jie; Nogaki, Geraldine

    2007-06-01

    While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users' ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the "root note" of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However, MCI performance was

  10. Automatic retinal blood flow calculation using spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2008-02-01

    Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.

  11. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage

    PubMed Central

    Meek, J.; Tyszczuk, L.; Elwell, C.; Wyatt, J

    1999-01-01

    AIMS—To investigate the relation between cerebral blood flow on the first day of postnatal life and the severity of any subsequent germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH).
METHODS—Cerebral blood flow was measured in 24 babies during the first 24 hours of life using near infrared spectroscopy. Repeated cerebral ultrasound examination was performed to define the maximum extent of GMH-IVH. Infants were classified as: normal scan, minor periventricular haemorrhage (haemorrhage that resolved), or severe GMH-IVH (haemorrhage distending the ventricles, that progressed to either post haemorrhagic dilatation or porencephalic cyst formation).
RESULTS—Cerebral blood flow was significantly lower in the infants with GMH-IVH (median 7.0 ml/100 g/min) than those without haemorrhage (median 12.2 ml/100 g/min), despite no difference in carbon dioxide tension and a higher mean arterial blood pressure. On subgroup analysis, those infants with severe GMH-IVH had the lowest cerebral blood flow.
CONCLUSION—A low cerebral blood flow on the first day of life is associated with the subsequent development of severe intraventricular haemorrhage.

 PMID:10375356

  12. Cochlear Implantation in Older Adults

    PubMed Central

    Lin, Frank R.; Chien, Wade W.; Li, Lingsheng; Niparko, John K.; Francis, Howard W.

    2012-01-01

    Cochlear implants allow individuals with severe-to-profound hearing loss access to sound and spoken language. The number of older adults in the United States who are potential candidates for cochlear implantation is approximately 150,000 and will continue to increase with the aging of the population. Should cochlear implantation (CI) be routinely recommended for these older adults, and do these individuals benefit from CI? We reviewed our 12 year experience with cochlear implantation in adults ≥60 years (n = 445) at Johns Hopkins to investigate the impact of CI on speech understanding and to identify factors associated with speech performance. Complete data on speech outcomes at baseline and 1 year post-CI were available for 83 individuals. Our results demonstrate that cochlear implantation in adults ≥60 years consistently improved speech understanding scores with a mean increase of 60. 0% (S. D. 24. 1) on HINT sentences in quiet . The magnitude of the gain in speech scores was negatively associated with age at implantation such that for every increasing year of age at CI the gain in speech scores was 1. 3 percentage points less (95% CI: 0. 6 – 1. 9) after adjusting for age at hearing loss onset. Conversely, individuals with higher pre-CI speech scores (HINT scores between 40–60%) had significantly greater post-CI speech scores by a mean of 10. 0 percentage points (95% CI: 0. 4 – 19. 6) than those with lower pre-CI speech scores (HINT <40%) after adjusting for age at CI and age at hearing loss onset. These results suggest that older adult CI candidates who are younger at implantation and with higher preoperative speech scores obtain the highest speech understanding scores after cochlear implantation with possible implications for current Medicare policy. Finally, we provide an extended discussion of the epidemiology and impact of hearing loss in older adults. Future research of CI in older adults should expand beyond simple speech outcomes to take into

  13. New Criteria of Indication and Selection of Patients to Cochlear Implant

    PubMed Central

    Sampaio, André L. L.; Araújo, Mercêdes F. S.; Oliveira, Carlos A. C. P.

    2011-01-01

    Numerous changes continue to occur in cochlear implant candidacy. In general, these have been accompanied by concomitant and satisfactory changes in surgical techniques. Together, this has advanced the utility and safety of cochlear implantation. Most devices are now approved for use in patients with severe to profound unilateral hearing loss rather then the prior requirement of a bilateral profound loss. Furthermore, studies have begun utilizing short electrode arrays for shallow insertion in patients with considerable low-frequency residual hearing. This technique will allow the recipient to continue to use acoustically amplified hearing for the low frequencies simultaneously with a cochlear implant for the high frequencies. The advances in design of, and indications for, cochlear implants have been matched by improvements in surgical techniques and decrease in complications. The resulting improvements in safety and efficacy have further encouraged the use of these devices. This paper will review the new concepts in the candidacy of cochlear implant. Medline data base was used to search articles dealing with the following topics: cochlear implant in younger children, cochlear implant and hearing preservation, cochlear implant for unilateral deafness and tinnitus, genetic hearing loss and cochlear implant, bilateral cochlear implant, neuropathy and cochlear implant and neural plasticity, and the selection of patients for cochlear implant. PMID:22013448

  14. Remote programming of cochlear implants: a telecommunications model.

    PubMed

    McElveen, John T; Blackburn, Erin L; Green, J Douglas; McLear, Patrick W; Thimsen, Donald J; Wilson, Blake S

    2010-09-01

    Evaluate the effectiveness of remote programming for cochlear implants. Retrospective review of the cochlear implant performance for patients who had undergone mapping and programming of their cochlear implant via remote connection through the Internet. Postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for 7 patients who had undergone remote mapping and programming of their cochlear implant were compared with the mean scores of 7 patients who had been programmed by the same audiologist over a 12-month period. Times required for remote and direct programming were also compared. The quality of the Internet connection was assessed using standardized measures. Remote programming was performed via a virtual private network with a separate software program used for video and audio linkage. All 7 patients were programmed successfully via remote connectivity. No untoward patient experiences were encountered. No statistically significant differences could be found in comparing postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for patients who had undergone remote programming versus a similar group of patients who had their cochlear implant programmed directly. Remote programming did not require a significantly longer programming time for the audiologist with these 7 patients. Remote programming of a cochlear implant can be performed safely without any deterioration in the quality of the programming. This ability to remotely program cochlear implant patients gives the potential to extend cochlear implantation to underserved areas in the United States and elsewhere.

  15. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    PubMed

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  16. Correlations between ovarian follicular blood flow and superovulatory responses in ewes.

    PubMed

    Oliveira, Maria E F; Feliciano, Marcus A R; D'Amato, Carla C; Oliveira, Luís G; Bicudo, Sony D; Fonseca, Jeferson F; Vicente, Wilter R R; Visco, Elise; Bartlewski, Pawel M

    2014-01-10

    The primary goal of this study was to employ ultrasonography to examine the ovaries of ewes undergoing superovulatory treatment for correlations between antral follicular blood flow and ovarian responses/embryo yields. Five Santa Inês ewes were subjected to a short- (Days 0-6, Group 1) and five to a long-term progesterone-based protocol (Days 0-12, Group 2) to synchronize estrus and ovulations after the superovulatory treatment. Porcine FSH (pFSH, 200mg) was administered in 8 decreasing doses over 4 days, starting on Days 4 and 10 in Groups 1 and 2, respectively. After CIDR removal, all ewes were bred by a ram and embryos were recovered surgically 7 days later. Transrectal ovarian ultrasonography was performed the day before and on all 4 days of the superovulatory treatment. Both an arbitrary-scale [(0) non-detectable; (1) small; (2) moderate; (3) intense blood flow] and quantitative analysis of the blood flow area were used to assess the follicular blood flow in color Doppler images. There were no significant correlations between the arbitrary blood flow scores and superovulatory responses in the ewes of the present study. However, there was a positive correlation between the quantitative estimates of follicular blood flow on the final day of the superovulatory treatment, and the number (DA: r=0.68, P<0.05; DA/TA×100%: r=0.85, P<0.05) and percentage (DA: r=0.65, P<0.05; DA/TA×100%: r=0.91, P<0.001) of unfertilized eggs (DA: Doppler area, TA: total area of the largest ovarian cross section). This experiment presents a commercially practical tool for predicting superovulatory outcomes in ewes and evidence for the existence of follicular blood flow threshold that may impinge negatively on oocyte quality when surpassed during hormonal ovarian superstimulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study.

    PubMed

    Ku, Hsiao-Lun; Wang, Jiunn-Kae; Lee, Hsin-Chien; Lane, Timothy Joseph; Liu, I-Chao; Chen, Yung-Chan; Lee, Yao-Tung; Lin, I-Cheng; Lin, Chia-Pei; Hu, Chaur-Jong; Chi, Nai-Fang

    2017-10-01

    Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  20. Effects of pomegranate extract on blood flow and running time to exhaustion.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L

    2014-09-01

    Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.

  1. Blood Flow in Stenotic Carotid Bifurcation

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy L.; Williamson, Shobha Devi; Berger, Stanley A.; Saloner, David

    2004-11-01

    Mechanical forces induced by blood flow on an arterial wall play an important role in the development and growth of atherosclerotic plaque. To assess vulnerability of a plaque it is important to model the flow in a realistic, patient-specific geometry. Three-dimensional models of stenotic carotid bifurcations were obtained from MR images and grids were generated for the flow domains. The unsteady, incompressible Navier-Stokes equations were solved numerically using physiological boundary conditions. The results obtained by computations were compared with in-vivo ultrasound measurements and flow visualization experiments carried out for the same geometry. The simulations show a high velocity jet forming at the stenotic throat and a strong recirculation zone downstream of the stenosis. The jet grows rapidly during the systolic part of the pulse. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady which is clearly demonstrated by the flow streamlines. These unsteady flows cause rapid temporal and spatial changes of the forces acting on the atherosclerotic plaque, which has important effects on its growth and stability.

  2. Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan

    2007-01-01

    The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.

  3. In vivo vascular flow profiling combined with optical tweezers based blood routing

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  4. Myocardial Blood Flow Distribution during Ischemia-Induced Coronary Vasodilation in the Unanesthetized Dog

    PubMed Central

    Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.

    1974-01-01

    This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928

  5. Determinants of pulmonary blood flow distribution.

    PubMed

    Glenny, Robb W; Robertson, H Thomas

    2011-01-01

    The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.

  6. Prevention of Noise Damage to Cochlear Synapses

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0494 TITLE: Prevention of Noise Damage to Cochlear Synapses PRINCIPAL INVESTIGATOR: Steven Green CONTRACTING...to Cochlear Synapses 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0494 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven Green 5d. PROJECT...ABSTRACT Noise-induced synaptopathy is the result of excitotoxic trauma to cochlear synapses due to glutamate released from the hair cells. Excitotoxic

  7. In vivo photoacoustic tomography of total blood flow and Doppler angle

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.

  8. Analysis of artery blood flow before and after angioplasty

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub

    2018-01-01

    The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.

  9. Narcolepsy: regional cerebral blood flow during sleep and wakefulness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, F.; Meyer, J.S.; Karacan, I.

    Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REMmore » sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.« less

  10. Musical ear syndrome in adult cochlear implant patients.

    PubMed

    Low, W-K; Tham, C A; D'Souza, V-D; Teng, S-W

    2013-09-01

    Except for a single case report, musical ear syndrome in cochlear implantees has not been studied. We aimed to study the prevalence and nature of musical ear syndrome among adult cochlear implant patients, as well as the effect on their emotional well-being. STUDY DESIGN, PATIENTS AND INTERVENTION: A cross-sectional survey of patients aged 18 years and above who had received cochlear implants for profound hearing loss between 1997 and 2010. Of the 82 patients studied, 18 (22 per cent) were found to have experienced musical ear syndrome. Seven and 11 patients had musical ear syndrome prior to and after cochlear implantation, respectively. The character of musical ear syndrome symptoms was described as instrumental music (n = 2), singing (6) or both (10). Fourteen patients reported an adverse emotional effect, with three expressing ‘intolerance’. In this study, 22 per cent of cochlear implantees experienced musical ear syndrome. These symptoms affected patients’ emotional state, but most coped well. Musical ear syndrome can occur prior to and after cochlear implantation.

  11. Cochlear Implants

    MedlinePlus

    ... newsroom@entnet.org . A cochlear implant is an electronic device that restores partial hearing to individuals with ... An internal component that consists of a small electronic device that is surgically implanted under the skin ...

  12. Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements.

    PubMed

    Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E

    2017-12-01

    Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter) 2 /4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

  13. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  14. Evaluation of extracranial blood flow in Parkinson disease.

    PubMed

    Haktanir, Alpay; Yaman, Mehmet; Acar, Murat; Gecici, Omer; Demirel, Reha; Albayrak, Ramazan; Demirkirkan, Kemal

    2006-01-02

    Decreased cerebral flow velocities in Parkinsonian patients were reported previously. Because of the limited data on vascular changes in Parkinson disease (PD), which may have a vascular etiology, we aimed to disclose any possible cerebral hemodynamic alteration in Parkinsonian patients. We prospectively evaluated 28 non-demented, idiopathic parkinsonian patients and 19 age and sex matched controls with Doppler sonography. Flow volumes, peak systolic flow velocities, and cross-sectional areas of vertebral and internal carotid arteries (ICA) were measured and compared between patients and controls. Correlation of patient age and disease duration with Doppler parameters was observed; and each Doppler parameter of patients within each Hoehn-Yahr scale was compared. There was no significant difference of measured parameters between groups. No correlation was found between disease duration and age with flow volume, cross-sectional area or peak systolic velocity. Hoehn-Yahr scale was not found having significant relation with Doppler parameters. Values of vertebral, internal carotid and cerebral blood flow volumes (CBF), peak systolic velocities, and cross-sectional areas were not significantly different between Parkinsonian patients and age and sex matched controls. Although regional blood flow decreases may be seen as reported previously, Parkinson disease is not associated with a flow volume or velocity alteration of extracranial cerebral arteries.

  15. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  16. Regional cerebral blood flow in childhood headache

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, E.S.; Stump, D.A.

    1989-06-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions,more » rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical.« less

  17. Intraoperative cochlear nerve mapping with the mobile cochlear nerve compound action potential tracer in vestibular schwannoma surgery.

    PubMed

    Watanabe, Nobuyuki; Ishii, Takuya; Fujitsu, Kazuhiko; Kaku, Shogo; Ichikawa, Teruo; Miyahara, Kosuke; Okada, Tomu; Tanino, Shin; Uriu, Yasuhiro; Murayama, Yuichi

    2018-05-18

    OBJECTIVE The authors describe the usefulness and limitations of the cochlear nerve compound action potential (CNAP) mobile tracer (MCT) that they developed to aid in cochlear nerve mapping during vestibular schwannoma surgery (VSS) for hearing preservation. METHODS This MCT device requires no more than 2 seconds for stable placement on the nerve to obtain the CNAP and thus is able to trace the cochlear nerve instantaneously. Simultaneous bipolar and monopolar recording is possible. The authors present the outcomes of 18 consecutive patients who underwent preoperative useful hearing (defined as class I or II of the Gardner-Robertson classification system) and underwent hearing-preservation VSS with the use of the MCT. Mapping was considered successful when it was possible to detect and trace the cochlear nerve. RESULTS Mapping of the cochlear nerve was successful in 13 of 18 patients (72.2%), and useful hearing was preserved in 11 patients (61.1%). Among 8 patients with large tumors (Koos grade 3 or 4), the rate of successful mapping was 62.5% (5 patients). The rate of hearing preservation in patients with large tumors was 50% (4 patients). CONCLUSIONS In addition to microsurgical presumption of the arrangement of each nerve, frequent probing on and around an unidentified nerve and comparison of each waveform are advisable with the use of both more sensitive monopolar and more location-specific bipolar MCT. MCT proved to be useful in cochlear nerve mapping and may consequently be helpful in hearing preservation. The authors discuss some limitations and problems with this device.

  18. Cerebral blood flow modulations during cognitive control in major depressive disorder.

    PubMed

    Hoffmann, Alexandra; Montoro, Casandra I; Reyes Del Paso, Gustavo A; Duschek, Stefan

    2018-09-01

    This study investigated cerebral blood flow modulations during proactive and reactive cognitive control in major depressive disorder (MDD). Proactive control refers to preparatory processes during anticipation of a behaviorally relevant event; reactive control is activated after such an event to ensure goal attainment. Using functional transcranial Doppler sonography, blood flow velocities in the middle cerebral arteries of both hemispheres were recorded in 40 MDD patients and 40 healthy controls during a precued Stroop task. The font color of color words, which appeared 5 s after an acoustic warning signal, had to be indicated while ignoring word meaning. Patients, as compared to controls, exhibited smaller bilateral blood flow increases during task preparation and larger increases after color word presentation. Response time was longer in patients irrespective of the match or mismatch between font color and word meaning. The blood flow increase after word presentation correlated positively with response time. Potential effects of psychotropic medication on cognition and cerebral blood flow could not be controlled. The study revealed evidence of reduced cortical activity during proactive and elevated activity that occurs during reactive control in MDD. Deficient implementation of proactive control in MDD may lead to increased reliance on reactive control. The association between the blood flow increase after color word presentation and poorer performance indicates that deficient response preparation cannot be compensated for by reactive strategies. The findings are clinically relevant, as they may contribute to our understanding of the mechanisms relevant to cognitive impairments in MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  20. Estimation of Blood Flow Rates in Large Microvascular Networks

    PubMed Central

    Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.

    2012-01-01

    Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980

  1. Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs.

    PubMed

    Onal, Merih; Elsurer, Cagdas; Selimoglu, Nebil; Yilmaz, Mustafa; Erdogan, Ender; Bengi Celik, Jale; Kal, Oznur; Onal, Ozkan

    2017-08-01

    The cochlea is an end organ, which is metabolically dependent on a nutrient and oxygen supply to maintain its normal physiological function. Cochlear ischemia and reperfusion (IR) injury is considered one of the most important causes of human idiopathic sudden sensorineural hearing loss. The aim of the present study was to study the efficacy of ozone therapy against cochlear damage caused by IR injury and to investigate the potential clinical use of this treatment for sudden deafness. Twenty-eight guinea pigs were randomized into four groups. The sham group (S) (n = 7) was administered physiological saline intraperitoneally (i.p.) for 7 days. The ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 days. In the IR + O group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 days before IR injury. On the eighth day, the IR + O group was subjected to cochlear ischemia for 15 min by occluding the bilateral vertebral artery and vein with a nontraumatic clamp and then reperfusion for 2 h. The IR group was subjected to cochlear IR injury. After the IR procedure, the guinea pigs were sacrificed on the same day. In a general histological evaluation, cochlear and spiral ganglionic tissues were examined with a light microscope, and apoptotic cells were counted by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The apoptotic index (AI) was then calculated. Blood samples were sent for analyses of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase, malondialdehyde (MDA), the total oxidant score (TOS), and total antioxidant capacity (TAC). Data were evaluated statistically using the Kruskal-Wallis test. The AI was highest in the IR group. The AI of the IR + O group was lower than that of the IR group. The biochemical antioxidant parameters SOD and GSH-Px and the TAC values were highest in the O group and lowest in the IR group. The MDA level and TOS were highest in the IR group and lowest

  2. Response Properties of Cochlear Nucleus Neurons in Monkeys

    PubMed Central

    Roth, G. Linn; Recio, A.

    2009-01-01

    Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377

  3. Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow

    PubMed Central

    Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.

    2016-01-01

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness blood pressure (SBP, DBP) and single photon emission computed tomography (SPECT). Computerized coding of the SPECT images yielded relative ratios of blood flow in left and right cortical and select subcortical regions. Cerebellum served as the denominator. Sex-stratified multiple regression analyses, adjusted for age, education, race, alcohol consumption, smoking status, and depressive symptomatology, revealed significant interactions of blood pressure and head injury to cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=.024) and left dorsolateral (β=-2.61, p=.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865

  4. [Effect of hemorheology on ultrasonic doppler blood flow spectrum diagram].

    PubMed

    Zhang, Shenghua; Qin, Renjia

    2014-08-01

    The present research aims to point out the long-existing defect of analyzing the spectrum diagram only from the perspective of haemodynamics instead of haemorheology. In the light of the theories of haemodynamics and haemorheology, the causes of spectrum diagram formation of carotid artery blood at the rapid and slow flow can be clarified completely and accurately. Four conclusions have been drawn in the end. As long as the velocity gradient is large enough, obvious red blood cells concentrate to the shaft even in the big or bigger blood vessels; the spectrum diagram is the powerful proof of the two phase flow model of blood; the spectrum diagram can be completely and accurately analyzed only by combining haemodynamics with haemorheology; and only when the red blood cells concentrate to the shaft, the big or bigger blood vessels can be regarded as haemogeneous fluid.

  5. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  6. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    PubMed

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  7. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  8. Real-time blood flow visualization using the graphics processing unit

    NASA Astrophysics Data System (ADS)

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.

  9. Real-time blood flow visualization using the graphics processing unit

    PubMed Central

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915

  10. Deafblind People's Experiences of Cochlear Implantation

    ERIC Educational Resources Information Center

    Soper, Janet

    2006-01-01

    Cochlear implants are electronic devices that create the sensation of hearing in those who cannot obtain any benefit from conventional hearing aids. This article examines the experience of cochlear implantation in a select group of individuals with acquired deafblindness, focusing on three key themes: access to communication, information and…

  11. [Microcirculatory blood and lymph flow examination in eyelid skin by laser Doppler flowmetry].

    PubMed

    Safonova, T N; Kintyukhina, N P; Sidorov, V V; Gladkova, O V; Reyn, E S

    to study normal blood and lymph microcirculation of the upper and lower eyelids in different age groups. The study included 108 volunteers (216 eyes) aged from 20 to 80 years with no signs of changes in anterior segment structures, who were grouped by age ranges (20-30 years, 31-40 years, 41-50 years, 51-60 years, 61-70 years, and 71-80 years) into 6 groups equal in gender and quantitative composition. In all volunteers, microcirculation of the upper and lower eyelids was examined by laser Doppler flowmetry (LDF) ('LASMA MC-1' peripheral blood and lymph flow analyzer and 'LASMA MC' laser diagnostic complex, LASMA LLC). The average perfusion changes in blood and lymph flow as well as blood and lymph flow oscillations were analyzed. Blood and lymph flow in the microvasculature of the upper and lower eyelids is variable and depends on neither the age, nor gender of the test subject. On LDF-gram, every increase in amplitude of blood flow corresponds to a decrease in that of lymph flow. The non-invasive method of LDF expands our diagnostic capabilities as it enables assessment of not only blood, but also lymph flow. The data obtained can serve as a starting point for exploring microcirculation in different age groups in the presence of different pathological processes.

  12. Musical experience sharpens human cochlear tuning.

    PubMed

    Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P

    2016-05-01

    The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    PubMed

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  14. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Predicting bifurcation angle effect on blood flow in the microvasculature.

    PubMed

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    PubMed

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  17. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  18. [Cochlear implantation in patients with Waardenburg syndrome type II].

    PubMed

    Wan, Liangcai; Guo, Menghe; Chen, Shuaijun; Liu, Shuangriu; Chen, Hao; Gong, Jian

    2010-05-01

    To describe the multi-channel cochlear implantation in patients with Waardenburg syndrome including surgeries, pre and postoperative hearing assessments as well as outcomes of speech recognition. Multi-channel cochlear implantation surgeries have been performed in 12 cases with Waardenburg syndrome type II in our department from 2000 to 2008. All the patients received multi-channel cochlear implantation through transmastoid facial recess approach. The postoperative outcomes of 12 cases were compared with 12 cases with no inner ear malformation as a control group. The electrodes were totally inserted into the cochlear successfully, there was no facial paralysis and cerebrospinal fluid leakage occurred after operation. The hearing threshold in this series were similar to that of the normal cochlear implantation. After more than half a year of speech rehabilitation, the abilities of speech discrimination and spoken language of all the patients were improved compared with that of preoperation. Multi-channel cochlear implantation could be performed in the cases with Waardenburg syndrome, preoperative hearing and images assessments should be done.

  19. Effect of pyrrolidone-pyroglutamic acid composition on blood flow in rat middle cerebral artery.

    PubMed

    Semkina, G A; Matsievskii, D D; Mirzoyan, N R

    2006-01-01

    We compared the effects of a pyrrolidone-pyroglutamic acid composition and nimodipine on blood circulation in the middle cerebral artery in rats. The composition produced a strong effect on blood supply to the brain, stimulated blood flow in the middle cerebral artery (by 60 +/- 9%) and decreased blood pressure (by 25.0 +/- 2.7%). The cerebrovascular effects of this composition differed from those of nimodipine. Nimodipine not only increased middle cerebral artery blood flow, but also decreased cerebral blood flow in the early period after treatment.

  20. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  1. Changes in scalp and cortical blood flow during hyperventilation measured with diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jun; Ninck, Markus; Gisler, Thomas

    2009-07-01

    Changes in scalp and cortical blood flow induced by voluntary hyperventilation are investigated by near-infrared diffusing-wave spectroscopy. The temporal intensity autocorrelation function g(2) (τ) of multiply scattered light is recorded from the forehead of subjects during hyperventilation. Blood flow within the sampled tissue volume is estimated by the mean decay rate of g(2) (τ) . Data measured from six subjects show that the pattern of the hemodynamic response during 50 s hyperventilation is rather complicated: within the first 10 s, in three subjects an initial increase in blood flow is observed; from 10 s to 20 s, the mean blood flow is smaller than its baseline value for all six subjects; for the duration from 20 s to 30 s, the blood flow increases again. However, after 30 s the change is not consistent across subjects. Further study on one of these subjects by using two receivers probing the blood flow in the cortex and in the superficial layers simultaneously, reveals that during hyperventilation, the direction of change in blood flow within the scalp is opposite to the one in the brain. This helps to understand the complicated hemodynamic response observed in our measurements.

  2. Relationship Between Blood Flow and Performance Recovery: A Randomized, Placebo-Controlled Study.

    PubMed

    Borne, Rachel; Hausswirth, Christophe; Bieuzen, François

    2017-02-01

    To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate. Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1-3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1-3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4. After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P < .001). This corresponds to the only intervention that allowed performance recovery (P > .05). No recovery effect was linked to heart rate or blood lactate concentration levels. For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.

  3. Relationship between parietal blood flow studies in the left colon and the rectum in dogs. Colonic pressure and blood flow.

    PubMed

    Arhan, P; Bouchoucha, M; Martelli, H; Rimbert, J N; Berdeaux, A; Gallix, P; Héro, M; Barritault, L; Pellerin, D; Devroede, G

    1988-01-01

    An animal model was proposed to clarify the difference in occurrence of enterocolitis in congenital aganglionosis. When gaseous distention of the colon was localized to the rectosigmoid area, enterocolitis never occurred. On the contrary, when it involved the left colon, enterocolitis occurred in 13 of 15 patients. Intestinal blood flow rates were simultaneously measured in the left colon and rectum of six dogs by using labeled microspheres and expressed in function of the intraluminal pressure. Results show that for elevated values of intraluminal pressure, blood flow was significantly lower in the left colon than in the rectum. These results may explain why ischemia and necrosis occurred more frequently in the left colon than in the rectum.

  4. Decreased poststenotic flow disturbance during drag reduction by polyacrylamide infusion without increased aortic blood flow.

    PubMed

    Hutchison, K J; Campbell, J D; Karpinski, E

    1989-07-01

    The infusion of polyacrylamide in open chest rats has been reported to increase aortic blood flow and the effect has been ascribed to the "drag reduction" properties of these compounds. In six anesthetized dogs the infusion of polyacrylamide to a total dose of 2 mg/kg caused a reduction in midline and separation zone Doppler spectral broadening in the common carotid artery poststenotic velocity field. This apparent reduction in poststenotic turbulence was interpreted as indicating the presence of a drag reducing effect. Despite this demonstration that polyacrylamide was present in the blood in drag reducing concentrations no increase in aortic blood flow was produced.

  5. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    PubMed

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    PubMed

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  7. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  8. [The development of musicality in children after cochlear implantation].

    PubMed

    Zheng, Yan; Liu, Bo; Dong, Ruijuan; Xu, Tianqiu; Chen, Jing; Chen, Xuejing; Zhong, Yan; Meng, Chao; Wang, Hong; Chen, Xueqing

    2014-08-01

    The purpose of this study is to analyze the development of musicality in children after cochlear implantation, and provide a clinical database for the evaluation of their musicality. Twenty-six children with cochlear implants (CI group) participated in this research. They received cochlear implants at the age of 11 to 68 months with a mean of 35.6 months. Seventy-six infants as a control group aged from 1 to 24 months with a mean of 6.1 months participated in this study, whose hearing were considered normal by passing the case history collection, high-risk registers for hearing loss and hearing screening using DPOAE. The music and young children with CIs: Musicality Rating Scale was used to evaluate their musicality. The evaluation was performed before cochlear implantation and 1, 3, 6, 9, 12, 24 months after cochlear implantation for children with cochlear implants. The evaluation was also performed at 1, 3, 6, 9, 12, 24 months for children with normal hearing. The mean scores of musicality showed significant improvements with time of CI use for CI group (P<0.05). The mean scores of musicality also showed significant improvements with time for control group (P<0.05). There were no significant differences in mean scores between CI group and control group at 1, 3, 6, 9, 12 months of hearing age by rank sum test (P>0.05). Significant difference was noted between the two groups at 24 months (P<0.05). The musicality of children with cochlear implants improved significantly with time after cochlear implantation. The most rapid growth was found in the first year after cochlear implantation.

  9. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification.

    PubMed

    Lee, Benjamin C; Moody, Jonathan B; Poitrasson-Rivière, Alexis; Melvin, Amanda C; Weinberg, Richard L; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2018-03-23

    Patient motion can lead to misalignment of left ventricular volumes of interest and subsequently inaccurate quantification of myocardial blood flow (MBF) and flow reserve (MFR) from dynamic PET myocardial perfusion images. We aimed to identify the prevalence of patient motion in both blood and tissue phases and analyze the effects of this motion on MBF and MFR estimates. We selected 225 consecutive patients that underwent dynamic stress/rest rubidium-82 chloride ( 82 Rb) PET imaging. Dynamic image series were iteratively reconstructed with 5- to 10-second frame durations over the first 2 minutes for the blood phase and 10 to 80 seconds for the tissue phase. Motion shifts were assessed by 3 physician readers from the dynamic series and analyzed for frequency, magnitude, time, and direction of motion. The effects of this motion isolated in time, direction, and magnitude on global and regional MBF and MFR estimates were evaluated. Flow estimates derived from the motion corrected images were used as the error references. Mild to moderate motion (5-15 mm) was most prominent in the blood phase in 63% and 44% of the stress and rest studies, respectively. This motion was observed with frequencies of 75% in the septal and inferior directions for stress and 44% in the septal direction for rest. Images with blood phase isolated motion had mean global MBF and MFR errors of 2%-5%. Isolating blood phase motion in the inferior direction resulted in mean MBF and MFR errors of 29%-44% in the RCA territory. Flow errors due to tissue phase isolated motion were within 1%. Patient motion was most prevalent in the blood phase and MBF and MFR errors increased most substantially with motion in the inferior direction. Motion correction focused on these motions is needed to reduce MBF and MFR errors.

  10. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    PubMed Central

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  11. Fast blood flow monitoring in deep tissues with real-time software correlators

    PubMed Central

    Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-01-01

    We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588

  12. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  13. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography◊

    PubMed Central

    Wang, Yimin; Fawzi, Amani; Tan, Ou; Gil-Flamer, John; Huang, David

    2010-01-01

    We present human retinal blood flow investigation for diabetic patients using Doppler Fourier domain optical coherence tomography (FD-OCT). The scanning pattern consisted of two concentric circles around the optic nerve head. The blood flow in one patient with diabetes and no retinpathy and another patient with treated proliferative diabetic retinopathy were measured. The patient without retinopathy showed a total blood flow value at the lower level of the normal range. The flow distribution between superior and inferior retina was balanced. The patient with diabetic retinopathy had a flow value lower than the normal people. Our study shows that Doppler FD-OCT can be used to evaluate the total retinal blood flow in patients with retinal diseases. PMID:19259246

  14. Simulations of blood flow through a stenosed carotid artery

    NASA Astrophysics Data System (ADS)

    Lundin, Staffan; Meder, Samuel; Metcalfe, Ralph

    2000-11-01

    The human carotid artery is often the site of the formation of atherosclerotic lesions that can lead to severe reduction of blood flow to the brain, frequently resulting in a stroke. There is strong evidence that hemodynamic variables such as the wall shear stress and its spatial and temporal derivatives play a role in fostering atherosclerosis. To investigate the potential of these effects, we have performed unsteady, three-dimensional numerical simulations of blood flow through the carotid bifurcation in the presence of stenoses of varying degrees and eccentricities. The simulations indicate that regions of low maximum and minimum shear stress correlate better with lesion prone sites than low average wall shear stress. As the degree of stenosis increases, it is found that the downstream flow changes drastically for stenoses greater than about 25Downstream eddies are generated during systole that create local shear stress peaks on the internal carotid artery wall, resulting in significant reduction in flow rates through the internal carotid artery. Large secondary flows develop, and there are also periods of flow reversal during the systolic/diastolic cycle.

  15. Automatic identification of cochlear implant electrode arrays for post-operative assessment

    NASA Astrophysics Data System (ADS)

    Noble, Jack H.; Schuman, Theodore A.; Wright, Charles G.; Labadie, Robert F.; Dawant, Benoit M.

    2011-03-01

    Cochlear implantation is a procedure performed to treat profound hearing loss. Accurately determining the postoperative position of the implant in vivo would permit studying the correlations between implant position and hearing restoration. To solve this problem, we present an approach based on parametric Gradient Vector Flow snakes to segment the electrode array in post-operative CT. By combining this with existing methods for localizing intra-cochlear anatomy, we have developed a system that permits accurate assessment of the implant position in vivo. The system is validated using a set of seven temporal bone specimens. The algorithms were run on pre- and post-operative CTs of the specimens, and the results were compared to histological images. It was found that the position of the arrays observed in the histological images is in excellent agreement with the position of their automatically generated 3D reconstructions in the CT scans.

  16. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.

  17. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma

    PubMed Central

    Graham, Christine E.; Basappa, Johnvesly; Turcan, Sevin; Vetter, Douglas E.

    2011-01-01

    A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body. PMID:21909974

  18. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution

  19. The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon.

    PubMed

    Soylu, Korhan; Gulel, Okan; Yucel, Huriye; Yuksel, Serkan; Aksan, Gokhan; Soylu, Ayşegül İdil; Demircan, Sabri; Yılmaz, Ozcan; Sahin, Mahmut

    2014-09-01

    The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Patients' demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow.

  20. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.

    PubMed

    Hu, Kun; Peng, C K; Czosnyka, Marek; Zhao, Peng; Novak, Vera

    2008-03-01

    Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological signals such as BP and BFV, a computational method called multimodal pressure-flow (MMPF) analysis was recently developed to study the nonlinear BP-BFV relationship during the Valsalva maneuver (VM). The present study aimed to determine (i) whether this method can estimate autoregulation from spontaneous BP and BFV fluctuations during baseline rest conditions; (ii) whether there is any difference between the MMPF measures of autoregulation based on intra-arterial BP (ABP) and based on cerebral perfusion pressure (CPP); and (iii) whether the MMPF method provides reproducible and reliable measure for noninvasive assessment of autoregulation. To achieve these aims, we analyzed data from existing databases including: (i) ABP and BFV of 12 healthy control, 10 hypertensive, and 10 stroke subjects during baseline resting conditions and during the Valsalva maneuver, and (ii) ABP, CPP, and BFV of 30 patients with traumatic brain injury (TBI) who were being paralyzed, sedated, and ventilated. We showed that autoregulation in healthy control subjects can be characterized by specific phase shifts between BP and BFV oscillations during the Valsalva maneuver, and the BP-BFV phase shifts were reduced in hypertensive and stroke subjects (P < 0.01), indicating impaired autoregulation. Similar results were found during baseline condition from spontaneous BP and BFV oscillations. The BP-BFV phase shifts obtained during baseline and during VM were highly correlated (R > 0.8, P < 0.0001), showing no statistical difference (paired-t test P > 0.47). In TBI patients there were strong correlations

  1. Nonlinear Assessment of Cerebral Autoregulation from Spontaneous Blood Pressure and Cerebral Blood Flow Fluctuations

    PubMed Central

    Peng, C. K.; Czosnyka, Marek; Zhao, Peng

    2009-01-01

    Cerebral autoregulation (CA) is an most important mechanism responsible for the relatively constant blood flow supply to brain when cerebral perfusion pressure varies. Its assessment in nonacute cases has been relied on the quantification of the relationship between noninvasive beat-to-beat blood pressure (BP) and blood flow velocity (BFV). To overcome the nonstationary nature of physiological signals such as BP and BFV, a computational method called multimodal pressure-flow (MMPF) analysis was recently developed to study the nonlinear BP–BFV relationship during the Valsalva maneuver (VM). The present study aimed to determine (i) whether this method can estimate autoregulation from spontaneous BP and BFV fluctuations during baseline rest conditions; (ii) whether there is any difference between the MMPF measures of autoregulation based on intra-arterial BP (ABP) and based on cerebral perfusion pressure (CPP); and (iii) whether the MMPF method provides reproducible and reliable measure for noninvasive assessment of autoregulation. To achieve these aims, we analyzed data from existing databases including: (i) ABP and BFV of 12 healthy control, 10 hypertensive, and 10 stroke subjects during baseline resting conditions and during the Valsalva maneuver, and (ii) ABP, CPP, and BFV of 30 patients with traumatic brain injury (TBI) who were being paralyzed, sedated, and ventilated. We showed that autoregulation in healthy control subjects can be characterized by specific phase shifts between BP and BFV oscillations during the Valsalva maneuver, and the BP–BFV phase shifts were reduced in hypertensive and stroke subjects (P < 0.01), indicating impaired autoregulation. Similar results were found during baseline condition from spontaneous BP and BFV oscillations. The BP–BFV phase shifts obtained during baseline and during VM were highly correlated (R > 0.8, P < 0.0001), showing no statistical difference (paired-t test P > 0.47). In TBI patients there were strong

  2. Gastric emptying, postprandial blood pressure, glycaemia and splanchnic flow in Parkinson's disease.

    PubMed

    Trahair, Laurence G; Kimber, Thomas E; Flabouris, Katerina; Horowitz, Michael; Jones, Karen L

    2016-05-28

    To determine gastric emptying, blood pressure, mesenteric artery blood flow, and blood glucose responses to oral glucose in Parkinson's disease. Twenty-one subjects (13 M, 8 F; age 64.2 ± 1.6 years) with mild to moderate Parkinson's disease (Hoehn and Yahr score 1.4 ± 0.1, duration of known disease 6.3 ± 0.9 years) consumed a 75 g glucose drink, labelled with 20 MBq (99m)Tc-calcium phytate. Gastric emptying was quantified with scintigraphy, blood pressure and heart rate with an automated device, superior mesenteric artery blood flow by Doppler ultrasonography and blood glucose by glucometer for 180 min. Autonomic nerve function was evaluated with cardiovascular reflex tests and upper gastrointestinal symptoms by questionnaire. The mean gastric half-emptying time was 106 ± 9.1 min, gastric emptying was abnormally delayed in 3 subjects (14%). Systolic and diastolic blood pressure fell (P < 0.001) and mesenteric blood flow and blood glucose (P < 0.001 for both) increased, following the drink. Three subjects (14%) had definite autonomic neuropathy and 8 (38%) had postprandial hypotension. There were no significant relationships between changes in blood pressure, heart rate or mesenteric artery blood flow with gastric emptying. Gastric emptying was related to the score for autonomic nerve function (R = 0.55, P < 0.01). There was an inverse relationship between the blood glucose at t = 30 min (R = -0.52, P < 0.05), while the blood glucose at t = 180 min was related directly (R = 0.49, P < 0.05), with gastric emptying. In mild to moderate Parkinson's disease, gastric emptying is related to autonomic dysfunction and a determinant of the glycaemic response to oral glucose.

  3. Volumetric blood flow via time-domain correlation: experimental verification.

    PubMed

    Embree, P M; O'Brien, W R

    1990-01-01

    A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.

  4. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  5. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels

    NASA Astrophysics Data System (ADS)

    Fang, Haiping; Wang, Zuowei; Lin, Zhifang; Liu, Muren

    2002-05-01

    A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.

  6. Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant

    2016-11-01

    Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.

  7. Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans.

    PubMed

    Luksch, Alexandra; Polska, Elzbieta; Imhof, Andrea; Schering, Joanne; Fuchsjäger-Mayrl, Gabriele; Wolzt, Michael; Schmetterer, Leopold

    2003-02-01

    Nitric oxide (NO) is an important regulator of basal choroidal blood flow. Animal experiments indicate that NO is also involved in choroidal blood flow regulation during changes in ocular perfusion pressure and inhibition of NO synthase (NOS) has been reported to shift choroidal pressure-flow curves to the right. The hypothesis for the study was that inhibition of NOS may influence choroidal blood flow during isometric exercise. To test this hypothesis, a randomized, double-masked, placebo-controlled, three-way crossover study was performed in 12 healthy male volunteers. Subjects received on different study days intravenous infusions of N(G)-monomethyl-L-arginine (L-NMMA), phenylephrine, or placebo. During these infusion periods, subjects were asked to squat for 6 minutes. Choroidal blood flow was assessed with laser Doppler flowmetry, and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. L-NMMA and phenylephrine increased resting OPP by 10% and 13%, respectively, but only L-NMMA reduced resting choroidal blood flow (-17%, P < 0.001). The relative increase in OPP during isometric exercise was comparable with all drugs administered. Isometric exercise increased choroidal blood flow during administration of placebo and phenylephrine, but not during administration of L-NMMA (P < 0.001 vs. placebo). These data indicate that NO plays an important role in the regulation of choroidal blood flow during isometric exercise.

  8. Evaluating cochlear implant trauma to the scala vestibuli.

    PubMed

    Adunka, O; Kiefer, J; Unkelbach, M H; Radeloff, A; Gstoettner, W

    2005-04-01

    Placement of cochlear implant electrodes into the scala vestibuli may be intentional, e.g. in case of blocked scala tympani or unintentional as a result of trauma to the basilar membrane or erroneous location of the cochieostomy. The aim of this study was to evaluate the morphological consequences and cochlear trauma after implantation of different cochlear implant electrode arrays in the scala vestibuli. Human temporal bone study with histological and radiological evaluation. Twelve human cadaver temporal bones were implanted with different cochlear implant electrodes. Implanted bones were processed using a special method to section undecalcified bone. Cochlear trauma and intracochlear positions. All implanted electrodes were implanted into the scala vestibuli using a special approach that allows direct scala vestibuli insertions. Fractures of the osseous spiral lamina were evaluated in some bones in the basal cochlear regions. In most electrodes, delicate structures of the organ of Corti were left intact, however, Reissner's membrane was destroyed in all specimens and the electrode lay upon the tectorial membrane. In some bones the organ of Corti was destroyed. Scala vestibuli insertions did not cause severe trauma to osseous or neural structures, thus preserving the basis for electrostimulation of the cochlea. However, destruction of Reissner's membrane and impact on the Organ of Corti can be assumed to destroy residual hearing.

  9. The influence of cochlear shape on low-frequency hearing.

    PubMed

    Manoussaki, Daphne; Chadwick, Richard S; Ketten, Darlene R; Arruda, Julie; Dimitriadis, Emilios K; O'Malley, Jen T

    2008-04-22

    The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea.

  10. Cochlear implants in children implanted in Jordan: A parental overview.

    PubMed

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Computational Biorheology of Human Blood Flow in Health and Disease

    PubMed Central

    Fedosov, Dmitry A.; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2014-01-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829

  12. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    NASA Astrophysics Data System (ADS)

    Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping

    2005-12-01

    The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  13. Pulsatile spiral blood flow through arterial stenosis.

    PubMed

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  14. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    PubMed

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were <10%. Interobserver and intraobserver reproducibility in left renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  15. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  16. Intraocular Pressure, Blood Pressure, and Retinal Blood Flow Autoregulation: A Mathematical Model to Clarify Their Relationship and Clinical Relevance

    PubMed Central

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-01-01

    Purpose. This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. Methods. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. Results. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. Conclusions. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. PMID:24876284

  17. Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders

    NASA Astrophysics Data System (ADS)

    Chan, Kit Yan

    2005-11-01

    In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.

  18. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    NASA Technical Reports Server (NTRS)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  19. Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.

    PubMed

    Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung

    2005-09-01

    To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.

  20. Infection-Mediated Vasoactive Peptides Modulate Cochlear Uptake of Fluorescent Gentamicin

    PubMed Central

    Koo, Ja-Won; Wang, Qi; Steyger, Peter S.

    2011-01-01

    Inflammatory mediators released during bacterial infection include vasoactive peptides such as histamine and serotonin, and their serum levels are frequently elevated. These peptides also modulate the vascular permeability of endothelial cells lining the blood-brain and blood-labyrinth barriers (BLB). These peptides may also modulate the permeability of the BLB to ototoxic aminoglycoside antibiotics prescribed to resolve bacterial sepsis. To test this hypothesis, we compared the effect of histamine and serotonin on the cochlear distribution of fluorescently conjugated gentamicin (GTTR) in control animals at 0.5, 1 and 3 h after injection of GTTR. The intensity of GTTR fluorescence was attenuated at 1 h in the histamine group compared to control mice, and more intense 3 h after injection (p < 0.05). In the serotonin group, the intensity of GTTR fluorescence was attenuated at 0.5 and 1 h (p < 0.05) and was increased at 3 h compared to control animals, where GTTR intensities peaked at 1 h and then plateaued or was slightly decreased at 3 h. This biphasic pattern of modulation was statistically significant in the apical turn of the cochlea. No difference in the intensity of GTTR fluorescence was observed in kidney proximal tubules. Systemic increases in serum levels of vasoactive peptides can modulate cochlear uptake of gentamicin, likely via permeability changes in the BLB. Conditions that influence serum levels of vasoactive peptides may potentiate aminoglycoside ototoxicity. PMID:21196726

  1. Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis

    PubMed Central

    Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O

    2016-01-01

    A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177

  2. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.

    PubMed

    Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A

    2017-06-06

    Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.

  3. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    PubMed

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P < 0.05) and decreased after L-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P < 0.05). Cortical blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P < 0.05]. PET/CT scanning allows identification of a renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  4. CO-LOCALIZATION OF THE VANILLOID CAPSAICIN RECEPTOR AND SUBSTANCE P IN SENSORY NERVE FIBERS INNERVATING COCHLEAR AND VERTEBRO-BASILAR ARTERIES

    PubMed Central

    VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.

    2014-01-01

    Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132

  5. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  6. Electric charge requirements of pediatric cochlear implant recipients enrolled in the Childhood Development After Cochlear Implantation study.

    PubMed

    Zwolan, Teresa A; O'Sullivan, Mary Beth; Fink, Nancy E; Niparko, John K

    2008-02-01

    To evaluate mapping characteristics of children with cochlear implants who are enrolled in the Childhood Development After Cochlear Implantation (CDACI) multicenter study. Longitudinal evaluation during 24 months of speech processor maps of children with cochlear implants prospectively enrolled in the study. Six tertiary referral centers. One hundred eighty-eight children enrolled in the CDACI study who were 5 years old or younger at the time of enrollment. Of these children, 184 received unilateral implants, and 4 received simultaneous bilateral implants. Children attended regular mapping sessions at their implant clinic as part of the study protocol. Maps were examined for each subject at 4 different time intervals: at device activation and 6, 12, and 24 months postactivation. Mean C/M levels (in charge per phase) were compared for 4 different time intervals, for 3 different devices, for 6 different implant centers, and for children with normal and abnormal cochleae. All 3 types of implant devices demonstrate significant increases in C/M levels between device activation and the 24-month appointment. Significant differences in mean C/M levels were noted between devices. Children with cochlear anomalies demonstrate significantly greater C/M levels than children with normal cochleae. The CDACI study has enabled us to evaluate the mapping characteristics of pediatric patients who use 3 different devices and were implanted at a variety of implant centers. Analysis of such data enables us to better understand the mapping characteristics of children with cochlear implants.

  7. The effect of resting blood flow occlusion on exercise tolerance and W'.

    PubMed

    Broxterman, Ryan M; Craig, Jesse C; Ade, Carl J; Wilcox, Samuel L; Barstow, Thomas J

    2015-09-15

    It has previously been postulated that the anaerobic work capacity (W') may be utilized during resting blood flow occlusion in the absence of mechanical work. We tested the hypothesis that W' would not be utilized during an initial range of time following the onset of resting blood flow occlusion, after which W' would be utilized progressively more. Seven men completed blood flow occlusion constant power severe intensity handgrip exercise to task failure following 0, 300, 600, 900, and 1,200 s of resting blood flow occlusion. The work performed above critical power (CP) was not significantly different between the 0-, 300-, and 600-s conditions and was not significantly different from the total W' available. Significantly less work was performed above CP during the 1,200-s condition than the 900-s condition (P < 0.05), while both conditions were significantly less than the 0-, 300-, and 600-s conditions (P < 0.05). The work performed above CP during these conditions was significantly less than the total W' available (P < 0.05). The utilization of W' during resting blood flow occlusion did not begin until 751 ± 118 s, after which time W' was progressively utilized. The current findings demonstrate that W' is not utilized during the initial ∼751 s of resting blood flow occlusion, but is progressively utilized thereafter, despite no mechanical work being performed. Thus, the utilization of W' is not exclusive to exercise, and a constant amount of work that can be performed above CP is not the determining mechanism of W'. Copyright © 2015 the American Physiological Society.

  8. The cochlear implant as a tinnitus treatment.

    PubMed

    Vallés-Varela, Héctor; Royo-López, Juan; Carmen-Sampériz, Luis; Sebastián-Cortés, José M; Alfonso-Collado, Ignacio

    2013-01-01

    Tinnitus is a symptom of high prevalence in patients with cochlear pathology. We studied the evolution of tinnitus in patients undergoing unilateral cochlear implantation for treatment of profound hearing loss. This was a longitudinal, retrospective study of patients that underwent unilateral cochlear implantation and who had bilateral tinnitus. Tinnitus was assessed quantitatively and qualitatively before surgery and at 6 and 12 months after surgery. We evaluated 20 patients that underwent unilateral cochlear implantation with a Nucleus(®) CI24RE Contour Advance™ electrode device. During the periods in which the device was in operation, improvement or disappearance of tinnitus was evidenced in the ipsilateral ear in 65% of patients, and in the contralateral ear, in 50%. In periods in which the device was disconnected, improvement or disappearance of tinnitus was found in the ipsilateral ear in 50% of patients, and in the ear contralateral to the implant in 45% of the patients. In 10% of the patients, a new tinnitus appeared in the ipsilateral ear. The patients with profound hearing loss and bilateral tinnitus treated with unilateral cochlear implantation improved in a high percentage of cases, in the ipsilateral ear and in the contralateral ear. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  9. The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon

    PubMed Central

    Soylu, Korhan; Gulel, Okan; Yucel, Huriye; Yuksel, Serkan; Aksan, Gokhan; Soylu, Ayşegül İdil; Demircan, Sabri; Yılmaz, Özcan; Sahin, Mahmut

    2014-01-01

    Background and Objective: The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Methods: Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Results: Patients’ demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Conclusion: Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow. PMID:25225502

  10. Phasic changes in human right coronary blood flow before and after repair of aortic insufficiency.

    PubMed

    Folts, J D; Rowe, G G; Kahn, D R; Young, W P

    1979-02-01

    We have shown previously that acute aortic insufficiency in chronically instrumented dogs reverses the normally high ratio of diastolic to systolic coronary blood flow. Phasic blood flow in the dominant right coronary artery was measured directly with an electromagnetic flow meter during surgery in eight patients with severe aortic insufficiency before and after relacement of the aortic valve. Before the insufficiency was eliminated, right coronary flow average 116 +/- 37 ml./minute and the diastolic to systolic flow ratio was 0.88 +/- 17. Mean arterial blood pressure averaged 106 +/- 17 mm. Hg, heart rate 84 +/- 19 beats/minute, and mean diastolic pressure averaged 67 +/- 10 mm. Hg. After the aortic valve was replaced with an average heart rate of 90 +/- 15 and mean blood pressure of 103 +/- 13 mm. Hg, the average right coronary blood flow increased to 180 +/- 40 ml./minute with a D/S ratio of 2.18 +/- 0.8. In all cases the right coronary blood flow increased after the aortic insufficiency was eliminated surgically. Right coronary flow probably increased because of the improved diastolic perfusion pressure and the change from predominantly systolic to diastolic coronary flow.

  11. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  12. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    PubMed

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P < .01). Femoral artery conductance was reduced to a similar extent immediately after immersion (~30%) and 30 minutes after immersion (~40%) under both conditions (P < .01). In contrast, there was less thigh cutaneous vasoconstriction during and after immersion in 8°C water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise

  13. A global patient outcomes registry: Cochlear paediatric implanted recipient observational study (Cochlear(™) P-IROS).

    PubMed

    Sanderson, Georgina; Ariyaratne, Thathya V; Wyss, Josephine; Looi, Valerie

    2014-01-01

    Currently, there is a paucity of data concerning the long-term outcomes, educational placement and quality of life of children implanted with hearing devices from large and representative samples of the population. To address this concern, a large, prospective, multicentre, multinational patient-outcomes registry for paediatric recipients of implantable hearing devices was developed. The benefits of this registry, its approach and methodology are described. The Cochlear(™) Paediatric Implanted Recipient Observational Study (Cochlear P-IROS) is a prospective international patient-outcomes registry for children who are implanted in routine clinical practice with one or more hearing devices. The study aims to collect data on patient comorbidities, device use, auditory performance, quality of life and health-related utilities, across different types of implantable hearing devices from a range of manufacturers. Patients will be evaluated with a set of standardised and non-standardised questionnaires prior to initial device activation (baseline) and at six-monthly follow-up intervals up to 24 months and annually thereafter. The Cochlear P-IROS utilises a secure web interface to administer electronic case report forms to clinicians and families of implanted children. The web interface is currently available in five languages: English, Japanese, Korean, Mandarin and Russian. The interface also provides printable versions of the case report forms translated into 22 local languages for collection of data prior to entry online; additional languages may be added, as required. Participation in the Cochlear P-IROS registry is investigator-driven and voluntary. To date, the Cochlear P-IROS has recruited implant clinics across Australia, China, India, Indonesia, Turkey and Vietnam. The registry also aims to recruit multiple clinics in Cuba, Israel, Japan, Malaysia, Singapore, South Africa, South Korea and Russia. The use of a registry such as the Cochlear P-IROS will generate

  14. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  15. [Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique].

    PubMed

    Bassani, Mariana Almada; Caldas, Jamil Pedro Siqueira; Netto, Abimael Aranha; Marba, Sérgio Tadeu Martins

    2016-06-01

    To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. This is an intervention study, which included 40 preterm infants (≤34 weeks) aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5minutes. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50), the end diastolic flow velocity (p=0.17), the mean flow velocity (p=0.07), the resistance index (p=0.41) and the pulsatility index (p=0.67) over time. The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  16. Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort.

    PubMed

    Dolui, Sudipto; Wang, Ze; Wang, Danny Jj; Mattay, Raghav; Finkel, Mack; Elliott, Mark; Desiderio, Lisa; Inglis, Ben; Mueller, Bryon; Stafford, Randall B; Launer, Lenore J; Jacobs, David R; Bryan, R Nick; Detre, John A

    2016-07-01

    Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population. © The Author(s) 2016.

  17. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    NASA Astrophysics Data System (ADS)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  18. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Effects of three postexercice recovery treatments on femoral artery blood flow kinetics.

    PubMed

    Ménétrier, A; Mourot, L; Degano, B; Bouhaddi, M; Walther, G; Regnard, J; Tordi, N

    2015-04-01

    This study aimed to compare the kinetics of muscle leg blood flow during three recovery treatments following a prolonged exercise: contrast water therapy (CWT), compression stockings (CS) or passive recovery (PR). Fifteen men came to the laboratory three times to perform a 45-min exercise followed 5 min after by a standardized 12-min recovery treatment in upright position, alternating between two vats every 2 min: CWT (cold: ~12 °C to warm: 36 °C), CS (~20 mmHg) or PR. The order of treatments was randomized. Blood flow was measured using Doppler ultrasound during the recovery treatments (i.e., min 3, 5, 7 and 9) in the superficial femoral artery distally to the common bifurcation (~3 cm) (above the water and stocking). Blood flow was significantly higher during CWT (P<0.01; +22.91%) and CS (P<0.05; +15.26%) than during PR. Although no statistical difference between CWT and CS was observed, effect sizes were larger during CWT (large) than during CS (moderate). No changes in blood flow occurred in the femoral artery between hot and cold transitions of CWT. During immediate recovery of a high intensity exercise, CWT and CS trigger higher femoral artery blood flow than PR. Moreover, effect sizes were greater during CWT than during CS.

  20. Modeling of the blood rheology in steady-state shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress thatmore » acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.« less

  1. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    PubMed

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  2. Music mixing preferences of cochlear implant recipients: a pilot study.

    PubMed

    Buyens, Wim; van Dijk, Bas; Moonen, Marc; Wouters, Jan

    2014-05-01

    Music perception and appraisal are generally poor in cochlear implant recipients. Simple musical structures, lyrics that are easy to follow, and clear rhythm/beat have been reported among the top factors to enhance music enjoyment. The present study investigated the preference for modified relative instrument levels in music with normal-hearing and cochlear implant subjects. In experiment 1, test subjects were given a mixing console and multi-track recordings to determine their most enjoyable audio mix. In experiment 2, a preference rating experiment based on the preferred relative level settings in experiment 1 was performed. Experiment 1 was performed with four postlingually deafened cochlear implant subjects, experiment 2 with ten normal-hearing and ten cochlear implant subjects. A significant difference in preference rating was found between normal-hearing and cochlear implant subjects. The latter preferred an audio mix with larger vocals-to-instruments ratio. In addition, given an audio mix with clear vocals and attenuated instruments, cochlear implant subjects preferred the bass/drum track to be louder than the other instrument tracks. The original audio mix in real-world music might not be suitable for cochlear implant recipients. Modifying the relative instrument level settings potentially improves music enjoyment.

  3. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  4. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  5. The alpha (α)-glucosidase inhibitor, acarbose, attenuates the blood pressure and splanchnic blood flow responses to intraduodenal sucrose in older adults.

    PubMed

    Gentilcore, Diana; Vanis, Lora; Wishart, Judith M; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L

    2011-08-01

    Postprandial hypotension is an important problem in the elderly and may be triggered by the increase in splanchnic blood flow induced by a meal. Acarbose attenuates the fall in blood pressure (BP) induced by oral sucrose and may be useful in the management of postprandial hypotension. It is not known whether the effect of acarbose on postprandial BP reflects slowing of gastric emptying and/or carbohydrate absorption nor whether acarbose affects splanchnic blood flow. We examined the effects of intraduodenal (ID) acarbose on the BP, heart rate, superior mesenteric artery (SMA) flow, and glycemic and insulin responses to ID sucrose in older participants--this approach excluded any "gastric" effect of acarbose. Eight healthy participants (four male and four female, age 66-77 years) received an ID infusion of sucrose (~6 kcal/min), with or without acarbose (100 mg), over 60 minutes. BP, heart rate, SMA flow, blood glucose, and serum insulin were measured. Acarbose markedly attenuated the falls in systolic (p < .01) and diastolic (p < .05) BP and rises in heart rate (p < .05), SMA flow (p < .05), blood glucose (p < .01), and serum insulin (p < .05). The maximum fall in systolic BP and peak SMA flow was inversely related on the control day (r(2) = -.53, p < .05) but not with acarbose (r(2) = .03, p = .70). We conclude that in healthy older participants receiving ID sucrose, (a) acarbose markedly attenuates the hypotensive response by slowing carbohydrate absorption and attenuating the rise in splanchnic blood flow and (b) the fall in BP is related to the concomitant increase in SMA flow.

  6. Atlas of computerized blood flow analysis in bone disease.

    PubMed

    Gandsman, E J; Deutsch, S D; Tyson, I B

    1983-11-01

    The role of computerized blood flow analysis in routine bone scanning is reviewed. Cases illustrating the technique include proven diagnoses of toxic synovitis, Legg-Perthes disease, arthritis, avascular necrosis of the hip, fractures, benign and malignant tumors, Paget's disease, cellulitis, osteomyelitis, and shin splints. Several examples also show the use of the technique in monitoring treatment. The use of quantitative data from the blood flow, bone uptake phase, and static images suggests specific diagnostic patterns for each of the diseases presented in this atlas. Thus, this technique enables increased accuracy in the interpretation of the radionuclide bone scan.

  7. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

    PubMed

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-05-29

    This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development.

    PubMed

    Constantino, Larissa; Galant, Letícia Selinger; Vuolo, Francieli; Guarido, Karla Lorena; Kist, Luiza Wilges; de Oliveira, Giovanna Medeiros Tavares; Pasquali, Matheus Augusto de Bittencourt; de Souza, Cláudio Teodoro; da Silva-Santos, José Eduardo; Bogo, Maurício Reis; Moreira, José Cláudio Fonseca; Ritter, Cristiane; Dal-Pizzol, Felipe

    2017-12-01

    Extracellular superoxide dismutase (ECSOD) protects nitric oxide (NO) bioavailability by decreasing superoxide levels and preventing peroxynitrite generation, which is important in maintaining renal blood flow and in preventing acute kidney injury. However, the profile of ECSOD expression after sepsis is not fully understood. Therefore, we intended to evaluate the content and gene expression of superoxide dismutase (SOD) isoforms in the renal artery and their relation to renal blood flow. Sepsis was induced in Wistar rats by caecal ligation and perforation. Several times after sepsis induction, renal blood flow (12, 24 and 48 h); the renal arterial content of SOD isoforms, nitrotyrosine, endothelial and inducible nitric oxide synthase (e-NOS and i-NOS), and phosphorylated vasodilator-stimulated phosphoprotein (pVASP); and SOD activity (3, 6 and 12 h) were measured. The influence of a SOD inhibitor was also evaluated. An increase in ECSOD content was associated with decreased 3-nitrotyrosine levels. These events were associated with an increase in pVASP content and maintenance of renal blood flow. Moreover, previous treatment with a SOD inhibitor increased nitrotyrosine content and reduced renal blood flow. ECSOD appears to have a major role in decreasing peroxynitrite formation in the renal artery during the early stages of sepsis development, and its application can be important in renal blood flow control and maintenance during septic insult.

  9. Resting cerebral blood flow, attention, and aging.

    PubMed

    Bertsch, Katja; Hagemann, Dirk; Hermes, Michael; Walter, Christof; Khan, Robina; Naumann, Ewald

    2009-04-24

    Aging is accompanied by a decline of fluid cognitive functions, e.g., a slowing of information processing, working memory, and division of attention. This is at least partly due to structural and functional changes in the aging brain. Although a decrement of resting cerebral blood flow (CBF) has been positively associated with cognitive functions in patients with brain diseases, studies with healthy participants have revealed inconsistent results. Therefore, we investigated the relation between resting cerebral blood flow and cognitive functions (tonic and phasic alertness, selective and divided attention) in two samples of healthy young and older participants. We found higher resting CBF and better cognitive performances in the young than in the older sample. In addition, resting CBF was inversely correlated with selective attention in the young and with tonic alertness in the elderly participants. This finding is discussed with regard to the neural efficiency hypothesis of human intelligence.

  10. Dopaminergic modulation of the voltage-gated sodium current in the cochlear afferent neurons of the rat.

    PubMed

    Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario

    2015-01-01

    The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.

  11. Cochlear Implantation after Bilateral Transverse Temporal Bone Fractures

    PubMed Central

    Shin, Jong-Heon; Park, SooChan; Baek, Sam-Hyun

    2008-01-01

    Patients deafened by a severe head injury are rarely encountered. We report a case of a 65-yr-old man with bilateral transverse temporal bone fractures due to head injury. He underwent cochlear implant and achieved a satisfactory auditory rehabilitation. Imaging studies of temporal bone before performing a cochlear implantation provide important information on a patient with bilateral temporal bone fractures. Cochlear implantations with careful planning in such a patient may be a very effective method for aural rehabilitation. PMID:19434252

  12. Tinnitus after Simultaneous and Sequential Bilateral Cochlear Implantation.

    PubMed

    Ramakers, Geerte G J; Kraaijenga, Véronique J C; Smulders, Yvette E; van Zon, Alice; Stegeman, Inge; Stokroos, Robert J; Free, Rolien H; Frijns, Johan H M; Huinck, Wendy J; Van Zanten, Gijsbert A; Grolman, Wilko

    2017-01-01

    There is an ongoing global discussion on whether or not bilateral cochlear implantation should be standard care for bilateral deafness. Contrary to unilateral cochlear implantation, however, little is known about the effect of bilateral cochlear implantation on tinnitus. To investigate tinnitus outcomes 1 year after bilateral cochlear implantation. Secondarily, to compare tinnitus outcomes between simultaneous and sequential bilateral cochlear implantation and to investigate long-term follow-up (3 years). This study is a secondary analysis as part of a multicenter randomized controlled trial. Thirty-eight postlingually deafened adults were included in the original trial, in which the presence of tinnitus was not an inclusion criterion. All participants received cochlear implants (CIs) because of profound hearing loss. Nineteen participants received bilateral CIs simultaneously and 19 participants received bilateral CIs sequentially with an inter-implant interval of 2 years. The prevalence and severity of tinnitus before and after simultaneous and sequential bilateral cochlear implantation were measured preoperatively and each year after implantation with the Tinnitus Handicap Inventory (THI) and Tinnitus Questionnaire (TQ). The prevalence of preoperative tinnitus was 42% (16/38). One year after bilateral implantation, there was a median difference of -8 (inter-quartile range (IQR): -28 to 4) in THI score and -9 (IQR: -17 to -9) in TQ score in the participants with preoperative tinnitus. Induction of tinnitus occurred in five participants, all in the simultaneous group, in the year after bilateral implantation. Although the preoperative and also the postoperative median THI and TQ scores were higher in the simultaneous group, the median difference scores were equal in both groups. In the simultaneous group, tinnitus scores fluctuated in the 3 years after implantation. In the sequential group, four patients had an additional benefit of the second CI: a total

  13. The development of the Nucleus Freedom Cochlear implant system.

    PubMed

    Patrick, James F; Busby, Peter A; Gibson, Peter J

    2006-12-01

    Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.

  14. The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome.

    PubMed

    Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2016-01-01

    Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome.

  15. The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome

    PubMed Central

    Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2016-01-01

    Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome. PMID:27376080

  16. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    PubMed Central

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  17. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.

    PubMed

    Chen, Jie; Lu, Xi-Yun; Wang, Wen

    2006-01-01

    Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.

  18. Pulpal blood flow recorded from exposed dentine with a laser Doppler flow meter using red or infrared light.

    PubMed

    Kijsamanmith, Kanittha; Vongsavan, Noppakun; Matthews, Bruce

    2018-03-01

    To determine the percentage of the blood flow signal that is derived from dental pulp when recording from exposed dentine in a human premolar. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-33 yr.) with a laser Doppler flow meter (Periflux 4001) using either a red (635 nm) or an infrared (780 nm) laser. After exposing dentine above the buccal pulpal horn (cavity diam. 1.6 mm, depth 3 mm) and isolating the crown with opaque rubber dam, blood flow was recorded alternately with infrared or red light from the exposed dentine under four conditions: before and after injecting local anaesthetic (3% Mepivacaine without vasoconstrictor) (LA) over the apex of the root of the tooth; after exposing the pulp by cutting a buccal, class V cavity in the tooth; and after sectioning the coronal pulp transversely through the exposure. There was no significant change in mean blood flow recorded with either light source when the tooth was anaesthetized or when the pulp was exposed. After the pulp had been sectioned, the blood flow recorded with infrared light fell by 67.8% and with red light, by 68.4%. The difference between these effects was not significant. When recording blood flow from exposed coronal dentine with either infrared or red light in a tooth isolated with opaque rubber dam, about 68% to the signal was contributed by the pulp. The signal:noise ratio was better with infrared than red light, and when recording from dentine than enamel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  20. Skeletal muscle contractions uncoupled from gravitational loading directly increase cortical bone blood flow rates in vivo.

    PubMed

    Caulkins, Carrie; Ebramzadeh, Edward; Winet, Howard

    2009-05-01

    The direct and indirect effects of muscle contraction on bone microcirculation and fluid flow are neither well documented nor explained. However, skeletal muscle contractions may affect the acquisition and maintenance of bone via stimulation of bone circulatory and interstitial fluid flow parameters. The purposes of this study were to assess the effects of transcutaneous electrical neuromuscular stimulation (TENS)-induced muscle contractions on cortical bone blood flow and bone mineral content, and to demonstrate that alterations in blood flow could occur independently of mechanical loading and systemic circulatory mechanisms. Bone chamber implants were used in a rabbit model to observe real-time blood flow rates and TENS-induced muscle contractions. Video recording of fluorescent microspheres injected into the blood circulation was used to calculate changes in cortical blood flow rates. TENS-induced repetitive muscle contractions uncoupled from mechanical loading instantaneously increased cortical microcirculatory flow, directly increased bone blood flow rates by 130%, and significantly increased bone mineral content over 7 weeks. Heart rates and blood pressure did not significantly increase due to TENS treatment. Our findings suggest that muscle contraction therapies have potential clinical applications for improving blood flow to cortical bone in the appendicular skeleton. Copyright 2008 Orthopaedic Research Society

  1. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  2. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  3. Outcomes of cochlear implantation in deaf children of deaf parents: comparative study.

    PubMed

    Hassanzadeh, S

    2012-10-01

    This retrospective study compared the cochlear implantation outcomes of first- and second-generation deaf children. The study group consisted of seven deaf, cochlear-implanted children with deaf parents. An equal number of deaf children with normal-hearing parents were selected by matched sampling as a reference group. Participants were matched based on onset and severity of deafness, duration of deafness, age at cochlear implantation, duration of cochlear implantation, gender, and cochlear implant model. We used the Persian Auditory Perception Test for the Hearing Impaired, the Speech Intelligibility Rating scale, and the Sentence Imitation Test, in order to measure participants' speech perception, speech production and language development, respectively. Both groups of children showed auditory and speech development. However, the second-generation deaf children (i.e. deaf children of deaf parents) exceeded the cochlear implantation performance of the deaf children with hearing parents. This study confirms that second-generation deaf children exceed deaf children of hearing parents in terms of cochlear implantation performance. Encouraging deaf children to communicate in sign language from a very early age, before cochlear implantation, appears to improve their ability to learn spoken language after cochlear implantation.

  4. Prevention and management of cochlear implant infections.

    PubMed

    Gluth, Michael B; Singh, Rajesh; Atlas, Marcus D

    2011-11-01

    Understanding the issues of infection related to an implantable medical device is crucial to all cochlear implant teams. Furthermore, given the risk of central nervous system complications and the relatively high quantity of underlying resource investment associated with cochlear implantation, the stakes of infection are high. The optimal strategies to prevent and manage such infections are still evolving as good-quality prospective data to guide such management decisions are not yet abundant within the medical literature and many recommendations are based on retrospective reviews or anecdotal evidence. We will outline a general strategy to deal with cochlear implant-related infection based on both the authors' experience and the published literature.

  5. Modulation of radial blood flow during Braille character discrimination task.

    PubMed

    Murata, Jun; Matsukawa, K; Komine, H; Tsuchimochi, H

    2012-03-01

    Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.

  6. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-10-05

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise.

  7. Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs

    PubMed Central

    Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien

    2017-01-01

    Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID

  8. Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke

    PubMed Central

    Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R

    2010-01-01

    Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321

  9. Cerebral blood flow is reduced in patients with sepsis syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, themore » specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.« less

  10. Gain and frequency tuning within the mouse cochlear apex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided bymore » basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.« less

  11. Effect of antiorthostatic bed rest on hepatic blood flow in man.

    PubMed

    Putcha, L; Cintron, N M; Vanderploeg, J M; Chen, Y; Habis, J; Adler, J

    1988-04-01

    Physiological changes that occur during exposure to weightlessness may induce alterations in blood flow to the liver. Estimation of hepatic blood flow (HBF) using ground-based weightlessness simulation models may provide insight into functional changes of the liver in crewmembers during flight. In the present study HBF, indirectly estimated by indocyanine green (ICG) clearance, is compared in 10 subjects during the normal ambulatory condition and antiorthostatic (-6 degrees) bed rest. Plasma clearance of ICG was determined following intravenous administration of a 0.5-mg.kg-1 dose of ICG to each subject on two separate occasions, once after being seated for 1 h and once after 24 h of head-down bed rest. After 24 h of head-down bed rest, hepatic blood flow did not change significantly from the respective control value.

  12. Nephron blood flow dynamics measured by laser speckle contrast imaging

    PubMed Central

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025

  13. Correction for partial volume effect in PET blood flow images

    NASA Astrophysics Data System (ADS)

    Gage, Howard D.; Fahey, Fredrick H.; Santago, Peter, II; Harkness, Beth A.; Keyes, J. W.

    1996-04-01

    Current positron emission tomography techniques for the measurement of cerebral blood flow assume that voxels represent pure material regions. In this work, a method is presented which utilizes anatomical information from a high resolution modality such as MRI in conjunction with a multicompartment extension of the Kety model to obtain intravoxel, tissue specific blood flow values. In order to evaluate the proposed method, noisy time activity curves (TACs) were simulated representing different combinations of gray matter, white matter and CSF, and ratios of gray to white matter blood flow. In all experiments it was assumed that registered MR data supplied the number of materials and the fraction of each present. For each TAC, three experiments were run. In the first it was assumed that the fraction of each material determined by MRI was correct, and, in the second two, that the value was either too high or too low. Using the tree annealing method, material flows were determined which gave the best fit of the model to the simulated TAC data. The results indicate that the accuracy of the method is approximately linearly related to the error in material fraction estimated for a voxel.

  14. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    PubMed

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P < 0.001), and reabsorbed sodium was 37% that of controls (6.9 vs 19.1 mol/24 h; P < 0.001). Single-kidney patient renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P < 0.001). Glomerular filtration fraction was 9% in patients and 18% in controls (P < 0.001). Patients and controls had similar CR2* (13.4 vs 13.3 s(-1)) and medullary MR2* (26.4 vs 26.5 s(-1)) values. Linear regression analysis demonstrated no associations between R2* and renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons

  15. Influence of cold-water immersion on limb blood flow after resistance exercise.

    PubMed

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P < .001). Reductions in rectal temperature were similar (0.2-0.4°C) in all three trials (P = .69). Femoral artery conductance was similar after immersion in both cooling conditions, with both conditions significantly lower (55%) than the control post-immersion (P < .01). Similarly, there was greater thigh and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling conditions, relative to the control (P < .01), with no difference between cooling conditions. These findings suggest that cold and cool water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  16. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  17. Carotid blood flow changes with behavioral states in the late gestation llama fetus in utero.

    PubMed

    Blanco, C E; Giussani, D A; Riquelme, R A; Hanson, M A; Llanos, A J

    1997-12-19

    This study tested the hypothesis that in the llama fetus changes in cerebral blood flow are closely associated with changes in cerebral oxidative metabolism such as occur during transitions between electrocortical states. For the first time reported in any species, instantaneous changes in common carotid blood flow, employed as a continuous index of cerebrovascular perfusion, were related to instantaneous changes in electrocortical activity. Three late gestation fetal llamas were surgically prepared under general anesthesia with vascular catheters, a tracheal and amniotic catheter, and with electrodes implanted to monitor the fetal electrocorticogram (ECoG). In addition, Transonic flow probes were placed around a common carotid artery and a femoral artery. At least 4 days after surgery fetal arterial blood, amniotic and tracheal pressures, carotid and femoral blood flows and the fetal ECoG were recorded continuously. Our results suggest a close association between increases in common carotid blood flow and low voltage ECoG in the llama fetus. Close coupling between instantaneous changes in carotid blood flow and electrocortical states together with the lack of an increase in brain blood flow without increased cerebral oxygen extraction during hypoxemia in the llama fetus supports a fall in cerebral oxidative metabolism in this species during hypoxemic episodes.

  18. Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow

    PubMed Central

    Ha, Hojin; Ziegler, Magnus; Welander, Martin; Bjarnegård, Niclas; Carlhäll, Carl-Johan; Lindenberger, Marcus; Länne, Toste; Ebbers, Tino; Dyverfeldt, Petter

    2018-01-01

    Turbulent blood flow is implicated in the pathogenesis of several aortic diseases but the extent and degree of turbulent blood flow in the normal aorta is unknown. We aimed to quantify the extent and degree of turbulece in the normal aorta and to assess whether age impacts the degree of turbulence. 22 young normal males (23.7 ± 3.0 y.o.) and 20 old normal males (70.9 ± 3.5 y.o.) were examined using four dimensional flow magnetic resonance imaging (4D Flow MRI) to quantify the turbulent kinetic energy (TKE), a measure of the intensity of turbulence, in the aorta. All healthy subjects developed turbulent flow in the aorta, with total TKE of 3–19 mJ. The overall degree of turbulence in the entire aorta was similar between the groups, although the old subjects had about 73% more total TKE in the ascending aorta compared to the young subjects (young = 3.7 ± 1.8 mJ, old = 6.4 ± 2.4 mJ, p < 0.001). This increase in ascending aorta TKE in old subjects was associated with age-related dilation of the ascending aorta which increases the volume available for turbulence development. Conversely, age-related dilation of the descending and abdominal aorta decreased the average flow velocity and suppressed the development of turbulence. In conclusion, turbulent blood flow develops in the aorta of normal subjects and is impacted by age-related geometric changes. Non-invasive assessment enables the determination of normal levels of turbulent flow in the aorta which is a prerequisite for understanding the role of turbulence in the pathophysiology of cardiovascular disease. PMID:29422871

  19. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    PubMed

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  20. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement.

    PubMed

    Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2016-03-01

    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow.

  1. Regulation of skeletal muscle blood flow during exercise in ageing humans

    PubMed Central

    Hearon, Christopher M.

    2015-01-01

    Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887

  2. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  3. [Emotional response to music by postlingually-deafened adult cochlear implant users].

    PubMed

    Wang, Shuo; Dong, Ruijuan; Zhou, Yun; Li, Jing; Qi, Beier; Liu, Bo

    2012-10-01

    To assess the emotional response to music by postlingually-deafened adult cochlear implant users. Munich music questionnaire (MUMU) was used to match the music experience and the motivation of use of music between 12 normal-hearing and 12 cochlear implant subjects. Emotion rating test in Musical Sounds in Cochlear Implants (MuSIC) test battery was used to assess the emotion perception ability for both normal-hearing and cochlear implant subjects. A total of 15 pieces of music phases were used. Responses were given by selecting the rating scales from 1 to 10. "1" represents "very sad" feeling, and "10" represents "very happy feeling. In comparison with normal-hearing subjects, 12 cochlear implant subjects made less active use of music for emotional purpose. The emotion ratings for cochlear implant subjects were similar to normal-hearing subjects, but with large variability. Post-lingually deafened cochlear implant subjects on average performed similarly in emotion rating tasks relative to normal-hearing subjects, but their active use of music for emotional purpose was obviously less than normal-hearing subjects.

  4. A novel, microscope based, non-invasive laser Doppler flowmeter for choroidal blood flow assessment.

    PubMed

    Strohmaier, C; Werkmeister, R M; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, J W; Grabner, G; Reitsamer, H A

    2011-06-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x∗1.01-12.35 P.U., p < 0.001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluating ocular blood flow

    PubMed Central

    Maram, Jyotsna; Srinivas, Sowmya; Sadda, Srinivas R

    2017-01-01

    Studies have shown that vascular impairment plays an important role in the etiology and pathogenesis of various ocular diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal venous occlusive disease. Thus, qualitative and quantitative assessment of ocular blood flow (BF) is a topic of interest for early disease detection, diagnosis, and management. Owing to the rapid improvement in technology, there are several invasive and noninvasive techniques available for evaluating ocular BF, with each of these techniques having their own limitations and advantages. This article reviews these important techniques, with a particular focus on Doppler Fourier domain optical coherence tomography (OCT) and OCT-angiography. PMID:28573987

  6. Brain blood flow and cardiovascular responses to hot flashes in postmenopausal women

    PubMed Central

    Lucas, Rebekah A. I.; Ganio, Matthew S.; Pearson, James; Crandall, Craig G.

    2012-01-01

    Objective This study tested two related hypotheses: 1) that brain blood flow is reduced during the postmenopausal hot flash; and, 2) the magnitude of this reduction in brain blood flow is greater during hot flashes where blood pressure is reduced. Methods Eleven healthy, normotensive, postmenopausal women rested in a temperature-controlled laboratory (~25°C) for approximately 120 minutes while waiting for a hot flash to occur. The onset of a hot flash was objectively identified by an abrupt increase in sternal sweat rate (capacitance hygrometry). Middle cerebral artery blood velocity (MCAv, transcranial Doppler) and mean arterial pressure (Finometer®) were measured continuously. Each hot flash was divided into 8 equal segments and the segment with the largest reduction in MCAv and mean arterial pressure identified for each hot flash. Results Twenty-five hot flashes occurred during the experimental sessions (lasting 6.2 ± 2.8 min, 3 ± 1 hot flashes per participant). Seventy-six percent of hot flashes were accompanied by a clear reduction (greater than 5%) in brain blood flow. For all hot flashes, the average maximum decrease in MCAv was 12 ± 9% (7 ± 6 cm.s−1). This value did not correlate with corresponding changes in mean arterial pressure (R=0.36). Conclusion These findings demonstrate that hot flashes are often accompanied by clear reductions in brain blood flow that do not correspond with acute reductions in mean arterial blood pressure. PMID:23435027

  7. Evaluation of (/sup 18/F)-4-fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sako, K.; Diksic, M.; Kato, A.

    This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less

  8. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger's disease.

    PubMed

    Sharifi, Alireza; Charjouei Moghadam, Mohammad

    2016-01-01

    Buerger's disease is an occlusive arterial disease that occurs mainly in medium and small vessels. This disease is associated with Tobacco usage. The existence of corkscrew collateral is one of the established characteristics of the Buerger's disease. In this study, the computational fluid dynamics (CFD) simulation of blood flow within the corkscrew artery of the Buerger's disease is conducted. The geometry of the artery is constructed based on the actual corkscrew artery of a patient diagnosed with the Buerger's disease. The blood properties are the same as the actual blood properties of the patient. The blood flow rate is taken from the available experimental data in the literature. The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered.

  9. Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease

    PubMed Central

    Kur, Joanna; Newman, Eric A.; Chan-Ling, Tailoi

    2012-01-01

    We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored. PMID:22580107

  10. Differential visceral blood flow in the hyperdynamic circulation of patients with liver cirrhosis.

    PubMed

    McAvoy, N C; Semple, S; Richards, J M J; Robson, A J; Patel, D; Jardine, A G M; Leyland, K; Cooper, A S; Newby, D E; Hayes, P C

    2016-05-01

    With advancing liver disease and the development of portal hypertension, there are major alterations in somatic and visceral blood flow. Using phase-contrast magnetic resonance angiography, we characterised alterations in blood flow within the hepatic, splanchnic and extra-splanchnic circulations of patients with established liver cirrhosis. To compare blood flow in splanchnic and extra-splanchnic circulations in patients with varying degrees of cirrhosis and healthy controls. In a single-centre prospective study, 21 healthy volunteers and 19 patients with established liver disease (Child's stage B and C) underwent electrocardiogram-gated phase-contrast-enhanced 3T magnetic resonance angiography of the aorta, hepatic artery, portal vein, superior mesenteric artery, and the renal and common carotid arteries. In comparison to healthy volunteers, resting blood flow in the descending thoracic aorta was increased by 43% in patients with liver disease (4.31 ± 1.47 vs. 3.31 ± 0.80 L/min, P = 0.011). While portal vein flow was similar (0.83 ± 0.38 vs. 0.77 ± 0.35 L/min, P = 0.649), hepatic artery flow doubled (0.50 ± 0.46 vs. 0.25 ± 0.15 L/min, P = 0.021) and consequently total liver blood flow increased by 30% (1.33 ± 0.84 vs. 1.027 ± 0.5 L/min, P = 0.043). In patients with liver disease, superior mesenteric artery flow was threefold higher (0.65 ± 0.35 vs. 0.22 ± 0.13 L/min, P < 0.001), while total renal blood flow was reduced by 40% (0.37 ± 0.14 vs. 0.62 ± 0.22 L/min, P < 0.001) and total carotid blood flow unchanged (0.62 ± 0.20 vs. 0.65 ± 0.13 L/min, P = 0.315). Rather than a generalised systemic hyperdynamic circulation, liver disease is associated with dysregulated splanchnic vasodilatation and portosystemic shunting that, while inducing a high cardiac output, causes compensatory extra-splanchnic vasoconstriction - the 'splanchnic steal' phenomenon. These circulatory disturbances may underlie many of the manifestations of advanced liver disease.

  11. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    PubMed

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p<0.05. Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia). After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that

  12. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans

    PubMed Central

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros

    2010-01-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965

  13. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    NASA Astrophysics Data System (ADS)

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

  14. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    PubMed Central

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.

    2013-01-01

    Abstract. Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo. PMID:23407909

  15. United Kingdom national paediatric bilateral cochlear implant audit: preliminary results.

    PubMed

    Cullington, Helen; Bele, Devyanee; Brinton, Julie; Lutman, Mark

    2013-11-01

    Prior to 2009, United Kingdom (UK) public funding was mainly only available for children to receive unilateral cochlear implants. In 2009, the National Institute for Health and Care Excellence published guidance for cochlear implantation following their review. According to these guidelines, all suitable children are eligible to have simultaneous bilateral cochlear implants or a sequential bilateral cochlear implant if they had received the first before the guidelines were published. Fifteen UK cochlear implant centres formed a consortium to carry out a multi-centre audit. The audit involves collecting data from simultaneously and sequentially implanted children at four intervals: before bilateral cochlear implants or before the sequential implant, 1, 2, and 3 years after bilateral implants. The measures include localization, speech recognition in quiet and background noise, speech production, listening, vocabulary, parental perception, quality of life, and surgical data including complications. The audit has now passed the 2-year point, and data have been received on 850 children. This article provides a first view of some data received up until March 2012.

  16. Laser Speckle Contrast Imaging of Cerebral Blood Flow

    PubMed Central

    Dunn, Andrew K.

    2011-01-01

    Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging. PMID:22109805

  17. Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin Anderson

    Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the

  18. Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease

    PubMed Central

    Gorbach, Alexander M.; Ackerman, Hans C.; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F.; Cannon, Richard O.; Kato, Gregory J.

    2012-01-01

    Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh), an endothelium-independent vasodilator sodium nitroprusside (SNP), and a NOS inhibitor L-NMMA. Skin temperature measured by IR imaging increased in a dose-dependent manner to graded infusions of ACh (+1.1° C, p < 0.0001) and SNP (+0.9° C, p < 0.0001), and correlated with dose-dependent increases in forearm blood flow (ACh: +19.9 mL/min/100mL, p < 0.0001; rs = 0.57, p = 0.003; SNP: +8.6 mL/min/100mL, p < 0.0001; r = 0.70, p = 0.0002). Although IR measurement of skin temperature accurately reflected agonist-induced increases in blood flow, it was less sensitive to decreases in blood flow caused by NOS inhibition. Baseline forearm skin temperature measured by IR imaging correlated significantly with baseline forearm blood flow (31.8±0.2° C, 6.0±0.4 mL/min/100mL; r = 0.58, p = 0.003), and appeared to represent a novel biomarker of vascular function. It predicted a blunted blood flow response to SNP (r = −0.61, p = 0.002), and was independently associated with a marker of pulmonary artery pressure, as well as hemoglobin level, diastolic blood pressure, homocysteine, and cholesterol (R2 = 0.84, p < 0.0001 for the model). IR imaging of agonist-stimulated cutaneous blood flow represents a less cumbersome alternative to plethysmography methodology. Measurement of baseline skin temperature by IR imaging may be a useful new marker of vascular risk in adults with SCD. PMID:22784510

  19. Surgical Management of the Pediatric Cochlear Implant Patient.

    ERIC Educational Resources Information Center

    Cohen, Seth M.; Haynes, David S.

    2003-01-01

    This article discusses the surgical management of children receiving cochlear implants. It identifies preoperative considerations to select patients likely to benefit, contraindications, some new surgical techniques, complications, special considerations (otitis media, meningitis, head growth, inner ear malformations, and cochlear obstruction).…

  20. Shy-Drager syndrome. Effect of fludrocortisone and L-threo-3,4-dihydroxyphenylserine on the blood pressure and regional cerebral blood flow.

    PubMed Central

    Matsubara, S; Sawa, Y; Yokoji, H; Takamori, M

    1990-01-01

    In nine cases of Shy-Drager syndrome, the changes in blood pressure and cerebral blood flow on sitting up from a supine position were studied. The influence of fludrocortisone, a synthetic mineralocorticoid, and L-threo-3,4-dihydroxyphenylserine (DOPS), a precursor of norepinephrine, on these changes was examined. On sitting up, the regional cerebral blood flow (rCBF) measured by Xe133 inhalation showed a tendency to decrease. Fludrocortisone reduced the fall of the mean blood pressure significantly. DOPS reduced the fall of both the diastolic blood pressure and rCBF significantly. PMID:2283531

  1. [Impact of low level laser therapy on skin blood flow].

    PubMed

    Podogrodzki, Jacek; Lebiedowski, Michał; Szalecki, Mieczysław; Kępa, Izabela; Syczewska, Małgorzata; Jóźwiak, Sergiusz

    2016-01-01

    The aim of this study was to objectively assess the impact of low level laser therapy on skin blood flow, in terms of two of its components - the flow and trophic and therapeutic effect. Nineteen children aged 3-15 years have been included in the study (seven boys and twelve girls) with a diagnosis of meningomyelocele in the lumbosacral area. In nine of them (47.3%) bedsores were found in the area of paresis location. Studies of skin blood flow were performed using xenon 133 clearance in the Department of Nuclear Medicine of the Children's Memorial Health Institute. Xenon 133 radioisotope in saline with intrinsic activity 74 MBq in 1 ml was used as the marker. Laser application was performed immediately prior to the application of the marker with a tag shower 60 mW probe, emitting 680 nm red light with surface power density of 0.5 J/cm2. Within the tested children the laser application resulted in a significantly increased skin blood flow. Average results in tested group before LLLT are 7.47 ml/100 g/min, after LLLT 11.08 ml/100 g/min. 1. LLLT significantly increases the perfusion of the skin. 2. The effect of the increased perfusion as the result of laserotherapy in the most evident in children with skin trophic abnormalities. 3. Results confirmed by clinical observation indicate, that perfusion increase in relation to LLLT takes place with participation of trophic component of skin blood circulation.

  2. Myocardial blood flow: Roentgen videodensitometry techniques

    NASA Technical Reports Server (NTRS)

    Smith, H. C.; Robb, R. A.; Wood, E. H.

    1975-01-01

    The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.

  3. [THE STATE OF HEPATIC AND SPLANCHNIC BLOOD FLOW IN VARIOUS TYPES OF COMPLICATED PANCREATIC PSEUDOCYSTS].

    PubMed

    Kryvoruchko, I A; Goncharova, N M; Andreyeshchev, S A; Yavorska, T P

    2015-05-01

    Investigations were conducted in 37 patients, suffering complicated pancreatic pseudocysts. In accordance to data of ultrasound Doppler flowmetry for the blood flow along portal vein, a. hepatis communis, a. mesenterica superior in complicated pancreatic pseudocysts compensatory--adaptive reactions on level of hepatic--spanchnic blood flow are directed towards restriction of the blood inflow through the portal vein system. This is accompanied by the common peripheral vascular resistence raising in basin of a. mesenterica superior, which have depended upon the patients' state severity, caused by reduction of the volume blood flow in a certan vascular collector. The oxygen debt of the liver in these patients is compensated by the volume blood flow enhancement along a. hepatis communis.

  4. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans

    PubMed Central

    Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-01-01

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556

  5. Vaginal blood flow after radical hysterectomy with and without nerve sparing. A preliminary report.

    PubMed

    Pieterse, Q D; Ter Kuile, M M; Deruiter, M C; Trimbos, J B M Z; Kenter, G G; Maas, C P

    2008-01-01

    Radical hysterectomy with pelvic lymphadenectomy (RHL) for cervical cancer causes damage to the autonomic nerves, which are responsible for increased vaginal blood flow during sexual arousal. The aim of the study of which we now report preliminary data was to determine whether a nerve-sparing technique leads to an objectively less disturbed vaginal blood flow response during sexual stimulation. Photoplethysmographic assessment of vaginal pulse amplitude (VPA) during sexual stimulation by erotic films was performed. Subjective sexual arousal was assessed after each stimulus. Thirteen women after conventional RHL, 10 women after nerve-sparing RHL, and 14 healthy premenopausal women participated. Data were collected between January and August 2006. The main outcome measure was the logarithmically transformed mean VPA. To detect statistically significant differences in mean VPA levels between the three groups, a univariate analysis of variance was used. Mean VPA differed between the three groups (P= 0.014). The conventional group had a lower vaginal blood flow response than the control group (P= 0.016), which tended also to be lower than that of the nerve-sparing group (P= 0.097). These differences were critically dependent on baseline vaginal blood flow differences between the groups. The conventional group follows a vaginal blood flow pattern similar to postmenopausal women. Conventional RHL is associated with an overall disturbed vaginal blood flow response compared with healthy controls. Because it is not observed to the same extent after nerve-sparing RHL, it seems that the nerve-sparing technique leads to a better overall vaginal blood flow caused by less denervation of the vagina.

  6. Endoscopical determination of gastric mucosal blood flow by the crossed thermocouple method.

    PubMed

    Hiramatsu, A; Watanabe, T; Okuhira, M; Uchiyama, S; Mizuno, T; Sameshima, Y

    1984-06-01

    A crossed thermocouple method in combination with endoscopy was applied to determine the blood flow rate of the human gastric mucosa. Determination was carried out with 11 healthy control subjects at 8 sites of the stomach. The blood flow rates at all sites in the corpus were found to be higher than those at the antrum. In subjects less than 50 years old the blood flow rate in the corpus was higher than in older subjects. These results were in agreed well with those obtained by the hydrogen gas clearance method, which is widely adopted clinically. The crossed thermocouple method is easily applicable to all sites in the gastric mucosa and the time required for the assay is very short. This method dose not require the inhalation of hydrogen gas which is necessary for the hydrogen gas clearance method and which is possibly harmful to humans. Although the values obtained by the crossed thermocouple method are relative to the value at a certain fixed site, this method will holds great potential for the determination of gastric mucosal blood flow rate.

  7. Direct numerical simulation of cellular-scale blood flow in microvascular networks

    NASA Astrophysics Data System (ADS)

    Balogh, Peter; Bagchi, Prosenjit

    2017-11-01

    A direct numerical simulation method is developed to study cellular-scale blood flow in physiologically realistic microvascular networks that are constructed in silico following published in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. The model resolves large deformation of individual red blood cells (RBC) flowing in such complex networks. The vascular walls and deformable interfaces of the RBCs are modeled using the immersed-boundary methods. Time-averaged hemodynamic quantities obtained from the simulations agree quite well with published in vivo data. Our simulations reveal that in several vessels the flow rates and pressure drops could be negatively correlated. The flow resistance and hematocrit are also found to be negatively correlated in some vessels. These observations suggest a deviation from the classical Poiseuille's law in such vessels. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that RBC jamming results in several orders of magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. Funded by NSF CBET 1604308.

  8. Retinal blood flow in type 1 diabetic patients with no or mild diabetic retinopathy during euglycemic clamp.

    PubMed

    Pemp, Berthold; Polska, Elzbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold

    2010-09-01

    To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. Total retinal blood flow was higher in diabetic patients (53 +/- 16 microl/min) than in healthy subjects (43 +/- 16 microl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 +/- 1.7 to 5.3 +/- 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 +/- 15 microl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy.

  9. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.

    PubMed

    Balogh, Peter; Bagchi, Prosenjit

    2017-12-19

    We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    NASA Technical Reports Server (NTRS)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  11. Rotating permanent magnet excitation for blood flow measurement.

    PubMed

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  12. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-07-01

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  13. Relationship between retinal blood flow and arterial oxygen.

    PubMed

    Cheng, Richard W; Yusof, Firdaus; Tsui, Edmund; Jong, Monica; Duffin, James; Flanagan, John G; Fisher, Joseph A; Hudson, Chris

    2016-02-01

    Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content

  14. Multimodal Pressure-Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-12-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.

  15. Effects of exercise and heat stress on regional blood flow in pregnant sheep.

    PubMed

    Bell, A W; Hales, J R; Fawcett, A A; King, R B

    1986-05-01

    Radioactive microspheres were used to measure cardiac output and blood flow to most major tissues, including those in the pregnant uterus, in late-pregnant ewes at rest and during treadmill exercise (approximately 3-fold increase in metabolic rate for 30 min) in thermoneutral (TN) (dry bulb temperature (Tdb) = 13 degrees C, wet bulb temperature (Twb) = 10 degrees C) and mildly hot (MH) (Tdb = 40 degrees C, Twb = 27 degrees C) environments. Exercise caused major increases in blood flow to respiratory muscles, nonrespiratory limb muscles, and adipose tissue, and flow was decreased to some gastrointestinal tissues, spleen, pancreas, and to placental and nonplacental tissues in the pregnant uterus. Heat exposure had relatively little effect on these exercise-induced changes, except that flow was further increased in the respiratory muscles. Results are compared with those of a similar study on nonpregnant sheep in which changes in muscle, skin, and visceral flows during exercise were attenuated by heat exposure. It is suggested that redistribution of blood flow from the pregnant uterus, which in resting ewes took 22% of cardiac output, is a significant buffer against the potentially deleterious effects of combined exercise and heat stress on blood flow to exercising muscles and thermoregulatory tissues.

  16. Effects of Nitroglycerin on Regional Myocardial Blood Flow in Coronary Artery Disease

    PubMed Central

    Horwitz, Lawrence D.; Gorlin, Richard; Taylor, Warren J.; Kemp, Harvey G.

    1971-01-01

    Regional myocardial blood flow before and after sublingual nitroglycerin was measured in 10 patients with coronary artery disease. During thoracotomy, 133Xe was injected directly into the subepicardium in diseased regions of the anterior left ventricular wall, and washout rates were recorded with a scintillation counter. All disappearance curves were closely approximated by two exponential decays analyzed as two parallel flow systems by the compartmental method. The appearance of a double exponential decay pattern in diseased regions suggests that the slow phase was associated with collateral blood flow, although nonhomogeneous myocardium-to-blood partition coefficients for xenon cannot be excluded. Nitroglycerin increased the rapid phase flow in 9 of 10 patients and the slow flow in 7 of 10 patients. Average flow increased in 9 of the 10 patients (P < 0.01). Mean rapid phase flow in the control state was 110 ml/100 g per min and after nitroglycerin increased to 132 ml/100 g per min (P < 0.01); slow phase flow increased from 12 ml/100 g per min to 15 ml/100 g per min (P < 0.05). It is concluded that, under these conditions, nitroglycerin improves perfusion in regions of diseased myocardium in patients with coronary artery disease. PMID:4999635

  17. [Antegrade diastolic blood flow and classic reflux in varicose dilatation of the intersaphenous vein].

    PubMed

    Shaidakov, E V; Rosukhovsky, D A; Grigoryan, A G; Bulatov, V L; Ilyukhin, E A

    2016-01-01

    In the intersaphenous vein (ISV) there may take place the so-called "antegrade" or "paradoxical" reflux. This type of blood flow is revealed in a series of patients during muscular diastole and is a link of the pathogenesis of varicose disease, but has, as distinct from the "classical" reflux, an antegrade direction. An incompetent saphenopopliteal junction (SPJ) is a source of the antegrade diastolic blood flow (ADBF) through the ISV. Descriptions of possible variants of impaired blood flow through the ISV are fragmentary and their interpretations are controversial. Prevalence and pathogenesis of these disorders impairments have not yet been studied. A cross-sectional study: over 4 years three centres examined a total of 1,413 patients diagnosed with class C2-C6 varicose veins according the CEAP classification. All patients underwent ultrasound duplex scanning of lower limb veins. The ADBF was determined as a unidirectional antegrade blood flow with the duration of not more than 0.5 second, observed after the crus was relived of compression (in the diastole). Of the patients included into the study who had no varicose veins on the contralateral extremity with the ISV being spotted we sequentially selected 40 subjects including them into the Study Group for the analysis of blood flow and the diameter of the ISV in health. Impairments of blood flow in the ISV were revealed in 61 (4.8%) of 1,265 extremities included into the study: the "classical" reflux in 9 (14.8%) limbs, ADBF was revealed in 37 (60.7%) limbs, a combination of the "classical" blood flow and ADBF - in 15 (24.6%) limbs. Hence, the patients were subdivided into three groups. Studying the nature of blood flow through the ISV in the control group on 40 lower limbs revealed no blood flow disorders. The mean ISV diameter amounted to 1.68 mm (ME=1 mm). The ISV diameter was considerably higher in all studied groups as compared with the control one (p<0.0001). The diameter of the ISV in its proximal portion

  18. A prospective study evaluating cochlear implant management skills: development and validation of the Cochlear Implant Management Skills survey.

    PubMed

    Bennett, R J; Jayakody, D M P; Eikelboom, R H; Taljaard, D S; Atlas, M D

    2016-02-01

    To investigate the ability of cochlear implant (CI) recipients to physically handle and care for their hearing implant device(s) and to identify factors that may influence skills. To assess device management skills, a clinical survey was developed and validated on a clinical cohort of CI recipients. Survey development and validation. A prospective convenience cohort design study. Specialist hearing implant clinic. Forty-nine post-lingually deafened, adult CI recipients, at least 12 months postoperative. Survey test-retest reliability, interobserver reliability and responsiveness. Correlations between management skills and participant demographic, audiometric, clinical outcomes and device factors. The Cochlear Implant Management Skills survey was developed, demonstrating high test-retest reliability (0.878), interobserver reliability (0.972) and responsiveness to intervention (skills training) [t(20) = -3.913, P = 0.001]. Cochlear Implant Management Skills survey scores range from 54.69% to 100% (mean: 83.45%, sd: 12.47). No associations were found between handling skills and participant factors. This is the first study to demonstrate a range in cochlear implant device handling skills in CI recipients and offers clinicians and researchers a tool to systematically and objectively identify shortcomings in CI recipients' device handling skills. © 2015 John Wiley & Sons Ltd.

  19. Cytomegalovirus-induced sensorineural hearing loss with persistent cochlear inflammation in neonatal mice.

    PubMed

    Schachtele, Scott J; Mutnal, Manohar B; Schleiss, Mark R; Lokensgard, James R

    2011-06-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL.

  20. Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma

    NASA Astrophysics Data System (ADS)

    Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.

    2017-02-01

    Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10-200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.