Science.gov

Sample records for codon usage comparison

  1. Modal Codon Usage: Assessing the Typical Codon Usage of a Genome

    PubMed Central

    Davis, James J.; Olsen, Gary J.

    2010-01-01

    Most genomes are heterogeneous in codon usage, so a codon usage study should start by defining the codon usage that is typical to the genome. Although this is commonly taken to be the genomewide average, we propose that the mode—the codon usage that matches the most genes—provides a more useful approximation of the typical codon usage of a genome. We provide a method for estimating the modal codon usage, which utilizes a continuous approximation to the number of matching genes and a simplex optimization. In a survey of bacterial and archaeal genomes, as many as 20% more of the genes in a given genome match the modal codon usage than the average codon usage. We use the mode to examine the evolution of the multireplicon genomes of Agrobacterium tumefaciens C58 and Borrelia burgdorferi B31. In A. tumefaciens, the circular and linear chromosomes are characterized by a common “chromosome-like” codon usage, whereas both plasmids share a distinct “plasmid-like” codon usage. In B. burgdorferi, in addition to different codon-usage biases on the leading and lagging strands of DNA replication found by McInerney (McInerney JO. 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA. 95:10698–10703), we also detect a codon-usage similarity between linear plasmid lp38 and the leading strand of the chromosome and a high similarity among the cp32 family of plasmids. PMID:20018979

  2. The effect of context on synonymous codon usage in genes with low codon usage bias.

    PubMed Central

    Bulmer, M

    1990-01-01

    The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes. PMID:2190183

  3. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

  4. Codon usage trend in mitochondrial CYB gene.

    PubMed

    Uddin, Arif; Chakraborty, Supriyo

    2016-07-15

    Here we reported the pattern of codon usage and the factors which influenced the codon usage pattern in mitochondrial cytochrome B (MT-CYB) gene among pisces, aves and mammals. The F1 axis of correspondence analysis showed highly significant positive correlation with nucleobases A3, C and C3 and significant negative correlation with T and T3 while F2 of correspondence analysis showed significant positive correlation with C and C3 and significant negative correlation with A and A3. From the neutrality plot, it was evident that the GC12 was influenced by mutation pressure and natural selection with a ratio of 0.10/0.90=0.11 in pisces, 0.024/0.976=0.0245 in aves and in mammals 0.215/0.785=0.273, which indicated that the role of natural selection was more than mutation pressure on structuring the bases at the first and second codon positions. Natural selection played the major role; but compositional constraint and mutation pressure also played a significant role in codon usage pattern. Analysis of codon usage pattern has contributed to the better understanding of the mechanism of distribution of codons and the evolution of MT-CYB gene. PMID:27063508

  5. Codon catalog usage and the genome hypothesis.

    PubMed Central

    Grantham, R; Gautier, C; Gouy, M; Mercier, R; Pavé, A

    1980-01-01

    Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis. PMID:6986610

  6. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  7. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  8. Characterization of Codon usage bias in the newly identified DEV UL18 gene

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, Codon usage bias (CUB) of DEV UL18 gene was analyzed, the results showed that codon usage bias in the DEV UL18 gene was strong bias towards the synonymous codons with A and T at the third codon position. Phylogenetic tree based on the amino acid sequences of the DEV UL18 gene and the 27 other herpesviruses revealed that UL18 gene of the DEV CHv strain and some fowl herpesviruses such as MeHV-1, GaHV-2 and GaHV-3 were clustered within a monophyletic clade and grouped within alphaherpesvirinae. The ENC-GC3S plot indicated that codon usage bias has strong species-specificity between DEV and 27 reference herpesviruses, and suggests that factors other than gene composition, such as translational selection leading to the codon usage variation among genes in different organisms, contribute to the codon usage among the different herpesviruses. Comparison of codon preferences of DEV UL18 gene with those of E. coli , yeast and humans showed that there were 20 codons showing distinct usage differences between DEV UL18 and yeast, 22 between DEV UL18 and humans, 23 between DEV UL18 and E.coli, which indicated the codon usage bias pattern in the DEV UL18 gene was similar to that of yeast. It is infered that the yeast expression system may be more suitable for the DEV UL18 expression.

  9. Codon Usage Domains over Bacterial Chromosomes

    PubMed Central

    Bailly-Bechet, Marc; Danchin, Antoine; Iqbal, Mudassar; Marsili, Matteo; Vergassola, Massimo

    2006-01-01

    The geography of codon bias distributions over prokaryotic genomes and its impact upon chromosomal organization are analyzed. To this aim, we introduce a clustering method based on information theory, specifically designed to cluster genes according to their codon usage and apply it to the coding sequences of Escherichia coli and Bacillus subtilis. One of the clusters identified in each of the organisms is found to be related to expression levels, as expected, but other groups feature an over-representation of genes belonging to different functional groups, namely horizontally transferred genes, motility, and intermediary metabolism. Furthermore, we show that genes with a similar bias tend to be close to each other on the chromosome and organized in coherent domains, more extended than operons, demonstrating a role of translation in structuring bacterial chromosomes. It is argued that a sizeable contribution to this effect comes from the dynamical compartimentalization induced by the recycling of tRNAs, leading to gene expression rates dependent on their genomic and expression context. PMID:16683018

  10. Genome-wide analysis of codon usage bias in Ebolavirus.

    PubMed

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. PMID:25445348

  11. Synonymous codon usage pattern in glycoprotein gene of rabies virus.

    PubMed

    Morla, Sudhir; Makhija, Aditi; Kumar, Sachin

    2016-06-10

    Rabies virus (RABV) is the causative agent of a fatal nervous system ailment. The disease is zoonotic and prevalent in many developing countries. The glycoprotein (G) of RABV is the major antigenic determinant of the virus and plays a pivotal role in its neurovirulence. Various aspects of 'G' protein biology have been explored, but the factors affecting the nucleotide choice and synonymous codon usage have never been reported. In the present study, we have analyzed the relative synonymous codon usage and effective number of codons (Nc) using 132 'G' protein genes of RABV. Corresponding analysis was used to calculate major trends in codon usage. The correlation between base composition and codon usage as well as the plot between Nc and GC3 suggest that mutational pressure is the major factor that influences the codon usage in the G gene of RABV. In addition, factors like aromaticity, aliphatic index and hydropathy have shown slight correlation suggesting that natural selection also contributes to the codon usage variations of the 'G' gene. In conclusion, codon usage bias in 'G' gene of RABV is mainly by mutational pressure and natural selection. PMID:26945626

  12. Analysis of amino acid and codon usage in Paramecium bursaria.

    PubMed

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-01

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. PMID:26341535

  13. [Codon usage bias in the straw mushroom Volvariella volvacea].

    PubMed

    Jiang, Wei; Lü, Beibei; He, Jianhua; Wang, Jinbin; Wu, Xiao; Wu, Guogan; Bao, Dapeng; Chen, Mingjie; Zhang, Jinsong; Tan, Qi; Tang, Xueming

    2014-09-01

    We analyzed the whole genome coding sequence of Volvariella volvacea to study the pattern utilization of codons by Codon W 1.4.2. As results, 24 optimal codons were identified. Moreover, the frequency of codons usage was calculated by CUSP program. We compared the frequency of codons usage of V. volvacea with other organisms including 6 modal value species (Homo sapiens, Saccharomys cerevisiae, Arabidopsis thalian, Mus musculus, Danio rerio and Drosophila melanogaster) and 4 edible fungi (Coprinopsis cinerea, Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus). We found that there were less differences in 3 edible fungi (excluding Pleurotus ostreatus) than 6 modal value species, comparing with the frequency of codons usage of V. volvacea. With software SPSS16.0, cluster analysis which showed differences in the size of codon bias, reflects the evolutionary relationships between species, which can be used as a reference of evolutionary relationships of species. This was the first time for analysis the codon preference among the whole coding sequences of edible fungi, serving as theoretical basis to apply genetic engineering of V. volvacea. PMID:25720157

  14. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage.

    PubMed

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  15. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  16. Codon Usage Bias and Determining Forces in Taenia solium Genome.

    PubMed

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-12-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome. PMID:26797435

  17. Codon Usage Bias and Determining Forces in Taenia solium Genome

    PubMed Central

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-01-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome. PMID:26797435

  18. A backtranslation method based on codon usage strategy.

    PubMed Central

    Pesole, G; Attimonelli, M; Liuni, S

    1988-01-01

    This study describes a method for the backtranslation of an aminoacidic sequence, an extremely useful tool for various experimental approaches. It involves two computer programs CLUSTER and BACKTR written in Fortran 77 running on a VAX/VMS computer. CLUSTER generates a reliable codon usage table through a cluster analysis, based on a chi 2-like distance between the sequences. BACKTR produces backtranslated sequences according to different options when use is made of the codon usage table obtained in addition to selecting the least ambiguous potential oligonucleotide probes within an aminoacidic sequence. The method was tested by applying it to 158 yeast genes. PMID:3281142

  19. Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA.

    PubMed Central

    Rothberg, P G; Wimmer, E

    1981-01-01

    The polio type 1 (Mahoney) RNA sequence (1) has been analyzed in terms of the distribution of its mononucleotides, dinucleotides and trinucleotides (codons). The distribution of adenosine in the sequence is nonuniform, being lower at the 5' end and higher at the 3' end. The dinucleotide CG is relatively rare and the dinucleotides UG and CA are relatively more common than expected. Codon usage is decidedly nonrandom. Codons containing CG are avoided and those ending in adenosine are favored. The asymmetric use of mononucleotides, dinucleotides and codons in polio RNA is unexplained at the present time although the lowered CG frequency may be the result of a DNA origin for polio RNA. PMID:6275352

  20. Gene classification using codon usage and support vector machines.

    PubMed

    Ma, Jianmin; Nguyen, Minh N; Rajapakse, Jagath C

    2009-01-01

    A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules. PMID:19179707

  1. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae.

    PubMed

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  2. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae

    PubMed Central

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  3. Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species

    PubMed Central

    2006-01-01

    Background Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. Results Codon usage similarity in Nematoda usually persists over the breadth of a genus but then rapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32% to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides (N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. Conclusion Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes. PMID:26271136

  4. Genome-Wide Analysis of Codon Usage and Influencing Factors in Chikungunya Viruses

    PubMed Central

    Tong, Yigang

    2014-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus of the family Togaviridae that is transmitted to humans by Aedes spp. mosquitoes. Its genome comprises a 12 kb single-strand positive-sense RNA. In the present study, we report the patterns of synonymous codon usage in 141 CHIKV genomes by calculating several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C and A-ended. A comparative analysis of RSCU between CHIKV and its hosts showed that codon usage patterns of CHIKV are a mixture of coincidence and antagonism. Similarity index analysis showed that the overall codon usage patterns of CHIKV have been strongly influenced by Pan troglodytes and Aedes albopictus during evolution. The overall codon usage bias was low in CHIKV genomes, as inferred from the analysis of effective number of codons (ENC) and codon adaptation index (CAI). Our data suggested that although mutation pressure dominates codon usage in CHIKV, patterns of codon usage in CHIKV are also under the influence of natural selection from its hosts and geography. To the best of our knowledge, this is first report describing codon usage analysis in CHIKV genomes. The findings from this study are expected to increase our understanding of factors involved in viral evolution, and fitness towards hosts and the environment. PMID:24595095

  5. Genome-wide analysis of synonymous codon usage in Huaiyangshan virus and other bunyaviruses.

    PubMed

    Luo, Xuelian; Liu, Qingzhen; Xiong, Yanwen; Ye, Changyun; Jin, Dong; Xu, Jianguo

    2015-12-01

    Huaiyangshan virus (HYSV) is a newly discovered bunyavirus, which is transmitted by ticks and causes hemorrhagic fever-like illness in human. The interplay of codon usage among viruses and their hosts is expected to affect viral survival, evasion from host's immune system and evolution. However, little is known about the codon usage in HYSV genome. In the present study, we analyzed synonymous codon usage in 120 available full-length HYSV sequences and performed a comparative analysis of synonymous codon usage patterns in HYSV and 42 other bunyaviruses. The relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C-ended. A comparative analysis of RSCU between HYSV and its hosts reflected that codon usage patterns of HYSV were mostly coincident with that of its hosts. Our data suggested that although mutational bias dominated codon usage, patterns of codon usage in HYSV were also under the influence of nature selection. Phylogenetic analysis based on RSCU values across different HYSV strains and 42 other bunyaviruses suggested that codon usage pattern in HYSV was the most similar with that of Uukuniemi virus among these bunyaviruses and that viruses belonged to Phlebovirus showed a diversity of codon usage patterns. PMID:26173646

  6. Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus.

    PubMed

    Liu, Yong-sheng; Zhou, Jian-hua; Chen, Hao-tai; Ma, Li-na; Ding, Yao-zhong; Wang, Meng; Zhang, Jie

    2010-08-01

    In this study, we calculated the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to implement a comparative analysis of codon usage pattern of open reading frames (ORFs) which belong to the two main genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). By analysis of synonymous codon usage values in each ORF of PRRSV, the optimal codons for most amino acids were all C or G-ended codons except GAU for Asp, CAU for His, UUU for Phe and CCU for Pro. The synonymous codon usage patterns in different ORFs of PRRSV were different and genetically conserved. Among them, ORF1a, ORF4, ORF5 and ORF7 could cluster these strains into the two main serotypes (EU and US). Due to mutational pressure, compositional constraint played an important role in shaping the synonymous codon usage pattern in different ORFs, and the synonymous codon usage diversity in ORFs was correlated with gene function. The degree of CUB for some particular amino acids under strong selection pressure probably served as a potential genetic marker for each ORF in PRRSV. However, gene length and translational selection in nature had no effect on the synonymous codon usage pattern in PRRSV. These conclusions could not only offer an insight into the synonymous codon usage pattern and differentiation of gene function, but also assist in understanding the discrepancy of evolution among ORFs in PRRSV. PMID:20438864

  7. Codon usage and protein sequence pattern dependency in different organisms: A Bioinformatics approach.

    PubMed

    Foroughmand-Araabi, Mohammad-Hadi; Goliaei, Bahram; Alishahi, Kasra; Sadeghi, Mehdi; Goliaei, Sama

    2015-04-01

    Although it is known that synonymous codons are not chosen randomly, the role of the codon usage in gene regulation is not clearly understood, yet. Researchers have investigated the relation between the codon usage and various properties, such as gene regulation, translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Recently, a universal codon usage based mechanism for gene regulation is proposed. We studied the role of protein sequence patterns on the codons usage by related genes. Considering a subsequence of a protein that matches to a pattern or motif, we showed that, parts of the genes, which are translated to this subsequence, use specific ratios of synonymous codons. Also, we built a multinomial logistic regression statistical model for codon usage, which considers the effect of patterns on codon usage. This model justifies the observed codon usage preference better than the classic organism dependent codon usage. Our results showed that the codon usage plays a role in controlling protein levels, for genes that participate in a specific biological function. This is the first time that this phenomenon is reported. PMID:25409941

  8. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    PubMed Central

    Whittle, C. A.; Sun, Y.; Johannesson, H.

    2011-01-01

    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862

  9. Bioinformatics analysis of codon usage patterns and influencing factors in Penaeus monodon nudivirus.

    PubMed

    Tyagi, Anuj; Singh, Niraj K; Gurtler, Volker; Karunasagar, Indrani

    2016-02-01

    Penaeus monodon nudivirus (PmNV) is one of the most important and most commonly reported shrimp viruses. In the present study, codon usage of PmNV was studied in detail. Based on effective number of codons (ENC) values, strong to low codon usage bias was observed in PmNV genes. Nucleotide composition-ENC correlation analysis and the GC3 versus ENC relationship indicated that compositional constraint has a major effect on codon usage of PmNV. At the whole-genome level, relative synonymous codon usage (RSCU) analysis showed almost complete antagonism between the codon usage pattern of PmNV and its host P. monodon. However, codon adaptive index (CAI) values indicated that forces of selective/translational constraints have been able to overcome this antagonism in some genes. PMID:26586333

  10. A detailed comparative analysis of codon usage bias in Zika virus.

    PubMed

    Cristina, Juan; Fajardo, Alvaro; Soñora, Martín; Moratorio, Gonzalo; Musto, Héctor

    2016-09-01

    Zika virus (ZIKV) is a member of the family Flaviviridae and its genome consists of a single-stranded positive sense RNA molecule with 10,794 nucleotides. Clinical manifestations of disease caused by ZIKV infection range from asymptomatic cases to an influenza-like syndrome. There is an increasing concern about the possible relation among microcephaly and ZIKV infection. To get insight into the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness, evasion from host's immune system and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of ZIKV. The overall codon usage among ZIKV strains is similar and slightly biased. Different codon preferences in ZIKV genes in relation to codon usage of human, Aedes aegypti and Aedes albopictus genes were found. Most of the highly frequent codons are A-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. G+C compositional constraint as well as dinucleotide composition also influence the codon usage of ZIKV. The results of these studies suggest that the emergence of ZIKV outside Africa, in the Pacific and the Americas may also be reflected in ZIKV codon usage. No significant differences were found in codon usage among strains isolated from microcephaly cases and the rest of strains from the Asian cluster enrolled in these studies. PMID:27449601

  11. Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes

    PubMed Central

    Xiang, Heng; Zhang, Ruizhi; Butler, Robert R.; Liu, Tie; Zhang, Li; Pombert, Jean-François; Zhou, Zeyang

    2015-01-01

    The sub-3 Mbp genomes from microsporidian species of the Encephalitozoon genus are the smallest known among eukaryotes and paragons of genomic reduction and compaction in parasites. However, their diminutive stature is not characteristic of all Microsporidia, whose genome sizes vary by an order of magnitude. This large variability suggests that different evolutionary forces are applied on the group as a whole. In this study, we have compared the codon usage bias (CUB) between eight taxonomically distinct microsporidian genomes: Encephalitozoon intestinalis, Encephalitozoon cuniculi, Spraguea lophii, Trachipleistophora hominis, Enterocytozoon bieneusi, Nematocida parisii, Nosema bombycis and Nosema ceranae. While the CUB was found to be weak in all eight Microsporidia, nearly all (98%) of the optimal codons in S. lophii, T. hominis, E. bieneusi, N. parisii, N. bombycis and N. ceranae are fond of A/U in third position whereas most (64.6%) optimal codons in the Encephalitozoon species E. intestinalis and E. cuniculi are biased towards G/C. Although nucleotide composition biases are likely the main factor driving the CUB in Microsporidia according to correlation analyses, directed mutational pressure also likely affects the CUB as suggested by ENc-plots, correspondence and neutrality analyses. Overall, the Encephalitozoon genomes were found to be markedly different from the other microsporidians and, despite being the first sequenced representatives of this lineage, are uncharacteristic of the group as a whole. The disparities observed cannot be attributed solely to differences in host specificity and we hypothesize that other forces are at play in the lineage leading to Encephalitozoon species. PMID:26057384

  12. Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes.

    PubMed

    Xiang, Heng; Zhang, Ruizhi; Butler, Robert R; Liu, Tie; Zhang, Li; Pombert, Jean-François; Zhou, Zeyang

    2015-01-01

    The sub-3 Mbp genomes from microsporidian species of the Encephalitozoon genus are the smallest known among eukaryotes and paragons of genomic reduction and compaction in parasites. However, their diminutive stature is not characteristic of all Microsporidia, whose genome sizes vary by an order of magnitude. This large variability suggests that different evolutionary forces are applied on the group as a whole. In this study, we have compared the codon usage bias (CUB) between eight taxonomically distinct microsporidian genomes: Encephalitozoon intestinalis, Encephalitozoon cuniculi, Spraguea lophii, Trachipleistophora hominis, Enterocytozoon bieneusi, Nematocida parisii, Nosema bombycis and Nosema ceranae. While the CUB was found to be weak in all eight Microsporidia, nearly all (98%) of the optimal codons in S. lophii, T. hominis, E. bieneusi, N. parisii, N. bombycis and N. ceranae are fond of A/U in third position whereas most (64.6%) optimal codons in the Encephalitozoon species E. intestinalis and E. cuniculi are biased towards G/C. Although nucleotide composition biases are likely the main factor driving the CUB in Microsporidia according to correlation analyses, directed mutational pressure also likely affects the CUB as suggested by ENc-plots, correspondence and neutrality analyses. Overall, the Encephalitozoon genomes were found to be markedly different from the other microsporidians and, despite being the first sequenced representatives of this lineage, are uncharacteristic of the group as a whole. The disparities observed cannot be attributed solely to differences in host specificity and we hypothesize that other forces are at play in the lineage leading to Encephalitozoon species. PMID:26057384

  13. Analysis of synonymous codon usage in spike protein gene of infectious bronchitis virus.

    PubMed

    Makhija, Aditi; Kumar, Sachin

    2015-12-01

    Infectious bronchitis virus (IBV) is responsible for causing respiratory, renal, and urogenital diseases in poultry. IBV infection in poultry leads to high mortality rates in affected flocks and to severe economic losses due to a drop in egg production and a reduced gain in live weight of the broiler birds. IBV-encoded spike protein (S) is the major protective immunogen for the host. Although the functions of the S protein have been well studied, the factors shaping synonymous codon usage bias and nucleotide composition in the S gene have not been reported yet. In the present study, we analyzed the relative synonymous codon usage and effective number of codons (Nc) using the 53 IBV S genes. The major trend in codon usage variation was studied using correspondence analysis. The plot of Nc values against GC3 as well as the correlation between base composition and codon usage bias suggest that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in the S gene. Interestingly, no association of aromaticity, degree of hydrophobicity, and aliphatic index was observed with the codon usage variation in IBV S genes. The study represents a comprehensive analysis of IBV S gene codon usage patterns and provides a basic understanding of the codon usage bias. PMID:26452019

  14. Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA-Seq data

    PubMed Central

    2013-01-01

    Background Codon usage analysis has been a classical topic for decades and has significances for studies of evolution, mRNA translation, and new gene discovery, etc. While the codon usage varies among different members of the plant kingdom, indicating the necessity for species-specific study, this work has mostly been limited to model organisms. Recently, the development of deep sequencing, especial RNA-Seq, has made it possible to carry out studies in non-model species. Result RNA-Seq data of Chinese bayberry was analyzed to investigate the bias of codon usage and codon pairs. High frequency codons (AGG, GCU, AAG and GAU), as well as low frequency ones (NCG and NUA codons) were identified, and 397 high frequency codon pairs were observed. Meanwhile, 26 preferred and 141 avoided neighboring codon pairs were also identified, which showed more significant bias than the same pairs with one or more intervening codons. Codon patterns were also analyzed at the plant kingdom, organism and gene levels. Changes during plant evolution were evident using RSCU (relative synonymous codon usage), which was even more significant than GC3s (GC content of 3rd synonymous codons). Nine GO categories were differentially and independently influenced by CAI (codon adaptation index) or GC3s, especially in 'Molecular function’ category. Within a gene, the average CAI increased from 0.720 to 0.785 in the first 50 codons, and then more slowly thereafter. Furthermore, the preferred as well as avoided codons at the position just following the start codon AUG were identified and discussed in relation to the key positions in Kozak sequences. Conclusion A comprehensive codon usage Table and number of high-frequency codon pairs were established. Bias in codon usage as well as in neighboring codon pairs was observed, and the significance of this in avoiding DNA mutation, increasing protein production and regulating protein synthesis rate was proposed. Codon usage patterns at three levels were

  15. Importance of codon usage for the temporal regulation of viral gene expression.

    PubMed

    Shin, Young C; Bischof, Georg F; Lauer, William A; Desrosiers, Ronald C

    2015-11-10

    The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241

  16. Analysis of synonymous codon usage patterns in seven different citrus species.

    PubMed

    Xu, Chen; Dong, Jing; Tong, Chunfa; Gong, Xindong; Wen, Qiang; Zhuge, Qiang

    2013-01-01

    We used large samples of expressed sequence tags to characterize the patterns of codon usage bias (CUB) in seven different Citrus species and to analyze their evolutionary effect on selection and base composition. We found that A- and T-ending codons are predominant in Citrus species. Next, we identified 21 codons for 18 different amino acids that were considered preferred codons in all seven species. We then performed correspondence analysis and constructed plots for the effective number of codons (ENCs) to analyze synonymous codon usage. Multiple regression analysis showed that gene expression in each species had a constant influence on the frequency of optional codons (FOP). Base composition differences between the proportions were large. Finally, positive selection was detected during the evolutionary process of the different Citrus species. Overall, our results suggest that codon usages were the result of positive selection. Codon usage variation among Citrus genes is influenced by translational selection, mutational bias, and gene length. CUB is strongly affected by selection pressure at the translational level, and gene length plays only a minor role. One possible explanation for this is that the selection-mediated codon bias is consistently strong in Citrus, which is one of the most widely cultivated fruit trees. PMID:23761955

  17. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    PubMed

    Karniychuk, Uladzimir U

    2016-09-01

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. PMID:27364082

  18. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses.

    PubMed

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P; Arzt, Jonathan; Novella, Isabel S; Rodriguez, Luis L

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  19. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses

    PubMed Central

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P.; Arzt, Jonathan; Novella, Isabel S.; Rodriguez, Luis L.

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  20. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding.

    PubMed

    Yu, Chien-Hung; Dang, Yunkun; Zhou, Zhipeng; Wu, Cheng; Zhao, Fangzhou; Sachs, Matthew S; Liu, Yi

    2015-09-01

    Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and has been proposed to regulate translation efficiency, accuracy, and protein folding based on the assumption that codon usage affects translation dynamics. The roles of codon usage in translation, however, are not clear and have been challenged by recent ribosome profiling studies. Here we used a Neurospora cell-free translation system to directly monitor the velocity of mRNA translation. We demonstrated that the preferred codons enhance the rate of translation elongation, whereas non-optimal codons slow elongation. Codon usage also controls ribosome traffic on mRNA. These conclusions were supported by ribosome profiling results in vitro and in vivo with template mRNAs designed to increase the signal-to-noise ratio. Finally, we demonstrate that codon usage regulates protein function by affecting co-translational protein folding. These results resolve a long-standing fundamental question and suggest the existence of a codon usage code for protein folding. PMID:26321254

  1. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K

    2016-08-01

    Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. PMID:27189042

  2. A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV.

    PubMed

    Zhou, Jian-Hua; Gao, Zong-Liang; Sun, Dong-Jie; Ding, Yao-Zhong; Zhang, Jie; Stipkovits, Laszlo; Szathmary, Susan; Pejsak, Zygmunt; Liu, Yong-Sheng

    2013-04-01

    The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes. PMID:23161403

  3. Analysis of codon usage pattern evolution in avian rotaviruses and their preferred host.

    PubMed

    Kattoor, Jobin Jose; Malik, Yashpal Singh; Sasidharan, Aravind; Rajan, Vishnuraj Mangalathu; Dhama, Kuldeep; Ghosh, Souvik; Bányai, Krisztián; Kobayashi, Nobumichi; Singh, Raj Kumar

    2015-08-01

    Rotavirus infection is a worldwide problem, with occurrence of highly divergent viruses classified in 8 species (A-H). We report here the evolution assessment of codon usage patterns in virus-host system in avian rotavirus (AvRV) of species RVA, RVD, RVF and RVG (preferentially affecting birds). The nucleotide contents, codon usage bias (CUB), relative synonymous codon usage (RSCU), and effective number of codons (ENCs) values were investigated targeting overexpressing major inner capsid viral protein (VP6) of these AvRV species. The results confirm that the evolutionary characteristics influences the rotavirus (RV) genetic diversity and impact of host's natural selection on the AvRVs codons. Synonymous codon usage patterns were evaluated following multivariate statistical procedures on all available AvRV coding gene sequences. RSCU trees accommodated all AvRV species and preferred host sequences in one topology confirming greater imminence of AvRVs with the host chicken cell genes. Similarly, the codon adaptation index (CAI) results also displayed a higher adaptation of AvRVs to its chicken host. The codon preference analysis of RVs revealed that VP6 gene express more proficiently in the yeast system, whereas, codon optimization might be required for the effectual expression in Escherichia coli and Homo sapiens. The findings provide basic evidence on the dynamics of AvRV evolution and its host adaptation, which could be exploited for additional research on avian species in future. PMID:26086995

  4. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. PMID:27542830

  5. The characteristics of synonymous codon usage in the initial and terminal translation regions of encephalomyocarditis virus.

    PubMed

    Ma, X-X; Feng, Y-P; Liu, J-L; Zhao, Y-Q; Chen, L; Guo, P-H; Guo, J-Z; Ma, Z-R

    2014-01-01

    The synonymous codon usage patterns in the initial and terminal translation regions (ITR, TTR) of the whole coding sequence of encephalomyocarditis virus (EMCV) were analyzed in relation to those in its natural hosts using the sequences accessible in databases. In general, some low-usage host codons were found over-represented in the ITR and TTR of the virus, while some high-usage host codons were found under-represented in the two viral regions. These relationships are thought to participate in the regulation of the speed of translation of viral proteins and in the suppression of ribosomal traffic jams, both aiming at the increase of virus yields. PMID:24720745

  6. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    PubMed Central

    Mirsafian, Hoda; Mat Ripen, Adiratna; Singh, Aarti; Teo, Phaik Hwan; Merican, Amir Feisal; Mohamad, Saharuddin Bin

    2014-01-01

    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure. PMID:24707212

  7. Cytochrome P450 genes in coronary artery diseases: Codon usage analysis reveals genomic GC adaptation.

    PubMed

    Malakar, Arup Kumar; Halder, Binata; Paul, Prosenjit; Chakraborty, Supriyo

    2016-09-15

    Establishing codon usage biases are imperative for understanding the etiology of coronary artery diseases (CAD) as well as the genetic factors associated with these diseases. The aim of this study was to evaluate the contribution of 18 responsible cytochrome P450 (CYP) genes for the risk of CAD. Effective number of codon (Nc) showed a negative correlation with both GC3 and synonymous codon usage order (SCUO) suggesting an antagonistic relationship between codon usage and Nc of genes. The dinucleotide analysis revealed that CG and TA dinucleotides have the lowest odds ratio in these genes. Principal component analysis showed that GC composition has a profound effect in separating the genes along the first major axis. Our findings revealed that mutational pressure and natural selection could possibly be the major factors responsible for codon bias in these genes. The study not only offers an insight into the mechanisms of genomic GC adaptation, but also illustrates the complexity of CYP genes in CAD. PMID:27275533

  8. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns.

    PubMed

    Zhou, Hao; Yan, Bing; Chen, Shun; Wang, Mingshu; Jia, Renyong; Cheng, Anchun

    2015-10-01

    Tembusu virus (TMUV) is a single-stranded, positive-sense RNA virus. As reported, TMUV infection has resulted in significant poultry losses, and the virus may also pose a threat to public health. To characterize TMUV evolutionarily and to understand the factors accounting for codon usage properties, we performed, for the first time, a comprehensive analysis of codon usage bias for the genomes of 60 TMUV strains. The most recently published TMUV strains were found to be widely distributed in coastal cities of southeastern China. Codon preference among TMUV genomes exhibits a low bias (effective number of codons (ENC)=53.287) and is maintained at a stable level. ENC-GC3 plots and the high correlation between composition constraints and principal component factor analysis of codon usage demonstrated that mutation pressure dominates over natural selection pressure in shaping the TMUV coding sequence composition. The high correlation between the major components of the codon usage pattern and hydrophobicity (Gravy) or aromaticity (Aromo) was obvious, indicating that properties of viral proteins also account for the observed variation in TMUV codon usage. Principal component analysis (PCA) showed that CQW1 isolated from Chongqing may have evolved from GX2013H or GX2013G isolated from Guangxi, thus indicating that TMUV likely disseminated from southeastern China to the mainland. Moreover, the preferred codons encoding eight amino acids were consistent with the optimal codons for human cells, indicating that TMUV may pose a threat to public health due to possible cross-species transmission (birds to birds or birds to humans). The results of this study not only have theoretical value for uncovering the characteristics of synonymous codon usage patterns in TMUV genomes but also have significant meaning with regard to the molecular evolutionary tendencies of TMUV. PMID:26205688

  9. Comprehensive Analysis of Stop Codon Usage in Bacteria and Its Correlation with Release Factor Abundance*

    PubMed Central

    Korkmaz, Gürkan; Holm, Mikael; Wiens, Tobias; Sanyal, Suparna

    2014-01-01

    We present a comprehensive analysis of stop codon usage in bacteria by analyzing over eight million coding sequences of 4684 bacterial sequences. Using a newly developed program called “stop codon counter,” the frequencies of the three classical stop codons TAA, TAG, and TGA were analyzed, and a publicly available stop codon database was built. Our analysis shows that with increasing genomic GC content the frequency of the TAA codon decreases and that of the TGA codon increases in a reciprocal manner. Interestingly, the release factor 1-specific codon TAG maintains a more or less uniform frequency (∼20%) irrespective of the GC content. The low abundance of TAG is also valid with respect to expression level of the genes ending with different stop codons. In contrast, the highly expressed genes predominantly end with TAA, ensuring termination with either of the two release factors. Using three model bacteria with different stop codon usage (Escherichia coli, Mycobacterium smegmatis, and Bacillus subtilis), we show that the frequency of TAG and TGA codons correlates well with the relative steady state amount of mRNA and protein for release factors RF1 and RF2 during exponential growth. Furthermore, using available microarray data for gene expression, we show that in both fast growing and contrasting biofilm formation conditions, the relative level of RF1 is nicely correlated with the expression level of the genes ending with TAG. PMID:25217634

  10. Gaining Insights into the Codon Usage Patterns of TP53 Gene across Eight Mammalian Species

    PubMed Central

    Mazumder, Tarikul Huda; Chakraborty, Supriyo

    2015-01-01

    TP53 gene is known as the “guardian of the genome” as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB) is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution. PMID:25807269

  11. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    PubMed Central

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  12. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer.

    PubMed

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC₃ (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  13. Codon Usage Patterns in Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino Acid Conservation.

    PubMed

    Liu, Guiming; Wu, Jinyu; Yang, Huanming; Bao, Qiyu

    2010-01-01

    The alternative synonymous codons in Corynebacterium glutamicum, a well-known bacterium used in industry for the production of amino acid, have been investigated by multivariate analysis. As C. glutamicum is a GC-rich organism, G and C are expected to predominate at the third position of codons. Indeed, overall codon usage analyses have indicated that C and/or G ending codons are predominant in this organism. Through multivariate statistical analysis, apart from mutational selection, we identified three other trends of codon usage variation among the genes. Firstly, the majority of highly expressed genes are scattered towards the positive end of the first axis, whereas the majority of lowly expressed genes are clustered towards the other end of the first axis. Furthermore, the distinct difference in the two sets of genes was that the C ending codons are predominate in putatively highly expressed genes, suggesting that the C ending codons are translationally optimal in this organism. Secondly, the majority of the putatively highly expressed genes have a tendency to locate on the leading strand, which indicates that replicational and transciptional selection might be invoked. Thirdly, highly expressed genes are more conserved than lowly expressed genes by synonymous and nonsynonymous substitutions among orthologous genes fromthe genomes of C. glutamicum and C. diphtheriae. We also analyzed other factors such as the length of genes and hydrophobicity that might influence codon usage and found their contributions to be weak. PMID:20445740

  14. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.

    PubMed

    Matsumoto, Tomotaka; John, Anoop; Baeza-Centurion, Pablo; Li, Boyang; Akashi, Hiroshi

    2016-06-01

    A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees. PMID:26873577

  15. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data.

    PubMed

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 "optimal codons", most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  16. Mutation and Selection Cause Codon Usage and Bias in Mitochondrial Genomes of Ribbon Worms (Nemertea)

    PubMed Central

    Chen, Haixia; Sun, Shichun; Norenburg, Jon L.; Sundberg, Per

    2014-01-01

    The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes. PMID:24454907

  17. Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea).

    PubMed

    Chen, Haixia; Sun, Shichun; Norenburg, Jon L; Sundberg, Per

    2014-01-01

    The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes. PMID:24454907

  18. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data

    PubMed Central

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 “optimal codons”, most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  19. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea.

    PubMed

    Whittle, Carrie A; Extavour, Cassandra G

    2015-11-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  20. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2015-01-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  1. Recurrent positive selection and heterogeneous codon usage bias events leading to coexistence of divergent pigeon circoviruses.

    PubMed

    Liao, Pei-Chun; Wang, Kung-Kai; Tsai, Shinn-Shyong; Liu, Hung-Jen; Huang, Bing-Hong; Chuang, Kuo-Pin

    2015-08-01

    The capsid genes from 14 pigeon circovirus (PiCV) sequences, collected from Taiwan between 2009 and 2010, were sequenced and compared with 14 PiCV capsid gene sequences from GenBank. Based on pairwise comparison, PiCV strains from Taiwan shared 73.9-100% nucleotide identity and 72-100% amino acid identity with those of the 14 reported PiCV sequences. Phylogenetic analyses revealed that Taiwanese PiCV isolates can be grouped into two clades: clade 1 comprising isolates from Belgium, Australia, USA, Italy and China, and clade 2 showing close relation to isolates from Germany and France. Recurrent positive selection was detected in clade 1 PiCV lineages, which may contribute to the diversification of predominant PiCV sequences in Taiwan. Further observations suggest that synonymous codon usage variations between PiCV clade 1 and clade 2 may reflect the adaptive divergence on translation efficiency of capsid genes in infectious hosts. Variation in selective pressures acting on the evolutionary divergence and codon usage bias of both clades explains the regional coexistence of virus sequences congeners prevented from competitive exclusion within an island such as Taiwan. Our genotyping results also provide insight into the aetiological agents of PiCV outbreak in Taiwan and we present a comparative analysis of the central coding region of PiCV genome. From the sequence comparison results of 28 PiCVs which differs in regard to the geographical origin and columbid species, we identified conserved regions within the capsid gene that are likely to be suitable for primer selection and vaccine development. PMID:25911731

  2. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Jia, Jia; Xue, Qingzhong

    2009-12-01

    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species. PMID:20172490

  3. Effects of nucleotide usage on the synonymous codon usage patterns of biofilm-associated genes in Haemophilus parasuis.

    PubMed

    Wang, L Y; Ma, L N; Liu, Y S

    2016-01-01

    To provide a new perspective on the evolutionary characteristics shaping the genetic diversity of Haemophilus parasuis biofilms, the relative synonymous codon usage values, codon usage bias values, effective number of codons (ENC) values, codon adaptation index (CAI) values, and the base components were calculated. Our objective was to implement a comparative analysis to evaluate the dynamic evolution of biofilm-associated genes in H. parasuis. The analysis of genetic diversity provides evidence that some biofilm-associated genes have similar genetic features. However, other genes show some variations in genetic direction. Furthermore, preferential selection of the synonymous codons and amino acids is apparent in biofilm-associated genes. Additionally, the ENC and CAI data from this study all strongly suggested that biofilm-associated genes may depend on deoptimization to adapt to environmental changes, and the mutation effect of biofilm-associated genes in H. parasuis plays an important role in shaping the genetic features. Our results reveal that the mutations of biofilm-associated genes form a set of sophisticated strategies for combating the environmental changes arising from the host cell in the evolution of H. parasuis. PMID:27323145

  4. Analysis of synonymous codon usage patterns in sixty-four different bivalve species

    PubMed Central

    De Moro, Gianluca; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates. PMID:26713259

  5. Evidence for Stabilizing Selection on Codon Usage in Chromosomal Rearrangements of Drosophila pseudoobscura

    PubMed Central

    Fuller, Zachary L.; Haynes, Gwilym D.; Zhu, Dianhui; Batterton, Matthew; Chao, Hsu; Dugan, Shannon; Javaid, Mehwish; Jayaseelan, Joy C.; Lee, Sandra; Li, Mingmei; Ongeri, Fiona; Qi, Sulan; Han, Yi; Doddapaneni, Harshavardhan; Richards, Stephen; Schaeffer, Stephen W.

    2014-01-01

    There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura. PMID:25326424

  6. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.

    PubMed

    Wei, Yulong; Wang, Juan; Xia, Xuhua

    2016-09-01

    Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3 This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range. PMID:27297468

  7. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species

    PubMed Central

    Wei, Yulong; Wang, Juan; Xia, Xuhua

    2016-01-01

    Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3. This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range. PMID:27297468

  8. Solving the riddle of codon usage preferences: a test for translational selection

    PubMed Central

    Reis, Mario dos; Savva, Renos; Wernisch, Lorenz

    2004-01-01

    Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model. PMID:15448185

  9. Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli

    PubMed Central

    Sun, Shixiang; Xiao, Jingfa; Zhang, Huiyong; Zhang, Zhang

    2016-01-01

    Codon usage bias, as a combined interplay from mutation and selection, has been intensively studied in Escherichia coli. However, codon usage analysis in an E. coli pangenome remains unexplored and the relative importance of mutation and selection acting on core genes and strain-specific genes is unknown. Here we perform comprehensive codon usage analyses based on a collection of multiple complete genome sequences of E. coli. Our results show that core genes that are present in all strains have higher codon usage bias than strain-specific genes that are unique to single strains. We further explore the forces in influencing codon usage and investigate the difference of the major force between core and strain-specific genes. Our results demonstrate that although mutation may exert genome-wide influences on codon usage acting similarly in different gene sets, selection dominates as an important force to shape biased codon usage as genes are present in an increased number of strains. Together, our results provide important insights for better understanding genome plasticity and complexity as well as evolutionary mechanisms behind codon usage bias. PMID:27536275

  10. Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli.

    PubMed

    Sun, Shixiang; Xiao, Jingfa; Zhang, Huiyong; Zhang, Zhang

    2016-01-01

    Codon usage bias, as a combined interplay from mutation and selection, has been intensively studied in Escherichia coli. However, codon usage analysis in an E. coli pangenome remains unexplored and the relative importance of mutation and selection acting on core genes and strain-specific genes is unknown. Here we perform comprehensive codon usage analyses based on a collection of multiple complete genome sequences of E. coli. Our results show that core genes that are present in all strains have higher codon usage bias than strain-specific genes that are unique to single strains. We further explore the forces in influencing codon usage and investigate the difference of the major force between core and strain-specific genes. Our results demonstrate that although mutation may exert genome-wide influences on codon usage acting similarly in different gene sets, selection dominates as an important force to shape biased codon usage as genes are present in an increased number of strains. Together, our results provide important insights for better understanding genome plasticity and complexity as well as evolutionary mechanisms behind codon usage bias. PMID:27536275

  11. Synonymous Codon Usage Affects the Expression of Wild Type and F508del CFTR

    PubMed Central

    Shah, Kalpit; Cheng, Yi; Hahn, Brian; Bridges, Robert; Bradbury, Neil; Mueller, David M.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508, (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic reticulum associated degradation (ERAD). This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements, were expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady state levels of the mRNA varied by as much as 30 fold. Experiments support that this apparent inconsistency is attributed to exon junction complex independent nonsense mediated decay. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped ERAD resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that for CFTR, codon usage has an effect on mRNA levels, protein expression and likely, for F508del CFTR, chaperone assisted folding pathway. PMID:25676312

  12. Effective population size does not predict codon usage bias in mammals

    PubMed Central

    Kessler, Michael D; Dean, Matthew D

    2014-01-01

    Synonymous codons are not used at equal frequency throughout the genome, a phenomenon termed codon usage bias (CUB). It is often assumed that interspecific variation in the intensity of CUB is related to species differences in effective population sizes (Ne), with selection on CUB operating less efficiently in species with small Ne. Here, we specifically ask whether variation in Ne predicts differences in CUB in mammals and report two main findings. First, across 41 mammalian genomes, CUB was not correlated with two indirect proxies of Ne (body mass and generation time), even though there was statistically significant evidence of selection shaping CUB across all species. Interestingly, autosomal genes showed higher codon usage bias compared to X-linked genes, and high-recombination genes showed higher codon usage bias compared to low recombination genes, suggesting intraspecific variation in Ne predicts variation in CUB. Second, across six mammalian species with genetic estimates of Ne (human, chimpanzee, rabbit, and three mouse species: Mus musculus, M. domesticus, and M. castaneus), Ne and CUB were weakly and inconsistently correlated. At least in mammals, interspecific divergence in Ne does not strongly predict variation in CUB. One hypothesis is that each species responds to a unique distribution of selection coefficients, confounding any straightforward link between Ne and CUB. PMID:25505518

  13. Effective population size does not predict codon usage bias in mammals.

    PubMed

    Kessler, Michael D; Dean, Matthew D

    2014-10-01

    Synonymous codons are not used at equal frequency throughout the genome, a phenomenon termed codon usage bias (CUB). It is often assumed that interspecific variation in the intensity of CUB is related to species differences in effective population sizes (N e), with selection on CUB operating less efficiently in species with small N e. Here, we specifically ask whether variation in N e predicts differences in CUB in mammals and report two main findings. First, across 41 mammalian genomes, CUB was not correlated with two indirect proxies of N e (body mass and generation time), even though there was statistically significant evidence of selection shaping CUB across all species. Interestingly, autosomal genes showed higher codon usage bias compared to X-linked genes, and high-recombination genes showed higher codon usage bias compared to low recombination genes, suggesting intraspecific variation in N e predicts variation in CUB. Second, across six mammalian species with genetic estimates of N e (human, chimpanzee, rabbit, and three mouse species: Mus musculus, M. domesticus, and M. castaneus), N e and CUB were weakly and inconsistently correlated. At least in mammals, interspecific divergence in N e does not strongly predict variation in CUB. One hypothesis is that each species responds to a unique distribution of selection coefficients, confounding any straightforward link between N e and CUB. PMID:25505518

  14. Usage of the three termination codons in a single eukaryotic cell, the Xenopus laevis oocyte.

    PubMed Central

    Bienz, M; Kubli, E; Kohli, J; deHenau, S; Huez, G; Marbaix, G; Grosjean, H

    1981-01-01

    Oocytes from Xenopus laevis were injected with purified amber (UAG), ochre (UAA), and opal (UGA) suppressor tRNAs from yeasts. The radioactively labeled proteins translated from the endogenous mRNAs were then separated on two-dimensional gels. All three termination codons are used in a single cell, the Xenopus laevis oocyte. But a surprisingly low number of readthrough polypeptides were observed from the 600 mRNAs studied in comparison to uninjected oocytes. The experimental data are compared with the conclusions obtained from the compilation of all available termination sequences on eukaryotic and prokaryotic mRNAs. This comparison indicates that the apparent resistance of natural termination codons against readthrough, as observed by the microinjection experiments, cannot be explained by tandem or very close second stop codons. Instead it suggests that specific context sequences around the termination codons may play a role in the efficiency of translation termination. Images PMID:7024919

  15. Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes.

    PubMed Central

    Morton, B R

    2001-01-01

    A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought. PMID:11560910

  16. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  17. Big Data, Evolution, and Metagenomes: Predicting Disease from Gut Microbiota Codon Usage Profiles.

    PubMed

    Fabijanić, Maja; Vlahoviček, Kristian

    2016-01-01

    Metagenomics projects use next-generation sequencing to unravel genetic potential in microbial communities from a wealth of environmental niches, including those associated with human body and relevant to human health. In order to understand large datasets collected in metagenomics surveys and interpret them in context of how a community metabolism as a whole adapts and interacts with the environment, it is necessary to extend beyond the conventional approaches of decomposing metagenomes into microbial species' constituents and performing analysis on separate components. By applying concepts of translational optimization through codon usage adaptation on entire metagenomic datasets, we demonstrate that a bias in codon usage present throughout the entire microbial community can be used as a powerful analytical tool to predict for community lifestyle-specific metabolism. Here we demonstrate this approach combined with machine learning, to classify human gut microbiome samples according to the pathological condition diagnosed in the human host. PMID:27115650

  18. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    PubMed Central

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas; Igarashi, Takao; Cohen, Lydia; Hou, Ya-Ming; Jensen, Lars Juhl

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non-optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-, threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose that non-optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle-dependent dynamics of proteins. PMID:22373820

  19. Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish.

    PubMed

    Mishima, Yuichiro; Tomari, Yukihide

    2016-03-17

    The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes. PMID:26990990

  20. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  1. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host.

    PubMed

    Grote, Andreas; Hiller, Karsten; Scheer, Maurice; Münch, Richard; Nörtemann, Bernd; Hempel, Dietmar C; Jahn, Dieter

    2005-07-01

    A novel method for the adaptation of target gene codon usage to most sequenced prokaryotes and selected eukaryotic gene expression hosts was developed to improve heterologous protein production. In contrast to existing tools, JCat (Java Codon Adaptation Tool) does not require the manual definition of highly expressed genes and is, therefore, a very rapid and easy method. Further options of JCat for codon adaptation include the avoidance of unwanted cleavage sites for restriction enzymes and Rho-independent transcription terminators. The output of JCat is both graphically and as Codon Adaptation Index (CAI) values given for the pasted sequence and the newly adapted sequence. Additionally, a list of genes in FASTA-format can be uploaded to calculate CAI values. In one example, all genes of the genome of Caenorhabditis elegans were adapted to Escherichia coli codon usage and further optimized to avoid commonly used restriction sites. In a second example, the Pseudomonas aeruginosa exbD gene codon usage was adapted to E.coli codon usage with parallel avoidance of the same restriction sites. For both, the degree of introduced changes was documented and evaluated. JCat is integrated into the PRODORIC database that hosts all required information on the various organisms to fulfill the requested calculations. JCat is freely accessible at http://www.prodoric.de/JCat. PMID:15980527

  2. AT2-AT3-profiling: a new look at synonymous codon usage.

    PubMed

    Pluhar, Wolfgang

    2006-12-01

    The teleology of synonymous codon usage (SCU) still awaits a unifying concept. Here the 2nd codon letter of human mRNA-codons was graphically, aided by a computer program, put in relation to the 3rd codon letter, the carrier of SCU: AT2, the density of A+T in 2nd codon position, behaves to AT3, the analogous density of the 3rd codon position, mostly in an inverse fashion that can be expressed as typical figures: mRNAs with an overall AT-density below 50% have a tendency to produce bulky figures called "red dragons" (when redness is attributed to graph-areas, where AT3< AT2), while mRNAs with an AT-density above 50% produce a pattern called "harlequin" consisting of alternating red and blue (blueness, in analogy, when AT3>AT2) diamonds. With more diversion of AT3 from AT2, the harlequin patterns can assume the pattern of a "blue dragon". By analysing the mRNA of known proteins, these patterns can be correlated with certain functional regions: proteins with multiple transmembrane passages show bulky "red dragons", structural proteins with a high glycine- and proline content such as collagen result in "blue dragons". Non-coding mRNAs tend to show a balance between AT2 and AT3 and hence "harlequin patterns". Signal peptides usually code red due to a low AT3 with an AT2-density at the expectance level. With this technique DNA-sequences of as yet unknown functional meaning were scanned. When stretches of harlequin patterns appear interrupted by red or blue dragons, closer scrutiny of these stretches can reveal ORFs which deserve to be looked at more closely for their protein-informational content. At least in humans, SCU appears to follow protein-dependent AT2-density in a reciprocal fashion and does not seem to serve the purpose of influencing mRNA secondary structure which is discussed in depth. PMID:16930630

  3. Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium.

    PubMed

    Roy, Ayan; Mukhopadhyay, Subhasish; Sarkar, Indrani; Sen, Arnab

    2015-06-01

    Various strains of the genus Bifidobacterium are crucial members of the human, animal and insect gut, associated with beneficial probiotic activities. An extensive analysis on codon and amino acid usage of the GC rich genus Bifidobacterium has been executed in the present study. Multivariate statistical analysis revealed a coupled effect of GC compositional constraint and natural selection for translational efficiency to be operative in producing the observed codon usage variations. Gene expression level was inferred to be the most crucial factor governing the codon usage patterns. Amino acid usage was found to be influenced significantly by hydrophobic and aromatic character of the encoded proteins. Gene expressivity and protein energetic cost also had considerable impact on the differential mode of amino acid usage. The genus was found to strictly obey the cost-minimization hypothesis as was reflected from the amino acid usage patterns of the potential highly expressed gene products. Evolutionary analysis revealed that the highly expressed genes were candidates to extreme evolutionary selection pressure and indicated a high degree of conservation at the proteomic level. Interestingly, the complimentary strands of replication appeared to evolve under similar evolutionary constraints which might be addressed as a consequence of absence of replicational selection and lack of strand-specific asymmetry among the members of the genus. Thus, the present endeavor confers considerable know-how pertaining to the codon and amino acid usage intricacies in Bifidobacterium and might prove handy for further scientific investigations associated with the concerned domain. PMID:25842224

  4. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization.

    PubMed

    Mitarai, Namiko; Sneppen, Kim; Pedersen, Steen

    2008-09-26

    Individual mRNAs are translated by multiple ribosomes that initiate translation with an interval of a few seconds. The ribosome speed is codon dependent, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modeling the stochastic translation process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations/s) and the time (1 s) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of mRNA breakdown is offset by the concomitant increase in translation efficiency. PMID:18619977

  5. Use of molecular beacons to probe for messenger RNA release from ribosomes during 5'-translational blockage by consecutive low-usage codons in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Gao, Wenwu; Tyagi, Sanjay; Kramer, Fred R.; Goldman, Emanuel

    2000-03-01

    In `5'-translational blockage,' significantly reduced yields of proteins are synthesized in Escherichia coli when consecutive low-usage codons are inserted near translation starts of messages (with reduced or no effect when these same codons are inserted downstream). We tested the hypothesis that ribosomes encountering these low-usage codons prematurely release the mRNA. RNA from polysome gradients was fractionated into pools of polysomes, monosomes and ribosomes-free. New hybridization probes, called `molecular beacons,' and standard slot-blots, were used to detect test messages containing either consecutive low-usage AGG (arginine) or synonymous high-usage CGU insertions near the 5' end. The results show an approximately twofold increase in the ratio of free to bound mRNA when the low-usage codons were present compared to high-usage codons. In contrast, there was no difference in the ratio of free to bound mRNA when consecutive low-usage CUA or high-usage CUG (leucine) codons were inserted, or when the arginine codons were inserted near the 3' end. These data indicate that at least some mRNA is released from ribosomes during 5'-translational blockage by arginine but not leucine codons, and they support proposals that premature termination of translation can occur in some conditions in vivo in the absence of a stop codon.

  6. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons.

    PubMed

    Lakey, D L; Voladri, R K; Edwards, K M; Hager, C; Samten, B; Wallis, R S; Barnes, P F; Kernodle, D S

    2000-01-01

    A major obstacle to development of subunit vaccines and diagnostic reagents for tuberculosis is the inability to produce large quantities of these proteins. To test the hypothesis that poor expression of some mycobacterial genes in Escherichia coli is due, in part, to the presence of low-usage E. coli codons, we used site-directed mutagenesis to convert low-usage codons to high-usage codons for the same amino acid in the Mycobacterium tuberculosis genes for antigens 85A and 85B and superoxide dismutase. Replacement of five codons in the wild-type gene for antigen 85B increased recombinant protein production in E. coli 54-fold. The recombinant antigen elicited proliferation and gamma interferon production by lymphocytes from healthy tuberculin reactors and was recognized by monoclonal antibodies to native antigen 85, indicating that the recombinant antigen contained T-cell and B-cell epitopes. Northern blotting demonstrated only a 1.7- to 2.5-fold increase in antigen 85B mRNA, suggesting that the enhanced protein production was due primarily to enhanced efficiency of translation. Codon replacement in the genes encoding antigen 85A and superoxide dismutase yielded four- to sixfold increases in recombinant protein production, suggesting that this strategy may be generally applicable to overexpression of mycobacterial genes in E. coli. PMID:10603393

  7. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines

    PubMed Central

    Baker, Steven F; Nogales, Aitor; Martínez-Sobrido, Luis

    2015-01-01

    Vaccination represents the best option to protect humans against influenza virus. However, improving the effectiveness of current vaccines could better stifle the health burden caused by viral infection. Protein synthesis from individual genes can be downregulated by synthetically deoptimizing a gene’s codon usage. With more rapid and affordable nucleotide synthesis, generating viruses that contain genes with deoptimized codons is now feasible. Attenuated, vaccine-candidate viruses can thus be engineered with hitherto uncharacterized properties. With eight gene segments, influenza A viruses with variably recoded genomes can produce a spectrum of attenuation that is contingent on the gene segment targeted and the number of codon changes. This review summarizes different targets and approaches to deoptimize influenza A virus codons for novel vaccine generation. PMID:26213563

  8. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses

    PubMed Central

    Félez-Sánchez, Marta; Trösemeier, Jan-Hendrik; Bedhomme, Stéphanie; González-Bravo, Maria Isabel; Kamp, Christel; Bravo, Ignacio G.

    2015-01-01

    Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response. PMID:26139833

  9. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses.

    PubMed

    Félez-Sánchez, Marta; Trösemeier, Jan-Hendrik; Bedhomme, Stéphanie; González-Bravo, Maria Isabel; Kamp, Christel; Bravo, Ignacio G

    2015-08-01

    Viruses rely completely on the hosts' machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response. PMID:26139833

  10. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias.

    PubMed

    Liu, Yang; Cox, Cymon J; Wang, Wei; Goffinet, Bernard

    2014-11-01

    Phylogenetic analyses using concatenation of genomic-scale data have been seen as the panacea for resolving the incongruences among inferences from few or single genes. However, phylogenomics may also suffer from systematic errors, due to the, perhaps cumulative, effects of saturation, among-taxa compositional (GC content) heterogeneity, or codon-usage bias plaguing the individual nucleotide loci that are concatenated. Here, we provide an example of how these factors affect the inferences of the phylogeny of early land plants based on mitochondrial genomic data. Mitochondrial sequences evolve slowly in plants and hence are thought to be suitable for resolving deep relationships. We newly assembled mitochondrial genomes from 20 bryophytes, complemented these with 40 other streptophytes (land plants plus algal outgroups), compiling a data matrix of 60 taxa and 41 mitochondrial genes. Homogeneous analyses of the concatenated nucleotide data resolve mosses as sister-group to the remaining land plants. However, the corresponding translated amino acid data support the liverwort lineage in this position. Both results receive weak to moderate support in maximum-likelihood analyses, but strong support in Bayesian inferences. Tests of alternative hypotheses using either nucleotide or amino acid data provide implicit support for their respective optimal topologies, and clearly reject the hypotheses that bryophytes are monophyletic, liverworts and mosses share a unique common ancestor, or hornworts are sister to the remaining land plants. We determined that land plant lineages differ in their nucleotide composition, and in their usage of synonymous codon variants. Composition heterogeneous Bayesian analyses employing a nonstationary model that accounts for variation in among-lineage composition, and inferences from degenerated nucleotide data that avoid the effects of synonymous substitutions that underlie codon-usage bias, again recovered liverworts being sister to the

  11. Synonymous Codon Usage Bias in Plant Mitochondrial Genes Is Associated with Intron Number and Mirrors Species Evolution

    PubMed Central

    Zhao, Mingming; Yin, Xunhao; Xia, Guangmin; Wang, Mengcheng

    2015-01-01

    Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specialization. However, how about the rules in the mitochondrial genome has not been addressed. Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant species ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending codons) are higher than those of NNG and NNC, with the strongest preference in bryophytes and the weakest in land plants, suggesting an association between SCUB and plant evolution. The preference for NNA and NNT is more evident in genes harboring a greater number of introns in land plants, but the bias to NNA and NNT exhibits even among exons. The pattern of SCUB in the mitochondrial genome differs in some respects to that present in both the nuclear and plastid genomes. PMID:26110418

  12. Synonymous Codon Usage Bias in the Plastid Genome is Unrelated to Gene Structure and Shows Evolutionary Heterogeneity

    PubMed Central

    Qi, Yueying; Xu, Wenjing; Xing, Tian; Zhao, Mingming; Li, Nana; Yan, Li; Xia, Guangmin; Wang, Mengcheng

    2015-01-01

    Synonymous codon usage bias (SCUB) is the nonuniform usage of codons, occurring often in nearly all organisms. Our previous study found that SCUB is correlated with intron number, is unequal among exons in the plant nuclear genome, and mirrors evolutionary specialization. However, whether this rule exists in the plastid genome has not been addressed. Here, we present an analysis of SCUB in the plastid genomes of 25 species from lower to higher plants (algae, bryophytes, pteridophytes, gymnosperms, and spermatophytes). We found NNA and NNT (A- and T-ending codons) are preferential in the plastid genomes of all plants. Interestingly, this preference is heterogeneous among taxonomies of plants, with the strongest preference in bryophytes and the weakest in pteridophytes, suggesting an association between SCUB and plant evolution. In addition, SCUB frequencies are consistent among genes with varied introns and among exons, indicating that the bias of NNA and NNT is unrelated to either intron number or exon position. Further, SCUB is associated with DNA methylation–induced conversion of cytosine to thymine in the vascular plants but not in algae or bryophytes. These data demonstrate that these SCUB profiles in the plastid genome are distinctly different compared with the nuclear genome. PMID:25922569

  13. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects.

    PubMed

    Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T

    2012-12-01

    Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages. PMID

  14. Quantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells

    PubMed Central

    Ngumbela, Kholiswa C.; Ryan, Kieran P.; Sivamurthy, Rohini; Brockman, Mark A.; Gandhi, Rajesh T.; Bhardwaj, Nina; Kavanagh, Daniel G.

    2008-01-01

    Background The sequences of wild-isolate strains of Human Immunodeficiency Virus-1 (HIV-1) are characterized by low GC content and suboptimal codon usage. Codon optimization of DNA vectors can enhance protein expression both by enhancing translational efficiency, and by altering RNA stability and export. Although gag codon optimization is widely used in DNA vectors and experimental vaccines, the actual effect of altered codon usage on gag translational efficiency has not been quantified. Methodology and Principal Findings To quantify translational efficiency of gag mRNA in live T cells, we transfected Jurkat cells with increasing doses of capped, polyadenylated synthetic mRNA corresponding to wildtype or codon-optimized gag sequences, measured Gag production by quantitative ELISA and flow cytometry, and estimated the translational efficiency of each transcript as pg of Gag antigen produced per µg of input mRNA. We found that codon optimization yielded a small increase in gag translational efficiency (approximately 1.6 fold). In contrast when cells were transfected with DNA vectors requiring nuclear transcription and processing of gag mRNA, codon optimization resulted in a very large enhancement of Gag production. Conclusions We conclude that suboptimal codon usage by HIV-1 results in only a slight loss of gag translational efficiency per se, with the vast majority of enhancement in protein expression from DNA vectors due to altered processing and export of nuclear RNA. PMID:18523584

  15. Equine schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism.

    PubMed

    Lin, Yue-Zhi; Sun, Liu-Ke; Zhu, Dan-Tong; Hu, Zhe; Wang, Xue-Feng; Du, Cheng; Wang, Yu-Hong; Wang, Xiao-Jun; Zhou, Jian-Hua

    2016-08-01

    Human schlafen11 is a novel restriction factor for HIV-1 based on bias regarding relative synonymous codon usage (RSCU). Here, we report the cloning of equine schlafen11 (eSLFN11) and the characteristics of its role in restricting the production of equine infectious anemia virus (EIAV), a retrovirus similar to HIV-1. Overexpression of eSLFN11 inhibited EIAV replication, whereas knockdown of endogenous eSLFN11 by siRNA enhanced the release of EIAV from its principal target cell. Notably, although eSLFN11 significantly suppressed expression of viral Gag protein and EIAV release into the culture medium, the levels of intracellular viral early gene proteins Tat and Rev and viral genomic RNA were unaffected. Coincidently, similar altered patterns of codon usage bias were observed for both the early and late genes of EIAV. Therefore, our data suggest that eSLFN11 restricts EIAV production by impairing viral mRNA translation via a mechanism that is similar to that employed by hSLFN11 for HIV-1. PMID:27200480

  16. Viral Proteins Originated De Novo by Overprinting Can Be Identified by Codon Usage: Application to the “Gene Nursery” of Deltaretroviruses

    PubMed Central

    Pavesi, Angelo; Magiorkinis, Gkikas; Karlin, David G.

    2013-01-01

    A well-known mechanism through which new protein-coding genes originate is by modification of pre-existing genes, e.g. by duplication or horizontal transfer. In contrast, many viruses generate protein-coding genes de novo, via the overprinting of a new reading frame onto an existing (“ancestral”) frame. This mechanism is thought to play an important role in viral pathogenicity, but has been poorly explored, perhaps because identifying the de novo frames is very challenging. Therefore, a new approach to detect them was needed. We assembled a reference set of overlapping genes for which we could reliably determine the ancestral frames, and found that their codon usage was significantly closer to that of the rest of the viral genome than the codon usage of de novo frames. Based on this observation, we designed a method that allowed the identification of de novo frames based on their codon usage with a very good specificity, but intermediate sensitivity. Using our method, we predicted that the Rex gene of deltaretroviruses has originated de novo by overprinting the Tax gene. Intriguingly, several genes in the same genomic region have also originated de novo and encode proteins that regulate the functions of Tax. Such “gene nurseries” may be common in viral genomes. Finally, our results confirm that the genomic GC content is not the only determinant of codon usage in viruses and suggest that a constraint linked to translation must influence codon usage. PMID:23966842

  17. Codon usage determines the mutational robustness, evolutionary capacity and virulence of an RNA virus

    PubMed Central

    Lauring, Adam S.; Acevedo, Ashley; Cooper, Samantha B.; Andino, Raul

    2012-01-01

    Summary RNA viruses exist as dynamic and diverse populations shaped by constant mutation and selection. Yet little is known about how the mutant spectrum contributes to virus evolvability and pathogenesis. Because several codon choices are available for a given amino acid, a central question concerns whether viral sequences have evolved to optimize not only the protein coding consensus, but also the DNA/RNA sequences accessible through mutation. Here we directly test this hypothesis by comparing wild type poliovirus to synthetic viruses carrying reengineered capsid sequences with hundreds of synonymous mutations. Strikingly, such rewiring of the population's mutant network reduced its robustness and attenuated the virus in an animal model of infection. We conclude that the position of a virus in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenicity. This organizing principle for RNA virus populations confers tolerance to mutations and facilitates replication and spread within the dynamic host environment. PMID:23159052

  18. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces

    PubMed Central

    Romero, Héctor; Zavala, Alejandro; Musto, Héctor

    2000-01-01

    The patterns of synonymous codon choices of the completely sequenced genome of the bacterium Chlamydia trachomatis were analysed. We found that the most important source of variation among the genes results from whether the sequence is located on the leading or lagging strand of replication, resulting in an over representation of G or C, respectively. This can be explained by different mutational biases associated to the different enzymes that replicate each strand. Next we found that most highly expressed sequences are located on the leading strand of replication. From this result, replicational-transcriptional selection can be invoked. Then, when the genes located on the leading strand are studied separately, the correspondence analysis detects a principal trend which discriminates between lowly and highly expressed sequences, the latter displaying a different codon usage pattern than the former, suggesting selection for translation, which is reinforced by the fact that Ks values between orthologous sequences from C.trachomatis and Chlamydia pneumoniae are much smaller in highly expressed genes. Finally, synonymous codon choices appear to be influenced by the hydropathy of each encoded protein and by the degree of amino acid conservation. Therefore, synonymous codon usage in C.trachomatis seems to be the result of a very complex balance among different factors, which rises the problem of whether the forces driving codon usage patterns among microorganisms are rather more complex than generally accepted. PMID:10773076

  19. Bicluster Pattern of Codon Context Usages between Flavivirus and Vector Mosquito Aedes aegypti: Relevance to Infection and Transcriptional Response of Mosquito Genes

    PubMed Central

    Behura, Susanta K.; Severson, David W.

    2014-01-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

  20. Classification of Arabidopsis thaliana gene sequences: clustering of coding sequences into two groups according to codon usage improves gene prediction.

    PubMed

    Mathé, C; Peresetsky, A; Déhais, P; Van Montagu, M; Rouzé, P

    1999-02-01

    While genomic sequences are accumulating, finding the location of the genes remains a major issue that can be solved only for about a half of them by homology searches. Prediction methods are thus required, but unfortunately are not fully satisfying. Most prediction methods implicitly assume a unique model for genes. This is an oversimplification as demonstrated by the possibility to group coding sequences into several classes in Escherichia coli and other genomes. As no classification existed for Arabidopsis thaliana, we classified genes according to the statistical features of their coding sequences. A clustering algorithm using a codon usage model was developed and applied to coding sequences from A. thaliana, E. coli, and a mixture of both. By using it, Arabidopsis sequences were clustered into two classes. The CU1 and CU2 classes differed essentially by the choice of pyrimidine bases at the codon silent sites: CU2 genes often use C whereas CU1 genes prefer T. This classification discriminated the Arabidopsis genes according to their expressiveness, highly expressed genes being clustered in CU2 and genes expected to have a lower expression, such as the regulatory genes, in CU1. The algorithm separated the sequences of the Escherichia-Arabidopsis mixed data set into five classes according to the species, except for one class. This mixed class contained 89 % Arabidopsis genes from CU1 and 11 % E. coli genes, mostly horizontally transferred. Interestingly, most genes encoding organelle-targeted proteins, except the photosynthetic and photoassimilatory ones, were clustered in CU1. By tailoring the GeneMark CDS prediction algorithm to the observed coding sequence classes, its quality of prediction was greatly improved. Similar improvement can be expected with other prediction systems. PMID:9925779

  1. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    PubMed

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index. PMID:26309237

  2. Over expression of a synthetic gene encoding interferon lambda using relative synonymous codon usage bias in Escherichia coli.

    PubMed

    Akhtar, Hashaam; Akhtar, Samar; Jan, Syed Umer; Khan, Azka; Zaidi, Najam us Sahar Sadaf; Qadri, Ishtiaq

    2013-11-01

    Interferon Lambda (IFN-λ) is a type III interferon which belongs to a novel family of cytokines and possesses antiviral and antitumor properties. It is unique in its own class of cytokines; because of the specificity towards its heterodimer receptors and its structural similarities with cytokines of other classes. This renders IFN-λ a better choice for the treatment against many diseases including viral hepatitis and human coronavirus (HCoV-EMC). The present study describes a computational approach known as relative synonymous codon usage (RSCU); used to enhance the expression of IFN-λ protein in a eukaryotic expression system. Manually designed and commercially synthesized IFN-λ gene was cloned into pET-22b expression plasmid under the control of inducible T7-lac promoter. Maximum levels of IFN-λ expression was observed with 0.4 mM IPTG in transformed E. coli incubated for 4 hours in LB medium. Higher concentrations of IPTG had no or negative effect on the expression of IFN-λ. This synthetically over expressed IFN-λ can be tested as a targeted treatment option for viral hepatitis after purification. PMID:24191324

  3. Hepatitis A Virus Adaptation to Cellular Shutoff Is Driven by Dynamic Adjustments of Codon Usage and Results in the Selection of Populations with Altered Capsids

    PubMed Central

    Costafreda, M. Isabel; Pérez-Rodriguez, Francisco J.; D'Andrea, Lucía; Guix, Susana; Ribes, Enric; Bosch, Albert

    2014-01-01

    ABSTRACT Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions. PMID:24554668

  4. Changing the Codon Usage of hfq Gene has Profound Effect on Phenotype and Pathogenicity of Salmonella Typhimurium.

    PubMed

    Behera, Parthasarathi; Kutty, V H Muhammed; Kumar, Ajeet; Sharma, Bhaskar

    2016-03-01

    Genome recoding with bias codons (synonymous rare codons) or codon pair bias is being used as a method to attenuate virulence mostly in viruses. The target gene chosen for attenuation in general in bacteria is mostly toxin or virulence gene. We have used RNA chaperone hfq, a global post-transcriptional regulator of bacterial gene expression that regulates about 20 % genes in Salmonella, as the target of recoding. The hfq gene was recoded by replacing the codons of hfq gene with synonymous rare codons. Recoding decreased the expression of Hfq protein about two-fold in the mutant as compared to the parent strain. Recoding did not affect growth kinetics, but in growth competition the mutant strain was outcompeted by the parent strain. There was significant decrease in survivability of mutant strain in macrophage as compared to the parent strain. The biofilm formation was significantly impaired in case of recoded mutant. The mutants were also less motile as compared to the parent strain. Intraperitoneal infection of mice with the mutant strain had shown better survival as compared to parent strain. The results show that recoding is an effective method of reducing virulence. PMID:26620536

  5. Gene Expression Levels Are Correlated with Synonymous Codon Usage, Amino Acid Composition, and Gene Architecture in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Williford, Anna; Demuth, Jeffery P.

    2012-01-01

    Gene expression levels correlate with multiple aspects of gene sequence and gene structure in phylogenetically diverse taxa, suggesting an important role of gene expression levels in the evolution of protein-coding genes. Here we present results of a genome-wide study of the influence of gene expression on synonymous codon usage, amino acid composition, and gene structure in the red flour beetle, Tribolium castaneum. Consistent with the action of translational selection, we find that synonymous codon usage bias increases with gene expression. However, the correspondence between tRNA gene copy number and optimal codons is weak. At the amino acid level, translational selection is suggested by the positive correlation between tRNA gene numbers and amino acid usage, which is stronger for highly expressed genes. In addition, there is a clear trend for increased use of metabolically cheaper, less complex amino acids as gene expression increases. tRNA gene numbers also correlate negatively with amino acid size/complexity (S/C) score indicating the coupling between translational selection and selection to minimize the use of large/complex amino acids. Interestingly, the analysis of 10 additional genomes suggests that the correlation between tRNA gene numbers and amino acid S/C score is widespread and might be explained by selection against negative consequences of protein misfolding. At the level of gene structure, three major trends are detected: 1) complete coding region length increases across low and intermediate expression levels but decreases in highly expressed genes; 2) the average intron size shows the opposite trend, first decreasing with expression, followed by a slight increase in highly expressed genes; and 3) intron density remains nearly constant across all expression levels. These changes in gene architecture are only in partial agreement with selection favoring reduced cost of biosynthesis. PMID:22826459

  6. Different patterns of codon usage in the overlapping polymerase and surface genes of hepatitis B virus suggest a de novo origin by modular evolution.

    PubMed

    Pavesi, Angelo

    2015-12-01

    The polymerase (P) and surface (S) genes of hepatitis B virus (HBV) show the longest gene overlap in animal viruses. Gene overlaps originate by the overprinting of a novel frame onto an ancestral pre-existing frame. Identifying which frame is ancestral and which frame is de novo (the genealogy of the overlap) is an appealing topic. However, the P/S overlap of HBV is an intriguing paradox, because both genes are indispensable for virus survival. Thus, the hypothesis of a primordial virus without the surface protein or without the polymerase makes no biological sense. With the aim to determine the genealogy of the overlap, the codon usage of the overlapping frames P and S was compared to that of the non-overlapping region. It was found that the overlap of human HBV had two patterns of codon usage. One was localized in the 59 one-third of the overlap and the other in the 39 two-thirds. By extending the analysis to non-human HBVs, it was found that this feature occurred in all hepadnaviruses. Under the assumption that the ancestral frame has a codon usage significantly closer to that of the non-overlapping region than the de novo frame, the ancestral frames in the 59 and 39 region of the overlap could be predicted. They were, respectively, frame S and frame P. These results suggest that the spacer domain of the polymerase and the S domain of the surface protein originated de novo by overprinting. They support a modular evolution hypothesis for the origin of the overlap. PMID:26446206

  7. High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator.

    PubMed

    Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi

    2011-01-01

    In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage. PMID:21076835

  8. Codon usage, genetic code and phylogeny of Dictyostelium discoideum mitochondrial DNA as deduced from a 7.3-kb region.

    PubMed

    Angata, K; Kuroe, K; Yanagisawa, K; Tanaka, Y

    1995-02-01

    We have sequenced a region (7,376-bp) of the mitochondrial (mt) DNA (54 kb) of the cellular slime mold, Dictyostelium discoideum. From the DNA and amino-acid sequence comparisons with known sequences, genes for ATPase subunit 9 (ATP9), cytochrome b (CYTB), NADH dehydrogenase subunits 1, 3 and 6 (ND1, ND3 and ND6), small subunit rRNA (SSU rRNA) and seven tRNAs (Arg, Asn, Cys, Lys, f-Met, Met and Pro) have been identified. The sequenced region of the mtDNA has a high average A + T-content (70.8%). The A + T-content of protein-genes (73.6%) is considerably higher than that of RNA genes (61.3%). Even with the strong AT-bias, the genetic code employed is most probably the universal one. All seven tRNAs are able to form typical clover leaf structures. The molecular phylogenetic trees of CYTB and SSU rRNA suggest that D. discoideum is closer to green plants than to animals and fungi. PMID:7736610

  9. Codon Adaptation of Plastid Genes.

    PubMed

    Suzuki, Haruo; Morton, Brian R

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  10. Codon Adaptation of Plastid Genes

    PubMed Central

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  11. Comparison of two codon optimization strategies enhancing recombinant Sus scrofa lysozyme production in Pichia pastoris.

    PubMed

    Zhu, D; Cai, G; Wu, D; Lu, J

    2015-01-01

    Lysozyme has played an important role in animal feed additive industry, food additive industry and biological engineering. For improving expression efficiency of recombinant lysozyme from Sus scrofa, two genes respectively designed by the most used codon optimization strategies, "one amino acid one codon" and "codon randomization", were synthesized and expressed in Pichia pastoris X—33. At shaking flask level, Sus scrofa lysozyme (SSL) under two conditions had a highest activity of 153.33±10.41 and 538.33±15.18 U/mL after a 5 days induction of 1% methanol, with secreted protein concentration 80.03±1.94 and 239.60±4.16 mg/L, respectively. Compared with the original SSL gene, the expression of optimized SSL gene by the second strategy showed a 2.6 fold higher level, while the first method had no obvious improvement in production. In total secreted protein, the proportions of recombinant SSL encoded by the original gene, first method optimized gene and the second—strategy optimized one were 75.06±0.25%, 74.56±0.14% and 79.00±0.14%, respectively, with the same molecular weight about 18 kDa, optimum acidity pH 6.0 and optimum temperature 35degC. PMID:26025401

  12. Optimal codons in Tremella fuciformis end in C/G, a strong difference with known Tremella species.

    PubMed

    Deng, Youjin; Huang, Xiaoxing; Ruan, Banzhan; Xie, Baogui; van Peer, Arend Frans; Jiang, Yuji

    2015-11-01

    Tremella fuciformis is a popular edible fungus with fruiting bodies that can be produced in large quantities at low costs, while it is easy to transform and cultivate as yeast. This makes it an attractive potential bioreactor. Enhanced heterologous gene expression through codon optimization would be useful, but until now codon usage preferences in T. fuciformis remain unknown. To precisely determine the preferred codon usage of T. fuciformis we sequenced the genome of strain Tr26 resulting in a 24.2 Mb draft genome with 10,040 predicted genes. 3288 of the derived predicted proteins matched the UniProtKB/Swiss-Prot databases with 40% or more similarity. Corresponding gene models of this subset were subsequently optimized through repetitive comparison of alternative start codons and selection of best length matching gene models. For experimental confirmation of gene models, 96 random clones from an existing T. fuciformis cDNA library were sequenced, generating 80 complete CDSs. Calculated optimal codons for the 3288 predicted and the 80 cloned CDSs were highly similar, indicating sufficient accuracy of predicted gene models for codon usage analysis. T. fuciformis showed a strong preference for C and then G at the third base pair position of used codons, while average GC content of predicted genes was slightly higher than the total genome sequence average. Most optimal codons ended in C or G except for one, and an increased frequency of C ending codons was observed in genes with higher expression levels. Surprisingly, the preferred codon usage in T. fuciformis strongly differed from T. mesenterica and C. neoformans. Instead, optimal codon usage was similar to more distant related species such as Ustilago maydis and Neurospora crassa. Despite much higher overall sequence homology between T. fuciformis and T. mesenterica, only 7 out of 21 optimal codons were equal, whereas T. fuciformis shared up to 20 out of 21 optimal codons with other species. Clearly, codon usage in

  13. Translation attenuation via 3' terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk.

    PubMed

    Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P

    2015-01-01

    The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5' and 3' UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5' and 3' UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3' terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667

  14. Translation attenuation via 3′ terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk

    PubMed Central

    Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P

    2015-01-01

    The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5′ and 3′ UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5′ and 3′ UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3′ terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667

  15. A Comparison of English Teachers' Own Usage with Their Attitudes Toward Usage.

    ERIC Educational Resources Information Center

    Johnson, Robert Spencer

    In spoken and written situations which focused the teachers' attentions on information rather than on their language, samples of 100 English teachers' actual language were obtained with respect to five debatable usages: "everybody...their,""reason...is because,""who" as an object pronoun, "will/would" with the first person subject to express…

  16. Negative Consequences of Undergraduate Alcohol Usage: A Multivariate Gender Comparison.

    ERIC Educational Resources Information Center

    Robinson, Leonald D.

    This study examined whether female undergraduate students who share with male undergraduates similar demographics, perceptions, and alcohol use locations, also share similar alcohol usage patterns, negative consequences, and predictors for both. Secondary analysis was conducted using 1992 and 1993 U.S. Department of Education Core Survey data…

  17. Cellular immunity survey against urinary tract infection using pVAX/fimH cassette with mammalian and wild type codon usage as a DNA vaccine

    PubMed Central

    Bagherpour, Ghasem; Khoramabadi, Nima; Fallah Mehrabadi, Jalil; Mahdavi, Mehdi; Halabian, Raheleh; Amin, Mohsen; Izadi Mobarakeh, Jalal; Einollahi, Behzad

    2014-01-01

    Purpose FimH (the adhesion fragment of type 1 fimbriae) is implicated in uropathogenic Escherichia coli (UPEC) attachment to epithelial cells through interaction with mannose. Recently, some studies have found that UPEC can thrive intracellularly causing recurrent urinary tract infection (UTI). Almost all vaccines have been designed to induce antibodies against UPEC. Yet, the humoral immune response is not potent enough to overcome neither the primary UTI nor recurrent infections. However, DNA vaccines offer the possibility of inducing cell mediated immune responses and may be a promising preventive tool. Materials and Methods In this study, we employed two different open reading frames within mammalian (mam) and wild type (wt) codons of fimH gene. Optimized fragments were cloned in pVAX-1. Expression of the protein in COS-7 was confirmed by western blot analysis after assessing pVAX/fimH(mam) and pVAX/fimH(wt). The constructs were injected to BALB/c mice at plantar surface of feet followed by electroporation. Results The mice immunized with both constructs following booster injection with recombinant FimH showed increased interferon-γ and interleukin-12 responses significantly higher than non-immunized ones (p<0.05). The immunized mice were challenged with UPEC and then the number of bacteria recovered from the immunized mice was compared with the non-immunized ones. Decreased colony count in immunized mice along with cytokine responses confirmed the promising immune response by the DNA vaccines developed in this study. Conclusion In conclusion, DNA vaccines of UPEC proteins may confer some levels of protection which can be improved by multiple constructs or boosters. PMID:25003092

  18. A codon-usage variant in the (GGN){sub n} trinucleotide polymorphism of the androgen receptor gene as an aid in the prenatal diagnosis of ambiguous genitalia due to partial androgen insensitivity

    SciTech Connect

    Lumbroso, R.; Vasiliou, M.; Beitel, L.K.

    1994-09-01

    Exon 1 at the X-linked androgen receptor (AR) locus encodes an N-terminal modulatory domain that contains two large homopolyamino acid tracts: (CAG;glutamine;Gln){sub 11-33} and (GGN;Glycine;Cly){sub 15-27}. Certain AR mutations cause partial androgen insensitivity (PAI) with frank genital ambiguity that may engender appreciable parental anxiety and patient morbidity. If the AR mutation in a PAI family is unknown, the AR`s intragenic trinucleotide repeat polymorphisms may be used for prenatal diagnosis. However, intergenerational instability of repeat-size may be worrisome, particularly when the information alleles differ by only a few repeats. Here, we report the discovery of a codon-usage (silent substitution) variant in the GGN repeat, and describe its use as a source of complementary information for prenatal diagnosis. The standard sense sequence of the (GGN){sub n} tract is (GGT){sub 3} GGG(GGT){sub 2} (GGC){sub 9-21}. On 4 of 27 X chromosomes we noted that the internal GGT sequence was expanded to 3 or 4 repeats. We used an internal (GGT){sub 4} repeat in a total (GGN){sub 24} tract together with a (CAG){sub 20} tract to distinguish an X chromosome with a mutant AR allele from another X chromosome, bearing a normal allele, that had an internal (GGT){sub 2} repeat in a total (GGN){sub 23} tract together with a (CAG){sub 21} tract. Subsequently, we found the base change leading to a pathogenic amino acid substitution (M779I) in codon 6 of the mutant AR gene in an affected maternal aunt and the fetus at risk. This confirmed the prenatal diagnosis based on the intragenic trinucleotide repeat polymorphisms, and it strengthened the prediction of external genital ambiguity using our previous experience with M779I in another family.

  19. Negative comparisons about one's appearance mediate the relationship between Facebook usage and body image concerns.

    PubMed

    Fardouly, Jasmine; Vartanian, Lenny R

    2015-01-01

    Use of social media, such as Facebook, is pervasive among young women. Body dissatisfaction is also highly prevalent in this demographic. The present study examined the relationship between Facebook usage and body image concerns among female university students (N=227), and tested whether appearance comparisons on Facebook in general, or comparisons to specific female target groups (family members, close friends, distant peers [women one may know but do not regularly socialize with], celebrities) mediated this relationship. Results showed a positive relationship between Facebook usage and body image concerns, which was mediated by appearance comparisons in general, frequency of comparisons to close friends and distant peers, and by upward comparisons (judging one's own appearance to be worse) to distant peers and celebrities. Thus, young women who spend more time on Facebook may feel more concerned about their body because they compare their appearance to others (especially to peers) on Facebook. PMID:25462886

  20. ICT Usage of Pre-service Teachers: Cultural Comparison for Turkey and Bosnia and Herzegovina

    ERIC Educational Resources Information Center

    Demirli, Cihad

    2013-01-01

    The importance of ICTs has become the undisputed in the present century. Studies have been conducted to investigate the use of ICTs with the goal of increase in quality of teacher education for a long time. This study is a cross-cultural comparison in terms of pre-service teachers' level of ICT usage, ICT knowledge and attitudes. The study…

  1. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics.

    PubMed

    Lin, Kui; Kuang, Yuyu; Joseph, Jeremiah S; Kolatkar, Prasanna R

    2002-06-01

    Genomics projects have resulted in a flood of sequence data. Functional annotation currently relies almost exclusively on inter-species sequence comparison and is restricted in cases of limited data from related species and widely divergent sequences with no known homologs. Here, we demonstrate that codon composition, a fusion of codon usage bias and amino acid composition signals, can accurately discriminate, in the absence of sequence homology information, cytoplasmic ribosomal protein genes from all other genes of known function in Saccharomyces cerevisiae, Escherichia coli and Mycobacterium tuberculosis using an implementation of support vector machines, SVM(light). Analysis of these codon composition signals is instructive in determining features that confer individuality to ribosomal protein genes. Each of the sets of positively charged, negatively charged and small hydrophobic residues, as well as codon bias, contribute to their distinctive codon composition profile. The representation of all these signals is sensitively detected, combined and augmented by the SVMs to perform an accurate classification. Of special mention is an obvious outlier, yeast gene RPL22B, highly homologous to RPL22A but employing very different codon usage, perhaps indicating a non-ribosomal function. Finally, we propose that codon composition be used in combination with other attributes in gene/protein classification by supervised machine learning algorithms. PMID:12034849

  2. Clustering of classical swine fever virus isolates by codon pair bias

    PubMed Central

    2011-01-01

    Background The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated. Results The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution. Conclusion Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates. PMID:22126254

  3. The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    PubMed Central

    Sengupta, Supratim; Yang, Xiaoguang

    2007-01-01

    Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully. Electronic supplementary material The online version of this article (doi:10.1007/s00239-006-0284-7) contains supplementary material, which is available to authorized users. PMID:17541678

  4. [A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos].

    PubMed

    Fenghua, Zhang; Houpeng, Wang; Siyu, Huang; Feng, Xiong; Zuoyan, Zhu; Yonghua, Sun

    2016-02-01

    Recent years have witnessed the rapid development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas9)system. In order to realize gene knockout with high efficiency and specificity in zebrafish, several labs have synthesized distinct Cas9 cDNA sequences which were cloned into different vectors. In this study, we chose two commonly used zebrafish-codon-optimized Cas9 coding sequences (zCas9_bz, zCas9_wc) from two different labs, and utilized them to knockout seven genes in zebrafish embryos, including the exogenous egfp and six endogenous genes (chd, hbegfa, th, eef1a1b, tyr and tcf7l1a). We compared the knockout efficiencies resulting from the two zCas9 coding sequences, by direct sequencing of PCR products, colony sequencing and phenotypic analysis. The results showed that the knockout efficiency of zCas9_wc was higher than that of zCas9_bz in all conditions. PMID:26907778

  5. Codon compression algorithms for saturation mutagenesis.

    PubMed

    Pines, Gur; Pines, Assaf; Garst, Andrew D; Zeitoun, Ramsey I; Lynch, Sean A; Gill, Ryan T

    2015-05-15

    Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency. PMID:25303315

  6. Impact of rare codons and the functional coproduction of rate-limiting tRNAs on recombinant protein production in Bacillus megaterium.

    PubMed

    Finger, Constanze; Gamer, Martin; Klunkelfuß, Saskia; Bunk, Boyke; Biedendieck, Rebekka

    2015-11-01

    The Gram-positive bacterium Bacillus megaterium was systematically developed for the plasmid-based production of recombinant proteins at the gram-per-liter scale. The amount of protein produced per cell was found strongly correlated to the codon usage of the heterologous gene of interest in comparison to the codon usage of B. megaterium. For analyzing the influence of rare codons on the translational efficiency and protein production in B. megaterium, a test system using the gene for the green fluorescent protein (GFP) as reporter was established. For this purpose, four consecutive identical codons were introduced into the 5' end of gfp and the resulting variations in GFP formation were quantified. Introduction of the rare codons GCC, CGG, and ACC for alanine, arginine, and threonine reduced GFP production 2.1-, 3.3-, and 1.7-fold in comparison to the favored codons GCU, CGU, and ACA, respectively. Coexpression of the corresponding rare codon tRNA (rctRNA) genes improved GFP production 4.2-, 2.7-, and 1.7-fold, respectively. The system was applied to the production of a formate dehydrogenase (FDH) from Mycobacterium vaccae and an extracellular hydrolase (TFH) from Thermobifida fusca. Coexpression of one to three different rctRNA genes resulted in an up to 18-fold increased protein production. Interestingly, rctRNA gene coexpression also elevated the production of M. vaccae FDH and T. fusca TFH from codon optimized genes, indicating a general positive effect by rctRNA gene overexpression on the protein production in B. megaterium. Thus, the basis for a B. megaterium enhanced production strain coexpressing rctRNA genes was laid. PMID:26138251

  7. Codon Bias Patterns of E. coli’s Interacting Proteins

    PubMed Central

    Dilucca, Maddalena; Cimini, Giulio; Semmoloni, Andrea; Deiana, Antonio; Giansanti, Andrea

    2015-01-01

    Synonymous codons, i.e., DNA nucleotide triplets coding for the same amino acid, are used differently across the variety of living organisms. The biological meaning of this phenomenon, known as codon usage bias, is still controversial. In order to shed light on this point, we propose a new codon bias index, CompAI, that is based on the competition between cognate and near-cognate tRNAs during translation, without being tuned to the usage bias of highly expressed genes. We perform a genome-wide evaluation of codon bias for E.coli, comparing CompAI with other widely used indices: tAI, CAI, and Nc. We show that CompAI and tAI capture similar information by being positively correlated with gene conservation, measured by the Evolutionary Retention Index (ERI), and essentiality, whereas, CAI and Nc appear to be less sensitive to evolutionary-functional parameters. Notably, the rate of variation of tAI and CompAI with ERI allows to obtain sets of genes that consistently belong to specific clusters of orthologous genes (COGs). We also investigate the correlation of codon bias at the genomic level with the network features of protein-protein interactions in E.coli. We find that the most densely connected communities of the network share a similar level of codon bias (as measured by CompAI and tAI). Conversely, a small difference in codon bias between two genes is, statistically, a prerequisite for the corresponding proteins to interact. Importantly, among all codon bias indices, CompAI turns out to have the most coherent distribution over the communities of the interactome, pointing to the significance of competition among cognate and near-cognate tRNAs for explaining codon usage adaptation. Notably, CompAI may potentially correlate with translation speed measurements, by accounting for the specific delay induced by wobble-pairing between codons and anticodons. PMID:26566157

  8. Comparative context analysis of codon pairs on an ORFeome scale

    PubMed Central

    Moura, Gabriela; Pinheiro, Miguel; Silva, Raquel; Miranda, Isabel; Afreixo, Vera; Dias, Gaspar; Freitas, Adelaide; Oliveira, José L; Santos, Manuel AS

    2005-01-01

    Codon context is an important feature of gene primary structure that modulates mRNA decoding accuracy. We have developed an analytical software package and a graphical interface for comparative codon context analysis of all the open reading frames in a genome (the ORFeome). Using the complete ORFeome sequences of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Escherichia coli, we show that this methodology permits large-scale codon context comparisons and provides new insight on the rules that govern the evolution of codon-pair context. PMID:15774029

  9. Stop codons in bacteria are not selectively equivalent

    PubMed Central

    2012-01-01

    Background The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes. Results We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG. Conclusions Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications. Reviewers This article was reviewed by Michail Gelfand, Arcady Mushegian and Shamil Sunyaev. For the full reviews, please go to the Reviewers’ Comments section. PMID:22974057

  10. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  11. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  12. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  13. Towards Improved Quality of GPCR Models by Usage of Multiple Templates and Profile-Profile Comparison

    PubMed Central

    Latek, Dorota; Pasznik, Pawel; Carlomagno, Teresa; Filipek, Slawomir

    2013-01-01

    G-protein coupled receptors (GPCRs) are targets of nearly one third of the drugs at the current pharmaceutical market. Despite their importance in many cellular processes the crystal structures are available for less than 20 unique GPCRs of the Rhodopsin-like class. Fortunately, even though involved in different signaling cascades, this large group of membrane proteins has preserved a uniform structure comprising seven transmembrane helices that allows quite reliable comparative modeling. Nevertheless, low sequence similarity between the GPCR family members is still a serious obstacle not only in template selection but also in providing theoretical models of acceptable quality. An additional level of difficulty is the prediction of kinks and bulges in transmembrane helices. Usage of multiple templates and generation of alignments based on sequence profiles may increase the rate of success in difficult cases of comparative modeling in which the sequence similarity between GPCRs is exceptionally low. Here, we present GPCRM, a novel method for fast and accurate generation of GPCR models using averaging of multiple template structures and profile-profile comparison. In particular, GPCRM is the first GPCR structure predictor incorporating two distinct loop modeling techniques: Modeller and Rosetta together with the filtering of models based on the Z-coordinate. We tested our approach on all unique GPCR structures determined to date and report its performance in comparison with other computational methods targeting the Rhodopsin-like class. We also provide a database of precomputed GPCR models of the human receptors from that class. Availability GPCRM server and database: http://gpcrm.biomodellab.eu PMID:23468878

  14. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo

    PubMed Central

    Pechmann, Sebastian; Chartron, Justin W; Frydman, Judith

    2015-01-01

    The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35–40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome. PMID:25420103

  15. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.

    PubMed

    Pechmann, Sebastian; Chartron, Justin W; Frydman, Judith

    2014-12-01

    The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35-40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome. PMID:25420103

  16. Translationally optimal codons associate with aggregation-prone sites in proteins.

    PubMed

    Lee, Yaelim; Zhou, Tong; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Wilke, Claus O

    2010-12-01

    We analyze the relationship between codon usage bias and residue aggregation propensity in the genomes of four model organisms, Escherichia coli, yeast, fly, and mouse, as well as the archaeon Halobacterium species NRC-1. Using the Mantel-Haenszel procedure, we find that translationally optimal codons associate with aggregation-prone residues. Our results are qualitatively and quantitatively similar to those of an earlier study where we found an association between translationally optimal codons and buried residues. We also combine the aggregation-propensity data with solvent-accessibility data. Although the resulting data set is small, and hence statistical power low, results indicate that the association between optimal codons and aggregation-prone residues exists both at buried and at exposed sites. By comparing codon usage at different combinations of sites (exposed, aggregation-prone sites versus buried, non-aggregation-prone sites; buried, aggregation-prone sites versus exposed, non-aggregation-prone sites), we find that aggregation propensity and solvent accessibility seem to have independent effects of (on average) comparable magnitude on codon usage. Finally, in fly, we assess whether optimal codons associate with sites at which amino acid substitutions lead to an increase in aggregation propensity, and find only a very weak effect. These results suggest that optimal codons may be required to reduce the frequency of translation errors at aggregation-prone sites that coincide with certain functional sites, such as protein-protein interfaces. Alternatively, optimal codons may be required for rapid translation of aggregation-prone regions. PMID:21046618

  17. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...

  18. Enhanced expression of codon optimized interferon gamma in CHO cells.

    PubMed

    Chung, Bevan Kai-Sheng; Yusufi, Faraaz N K; Mariati; Yang, Yuansheng; Lee, Dong-Yup

    2013-09-10

    The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence. Therefore, we demonstrated the application of a recently developed codon optimization approach to design synthetic IFN-γ coding sequences for enhanced heterologous expression in CHO cells. For codon optimization, earlier studies suggested to establish the target usage distribution pattern in terms of selected design parameters such as individual codon usage (ICU) and codon context (CC), mainly based on the host's highly expressed genes. However, our RNA-Seq based transcriptome profiling indicated that the ICU and CC distribution patterns of different gene expression classes in CHO cell are relatively similar, unlike other microbial expression hosts, Escherichia coli and Saccharomyces cerevisiae. This finding was further corroborated through the in vivo expression of various ICU and CC optimized IFN-γ in CHO cells. Interestingly, the CC-optimized genes exhibited at least 13-fold increase in expression level compared to the wild-type IFN-γ while a maximum of 10-fold increase was observed for the ICU-optimized genes. Although design criteria based on individual codons, such as ICU, have been widely used for gene optimization, our experimental results suggested that codon context is relatively more effective parameter for improving recombinant IFN-γ expression in CHO cells. PMID:23876479

  19. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5

    PubMed Central

    Yan, Qing; Philmus, Benjamin; Hesse, Cedar; Kohen, Max; Chang, Jeff H.; Loper, Joyce E.

    2016-01-01

    The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNAUCUArg, the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium. PMID:27148187

  20. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5.

    PubMed

    Yan, Qing; Philmus, Benjamin; Hesse, Cedar; Kohen, Max; Chang, Jeff H; Loper, Joyce E

    2016-01-01

    The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNA[Formula: see text], the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium. PMID:27148187

  1. Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States

    PubMed Central

    Villar, Diego; White, Robert J.; Marioni, John C.; Kutter, Claudia

    2016-01-01

    Whether codon usage fine-tunes mRNA translation in mammals remains controversial, with recent papers suggesting that production of proteins in specific Gene Ontological (GO) pathways can be regulated by actively modifying the codon and anticodon pools in different cellular conditions. In this work, we compared the sequence content of genes in specific GO categories with the exonic genome background. Although a substantial fraction of variability in codon usage could be explained by random sampling, almost half of GO sets showed more variability in codon usage than expected by chance. Nevertheless, by quantifying translational efficiency in healthy and cancerous tissues in human and mouse, we demonstrated that a given tRNA pool can equally well translate many different sets of mRNAs, irrespective of their cell-type specificity. This disconnect between variations in codon usage and the stability of translational efficiency is best explained by differences in GC content between gene sets. GC variation across the mammalian genome is most likely a result of the interplay between genome repair and gene duplication mechanisms, rather than selective pressures caused by codon-driven translational rates. Consequently, codon usage differences in mammalian transcriptomes are most easily explained by well-understood mutational biases acting on the underlying genome. PMID:27166679

  2. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.

    PubMed

    Samant, Shalaka; Gupta, Gunja; Karthikeyan, Subbulakshmi; Haq, Saiful F; Nair, Ayyappan; Sambasivam, Ganesh; Sukumaran, Sunilkumar

    2014-09-01

    Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest. PMID:25038884

  3. Worksheet Usage, Reading Achievement, Classes' Lack of Readiness, and Science Achievement: A Cross-Country Comparison

    ERIC Educational Resources Information Center

    Lee, Che-Di

    2014-01-01

    Instructional written materials play important roles as teachers' agents in effective teaching practices. Worksheets are one of the most frequently used materials. In this exploratory study, the relationships between worksheet usage and science achievement in 32 countries were examined through the use of TIMSS and PIRLS data and multiple…

  4. Stop Codon Reassignment in the Wild

    SciTech Connect

    Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James; Rinke, Christian; Pati, Amrita; Huntemann, Marcel; Visel, Axel; Woyke, Tanja; Kyrpides, Nikos; Rubin, Edward

    2014-03-21

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hosts must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences

  5. First impression versus extended usage: a comparison of product testing methodologies for perfume.

    PubMed

    Shalofsky, I

    1993-04-01

    Synopsis In the fine fragrance industry, unlike many other fast moving consumer goods (fmcg) industries, systematic consumer product-testing has usually been conspicuous by its absence. The reasons are varied, including perfume's own traditions rooted in fashion rather than in marketing, the reluctance of perfumers to see their creations tested, the frequently (and perhaps, surprisingly) short lead times accorded for new product development and, of course, costs. When consumer product-testing is carried out, it is often limited for these same reasons, to 'sniff-testing', which, in the perfume industry, is equivalent to 'first impression' testing. This paper suggests that such sniff-testing may not only be unreliable, but perhaps more unreliable for the perfume category than has been realized hitherto. Reference is made to two consumer research studies on perfume, a qualitative project in France, followed by a quantitative exercise in the UK. A comparison is made between in-home test and sniff-test results for the same set of perfumes, which illustrates the limitations of sniff-testing in general, and the misleading results that it may produce, in particular. A major implication is that perfume is one product category which should be tested in extended usage, and not just for 'first impressions'. Résumé Dans l'industrie de la parfumerie fine, contrairement aux autres industries de produits de grande consommation, les tests consommateurs systématiques sont rarement utilisés. Les raisons sont diverses; les traditions propres du parfum tournées vers la mode plutôt que vers le marketing, le refus des parfumeurs de voir leurs créations subir des tests, les délais étonnamment courts pour le développement d'un nouveau produit et, bien sûr, le coût. Lorsqu'un test consommateurs est effectué, il se résume généralement pour ces mêmes raisons, en un test 'sniff', ce qui, dans l'industrie du parfum équivaut à un test de 'première impression'. Cet article

  6. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells.

    PubMed

    Ang, Kok Siong; Kyriakopoulos, Sarantos; Li, Wei; Lee, Dong-Yup

    2016-06-01

    In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design. PMID:26850284

  7. Control of ribosome traffic by position-dependent choice of synonymous codons

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Pedersen, Steen

    2013-10-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species.

  8. Prevalent Accumulation of Non-Optimal Codons through Somatic Mutations in Human Cancers

    PubMed Central

    Wu, Xudong; Li, Guohui

    2016-01-01

    Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent studies have shown that non-optimal codons were preferentially adopted by genes to generate cell cycle-dependent oscillations in protein levels. This raises the intriguing question of how dynamic changes of codon usage modulate the cancer genome to cope with a non-controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic mutations of codons in human cancers, and found that non-optimal codons tended to be accumulated through both synonymous and non-synonymous mutations compared with other types of genomic substitution. We further demonstrated that non-optimal codons were prevalently accumulated across different types of cancers, amino acids, and chromosomes, and genes with accumulation of non-optimal codons tended to be involved in protein interaction/signaling networks and encoded important enzymes in metabolic networks that played roles in cancer-related pathways. This study provides insights into the dynamics of codons in the cancer genome and demonstrates that accumulation of non-optimal codons may be an adaptive strategy for cancerous cells to win the competition with normal cells. This deeper interpretation of the patterns and the functional characterization of somatic mutations of codons will help to broaden the current understanding of the molecular basis of cancers. PMID:27513638

  9. The Levels of Speech Usage Rating Scale: Comparison of Client Self-Ratings with Speech Pathologist Ratings

    ERIC Educational Resources Information Center

    Gray, Christina; Baylor, Carolyn; Eadie, Tanya; Kendall, Diane; Yorkston, Kathryn

    2012-01-01

    Background: The term "speech usage" refers to what people want or need to do with their speech to fulfil the communication demands in their life roles. Speech-language pathologists (SLPs) need to know about clients' speech usage to plan appropriate interventions to meet their life participation goals. The Levels of Speech Usage is a categorical…

  10. Kenyan medicinal plants used as antivenin: a comparison of plant usage

    PubMed Central

    Owuor, Bethwell O; Kisangau, Daniel P

    2006-01-01

    The success of snake bite healers is vaguely understood in Kenya, partly due to their unknown materia medica and occult-mystical nature of their practice. A comparison is made of plants used in snake bite treatments by two culturally distinct African groups (the Kamba and Luo). Thirty two plants used for snakebite treatment are documented. The majority of the antidotes are prepared from freshly collected plant material – frequently leaves. Though knowledge of snake bite conditions etiological perceptions of the ethnic groups is similar, field ethnobotanical data suggests that plant species used by the two ethnic groups are independently derived. Antivenin medicinal plants effectively illustrate the cultural context of medicine. Randomness or the use of a variety of species in different families appears to be a feature of traditional snake bite treatments. A high degree of informant consensus for the species was observed. The study indicates rural Kenya inhabitants rely on medicinal plants for healthcare. PMID:16451723

  11. CUE USAGE IN VOLLEYBALL: A TIME COURSE COMPARISON OF ELITE, INTERMEDIATE AND NOVICE FEMALE PLAYERS

    PubMed Central

    Vaeyens, R; Zeuwts, L; Philippaerts, R; Lenoir, M

    2014-01-01

    This study compared visual search strategies in adult female volleyball players of three levels. Video clips of the attack of the opponent team were presented on a large screen and participants reacted to the final pass before the spike. Reaction time, response accuracy and eye movement patterns were measured. Elite players had the highest response accuracy (97.50 ± 3.5%) compared to the intermediate (91.50 ± 4.7%) and novice players (83.50 ± 17.6%; p<0.05). Novices had a remarkably high range of reaction time but no significant differences were found in comparison to the reaction time of elite and intermediate players. In general, the three groups showed similar gaze behaviour with the apparent use of visual pivots at moments of reception and final pass. This confirms the holistic model of image perception for volleyball and suggests that expert players extract more information from parafoveal regions. PMID:25609887

  12. Intercultural Usage of Mori Folium: Comparison Review from a Korean Medical Perspective

    PubMed Central

    Joh, Byungjin; Jeon, Eun Sang; Lim, Su Hye; Park, Yu Lee; Park, Wansu; Chae, Han

    2015-01-01

    Objectives. A review on studies related to the use of Mori folium, the leaves of Morus alba, was conducted with the goal of identifying new clinical applications in Korean medicine. Methods. Global literature search was conducted using three electronic databases up to January 2015 with the term Morus alba and its Korean terms. KM literatures including textbooks and standard pharmacopoeia were separately hand-searched and reviewed to provide comparison. Data were extracted according to predetermined criteria, and clinical uses were standardized with ICD-10 categories. Results. 159 potentially relevant studies were identified, and 18 articles including 12 ethnopharmacologic and 6 clinical studies were finally included in this analysis. Ethnopharmacologic studies from 8 countries provided 17 clinical uses. We found that five out of six clinical trials were related to diabetes and suggested a moderate short-term to mild long-term effect. And 43 Korean texts also provided 156 clinical uses in 35 categories including ocular and respiratory disorders. Discussion and Conclusions. Though majority of the clinical uses were also found in Korean medicine literature, treatment of infertility, jaundice, cognitive disorder, and hyperpigmentation was found to be effective and diabetes with Morus alba was recognized to have clinical importance. PMID:26539223

  13. Vertebrate codon bias indicates a highly GC-rich ancestral genome.

    PubMed

    Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei

    2013-04-25

    Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. PMID:23376453

  14. Computational codon optimization of synthetic gene for protein expression

    PubMed Central

    2012-01-01

    Background The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. Results In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. Conclusions The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology. PMID:23083100

  15. Usage Automata

    NASA Astrophysics Data System (ADS)

    Bartoletti, Massimo

    Usage automata are an extension of finite stata automata, with some additional features (e.g. parameters and guards) that improve their expressivity. Usage automata are expressive enough to model security requirements of real-world applications; at the same time, they are simple enough to be statically amenable, e.g. they can be model-checked against abstractions of program usages. We study here some foundational aspects of usage automata. In particular, we discuss about their expressive power, and about their effective use in run-time mechanisms for enforcing usage policies.

  16. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum.

    PubMed

    Panicker, Indu S; Browning, Glenn F; Markham, Philip F

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  17. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum

    PubMed Central

    Panicker, Indu S.; Browning, Glenn F.; Markham, Philip F.

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  18. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  19. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    PubMed

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  20. CodHonEditor: Spreadsheets for Codon Optimization and Editing of Protein Coding Sequences.

    PubMed

    Takai, Kazuyuki

    2016-05-01

    Gene synthesis is getting more important with the growing availability of low-cost commercial services. The coding sequences are often "optimized" as for the relative synonymous codon usage (RSCU) before synthesis, which is generally included in the commercial services. However, the codon optimization processes are different among different providers and are often hidden from the users. Here, the d'Hondt method, which is widely adopted as a method for determining the number of seats for each party in proportional-representation public elections, is applied to RSCU fitting. This allowed me to make a set of electronic spreadsheets for manual design of protein coding sequences for expression in Escherichia coli, with which users can see the process of codon optimization and can manually edit the codons after the automatic optimization. The spreadsheets may also be useful for molecular biology education. PMID:27002987

  1. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in Frankia.

    PubMed

    Kucho, Ken-Ichi; Kakoi, Kentaro; Yamaura, Masatoshi; Iwashita, Mari; Abe, Mikiko; Uchiumi, Toshiki

    2013-11-01

    Frankia is a unique actinobacterium having abilities to fix atmospheric dinitrogen and to establish endosymbiosis with trees, but molecular bases underlying these interesting characteristics are poorly understood because of a lack of stable transformation system. Extremely high GC content of Frankia genome (more than 70 percent) can be a hindrance to successful transformation. We generated a synthetic gentamicin resistance gene whose codon usage is optimized to Frankia (fgmR) and evaluated its usefulness as a selection marker using a transient transformation system. Success rate of transient transformation and cell growth in selective culture were significantly increased by use of fgmR instead of a native gentamicin resistance gene, suggesting that codon optimization improved translation efficiency of the marker gene and increased antibiotic resistance. Our result shows that similarity in codon usage pattern is an important factor to be taken into account when exogenous transgenes are expressed in Frankia cells. PMID:24287650

  2. Transcription attenuation in Salmonella typhimurium: the significance of rare leucine codons in the leu leader.

    PubMed Central

    Carter, P W; Bartkus, J M; Calvo, J M

    1986-01-01

    The leucine operon of Salmonella typhimurium is controlled by a transcription attenuation mechanism. Four adjacent leucine codons within a 160-nucleotide leu leader RNA are thought to play a central role in this mechanism. Three of the four codons are CUA, a rarely used leucine codon within enteric bacteria. To determine whether the nature of the leucine codon affects the regulation of the leucine operon, we used oligonucleotide-directed mutagenesis to first convert one CUA of the leader to CUG and then convert all three CUA codons to CUG. CUG is the most frequently used leucine codon in enteric bacteria. A mutant having (CUA)2CUGCUC in place of (CUA)3CUC has an altered response to leucine limitation, requiring a slightly higher degree of limitation to effect derepression. Changing (CUA)3CUC to (CUG)3CUC has more dramatic effects upon operon expression. First, the basal level of expression is lowered to the point that the mutant grows more slowly than the parent in a minimal medium lacking leucine. Second, the response of the mutant to a leucine limitation is dramatically altered such that even a strong limitation elicits only a modest degree of derepression. If the mutant is grown under conditions of leucyl-tRNA limitation rather than leucine limitation, complete derepression can be achieved, but only at a much higher degree of limitation than for the wild-type operon. These results provide a clear-cut example of codon usage having a dramatic effect upon gene expression. PMID:3534884

  3. A Comparison of the Usage of Tablet PC, Lecture Capture, and Online Homework in an Introductory Chemistry Course

    ERIC Educational Resources Information Center

    Revell, Kevin D.

    2014-01-01

    Three emerging technologies were used in a large introductory chemistry class: a tablet PC, a lecture capture and replay software program, and an online homework program. At the end of the semester, student usage of the lecture replay and online homework systems was compared to course performance as measured by course grade and by a standardized…

  4. "To Tweet or Not to Tweet?" A Comparison of Academics' and Students' Usage of Twitter in Academic Contexts

    ERIC Educational Resources Information Center

    Knight, Charles G.; Kaye, Linda K.

    2016-01-01

    The emergence of social media as a new channel for communication and collaboration has led educators to hope that they may enhance the student experience and provide a pedagogical tool within Higher Education (HE). This paper explores academics' and undergraduates' usage of Twitter within a post-92 university. It argues that the observed disparity…

  5. Worksheet Usage, Reading Achievement, Classes' Lack of Readiness, and Science Achievement: A Cross-Country Comparison

    ERIC Educational Resources Information Center

    Lee, Che-Di

    2014-01-01

    Instructional written materials play important roles as teachers' agents in effective teaching practices. Worksheets are one of the most frequently used materials. In this exploratory study, the relationships between worksheet usage and science achievement in 32 countries were examined through the use of TIMSS and PIRLS data and multiple…

  6. Comparison of Turkish and US Pre-Service Teachers' Web 2.0 Tools Usage Characteristics

    ERIC Educational Resources Information Center

    Kiyici, Mubin; Akyeampong, Albert; Balkan Kiyici, Fatime

    2013-01-01

    As the Internet and computer develop, the world is changing dramatically and fantastically. Usage of technological tools is increased day by day in daily life besides ICT. All the technological tools shape individual behavior, life style and learning style as well as individual lives. Today's child use different tools and different way to…

  7. A theoretical analysis of codon adaptation index of the Boophilus microplus bm86 gene directed to the optimization of a DNA vaccine.

    PubMed

    Ruiz, Lina María; Armengol, Gemma; Habeych, Edwin; Orduz, Sergio

    2006-04-21

    DNA vaccines utilize host cell molecules for gene transcription and translation to proteins, and the interspecific difference of codon usage is one of the major obstacles for effective induction of specific and strong immune response. In an attempt to improve codon usage effects of DNA vaccine on protein expression, a quantitative study was conducted to clarify the relationship of codon usage in the tick gene bm86 and its potential expression in bovine cells. The calculated relative synonymous codon usage (RSCU) and codon adaptation index (CAI) values of bm86 from Boophilus microplus and a set of 14 highly expressed genes from Bos taurus indicated that some codons utilized frequently in bm86 are rarely used in B. taurus genes and vice versa. The different translational efficiencies obtained suggested that after DNA vaccination using the wild bm86 gene, the protein Bm86 would be expressed in bovines, but it would not be the optimum sequence. However, using the codon-optimized bm86 gene to bovines, whose sequence was theoretically designed, would probably improve the level of the immune response generated against ticks. PMID:16171828

  8. English Usage in Hong Kong.

    ERIC Educational Resources Information Center

    Bunton, David, Ed.; Green, Christopher F., Ed.

    1991-01-01

    Articles contained in this special issue on language usage in Hong Kong, particularly in the context of elementary and secondary education, include: "A Comparison of English Errors Made by Hong Kong Students and Those Made by Non-Native Learners of English Internationally" (David Bunton); "Errors in Guides to English Usage for Hong Kong Students"…

  9. Codon preferences in free-living microorganisms.

    PubMed Central

    Andersson, S G; Kurland, C G

    1990-01-01

    A popular interpretation of the major codon preference is that it reflects the operation of a regulatory device that controls the expression of individual proteins. In this popular model, rapidly translated codons are thought to promote the accumulation of the highly expressed proteins and slowly translated codons are thought to retard the expression of poorly expressed proteins. However, this widely accepted model is not supported by kinetic theory or by experimental results. A less fashionable model in which the major codon preference has nothing to do with the expression level of the individual proteins is forwarded. In this model, the major codon preference is viewed as a global strategy to support the efficient function of the translation system and thereby to maximize the growth rates of cells under favorable conditions. PMID:2194095

  10. Codon information value and codon transition-probability distributions in short-term evolution

    NASA Astrophysics Data System (ADS)

    Jiménez-Montaño, M. A.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Ramos-Fernández, A.

    2016-07-01

    To understand the way the Genetic Code and the physical-chemical properties of coded amino acids affect accepted amino acid substitutions in short-term protein evolution, taking into account only overall amino acid conservation, we consider an underlying codon-level model. This model employs codon pair-substitution frequencies from an empirical matrix in the literature, modified for single-base mutations only. Ordering the degenerated codons according to their codon information value (Volkenstein, 1979), we found that three-fold and most of four-fold degenerated codons, which have low codon values, were best fitted to rank-frequency distributions with constant failure rate (exponentials). In contrast, almost all two-fold degenerated codons, which have high codon values, were best fitted to rank-frequency distributions with variable failure rate (inverse power-laws). Six-fold degenerated codons are considered to be doubly assigned. The exceptional behavior of some codons, including non-degenerate codons, is discussed.

  11. CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation under Codon Substitution Models

    PubMed Central

    Gil, Manuel; Zoller, Stefan; Anisimova, Maria

    2013-01-01

    Markov models of codon substitution naturally incorporate the structure of the genetic code and the selection intensity at the protein level, providing a more realistic representation of protein-coding sequences compared with nucleotide or amino acid models. Thus, for protein-coding genes, phylogenetic inference is expected to be more accurate under codon models. So far, phylogeny reconstruction under codon models has been elusive due to computational difficulties of dealing with high dimension matrices. Here, we present a fast maximum likelihood (ML) package for phylogenetic inference, CodonPhyML offering hundreds of different codon models, the largest variety to date, for phylogeny inference by ML. CodonPhyML is tested on simulated and real data and is shown to offer excellent speed and convergence properties. In addition, CodonPhyML includes most recent fast methods for estimating phylogenetic branch supports and provides an integral framework for models selection, including amino acid and DNA models. PMID:23436912

  12. Evaluation of codon biology in citrus and Poncirus trifoliata based on genomic features and frame corrected expressed sequence tags.

    PubMed

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-04-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  13. Evaluation of Codon Biology in Citrus and Poncirus trifoliata Based on Genomic Features and Frame Corrected Expressed Sequence Tags

    PubMed Central

    Ahmad, Touqeer; Sablok, Gaurav; Tatarinova, Tatiana V.; Xu, Qiang; Deng, Xiu-Xin; Guo, Wen-Wu

    2013-01-01

    Citrus, as one of the globally important fruit trees, has been an object of interest for understanding genetics and evolutionary process in fruit crops. Meta-analyses of 19 Citrus species, including 4 globally and economically important Citrus sinensis, Citrus clementina, Citrus reticulata, and 1 Citrus relative Poncirus trifoliata, were performed. We observed that codons ending with A- or T- at the wobble position were preferred in contrast to C- or G- ending codons, indicating a close association with AT richness of Citrus species and P. trifoliata. The present study postulates a large repertoire of a set of optimal codons for the Citrus genus and P. trifoliata and demonstrates that GCT and GGT are evolutionary conserved optimal codons. Our observation suggested that mutational bias is the dominating force in shaping the codon usage bias (CUB) in Citrus and P. trifoliata. Correspondence analysis (COA) revealed that the principal axis [axis 1; COA/relative synonymous codon usage (RSCU)] contributes only a minor portion (∼10.96%) of the recorded variance. In all analysed species, except P. trifoliata, Gravy and aromaticity played minor roles in resolving CUB. Compositional constraints were found to be strongly associated with the amino acid signatures in Citrus species and P. trifoliata. Our present analysis postulates compositional constraints in Citrus species and P. trifoliata and plausible role of the stress with GC3 and coevolution pattern of amino acid. PMID:23315666

  14. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect.

    PubMed

    Pizzo, Lucilla; Iriarte, Andrés; Alvarez-Valin, Fernando; Marín, Mónica

    2015-05-01

    Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease. PMID:25839760

  15. A model of protein translation including codon bias, nonsense errors, and ribosome recycling.

    PubMed

    Gilchrist, Michael A; Wagner, Andreas

    2006-04-21

    We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias. PMID:16171830

  16. Codon influence on protein expression in E. coli correlates with mRNA levels.

    PubMed

    Boël, Grégory; Letso, Reka; Neely, Helen; Price, W Nicholson; Wong, Kam-Ho; Su, Min; Luff, Jon D; Valecha, Mayank; Everett, John K; Acton, Thomas B; Xiao, Rong; Montelione, Gaetano T; Aalberts, Daniel P; Hunt, John F

    2016-01-21

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  17. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI)

    PubMed Central

    Puigbò, Pere; Bravo, Ignacio G; Garcia-Vallvé, Santiago

    2008-01-01

    Background The Codon Adaptation Index (CAI) is a measure of the synonymous codon usage bias for a DNA or RNA sequence. It quantifies the similarity between the synonymous codon usage of a gene and the synonymous codon frequency of a reference set. Extreme values in the nucleotide or in the amino acid composition have a large impact on differential preference for synonymous codons. It is thence essential to define the limits for the expected value of CAI on the basis of sequence composition in order to properly interpret the CAI and provide statistical support to CAI analyses. Though several freely available programs calculate the CAI for a given DNA sequence, none of them corrects for compositional biases or provides confidence intervals for CAI values. Results The E-CAI server, available at , is a web-application that calculates an expected value of CAI for a set of query sequences by generating random sequences with G+C and amino acid content similar to those of the input. An executable file, a tutorial, a Frequently Asked Questions (FAQ) section and several examples are also available. To exemplify the use of the E-CAI server, we have analysed the codon adaptation of human mitochondrial genes that codify a subunit of the mitochondrial respiratory chain (excluding those genes that lack a prokaryotic orthologue) and are encoded in the nuclear genome. It is assumed that these genes were transferred from the proto-mitochondrial to the nuclear genome and that its codon usage was then ameliorated. Conclusion The E-CAI server provides a direct threshold value for discerning whether the differences in CAI are statistically significant or whether they are merely artifacts that arise from internal biases in the G+C composition and/or amino acid composition of the query sequences. PMID:18230160

  18. Comparison of Amino Acids Physico-Chemical Properties and Usage of Late Embryogenesis Abundant Proteins, Hydrophilins and WHy Domain

    PubMed Central

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance. PMID:25296175

  19. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    PubMed

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance. PMID:25296175

  20. Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions.

    PubMed

    Hauber, David J; Grogan, Dennis W; DeBry, Ronald W

    2016-01-01

    Codon-tRNA coevolution to maximize protein production has been, until recently, the dominant hypothesis to explain codon-usage bias in highly expressed bacterial genes. Two predictions of this hypothesis are 1) selection is weak; and 2) similar silent replacements at different codons should have similar fitness consequence. We used an allele-replacement strategy to change five specific 3rd-codon-position (silent) sites in the highly expressed Escherichia coli ribosomal protein gene rplQ from the wild type to a less-preferred alternative. We introduced the five mutations within a 10-codon region. Four of the silent sites were chosen to test the second prediction, with a CTG to CTA mutation being introduced at two closely linked leucine codons and an AAA to AAG mutation being introduced at two closely linked lysine codons. We also introduced a fifth silent mutation, a GTG to GTA mutation at a valine codon in the same genic region. We measured the fitness effect of the individual mutations by competing each single-mutant strain against the parental wild-type strain, using a disrupted form of the araA gene as a selectively neutral phenotypic marker to distinguish between strains in direct competition experiments. Three of the silent mutations had a fitness effect of |s| > 0.02, which is contradictory to the prediction that selection will be weak. The two leucine mutations had significantly different fitness effects, as did the two lysine mutations, contradictory to the prediction that similar mutations at different codons should have similar fitness effects. We also constructed a strain carrying all five silent mutations in combination. Its fitness effect was greater than that predicted from the individual fitness values, suggesting that negative synergistic epistasis acts on the combination allele. PMID:26727272

  1. Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions

    PubMed Central

    Hauber, David J.; Grogan, Dennis W.; DeBry, Ronald W.

    2016-01-01

    Codon-tRNA coevolution to maximize protein production has been, until recently, the dominant hypothesis to explain codon-usage bias in highly expressed bacterial genes. Two predictions of this hypothesis are 1) selection is weak; and 2) similar silent replacements at different codons should have similar fitness consequence. We used an allele-replacement strategy to change five specific 3rd-codon-position (silent) sites in the highly expressed Escherichia coli ribosomal protein gene rplQ from the wild type to a less-preferred alternative. We introduced the five mutations within a 10-codon region. Four of the silent sites were chosen to test the second prediction, with a CTG to CTA mutation being introduced at two closely linked leucine codons and an AAA to AAG mutation being introduced at two closely linked lysine codons. We also introduced a fifth silent mutation, a GTG to GTA mutation at a valine codon in the same genic region. We measured the fitness effect of the individual mutations by competing each single-mutant strain against the parental wild-type strain, using a disrupted form of the araA gene as a selectively neutral phenotypic marker to distinguish between strains in direct competition experiments. Three of the silent mutations had a fitness effect of |s| > 0.02, which is contradictory to the prediction that selection will be weak. The two leucine mutations had significantly different fitness effects, as did the two lysine mutations, contradictory to the prediction that similar mutations at different codons should have similar fitness effects. We also constructed a strain carrying all five silent mutations in combination. Its fitness effect was greater than that predicted from the individual fitness values, suggesting that negative synergistic epistasis acts on the combination allele. PMID:26727272

  2. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    SciTech Connect

    Kilgour, Andrew J; Kilgour, Peter W; Gerzina, Tania; Christian, Beverly

    2014-02-15

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  3. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis

  4. Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code

    PubMed Central

    Castro-Chavez, Fernando

    2011-01-01

    My previous theoretical research shows that the rotating circular genetic code is a viable tool to make easier to distinguish the rules of variation applied to the amino acid exchange; it presents a precise and positional bio-mathematical balance of codons, according to the amino acids they codify. Here, I demonstrate that when using the conventional or classic circular genetic code, a clearer pattern for the human codon usage per amino acid and per genome emerges. The most used human codons per amino acid were the ones ending with the three hydrogen bond nucleotides: C for 12 amino acids and G for the remaining 8, plus one codon for arginine ending in A that was used approximately with the same frequency than the one ending in G for this same amino acid (plus *). The most used codons in man fall almost all the time at the rightmost position, clockwise, ending either in C or in G within the circular genetic code. The human codon usage per genome is compared to other organisms such as fruit flies (Drosophila melanogaster), squid (Loligo pealei), and many others. The biosemiotic codon usage of each genomic population or ‘Theme’ is equated to a ‘molecular language’. The C/U choice or difference, and the G/A difference in the third nucleotide of the most used codons per amino acid are illustrated by comparing the most used codons per genome in humans and squids. The human distribution in the third position of most used codons is a 12-8-2, C-G-A, nucleotide ending signature, while the squid distribution in the third position of most used codons was an odd, or uneven, distribution in the third position of its most used codons: 13-6-3, U-A-G, as its nucleotide ending signature. These findings may help to design computational tools to compare human genomes, to determine the exchangeability between compatible codons and amino acids, and for the early detection of incompatible changes leading to hereditary diseases. PMID:22997484

  5. Hand gesture recognition by analysis of codons

    NASA Astrophysics Data System (ADS)

    Ramachandra, Poornima; Shrikhande, Neelima

    2007-09-01

    The problem of recognizing gestures from images using computers can be approached by closely understanding how the human brain tackles it. A full fledged gesture recognition system will substitute mouse and keyboards completely. Humans can recognize most gestures by looking at the characteristic external shape or the silhouette of the fingers. Many previous techniques to recognize gestures dealt with motion and geometric features of hands. In this thesis gestures are recognized by the Codon-list pattern extracted from the object contour. All edges of an image are described in terms of sequence of Codons. The Codons are defined in terms of the relationship between maxima, minima and zeros of curvature encountered as one traverses the boundary of the object. We have concentrated on a catalog of 24 gesture images from the American Sign Language alphabet (Letter J and Z are ignored as they are represented using motion) [2]. The query image given as an input to the system is analyzed and tested against the Codon-lists, which are shape descriptors for external parts of a hand gesture. We have used the Weighted Frequency Indexing Transform (WFIT) approach which is used in DNA sequence matching for matching the Codon-lists. The matching algorithm consists of two steps: 1) the query sequences are converted to short sequences and are assigned weights and, 2) all the sequences of query gestures are pruned into match and mismatch subsequences by the frequency indexing tree based on the weights of the subsequences. The Codon sequences with the most weight are used to determine the most precise match. Once a match is found, the identified gesture and corresponding interpretation are shown as output.

  6. Estimating Gene Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data Alone‡

    PubMed Central

    Gilchrist, Michael A.; Chen, Wei-Chen; Shah, Premal; Landerer, Cedric L.; Zaretzki, Russell

    2015-01-01

    Extracting biologically meaningful information from the continuing flood of genomic data is a major challenge in the life sciences. Codon usage bias (CUB) is a general feature of most genomes and is thought to reflect the effects of both natural selection for efficient translation and mutation bias. Here we present a mechanistically interpretable, Bayesian model (ribosome overhead costs Stochastic Evolutionary Model of Protein Production Rate [ROC SEMPPR]) to extract meaningful information from patterns of CUB within a genome. ROC SEMPPR is grounded in population genetics and allows us to separate the contributions of mutational biases and natural selection against translational inefficiency on a gene-by-gene and codon-by-codon basis. Until now, the primary disadvantage of similar approaches was the need for genome scale measurements of gene expression. Here, we demonstrate that it is possible to both extract accurate estimates of codon-specific mutation biases and translational efficiencies while simultaneously generating accurate estimates of gene expression, rather than requiring such information. We demonstrate the utility of ROC SEMPPR using the Saccharomyces cerevisiae S288c genome. When we compare our model fits with previous approaches we observe an exceptionally high agreement between estimates of both codon-specific parameters and gene expression levels (ρ>0.99 in all cases). We also observe strong agreement between our parameter estimates and those derived from alternative data sets. For example, our estimates of mutation bias and those from mutational accumulation experiments are highly correlated (ρ=0.95). Our estimates of codon-specific translational inefficiencies and tRNA copy number-based estimates of ribosome pausing time (ρ=0.64), and mRNA and ribosome profiling footprint-based estimates of gene expression (ρ=0.53−0.74) are also highly correlated, thus supporting the hypothesis that selection against translational inefficiency is an

  7. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    PubMed Central

    Johnston, Christopher D.; Bannantine, John P.; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D.

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease. PMID:25237653

  8. Key for protein coding sequences identification: computer analysis of codon strategy.

    PubMed Central

    Rodier, F; Gabarro-Arpa, J; Ehrlich, R; Reiss, C

    1982-01-01

    The signal qualifying an AUG or GUG as an initiator in mRNAs processed by E. coli ribosomes is not found to be a systematic, literal homology sequence. In contrast, stability analysis reveals that initiators always occur within nucleic acid domains of low stability, for which a high A/U content is observed. Since no aminoacid selection pressure can be detected at N-termini of the proteins, the A/U enrichment results from a biased usage of the code degeneracy. A computer analysis is presented which allows easy detection of the codon strategy. N-terminal codons carry rather systematically A or U in third position, which suggests a mechanism for translation initiation and helps to detect protein coding sequences in sequenced DNA. PMID:7038623

  9. Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons.

    PubMed Central

    Zitomer, R S; Walthall, D A; Rymond, B C; Hollenberg, C P

    1984-01-01

    A series of Saccharomyces cerevisiae plasmids and mutant derivatives containing fusions of the Escherichia coli galactokinase gene, galK, to the yeast iso-1-cytochrome c CYC1 transcription unit were used to study the sequences affecting the initiation of translation in S. cerevisiae. When the CYC1 AUG initiation codon preceded the galK AUG codon and coding sequence and either the two AUGs were out of frame with each other or a nonsense codon was located between them, the expression of the galK gene was extremely low. Deletion of the CYC1 AUG and its surrounding sequences resulted in a 100-fold increase in galK expression. This dependence of galK expression on the elimination of the CYC1 AUG codon was used to select mutations in that codon. Then the ability of these altered initiation codons to serve in translational initiation was determined by reconstruction of the CYC1 gene 3' to and in frame with them. Initiation was found to occur at the codons UUG and AUA, but not at the codons AAA and AUC. Furthermore the codon UUG, when preceded by an A three nucleotides upstream, served as a better initiation codon than when a U was substituted for the A. The efficiency of translation from these non-AUG codons was quantitated by using a CYC1/galK protein-coding fusion and measuring cellular galactokinase levels. Initiation at the UUG codon was 6.9% as efficient as initiation at the wild-type AUG codon when preceded by an A three nucleotides upstream, but was over 10-fold less efficient when a U was substituted for that A. Initiation at AUA was 0.5% as efficient as at AUG. The effects of the sequences preceding the initiation codon are discussed in light of these results. PMID:6390186

  10. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate

  11. The Association Between p53 Codon 72 Polymorphism and Endometrial Cancer Risk: A System Review and Meta-analysis.

    PubMed

    Yi, Ke; Yang, LingYun; Lan, Zhu; Xi, MingRong

    2016-07-01

    Polymorphism of p53 codon 72 plays an important role in pathogenesis and development of cancer. Published data on the association between the p53 codon 72 polymorphism and endometrial cancer risk are controversial. A meta-analysis was performed to assess whether the polymorphism of p53 codon 72 is associated with endometrial cancer risk. Medline, Embase, China National Knowledge Infrastructure, and Chinese Biomedicine Databases were searched to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for p53 codon 72 polymorphism and endometrial cancer were appropriately derived from fixed-effects or random effects models. A total of 12 studies were enrolled in this meta-analysis. The pooled analyses revealed that p53 codon 72 polymorphism was not associated with endometrial cancer risk. Stratified analysis by Hardy-Weinberg equilibrium exhibited a significantly increased risk of endometrial cancer among studies deviated from Hardy-Weinberg equilibrium in heterozygote comparison (Pro/Arg vs Arg/Arg; OR, 0.61; 95% CI, 0.42-0.87) and dominant model (Pro/Pro + Pro/Arg vs Arg/Arg; OR, 0.66; 95% CI, 0.47-0.92). This study indicated that the p53 codon 72 polymorphism may not be associated with endometrial cancer risk. PMID:27327151

  12. Kinetics of Stop Codon Recognition by Release Factor 1

    PubMed Central

    Hetrick, Byron; Lee, Kristin; Joseph, Simpson

    2009-01-01

    Recognition of stop codons by class I release factors is a fundamental step in the termination phase of protein synthesis. Since premature termination is costly to the cell, release factors have to efficiently discriminate between stop and sense codons. In order to understand the mechanism of discrimination between stop and sense codons, we developed a new, pre-steady state kinetic assay to monitor the interaction of RF1 with the ribosome. Our results show that RF1 associates with similar association rate constants to ribosomes programmed with a stop or sense codons. However, dissociation of RF1 from sense codons is as much as three orders of magnitude faster than from stop codons. Interestingly, the affinity of RF1 for ribosomes programmed with different sense codons does not correlate with the defects in peptide release. Thus, discrimination against sense codons is achieved, both, by increasing the dissociation rates and by decreasing the rate of peptide release. These results suggest that sense codons inhibit conformational changes necessary for RF1 to stably bind to the ribosome and catalyze peptide release. PMID:19874047

  13. A computer program to display codon changes caused by mutagenesis.

    PubMed

    Sirotkin, K

    1988-04-01

    A FORTRAN program for displaying the correspondence between codon changes and different possible base changes is presented. Changes of both single bases and dimers are considered. The user can specify the mutagenesis spectrum. Additionally, the user can choose whether or not to consider single or double events in a codon and whether or not to consider the possibility that the change of two bases (a dimer) can overlap a codon boundary. Furthermore, a variety of ways may be chosen to display and summarize the codon changes that can result from the specified mutagenesis. A user-supplied sequence or the genetic code table can be analyzed. PMID:3167596

  14. Changes in Word Usage Frequency May Hamper Intergenerational Comparisons of Vocabulary Skills: An Ngram Analysis of Wordsum, WAIS, and WISC Test Items

    ERIC Educational Resources Information Center

    Roivainen, Eka

    2014-01-01

    Research on secular trends in mean intelligence test scores shows smaller gains in vocabulary skills than in nonverbal reasoning. One possible explanation is that vocabulary test items become outdated faster compared to nonverbal tasks. The history of the usage frequency of the words on five popular vocabulary tests, the GSS Wordsum, Wechsler…

  15. Nonsense codons trigger an RNA partitioning shift.

    PubMed

    Bhalla, Angela D; Gudikote, Jayanthi P; Wang, Jun; Chan, Wai-Kin; Chang, Yao-Fu; Olivas, O Renee; Wilkinson, Miles F

    2009-02-13

    T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm. PMID:19091751

  16. Structural basis for stop codon recognition in eukaryotes

    PubMed Central

    Murray, Jason; Hegde, Ramanujan S.; Ramakrishnan, V.

    2015-01-01

    Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UGA, UAA, or UAG. Release factors recognise stop codons in the ribosomal A site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases1. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognise all three stop codons2. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here, we present electron cryo-microscopy (cryo-EM) structures at 3.5 – 3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A site. Binding of eRF1 flips nucleotide A1825 of 18S rRNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A site, where it is stabilised by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during tRNA selection to drive mRNA compaction. Stop codons are favoured in this compacted mRNA conformation by a hydrogen-bonding network with essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination3,4. PMID:26245381

  17. AGRICULTURAL CHEMICAL USAGE DATA

    EPA Science Inventory

    This report, which summarizes the use of agricultural chemicals is issued by the National Agricultural Statistics Service (NASS) as part of its series on Agricultural Chemical Usage. Other publications in the series present statistics for on-farm agricultural chemical usage for f...

  18. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.

    PubMed

    Svidritskiy, Egor; Madireddy, Rohini; Korostelev, Andrei A

    2016-05-22

    Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to the ΨAA codon. The structure reveals that recognition of a modified stop codon does not differ from that of a canonical stop codon. Our in vitro biochemical results support this finding by yielding nearly identical rates for peptide release from E. coli ribosomes programmed with pseudouridylated and canonical stop codons. The crystal structure also brings insight into E. coli RF1-specific interactions and suggests involvement of L27 in bacterial translation termination. Our results are consistent with a mechanism in which read through of a pseudouridylated stop codon in bacteria results from increased decoding by near-cognate tRNAs (miscoding) rather than from decreased efficiency of termination. PMID:27107638

  19. Premature termination codons in modern human genomes

    PubMed Central

    Fujikura, Kohei

    2016-01-01

    The considerable range of genetic variation in human populations may partly reflect distinctive processes of adaptation to variable environmental conditions. However, the adaptive genomic signatures remain to be completely elucidated. This research explores candidate loci under selection at the population level by characterizing recently arisen premature termination codons (PTCs), some of which indicate a human knockout. From a total of 7595 participants from two population exome projects, 246 PTCs were found where natural selection has resulted in new alleles with a high frequency (from 1% to 96%) of derived alleles and various levels of population differentiation (FST = 0.00139–0.626). The PTC genes formed protein and regulatory networks limited to 15 biological processes or gene families, of which seven categories were previously unreported. PTC mutations have a strong tendency to be introduced into members of the same gene family, even during modern human evolution, although the exact nature of the selection is not fully known. The findings here suggest the ongoing evolutionary plasticity of modern humans at the genetic level and also partly provide insights into common human knockouts. PMID:26932450

  20. Premature termination codons in modern human genomes.

    PubMed

    Fujikura, Kohei

    2016-01-01

    The considerable range of genetic variation in human populations may partly reflect distinctive processes of adaptation to variable environmental conditions. However, the adaptive genomic signatures remain to be completely elucidated. This research explores candidate loci under selection at the population level by characterizing recently arisen premature termination codons (PTCs), some of which indicate a human knockout. From a total of 7595 participants from two population exome projects, 246 PTCs were found where natural selection has resulted in new alleles with a high frequency (from 1% to 96%) of derived alleles and various levels of population differentiation (FST = 0.00139-0.626). The PTC genes formed protein and regulatory networks limited to 15 biological processes or gene families, of which seven categories were previously unreported. PTC mutations have a strong tendency to be introduced into members of the same gene family, even during modern human evolution, although the exact nature of the selection is not fully known. The findings here suggest the ongoing evolutionary plasticity of modern humans at the genetic level and also partly provide insights into common human knockouts. PMID:26932450

  1. 20. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, ARCH DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, ARCH DETAIL SHOWING BRICK ARCH FOR MAIN SPAN AND STONE VOUSSOIRS. VIEW W. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA

  2. Genetic Code Expansion by Degeneracy Reprogramming of Arginyl Codons.

    PubMed

    Lee, Ki Baek; Hou, Chen Yuan; Kim, Chae-Eun; Kim, Dong-Myung; Suga, Hiroaki; Kang, Taek Jin

    2016-07-01

    The genetic code in most organisms codes for 20 proteinogenic amino acids or translation stop. In order to encode more than 20 amino acids in the coding system, one of stop codons is usually reprogrammed to encode a non-proteinogenic amino acid. Although this approach works, usually only one amino acid is added to the amino acid repertoire. In this study, we incorporated non-proteinogenic amino acids into a protein by using a sense codon. As all the codons are allocated in the universal genetic code, we destroyed all the tRNA(Arg) in a cell-free protein synthesis system by using a tRNA(Arg) -specific tRNase, colicin D. Then by supplementing the system with tRNACCU , the translation system was partially restored. Through this creative destruction, reprogrammable codons were successfully created in the system to encode modified lysines along with the 20 proteinogenic amino acids. PMID:27151886

  3. [Codon optimization and eukaryotic expression analysis of the analgesic peptide gene BmK AngM1 from Buthus martensii Karsch].

    PubMed

    Yang, Jin-ling; Gao, Li-li; Zhu, Ping; Hou, Qi; Wang, Fen; Yu, Wen-bo; Nie, Tao

    2012-10-01

    Codon bias is an important factor which influences heterologous gene expression. Optimizing codon sequence could improve expression level of heterologous gene. In order to improve the expression level of BmK AngM1 gene encoding the analgesic peptide from Buthus martensii Karsch in Pichia pastoris, the codon-optimized BmK AngM1 gene according to its cDNA sequence and the preference codon usage of P. pastoris were cloned into expression vector pPIC9K and then transformed into P. pastoris. The expersion of recombinant BmK AngM1 (rBmK AngM1) was inducced by methanol in the medium, and the expression level of the optimized BmK AngM1 gene was 3.7 times of the native one. These results suggested that the expression of BmK AngM1 in P. pastoris could be successfully improved by codon optimization. PMID:23289154

  4. Codon optimization and expression of irisin in Pichia pastoris GS115.

    PubMed

    Duan, Huikun; Wang, Haisong; Ma, Baicheng; Jiang, Pingzhe; Tu, Peipei; Ni, Zaizhong; Li, Xiaodan; Li, Miao; Ma, Xiaofeng; Wang, Bin; Wu, Ri; Li, Minggang

    2015-08-01

    Irisin is a novel hormone which is related to many metabolic diseases. In order to illuminate the function and therapeutic effect of irisin, gaining active irisin is necessary. In this work, a codon-optimized irisin gene was designed according to Pichia pastoris synonymous codon usage bias and cloned into the pPIC9K expression vector. Sequencing result indicating that the sequence of irisin was consistent with the modified irisin and the irisin was in frame with α-factor secretion signal ATG. The plasmid pPIC9K-irisin was transformed into GS115 P. pastoris cells through electroporation. The positive transformants were screened on MD medium and analyzed by PCR. Five recombinant GS115/pPIC9K-irisin strains were obtained, but only one strain expressed irisin successfully. SDS-PAGE and Western blot were used to assess the expression level and purity of irisin. The irisin was also simply purified and the effect of pH value, methanol concentration and induction time on the production of irisin was investigated. The results showed that the best conditions of irisin expression were as follows: pH 6.0, 2.0% methanol and induction for 96 h. This work laid the basis for further investigation into the therapeutic and pharmacological effects of irisin, as well as development of irisin-based therapy. PMID:25931394

  5. The Effect of Codon Mismatch on the Protein Translation System

    PubMed Central

    Cao, Liaoran; Li, Guohui; Cheng, Hong

    2016-01-01

    Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5’ ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer. PMID:26840415

  6. Two-codon T-box riboswitch binding two tRNAs

    PubMed Central

    Saad, Nizar Y.; Stamatopoulou, Vassiliki; Brayé, Mélanie; Drainas, Denis; Stathopoulos, Constantinos; Becker, Hubert Dominique

    2013-01-01

    T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon–anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNAAsn and tRNAGlu. To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that “flexible” T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level. PMID:23858450

  7. Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Panya, Marutpong; Namwat, Wises; Sookprasert, Saovaluk; Redruello, Begoña; Mayo, Baltasar; Alvarez, Miguel A; Lulitanond, Viraphong

    2013-06-01

    Lactic acid bacteria (LAB) species are envisioned as promising vehicles for the mucosal delivery of therapeutic and prophylactic molecules, including the development of oral vaccines. In this study, we report on the expression of a synthetic nucleocapsid (NP) gene of influenza A virus in Lactobacillus casei. The NP gene was re-designed based on the tRNA pool and the codon usage preference of L. casei BL23. The codon-optimized NP gene was then cloned and expressed in L. casei RCEID02 under the control of a constitutive promoter, that of the lactate dehydrogenase (ldh) gene. The synthetic NP gene was further expressed in L. casei EM116 under the control of an inducible promoter, that of the structural gene of nisin (nisA) from Lactococcus lactis. Based on Western blot analysis, the specific protein band of NP, with a molecular mass of 56.0 kDa, was clearly detected in both expression systems. Thus, our study demonstrates the success of expressing a codon-optimized influenza A viral gene in L. casei. The suitability of the recombinant LAB strains for immunization purposes is currently under evaluation. PMID:24400527

  8. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  9. An Engineered Rare Codon Device for Optimization of Metabolic Pathways

    PubMed Central

    Wang, You; Li, Chunying; Khan, Md. Rezaul Islam; Wang, Yushu; Ruan, Yunfeng; Zhao, Bin; Zhang, Bo; Ma, Xiaopan; Zhang, Kaisi; Zhao, Xiwen; Ye, Guanhao; Guo, Xizhi; Feng, Guoyin; He, Lin; Ma, Gang

    2016-01-01

    Rare codons generally arrest translation due to rarity of their cognate tRNAs. This property of rare codons can be utilized to regulate protein expression. In this study, a linear relationship was found between expression levels of genes and copy numbers of rare codons inserted within them. Based on this discovery, we constructed a molecular device in Escherichia coli using the rare codon AGG, its cognate tRNA (tRNAArg (CCU)), modified tRNAAsp (GUC → CCU), and truncated aspartyl-tRNA synthetase (TDRS) to switch the expression of reporter genes on or off as well as to precisely regulate their expression to various intermediate levels. To underscore the applicability of our work, we used the rare codon device to alter the expression levels of four genes of the fatty acid synthesis II (FASII) pathway (i.e. fabZ, fabG, fabI, and tesA’) in E. coli to optimize steady-state kinetics, which produced nearly two-fold increase in fatty acid yield. Thus, the proposed method has potential applications in regulating target protein expression at desired levels and optimizing metabolic pathways by precisely tuning in vivo molar ratio of relevant enzymes. PMID:26852704

  10. Design, synthesis, and testing toward a 57-codon genome.

    PubMed

    Ostrov, Nili; Landon, Matthieu; Guell, Marc; Kuznetsov, Gleb; Teramoto, Jun; Cervantes, Natalie; Zhou, Minerva; Singh, Kerry; Napolitano, Michael G; Moosburner, Mark; Shrock, Ellen; Pruitt, Benjamin W; Conway, Nicholas; Goodman, Daniel B; Gardner, Cameron L; Tyree, Gary; Gonzales, Alexandra; Wanner, Barry L; Norville, Julie E; Lajoie, Marc J; Church, George M

    2016-08-19

    Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms. PMID:27540174

  11. Model for Codon Position Bias in RNA Editing

    NASA Astrophysics Data System (ADS)

    Liu, Tsunglin; Bundschuh, Ralf

    2005-08-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  12. A model for codon position bias in RNA editing

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Liu, Tsunglin

    2006-03-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  13. Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons

    NASA Astrophysics Data System (ADS)

    Lind, Christoffer; Sund, Johan; Åqvist, Johan

    2013-12-01

    A key feature of mitochondrial translation is the reduced number of transfer RNAs and reassignment of codons. For human mitochondria, a major unresolved problem is how the set of stop codons are decoded by the release factors mtRF1a and mtRF1. Here we present three-dimensional structural models of human mtRF1a and mtRF1 based on their homology to bacterial RF1 in the codon recognition domain, and the strong conservation between mitochondrial and bacterial ribosomal RNA in the decoding region. Sequence changes in the less homologous mtRF1 appear to be correlated with specific features of the mitochondrial rRNA. Extensive computer simulations of the complexes with the ribosomal decoding site show that both mitochondrial factors have similar specificities and that neither reads the putative vertebrate stop codons AGA and AGG. Instead, we present a structural model for a mechanism by which the ICT1 protein causes termination by sensing the presence of these codons in the A-site of stalled ribosomes.

  14. Harvey ras genes transform without mutant codons, apparently activated by truncation of a 5' exon (exon -1).

    PubMed Central

    Cichutek, K; Duesberg, P H

    1986-01-01

    The hypothesis is tested that the ras gene of Harvey sarcoma virus (Ha-SV) and the proto-ras DNAs from certain tumor cells derive transforming function from specific codons in which they differ from normal proto-ras genes. Molecularly cloned Harvey proviral vectors carrying viral ras, normal rat proto-ras, and recombinant ras genes in which the virus-specific ras codons 12 and 59 were replaced by proto-ras equivalents each transformed aneuploid mouse 3T3 cells after latent periods that ranged from 4 to 10 days. Viruses with or without virus-specific ras codons all transformed diploid rat cells in 3-5 days equally well. However, in the absence of virus replication, mutant codons were beneficial for transforming function. Deletion of non-ras regions of Ha-SV did not affect transforming function. We conclude that specific ras codons are not necessary for transforming function. Comparisons of the ras sequences of Ha-SV, BALB SV, and Rasheed SV with sequences of proto-ras genes from rat and man revealed an upstream proto-ras exon, termed exon -1. The 3' end of this exon is present in all three viruses and in a ras pseudogene of the rat. Since ras genes transform without mutation and since exon -1 is truncated in viral ras genes and all transforming proto-ras DNAs of the Harvey and the Kirsten ras family, we propose that ras genes are activated by truncation of exon -1 either via viral transduction or artificially via cloning and transfection. The proposal implies that untruncated proto-ras genes with point mutations may not be cellular cancer genes. Images PMID:3517865

  15. Living Colors in the Gray Mold Pathogen Botrytis cinerea: Codon-Optimized Genes Encoding Green Fluorescent Protein and mCherry, Which Exhibit Bright Fluorescence▿

    PubMed Central

    Leroch, Michaela; Mernke, Dennis; Koppenhoefer, Dieter; Schneider, Prisca; Mosbach, Andreas; Doehlemann, Gunther; Hahn, Matthias

    2011-01-01

    The green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungus Botrytis cinerea because of low fluorescence intensity. The codon usage of B. cinerea genes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of the B. cinerea enhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression in B. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfp was used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfp fusions for quantitative evaluation of various toxic compounds as inducers of the atrB gene encoding an ABC-type drug efflux transporter of B. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence in B. cinerea. PMID:21378036

  16. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata)

    PubMed Central

    Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi

    2010-01-01

    Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria. PMID:20507907

  17. Expression of a Chimeric Allergen with High Rare Codons Content in Codon Bias-Adjusted Escherichia coli: Escherichia coli BL21 (DE3)-Codon Plus RIL as an Efficient Host.

    PubMed

    Nouri, Hamid Reza; Karkhah, Ahmad; Varasteh, Abdolreza; Sankian, Mojtaba

    2016-07-01

    The expression of heterologous proteins in Escherichia coli (E. coli) is importantly affected by codon bias. Hence, the aim of the current study was to determine which codon bias-adjusted E. coli strain is sufficient for expression of a chimeric allergen coded by high rare codon content. To investigate the expression level, a chimeric protein of Chenopodium album (C. album) was used as an appropriate model. An expression construct was assembled and was transformed to four strains of codon bias-adjusted E. coli including origami, BL21 (DE3), BL21 (DE3)-codon plus RIL, and Rosetta. The level of expression and solubility of the chimeric allergen was analyzed by SDS-PAGE. In addition, the allergenicity of chimeric allergen was determined using immunoblotting. Our results showed that the chimeric allergen was expressed at high level in E. coli BL21 (DE3)-codon plus RIL and Rosetta. In detail, this recombinant allergen was isolated from soluble fraction in the codon bias-adjusted strains of E. coli BL21 (DE3)-codon plus RIL and Rosetta. Moreover, some lower molecular weight proteins were observed in Rosetta, which could be related to inappropriate expression or broken compartments of the chimeric allergen. The immunoblotting assay confirmed that the IgE-specific immune reactivity of our chimeric allergen expressed in BL21 (DE3)-codon plus RIL was significantly higher than the other strains. Our results showed that the expression of the chimeric allergen with high rare codons content in a codon bias-adjusted strain E. coli BL21 (DE3)-codon plus RIL improves the quality and solubility of the heterologous protein production. PMID:27040822

  18. The TGA codons are present in the open reading frame of selenoprotein P cDNA

    SciTech Connect

    Hill, K.E.; Lloyd, R.S.; Read, R.; Burk, R.F. )

    1991-03-11

    The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelled with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.

  19. The Stringency of Start Codon Selection in the Filamentous Fungus Neurospora crassa*

    PubMed Central

    Wei, Jiajie; Zhang, Ying; Ivanov, Ivaylo P.; Sachs, Matthew S.

    2013-01-01

    In eukaryotic cells initiation may occur from near-cognate codons that differ from AUG by a single nucleotide. The stringency of start codon selection impacts the efficiency of initiation at near-cognate codons and the efficiency of initiation at AUG codons in different contexts. We used a codon-optimized firefly luciferase reporter initiated with AUG or each of the nine near-cognate codons in preferred context to examine the stringency of start codon selection in the model filamentous fungus Neurospora crassa. In vivo results indicated that the hierarchy of initiation at start codons in N. crassa (AUG ≫ CUG > GUG > ACG > AUA ≈ UUG > AUU > AUC) is similar to that in human cells. Similar results were obtained by translating mRNAs in a homologous N. crassa in vitro translation system or in rabbit reticulocyte lysate. We next examined the efficiency of initiation at AUG, CUG, and UUG codons in different contexts in vitro. The preferred context was more important for efficient initiation from near-cognate codons than from AUG. These studies demonstrated that near-cognate codons are used for initiation in N. crassa. Such events could provide additional coding capacity or have regulatory functions. Analyses of the 5′-leader regions in the N. crassa transcriptome revealed examples of highly conserved near-cognate codons in preferred contexts that could extend the N termini of the predicted polypeptides. PMID:23396971

  20. Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…

  1. Online CME usage patterns.

    PubMed

    Mazzoleni, M Cristina; Rognoni, Carla; Finozzi, Enrico; Giorgi, Ines; Pagani, Marco; Imbriani, Marcello

    2011-01-01

    The paper reports the findings of the analysis of a sample of 829 online Continuous Medical Education (CME) enrolments aimed at inspecting users' preferences and behaviours. The contents of the analyzed course are provided as online SCORM (Sharable Content Object Reference Model) resources together with the corresponding Pdf downloadable versions allowing different usage patterns (online only, Pdf only, online AND Pdf, mixed online OR Pdf). The results point out that there is not a specific preference for one of the four patterns and that most of the users access both navigable modules and Pdf documents. Demographic characteristics and initial knowledge level do not influence the choice of a specific usage pattern that probably depends on internal or context factors. From the point of view of knowledge acquisition, the four patterns are equivalent. As regards users' behaviour, the analysis has pointed out two issues: 1) the attitude to conclude the course in a short time and to reach good test scores, but not the excellence; 2) learning activity tracing data were not available for all the enrolments. Cues for discussion are proposed. PMID:21893749

  2. Visualization of codon-dependent conformational rearrangements during translation termination

    PubMed Central

    He, Shan L.; Green, Rachel

    2010-01-01

    While the recognition of stop codons by class 1 release factors (RFs) on the ribosome takes place with extremely high fidelity, the molecular mechanisms behind this remarkable process are poorly understood. Here we performed structural probing experiments with Fe(II)-derivatized RFs to compare the conformation of cognate and near-cognate ribosome termination complexes. The structural differences that we document provide an unprecedented view of signal transduction on the ribosome that depends on authentic stop codon recognition. These events initiate with very close interactions between RF and the small subunit decoding center (DC), lead to increased interactions between the switch loop of the RF and specific regions of the subunit interface and end in the precise orientation of the RF for maximal catalytic activity in the large subunit peptidyl transferase center (PTC). PMID:20208546

  3. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  4. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons.

    PubMed

    Simões, João; Bezerra, Ana R; Moura, Gabriela R; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A S

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  5. Decoding RAS isoform and codon-specific signalling

    PubMed Central

    Newlaczyl, Anna U.; Hood, Fiona E.; Coulson, Judy M.; Prior, Ian A.

    2014-01-01

    RAS proteins are key signalling hubs that are oncogenically mutated in 30% of all cancer cases. Three genes encode almost identical isoforms that are ubiquitously expressed, but are not functionally redundant. The network responses associated with each isoform and individual oncogenic mutations remain to be fully characterized. In the present article, we review recent data defining the differences between the RAS isoforms and their most commonly mutated codons and discuss the underlying mechanisms. PMID:25109951

  6. Notational usage modulates attention networks in binumerates

    PubMed Central

    Koul, Atesh; Tyagi, Vaibhav; Singh, Nandini C.

    2014-01-01

    Multicultural environments require learning multiple number notations wherein some are encountered more frequently than others. This leads to differences in exposure and consequently differences in usage between notations. We find that differential notational usage imposes a significant neurocognitive load on number processing. Despite simultaneous acquisition, twenty four adult binumerates, familiar with two positional writing systems namely Hindu Nagari digits and Hindu Arabic digits, reported significantly lower preference and usage for Nagari as compared to Arabic. Twenty-four participants showed significantly increased reaction times and reduced accuracy while performing magnitude comparison tasks in Nagari with respect to Arabic. Functional magnetic resonance imaging revealed that processing Nagari elicited significantly greater activity in number processing and attention networks. A direct subtraction of networks for Nagari and Arabic notations revealed a neural circuit comprising of bilateral Intra-parietal Sulcus (IPS), Inferior and Mid Frontal Gyri, Fusiform Gyrus and the Anterior Cingulate Cortex (FDR p < 0.005). Additionally, whole brain correlation analysis showed that activity in the left inferior parietal region was modulated by task performance in Nagari. We attribute the increased activation in Nagari to increased task difficulty due to infrequent exposure and usage. Our results reiterate the role of left IPS in modulating performance in numeric tasks and highlight the role of the attention network for monitoring symbolic notation mode in binumerates. PMID:24904366

  7. Codon Distribution in Error-Detecting Circular Codes

    PubMed Central

    Fimmel, Elena; Strüngmann, Lutz

    2016-01-01

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes. PMID:26999215

  8. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides.

    PubMed

    Baradaran-Heravi, Alireza; Balgi, Aruna D; Zimmerman, Carla; Choi, Kunho; Shidmoossavee, Fahimeh S; Tan, Jason S; Bergeaud, Célia; Krause, Alexandra; Flibotte, Stéphane; Shimizu, Yoko; Anderson, Hilary J; Mouly, Vincent; Jan, Eric; Pfeifer, Tom; Jaquith, James B; Roberge, Michel

    2016-08-19

    Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations. PMID:27407112

  9. TAP usage in SIMBAD

    NASA Astrophysics Data System (ADS)

    Anaïs, O.; Gregory, M.; Marc, W.

    2015-09-01

    TAP (Table Access Protocol promoted by IVOA) is available on SIMBAD web site since July 2012. We will have a look of all kinds of uses and try to figure out how people use it in SIMBAD. Thanks to ADQL (Astronomical Data Query Language), everyone can write their own query using criteria on all data available in the database. In the SIMBAD database, more than 30 tables are available. It can be rather difficult to write a complex query. We will see how many joins between tables are used, and how many fields are used in the queries. The SIMBAD usage is going to change thanks to this new feature, a new way to search in the database.

  10. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration

    PubMed Central

    Zhou, Qiang; Wang, Shizhen

    2015-01-01

    NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis. PMID:26115038

  11. Codon Optimization Significantly Improves the Expression Level of α -Amylase Gene from Bacillus licheniformis in Pichia pastoris.

    PubMed

    Wang, Jian-Rong; Li, Yang-Yuan; Liu, Dan-Ni; Liu, Jing-Shan; Li, Peng; Chen, Li-Zhi; Xu, Shu-De

    2015-01-01

    α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis), the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris) and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use. PMID:26171389

  12. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus licheniformis in Pichia pastoris

    PubMed Central

    Wang, Jian-Rong; Li, Yang-Yuan; Liu, Dan-Ni; Liu, Jing-Shan; Li, Peng; Chen, Li-Zhi; Xu, Shu-De

    2015-01-01

    α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis), the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris) and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use. PMID:26171389

  13. Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize.

    PubMed

    Brinkmann, H; Martinez, P; Quigley, F; Martin, W; Cerff, R

    1987-01-01

    The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots. PMID:3131533

  14. Feasibility Study of a Rotorcraft Health and Usage Monitoring System (HUMS): Usage and Structural Life Monitoring Evaluation

    NASA Technical Reports Server (NTRS)

    Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.

    1996-01-01

    The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FIS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques.

  15. Re-exploration of the Codon Context Effect on Amber Codon-Guided Incorporation of Noncanonical Amino Acids in Escherichia coli by the Blue-White Screening Assay.

    PubMed

    Xu, Huan; Wang, Yan; Lu, Jiaqi; Zhang, Bo; Zhang, Ziwei; Si, Longlong; Wu, Ling; Yao, Tianzhuo; Zhang, Chuanling; Xiao, Sulong; Zhang, Lihe; Xia, Qing; Zhou, Demin

    2016-07-01

    The effect of codon context on amber codon-guided incorporation of noncanonical amino acids (NAAs) has been previously examined by antibiotic selection. Here, we re-explored this effect by screening a library in which three nucleotides upstream and downstream of the amber codon were randomised, and inserted within the lacZ-α gene. Thousands of clones were obtained and distinguished by the depth of blue colour upon exposure to X-gal. Large-scale sequencing revealed remarkable preferences in nucleotides downstream of the amber codon, and moderate preferences for upstream nucleotides. Nucleotide preference was quantified by a dual-luciferase assay, which verified that the optimum context for NAA incorporation, AATTAGACT, was applicable to different proteins. Our work provides a general guide for engineering amber codons into genes of interest in bacteria. PMID:27028123

  16. Photograph Usage in History Education

    ERIC Educational Resources Information Center

    Akbaba, Bulent

    2009-01-01

    In this study, the effect of photograph usage in history education to the students' achievement was tried to be identified. In the study which was done with a pre-test post-test control group design, a frame was tried to be established between the experimental group and the analytical usage of the photograph, the control group's courses were done…

  17. Association of HER2 codon 655 polymorphism with ovarian cancer.

    PubMed

    Watrowski, Rafał; Castillo-Tong, Dan Cacsire; Schuster, Eva; Fischer, Michael B; Speiser, Paul; Zeillinger, Robert

    2016-06-01

    The role of the human epidermal growth factor receptor 2 (HER2) codon 655 (Ile655Val) polymorphism in ovarian cancer is not fully understood. Two studies indicated a possible association between the Val allele and elevated risk or reduced prognosis of ovarian cancer. We investigated the HER2 codon 655 (rs1136201) polymorphism in 242 Austrian women-142 ovarian cancer patients and 100 healthy controls-by polymerase chain reaction and pyrosequencing. Associations between Ile655Val polymorphism and clinicopathological variables (e.g., age, FIGO stage, grading, serous vs. non-serous histology) were evaluated. The genotype distributions in ovarian cancer patients and controls were: AA; 66.2 %, AG; 25.35 %, GG; 8.45 %, and AA; 63 %, AG; 34 %, GG; 3.7 %, respectively (OR 1.15, CI 95 % 0.67-1.96). We observed a non-significant trend toward elevated cancer risk in Val/Val genotype (OR 2.98, CI 95 % 0.82-10.87, p = 0.10). Of note, 11 out of 12 Val/Val homozygotes were postmenopausal. The link between the Val/Val homozygosity and age over 50 years at diagnosis (OR 0.15, CI 95 % 0.02-1.2) was barely significant (p = 0.056). Summarizing, our data indicated a non-significant trend toward increased ovarian cancer risk in the Val/Val homozygosity, especially in women aged above 50 years. Further large-cohort studies focusing on the role of the HER2 codon 655 Val allele are needed. PMID:26666819

  18. Synthetic approach to stop-codon scanning mutagenesis.

    PubMed

    Nie, Lihua; Lavinder, Jason J; Sarkar, Mohosin; Stephany, Kimberly; Magliery, Thomas J

    2011-04-27

    A general combinatorial mutagenesis strategy using common dimethoxytrityl-protected mononucleotide phosphoramidites and a single orthogonally protected trinucleotide phosphoramidite (Fmoc-TAG; Fmoc = 9-fluorenylmethoxycarbonyl) was developed to scan a gene with the TAG amber stop codon with complete synthetic control. In combination with stop-codon suppressors that insert natural (e.g., alanine) or unnatural (e.g., p-benzoylphenylalanine, Bpa) amino acids, a single DNA library can be used to incorporate different amino acids for diverse purposes. Here, we scanned TAG codons through part of the gene for a model four-helix bundle protein, Rop, which regulates the copy number of ColE1 plasmids. Alanine was incorporated into Rop for mapping its binding site using an in vivo activity screen, and subtle but important differences from in vitro gel-shift studies of Rop function are evident. As a test, Bpa was incorporated using a Phe14 amber mutant isolated from the scanning library. Surprisingly, Phe14Bpa-Rop is weakly active, despite the critical role of Phe14 in Rop activity. Bpa is a photoaffinity label unnatural amino acid that can form covalent bonds with adjacent molecules upon UV irradiation. Irradiation of Phe14Bpa-Rop, which is a dimer in solution like wild-type Rop, results in covalent dimers, trimers, and tetramers. This suggests that Phe14Bpa-Rop weakly associates as a tetramer in solution and highlights the use of Bpa cross-linking as a means of trapping weak and transient interactions. PMID:21452871

  19. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    PubMed

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc. PMID:26498580

  20. A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene.

    PubMed

    Kotsopoulou, E; Kim, V N; Kingsman, A J; Kingsman, S M; Mitrophanous, K A

    2000-05-01

    The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors. PMID:10775623

  1. A Rev-Independent Human Immunodeficiency Virus Type 1 (HIV-1)-Based Vector That Exploits a Codon-Optimized HIV-1 gag-pol Gene

    PubMed Central

    Kotsopoulou, Ekaterini; Kim, V. Narry; Kingsman, Alan J.; Kingsman, Susan M.; Mitrophanous, Kyriacos A.

    2000-01-01

    The human immunodeficiency virus (HIV) genome is AU rich, and this imparts a codon bias that is quite different from the one used by human genes. The codon usage is particularly marked for the gag, pol, and env genes. Interestingly, the expression of these genes is dependent on the presence of the Rev/Rev-responsive element (RRE) regulatory system, even in contexts other than the HIV genome. The Rev dependency has been explained in part by the presence of RNA instability sequences residing in these coding regions. The requirement for Rev also places a limitation on the development of HIV-based vectors, because of the requirement to provide an accessory factor. We have now synthesized a complete codon-optimized HIV-1 gag-pol gene. We show that expression levels are high and that expression is Rev independent. This effect is due to an increase in the amount of gag-pol mRNA. Provision of the RRE in cis did not lower protein or RNA levels or stimulate a Rev response. Furthermore we have used this synthetic gag-pol gene to produce HIV vectors that now lack all of the accessory proteins. These vectors should now be safer than murine leukemia virus-based vectors. PMID:10775623

  2. Translational readthrough potential of natural termination codons in eucaryotes – The impact of RNA sequence

    PubMed Central

    Dabrowski, Maciej; Bukowy-Bieryllo, Zuzanna; Zietkiewicz, Ewa

    2015-01-01

    Termination of protein synthesis is not 100% efficient. A number of natural mechanisms that suppress translation termination exist. One of them is STOP codon readthrough, the process that enables the ribosome to pass through the termination codon in mRNA and continue translation to the next STOP codon in the same reading frame. The efficiency of translational readthrough depends on a variety of factors, including the identity of the termination codon, the surrounding mRNA sequence context, and the presence of stimulating compounds. Understanding the interplay between these factors provides the necessary background for the efficient application of the STOP codon suppression approach in the therapy of diseases caused by the presence of premature termination codons. PMID:26176195

  3. Eukaryotic Evolutionary Transitions Are Associated with Extreme Codon Bias in Functionally-Related Proteins

    PubMed Central

    Hudson, Nicholas J.; Gu, Quan; Nagaraj, Shivashankar H.; Ding, Yong-Sheng; Dalrymple, Brian P.; Reverter, Antonio

    2011-01-01

    Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins – perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair – a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function – which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins – perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor – which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation. PMID:21966531

  4. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    SciTech Connect

    Petraroli, R.; Pocchiari, M.

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role in determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.

  5. Codon optimality is a major determinant of mRNA stability

    PubMed Central

    Presnyak, Vladimir; Alhusaini, Najwa; Chen, Ying-Hsin; Martin, Sophie; Morris, Nathan; Kline, Nicholas; Olson, Sara; Weinberg, David; Baker, Kristian E.; Graveley, Brenton R.; Coller, Jeff

    2015-01-01

    Messenger RNA degradation represents a critical regulated step in gene expression. While the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, while the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exists as an mechanism to finely tune levels of mRNAs, and ultimately, proteins. PMID:25768907

  6. Partial Optimization of the 5-Terminal Codon Increased a Recombination Porcine Pancreatic Lipase (opPPL) Expression in Pichia pastoris

    PubMed Central

    Zhao, Hua; Chen, Dan; Tang, Jiayong; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying

    2014-01-01

    Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed

  7. The codon-optimization of cfaE gene and evaluating its high expression capacity and conserved immunogenicity in Escherichia coli.

    PubMed

    Mansouri, Maysam; Mousavy, Seyed Jafar; Ehsaei, Zahra; Nazarian, Shahram; Zali, Mohammad Reza; Moazzeni, Seyed Mohammad

    2013-05-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of children diarrhea in the world. Adhesion of ETEC to small intestine is an important virulence trait. One of the most prevalent colonization factors (CFs) in human is CFA/I fimbriae and CfaE which is the required binding factor for adhesion of ETEC to intestinal mucosa. We optimized cfaE gene codons according to codon bias of E. coli to achieve a high level of recombinant protein expression. The optimized gene was expressed in E. coli and rCFaE protein was used for mice immunization. Blocking activity of the obtained antibody was examined by microplate agglutination inhibition test. SDS-PAGE analysis indicated that the optimized sequence of cfaE produces a suitable amount of rCFaE in comparison with native gene sequence. This optimized rCFaE protein could induces strong humoral response in mice and the antibody obtained against rCFaE inhibited the adhesion of ETEC to human group A erythrocytes. It is concluded that codon optimization is a useful approach for obtaining large quantities of recombinant rCFaE protein. With regard to the results of hemagglutination inhibition test, codon optimization and increased production of recombinant protein expressed in E. coli did not affect the immunogenicity potential of CFaE. PMID:23453276

  8. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  9. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): codon 178 mutation and codon 129 polymorphism.

    PubMed Central

    Medori, R; Tritschler, H J

    1993-01-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp)-->AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. We confirmed the 178Asn mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178Asn reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129Met/Val. Moreover, of five 178Asn individuals who are above age-at-onset range and who are well, two have 129Met and three have 129Met/Val, suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178Asn mutation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8105681

  10. Mine or Theirs, Where Do Users Go? A Comparison of E-Journal Usage at the OhioLINK Electronic Journal Center Platform versus the Elsevier ScienceDirect Platform

    ERIC Educational Resources Information Center

    Swanson, Juleah

    2015-01-01

    This research provides librarians with a model for assessing and predicting which platforms patrons will use to access the same content, specifically comparing usage at the Ohio Library and Information Network (OhioLINK) Electronic Journal Center (EJC) and at Elsevier's ScienceDirect from 2007 to 2013. Findings show that in the earlier years, the…

  11. Marijuana Usage and Hypnotic Susceptibility

    ERIC Educational Resources Information Center

    Franzini, Louis R.; McDonald, Roy D.

    1973-01-01

    Anonymous self-reported drug usage data and hypnotic susceptibility scores were obtained from 282 college students. Frequent marijuana users (more than 10 times) showed greater susceptibility to hypnosis than nonusers. (Author)

  12. An empirical test of the concomitantly variable codon hypothesis

    PubMed Central

    Merlo, Lauren M. F.; Lunzer, Mark; Dean, Antony M.

    2007-01-01

    A central assumption of models of molecular evolution, that each site in a sequence evolves independently of all other sites, lacks empirical support. We investigated the extent to which sites evolve codependently in triosephosphate isomerase (TIM), a ubiquitous glycolytic enzyme conserved in both structure and function. Codependencies among sites, or concomitantly variable codons (covarions), are evident from the reduced function and misfolding of hybrid TIM proteins. Although they exist, we find covarions are relatively rare, and closely related proteins are unlikely to have developed them. However, the potential for covarions increases with genetic distance so that highly divergent proteins may have evolved codependencies between many sites. The evolution of covarions undermines a key assumption in phylogenetics and calls into question our ability to disentangle ancient relationships among major taxonomic groups. PMID:17578921

  13. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum.

    PubMed

    Vaishya, Suniti; Kumar, Vikash; Gupta, Ankit; Siddiqi, Mohammad Imran; Habib, Saman

    2016-06-01

    Correct termination of protein synthesis would be a critical step in translation of organellar open reading frames (ORFs) of the apicoplast and mitochondrion of the malaria parasite. We identify release factors (RFs) responsible for recognition of the UAA and UGA stop-codons of apicoplast ORFs and the sole UAA stop-codon that terminates translation from the three mitochondrial ORFs. A single nuclear-encoded canonical RF2, PfRF2Api , localizes to the apicoplast. It has a conserved tripeptide motif (SPF) for stop-codon recognition and is sufficient for peptidyl-tRNA hydrolysis (PTH) from both UAA and UGA. Two RF family proteins are targeted to the parasite mitochondrion; a canonical RF1, PfRF1Mit , with a variant codon-recognition motif (PxN instead of the conserved RF1 PxT) is the major peptidyl-hydrolase with specific recognition of the UAA codon relevant to mitochondrial ORFs. Mutation of the N residue of the PfRF1Mit PxN motif and two other conserved residues of the codon recognition domain lowers PTH activity from pre-termination ribosomes indicating their role in codon-recognition. The second RF imported by the mitochondrion is the non-canonical PfICT1 that functions as a dimer and mediates codon nonspecific peptide release. Our results help delineate a critical step in organellar translation in Plasmodium, which is an important target for anti-malarials. PMID:26946524

  14. Summary of Computer Usage and Inventory of Computer Utilization in Curriculum. FY 1987-88.

    ERIC Educational Resources Information Center

    Tennessee Univ., Chattanooga. Center of Excellence for Computer Applications.

    This report presents the results of a computer usage survey/inventory, the ninth in a series conducted at the University of Tennessee at Chattanooga to obtain information on the changing status of computer usage in the curricula. Data analyses are reported in 11 tables, which include comparisons between annual inventories and demonstrate growth…

  15. Refining the Balance of Attenuation and Immunogenicity of Respiratory Syncytial Virus by Targeted Codon Deoptimization of Virulence Genes

    PubMed Central

    Meng, Jia; Lee, Sujin; Hotard, Anne L.

    2014-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the most important pathogen for lower respiratory tract illness in children for which there is no licensed vaccine. Live-attenuated RSV vaccines are the most clinically advanced in children, but achieving an optimal balance of attenuation and immunogenicity is challenging. One way to potentially retain or enhance immunogenicity of attenuated virus is to mutate virulence genes that suppress host immune responses. The NS1 and NS2 virulence genes of the RSV A2 strain were codon deoptimized according to either human or virus codon usage bias, and the resulting recombinant viruses (dNSh and dNSv, respectively) were rescued by reverse genetics. RSV dNSh exhibited the desired phenotype of reduced NS1 and NS2 expression. RSV dNSh was attenuated in BEAS-2B and primary differentiated airway epithelial cells but not in HEp-2 or Vero cells. In BALB/c mice, RSV dNSh exhibited a lower viral load than did A2, and yet it induced slightly higher levels of RSV-neutralizing antibodies than did A2. RSV A2 and RSV dNSh induced equivalent protection against challenge strains A/1997/12-35 and A2-line19F. RSV dNSh caused less STAT2 degradation and less NF-κB activation than did A2 in vitro. Serial passage of RSV dNSh in BEAS-2B cells did not result in mutations in the deoptimized sequences. Taken together, RSV dNSh was moderately attenuated, more immunogenic, and equally protective compared to wild-type RSV and genetically stable. PMID:25249281

  16. Feasibility Study of a Rotorcraft Health and Usage Monitoring System ( HUMS): Usage and Structural Life Monitoring Evaluation

    NASA Technical Reports Server (NTRS)

    Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.

    1996-01-01

    The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FLS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques. The data that was used for the evaluation of the usage monitoring techniques was collected under an independent HUMS Flight trial program, using a commercially available HUMS and data recording system. The usage data collect from the HUMS trial aircraft was analyzed off-line using PC-based software that included the FCR and FLS techniques. In the future, if the technique prove feasible, usage monitoring would be incorporated into the onboard HUMS.

  17. ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models.

    PubMed

    Whelan, Simon; Allen, James E; Blackburne, Benjamin P; Talavera, David

    2015-01-01

    Molecular phylogenetics is a powerful tool for inferring both the process and pattern of evolution from genomic sequence data. Statistical approaches, such as maximum likelihood and Bayesian inference, are now established as the preferred methods of inference. The choice of models that a researcher uses for inference is of critical importance, and there are established methods for model selection conditioned on a particular type of data, such as nucleotides, amino acids, or codons. A major limitation of existing model selection approaches is that they can only compare models acting upon a single type of data. Here, we extend model selection to allow comparisons between models describing different types of data by introducing the idea of adapter functions, which project aggregated models onto the originally observed sequence data. These projections are implemented in the program ModelOMatic and used to perform model selection on 3722 families from the PANDIT database, 68 genes from an arthropod phylogenomic data set, and 248 genes from a vertebrate phylogenomic data set. For the PANDIT and arthropod data, we find that amino acid models are selected for the overwhelming majority of alignments; with progressively smaller numbers of alignments selecting codon and nucleotide models, and no families selecting RY-based models. In contrast, nearly all alignments from the vertebrate data set select codon-based models. The sequence divergence, the number of sequences, and the degree of selection acting upon the protein sequences may contribute to explaining this variation in model selection. Our ModelOMatic program is fast, with most families from PANDIT taking fewer than 150 s to complete, and should therefore be easily incorporated into existing phylogenetic pipelines. ModelOMatic is available at https://code.google.com/p/modelomatic/. PMID:25209223

  18. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.

    PubMed

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar

    2015-05-01

    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy. PMID:25492311

  19. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes.

    PubMed

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids. PMID:27001726

  20. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    NASA Astrophysics Data System (ADS)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  1. Polymorphism distribution of prion protein codon 117, 129 and 171 in Taiwan.

    PubMed

    Wang, Kaw-Chen; Wang, Vinchi; Sun, Ming-Chieh; Chiueh, Ti-I; Soong, Bing-Wen; Shan, Din-E

    2007-01-01

    Prion diseases compass transmissible spongiform neurodegenerative diseases from various causes, including the genetic and infectious ones. We investigated the prevalence of codon 117, 129 and 171 polymorphism in prion protein (PrP) in Taiwanese, mainly for the sake of the informative absence of this genetic distribution. Our subjects were 419 aged ones of Han ethic origin. We evaluated the PrP gene (PRNP) polymorphism by restriction fragment length polymorphism, after amplification of their genomic DNAs by polymerase chain reactions with specific primers, digested by restriction enzyme PvuII (for codon 117), NspI (for codon 129), and BbvI (for codon 171), respectively, and confirmed by nucleotide sequencing. All of the subjects were homozygotes at codon 117 (Ala/Ala, gca/gca) and 171 (Asn/Asn, aac/aac). There were no valine homozygotes (Val/Val) in our 419 subjects, and nine subjects (2.1%) showed methionine-valine heterozygosity (Mal/Val, atg/gtg). The methionine homozygotes (Met/Met) comprised the major population (97.9%), and the prevalence of distribution is different to that seen in Caucasians. The almost 100% conservation of the domain from codon 117 to 171 implies the warranty of PrP in cellular functions. The high prevalence of Met/Met alleles in Taiwan did not imply an increased risk of CJD, and the genetic susceptibility of CJD by codon 129 of PrP may be still elusive for the infectivity. PMID:17410475

  2. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.

    PubMed

    Chatterjee, Abhishek; Lajoie, Marc J; Xiao, Han; Church, George M; Schultz, Peter G

    2014-08-18

    The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing recognition of their first three bases by endogenous host tRNAs or release factors. Deletion of release factor 1 in a genomically recoded strain of E. coli (E. coli C321), in which all endogenous amber stop codons (UAG) are replaced with UAA, abolished UAG mediated translation termination. Here we show that a Methanocaldococcus jannaschii-derived frame-shift suppressor tRNA/aminoacyl-tRNA synthetase pair enhanced UAGN suppression efficiency in this recoded bacterial strain. These results demonstrate that efficient quadruplet codons for encoding non-native amino acids can be generated by eliminating competing triplet codon recognition at the ribosome. PMID:24867343

  3. Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast.

    PubMed

    Gamble, Caitlin E; Brule, Christina E; Dean, Kimberly M; Fields, Stanley; Grayhack, Elizabeth J

    2016-07-28

    Translation elongation efficiency is largely thought of as the sum of decoding efficiencies for individual codons. Here, we find that adjacent codon pairs modulate translation efficiency. Deploying an approach in Saccharomyces cerevisiae that scored the expression of over 35,000 GFP variants in which three adjacent codons were randomized, we have identified 17 pairs of adjacent codons associated with reduced expression. For many pairs, codon order is obligatory for inhibition, implying a more complex interaction than a simple additive effect. Inhibition mediated by adjacent codons occurs during translation itself as GFP expression is restored by increased tRNA levels or by non-native tRNAs with exact-matching anticodons. Inhibition operates in endogenous genes, based on analysis of ribosome profiling data. Our findings suggest translation efficiency is modulated by an interplay between tRNAs at adjacent sites in the ribosome and that this concerted effect needs to be considered in predicting the functional consequences of codon choice. PMID:27374328

  4. Dictionary of Caribbean English Usage.

    ERIC Educational Resources Information Center

    Allsopp, Richard, Ed.

    This dictionary is designed to provide an inventory of English usage in the Caribbean environment and lifestyle as known and spoken in each territory but not recorded in the standard British and American desk dictionaries. It cross-references different names for the same item throughout the anglophone Caribbean, identifies different items called…

  5. Code Usage Analysis System (CUAS)

    NASA Technical Reports Server (NTRS)

    Horsley, P. H.; Oliver, J. D.

    1976-01-01

    A set of computer programs is offered to aid a user in evaluating performance of an application program. The system provides reports of subroutine usage, program errors, and segment loading which occurred during the execution of an application program. It is presented in support of the development and validation of the space vehicle dynamics project.

  6. Modeling Educational Usage of Facebook

    ERIC Educational Resources Information Center

    Mazman, Sacide Guzin; Usluel, Yasemin Kocak

    2010-01-01

    The purpose of this study is to design a structural model explaining how users could utilize Facebook for educational purposes. In order to shed light on the educational usage of Facebook, in constructing the model, the relationship between users' Facebook adoption processes and their educational use of Facebook were included indirectly while the…

  7. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli. PMID:26544153

  8. Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation.

    PubMed

    Ouellette, Scot P; Rueden, Kelsey J; Rucks, Elizabeth A

    2016-09-01

    In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis. PMID:27400720

  9. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges

    PubMed Central

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed. PMID:25996997

  10. The unfolded protein response affects readthrough of premature termination codons

    PubMed Central

    Oren, Yifat S; McClure, Michelle L; Rowe, Steven M; Sorscher, Eric J; Bester, Assaf C; Manor, Miriam; Kerem, Eitan; Rivlin, Joseph; Zahdeh, Fouad; Mann, Matthias; Geiger, Tamar; Kerem, Batsheva

    2014-01-01

    One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions. PMID:24705877

  11. Suppression of Premature Termination Codons as a Therapeutic Approach

    PubMed Central

    Keeling, Kim M.; Wang, Dan; Conard, Sara E.; Bedwell, David M.

    2012-01-01

    In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach. PMID:22672057

  12. Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients.

    PubMed

    Kuschal, Christiane; Khan, Sikandar G; Enk, Benedikt; DiGiovanna, John J; Kraemer, Kenneth H

    2015-04-01

    Readthrough of premature termination (stop) codons (PTC) is a new approach to treatment of genetic diseases. We recently reported that readthrough of PTC in cells from some xeroderma pigmentosum complementation group C (XP-C) patients could be achieved with the aminoglycosides geneticin or gentamicin. We found that the response depended on several factors including the PTC sequence, its location within the gene and the aminoglycoside used. Here, we extended these studies to investigate the effects of other aminoglycosides that are already on the market. We reasoned that topical treatment could deliver much higher concentrations of drug to the skin, the therapeutic target, and thus increase the therapeutic effect while reducing renal or ototoxicity in comparison with systemic treatment. Our prior clinical studies indicated that only a few percent of normal XPC expression was associated with mild clinical disease. We found minimal cell toxicity in the XP-C cells with several aminoglycosides. We found increased XPC mRNA expression in PTC-containing XP-C cells with G418, paromomycin, neomycin and kanamycin and increased XPC protein expression with G418. We conclude that in selected patients with XP, topical PTC therapy can be investigated as a method of personalized medicine to alleviate their cutaneous symptoms. PMID:25651777

  13. Energy efficiency trade-offs drive nucleotide usage in transcribed regions.

    PubMed

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of 'A' versus 'T' and 'G' versus 'C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides 'U' and 'C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides 'A' and 'G' at non-synonymous coding sites. PMID:27098217

  14. Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217

  15. Role of codon choice in the leader region of the ilvGMEDA operon of Serratia marcescens.

    PubMed Central

    Harms, E; Umbarger, H E

    1987-01-01

    Leucine participates in multivalent repression of the Serratia marcescens ilvGMEDA operon by attenuation (J.-H. Hsu, E. Harms, and H.E. Umbarger, J. Bacteriol. 164:217-222, 1985), although there is only one single leucine codon that could be involved in this type of control. This leucine codon is the rarely used CUA. The contribution of this leucine codon to the control of transcription by attenuation was examined by replacing it with the commonly used leucine codon CUG and with a nonregulatory proline codon, CCG. These changes left intact the proposed secondary structure of the leader. The effects of the codon changes were assessed by placing the mutant leader regions upstream of the ilvGME structural genes or the cat gene and measuring acetohydroxy acid synthase II, transaminase B, or chloramphenicol acetyltransferase activities in cells grown under limiting and repressing conditions. The presence of the common leucine codon in place of the rare leucine codon reduced derepression by about 70%. Eliminating the leucine codon by converting it to proline abolished leucine control. Furthermore, a possible context effect of the adjacent upstream serine codon on leucine control was examined by changing it into a glycine codon. PMID:2824442

  16. The most deviated codon position in AT-rich bacterial genomes: a function related analysis.

    PubMed

    Ma, Bin-Guang; Chen, Ling-Ling

    2005-10-01

    We have performed systematic study on more than 120 archaeal and bacterial genomes. Based on the index proposed in the current paper, clear patterns are observed showing the relation between the base compositional deviation at three codon positions and the genomic GC content. For AT-rich genomes, the Most Deviated Codon Position (MDCP) is the 1st codon position, while for GC-rich genomes, MDCP appears at the 2nd or 3rd codon position alternatively. According to MDCP, the CDSs of a genome can be classified into two types: typical and atypical. In AT-rich genomes the typical represent the majority and account for about 3/4 of all the CDSs. Based on the functional classification of COG database, the two types of CDSs are examined. An apparent bias of distribution is observed that the CDSs with the function of 'information processing' are more likely to present in typical type. PMID:16060688

  17. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.

    PubMed Central

    Berry, M J; Banu, L; Harney, J W; Larsen, P R

    1993-01-01

    We investigated the requirements for selenocysteine insertion at single or multiple UGA codons in eukaryotic selenoproteins. Two functional SECIS elements were identified in the 3' untranslated region of the rat selenoprotein P mRNA, with predicted stem-loops and critical nucleotides similar to those in the SECIS elements in the type I iodothyronine 5' deiodinase (5'DI) and glutathione peroxidase selenoprotein mRNAs. Site-directed mutational analyses of three SECIS elements confirmed that conserved nucleotides in the loop and in unpaired regions of the stem are critical for activity. This indicates that multiple contact sites are required for SECIS function. Stop codon function at any of five out-of-context UGA codons in the 5'DI mRNA was suppressed by SECIS elements from the 5'DI or selenoprotein P genes linked downstream. Thus, the presence of SECIS elements in eukaryotic selenoprotein mRNAs permits complete flexibility in UGA codon position. Images PMID:8344267

  18. 18. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, BUILT 189x. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, BUILT 189x. NOTE STRAIGHT ASHLAR COURSING AND RAISED KEYSTONES. VIEW NW. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA

  19. Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs.

    PubMed

    Sanbonmatsu, K Y; Joseph, S

    2003-04-18

    The ribosome must discriminate between correct and incorrect tRNAs with sufficient speed and accuracy to sustain an adequate rate of cell growth. Here, we report the results of explicit solvent molecular dynamics simulations, which address the mechanism of discrimination by the ribosome. The universally conserved 16S rRNA base A1493 and the kink in mRNA between A and P sites amplify differences in stability between cognate and near-cognate codon-anticodon pairs. Destabilization by the mRNA kink also provides a geometric explanation for the higher error rates observed for mismatches in the first codon position relative to mismatches in the second codon position. For more stable near-cognates, the repositioning of the universally conserved bases A1492 and G530 results in increased solvent exposure and an uncompensated loss of hydrogen bonds, preventing correct codon-anticodon-ribosome interactions from forming. PMID:12683995

  20. Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes

    PubMed Central

    Hinnebusch, Alan G.

    2011-01-01

    Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site. PMID:21885680

  1. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  2. GPU architecture usage for efficient image scaling

    NASA Astrophysics Data System (ADS)

    Skakov, P.

    2013-05-01

    Specifics of graphics processing units (GPU) architecture is considered. Opportunities of relevant optimization for image processing algorithms are presented such as usage of texture filtering block. Accuracy of image scaling and drivers influenced usage specifics are noted.

  3. Opportunistic Resource Usage in CMS

    SciTech Connect

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  4. Opportunistic Resource Usage in CMS

    NASA Astrophysics Data System (ADS)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.; Cms Collaboration

    2014-06-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  5. DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context

    PubMed Central

    Pisareva, Vera P.; Pisarev, Andrey V.

    2016-01-01

    During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection. PMID:27067542

  6. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

    PubMed Central

    Mukai, Takahito; Yamaguchi, Atsushi; Ohtake, Kazumasa; Takahashi, Mihoko; Hayashi, Akiko; Iraha, Fumie; Kira, Satoshi; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Hoshi, Hiroko; Kobayashi, Takatsugu; Sakamoto, Kensaku

    2015-01-01

    The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code. PMID:26240376

  7. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon

    SciTech Connect

    Zinoni, F.; Birkmann, A.; Leinfelder, W.; Boeck, A.

    1987-05-01

    The structural gene (fdhF) for the 80-kDa selenopolypeptide of formate dehydrogenase from Escherichia coli contains an in-frame UGA codon at amino acid position 140 that is translated. Translation of gene fusions between N-terminal parts of fdhF with lacZ depends on the availability of selenium in the medium when the hybrid gene contains the UGA codon; it is independent of the presence of selenium when an fdhF portion upstream of the UGA position is fused to lacZ. Transcription does not require the presence of selenium in either case. By localized mutagenesis, the UGA codon was converted into serine (UCA) and cysteine (UGC and UGU) codons. Each mutagion relieved the selenium dependency of fdhF mRNA translation. Selenium incorporation was completely abolished in the case of the UCA insertion and was reduced to about 10% when the UGA was replaced by a cysteine codon. Insertion of UCA yielded an inactive fdhF gene product, while insertion of UGC and UGU resulted in polypeptides with lowered activities as components in the system formerly known as formate hydrogenlyase. Altogether the results indicate that the UGA codon at position 140 directs the cotranslational insertion of selenocysteine into the fdhF polypeptide chain.

  8. DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context.

    PubMed

    Pisareva, Vera P; Pisarev, Andrey V

    2016-05-19

    During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection. PMID:27067542

  9. Expletive Deleted: A Study of Language Usage.

    ERIC Educational Resources Information Center

    Nykodym, Nick; Boyd, John A.

    The research findings of profane language usage need to be extended so that more may be learned about human communication. In order to establish profane language usage norms, eighty-six university students were asked to estimate their profane language usage in each of three categories (excretory, religious, and sexual) in reference to three…

  10. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  11. Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles

    PubMed Central

    Prabhakaran, Ramanandan; Chithambaram, Shivapriya

    2015-01-01

    Rapid biosynthesis is key to the success of bacteria and viruses. Highly expressed genes in bacteria exhibit a strong codon bias corresponding to the differential availability of tRNAs. However, a large clade of lambdoid coliphages exhibits relatively poor codon adaptation to the host translation machinery, in contrast to other coliphages that exhibit strong codon adaptation to the host. Three possible explanations were previously proposed but dismissed: (1) the phage-borne tRNA genes that reduce the dependence of phage translation on host tRNAs, (2) lack of time needed for evolving codon adaptation due to recent host switching, and (3) strong strand asymmetry with biased mutation disrupting codon adaptation. Here, we examined the possibility that phages with relatively poor codon adaptation have poor translation initiation which would weaken the selection on codon adaptation. We measured translation initiation by: (1) the strength and position of the Shine–Dalgarno (SD) sequence, and (2) the stability of the secondary structure of sequences flanking the SD and start codon known to affect accessibility of the SD sequence and start codon. Phage genes with strong codon adaptation had significantly stronger SD sequences than those with poor codon adaptation. The former also had significantly weaker secondary structure in sequences flanking the SD sequence and start codon than the latter. Thus, lambdoid phages do not exhibit strong codon adaptation because they have relatively inefficient translation initiation and would benefit little from increased elongation efficiency. We also provided evidence suggesting that phage lifestyle (virulent versus temperate) affected selection intensity on the efficiency of translation initiation and elongation. PMID:25614589

  12. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR.

    PubMed

    Kianmehr, Anvarsadat; Golavar, Raziyeh; Rouintan, Mandana; Mahrooz, Abdolkarim; Fard-Esfahani, Pezhman; Oladnabi, Morteza; Khajeniazi, Safoura; Mostafavi, Seyede Samaneh; Omidinia, Eskandar

    2016-02-01

    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. PMID:26546410

  13. ProxiMAX randomization: a new technology for non-degenerate saturation mutagenesis of contiguous codons.

    PubMed

    Ashraf, Mohammed; Frigotto, Laura; Smith, Matthew E; Patel, Seema; Hughes, Marcus D; Poole, Andrew J; Hebaishi, Husam R M; Ullman, Christopher G; Hine, Anna V

    2013-10-01

    Back in 2003, we published 'MAX' randomization, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. 'MAX' randomization saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an α-helix, as in zinc-finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple contiguous codons in a non-degenerate manner. We have now developed 'ProxiMAX' randomization, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomization uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialized chemistry, reagents or equipment, and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in predefined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomization is particularly relevant to antibody engineering. PMID:24059507

  14. Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives.

    PubMed

    Pibiri, Ivana; Lentini, Laura; Melfi, Raffaella; Gallucci, Giulia; Pace, Andrea; Spinello, Angelo; Barone, Giampaolo; Di Leonardo, Aldo

    2015-08-28

    Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA. PMID:26142488

  15. Non-universal decoding of the leucine codon CUG in several Candida species.

    PubMed Central

    Ohama, T; Suzuki, T; Mori, M; Osawa, S; Ueda, T; Watanabe, K; Nakase, T

    1993-01-01

    It has been reported that CUG, a universal leucine codon, is read as serine in an asporogenic yeast, Candida cylindracea. The distribution of this non-universal genetic code in various yeast species was studied using an in vitro translation assay system with a synthetic messenger RNA containing CUG codons in-frame. It was found that CUG is used as a serine codon in six out of the fourteen species examined, while it is used for leucine in the remaining eight. The tRNA species responsible for the translation of codon CUG as serine was detected in all the six species in which CUG is translated as serine. The grouping according to the CUG codon assignments in these yeast species shows a good correlation with physiological classification by the chain lengths of the isoprenoid moiety of ubiquinone and the cell-wall sugar contained in the yeasts. The six Candida species examined in which CUG is used as serine belong to one distinct group in Hemiascomycetes. PMID:8371978

  16. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon.

    PubMed

    Katz, M J; Gándara, L; De Lella Ezcurra, A L; Wappner, P

    2016-05-01

    Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress. PMID:26874685

  17. Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes

    PubMed Central

    Fitzpatrick, David A.; O'Brien, Jennifer; Moran, Ciara; Hasin, Naushaba; Kenny, Elaine; Cormican, Paul; Gates, Amy; Morris, Derek W.; Jones, Gary W.

    2011-01-01

    The yeast prion [PSI+] has been implicated in the generation of novel phenotypes by a mechanism involving a reduction in translation fidelity causing readthrough of naturally occurring stop codons. Some [PSI+] associated phenotypes may also be generated due to readthrough of inactivating stop codon mutations (ISCMs). Using next generation sequencing we have sequenced the genomes of two Saccharomyces cerevisiae strains that are commonly used for the study of the yeast [PSI+] prion. We have identified approximately 26,000 and 6,500 single nucleotide polymorphisms (SNPs) in strains 74-D694 and G600 respectively, compared to reference strain S288C. In addition to SNPs that produce non-synonymous amino acid changes we have also identified a number of SNPs that cause potential ISCMs in these strains, one of which we show is associated with a [PSI+]-dependent stress resistance phenotype in strain G600. We identified twenty-two potential ISCMs in strain 74-D694, present in genes involved in a variety of cellular processes including nitrogen metabolism, signal transduction and oxidative stress response. The presence of ISCMs in a subset of these genes provides possible explanations for previously identified [PSI+]-associated phenotypes in this strain. A comparison of ISCMs in strains G600 and 74-D694 with S. cerevisiae strains sequenced as part of the Saccharomyces Genome Resequencing Project (SGRP) shows much variation in the generation of strain-specific ISCMs and suggests this process is possible under complex genetic control. Additionally we have identified a major difference in the abilities of strains G600 and 74-D694 to grow at elevated temperatures. However, this difference appears unrelated to novel SNPs identified in strain 74-D694 present in proteins involved in the heat shock response, but may be attributed to other SNP differences in genes previously identified as playing a role in high temperature growth. PMID:22194885

  18. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  19. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    PubMed

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines. PMID:25901796

  20. Organizations and E-Mail Usage.

    ERIC Educational Resources Information Center

    Krapels, Roberta H.; Moss, Frederick K.

    1997-01-01

    Argues that, with increasing interest in electronic communications, e-mail usage by employees becomes critical to teaching business communication issues. Presents interview results from three different types of businesses regarding employee e-mail usage. Notes that interviewees had little negative to say about electronic messaging. (SR)

  1. Physical Educators' Technology Competencies and Usage

    ERIC Educational Resources Information Center

    Woods, Marianne L.; Goc Karp, Grace; Miao, Hui; Perlman, Dana

    2008-01-01

    The purpose of this study was to examine K-12 physical education teachers' perceptions of ability and usage of technology. Physical educators (n = 114) completed the Physical Education Technology Usage Survey assessing their perceived technology competency, how and why they utilize technology, challenges they face in implementing technology, and…

  2. Abnormal Web Usage Control by Proxy Strategies.

    ERIC Educational Resources Information Center

    Yu, Hsiang-Fu; Tseng, Li-Ming

    2002-01-01

    Approaches to designing a proxy server with Web usage control and to making the proxy server effective on local area networks are proposed to prevent abnormal Web access and to prioritize Web usage. A system is implemented to demonstrate the approaches. The implementation reveals that the proposed approaches are effective, such that the abnormal…

  3. Survey: Computer Usage in Design Courses.

    ERIC Educational Resources Information Center

    Henley, Ernest J.

    1983-01-01

    Presents results of a survey of chemical engineering departments regarding computer usage in senior design courses. Results are categorized according to: computer usage (use of process simulators, student-written programs, faculty-written or "canned" programs; costs (hard and soft money); and available software. Programs offered are listed in a…

  4. Food Supplement Usage by Adolescent Males.

    ERIC Educational Resources Information Center

    Fleischer, Barbara; Read, Marsha

    1982-01-01

    Adolescent males (N=568) responded to a questionnaire examining their food supplement usage, types of food supplements consumed, reasons for use and non-use, relationship of use to concern for health, and demographic and external factors influencing supplement use. Presents factors related to food supplement usage. (RC)

  5. Neurotic Anxiety, Pronoun Usage, and Stress

    ERIC Educational Resources Information Center

    Alban, Lewis Sigmund; Groman, William D.

    1976-01-01

    Attempts to clarify the function of a particular aspect of verbal communication, pronoun usage, by (a) using a Gestalt Therapy theory conceptual framework and (b) experimentally focusing on the relationship of pronoun usage to neurotic anxiety and emotional stress. (Author/RK)

  6. Definite Article Usage across Varieties of English

    ERIC Educational Resources Information Center

    Wahid, Ridwan

    2013-01-01

    This paper seeks to explore the extent of definite article usage variation in several varieties of English based on a classification of its usage types. An annotation scheme based on Hawkins and Prince was developed for this purpose. Using matching corpus data representing Inner Circle varieties and Outer Circle varieties, analysis was made on…

  7. Training the Medical Student in Computer Usage.

    ERIC Educational Resources Information Center

    Heard, Jr., John T.; Tritz, Gerald J.

    1982-01-01

    A method is detailed for introducing computer usage into any course in a medical curriculum and concomitantly stimulating student utilization of such technology. It is felt medicine will rely more heavily upon computer uses in the future, and that familiarity with computer technology provides confidence and competence in physician usage. (MP)

  8. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  9. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic dive...

  10. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence.

    PubMed

    Kotini, Suresh Babu; Peske, Frank; Rodnina, Marina V

    2015-07-27

    Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrations in the medium. RF2 is an unexpectedly poor competitor of Sec. We recapitulate the major characteristics of SECIS-dependent UGA recoding in vitro using a fragment of fdhF-mRNA encoding a natural bacterial selenoprotein. Only 40% of actively translating ribosomes that reach the UGA codon insert Sec, even in the absence of RF2, suggesting that the capacity to insert Sec into proteins is inherently limited. RF2 does not compete with the Sec incorporation machinery; rather, it terminates translation on those ribosomes that failed to incorporate Sec. The data suggest a model in which early recruitment of Sec-tRNA(Sec)-SelB-GTP to the SECIS blocks the access of RF2 to the stop codon, thereby prioritizing recoding over termination at Sec-dedicated stop codons. PMID:26040702

  11. Genetic diversity of mango cultivars estimated using Start Codon Targeted (SCoT) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity and genetic relationships among 23 mango germplasm accessions, collected from different locations in Guangxi province in China, were analyzed by using a novel and simple gene targeted DNA marker: Start Codon Targeted (SCoT) markers. This technique uses a single, 18-mer primer PCR amplifica...

  12. Effects of codon modification on human BMP2 gene expression in tobacco plants.

    PubMed

    Suo, Guangli; Chen, Bing; Zhang, Jingyu; Duan, Ziyuan; He, Zhengquan; Yao, Wei; Yue, Chaoyin; Dai, Jianwu

    2006-07-01

    Bone morphogenetic protein 2 (BMP2) has great potential in therapeutic applications. We are working on generating transgenic plants as a bioreactor to produce BMP2. We have studied the effects of codon optimization on the expression of human BMP2 (hBMP2) in tobacco plants. Three modified hBMP2 genes were transformed into tobacco under the control of either cauliflower mosaic virus 35S (CaMV35S) promoter or double-CaMV35S promoter plus alfalfa mosaic virus (AMV) enhancer. The fused beta-glucuronidase (GUS) reporter gene was used to facilitate the assay of protein expression. The results indicated that codon optimization could increase the protein expression level obviously under CaMV35S promoter. However, under relatively stronger initiation condition (double-CaMV35S promoter plus AMV enhancer), only the gene with the lowest degree of codon optimization could increase the protein expression level. Our findings suggest that the action of codon optimization may be influenced by the factors of promoter strength and A+T content in tobacco plants. PMID:16491379

  13. Influenza A Virus Attenuation by Codon Deoptimization of the NS Gene for Vaccine Development

    PubMed Central

    Nogales, Aitor; Baker, Steven F.; Ortiz-Riaño, Emilio; Dewhurst, Stephen; Topham, David J.

    2014-01-01

    ABSTRACT Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural

  14. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2016-05-01

    There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae. PMID:26471875

  15. Relationship between codon biased genes, microarray expression values and physiological characteristics of Streptococcus pneumoniae.

    PubMed

    Martín-Galiano, Antonio J; Wells, Jerry M; de la Campa, Adela G

    2004-07-01

    A codon-profile strategy was used to predict gene expression levels in Streptococcus pneumoniae. Predicted highly expressed (PHE) genes included those encoding glycolytic and fermentative enzymes, sugar-conversion systems and carbohydrate-transporters. Additionally, some genes required for infection that are involved in oxidative metabolism and hydrogen peroxide production were PHE. Low expression values were predicted for genes encoding specific regulatory proteins like two-component systems and competence genes. Correspondence analysis localized 484 ORFs which shared a distinctive codon profile in the right horn. These genes had a mean G+C content (33.4 %) that was lower than the bulk of the genome coding sequences (39.7 %), suggesting that many of them were acquired by horizontal transfer. Half of these genes (242) were pseudogenes, ORFs shorter than 80 codons or without assigned function. The remaining genes included several virulence factors, such as capsular genes, iga, lytB, nanB, pspA, choline-binding proteins, and functions related to DNA acquisition, such as restriction-modification systems and comDE. In order to compare predicted translation rate with the relative amounts of mRNA for each gene, the codon adaptation index (CAI) values were compared with microarray fluorescence intensity values following hybridization of labelled RNA from laboratory-grown cultures. High mRNA amounts were observed in 32.5 % of PHE genes and in 64 % of the 25 genes with the highest CAI values. However, high relative amounts of RNA were also detected in 10.4 % of non-PHE genes, such as those encoding fatty acid metabolism enzymes and proteases, suggesting that their expression might also be regulated at the level of transcription or mRNA stability under the conditions tested. The effects of codon bias and mRNA amount on different gene groups in S. pneumoniae are discussed. PMID:15256573

  16. Association between p53 polymorphism at codon 72 and recurrent spontaneous abortion.

    PubMed

    Zhang, Ying; Wu, Yuan-Yuan; Qiao, Fu-Yuan; Zeng, Wan-Jiang

    2016-06-01

    p53 gene plays an important role in apoptosis, which is necessary for successful invasion of trophoblast cells. The change from an arginine (Arg) to a proline (Pro) at codon 72 can influence the biological activity of p53, which predisposes to an increased risk of recurrent spontaneous abortion (RSA). In order to investigate the association between p53 polymorphism at codon 72 and RSA, we conducted this meta-analysis. Pubmed, Embase and Web of science were used to identify the eligible studies. Odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the strength of the association. Six studies containing 937 cases of RSA and 830 controls were included, and there was one study deviated from Hardy-Weinberg equilibrium (HWE). There was a significant association between p53 polymorphism at codon 72 and RSA in recessive model (Pro/Pro vs. Pro/Arg+Arg/Arg; OR=1.60, 95% CI: 1.14-2.24) and co-dominant model (Pro/Pro vs. Arg/Arg; OR=1.47, 95% CI: 1.02-2.12) whether the study that was deviated from HWE was eliminated or not. A significant association was observed in allelic model (Pro vs. Arg; OR=1.28, 95% CI: 1.04-1.57) after exclusion of the study that was deviated from HWE. No association was noted in recessive model (Pro/Pro+Pro/Arg vs. Arg/Arg; OR=1.05, 95% CI: 0.86-1.30) and co-dominant model (Pro/Arg vs. Arg/Arg; OR=0.96, 95% CI: 0.77-1.19). Subgroup analysis by ethnicity also indicated a significant association between p53 polymorphism at codon 72 and RSA in Caucasian group. No heterogeneity and publication bias were found. Our meta-analysis implied that p53 polymorphism at codon 72 carries high maternal risk of RSA. PMID:27376811

  17. Selective Constraints on Amino Acids Estimated by a Mechanistic Codon Substitution Model with Multiple Nucleotide Changes

    PubMed Central

    Miyazawa, Sanzo

    2011-01-01

    Background Empirical substitution matrices represent the average tendencies of substitutions over various protein families by sacrificing gene-level resolution. We develop a codon-based model, in which mutational tendencies of codon, a genetic code, and the strength of selective constraints against amino acid replacements can be tailored to a given gene. First, selective constraints averaged over proteins are estimated by maximizing the likelihood of each 1-PAM matrix of empirical amino acid (JTT, WAG, and LG) and codon (KHG) substitution matrices. Then, selective constraints specific to given proteins are approximated as a linear function of those estimated from the empirical substitution matrices. Results Akaike information criterion (AIC) values indicate that a model allowing multiple nucleotide changes fits the empirical substitution matrices significantly better. Also, the ML estimates of transition-transversion bias obtained from these empirical matrices are not so large as previously estimated. The selective constraints are characteristic of proteins rather than species. However, their relative strengths among amino acid pairs can be approximated not to depend very much on protein families but amino acid pairs, because the present model, in which selective constraints are approximated to be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can provide a good fit to other empirical substitution matrices including cpREV for chloroplast proteins and mtREV for vertebrate mitochondrial proteins. Conclusions/Significance The present codon-based model with the ML estimates of selective constraints and with adjustable mutation rates of nucleotide would be useful as a simple substitution model in ML and Bayesian inferences of molecular phylogenetic trees, and enables us to obtain biologically meaningful information at both nucleotide and amino acid levels from codon and protein sequences. PMID:21445250

  18. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition.

    PubMed

    Pillay, Shubhadra; Li, Yan; Wong, Leo E; Pervushin, Konstantin

    2016-01-01

    Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q(122)FM(Y)F(126). RDCs were recorded on (15)N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1. PMID:26725946

  19. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition

    PubMed Central

    Pillay, Shubhadra; Li, Yan; Wong, Leo E; Pervushin, Konstantin

    2016-01-01

    Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q122FM(Y)F126. RDCs were recorded on 15N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1. PMID:26725946

  20. Estimating toner usage with laser electrophotographic printers

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Abramsohn, Dennis; Ives, Thom; Shaw, Mark; Allebach, Jan

    2013-02-01

    Accurate estimation of toner usage is an area of on-going importance for laser, electrophotographic (EP) printers. We propose a new two-stage approach in which we first predict on a pixel-by-pixel basis, the absorptance from printed and scanned pages. We then form a weighted sum of these pixel values to predict overall toner usage on the printed page. The weights are chosen by least-squares regression to toner usage measured with a set of printed test pages. Our twostage predictor significantly outperforms existing methods that are based on a simple pixel counting strategy in terms of both accuracy and robustness of the predictions.

  1. Codon pairs of the HIV-1 vif gene correlate with CD4+ T cell count

    PubMed Central

    2013-01-01

    Background The human APOBEC3G (A3G) protein activity is associated with innate immunity against HIV-1 by inducing high rates of guanosines to adenosines (G-to-A) mutations (viz., hypermutation) in the viral DNA. If hypermutation is not enough to disrupt the reading frames of viral genes, it may likely increase the HIV-1 diversity. To counteract host innate immunity HIV-1 encodes the Vif protein that binds A3G protein and form complexes to be degraded by cellular proteolysis. Methods Here we studied the pattern of substitutions in the vif gene and its association with clinical status of HIV-1 infected individuals. To perform the study, unique vif gene sequences were generated from 400 antiretroviral-naïve individuals. Results The codon pairs: 78–154, 85–154, 101–157, 105–157, and 105–176 of vif gene were associated with CD4+ T cell count lower than 500 cells per mm3. Some of these codons were located in the 81LGQGVSIEW89 region and within the BC-Box. We also identified codons under positive selection clustered in the N-terminal region of Vif protein, between 21WKSLVK26 and 40YRHHY44 regions (i.e., 31, 33, 37, 39), within the BC-Box (i.e., 155, 159) and the Cullin5-Box (i.e., 168) of vif gene. All these regions are involved in the Vif-induced degradation of A3G/F complexes and the N-terminal of Vif protein binds to viral and cellular RNA. Conclusions Adaptive evolution of vif gene was mostly to optimize viral RNA binding and A3G/F recognition. Additionally, since there is not a fully resolved structure of the Vif protein, codon pairs associated with CD4+ T cell count may elucidate key regions that interact with host cell factors. Here we identified and discriminated codons under positive selection and codons under functional constraint in the vif gene of HIV-1. PMID:23578255

  2. College Student Credit Card Usage and Debt.

    ERIC Educational Resources Information Center

    Rybka, Kathryn M.

    2001-01-01

    Provides an overview of the concerns related to credit card usage by college students. Offers information student affairs professionals can use to help college students make responsible choices. (Contains 26 references.) (GCP)

  3. Understanding Road Usage Patterns in Urban Areas

    NASA Astrophysics Data System (ADS)

    Wang, Pu; Hunter, Timothy; Bayen, Alexandre M.; Schechtner, Katja; González, Marta C.

    2012-12-01

    In this paper, we combine the most complete record of daily mobility, based on large-scale mobile phone data, with detailed Geographic Information System (GIS) data, uncovering previously hidden patterns in urban road usage. We find that the major usage of each road segment can be traced to its own - surprisingly few - driver sources. Based on this finding we propose a network of road usage by defining a bipartite network framework, demonstrating that in contrast to traditional approaches, which define road importance solely by topological measures, the role of a road segment depends on both: its betweeness and its degree in the road usage network. Moreover, our ability to pinpoint the few driver sources contributing to the major traffic flow allows us to create a strategy that achieves a significant reduction of the travel time across the entire road system, compared to a benchmark approach.

  4. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    PubMed

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. PMID:25623487

  5. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses

    PubMed Central

    Endres, Lauren; Dedon, Peter C; Begley, Thomas J

    2015-01-01

    tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation. Notably, altered tRNA modification has been linked to mitochondrial diseases and cancer progression. In this review, specific to Eukaryotic systems, we discuss how recent systems-level analyses using a bioanalytical platform have revealed that there is extensive reprogramming of tRNA modifications in response to cellular stress and during cell cycle progression. Combined with genome-wide codon bias analytics and gene expression studies, a model emerges in which stress-induced reprogramming of tRNA drives the translational regulation of critical response proteins whose transcripts display a distinct codon bias. Termed Modification Tunable Transcripts (MoTTs),1 we define them as (1) transcripts that use specific degenerate codons and codon biases to encode critical stress response proteins, and (2) transcripts whose translation is influenced by changes in wobble base tRNA modification. In this review we note that the MoTTs translational model is also applicable to the process of stop-codon recoding for selenocysteine incorporation, as stop-codon recoding involves a selective codon bias and modified tRNA to decode selenocysteine during the translation of a key subset of oxidative stress response proteins. Further, we discuss how in addition to RNA modification analytics, the comprehensive characterization of translational regulation of specific transcripts requires a variety of tools, including high coverage codon-reporters, ribosome profiling and linked genomic and proteomic approaches. Together these tools will yield important new insights into the role of translational

  6. Improving the efficiency of the genetic code by varying the codon length--the perfect genetic code.

    PubMed

    Doig, A J

    1997-10-01

    The function of DNA is to specify protein sequences. The four-base "alphabet" used in nucleic acids is translated to the 20 base alphabet of proteins (plus a stop signal) via the genetic code. The code is neither overlapping nor punctuated, but has mRNA sequences read in successive triplet codons until reaching a stop codon. The true genetic code uses three bases for every amino acid. The efficiency of the genetic code can be significantly increased if the requirement for a fixed codon length is dropped so that the more common amino acids have shorter codon lengths and rare amino acids have longer codon lengths. More efficient codes can be derived using the Shannon-Fano and Huffman coding algorithms. The compression achieved using a Huffman code cannot be improved upon. I have used these algorithms to derive efficient codes for representing protein sequences using both two and four bases. The length of DNA required to specify the complete set of protein sequences could be significantly shorter if transcription used a variable codon length. The restriction to a fixed codon length of three bases means that it takes 42% more DNA than the minimum necessary, and the genetic code is 70% efficient. One can think of many reasons why this maximally efficient code has not evolved: there is very little redundancy so almost any mutation causes an amino acid change. Many mutations will be potentially lethal frame-shift mutations, if the mutation leads to a change in codon length. It would be more difficult for the machinery of transcription to cope with a variable codon length. Nevertheless, in the strict and narrow sense of coding for protein sequences using the minimum length of DNA possible, the Huffman code derived here is perfect. PMID:9344740

  7. Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia

    NASA Astrophysics Data System (ADS)

    Bos, Johannes L.; Toksoz, Deniz; Marshall, Christopher J.; Verlaan-de Vries, Matty; Veeneman, Gerrit H.; van der Eb, Alex J.; van Boom, Jacques H.; Janssen, Johannes W. G.; Steenvoorden, Ada C. M.

    1985-06-01

    DNAs from four out of five patients with acute myeloid leukaemia (AML) tested by an in vivo selection assay in nude mice using transfected mouse NIH 3T3 cells were found to contain an activated N-ras oncogene. Using a set of synthetic oligonucleotide probes, we have detected a mutation at codon 13 in all four genes. The same codon is mutated in an additional AML DNA that is positive in the focus-formation assay on 3T3 cells. DNA from the peripheral blood of one patient in remission does not contain a codon 13 mutation.

  8. Maximum-Likelihood Tree Estimation Using Codon Substitution Models with Multiple Partitions

    PubMed Central

    Zoller, Stefan; Boskova, Veronika; Anisimova, Maria

    2015-01-01

    Many protein sequences have distinct domains that evolve with different rates, different selective pressures, or may differ in codon bias. Instead of modeling these differences by more and more complex models of molecular evolution, we present a multipartition approach that allows maximum-likelihood phylogeny inference using different codon models at predefined partitions in the data. Partition models can, but do not have to, share free parameters in the estimation process. We test this approach with simulated data as well as in a phylogenetic study of the origin of the leucin-rich repeat regions in the type III effector proteins of the pythopathogenic bacteria Ralstonia solanacearum. Our study does not only show that a simple two-partition model resolves the phylogeny better than a one-partition model but also gives more evidence supporting the hypothesis of lateral gene transfer events between the bacterial pathogens and its eukaryotic hosts. PMID:25911229

  9. Lack of IRS-1 codon 513 and 972 polymorphism in Pima Indians

    SciTech Connect

    Celi, F.S.; Silver, K.; Walston, J.

    1995-09-01

    Insulin receptor substrate-1 (IRS-1), a 1242 amino acid protein, an endogenous substrate for the insulin receptor tyrosine kinase, mediates many or all of the metabolic actions of insulin. Recently, polymorphism at codons 513 and 972 of the IRS-1 gene resulting in 2 amino acid substitutions that were associated with type II diabetes were found in a Caucasian population. Using allele specific oligonucleotide (ASO) hybridization, we screened 242 diabetic and 190 nondiabetic Pima Indians, a population with a very high prevalence of type II diabetes. Neither of the two mutations was present in either diabetic or nondiabetic subjects. We conclude that polymorphism at codons 513 and 972 of the IRS-1 gene observed in certain Caucasian populations is very rare or absent in Pima Indians. 20 refs., 2 figs., 1 tab.

  10. A POPULATION-SPECIFIC HTR2B STOP CODON PREDISPOSES TO SEVERE IMPULSIVITY

    PubMed Central

    Bevilacqua, Laura; Doly, Stéphane; Kaprio, Jaakko; Yuan, Qiaoping; Tikkanen, Roope; Paunio, Tiina; Zhou, Zhifeng; Wedenoja, Juho; Maroteaux, Luc; Diaz, Silvina; Belmer, Arnaud; Hodgkinson, Colin A.; Dell’Osso, Liliana; Suvisaari, Jaana; Coccaro, Emil; Rose, Richard J; Peltonen, Leena; Virkkunen, Matti; Goldman, David

    2011-01-01

    SUMMARY Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behavior. The complex origins of impulsivity hinder identification of the genes influencing both it and diseases with which it is associated. We performed exon-centric sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B that is common (MAF >1%) but exclusive to Finns was identified. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon that was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviors in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioral phenotypes using founder populations, and suggests a role for HTR2B in impulsivity. PMID:21179162

  11. Selective factors associated with the evolution of codon usage in natural populations of arboviruses and their practical application to infer possible hosts for emerging viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for the...

  12. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma.

    PubMed

    Harbour, J William; Roberson, Elisha D O; Anbunathan, Hima; Onken, Michael D; Worley, Lori A; Bowcock, Anne M

    2013-02-01

    Uveal melanoma is the most common primary cancer of the eye and often results in fatal metastasis. Here, we describe mutations occurring exclusively at codon 625 of the SF3B1 gene, encoding splicing factor 3B subunit 1, in low-grade uveal melanomas with good prognosis. Thus, uveal melanoma is among a small group of cancers associated with SF3B1 mutations, and these mutations denote a distinct molecular subset of uveal melanomas. PMID:23313955

  13. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers.

    PubMed

    Kang, Mi Ran; Kim, Min Sung; Oh, Ji Eun; Kim, Yoo Ri; Song, Sang Yong; Seo, Seong Il; Lee, Ji Youl; Yoo, Nam Jin; Lee, Sug Hyung

    2009-07-15

    Missense somatic mutations in IDH1 gene affecting codon 132 have recently been reported in glioblastoma multiforme (GBM) and other gliomas. The recurrent nature of the IDH1 mutations in the same amino acid strongly suggests that the mutations may play important roles in the pathogenesis of glial tumors. The aim of this study was to see whether the IDH1 codon 132 mutations occur in other human cancers besides glial tumors. We also attempted to confirm the occurrence of the IDH1 mutations in GBM of Korean patients. We have analyzed 1,186 cancer tissues from various origins, including carcinomas from breast, colon, lung, stomach, esophagus, liver, prostate, urinary bladder, ovary, uterine cervix, skin and kidney, and malignant mesotheliomas, primary GBM, malignant meningiomas, multiple myelomas and acute leukemias by single-strand conformation polymorphism analysis. We found four IDH1 codon 132 mutations in the GBM (4/25; 16.0%), two in the prostate carcinomas (2/75; 2.7%) and one in the B-acute lymphoblastic leukemias (B-ALL) (1/60; 1.7%), but none in other cancers. The IDH1 mutations consisted of five p.R132H and two p.R132C mutations. The data indicate that IDH1 codon 132 mutations occur not only in GBM, but also in prostate cancers and B-ALL. This study suggests that despite the infrequent incidence of the IDH1 mutations in prostate cancers and B-ALL, mutated IDH1 could be therapeutically targeted in these cancers and in glial tumors with the IDH1 mutations. PMID:19378339

  14. HER2 codon 655 polymorphism and breast cancer risk: a meta-analysis.

    PubMed

    Tao, Weiyang; Wang, Chunyang; Han, Ruifa; Jiang, Hongchi

    2009-03-01

    To evaluate the association between HER2 codon 655 polymorphism and breast cancer risk in this meta-analysis. A comprehensive search was performed to identify all case-control studies investigating such association. Statistical analyses were conducted with software MIX 1.54. Twenty eligible reports, including 10,642 cases/11,259 controls, were identified. In overall analysis, the Val allele frequency in cases was significantly higher than that in controls (OR = 1.0921, 95% CI: 1.0013-1.191, P = 0.0466), while no associations were found in both recessive and dominant models. In subgroup analysis, HER2 codon 655 polymorphism was weakly associated with breast cancer risk in recessive (OR = 2.4624, 95% CI: 1.0619-5.7104, P = 0.0357), dominant (OR = 1.2781, 95% CI: 1.0353-1.5779, P = 0.0225), and co-dominant genetic models (OR = 1.2947, 95% CI: 1.0682-1.5693, P = 0.0085) in Asian population, respectively. Meanwhile, the susceptibility to breast cancer in people aged < or =45 was significantly increased in both recessive (OR = 2.2408; 95% CI: 1.2876-3.8998, P = 0.0043), and dominant models (OR = 1.2902, 95% CI: 1.1035-1.5085, P = 0.0014). No significant associations were observed in Caucasian, European, and Family history subgroups. So our analyses suggest HER2 codon 655 Val allele is weakly associated with an increased risk of breast cancer, and SNP at HER2 codon 655 could be considered as a susceptibility biomarker for breast cancer for Asian females or women age 45 years or younger. PMID:18438707

  15. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation.

    PubMed

    Martitz, Janine; Hofmann, Peter Josef; Johannes, Jörg; Köhrle, Josef; Schomburg, Lutz; Renko, Kostja

    2016-09-01

    Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy. PMID:27157664

  16. Mechanism of codon recognition by transfer RNA studied with oligonucleotides larger than triplets.

    PubMed Central

    Labuda, D; Striker, G; Grosjean, H; Porschke, D

    1985-01-01

    The binding of yeast tRNAPhe to UUCA, UUCC, UUCCC, UUCUUCU, U4, U5, U6 and U7 was analysed by fluorescence temperature jump and equilibrium sedimentation measurements. In all cases the two observed relaxation processes can be assigned to alpha) an intramolecular conformation change of the anticodon loop and beta) preferential binding of the oligonucleotides to one of the anticodon conformations. The anticodon loop transition is associated with inner sphere complexation of Mg2+ and proceeds with rate constants of about 10(3) s-1. The rate constants of oligonucleotide binding are between 4 and 10 X 10(6) M-1s-1 and reflect an increase of the association rate with the number of binding sites compensated to some degree by electrostatic repulsion in the preequilibrium complex. Neither temperature jump nor equilibrium sedimentation experiments provided evidence for UUCA or UUCC induced tRNA dimerisation, although UUC binding leads to strong tRNA dimerisation under equivalent conditions. The results obtained for the longer oligonucleotides are similar. In the case of UUCUUCU with its two potential binding sites for tRNAPhe there was no evidence for the formation of 'ternary' complexes. Apparently tRNAPhe binds preferentially to the second UUC of this 'messenger' and forms additional contacts with residues on either side of the codon. Some evidence for the formation of ternary complexes is obtained for U6 and U7, although the extent of this reaction remains very small. Our results demonstrate that the mode of tRNA binding to a codon is strongly influenced by residues next to the codon. The formation of cooperative contacts between tRNA molecules at adjacent codons apparently requires support by a catalyst adjusting an appropriate conformation of messenger and tRNA molecules. PMID:4011439

  17. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Semsey, Szabolcs

    2014-12-01

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome.

  18. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome.

    PubMed

    Sneppen, Kim; Semsey, Szabolcs

    2014-01-01

    The mismatch repair system (MMR) corrects replication errors that escape proofreading. Previous studies on extrachromosomal DNA in Escherichia coli suggested that MMR uses hemimethylated GATC sites to identify the newly synthesized strand. In this work we asked how the distance of GATC sites and their methylation status affect the occurrence of single base substitutions on the E. coli chromosome. As a reporter system we used a lacZ gene containing an early TAA stop codon. We found that occurrence of point mutations at this stop codon is unaffected by GATC sites located more than 115 base pairs away. However, a GATC site located about 50 base pairs away resulted in a decreased mutation rate. This effect was independent of Dam methylation. The reversion rate of the stop codon increased only slightly in dam mutants compared to mutL and mutS mutants. We suggest that unlike on extrachromosomal DNA, GATC methylation is not the only strand discrimination signal for MMR on the E. coli chromosome. PMID:25475788

  19. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon

    PubMed Central

    Mukai, Takahito; Hoshi, Hiroko; Ohtake, Kazumasa; Takahashi, Mihoko; Yamaguchi, Atsushi; Hayashi, Akiko; Yokoyama, Shigeyuki; Sakamoto, Kensaku

    2015-01-01

    Escherichia coli is a widely used host organism for recombinant technology, and the bacterial incorporation of non-natural amino acids promises the efficient synthesis of proteins with novel structures and properties. In the present study, we developed E. coli strains in which the UAG codon was reserved for non-natural amino acids, without compromising the reproductive strength of the host cells. Ninety-five of the 273 UAG stop codons were replaced synonymously in the genome of E. coli BL21(DE3), by exploiting the oligonucleotide-mediated base-mismatch-repair mechanism. This genomic modification allowed the safe elimination of the UAG-recognizing cellular component (RF-1), thus leaving the remaining 178 UAG codons with no specific molecule recognizing them. The resulting strain B-95.ΔA grew as vigorously as BL21(DE3) in rich medium at 25–42°C, and its derivative B-95.ΔAΔfabR was better adapted to low temperatures and minimal media than B-95.ΔA. UAG was reassigned to synthetic amino acids by expressing the specific pairs of UAG-reading tRNA and aminoacyl-tRNA synthetase. Due to the preserved growth vigor, the B-95.ΔA strains showed superior productivities for hirudin molecules sulfonated on a particular tyrosine residue, and the Fab fragments of Herceptin containing multiple azido groups. PMID:25982672

  20. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity

    PubMed Central

    Nedialkova, Danny D.; Leidel, Sebastian A.

    2015-01-01

    Summary Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. PMID:26052047

  1. Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

    PubMed Central

    Hussain, Tanweer; Llácer, Jose L.; Fernández, Israel S.; Munoz, Antonio; Martin-Marcos, Pilar; Savva, Christos G.; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2014-01-01

    Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon. PMID:25417110

  2. Recognition of the amber UAG stop codon by release factor RF1

    SciTech Connect

    Korostelev, Andrei; Zhu, Jianyu; Asahara, Haruichi; Noller, Harry F.

    2010-08-23

    We report the crystal structure of a termination complex containing release factor RF1 bound to the 70S ribosome in response to an amber (UAG) codon at 3.6-{angstrom} resolution. The amber codon is recognized in the 30S subunit-decoding centre directly by conserved elements of domain 2 of RF1, including T186 of the PVT motif. Together with earlier structures, the mechanisms of recognition of all three stop codons by release factors RF1 and RF2 can now be described. Our structure confirms that the backbone amide of Q230 of the universally conserved GGQ motif is positioned to contribute directly to the catalysis of the peptidyl-tRNA hydrolysis reaction through stabilization of the leaving group and/or transition state. We also observe synthetic-negative interactions between mutations in the switch loop of RF1 and in helix 69 of 23S rRNA, revealing that these structural features interact functionally in the termination process. These findings are consistent with our proposal that structural rearrangements of RF1 and RF2 are critical to accurate translation termination.

  3. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation

    PubMed Central

    Deng, Wenjun; Babu, I. Ramesh; Su, Dan; Yin, Shanye; Begley, Thomas J.; Dedon, Peter C.

    2015-01-01

    Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell. PMID:26670883

  4. Effect of codon optimisation on the production of recombinant fish growth hormone in Pichia pastoris.

    PubMed

    Rothan, Hussin A; Huy, Teh Ser; Mohamed, Zulqarnain

    2014-01-01

    This study was established to test the hypothesis of whether the codon optimization of fish growth hormone gene (FGH) based on P. pastoris preferred codon will improve the quantity of secreted rFGH in culture supernatant that can directly be used as fish feed supplements. The optimized FGH coding sequence (oFGH) and native sequence (nFGH) of giant grouper fish (Epinephelus lanceolatus) were cloned into P. pastoris expression vector (pPICZαA) downstream of alcohol oxidase gene (AOX1) for efficient induction of extracellular rFGH by adding 1% of absolute methanol. The results showed that recombinant P. pastoris was able to produce 2.80 ± 0.27 mg of oFGH compared to 1.75 ± 0.25 of nFGH in one litre of culture supernatant. The total body weight of tiger grouper fingerlings fed with oFGH increased significantly at third (P < 0.05) and fourth weeks (P < 0.01) of four-week experiment period compared to those fed with nFGH. Both oFGH and nFGH significantly enhanced the final biomass and fish survival percentage. In conclusion, codon optimization of FGH fragment was useful to increase rFGH quantity in the culture supernatant of P. pastoris that can be directly used as fish feed supplements. Further studies are still required for large scale production of rFGH and practical application in aquaculture production. PMID:25147851

  5. Print and Electronic Resources: Usage Statistics at Guru Gobind Singh Indraprastha University Library

    ERIC Educational Resources Information Center

    Kapoor, Kanta

    2010-01-01

    Purpose: The purpose of this paper is to quantify the use of electronic journals in comparison with the print collections in the Guru Gobind Singh Indraprastha University Library. Design/methodology/approach: A detailed analysis was made of the use of lending services, the Xerox facility and usage of electronic journals such as Science Direct,…

  6. E-Book Usage and the "Choice" Outstanding Academic Book List: Is There a Correlation?

    ERIC Educational Resources Information Center

    Carter Williams, Karen; Best, Rickey

    2006-01-01

    In this study, the staff of the library at Auburn University at Montgomery analyzed circulation patterns for electronic books in the fields of Political Science, Public Administration and Law to see if favorable "Choice" reviews can be used to predict usage of electronic books. A comparison of the circulations between print and electronic books…

  7. Allelic frequency and genotypes of prion protein at codon 136 and 171 in Iranian Ghezel sheep breeds

    PubMed Central

    Zadeh, Reza Ashrafi; Omrani, Mir Davood; Ramezani, Fatemeh; Amniattalab, Amir

    2011-01-01

    PrP genotypes at codons 136 and 171 in 120 Iranian Ghezel sheep breeds were studied using allele-specific PCR amplification and compared with the well-known sheep breeds in North America, the United States and Europe. The frequency of V allele and VV genotype at codon 136 of Ghezel sheep breed was significantly lower than AA and AV. At codon 171, the frequency of allele H was significantly lower than Q and R. Despite the similarities of PrP genotypes at codons 136 and 171 between Iranian Ghezel sheep breeds and some of the studied breeds, significant differences were found with others. Planning of effective breeding control and successful eradication of susceptible genotypes in Iranian Ghezel sheep breeds will not be possible unless the susceptibility of various genotypes in Ghezel sheep breeds to natural or experimental scrapie has been elucidated. PMID:21778818

  8. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias.

    PubMed

    Alvarez-Dominguez, Juan R; Amosova, Olga; Fresco, Jacques R

    2013-04-19

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease. PMID:23457306

  9. Differentiating between Near- and Non-Cognate Codons in Saccharomyces cerevisiae

    PubMed Central

    Plant, Ewan P.; Nguyen, Phuc; Russ, Jonathan R.; Pittman, Yvette R.; Nguyen, Thai; Quesinberry, Jack T.; Kinzy, Terri Goss; Dinman, Jonathan D.

    2007-01-01

    Background Decoding of mRNAs is performed by aminoacyl tRNAs (aa-tRNAs). This process is highly accurate, however, at low frequencies (10−3 – 10−4) the wrong aa-tRNA can be selected, leading to incorporation of aberrant amino acids. Although our understanding of what constitutes the correct or cognate aa-tRNA:mRNA interaction is well defined, a functional distinction between near-cognate or single mismatched, and unpaired or non-cognate interactions is lacking. Methodology/Principal Findings Misreading of several synonymous codon substitutions at the catalytic site of firefly luciferase was assayed in Saccharomyces cerevisiae. Analysis of the results in the context of current kinetic and biophysical models of aa-tRNA selection suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons, enabling stimulation of GTPase activity of eukaryotic Elongation Factor 1A (eEF1A). Paromomycin specifically stimulated misreading of near-cognate but not of non-cognate aa-tRNAs, providing a functional probe to distinguish between these two classes. Deletion of the accessory elongation factor eEF1Bγ promoted increased misreading of near-cognate, but hyperaccurate reading of non-cognate codons, suggesting that this factor also has a role in tRNA discrimination. A mutant of eEF1Bα, the nucleotide exchange factor for eEF1A, promoted a general increase in fidelity, suggesting that the decreased rates of elongation may provide more time for discrimination between aa-tRNAs. A mutant form of ribosomal protein L5 promoted hyperaccurate decoding of both types of codons, even though it is topologically distant from the decoding center. Conclusions/Signficance It is important to distinguish between near-cognate and non-cognate mRNA:tRNA interactions, because such a definition may be important for informing therapeutic strategies for suppressing these two different categories of mutations underlying many human

  10. EBSCO's Usage Consolidation Attempts to Streamline Gathering, Storage, and Reporting of Usage Statistics

    ERIC Educational Resources Information Center

    Remy, Charlie

    2012-01-01

    This paper provides an overview of EBSCO's new Usage Consolidation product designed to streamline the harvesting, storage, and analysis of usage statistics from electronic resources. Strengths and weaknesses of the product are discussed as well as an early beta partner's experience. In the current atmosphere of flat or declining budgets, libraries…

  11. Decoding system for the AUA codon by tRNAIle with the UAU anticodon in Mycoplasma mobile

    PubMed Central

    Taniguchi, Takaaki; Miyauchi, Kenjyo; Nakane, Daisuke; Miyata, Makoto; Muto, Akira; Nishimura, Susumu; Suzuki, Tsutomu

    2013-01-01

    Deciphering the genetic code is a fundamental process in all living organisms. In many bacteria, AUA codons are deciphered by tRNAIle2 bearing lysidine (L) at the wobble position. L is a modified cytidine introduced post-transcriptionally by tRNAIle-lysidine synthetase (TilS). Some bacteria, including Mycoplasma mobile, do not carry the tilS gene, indicating that they have established a different system to decode AUA codons. In this study, tRNAIle2 has been isolated from M. mobile and was found to contain a UAU anticodon without any modification. Mycoplasma mobile isoleucyl-tRNA synthetase (IleRS) recognized the UAU anticodon, whereas Escherichia coli IleRS did not efficiently aminoacylate tRNAIle2UAU. In M. mobile IleRS, a single Arg residue at position 865 was critical for specificity for the UAU anticodon and, when the corresponding site (W905) in E. coli IleRS was substituted with Arg, the W905R mutant efficiently aminoacylated tRNA with UAU anticodon. Mycoplasma mobile tRNAIle2 cannot distinguish between AUA and AUG codon on E. coli ribosome. However, on M. mobile ribosome, M. mobile tRNAIle2UAU specifically recognized AUA codon, and not AUG codon, suggesting M. mobile ribosome has a property that prevents misreading of AUG codon. These findings provide an insight into the evolutionary reorganization of the AUA decoding system. PMID:23295668

  12. A facile and efficient transposon mutagenesis method for generation of multi-codon deletions in protein sequences.

    PubMed

    Liu, Shu-Su; Wei, Xuan; Ji, Qun; Xin, Xiu; Jiang, Biao; Liu, Jia

    2016-06-10

    Substitutions, insertions and deletions are all important mutation events in natural and laboratory protein evolution. However, protein engineering using insertions and deletions (indels) is hindered by the lack of a convenient mutagenesis method. Here, we describe a general transposon mutagenesis method that allows for removal of up to five consecutive in-frame codons from a random position of a target protein. This method, referred to as codon deletion mutagenesis (CDM), relies on an engineered Mu transposon that carries asymmetric terminal sequences flanking the MuA transposase recognition sites. CDM requires minimal DNA manipulations, and can generate multi-codon deletions with high efficiency (>90%). As a proof of principle, we constructed five libraries of green fluorescent protein (GFP) containing one to five random codon deletions, respectively. Several variants with multi-codon deletions remained fluorescent, none of which could be easily identified using traditional mutagenesis method. CDM provides a facile and efficient approach to sampling a protein sequence with multi-codon deletions. It will not only facilitate our understanding of the effects of amino acid deletions on protein function but also expedite protein engineering using deletion mutagenesis. PMID:27071724

  13. Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori

    PubMed Central

    Yahara, Koji; Furuta, Yoshikazu; Morimoto, Shinpei; Kikutake, Chie; Komukai, Sho; Matelska, Dorota; Dunin-Horkawicz, Stanisław; Bujnicki, Janusz M.; Uchiyama, Ikuo; Kobayashi, Ichizo

    2016-01-01

    Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS > 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication, recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures. Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination. We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes. PMID:26961370

  14. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression

    PubMed Central

    Zhong, Fei; Cao, Weiping; Chan, Edmund; Tay, Puei Nam; Cahya, Florence Feby; Zhang, Haifeng; Lu, Jinhua

    2005-01-01

    Microbial structures activate Toll-like receptors (TLRs) and TLR-mediated cell signalling elicits and regulates host immunity. Most TLRs are poorly expressed but the underlying expression mechanism is not clear. Examination TLR sequences revealed that most human TLR genes deviated from using major human codons. CD14 resembles TLRs in sequence but its gene preferentially uses major codons. Indeed, CD14 expression on monocytes was higher than expression of TLR1 and TLR2. The TLR9 gene is abundant in major codons and it also showed higher expression than TLR1, TLR2 and TLR7 in transfected 293T cells. Change of the 5′-end 302 base pairs of the TLR2 sequence into major human codons markedly increased TLR2 expression, which led to increased TLR2-mediated constitutive nuclear factor-κB activation. Change of the 5′-end 381 base pairs of the CD14 sequence into prevalent TLR codons markedly reduced CD14 expression. These results collectively show that the deviation of TLR sequences from using major codons dictates the low TLR expression and this may protect the host against excessive inflammation and tissue damages. PMID:15606798

  15. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome

    PubMed Central

    Zhang, Jingji; Ieong, Ka-Weng; Johansson, Magnus; Ehrenberg, Måns

    2015-01-01

    We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200–80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNAHis and, as also seen in vivo, Glu-tRNAGlu. We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here. PMID:26195797

  16. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid

    PubMed Central

    Babbitt, Gregory A.; Alawad, Mohammed A.; Schulze, Katharina V.; Hudson, André O.

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. PMID:25200075

  17. Integration-deficient Lentiviral Vectors Expressing Codon-optimized R338L Human FIX Restore Normal Hemostasis in Hemophilia B Mice

    PubMed Central

    Suwanmanee, Thipparat; Hu, Genlin; Gui, Tong; Bartholomae, Cynthia C; Kutschera, Ina; von Kalle, Christof; Schmidt, Manfred; Monahan, Paul E; Kafri, Tal

    2014-01-01

    Integration-deficient lentiviral vectors (IDLVs) have been shown to transduce a wide spectrum of target cells and organs in vitro and in vivo and to maintain long-term transgene expression in nondividing cells. However, epigenetic silencing of episomal vector genomes reduces IDLV transgene expression levels and renders these safe vectors less efficient. In this article, we describe for the first time a complete correction of factor IX (FIX) deficiency in hemophilia B mice by IDLVs carrying a novel, highly potent human FIX cDNA. A 50-fold increase in human FIX cDNA potency was achieved by combining two mechanistically independent yet synergistic strategies: (i) optimization of the human FIX cDNA codon usage to increase human FIX protein production per vector genome and (ii) generation of a highly catalytic mutant human FIX protein in which the arginine residue at position 338 was substituted with leucine. The enhanced human FIX activity was not associated with liver damage or with the formation of human FIX-directed inhibitory antibodies and rendered IDLV-treated FIX-knockout mice resistant to a challenging tail-clipping assay. A novel S1 nuclease-based B1-quantitative polymerase chain reaction assay showed low levels of IDLV integration in mouse liver. Overall, this study demonstrates that IDLVs carrying an improved human FIX cDNA safely and efficiently cure hemophilia B in a mouse model. PMID:23941813

  18. A global profile of replicative polymerase usage

    PubMed Central

    Müller, Carolin A.; Miyabe, Izumi; Brooks, Tony; Retkute, Renata; Hubank, Mike; Nieduszyski, Conrad A.; Carr, Antony M.

    2014-01-01

    Three eukaryotic DNA polymerases are essential for genome replication. Polα-primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: Polε replicates the leading strand while Polδ performs lagging strand synthesis. However, it is not known whether this division of labour is maintained across the whole genome or how uniform it is within single replicons. Using S. pombe, we have developed a polymerase usage sequencing (Pu-seq) strategy to map polymerase usage genome–wide. Pu–seq provides direct replication origin location and efficiency data and indirect estimates of replication timing. We confirm that the division of labour is broadly maintained across an entire genome. However, our data suggest a subtle variability in the usage of the two polymerases within individual replicons. We propose this results from occasional leading strand initiation by Polδ followed by exchange for Polε. PMID:25664722

  19. NAT Usage in Residential Broadband Networks

    NASA Astrophysics Data System (ADS)

    Maier, Gregor; Schneider, Fabian; Feldmann, Anja

    Many Internet customers use network address translation (NAT) when connecting to the Internet. To understand the extend of NAT usage and its implications, we explore NAT usage in residential broadband networks based on observations from more than 20,000 DSL lines. We present a unique approach for detecting the presence of NAT and for estimating the number of hosts connected behind a NAT gateway using IP TTLs and HTTP user-agent strings. Furthermore, we study when each of the multiple hosts behind a single NAT gateway is active. This enables us to detect simultaneous use. In addition, we evaluate the accuracy of NAT analysis techniques when fewer information is available.

  20. Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content.

    PubMed Central

    Ohama, T; Muto, A; Osawa, S

    1990-01-01

    The GC (G + C, or G or C)-contents of codon silent positions in all two-codon sets and three codons AUY/A (IIe), and in most of the family boxes of Micrococcus luteus (genomic GC-content: 74%) are 95% to 100% in both the highly and weakly expressed genes. In some family boxes, there is a decrease in NNC codons and an increase in NNG codons from the highly expressed to weakly expressed genes without apparent involvement of NNU and NNA codons. From these observations, we conclude that the selective use of synonymous codons in M. luteus may be largely determined by GC-biased mutation pressure and that in the highly expressed genes tRNAs would act as a weak selection pressure in some family boxes. Available data suggest that the effect of selection pressure by tRNAs on the synonymous codon choice becomes more apparent in the highly expressed genes in eubacteria with intermediate GC-contents such as Escherichia coli and Bacillus subtilis, and that the U/C ratio of the codon third positions in NNU/C-type two-codon sets in the weakly expressed genes would represent the approximate magnitude of directional mutation pressure throughout eubacteria. PMID:2326195

  1. Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons.

    PubMed Central

    Chrzanowska-Lightowlers, Zofia M A; Temperley, Richard J; Smith, Paul M; Seneca, Sara H; Lightowlers, Robert N

    2004-01-01

    The human mitochondrial genome (mtDNA) is a small, circular DNA duplex found in multi-copy in the mitochondrial matrix. It is almost fully transcribed from both strands to produce large polycistronic RNA units that are processed and matured. The 13 mtDNA-encoded polypeptides are translated from mt-mRNAs that have been matured by polyadenylation of their free 3'-termini. A patient with clinical features consistent with an mtDNA disorder was recently shown to carry a microdeletion, resulting in the loss of the termination codon for MTATP6 and in its juxtaposition with MTCO3. Cell lines from this patient exhibited low steady-state levels of RNA14, the bi-cistronic transcript encoding subunits 6 and 8 of the F(o)F(1)-ATP synthase, complex V, consistent with a decreased stability. Recent reports of 'non-stop' mRNA decay systems in the cytosol have failed to determine the fate of gene products derived from transcripts lacking termination codons, although enhanced decay clearly required the 'non-stop' transcripts to be translated. We wished to determine whether functional translation products could still be expressed from non-stop transcripts in the human mitochondrion. Although a minor defect in complex V assembly was noted in the patient-derived cell lines, the steady-state level of ATPase 6 was similar to controls, consistent with the pattern of de novo mitochondrial protein synthesis. Moreover, no significant difference in ATP synthase activity could be detected. We conclude that, in the absence of a functional termination codon, although mitochondrial transcripts are more rapidly degraded, they are also translated to generate stable polypeptides that are successfully integrated into functional enzyme complexes. PMID:14585098

  2. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    PubMed Central

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  3. Female Athletes and Performance-Enhancer Usage

    ERIC Educational Resources Information Center

    Fralinger, Barbara K.; Pinto-Zipp, Genevieve; Olson, Valerie; Simpkins, Susan

    2007-01-01

    The purpose of this study was to develop a knowledge base on factors associated with performance-enhancer usage among female athletes at the high school level in order to identify markers for a future prevention-education program. The study used a pretest-only, between-subjects Likert Scale survey to rank the importance of internal and external…

  4. College Student Performance and Credit Card Usage.

    ERIC Educational Resources Information Center

    Pinto, Mary Beth; Parente, Diane H.; Palmer, Todd Starr

    2001-01-01

    Examines the relationship between credit card usage, employment, and academic performance among a group of college students with credit cards. Results reveal that the students differed significantly in the level of anxiety felt from carrying debt, perceived need to work, and perceived impact of employment on academic performance. (Contains 57…

  5. Twitter Usage of Universities in Turkey

    ERIC Educational Resources Information Center

    Yolcu, Ozgu

    2013-01-01

    Universities are among the users of the most popular social media networks. Usage of social media by especially students and many other people and institutions, which constitutes the target audience for universities, encourages the universities to effectively use this environment. Twitter is among these social media networks which facilitate the…

  6. [Dental welding titanium and its clinical usage].

    PubMed

    Li, H; Xiao, M; Zhao, Y

    1998-09-01

    Due to its excellent biocompatibility, desirable chemical and mechanical properties, Titanium has been used for implant denture, RPD and FPD, where welding techniques were indispensable. This paper introduces 5 useful modern ways to weld Titanium and their clinical usage. They are: laser, plasma welding, TIG, infraned brazing and Hruska electrowelding. PMID:12553259

  7. Nutritional supplements usage by Portuguese athletes.

    PubMed

    Sousa, Mónica; Fernandes, Maria João; Moreira, Pedro; Teixeira, Vítor Hugo

    2013-01-01

    In this study, we determined the prevalence of nutritional supplements (NS) usage, the type of supplements used, the reasons for usage, and the source of nutritional advice among Portuguese athletes. Two hundred ninety-two athletes (68 % male, 12 - 37 years old) from 13 national sports federations completed a questionnaire that sought information on socio-demographics, sports data, and NS usage. Most athletes (66 %) consumed NS, with a median consumption of 4 supplements per athlete. The most popular supplements included multivitamins/minerals (67 %), sport drinks (62 %), and magnesium (53 %). Significant differences for the type of NS consumed were found between gender and age groups and the number of weekly training hours. Most athletes used NS to accelerate recovery (63 %), improve sports performance (62 %), and have more energy/reduce fatigue (60 %). Athletes sought advice on supplementation mainly from physicians (56 %) and coaches (46 %). Age and gender were found to influence reasons for use and the source of information. Reasons for NS usage were supported scientifically in some cases (e. g., muscle gain upon protein supplementation), but others did not have a scientific basis (e. g., use of glutamine and magnesium). Given the high percentage of NS users, there is an urgent need to provide athletes with education and access to scientific and unbiased information, so that athletes can make assertive and rational choices about the utilization of these products. PMID:24220164

  8. Google Scholar Usage: An Academic Library's Experience

    ERIC Educational Resources Information Center

    Wang, Ya; Howard, Pamela

    2012-01-01

    Google Scholar is a free service that provides a simple way to broadly search for scholarly works and to connect patrons with the resources libraries provide. The researchers in this study analyzed Google Scholar usage data from 2006 for three library tools at San Francisco State University: SFX link resolver, Web Access Management proxy server,…

  9. Prediction of Low Vision Aid Usage.

    ERIC Educational Resources Information Center

    Eaglstein, A.; Rapaport, S.

    1991-01-01

    Use of 11 kinds of visual aids by 458 clients of an Israel low vision clinic was evaluated by age, sex, work status, participation in a rehabilitation program, academic status, number of visual aids in use, and number of diagnosed eye diseases. Usage prediction was found to be complex and highly differentiated. (Author/JDD)

  10. Predicting Student Success via Online Homework Usage

    ERIC Educational Resources Information Center

    Bowman, Charles R.; Gulacar, Ozcan; King, Daniel B.

    2014-01-01

    With the amount of data available through an online homework system about students' study habits, it stands to reason that such systems can be used to identify likely student outcomes. A study was conducted to see how student usage of an online chemistry homework system (OWL) correlated with student success in a general chemistry course.…

  11. Slang Usage of French by Young Americans.

    ERIC Educational Resources Information Center

    Ensz, Kathleen Y.

    1985-01-01

    Describes reactions of native French speakers to usage of French slang by young American students. French-speaking participants rated 30 tape-recorded slang expressions. Their reactions were evaluated in relation to the sex, profession, age, and residence of the respondents. Results show attitudes critical of the use of slang in general. (SED)

  12. Predicate Adjective Usage in Standard Russian.

    ERIC Educational Resources Information Center

    Benson, Morton

    1959-01-01

    This paper describes predicate adjective usage in modern standard Russian using a corpus of written Russian derived from "Pravda" (neutral literary style) and "Krokodil" (conversational material). The short, long nominative, and instrumental forms are examined in relation to the type of adjective, copulative verb, sentence subject, and other…

  13. Language Arts: Mechanics and Usage K-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    This revised collection is presented in a new format. Each objective consists of stating the general objective, giving directions, sample items, and answers. Objectives covering a wide range of writing problems are included emphasizing the improvement of clarity in expression. The text is divided into two categories: Mechanics and Usage. There are…

  14. Statistical Measures for Usage-Based Linguistics

    ERIC Educational Resources Information Center

    Gries, Stefan Th.; Ellis, Nick C.

    2015-01-01

    The advent of usage-/exemplar-based approaches has resulted in a major change in the theoretical landscape of linguistics, but also in the range of methodologies that are brought to bear on the study of language acquisition/learning, structure, and use. In particular, methods from corpus linguistics are now frequently used to study distributional…

  15. The scope of usage-based theory.

    PubMed

    Ibbotson, Paul

    2013-01-01

    Usage-based approaches typically draw on a relatively small set of cognitive processes, such as categorization, analogy, and chunking to explain language structure and function. The goal of this paper is to first review the extent to which the "cognitive commitment" of usage-based theory has had success in explaining empirical findings across domains, including language acquisition, processing, and typology. We then look at the overall strengths and weaknesses of usage-based theory and highlight where there are significant debates. Finally, we draw special attention to a set of culturally generated structural patterns that seem to lie beyond the explanation of core usage-based cognitive processes. In this context we draw a distinction between cognition permitting language structure vs. cognition entailing language structure. As well as addressing the need for greater clarity on the mechanisms of generalizations and the fundamental units of grammar, we suggest that integrating culturally generated structures within existing cognitive models of use will generate tighter predictions about how language works. PMID:23658552

  16. Production, Usage, and Comprehension in Animal Vocalizations

    ERIC Educational Resources Information Center

    Seyfarth, Robert M.; Cheney, Dorothy L.

    2010-01-01

    In this review, we place equal emphasis on production, usage, and comprehension because these components of communication may exhibit different developmental trajectories and be affected by different neural mechanisms. In the animal kingdom generally, learned, flexible vocal production is rare, appearing in only a few orders of birds and few…

  17. Usage Patterns of Open Genomic Data

    ERIC Educational Resources Information Center

    Xia, Jingfeng; Liu, Ying

    2013-01-01

    This paper uses Genome Expression Omnibus (GEO), a data repository in biomedical sciences, to examine the usage patterns of open data repositories. It attempts to identify the degree of recognition of data reuse value and understand how e-science has impacted a large-scale scholarship. By analyzing a list of 1,211 publications that cite GEO data…

  18. CMSU Library Usage: Telephone Survey Results.

    ERIC Educational Resources Information Center

    Wales, Barbara; And Others

    The Assessment Committee of Library Services at Central Missouri State University conducted a telephone survey of 500 (41.2% completion rate) university students. The goals were to use a random sampling in order to gain more information regarding usage patterns of library services; to identify factors which inhibit patron use; and to reveal…

  19. The Scope of Usage-Based Theory

    PubMed Central

    Ibbotson, Paul

    2013-01-01

    Usage-based approaches typically draw on a relatively small set of cognitive processes, such as categorization, analogy, and chunking to explain language structure and function. The goal of this paper is to first review the extent to which the “cognitive commitment” of usage-based theory has had success in explaining empirical findings across domains, including language acquisition, processing, and typology. We then look at the overall strengths and weaknesses of usage-based theory and highlight where there are significant debates. Finally, we draw special attention to a set of culturally generated structural patterns that seem to lie beyond the explanation of core usage-based cognitive processes. In this context we draw a distinction between cognition permitting language structure vs. cognition entailing language structure. As well as addressing the need for greater clarity on the mechanisms of generalizations and the fundamental units of grammar, we suggest that integrating culturally generated structures within existing cognitive models of use will generate tighter predictions about how language works. PMID:23658552

  20. The Value of Precise Language Usage

    ERIC Educational Resources Information Center

    Petress, Ken

    2006-01-01

    Precision in language usage can be thought of as an ego boosting activity, a snobbish pastime, an arrogant trait; or it can be interpreted as an attempt to aid audiences in understanding exact meaning, an effort to reduce ambiguity, and/or as a positive role model for others in one's language community. This essay argues that the latter set of…

  1. Survey of Computer Usage in Louisiana Schools.

    ERIC Educational Resources Information Center

    Kirby, Peggy C.; And Others

    A survey of computer usage in 179 randomly selected public elementary and secondary schools in Louisiana was conducted in the spring of 1988. School principals responded to questions about school size, the socioeconomic status of the student population, the number of teachers certified in computer literacy and computer science, and the number of…

  2. Usage Patterns of an Online Search System.

    ERIC Educational Resources Information Center

    Cooper, Michael D.

    1983-01-01

    Examines usage patterns of ELHILL retrieval program of National Library of Medicine's MEDLARS system. Based on sample of 6,759 searches, the study analyzes frequency of various commands, classifies messages issued by system, and investigates searcher error rates. Suggestions for redesigning program and query language are noted. Seven references…

  3. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites.

    PubMed

    Keku, Temitope; Millikan, Robert; Worley, Kendra; Winkel, Scott; Eaton, Allison; Biscocho, Lorna; Martin, Christopher; Sandler, Robert

    2002-12-01

    We evaluated polymorphisms in methylenetetrahydrofolate reductase (MTHFR), folate intake and alcohol consumption in relation to risk of colon cancer in a population-based case-control study in North Carolina. The study included 555 cases (244 African Americans and 311 whites) and 875 controls (331 African Americans and 544 whites). Total folate intake of <400 versus > or =400 microg/day showed a weak positive association with colon cancer among both African Americans [adjusted odds ratio (OR) = 1.4, 95% confidence interval (CI) = 1.0-2.0] and whites (OR = 1.6, 95% CI = 1.2-2.2). No association was observed with use of alcohol. Compared with wild-type genotypes, there was no association between the low activity MTHFR codon 677 TT genotype and colon cancer, but the low activity codon 1298 CC genotype was inversely associated with colon cancer in whites (OR = 0.5, 95% CI = 0.3-0.9). Unlike previous studies, we did not observe a strong protective effect of the codon 677 TT low-activity genotype when folate intake was high. Instead, we observed an increased risk of colon cancer when folate intake was low for participants with wild- type genotypes. Adjusted ORs for the combined effects of codon 677 CC and codon 1298 AA genotypes and folate intake <400 microg/day were 1.9 (95% CI = 1.1-3.4) in African Americans and 2.5 (95% CI = 1.2-5.2) in whites. Our results suggest that variation at MTHFR codon 1298 (within the COOH-terminal region) may be more important for colon cancer than variation at codon 677 (NH(2)-terminal region), and in populations where folate intake is low, wild-type MTHFR activity may increase risk for colon cancer. PMID:12496052

  4. Unique graphical representation of protein sequences based on nucleotide triplet codons

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Zupan, Jure; Balaban, Alexandru T.

    2004-10-01

    We consider a graphical representation of proteins as an alternative to the usual representation of proteins as a sequence listing the natural amino acids. The approach is based on a graphical representation of triplets of DNA in which the interior of a square or the interior of a tetrahedron is used to accommodate 64 sites for the 64 codons. By associating a zigzag curve and various matrices with a protein, just as was the case with graphical representation of DNA, one can construct selected invariants to serve as protein descriptors. The approach is illustrated on the A-chain of human insulin.

  5. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect.

    PubMed Central

    Curran, J F; Poole, E S; Tate, W P; Gross, B L

    1995-01-01

    Codon context can affect translational efficiency by several molecular mechanisms. The base stacking interactions between a codon-anticodon complex and the neighboring nucleotide immediately 3' can facilitate translation by amber suppressors and the tRNA structure is also known to modulate the sensitivity to context. In this study the relative rates of aminoacyl-tRNA selection were measured at four sense codons (UGG, CUC, UUC and UCA), in all four 3' nucleotide contexts, through direct competition with a programmed frameshift at a site derived from the release factor 2 gene. Two codons (UGG and UUC) are read by tRNAs with small variable regions and their rates of aminoacyl-tRNA selection correlated with the potential base stacking strength of the 3' neighboring nucleotide. The other two codons (CUC and UCA) are read by tRNAs with large variable regions and the rate of selection of the aminoacyl-tRNAs in these cases varied little among the four contexts. Re-examination of published data on amber suppression also revealed an inverse correlation between context sensitivity and the size of the variable region. Collectively the data suggest that a large variable loop in a tRNA decreases the influence of the 3' context on tRNA selection, probably by strengthening tRNA-ribosomal interactions. PMID:7479072

  6. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment

    SciTech Connect

    Ling, Jiqiang; Peterson, Kaitlyn M.; Simonovic, Ivana; Cho, Chris; Soll, Dieter; Simonovic, Miljan

    2014-03-12

    Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular ?? with a threonine (Thr) anticodon, MST1 also recognizes an unusual ??, which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employs distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for ?? recognition, whereas the anticodon sequence is essential for aminoacylation of ??. The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate ??, reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix {alpha}11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.

  7. A Survey of Bioinformatics Database and Software Usage through Mining the Literature

    PubMed Central

    Nenadic, Goran; Filannino, Michele; Brass, Andy; Robertson, David L.; Stevens, Robert

    2016-01-01

    Computer-based resources are central to much, if not most, biological and medical research. However, while there is an ever expanding choice of bioinformatics resources to use, described within the biomedical literature, little work to date has provided an evaluation of the full range of availability or levels of usage of database and software resources. Here we use text mining to process the PubMed Central full-text corpus, identifying mentions of databases or software within the scientific literature. We provide an audit of the resources contained within the biomedical literature, and a comparison of their relative usage, both over time and between the sub-disciplines of bioinformatics, biology and medicine. We find that trends in resource usage differs between these domains. The bioinformatics literature emphasises novel resource development, while database and software usage within biology and medicine is more stable and conservative. Many resources are only mentioned in the bioinformatics literature, with a relatively small number making it out into general biology, and fewer still into the medical literature. In addition, many resources are seeing a steady decline in their usage (e.g., BLAST, SWISS-PROT), though some are instead seeing rapid growth (e.g., the GO, R). We find a striking imbalance in resource usage with the top 5% of resource names (133 names) accounting for 47% of total usage, and over 70% of resources extracted being only mentioned once each. While these results highlight the dynamic and creative nature of bioinformatics research they raise questions about software reuse, choice and the sharing of bioinformatics practice. Is it acceptable that so many resources are apparently never reused? Finally, our work is a step towards automated extraction of scientific method from text. We make the dataset generated by our study available under the CC0 license here: http://dx.doi.org/10.6084/m9.figshare.1281371. PMID:27331905

  8. A Survey of Bioinformatics Database and Software Usage through Mining the Literature.

    PubMed

    Duck, Geraint; Nenadic, Goran; Filannino, Michele; Brass, Andy; Robertson, David L; Stevens, Robert

    2016-01-01

    Computer-based resources are central to much, if not most, biological and medical research. However, while there is an ever expanding choice of bioinformatics resources to use, described within the biomedical literature, little work to date has provided an evaluation of the full range of availability or levels of usage of database and software resources. Here we use text mining to process the PubMed Central full-text corpus, identifying mentions of databases or software within the scientific literature. We provide an audit of the resources contained within the biomedical literature, and a comparison of their relative usage, both over time and between the sub-disciplines of bioinformatics, biology and medicine. We find that trends in resource usage differs between these domains. The bioinformatics literature emphasises novel resource development, while database and software usage within biology and medicine is more stable and conservative. Many resources are only mentioned in the bioinformatics literature, with a relatively small number making it out into general biology, and fewer still into the medical literature. In addition, many resources are seeing a steady decline in their usage (e.g., BLAST, SWISS-PROT), though some are instead seeing rapid growth (e.g., the GO, R). We find a striking imbalance in resource usage with the top 5% of resource names (133 names) accounting for 47% of total usage, and over 70% of resources extracted being only mentioned once each. While these results highlight the dynamic and creative nature of bioinformatics research they raise questions about software reuse, choice and the sharing of bioinformatics practice. Is it acceptable that so many resources are apparently never reused? Finally, our work is a step towards automated extraction of scientific method from text. We make the dataset generated by our study available under the CC0 license here: http://dx.doi.org/10.6084/m9.figshare.1281371. PMID:27331905

  9. Segmentation of DNA into Coding and Noncoding Regions Based on Recursive Entropic Segmentation and Stop-Codon Statistics

    NASA Astrophysics Data System (ADS)

    Nicorici, Daniel; Astola, Jaakko

    2004-12-01

    Heterogeneous DNA sequences can be partitioned into homogeneous domains that are comprised of the four nucleotides A, C, G, and T and the stop-codons. Recursively, we apply a new entropic segmentation method on DNA sequences using Jensen-Shannon and Jensen-Rényi divergences in order to find the borders between coding and noncoding DNA regions. We have chosen 12- and 18-symbol alphabets that capture (i) the differential nucleotide composition in codons, and (ii) the differential stop-codon composition along all the three phases in both strands of the DNA. The new segmentation method is based on the Jensen-Rényi divergence measure, nucleotide statistics, and stop-codon statistics in both DNA strands. The recursive segmentation process requires no prior training on known datasets. Consequently, for three entire genomes of bacteria, we find that the use of nucleotide composition, stop-codon composition, and Jensen-Rényi divergence improve the accuracy of finding the borders between coding and noncoding regions in DNA sequences.

  10. A premature termination codon within an alternative exon affecting only the metabolism of transcripts that retain this exon.

    PubMed

    Maillet, P; Dalla Venezia, N; Lorenzo, F; Morinière, M; Bozon, M; Noël, B; Delaunay, J; Baklouti, F

    1999-01-01

    Protein 4.1 pre-mRNA splicing is regulated in tissue- and development-specific manners. Exon 16, which encodes the N-terminal region of the spectrin/actin-binding domain, is one of the alternatively spliced sequence motifs. It is present in late differentiated erythroid cells but absent from early erythroblasts and from lymphoid cells. We describe a single nucleotide deletion of the erythroid protein 4.1 gene associated with hereditary elliptocytosis. The deletion located in exon 16 leads to a frameshift and a premature termination codon within the same exon. In an effort to examine the premature stop codon effect in relationship with exon 16 alternative splicing, we analyzed erythroid and lymphoid protein 4.1 mRNAs using the mutation and a linked downstream polymorphism as markers. We found that the premature stop codon does not affect the tissue-specific alternative splicing among the two cell types analyzed and that the resulting alteration of mRNA metabolism correlates with the retention of exon 16 in reticulocytes. Conversely, skipping of exon 16 in lymphoid cells converts the mutant mRNA to a normal lymphoid-specific mRNA isoform, hence bypassing the nonsense codon. Consistent with data obtained on constitutive nonsense exons, our observations argue in favor of a stop codon recognition mechanism that occurs after the regulated splicing status of the nonsense exon has been achieved. PMID:10425037

  11. Experience with the use of the Codonics Safe Label System(™) to improve labelling compliance of anaesthesia drugs.

    PubMed

    Ang, S B L; Hing, W C; Tung, S Y; Park, T

    2014-07-01

    The Codonics Safe Labeling System(™) (http://www.codonics.com/Products/SLS/flash/) is a piece of equipment that is able to barcode scan medications, read aloud the medication and the concentration and print a label of the appropriate concentration in the appropriate colour code. We decided to test this system in our facility to identify risks, benefits and usability. Our project comprised a baseline survey (25 anaesthesia cases during which 212 syringes were prepared from 223 drugs), an observational study (47 cases with 330 syringes prepared) and a user acceptability survey. The baseline compliance with all labelling requirements was 58%. In the observational study the compliance using the Codonics system was 98.6% versus 63.8% with conventional labelling. In the user acceptability survey the majority agreed the Codonics machine was easy to use, more legible and adhered with better security than the conventional preprinted label. However, most were neutral when asked about the likelihood of flexibility and customisation and were dissatisfied with the increased workload. Our findings suggest that the Codonics labelling machine is user-friendly and it improved syringe labelling compliance in our study. However, staff need to be willing to follow proper labelling workflow rather than batch label during preparation. Future syringe labelling equipment developers need to concentrate on user interface issues to reduce human factor and workflow problems. Support logistics are also an important consideration prior to implementation of any new labelling system. PMID:24967766

  12. Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream

    PubMed Central

    Gallant, Jonathan A.; Lindsley, Dale

    1998-01-01

    In cells subjected to moderate aminoacyl-tRNA limitation, the peptidyl-tRNA–ribosome complex stalled at the “hungry” codon can slide well beyond it on the messenger RNA and resume translation further downstream. This behavior is proved by unequivocal amino acid sequence data, showing a protein that lacks the bypassed sequence encoded between the hungry codon and specific landing sites. The landing sites are codons cognate to the anticodon of the peptidyl-tRNA. The efficiency of this behavior can be as high as 10–20% but declines with the length of the slide. Interposition of “trap” sites (nonproductive landing sites) in the bypassed region reduces the frequency of successful slides, confirming that the ribosome–peptidyl-tRNA complex passes through the untranslated region of the message. This behavior appears to be quite general: it can occur at the two kinds of hungry codons tested, AUA and AAG; the sliding peptidyl-tRNA can be any of three species tested, phenylalanine, tyrosine, or leucine tRNA; the peptidyl component can be either of two very different peptide sequences; and translation can resume at any of the three codons tested. PMID:9811876

  13. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9.

    PubMed

    Newman, Zachary R; Young, Janet M; Ingolia, Nicholas T; Barton, Gregory M

    2016-03-01

    The innate immune system detects diverse microbial species with a limited repertoire of immune receptors that recognize nucleic acids. The cost of this immune surveillance strategy is the potential for inappropriate recognition of self-derived nucleic acids and subsequent autoimmune disease. The relative expression of two closely related receptors, Toll-like receptor (TLR) 7 and TLR9, is balanced to allow recognition of microbial nucleic acids while limiting recognition of self-derived nucleic acids. Situations that tilt this balance toward TLR7 promote inappropriate responses, including autoimmunity; therefore, tight control of expression is critical for proper homeostasis. Here we report that differences in codon bias limit TLR7 expression relative to TLR9. Codon optimization of Tlr7 increases protein levels as well as responses to ligands, but, unexpectedly, these changes only modestly affect translation. Instead, we find that much of the benefit attributed to codon optimization is actually the result of enhanced transcription. Our findings, together with other recent examples, challenge the dogma that codon optimization primarily increases translation. We propose that suboptimal codon bias, which correlates with low guanine-cytosine (GC) content, limits transcription of certain genes. This mechanism may establish low levels of proteins whose overexpression leads to particularly deleterious effects, such as TLR7. PMID:26903634

  14. Drug usage review sample studies in long-term care facilities.

    PubMed

    Stewart, J E; Kabat, H F; Wertheimer, A I

    1976-02-01

    The usage of 10 drugs in five long-term care facilities was reviewed to evaluate the effectiveness of a five-step systematic method of drug usage review. Medical care evaluation sample studies are required under the Medicare and Medicaid programs, and drug usage review sample studies may satisfy this requirement. The five-step method involved selection of the health problem to be studied; development of criteria of care; measurement of specific performance data and comparison with the criteria; establishment of the audit committee evaluation process; and design and implementation of educational activities. In each facility, data were collected on abstract sheets designed to indicate when a patient's drug usage did not conform to criteria established by a committee of health professionals. Incidents of nonconformance were then examined. The largest number of exceptions to the criteria related to monitoring the effectiveness of drug therapy. Data by drug revealed higher nonconformance rates for digoxin, hydrochlorothiazide, methyldopa and thioridazine. A small number of exceptions was found in drug administration, indicating that the patients were receiving medications as ordered and that few errors were made in transcribing. This systematic approach to identifying drug usage patterns can be used by pharmacists to coordinate sample studies and to fulfill their consultant role in long-term facilities required by federal regulations. PMID:816197

  15. Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris

    PubMed Central

    Yu, Ping; Yan, Yuan; Gu, Qing; Wang, Xiangyang

    2013-01-01

    The mature cDNA of endochitinase from Trichoderma viride sp. was optimised based on the codon bias of Pichia pastoris GS115 and synthesised by successive PCR; the sequence was then transformed into P. pastoris GS115 via electroporation. The transformant with the fastest growth rate on YPD plates containing 4 mg/mL G418 was screened and identified. This transformant produced 23.09 U/mL of the recombinant endochitinase, a 35% increase compared to the original strain bearing the wild-type endochitinase cDNA. The recombinant endochitinase was sequentially purified by ammonia sulphate precipitation, DE-52 anion-exchange chromatography and Sephadex G-100 size-exclusion chromatography. Thin-layer chromatography indicated that the purified endochitinase could hydrolyse chito-oligomers or colloidal chitin to generate diacetyl-chitobiose (GlcNAc)2 as the main product. This study demonstrates (1) a means for high expression of Trichoderma viride sp. endochitinase in P. pastoris using codon optimisation and (2) the preparation of chito-oligomers using endochitinase. PMID:24154717

  16. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster

    PubMed Central

    Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S

    2013-01-01

    Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569

  17. Marked high density lipoprotein deficiency due to apolipoprotein A-I Tomioka (codon 138 deletion).

    PubMed

    Wada, Masamichi; Iso, Tatsuya; Asztalos, Bela F; Takama, Noriaki; Nakajima, Tadashi; Seta, Yukihiro; Kaneko, Katsumi; Taniguchi, Yasuhiro; Kobayashi, Hideo; Nakajima, Katsuyuki; Schaefer, Ernst J; Kurabayashi, Masahiko

    2009-11-01

    We report a novel apolipoprotein A-I (apoA-I) mutation identified in a 64-year-old patient with marked plasma high density lipoprotein (HDL) cholesterol (4 mg/dl) and apoA-I (5mg/dl) deficiency, prior myocardial infarction, and moderate corneal opacities. Coronary angiography revealed extensive atherosclerosis in all three major vessels. Genomic DNA sequencing of the proband revealed a homozygous novel deletion of two successive adenine residues in codon 138 in the apoA-I gene, resulting in a frameshift mutation at amino acid residues 138-178, which we have designated as apoA-I Tomioka. His elder brother was also homozygous for apoA-I Tomioka with marked HDL cholesterol and apoA-I deficiency, but had no clinical evidence of coronary heart disease. Other family members including three siblings and two sons were heterozygous for the mutation, and had approximately 50% of normal plasma HDL cholesterol, and apoA-I. Analysis of apoA-I-containing HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I HDL particles in the homozygotes, while in heterozygotes, the mean concentrations of apoA-I in large alpha-1 and very small prebeta-1 HDL subpopulations were significantly decreased at about 35% of normal. Thus, apoA-I Tomioka, a novel deletion mutation in codon 138 of the apoA-I gene, is the causative defect in this case of HDL deficiency. PMID:19473658

  18. Expression, purification and identification of Pla a1 in a codon-optimized Platanus pollen allergen.

    PubMed

    Liu, Yun; Sun, Xiuzhen; Wang, Guizuo; Tao, Ailin; Wu, Yuanyuan; Li, Manxiang; Shi, Hongyang; Xie, Mei

    2015-08-01

    The present study aimed to express, purify and identify the major allergen gene, Pla a1, in Platanus pollen. According to previous studies, the major gene sequences of the Pla a1 allergen were obtained and codon optimization and synthesis of the genome were performed using DNAStar software. Following binding of the target gene fragment and the pET-44a vector, the JM109 cells were transfected to produce positive clones. The vectors were then transformed into Escherichia coli Rosetta cells to induce the expression of the target protein. The exogenous protein was purified using affinity chromatography and was identified by western blot analysis. Pla a1, the major allergen protein in Platanus pollen, was successfully isolated and this exogenous protein was purified using affinity chromatography. The present study was the first, to the best of our knowledge, to obtain expression of the allergen recombinant protein, Pla a1, fused with a Strep-TagII via codon optimization and provided the basis for the preparation of allergens with high purity, recombinant hypoallergenic allergens and allergen nucleic acid vaccines. PMID:25902014

  19. Start/stop codon like trinucleotides extensions in primate alpha satellites.

    PubMed

    Rosandić, Marija; Glunčić, Matko; Paar, Vladimir

    2013-01-21

    The centromeres remain "the final frontier" in unexplored segments of genome landscape in primate genomes, characterized by 2-5 Mb arrays of evolutionary rapidly evolving alpha satellite (AS) higher order repeats (HORs). Alpha satellites as specific noncoding sequences may be also significant in light of regulatory role of noncoding sequences. Using the Global Repeat Map (GRM) algorithm we identify in NCBI assemblies of chromosome 5 the species-specific alpha satellite HORs: 13mer in human, 5mer in chimpanzee, 14mer in orangutan and 3mers in macaque. The suprachromosomal family (SF) classification of alpha satellite HORs and surrounding monomeric alpha satellites is performed and specific segmental structure was found for major alpha satellite arrays in chromosome 5 of primates. In the framework of our novel concept of start/stop Codon Like Trinucleotides (CLTs) as a "new DNA language in noncoding sequences", we find characteristics and differences of these species in CLT extensions, in particular the extensions of stop-TGA CLT. We hypothesize that these are regulators in noncoding sequences, acting at a distance, and that they can amplify or weaken the activity of start/stop codons in coding sequences in protein genesis, increasing the richness of regulatory phenomena. PMID:23026763

  20. 3' UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons.

    PubMed

    Boehm, Volker; Haberman, Nejc; Ottens, Franziska; Ule, Jernej; Gehring, Niels H

    2014-10-23

    Nonsense-mediated mRNA decay (NMD) degrades different classes of mRNAs, including transcripts with premature termination codons (PTCs). The NMD factor SMG6 initiates degradation of substrate mRNAs by endonucleolytic cleavage. Here, we aim to delineate the cascade of NMD-activating events that culminate in endocleavage. We report that long 3' UTRs elicit SMG6-mediated endonucleolytic degradation. The presence of an exon-junction complex (EJC) within the 3' UTR strongly stimulates endocleavage in a distance-independent manner. The interaction of SMG6 with EJCs is not required for endocleavage. Whereas the core NMD component UPF2 supports endonucleolytic decay of long 3' UTR mRNAs, it is mostly dispensable during EJC-stimulated endocleavage. Using high-throughput sequencing, we map endocleavage positions of different PTC-containing reporter mRNAs and an endogenous NMD substrate to regions directly at and downstream of the termination codon. These results reveal how messenger ribonucleoprotein (mRNP) parameters differentially influence SMG6-executed endonucleolysis and uncover central characteristics of this phenomenon associated with translation termination. PMID:25310981

  1. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris.

    PubMed

    Liu, Yushan; Wu, Chengsheng; Wang, Jinyu; Mo, Wei; Yu, Min

    2013-12-01

    Interleukin (IL)-25 (also known as IL-17E) is a distinct member of the IL-17 cytokine family which induces IL-4, IL-5, and IL-13 expression and promotes pathogenic T helper (Th)-2 cell responses in various organs. IL-25 has been shown to have crucial role between innate and adaptive immunity and also a key component of the protection of gastrointestinal helminthes. In this study, to produce bioactive recombinant human IL-25 (rhIL-25), the cDNA of mature IL-25 was performed codon optimization based on methylotropic yeast Pichia pastoris codon bias and cloned into the expression vector pPICZαA. The recombinant vector was transformed into P. pichia strain X-33 and selected by zeocin resistance. Benchtop fermentation and simple purification strategy were established to purify the rhIL-25 with about 17 kDa molecular mass. Functional analysis showed that purified rhIL-25 specifically bond to receptor IL-17BR and induce G-CSF production in vitro. Further annexin V-FITC/PI staining assay indicated that rhIL-25 induced apoptosis in two breast cancer cells, MDA-MB-231 and HBL-100. This study provides a new strategy for the large-scale production of bioactive IL-25 for biological and therapeutic applications. PMID:24100683

  2. A population-specific HTR2B stop codon predisposes to severe impulsivity.

    PubMed

    Bevilacqua, Laura; Doly, Stéphane; Kaprio, Jaakko; Yuan, Qiaoping; Tikkanen, Roope; Paunio, Tiina; Zhou, Zhifeng; Wedenoja, Juho; Maroteaux, Luc; Diaz, Silvina; Belmer, Arnaud; Hodgkinson, Colin A; Dell'osso, Liliana; Suvisaari, Jaana; Coccaro, Emil; Rose, Richard J; Peltonen, Leena; Virkkunen, Matti; Goldman, David

    2010-12-23

    Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency > 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity. PMID:21179162

  3. Codon optimization for high level expression of human bone morphogenetic protein-2 in Escherichia coli.

    PubMed

    Retnoningrum, Debbie S; Pramesti, H T; Santika, P Y; Valerius, O; Asjarie, S; Suciati, T

    2012-08-01

    Codons in the open reading frame (ORF) encoding for human bone morphogenetic protein-2 (hBMP-2) were optimized to reach high level expression in Escherichia coli. The optimization was done by the computer programs DNA works and DNA Star according to Thermodynamically Balanced Inside Out (TBIO) approach. The ORF consisting of 342 base pairs (bp) was assembled using two-steps Polymerase Chain Reaction, cloned into a pGEM-T vector with a mutation rate of 6.38 bp per kb and transformed into E. coli JM109. After a DNA sequence confirmation, mutation-free ORF was subcloned into pET32b and transformed into E. coli BL21(DE3). The rhBMP-2 was produced as a thioredoxin-his-tag fusion protein at relatively high level, approximately 60% of total intracellular proteins as inclusion bodies (IB), with a yield of 1.39 g per liter culture. Solubilization of IB gave soluble monomer rhBMP-2 with a recovery of 13.6% and refolding of soluble rhBMP-2 produced dimeric forms with a yield of 8.7%. The size and identity of the purified rhBMP-2 was confirmed by nano-LC-MS/MS2 analysis. Our work demonstrates for the first time that by using TBIO approach, a codon-optimized ORF encoding for rhBMP-2 protein can be expressed at high level in E. coli expression system. PMID:22691543

  4. Summary usage statistics of the Helioviewer Project

    NASA Astrophysics Data System (ADS)

    Ireland, Jack; Stys, J. E.

    2013-07-01

    The Helioviewer Project enables visual exploration of the Sun and the inner heliosphere for everyone, everywhere via intuitive interfaces and novel technology. Images from the SDO, STEREO, SOHO, PROBA2 and Yohkoh missions are currently available. Users of the Helioviewer Project have made over one million movies and over two million screenshots since detailed (and anonymous) logging of Helioviewer Project usage was implemented in February 2011. These usage logs are analyzed to give a detailed breakdown on user interaction with solar and heliospheric data via Helioviewer Project clients and services. We present summary statistics on how our users are using our clients and services, which data they are interested in, and how they choose to interact with different data sources.

  5. Historical review of medicinal plants’ usage

    PubMed Central

    Petrovska, Biljana Bauer

    2012-01-01

    Healing with medicinal plants is as old as mankind itself. The connection between man and his search for drugs in nature dates from the far past, of which there is ample evidence from various sources: written documents, preserved monuments, and even original plant medicines. Awareness of medicinal plants usage is a result of the many years of struggles against illnesses due to which man learned to pursue drugs in barks, seeds, fruit bodies, and other parts of the plants. Contemporary science has acknowledged their active action, and it has included in modern pharmacotherapy a range of drugs of plant origin, known by ancient civilizations and used throughout the millennia. The knowledge of the development of ideas related to the usage of medicinal plants as well as the evolution of awareness has increased the ability of pharmacists and physicians to respond to the challenges that have emerged with the spreading of professional services in facilitation of man's life. PMID:22654398

  6. Historical review of medicinal plants' usage.

    PubMed

    Petrovska, Biljana Bauer

    2012-01-01

    Healing with medicinal plants is as old as mankind itself. The connection between man and his search for drugs in nature dates from the far past, of which there is ample evidence from various sources: written documents, preserved monuments, and even original plant medicines. Awareness of medicinal plants usage is a result of the many years of struggles against illnesses due to which man learned to pursue drugs in barks, seeds, fruit bodies, and other parts of the plants. Contemporary science has acknowledged their active action, and it has included in modern pharmacotherapy a range of drugs of plant origin, known by ancient civilizations and used throughout the millennia. The knowledge of the development of ideas related to the usage of medicinal plants as well as the evolution of awareness has increased the ability of pharmacists and physicians to respond to the challenges that have emerged with the spreading of professional services in facilitation of man's life. PMID:22654398

  7. Codon-level information improves predictions of inter-residue contacts in proteins by correlated mutation analysis

    PubMed Central

    Jacob, Etai; Unger, Ron; Horovitz, Amnon

    2015-01-01

    Methods for analysing correlated mutations in proteins are becoming an increasingly powerful tool for predicting contacts within and between proteins. Nevertheless, limitations remain due to the requirement for large multiple sequence alignments (MSA) and the fact that, in general, only the relatively small number of top-ranking predictions are reliable. To date, methods for analysing correlated mutations have relied exclusively on amino acid MSAs as inputs. Here, we describe a new approach for analysing correlated mutations that is based on combined analysis of amino acid and codon MSAs. We show that a direct contact is more likely to be present when the correlation between the positions is strong at the amino acid level but weak at the codon level. The performance of different methods for analysing correlated mutations in predicting contacts is shown to be enhanced significantly when amino acid and codon data are combined. DOI: http://dx.doi.org/10.7554/eLife.08932.001 PMID:26371555

  8. CRISPRi-Manipulation of Genetic Code Expansion via RF1 for Reassignment of Amber Codon in Bacteria

    PubMed Central

    Zhang, Bo; Yang, Qi; Chen, Jingxian; Wu, Ling; Yao, Tianzhuo; Wu, Yiming; Xu, Huan; Zhang, Lihe; Xia, Qing; Zhou, Demin

    2016-01-01

    The precise engineering of proteins in bacteria via the amber codon has been hampered by the poor incorporation of unnatural amino acid (UAA). Here we explored the amber assignment as a sense codon for UAA by CRISPRi targeting release factor 1 (RF1). Scanning of RF1 gene with sgRNAs identified target loci that differentiate RF1 repressions. Quantitation of RF1 repressions versus UAA incorporation indicated an increasing interrelation with the amber reassignment maximized upon RF1 knockdown to ~30%, disclosing the beneficial role of RF1 in amber assignment. However, further RF1 repression reversed this trend resulting from the detrimental effects on host cell growth, disclosing the harmful aspect of RF1 in reassignment of the amber codon. Our data indicate RF1 as a switch manipulating genetic code expansion and pave a direction via CRISPRi for precise engineering and efficient production of proteins in bacteria. PMID:26818534

  9. K-ras mutation at codon 12 in stage I pancreatic adenocarcinoma: analysis by laser capture microdissection and direct sequencing.

    PubMed

    Chang, M C; Chang, Y T; Wu, M S; Shun, C T; Tien, Y W; Lin, J T

    2001-05-01

    Pancreatic ductal adenocarcinoma has been reported to carry a rate mutation high in codon 12 of the K-ras oncogene. To avoid the pitfalls of conventional methods of tissue dissection that might affect the sensitivity and specificity of detecting K-ras mutation, laser capture microdissection (LCM) technique was used. Pancreatic adenocarcinoma tissues were obtained from 15 patients who underwent Whipple's procedure. Selected tissues procured by LCM were analyzed by direct sequencing after polymerase chain reaction amplification of K-ras sequences at codon 12. K-ras mutation was noted in nine patients. All mutations showed G to A substitution at codon 12. The mutational pattern (GGT to GAT) is similar in both western and eastern reports. LCM is a feasible method to effectively obtain pure tumor cells from a surgical specimen. It remains to be determined whether this low mutation rate is a result of relatively early stage of disease or different carcinogenesis in different geographic regions. PMID:11432318

  10. The NEMO Mutation Creating the Most-Upstream Premature Stop Codon Is Hypomorphic Because of a Reinitiation of Translation

    PubMed Central

    Puel, Anne; Reichenbach, Janine; Bustamante, Jacinta; Ku, Cheng-Lung; Feinberg, Jacqueline; Döffinger, Rainer; Bonnet, Marion; Filipe-Santos, Orchidée; Beaucoudrey, Ludovic de; Durandy, Anne; Horneff, Gerd; Novelli, Francesco; Wahn, Volker; Smahi, Asma; Israel, Alain; Niehues, Tim; Casanova, Jean-Laurent

    2006-01-01

    Amorphic mutations in the NF-κB essential modulator (NEMO) cause X-dominant incontinentia pigmenti, which is lethal in males in utero, whereas hypomorphic mutations cause X-recessive anhidrotic ectodermal dysplasia with immunodeficiency, a complex developmental disorder and life-threatening primary immunodeficiency. We characterized the NEMO mutation 110_111insC, which creates the most-upstream premature translation termination codon (at codon position 49) of any known NEMO mutation. Surprisingly, this mutation is associated with a pure immunodeficiency. We solve this paradox by showing that a Kozakian methionine codon located immediately downstream from the insertion allows the reinitiation of translation. The residual production of an NH2-truncated NEMO protein was sufficient for normal fetal development and for the subsequent normal development of skin appendages but was insufficient for the development of protective immune responses. PMID:16532398

  11. Characterizing food usage by demographic variables.

    PubMed

    Cronin, F J; Krebs-Smith, S M; Wyse, B W; Light, L

    1982-12-01

    On the basis of an analysis of three-day food records, food comsumption by major segments of the U.S. population was examined for 65 food groups and subgroups. This study indicates that demographic factors, particularly age, race, and region, can affect both the percentage of persons using certain foods and the mean frequency of their use. Both the similarities and the differences on these parameters are of interest when food usage is examined by demographic variables. PMID:7142608

  12. Space Shuttle Usage of z/OS

    NASA Technical Reports Server (NTRS)

    Green, Jan

    2009-01-01

    This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

  13. Flexible diaphragm-extreme temperature usage

    NASA Technical Reports Server (NTRS)

    Lerma, Guillermo (Inventor)

    1991-01-01

    A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.

  14. Nurses' MEDLINE usage and research utilization.

    PubMed

    Prin, P L; Mills, M E

    1997-01-01

    This exploratory study in the field of nursing informatics examined the usage of information technology, namely on-line access to MEDLINE in clinical setting, by a convenience sample of 121 nurses from a large university hospital. A descriptive correlational design was used. Guided by the conceptual frameword of Nurse-Computer Interaction and based on variables set forth in the Theory of Reasoned Action, the study tested hypotheses regarding attitudinal and normative influences on reported use of on-line bibliographic retrieval systems. It was also hypothesized that using MEDLINE coild increase and improve nurses' adoption of nursing research findings. Multiple regression analyses were conducted on nurses' responses to survey questions to test hypotheses-that those who register more favorable attitudes towards nursing research would have a higher reported use of the MEDLINE system. Findings were significant and supported the hypothesis that nurses' attitudes towards research influenced MEDLINE usage. Findings also indicated that MEDLINE usage was significantly related to nurses' research utilization. PMID:10175440

  15. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon.

    PubMed Central

    Konan, K V; Yanofsky, C

    1997-01-01

    Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination at Rho-dependent termination sites in the leader region of the operon. Tryptophan induction is dependent on translation of a short leader peptide coding region, tnaC, that contains a single, crucial tryptophan codon. Recent studies suggest that during induction, the TnaC leader peptide acts in cis on the translating ribosome to inhibit its release at the tnaC stop codon. In the present study we use a tnaC-UGA-'lacZ construct lacking the tnaC-tnaA spacer region to analyze the effect of TnaC synthesis on the behavior of the ribosome that translates tnaC. The tnaC-UGA-'lacZ construct is not expressed significantly in the presence or absence of inducer. However, it is expressed in the presence of UGA suppressors, or when the structural gene for polypeptide release factor 3 is disrupted, or when wild-type tRNATrP is overproduced. In each situation, tnaC-UGA-'lacZ expression is reduced appreciably by the presence of inducing levels of tryptophan. Replacing the tnaC UGA stop codon with a sense codon allows considerable expression, which is also reduced, although to a lesser extent, by the addition of tryptophan. Inhibition by tryptophan is not observed when Trp codon 12 of tnaC is changed to a Leu codon. Overexpression of tnaC in trans from a multicopy plasmid prevents inhibition of expression by tryptophan. These results support the hypothesis that the TnaC leader peptide acts in cis to alter the behavior of the translating ribosome. PMID:9045840

  16. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA

    PubMed Central

    Sanz, Miguel Angel

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons. PMID:25404563

  17. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons. PMID:25404563

  18. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA.

    PubMed

    Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R

    2016-06-01

    As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA. PMID:27265464

  19. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes.

    PubMed

    Xia, Fei; Li, Xueying; Li, Xinzheng; Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping; Qi, Baoxiu

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of

  20. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    PubMed Central

    Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of

  1. 50 CFR 600.910 - Definitions and word usage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Definitions and word usage. 600.910..., Consultation, and Recommendations § 600.910 Definitions and word usage. (a) Definitions. In addition to the... undertaken by a state agency. (b) Word usage. The terms “must”, “shall”, “should”, “may”, “may not”,...

  2. A Structural Equation Model for ICT Usage in Higher Education

    ERIC Educational Resources Information Center

    Usluel, Yasemin Kocak; Askar, Petek; Bas, Turgay

    2008-01-01

    This study focuses on Information and Communication Technologies (ICT) usage, which is the indicator of diffusion. A model composed of the variables which can explain ICT usage in Turkish higher education is established and tested within the study. The two dimensions of ICT usage are considered: instructional and managerial. The data collected…

  3. 50 CFR 600.910 - Definitions and word usage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Definitions and word usage. 600.910..., Consultation, and Recommendations § 600.910 Definitions and word usage. (a) Definitions. In addition to the... undertaken by a state agency. (b) Word usage. The terms “must”, “shall”, “should”, “may”, “may not”,...

  4. 50 CFR 600.910 - Definitions and word usage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Definitions and word usage. 600.910..., Consultation, and Recommendations § 600.910 Definitions and word usage. (a) Definitions. In addition to the... undertaken by a state agency. (b) Word usage. The terms “must”, “shall”, “should”, “may”, “may not”,...

  5. Stop codon recognition in the early-diverged protozoans Giardia lamblia and Trichomonas vaginalis.

    PubMed

    Chai, Baofeng; Li, Cui; Yu, Jingfei; Hao, Yanrong; Guo, Ping; Shen, Quan

    2015-07-01

    Two classes of polypeptide release factors (RFs) are responsible for maintaining accuracy in translation termination; however, their detailed mechanism of action and evolutionary history of these factors remain elusive. The structure and function of RFs vary in bacteria and eukaryotes, a fact that is suggestive of evolutionary changes in the translation termination system. Giardia lamblia (Diplomonada) and Trichomonas vaginalis (Parabasalia) are considered as early-diverged eukaryotes. The class II release factor, eRF3, of Giardia (Gl-eRF3) appears to have only one domain that corresponds to EF-1α and lacks the N-terminal domain, similar to that of eRF3 of other organisms. In the present study, we show that the chimeric molecules Gl/Sc eRF1 and Tv/Sc eRF1, which are composed of the N-terminal domain of Gl-eRF1 or Tv-eRF1, fused to the core domain (M and C domain) of Saccharomyces cerevisiae eRF1 (Sc-eRF1), resulting in loss of the RF properties of the N-terminal domain. This suggests that the conformation of eRF1 for stop codon recognition in Giardia and Trichomonas varies from the eRF1s of other eukaryotes, including ciliates and yeast. Further studies using intra-N-terminal chimeras of eRF1 indicated that the combination of the GTS loop and NIKS motif from Gl-eRF1 and the Y-C-F motif from Sc-eRF1within the N terminal domain of hybrid eRF1 could restore UGA, but not UAG and UGA recognition. In contrast, the combination of the GTS loop and the NIKS motif of Sc-eRF1 and the Y-C-F motif of Gl-eRF1 could restore UAG and UAA recognition, but not UGA recognition. Thus, these results confirm the findings of previous studies that three motifs in eRF1 are necessary for discrimination of the three bases of stop codons. The NIKS motif is responsible for recognition of the first two bases of UAA and UAG, and the Y-C-F motif identifies the second base of UGA by Gl-eRF1. Amino acid residue substitutions in Gl/Sc-eRF1 by corresponding residues of Sc-eRF1 could change and even

  6. The surprising negative correlation of gene length and optimal codon use - disentangling translational selection from GC-biased gene conversion in yeast

    PubMed Central

    2011-01-01

    Background Surprisingly, in several multi-cellular eukaryotes optimal codon use correlates negatively with gene length. This contrasts with the expectation under selection for translational accuracy. While suggested explanations focus on variation in strength and efficiency of translational selection, it has rarely been noticed that the negative correlation is reported only in organisms whose optimal codons are biased towards codons that end with G or C (-GC). This raises the question whether forces that affect base composition - such as GC-biased gene conversion - contribute to the negative correlation between optimal codon use and gene length. Results Yeast is a good organism to study this as equal numbers of optimal codons end in -GC and -AT and one may hence compare frequencies of optimal GC- with optimal AT-ending codons to disentangle the forces. Results of this study demonstrate in yeast frequencies of GC-ending (optimal AND non-optimal) codons decrease with gene length and increase with recombination. A decrease of GC-ending codons along genes contributes to the negative correlation with gene length. Correlations with recombination and gene expression differentiate between GC-ending and optimal codons, and also substitution patterns support effects of GC-biased gene conversion. Conclusion While the general effect of GC-biased gene conversion is well known, the negative correlation of optimal codon use with gene length has not been considered in this context before. Initiation of gene conversion events in promoter regions and the presence of a gene conversion gradient most likely explain the observed decrease of GC-ending codons with gene length and gene position. PMID:21481245

  7. Adolescents’ Attitudes toward Anti-marijuana Ads, Usage Intentions, and Actual Marijuana Usage

    PubMed Central

    Alvaro, Eusebio M.; Crano, William D.; Siegel, Jason T.; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2015-01-01

    The association of adolescents’ appraisals of the anti-marijuana television ads used in the National Youth Anti-drug Media Campaign with future marijuana use was investigated. The 12 to 18 year old respondents (N = 2993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multi-level linear analysis. All covariates were significantly associated with Aad, as was usage status: resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all p < .001), who did not differ. In the second phase, the covariates along with Aad and respondents’ usage status predicted intentions and actual usage one year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions, and between Aad and actual marijuana use (both p < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users reporting more positive attitudes towards the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding pre-implementation efforts in the design of ads that targeted groups find appealing and thus, influential. PMID:23528197

  8. A reporter system for translational readthrough of stop codons in human cells

    PubMed Central

    Halvey, Patrick J.; Liebler, Daniel C.; Slebos, Robbert J.C.

    2012-01-01

    Agents to induce readthrough of premature termination codons (PTCs) are useful research tools and potential therapeutics. Reporters used to detect PTC readthrough are gene-specific and thus are not suited to for general assessment of readthrough activity or in cases where PTC-inactivated genes are unknown. Here we describe a GFP-based reporter construct pMHG-W57∗ which is capable of detecting dose-dependent drug-induced PTC readthrough both by fluorescence microscopy and flow cytometry. pMHG-W57∗ may be used as a general indicator of PTC readthrough in living cells and obviates the need for gene-specific recoding sequences in reporter constructs. PMID:22563532

  9. Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping.

    PubMed

    George, Susanna; Aguirre, Jacob D; Spratt, Donald E; Bi, Yumin; Jeffery, Madeline; Shaw, Gary S; O'Donoghue, Patrick

    2016-05-01

    The activity of the Parkinson's disease-linked E3 ligase parkin is stimulated by phosphorylation at ubiquitin Ser65 (pUb(S65) ). The role of other ubiquitin phospho-sites and their kinases are unknown. We produced pUb variants (pS7, pS12, pS20, pS57, pS65) by genetically encoding phosphoserine with the UAG codon. In release factor-deficient Escherichia coli (ΔRF1), intended to enhance UAG read-through, we discovered ubiquitin variants lacking the UAG-encoded residue, demonstrating previously undocumented +3 frame shifting. We successfully purified each pUb variant from mistranslated products. While pUb(S20) failed to stimulate parkin, parkin was partially active with pUb(S12) . We observed significant ubiquitination when pUb(S65) was the sole substrate. PMID:27096575

  10. Translation initiation in Drosophila melanogaster is reduced by mutations upstream of the AUG initiator codon

    SciTech Connect

    Feng, Yue; Gunter, L.E.; Organ, E.L.; Cavener, D.R. )

    1991-04-01

    The importance to in vivo translation of sequences immediately upstream of the Drosophila alcohol dehydrogenase (Adh) start codon was examined at two developmental stages. Mutations were introduced into the Adh gene in vitro, and the mutant gene was inserted into the genome via germ line transformation. An A-to-T substitution at the [minus]3 position did not affect relative translation of ADH at the adult stage. A second mutant gene, containing five mutations in the region [minus]1 to [minus]9, was designed to completely block translation initiation. However, transformant lines bearing these mutations still exhibit detectable ADH, albeit at substantially reduced levels. The average fold reduction at the second-instar larval stage was 5.9, while at the adult stage a 12.5-fold reduction was observed.

  11. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants

    PubMed Central

    Young, Travis S; Dorrestein, Pieter C; Walsh, Christopher T

    2012-01-01

    SUMMARY Thiopeptide antibiotics exhibit a profound level of chemical diversity that is installed through cascades of posttranslational modifications on ribosomal peptides. Here we present a technique to rapidly explore the chemical space of the thiopeptide GE37468 through codon randomization, yielding insights into thiopeptide maturation as well as structure and activity relationships. In this incarnation of the methodology, we randomized 7 residues of the prepeptide coding region, enabling the generation of 133 potential thiopeptide variants. Variant libraries were subsequently queried in two ways. First, high through-put MALDI-TOF mass spectrometry was applied to colony-level expressions to sample mutants which permitted full maturation of the antibiotic. Second, the activity of producing mutants was detected in an antibiotic overlay assay. In total, 29 of the 133 variants were found to produce mature compound, 12 of which retained antibiotic activity and one which had improved activity against Methicillin-resistant Staphylococcus aureus (MRSA). PMID:23261603

  12. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    PubMed

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells. PMID:25070322

  13. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading.

    PubMed

    Loayza-Puch, Fabricio; Rooijers, Koos; Buil, Levi C M; Zijlstra, Jelle; Oude Vrielink, Joachim F; Lopes, Rui; Ugalde, Alejandro Pineiro; van Breugel, Pieter; Hofland, Ingrid; Wesseling, Jelle; van Tellingen, Olaf; Bex, Axel; Agami, Reuven

    2016-02-25

    Tumour growth and metabolic adaptation may restrict the availability of certain amino acids for protein synthesis. It has recently been shown that certain types of cancer cells depend on glycine, glutamine, leucine and serine metabolism to proliferate and survive. In addition, successful therapies using L-asparaginase-induced asparagine deprivation have been developed for acute lymphoblastic leukaemia. However, a tailored detection system for measuring restrictive amino acids in each tumour is currently not available. Here we harness ribosome profiling for sensing restrictive amino acids, and develop diricore, a procedure for differential ribosome measurements of codon reading. We first demonstrate the functionality and constraints of diricore using metabolic inhibitors and nutrient deprivation assays. Notably, treatment with L-asparaginase elicited both specific diricore signals at asparagine codons and high levels of asparagine synthetase (ASNS). We then applied diricore to kidney cancer and discover signals indicating restrictive proline. As for asparagine, this observation was linked to high levels of PYCR1, a key enzyme in proline production, suggesting a compensatory mechanism allowing tumour expansion. Indeed, PYCR1 is induced by shortage of proline precursors, and its suppression attenuated kidney cancer cell proliferation when proline was limiting. High PYCR1 is frequently observed in invasive breast carcinoma. In an in vivo model system of this tumour, we also uncover signals indicating restrictive proline. We further show that CRISPR-mediated knockout of PYCR1 impedes tumorigenic growth in this system. Thus, diricore has the potential to reveal unknown amino acid deficiencies, vulnerabilities that can be used to target key metabolic pathways for cancer treatment. PMID:26878238

  14. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene

    SciTech Connect

    Felley-Bosco, E.; Weston, A.; Cawley, H.M.; Bennett, W.P.; Harris, C.C.

    1993-09-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Causasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. 30 refs., 3 figs., 3 tabs.

  15. Association of P53 codon 72 polymorphism and lung cancer in an ethnic Iranian population.

    PubMed

    Eydian, Z; Asna'ashari, A M H; Behravan, J; Sharifi-Rad, J; Entezari Heravi, R

    2016-01-01

    Lung cancer is one of the most common causes of cancer death worldwide. Molecular genetic studies indicated that activation of dominant oncogenes or inactivation of tumor suppressor genes and the presence of polymorphism in these genes correlated with prevalence of new lung cancers. P53 as a tumor suppressor gene located at 17p13 chromosome and it is one of the most well-known mutant genes in all cancer types. Mutation in P53 can disturb the transcriptional function and suppression of cell cycle control and increase in cell division and amplification. We can predict the susceptibility of people inside a society to lung cancer with evaluation of P53 gene polymorphism. A total of 200 patients with lung cancer and 200 healthy controls participated in this case-control study. Genomic DNA was extracted from blood samples and PCR-RFLP analyses were used to genotype the P53 gene polymorphism in codon 72 of exon 4, chromosome 17. Among 200 lung cancer patients and 200 controls, there was no significant correlation between sexuality and cigarette smoking status. We did not find any relationship between cigarette smoking status and genotypes or pack-years but there was a significant correlation between cigarette smoking status and adenocarcinoma patients (P=0.03). The results of the present study revealed that there is no association between P53 codon 72 polymorphism and increased risk of lung cancer in patients and controls but according to results of adenocarcinoma in never-smoker patients, it seems that environmental factors may have more important role than genetic susceptibility in our ethnic Iranian population. PMID:27585259

  16. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  17. Attenuation of Tick-Borne Encephalitis Virus Using Large-Scale Random Codon Re-encoding

    PubMed Central

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2015-01-01

    Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5–10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses. PMID:25734338

  18. Empirically testing some factors affecting HMS usage.

    PubMed

    Caccia-Bava, Maria do Carmo; Guimaraes, Valerie C K; Guimaraes, Tor

    2016-07-11

    Purpose - Without use the expected benefits from healthcare management systems (HMS) cannot be derived. Thus, while use alone may not guarantee success, one can safely assume that the more use the better. HMS has been instrumental in facilitating care providers' work. However, many hospitals have encountered usage problems and some user-related factors have been recognized in the literature as potentially important to make HMS more successful. The purpose of this paper is to test the importance of the factors proposed in the literature as important determinants of HMS usage measured by the number of hours used and the frequency of use. Design/methodology/approach - Several user-related variables such as user participation, user expertise, and user training previously studied separately by different authors are brought together into an integrated model to be tested empirically. Data from 213 nurses using their hospital HMS have been used to test proposed relationships between the independent variables and HMS usage results. Findings - The results confirm the importance of these factors and provide the basis for managerial recommendations. Hospital managers can use the resources validated by this study to improve their own operations and improve the likelihood of success implementing HMS. Future research projects may identify other possible factors important for HMS implementation success to improve the model proposed here. Originality/value - HMS is a very widely used and an important system for hospitals, but has been neglected in research. This is one of the first rigorous studies of HMS, and the results provide new practical insights for hospital administrators. PMID:27298061

  19. Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages

    PubMed Central

    Siranosian, Benjamin; Perera, Sudheesha; Williams, Edward; Ye, Chen; de Graffenried, Christopher; Shank, Peter

    2015-01-01

    Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at https://github.com/bsiranosian/tango_final. PMID:27134721

  20. A new Frameshift mutation on the α2-globin gene causing α⁺-thalassemia: codon 43 (TTC>-TC or TTC>T-C).

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Barro, Claire; Francina, Alain

    2012-01-01

    We report a new mutation on the α2-globin gene causing α(+)-thalassemia (α(+)-thal) with a deletion of a single nucleotide (T) at amino acid residue 43 [HBA2:c.130delT or HBA2:c.131delT]. This frameshift deletion gives rise to a premature termination codon at codon 47. PMID:22738776

  1. An assessment of worldwide supercomputer usage

    SciTech Connect

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  2. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  3. TP53 codon 72 Arg/Arg polymorphism is associated with a higher risk for inflammatory bowel disease development

    PubMed Central

    Volodko, Natalia; Salla, Mohamed; Eksteen, Bertus; Fedorak, Richard N; Huynh, Hien Q; Baksh, Shairaz

    2015-01-01

    AIM: To investigate the association between tumor protein 53 (TP53) codon 72 polymorphisms and the risk for inflammatory bowel disease (IBD) development. METHODS: Numerous genetic and epigenetic drivers have been identified for IBD including the TP53 gene. Pathogenic mutations in TP53 gene have only been reported in 50% of colorectal cancer (CRC) patients. A single nucleotide polymorphism (SNP) in the TP53 gene resulting in the presence of either arginine (Arg) or proline (Pro) or both at codon 72 was shown to alter TP53 tumor-suppressor properties. This SNP has been investigated as a risk factor for numerous cancers, including CRC. In this study we analyzed TP53 codon 72 polymorphism distribution in 461 IBD, 181 primary sclerosing cholangitis patients and 62 healthy controls. Genotyping of TP53 was performed by sequencing and restriction fragment length polymorphism analysis of genomic DNA extracted from peripheral blood. RESULTS: The most frequent TP53 genotype in IBD patients was Arg/Arg occurring in 54%-64% of cases (and in only 32% of controls). Arg/Pro was the most prevalent genotype in controls (53%) and less common in patients (31%-40%). Pro/Pro frequency was not significantly different between controls and IBD patients. CONCLUSION: The data suggests that the TP53 codon 72 Arg/Arg genotype is associated with increased risk for IBD development. PMID:26420962

  4. Association between genotypes at codon 171 and 136 of the prion protein gene and production traits in market lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scrapie is a transmissible spongiform encephalopathy of small ruminants for which infection is genetically controlled by commonly occurring polymorphisms in the gene encoding the normal prion protein precursor gene Prnp. Selection of sheep with the Prnp allele encoding arginine at codon 171 is rema...

  5. Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production

    PubMed Central

    Xue, Feiyan; Guo, Huili; Hu, Yingying; Liu, Ran; Huang, Lina; Lv, Heshu; Liu, Chunmei; Yang, Mingfeng

    2016-01-01

    Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (KM and Vmax), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14. PMID:27597978

  6. A start codon mutation of the FRMD7 gene in two Korean families with idiopathic infantile nystagmus

    PubMed Central

    Choi, Jae-Hwan; Shin, Jin-Hong; Seo, Je Hyun; Jung, Jae-Ho; Choi, Kwang-Dong

    2015-01-01

    Idiopathic infantile nystagmus (IIN) is the involuntary oscillation of the eyes with onset in the first few months of life. The most common form of inheritance is X-linked, and mutations in FRMD7 gene are a major cause. To identify the FRMD7 gene mutations associated with X-linked IIN, we performed PCR-based DNA direct sequencing in 4 affected subjects from 2 Korean families. We also assessed structural abnormalities of retina and optic nerve head using optical coherence tomography (OCT). Genetic analysis revealed a A>G transversion at nucleotide c.1, the first base of the start codon. This mutation leads to the loss of the primary start codon ATG for methionine, which is replaced by a triplet GTG for valine. The alternative in-frame start codon is not present around a mutation. OCT revealed the morphological changes within the optic nerve head, including shallow cup depth and small cup-to-disc ratio. In summary, we identified a novel start codon mutation within the FRMD7 gene of 2 Korean families. Our data expands the mutation spectrum of FRMD7 causing IIN. We also demonstrated abnormal developments of afferent system in patients with FRMD7 mutations using OCT, which may help to understand the etiological factor in development of nystagmus. PMID:26268155

  7. Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production.

    PubMed

    Xue, Feiyan; Guo, Huili; Hu, Yingying; Liu, Ran; Huang, Lina; Lv, Heshu; Liu, Chunmei; Yang, Mingfeng; Ma, Lanqing

    2016-01-01

    Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (K M and V max), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14. PMID:27597978

  8. Usage analysis of user files in UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1987-01-01

    Presented is a user-oriented analysis of short term file usage in a 4.2 BSD UNIX environment. The key aspect of this analysis is a characterization of users and files, which is a departure from the traditional approach of analyzing file references. Two characterization measures are employed: accesses-per-byte (combining fraction of a file referenced and number of references) and file size. This new approach is shown to distinguish differences in files as well as users, which cam be used in efficient file system design, and in creating realistic test workloads for simulations. A multi-stage gamma distribution is shown to closely model the file usage measures. Even though overall file sharing is small, some files belonging to a bulletin board system are accessed by many users, simultaneously and otherwise. Over 50% of users referenced files owned by other users, and over 80% of all files were involved in such references. Based on the differences in files and users, suggestions to improve the system performance were also made.

  9. Better Living Through Metadata: Examining Archive Usage

    NASA Astrophysics Data System (ADS)

    Becker, G.; Winkelman, S.; Rots, A.

    2013-10-01

    The primary purpose of an observatory's archive is to provide access to the data through various interfaces. User interactions with the archive are recorded in server logs, which can be used to answer basic questions like: Who has downloaded dataset X? When did she do this? Which tools did she use? The answers to questions like these fill in patterns of data access (e.g., how many times dataset X has been downloaded in the past three years). Analysis of server logs provides metrics of archive usage and provides feedback on interface use which can be used to guide future interface development. The Chandra X-ray Observatory is fortunate in that a database to track data access and downloads has been continuously recording such transactions for years; however, it is overdue for an update. We will detail changes we hope to effect and the differences the changes may make to our usage metadata picture. We plan to gather more information about the geographic location of users without compromising privacy; create improved archive statistics; and track and assess the impact of web “crawlers” and other scripted access methods on the archive. With the improvements to our download tracking we hope to gain a better understanding of the dissemination of Chandra's data; how effectively it is being done; and perhaps discover ideas for new services.

  10. Problematic Internet Usage and Immune Function.

    PubMed

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health - General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  11. Isolation usage in a pediatric hospital.

    PubMed

    Kim, M H; Mindorff, C; Patrick, M L; Gold, R; Ford-Jones, E L

    1987-05-01

    In a prospective 12-month study at a university-affiliated pediatric hospital, isolation usage was quantitated by ward/service, season, isolation category and type of infection (community-acquired vs nosocomial). Such information may be helpful in designing hospitals, recognizing time utilization of the pediatric infection control nurse, and defining educational and isolation needs. Hospitals with multiple bed rooms and inadequate numbers of single rooms may be unable to meet current federal isolation guidelines. The mean number of isolation days was 153 per 1000 patient days or 15.3% of bed days used. This ranged from 18.5% on the infant/toddler/preschool medical ward to 2.8% on child/teenage orthopedic surgery. Isolation requirements vary seasonally and rose to 32% in winter on one ward. Proportional frequencies of isolation category included enteric--29%, protective--28%, strict--16%, barrier (contact)--10%, multiply resistant organism (MRO)--8%, wound--5%, pregnant women (careful handwashing)--3%, blood and body fluid precautions--1%. Isolation of patients with and contacts of nosocomial infections account for 32% of isolation usage. During one third of the 365-day year, the hospital is unable to provide adequate numbers of single rooms for one to 20 patients. PMID:3647940

  12. Problematic Internet Usage and Immune Function

    PubMed Central

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A.; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health – General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  13. Consequences of germline variation disrupting the constitutional translational initiation codon start sites of MLH1 and BRCA2: use of potential alternative start sites and implications for predicting variant pathogenicity

    PubMed Central

    Parsons, Michael T.; Whiley, Phillip J.; Beesley, Jonathan; Drost, Mark; de Wind, Niels; Thompson, Bryony A.; Marquart, Louise; Hopper, John L.; Jenkins, Mark A.; Brown, Melissa A.; Tucker, Kathy; Warwick, Linda; Buchanan, Daniel D.; Spurdle, Amanda B.

    2014-01-01

    Variants that disrupt the translation initiation sequences in cancer predisposition genes are generally assumed to be deleterious. However few studies have validated these assumptions with functional and clinical data. Two cancer syndrome gene variants likely to affect native translation initiation were identified by clinical genetic testing: MLH1:c.1A>G p.(Met1?) and BRCA2:c.67+3A>G. In vitro GFP-reporter assays were conducted to assess the consequences of translation initiation disruption on alternative downstream initiation codon usage. Analysis of MLH1:c.1A>G p.(Met1?) showed that translation was mostly initiated at an in-frame position 103 nucleotides downstream, but also at two ATG sequences downstream. The protein product encoded by the in-frame transcript initiating from position c.103 showed loss of in vitro mismatch repair activity comparable to known pathogenic mutations. BRCA2:c.67+3A>G was shown by mRNA analysis to result in an aberrantly spliced transcript deleting exon 2 and the consensus ATG site. In the absence of exon 2, translation initiated mostly at an out-of-frame ATG 323 nucleotides downstream, and to a lesser extent at an in-frame ATG 370 nucleotides downstream. Initiation from any of the downstream alternative sites tested in both genes would lead to loss of protein function, but further clinical data is required to confirm if these variants are associated with a high cancer risk. Importantly, our results highlight the need for caution in interpreting the functional and clinical consequences of variation that leads to disruption of the initiation codon, since translation may not necessarily occur from the first downstream alternative start site, or from a single alternative start site. PMID:24302565

  14. p53 codon 72 polymorphism and its overexpression in patients with laryngeal carcinoma: Prognostic implications.

    PubMed

    Kalsotra, Gopika; Gupta, Ashok K; Gupta, Rijuneeta; Rathi, Ritu; Prasad, Rajender

    2016-06-01

    Abnormalities in the p53 gene are the most common genetic alterations seen in laryngeal carcinoma. No data exist regarding the association between laryngeal carcinoma and a distinct codon 72 variant and its expression. We conducted a prospective study (1) to analyze the p53 codon 72 polymorphic variants in patients with laryngeal carcinoma, (2) to analyze the expression of p53 mRNA in tissues of patients with laryngeal carcinoma using the reverse transcriptase-polymerase chain reaction (RT-PCR) assay, and (3) to detect p53 antibodies in the plasma of patients with laryngeal carcinoma before and after treatment. Tissue and blood samples were taken from 40 patients with laryngeal carcinoma-36 men and 4 women, aged 40 to 65 years (mean: 56)-and 20 age-matched controls with laryngeal conditions other than carcinoma. RT-PCR was used to measure p53 mRNA expression, and PCR-restriction fragment length polymorphism was used to determine p53 polymorphism. In addition, p53 antibodies were detected in plasma by Western blot testing. The 40 patients were treated with either surgery (total laryngectomy or conservation surgery) or radiotherapy. Tissue and blood samples were analyzed before treatment and 4 weeks after treatment. The findings were compared with those of the 20 controls. The results revealed that (1) homozygosity of the Pro72 variant of p53 was present in 26 laryngeal carcinoma patients (65%), (2) heterozygosity for the Pro/Arg genotype was present in 13 patients (32.5%), and (3) the Arg72 variant of the p53 allele was present in 1 patient (2.5%) before treatment. Overexpression of p53 mRNA was found in all patients with laryngeal carcinoma and in none of the controls before treatment; the difference was approximately 3.3 folds higher in the carcinoma group. However, p53 expression was not related to the biologic aggressiveness of these tumors. It is interesting that 4 weeks after definitive therapy, the expression levels of p53 mRNA in the 40 patients were

  15. A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms.

    PubMed

    Beerman, R W; Jongens, T A

    2011-05-01

    Fragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As a RNA binding protein, FMRP functions in translational regulation, localization, and stability of its neuronal target transcripts. The Drosophila homologue, dFMR1, is well conserved in sequence and function with respect to human FMRP. Although dFMR1 is known to express two main isoforms, the mechanism behind production of the second, more slowly migrating isoform has remained elusive. Furthermore, it remains unknown whether the two isoforms may also contribute differentially to dFMR1 function. We have found that this second dFMR1 isoform is generated through an alternative translational start site in the dfmr1 5'UTR. This 5'UTR coding sequence is well conserved in the melanogaster group. Translation of the predominant, smaller form of dFMR1 (dFMR1-S(N)) begins at a canonical start codon (ATG), whereas translation of the minor, larger form (dFMR1-L(N)) begins upstream at a non-canonical start codon (CTG). To assess the contribution of the N-terminal extension toward dFMR1 activity, we generated transgenic flies that exclusively express either dFMR1-S(N) or dFMR1-L(N). Expression analyses throughout development revealed that dFMR1-S(N) is required for normal dFMR1-L(N) expression levels in adult brains. In situ expression analyses showed that either dFMR1-S(N) or dFMR1-L(N) is individually sufficient for proper dFMR1 localization in the nervous system. Functional studies demonstrated that both dFMR1-S(N) and dFMR1-L(N) can function independently to rescue dfmr1 null defects in synaptogenesis and axon guidance. Thus, dfmr1 encodes two functional isoforms with respect to expression and activity throughout neuronal development. PMID:21333716

  16. Cleaning optimization for reduced chemical usage

    SciTech Connect

    Resnick, P.J.; Simonson, G.C.; Matlock, C.A.; Kelly, M.J.

    1996-11-01

    The use of dilute SC-1 (NH40H:H202:H20) chemistry cleaning processes for particle removal from silicon surfaces has been investigated. Dilute chemistries can be highly effective, especially when high- frequency acoustic energy (megasonics) is applied. The high particle removal efficacy of the dilute chemistry processes presumably arises due to increased double layer effects caused by reduced ionic strength. Dilute chemistry SC- I solutions exhibit somewhat reduced efficacy for removal of certain light organics; however, when dilute SC-1 is used along with other pre-gate cleaning steps (e.g. HF, SC-2, and piranha), then the overall cleaning sequence is quite effective. In addition to providing robust cleaning processes, dilute chemistries also result in significantly lower chemical and rinse water usage. Waste water treatment requirements are also lessened when dilute chemistry cleaning solutions are employed.

  17. Optimal Repellent Usage to Combat Dengue Fever.

    PubMed

    Dorsett, Chasity; Oh, Hyunju; Paulemond, Marie Laura; Rychtář, Jan

    2016-05-01

    Dengue fever is one of the most important vector-borne diseases. It is transmitted by Aedes Stegomyia aegypti, and one of the most effective strategies to combat the disease is the reduction of exposure to bites of these mosquitoes. In this paper, we present a game-theoretical model in which individuals choose their own level of protection against mosquito bites in order to maximize their own benefits, effectively balancing the cost of protection and the risk of contracting the dengue fever. We find that even when the usage of protection is strictly voluntary, as soon as the cost of protection is about 10,000 times less than the cost of contracting dengue fever, the optimal level of protection will be within 5 % of the level needed for herd immunity. PMID:27142427

  18. Usage-Oriented Topic Maps Building Approach

    NASA Astrophysics Data System (ADS)

    Ellouze, Nebrasse; Lammari, Nadira; Métais, Elisabeth; Ben Ahmed, Mohamed

    In this paper, we present a collaborative and incremental construction approach of multilingual Topic Maps based on enrichment and merging techniques. In recent years, several Topic Map building approaches have been proposed endowed with different characteristics. Generally, they are dedicated to particular data types like text, semi-structured data, relational data, etc. We note also that most of these approaches take as input monolingual documents to build the Topic Map. The problem is that the large majority of resources available today are written in various languages, and these resources could be relevant even to non-native speakers. Thus, our work is driven towards a collaborative and incremental method for Topic Map construction from textual documents available in different languages. To enrich the Topic Map, we take as input a domain thesaurus and we propose also to explore the Topic Map usage which means available potential questions related to the source documents.

  19. Codon optimization of the human papillomavirus E7 oncogene induces a CD8+ T cell response to a cryptic epitope not harbored by wild-type E7.

    PubMed

    Lorenz, Felix K M; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  20. Therapeutic suppression of premature termination codons: Mechanisms and clinical considerations (Review)

    PubMed Central

    KARIJOLICH, JOHN; YU, YI-TAO

    2014-01-01

    An estimated one-third of genetic disorders are the result of mutations that generate premature termination codons (PTCs) within protein coding genes. These disorders are phenotypically diverse and consist of diseases that affect both young and old individuals. Various small molecules have been identified that are capable of modulating the efficiency of translation termination, including select antibiotics of the aminoglycoside family and multiple novel synthetic molecules, including PTC124. Several of these agents have proved their effectiveness at promoting nonsense suppression in preclinical animal models, as well as in clinical trials. In addition, it has recently been shown that box H/ACA RNA-guided peudouridylation, when directed to modify PTCs, can also promote nonsense suppression. In this review, we summarize our current understanding of eukaryotic translation termination and discuss various methods for promoting the read-through of disease-causing PTCs, as well as the current obstacles that stand in the way of using the discussed agents broadly in clinical practice. PMID:24939317

  1. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences. PMID:25491390

  2. Expression and Control of Codon-Optimized Granulocyte Colony-Stimulating Factor in Pichia pastoris.

    PubMed

    Maity, Nitu; Thawani, Ankita; Sharma, Anshul; Gautam, Ashwani; Mishra, Saroj; Sahai, Vikram

    2016-01-01

    Granulocyte colony-stimulating factor (GCSF) has therapeutic applications due to its proven efficacy in different forms of neutropenia and chemotherapy-induced leucopenia. The original 564-bp nucleotide sequence from NCBI was codon optimized and assembled by overlapping PCR method comprising of 16 oligos of 50-nt length with 15 base overhang. The synthetic gene (CO-GCSF) was cloned under glucose utilizing glyceraldehyde 3-phosphate dehydrogenase (GAP) and methanol-utilizing alcohol oxidase (AOX1) promoters and expressed in Pichia pastoris SMD1168 strain. Constitutive expression under GAP resulted in cellular toxicity while AOX1 promoter controlled expression was stable. Variation in the levels of expression was observed among the transformant colonies with transformant #2 secreting up to ∼4 mg/L of GCSF. The molecular mass of the expressed GCSF in P. pastoris was ∼19.0 kDa. Quatitation of the expressed protein was carried out by a highly reproducible gel densitometric method. Effect of several operational and nutritional conditions was studied on GCSF production and the results suggest a general approach for increasing the yield of GCSF several folds (2- to 5-fold) over the standard conditions employed currently. Cultivation of the single-copy integrant in the chemically defined medium in a 5-L fermenter resulted in a volumetric productivity of ∼0.7 mg/L/h at the end of the induction phase, which was about 4-fold higher than attained in the shake flask. PMID:26410223

  3. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming

    PubMed Central

    Jacobs, Timothy M.; Yumerefendi, Hayretin; Kuhlman, Brian; Leaver-Fay, Andrew

    2015-01-01

    Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second. PMID:25539925

  4. Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning.

    PubMed

    Berry, Katherine E; Waghray, Shruti; Mortimer, Stefanie A; Bai, Yun; Doudna, Jennifer A

    2011-10-12

    Translation of hepatitis C viral proteins requires an internal ribosome entry site (IRES) located in the 5' untranslated region of the viral mRNA. The core domain of the hepatitis C virus (HCV) IRES contains a four-way helical junction that is integrated within a predicted pseudoknot. This domain is required for positioning the mRNA start codon correctly on the 40S ribosomal subunit during translation initiation. Here, we present the crystal structure of this RNA, revealing a complex double-pseudoknot fold that establishes the alignment of two helical elements on either side of the four-helix junction. The conformation of this core domain constrains the open reading frame's orientation for positioning on the 40S ribosomal subunit. This structure, representing the last major domain of HCV-like IRESs to be determined at near-atomic resolution, provides the basis for a comprehensive cryoelectron microscopy-guided model of the intact HCV IRES and its interaction with 40S ribosomal subunits. PMID:22000514

  5. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    PubMed Central

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M.; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A.; Glover, Leanne; McMillan, James R.; Chen, Mei; Thrasher, Adrian J.; McGrath, John A.; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgammanull recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  6. Correction of Methylmalonic Aciduria In Vivo Using a Codon-Optimized Lentiviral Vector

    PubMed Central

    Wong, Edward S.Y.; McIntyre, Chantelle; Peters, Heidi L.; Ranieri, Enzo; Anson, Donald S.

    2014-01-01

    Abstract Methylmalonic aciduria is a rare disorder of organic acid metabolism with limited therapeutic options, resulting in high morbidity and mortality. Positive results from combined liver/kidney transplantation suggest, however, that metabolic sink therapy may be efficacious. Gene therapy offers a more accessible approach for the treatment of methylmalonic aciduria than organ transplantation. Accordingly, we have evaluated a lentiviral vector–mediated gene transfer approach in an in vivo mouse model of methylmalonic aciduria. A mouse model of methylmalonic aciduria (Mut−/−MUTh2) was injected intravenously at 8 weeks of age with a lentiviral vector that expressed a codon-optimized human methylmalonyl coenzyme A mutase transgene, HIV-1SDmEF1αmurSigHutMCM. Untreated Mut−/−MUTh2 and normal mice were used as controls. HIV-1SDmEF1αmurSigHutMCM-treated mice achieved near-normal weight for age, and Western blot analysis demonstrated significant methylmalonyl coenzyme A enzyme expression in their livers. Normalization of liver methylmalonyl coenzyme A enzyme activity in the treated group was associated with a reduction in plasma and urine methylmalonic acid levels, and a reduction in the hepatic methylmalonic acid concentration. Administration of the HIV-1SDmEF1αmurSigHutMCM vector provided significant, although incomplete, biochemical correction of methylmalonic aciduria in a mouse model, suggesting that gene therapy is a potential treatment for this disorder. PMID:24568291

  7. Alternative Start Codon Connects eIF5A to Mitochondria.

    PubMed

    Pereira, Karina Danielle; Tamborlin, Letícia; Meneguello, Letícia; de Proença, André Ricardo Gomes; Almeida, Isadora Cristina de Paula Andrade; Lourenço, Rogério Ferreira; Luchessi, Augusto Ducati

    2016-12-01

    Eukaryotic translation initiation factor 5A (eIF5A), a protein containing the amino acid residue hypusine required for its activity, is involved in a number of physiological and pathological cellular processes. In humans, several EIF5A1 transcript variants encode the canonical eIF5A1 isoform B, whereas the hitherto uncharacterized variant A is expected to code for a hypothetical eIF5A1 isoform, referred to as isoform A, which has an additional N-terminal extension. Herein, we validate the existence of eIF5A1 isoform A and its production from transcript variant A. In fact, variant A was shown to encode both eIF5A1 isoforms A and B. Mutagenic assays revealed different efficiencies in the start codons present in variant A, contributing to the production of isoform B at higher levels than isoform A. Immunoblotting and mass spectrometric analyses showed that isoform A can undergo hypusination and acetylation at specific lysine residues, as observed for isoform B. Examination of the N-terminal extension suggested that it might confer mitochondrial targeting. Correspondingly, we found that isoform A, but not isoform B, co-purified with mitochondria when the proteins were overproduced. These findings suggest that eIF5A1 isoform A has a role in mitochondrial function. J. Cell. Physiol. 231: 2682-2689, 2016. © 2016 Wiley Periodicals, Inc. PMID:27414022

  8. Epithelial-Myoepithelial Carcinoma of the Salivary Gland Harboring HRAS Codon 61 Mutations With Lung Metastasis.

    PubMed

    Hsieh, Min-Shu; Chen, Jin-Shing; Lee, Yi-Hsuan; Chou, Yueh-Hung

    2016-05-01

    Here, we report a case involving a 43-year-old man diagnosed with Burkitt lymphoma in 2007. At the same time, 2 small lung nodules were incidentally found; however, they presented no indication of growth throughout the follow-up period. However, a 1.5-cm nodule located in the right parotid gland in 2010 gradually increased in size to 2.8 cm by 2012. A parotidectomy revealed an epithelial-myoepithelial carcinoma, characterized by biphasic tubular structures and solid areas presenting myoepithelial overgrowth. Tumor necrosis and regional lymph node invasion were also observed. During clinical follow-up in 2013, a new 1.3-cm nodule was identified in the left lower lobe of the lung, which enlarged to 3 cm by 2014. Wedge resection of the left lung nodules revealed round nodes with well-defined borders. Histologically, these lung tumors predominantly comprised spindle-shaped myoepithelial cells with occasional tubular structures. Numerous cleft-like spaces lined by entrapped TTF-1-immunoreactive pneumocytes were observed inside the nodules. The lung nodules were characterized by a morphology similar to that of the parotid cancer. Epithelial-myoepithelial carcinoma with lung metastasis was confirmed by molecular testing, which revealed identical HRAS codon 61 (Q61K) mutations in the primary parotid tumor as well as in the lung metastases. PMID:26675036

  9. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB.

    PubMed

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A; Glover, Leanne; McMillan, James R; Chen, Mei; Thrasher, Adrian J; McGrath, John A; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgamma(null) recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  10. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris.

    PubMed

    Sun, Fubao Fuelbiol; Bai, Renhui; Yang, Huimin; Wang, Fei; He, Jing; Wang, Chundi; Tu, Maobing

    2016-10-01

    The Cel6A deficiency has become one of the limiting factors for cellulose saccharification in biochemical conversion of cellulosic biomass to fuels and chemicals. The work attempted to use codon optimization to enhance Trichoderma reesei Cel6A expression in Pichia pastoris. Two recombinants P. pastoris GS115 containing AOX1 and GAP promotors were successfully constructed, respectively. The optimal temperatures and pHs of the expressed Cel6A from two recombinants were consistent with each other, were also in the extremely similar range to that reported on the native Cel6A from T. reesei. Based on the shake flask fermentation, AOX1 promotor enabled the recombinant to produce 265U/L and 300mg/L of the Cel6A enzyme, and the GAP promotor resulted in 145U/L and 200mg/L. High cell density fed batch (HCDFB) fermentation significantly improved the enzyme titer (1100U/L) and protein yield (2.0g/L) for the recombinant with AOX1 promotor. Results have showed that the AOX1 promotor is more suitable than the GAP for the Cel6A expression in P. pastoris. And the HCDFB cultivation is a favorable way to express the Cel6A highly in the methanol inducible yeast. PMID:27542751

  11. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene.

    PubMed Central

    Eccles, D. M.; van der Luijt, R.; Breukel, C.; Bullman, H.; Bunyan, D.; Fisher, A.; Barber, J.; du Boulay, C.; Primrose, J.; Burn, J.; Fodde, R.

    1996-01-01

    Desmoid tumors are slowly growing fibrous tumors highly resistant to therapy and often fatal. Here, we report hereditary desmoid disease (HDD), a novel autosomal dominant trait with 100% penetrance affecting a three-generation kindred. Desmoid tumors are usually a complication of familial adenomatous polyposis, a predisposition to the early development of premalignant adenomatous polyps in the colorectum due to chain-terminating mutations of the APC gene. In general, one or more members in approximately 10% of the FAP families manifest desmoid tumors. Affected individuals from the HDD kindred are characterized by multifocal fibromatosis of the paraspinal muscles, breast, occiput, arms, lower ribs, abdominal wall, and mesentery. Osteomas, epidermal cysts, and other congenital features were also observed. We show that HDD segregates with an unusual germ-line chain-terminating mutation at the 3' end of the APC gene (codon 1924) with somatic loss of the wild-type allele leading to tumor development. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8940264

  12. Mechanisms of the tRNA wobble cytidine modification essential for AUA codon decoding in prokaryotes.

    PubMed

    Numata, Tomoyuki

    2015-01-01

    Bacteria and archaea have 2-lysylcytidine (L or lysidine) and 2-agmatinylcytidine (agm(2)C or agmatidine), respectively, at the first (wobble) position of the anticodon of the AUA codon-specific tRNA(Ile). These lysine- or agmatine-conjugated cytidine derivatives are crucial for the precise decoding of the genetic code. L is synthesized by tRNA(Ile)-lysidine synthetase (TilS), which uses l-lysine and ATP as substrates. Agm(2)C formation is catalyzed by tRNA(Ile)-agm(2)C synthetase (TiaS), which uses agmatine and ATP for the reaction. Despite the fact that TilS and TiaS synthesize structurally similar cytidine derivatives, these enzymes belong to non-related protein families. Therefore, these enzymes modify the wobble cytidine by distinct catalytic mechanisms, in which TilS activates the C2 carbon of the wobble cytidine by adenylation, while TiaS activates it by phosphorylation. In contrast, TilS and TiaS share similar tRNA recognition mechanisms, in which the enzymes recognize the tRNA acceptor stem to discriminate tRNA(Ile) and tRNA(Met). PMID:25348586

  13. Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner

    PubMed Central

    Zhu, Changlan; Sheng, Ke; Du, Yanhua; Wang, Ke; Dias, Anusha; Chen, She; Whitman, Malcolm; Wang, Enduo; Reed, Robin; Cheng, Hong

    2015-01-01

    mRNAs containing premature termination codons (PTCs) are known to be degraded via nonsense-mediated mRNA decay (NMD). Unexpectedly, we found that mRNAs containing any type of PTC (UAA, UAG, UGA) are detained in the nucleus whereas their wild-type counterparts are rapidly exported. This retention is strictly reading-frame dependent. Strikingly, our data indicate that translating ribosomes in the nucleus proofread the frame and detect the PTCs in the nucleus. Moreover, the shuttling NMD protein Upf1 specifically associates with PTC+ mRNA in the nucleus and is required for nuclear retention of PTC+ mRNA. Together, our data lead to a working model that PTCs are recognized in the nucleus by translating ribosomes, resulting in recruitment of Upf1, which in turn functions in nuclear retention of PTC+ mRNA. Nuclear PTC recognition adds a new layer of proofreading for mRNA and may be vital for ensuring the extraordinary fidelity required for protein production. PMID:26491543

  14. File Usage Analysis and Resource Usage Prediction: a Measurement-Based Study. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.-S.

    1987-01-01

    A probabilistic scheme was developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The coefficient of correlation between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  15. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition.

    PubMed

    Mitchell, Sarah F; Lorsch, Jon R

    2008-10-10

    Start codon selection is a key step in translation initiation as it sets the reading frame for decoding. Two eukaryotic initiation factors, eIF1 and eIF1A, are key actors in this process. Recent work has elucidated many details of the mechanisms these factors use to control start site selection. eIF1 prevents the irreversible GTP hydrolysis that commits the ribosome to initiation at a particular codon. eIF1A both promotes and inhibits commitment through the competing influences of its two unstructured termini. Both factors perform their tasks through a variety of interactions with other components of the initiation machinery, in many cases mediated by the unstructured regions of the two proteins. PMID:18593708

  16. Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon.

    PubMed Central

    Hsu, J H; Harms, E; Umbarger, H E

    1985-01-01

    The effect of leucine limitation and of restricted leucine tRNA charging on the expression of the ilvGEDA operon of Serratia marcescens was examined. In this organism, the ilv leader region specifies a putative peptide containing only a single leucine codon that could be involved in leucine-mediated control by attenuation (E. Harms, J.-H. Hsu, C. S. Subrahmanyam, and H. E. Umbarger, J. Bacteriol. 164:207-216, 1985). A plasmid (pPU134) containing the DNA of the S. marcescens ilv control region and three of the associated structural genes was studied as a single chromosomal copy in an Escherichia coli strain auxotrophic for all three branched-chain amino acids. The S. marcescens ilv genes responded to a multivalent control similar to that found in other enteric organisms. Furthermore, the S. marcescens ilv genes were derepressed when the charging of leucine tRNA was restricted in a leuS derivative of E. coli that had been transformed with pPU134. It was concluded that ribosome stalling leading to deattenuation is not dependent on either tandem or a consecutive series of codons for the regulatory amino acid. However, the fact that the single leucine codon is a less frequently used codon (CUA) may be important. The procedure for obtaining the cloned ilv genes in single chromosomal copy exploited the dependence of ColE1 replicons on the polA gene. The cloning experiments also revealed a branched-chain amino acid-glutamate transaminase in S. marcescens that is different from transaminase B. PMID:3900038

  17. Web-based pathology practice examination usage

    PubMed Central

    Klatt, Edward C.

    2014-01-01

    Context: General and subject specific practice examinations for students in health sciences studying pathology were placed onto a free public internet web site entitled web path and were accessed four clicks from the home web site menu. Subjects and Methods: Multiple choice questions were coded into. html files with JavaScript functions for web browser viewing in a timed format. A Perl programming language script with common gateway interface for web page forms scored examinations and placed results into a log file on an internet computer server. The four general review examinations of 30 questions each could be completed in up to 30 min. The 17 subject specific examinations of 10 questions each with accompanying images could be completed in up to 15 min each. The results of scores and user educational field of study from log files were compiled from June 2006 to January 2014. Results: The four general review examinations had 31,639 accesses with completion of all questions, for a completion rate of 54% and average score of 75%. A score of 100% was achieved by 7% of users, ≥90% by 21%, and ≥50% score by 95% of users. In top to bottom web page menu order, review examination usage was 44%, 24%, 17%, and 15% of all accessions. The 17 subject specific examinations had 103,028 completions, with completion rate 73% and average score 74%. Scoring at 100% was 20% overall, ≥90% by 37%, and ≥50% score by 90% of users. The first three menu items on the web page accounted for 12.6%, 10.0%, and 8.2% of all completions, and the bottom three accounted for no more than 2.2% each. Conclusions: Completion rates were higher for shorter 10 questions subject examinations. Users identifying themselves as MD/DO scored higher than other users, averaging 75%. Usage was higher for examinations at the top of the web page menu. Scores achieved suggest that a cohort of serious users fully completing the examinations had sufficient preparation to use them to support their pathology

  18. TP53 codon 72 polymorphism and susceptibility to cervical cancer in the Chinese population: an update meta-analysis

    PubMed Central

    Li, Bing; Wang, Xin; Chen, Hong; Shang, Li-Xin; Wu, Nan

    2015-01-01

    Background: Although many epidemiologic studies investigated the TP53 codon 72 polymorphism and its association with cervical cancer (CC), definite conclusions cannot be drawn. Aim of the study: To evaluate the association between TP53 codon 72 polymorphism and risk of cervical cancer in the Chinese population. Methods: A computerized literature search was carried out in PubMed, Springer Link, Ovid, Chinese Biomedical Database (CBM), Chinese National Knowledge Infrastructure (CNKI), and Chinese Wanfang Database to collect relevant articles. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of association. Results: A total of 16 studies including 1684 CC cases and 1178 controls were involved in this meta-analysis. Overall, significant increased association was found between the Pro/Pro carriers and CC risk when all studies in Chinese population pooled into the meta-analysis (heterozygous model: OR = 1.22, 95% CI: 1.01-1.46). In subgroup analyses stratified by ethnicity and source of controls, the same results were observed in Han and in hospital-based studies. Conclusion: Our results suggest that the TP53 codon 72 polymorphism may be potential biomarkers for CC risk in the Chinese population, especially for Han Chinese, and studies with wider spectrum of population are required for definite conclusions. PMID:26309559

  19. Functional analysis of the p53 codon 72 polymorphism in black South Africans with rheumatoid arthritis--a pilot study.

    PubMed

    Moodley, Devapregasan; Mody, Girish M; Chuturgoon, Anil A

    2010-10-01

    The p53 tumor-suppressor protein plays an integral role in apoptosis. Perturbations in peripheral lymphocyte (PL) apoptosis may be associated with rheumatoid arthritis (RA). Polymorphisms at codon 72 of p53 (arginine (Arg72) to proline transition) confers differences in mitochondrial translocation and apoptosis inducing capabilities of p53 in vitro. We examined associations of this polymorphism with PL apoptosis, mitochondrial depolarization, and clinical markers of disease activity in a cohort of black South African RA patients. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. PL apoptosis was measured using the annexin-V assay and mitochondrial membrane potential with the JC-1 assay. Clinical and laboratory parameters were recorded for all patients. Statistical differences in these parameters were investigated according to genotype. Genotype distribution did not differ significantly between RA patients and controls (Arg/Arg, Arg/Pro, Pro/Pro: 12%, 46%, and 42% versus 3%, 34%, and 63%), despite significantly higher frequency of the Arg72 allele in patients (p = 0.0406). There was no significant difference in PL apoptosis and mitochondrial depolarization based on p53 codon 72 genotype. In addition, clinical markers of disease activity were not significantly different between genotypes. We conclude that p53 codon 72 genotype does not influence PL apoptosis or mitochondrial depolarization and is not associated with clinical markers of disease in RA. PMID:20532936

  20. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    PubMed

    Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P

    2015-01-01

    HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1. PMID:25807539

  1. Fusion activity of African henipavirus F proteins with a naturally occurring start codon directly upstream of the signal peptide.

    PubMed

    Weis, Michael; Behner, Laura; Binger, Tabea; Drexler, Jan Felix; Drosten, Christian; Maisner, Andrea

    2015-04-01

    Compared to the fusion proteins of pathogenic Nipah and Hendra viruses, the F protein of prototype African henipavirus GH-M74a displays a drastically reduced surface expression and fusion activity. A probable reason for limited F expression is the unusually long sequence located between the gene start and the signal peptide (SP) not present in other henipaviruses. Such a long pre-SP extension can prevent efficient ER translocation or protein maturation and processing. As its truncation can therefore enhance surface expression, the recent identification of a second in-frame start codon directly upstream of the SP in another African henipavirus F gene (GH-UP28) raised the question if such a naturally occurring minor sequence variation can lead to the synthesis of a pre-SP truncated translation product, thereby increasing the production of mature F proteins. To test this, we analyzed surface expression and biological activity of F genes carrying the second SP-proximal start codon of GH-UP28. Though we observed minor differences in the expression levels, introduction of the additional start codon did not result in an increased fusion activity, even if combined with further mutations in the pre-SP region. Thus, limited bioactivity of African henipavirus F protein is maintained even after sequence changes that alter the gene start allowing the production of F proteins without an unusually long pre-SP. PMID:25725148

  2. Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon

    PubMed Central

    Rederstorff, M.; Allamand, V.; Guicheney, P.; Gartioux, C.; Richard, P.; Chaigne, D.; Krol, A.; Lescure, A.

    2008-01-01

    Premature termination of translation due to nonsense mutations is a frequent cause of inherited diseases. Therefore, many efforts were invested in the development of strategies or compounds to selectively suppress this default. Selenoproteins are interesting candidates considering the idiosyncrasy of the amino acid selenocysteine (Sec) insertion mechanism. Here, we focused our studies on SEPN1, a selenoprotein gene whose mutations entail genetic disorders resulting in different forms of muscular diseases. Selective correction of a nonsense mutation at the Sec codon (UGA to UAA) was undertaken with a corrector tRNASec that was engineered to harbor a compensatory mutation in the anticodon. We demonstrated that its expression restored synthesis of a full-length selenoprotein N both in HeLa cells and in skin fibroblasts from a patient carrying the mutated Sec codon. Readthrough of the UAA codon was effectively dependent on the Sec insertion machinery, therefore being highly selective for this gene and unlikely to generate off-target effects. In addition, we observed that expression of the corrector tRNASec stabilized the mutated SEPN1 transcript that was otherwise more subject to degradation. In conclusion, our data provide interesting evidence that premature termination of translation due to nonsense mutations is amenable to correction, in the context of the specialized selenoprotein synthesis mechanism. PMID:18025044

  3. [Risk factors for cervico-uterine cancer associated to HPV: p53 codon 72 polymorphism in women attending hospital care].

    PubMed

    Sifuentes Alvarez, A; Reyes Romero, Miguel

    2003-01-01

    In codon 72 of the p53 antioncogene there are two alleles, arginine and proline; the arg/arg genotype has recently been identified as a risk factor for developing of cervicouterine cancer (CuCa) associated to human papillomavirus (HVP) infection. The aim of this work was to determine in a sample of women the frequency of proline-arginine alleles and genotypes of p53 codon 72. The study was conducted in a sample of inpatient women at the hospital. p53 codon 72 alleles were determined in genomic ADN by amplification of specific sequences by chi 2 test. From 102 analyzed samples, p53-arginine allele corresponded to 67.64% and p53-proline allele corresponded to 32.36%; 47 women (46.10%) were arg/arg homocygotes, 11 women (10.77%) were pro/pro homocygotes, 44 women (43.13%) were arg/pro heterocigotes; the genotype distribution was within the Hardy-Weinberg equilibrium. The detection of a high percentage of arginine homocygotes suggests that this genotype, considered as a risk factor for cancer associated to oncogenic HPV, has a high prevalence in the north of Mexico. The determination of this kind of polymorphisms is important as preventive action with regard to identification of risk factors for CaCu associated to HPV infection. PMID:12708345

  4. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Organic solvent usage. 52.254 Section 52.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This section is applicable in the Sacramento...

  5. Effects of Different Metaphor Usage on Hypertext Learning

    ERIC Educational Resources Information Center

    Merdivan, Ece; Ozdener, Nesrin

    2011-01-01

    There are many studies that offer different opinions on the effects of hypertext usage as an educational tool. Given the differences of opinion, it is useful to research the effects of metaphor usage in hypertext education and the use of hypertext as an educational tool. In this study, the effects of metaphors' uses in constructing the…

  6. Benchmarking Usage Statistics in Collection Management Decisions for Serials

    ERIC Educational Resources Information Center

    Tucker, Cory

    2009-01-01

    Usage statistics are an important metric for making decisions on serials. Although the University of Nevada, Las Vegas (UNLV) Libraries have been collecting usage statistics, the statistics had not frequently been used to make decisions and had not been included in collection development policy. After undergoing a collection assessment, the…

  7. Premarital Contraceptives Usage among Male and Female Adolescents.

    ERIC Educational Resources Information Center

    Hornick, Joesph P.; And Others

    1979-01-01

    Variables important in predicting female contraception usage were found to be those which involved dyadic commitment, conditions of love, self-esteem, and father's occupation (social class). The best predictors of male contraception usage involved experience in dating and internalization of role models via mother's and father's permissiveness.…

  8. Reviewing and Critiquing Computer Learning and Usage among Older Adults

    ERIC Educational Resources Information Center

    Kim, Young Sek

    2008-01-01

    By searching the keywords of "older adult" and "computer" in ERIC, Academic Search Premier, and PsycINFO, this study reviewed 70 studies published after 1990 that address older adults' computer learning and usage. This study revealed 5 prominent themes among reviewed literature: (a) motivations and barriers of older adults' usage of computers, (b)…

  9. A Factor Analytic Study of the Internet Usage Scale

    ERIC Educational Resources Information Center

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  10. Performing Resource Usage Analysis for a NOTIS System.

    ERIC Educational Resources Information Center

    Hinnebusch, Mark

    1991-01-01

    Outlines methods that the Florida Center for Library Automation (FCLA) has developed to estimate transaction costs and overall demand for NOTIS services. Transaction resource usage analysis is discussed, record structures are explained, institution collection size is considered, and usage and response time by hour of day is described. (six…

  11. What Is the next Trend in Usage Statistics in Libraries?

    ERIC Educational Resources Information Center

    King, Douglas

    2009-01-01

    In answering the question "What is the next trend in usage statistics in libraries?" an eclectic group of respondents has presented an assortment of possibilities, suggestions, complaints and, of course, questions of their own. Undoubtedly, usage statistics collection, interpretation, and application are areas of growth and increasing complexity…

  12. (Not) Hearing Optional Subjects: The Effects of Pragmatic Usage Preferences

    ERIC Educational Resources Information Center

    Mack, Jennifer E.; Clifton, Charles, Jr.; Frazier, Lyn; Taylor, Patrick V.

    2012-01-01

    Previous research has shown that usage preferences (non-categorical constraints on the distribution of syntactic structures) shape many grammatical alternations. In the present study, we show that usage preferences also influence which alternate listeners report hearing when presented with acoustically degraded input. We investigated the English…

  13. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Coordination of channel usage. 22.907 Section 22.907 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in...

  14. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Coordination of channel usage. 22.907 Section 22.907 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in...

  15. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Coordination of channel usage. 22.907 Section 22.907 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in...

  16. 47 CFR 22.907 - Coordination of channel usage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Coordination of channel usage. 22.907 Section 22.907 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.907 Coordination of channel usage. Licensees in...

  17. Faculty Usage of Library Tools in a Learning Management System

    ERIC Educational Resources Information Center

    Leeder, Chris; Lonn, Steven

    2014-01-01

    To better understand faculty attitudes and practices regarding usage of library-specific tools and roles in a university learning management system, log data for a period of three semesters was analyzed. Academic departments with highest rates of usage were identified, and faculty users and nonusers within those departments were surveyed regarding…

  18. An Exploratory Study of Internet Addiction, Usage and Communication Pleasure.

    ERIC Educational Resources Information Center

    Chou, Chien; Chou, Jung; Tyan, Nay-Ching Nancy

    This study examined the correlation between Internet addiction, usage, and communication pleasure. Research questions were: (1) What is computer network addiction? (2) How can one measure the degree of computer network addiction? (3) What is the correlation between the degree of users' network addiction and their network usage? (4) What is the…

  19. Journal Usage at Department and Research Group Level

    ERIC Educational Resources Information Center

    McCullough, Ian

    2016-01-01

    Journal usage in the Department of Polymer Science at the University of Akron from 2006 to 2011 was determined by counting citations within faculty-supervised dissertations and faculty publications. Ranked title lists were created and correlations between journal usage in faculty publications and faculty-supervised dissertations were measured…

  20. Differential receptor usage by measles virus strains.

    PubMed

    Bartz, R; Firsching, R; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    1998-05-01

    Recently, we demonstrated that infection of cells with all measles virus (MV) strains tested was inhibited by antibodies against CD46, although not all strains caused downregulation of the MV receptor CD46 from the surface of human cells. We now show that infection of cells with MV strain WTFb, a variant of wild-type isolate WTF which has been isolated and propagated on human BJAB cells, is not inhibited by antibodies against CD46. In contrast, infection of cells with the closely related strain WTFv, a Vero cell-adapted variant of WTF, is inhibited by antibodies against CD46. This observation led us to investigate the interaction of these viruses and the vaccine strain Edmonston (Edm) with CD46 and target cells. Cellular receptors with high affinity binding for WTFb are present on BJAB cells, but not on transfected CD46-expressing CHO cells. In contrast to the Edm strain, virus particles and solubilized envelope glycoproteins of WTFb have a very limited binding capacity to CD46. Furthermore, we show that recombinant soluble CD46 either does not bind, or binds very weakly, to WTFb glycoproteins expressed on the cell surface. Our findings indicate that wild-type MV strain WTFb and vaccine strain Edm use different binding sites on human cells. In addition, the results suggest that MV strains may alternatively use CD46 and an unknown molecule as receptors, and that the degree of usage of both receptors may be MV strain-specific. PMID:9603316