Science.gov

Sample records for coexisting nuclear shapes

  1. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    NASA Astrophysics Data System (ADS)

    Heyde, K.; Wood, J. L.

    2016-08-01

    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point.

  2. Coexistence of nuclear shapes: self-consistent mean-field and beyond

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Nikšić, T.; Vretenar, D.

    2016-02-01

    A quantitative analysis of the evolution of nuclear shapes and shape phase transitions, including regions of short-lived nuclei that are becoming accessible in experiments at radioactive-beam facilities, necessitate accurate modeling of the underlying nucleonic dynamics. Important theoretical advances have recently been made in studies of complex shapes and the corresponding excitation spectra and electromagnetic decay patterns, especially in the ‘beyond mean-field’ framework based on nuclear density functionals. Interesting applications include studies of shape evolution and coexistence in N = 28 isotones, the structure of lowest 0+ excitations in deformed N ≈ 90 rare-earth nuclei, and quadrupole and octupole shape transitions in thorium isotopes.

  3. Nuclear shape coexistence in Po isotopes: An interacting boson model study

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Heyde, K.

    2015-09-01

    Background: The lead region, Po, Pb, Hg, and Pt, shows up the presence of coexisting structures having different deformation and corresponding to different particle-hole configurations in the shell-model language. Purpose: We intend to study the importance of configuration mixing in the understanding of the nuclear structure of even-even Po isotopes, where the shape coexistence phenomena are not clear enough. Method: We study in detail a long chain of polonium isotopes, Po-208190, using the interacting boson model with configuration mixing (IBM-CM). We fix the parameters of the Hamiltonians through a least-squares fit to the known energies and absolute B (E 2 ) transition rates of states up to 3 MeV. Results: We obtained the IBM-CM Hamiltonians and we calculate excitation energies, B (E 2 ) 's, electric quadrupole moments, nuclear radii and isotopic shifts, quadrupole shape invariants, wave functions, and deformations. Conclusions: We obtain a good agreement with the experimental data for all the studied observables and we conclude that shape coexistence phenomenon is hidden in Po isotopes, very much as in the case of the Pt isotopes.

  4. Shape coexistence in 153Ho

    NASA Astrophysics Data System (ADS)

    Pramanik, Dibyadyuti; Sarkar, S.; Saha Sarkar, M.; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A.; Krishichayan, Kshetri, Ritesh; Ray, Indrani; Ganguly, S.; Pradhan, M. K.; Ray Basu, M.; Raut, R.; Ganguly, G.; Ghugre, S. S.; Sinha, A. K.; Basu, S. K.; Bhattacharya, S.; Mukherjee, A.; Banerjee, P.; Goswami, A.

    2016-08-01

    The high-spin states in 153Ho have been studied by the La57(20Ne139,6 n ) reaction at a projectile energy of 139 MeV at the Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of the Indian National Gamma Array (INGA) setup. Data from γ -γ coincidence, directional correlation, and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-γ time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.

  5. Shape coexistence in atomic nuclei

    SciTech Connect

    Heyde, Kris; Wood, John L.

    2011-10-01

    Shape coexistence in nuclei appears to be unique in the realm of finite many-body quantum systems. It differs from the various geometrical arrangements that sometimes occur in a molecule in that in a molecule the various arrangements are of the widely separated atomic nuclei. In nuclei the various ''arrangements'' of nucleons involve (sets of) energy eigenstates with different electric quadrupole properties such as moments and transition rates, and different distributions of proton pairs and neutron pairs with respect to their Fermi energies. Sometimes two such structures will ''invert'' as a function of the nucleon number, resulting in a sudden and dramatic change in ground-state properties in neighboring isotopes and isotones. In the first part of this review the theoretical status of coexistence in nuclei is summarized. Two approaches, namely, microscopic shell-model descriptions and mean-field descriptions, are emphasized. The second part of this review presents systematic data, for both even- and odd-mass nuclei, selected to illustrate the various ways in which coexistence is observed in nuclei. The last part of this review looks to future developments and the issue of the universality of coexistence in nuclei. Surprises continue to be discovered. With the major advances in reaching to extremes of proton-neutron number, and the anticipated new ''rare isotope beam'' facilities, guidelines for search and discovery are discussed.

  6. Shape Coexistence in ^72Se

    NASA Astrophysics Data System (ADS)

    Lister, C. J.; Fischer, S. M.; McCutchan, E. A.; Ahn, T.; Casperson, R. J.; Heinz, A.; Ilie, G.; Qian, J.; Williams, E.; Winkler, R.

    2009-10-01

    One of the original candidates for shape co-existence in nuclei was ^72Se [1,2]. We have collected extensive new data, both ``in-beam'' following the ^40Ca(^36Ar,4p)^72Se reaction using Gammasphere at Argonne's ATLAS accelerator, and from the decay of ^72Br populated in the ^58Ni(^16O,pn) reaction studied at WNSL Yale. A new J^π=0^+ state was found at 1876 keV, the published [2] decay scheme was corrected, and twenty-six new levels were established. This detailed spectroscopy of low-lying states helps to delineate the two shape minima. The mixing of prolate-deformed and near-spherical states can be now quantified, and the gamma decay path from high-spin can be followed. The inferred groundstate shape is consistent with trends in experiment and calculation of the selenium isotopes [3,4]. [4pt] [1] J.H. Hamilton, et al., Phys. Rev. Letts. 32 239 (1974)[0pt] [2] W.E. Collins, et al., Phys.Rev. C9, 1457 (1974)[0pt] [3] S.M. Fischer, et al., Phys.Rev.Lett. 84, 4064 (2000)[0pt] [4] J. Ljungvall, et al., Phys.Rev.Lett. 100, 102502 (2008)

  7. Shape coexistence: the shell model view

    NASA Astrophysics Data System (ADS)

    Poves, A.

    2016-02-01

    We shall discuss the meaning of the ‘nuclear shape’ in the laboratory frame proper to the spherical shell model. A brief historical promenade will bring us from Elliott’s SU3 breakthrough to today’s large scale shell model calculations. A section is devoted to the algebraic model which extends drastically the field of applicability of Elliot’s SU3, providing a precious heuristic guidance for the exploration of collectivity in the nuclear chart. Shape coexistence and shape mixing will be shown to occur as the result of the competition between the main actors in the nuclear dynamics; the spherical mean field, and the pairing and quadrupole-quadrupole interactions. These ideas will be illustrated with examples in magic nuclei (40Ca and 68Ni); neutron rich semi-magic (32Mg, and 64Cr); and in proton rich N = Z (72Kr).

  8. Shape coexistence in and near 68Ni

    NASA Astrophysics Data System (ADS)

    Suchyta, Scott

    2015-10-01

    The nuclei in the vicinity of 68Ni have been the subject of considerable experimental and theoretical work focused on studying the evolution of nuclear structure. Situated at the Z = 28 proton shell closure and the fragile N = 40 subshell closure, 68Ni is an important nucleus to understand as a progression is made from stable to increasingly exotic nuclei. The nature and decay of the first excited state in 68Ni has been thoroughly investigated in recent years. The first excited state has a spin and parity of 0+, can be described by the excitation of neutrons across the N = 40 gap, and has been interpreted as a moderately oblate-deformed state that coexists with the spherical ground state. A second low-energy excited 0+ state is also known to exist in 68Ni. Based on comparisons with theoretical calculations, the second excited 0+ state has been proposed to be strongly prolate deformed and based primarily on the excitation of protons across the Z = 28 gap, leading to the inference that three different 0+ states with three distinct shapes coexist below 3 MeV in 68Ni. Additional studies suggest that shape coexistence is not unique to 68Ni in this neutron-rich region near Z = 28. For instance, in the neighboring even-even isotope 70Ni, theory predicts that a prolate-deformed minimum in the potential energy surface occurs at even lower energy than in 68Ni, and experimental evidence is consistent with the theoretical prediction. The results of recent experiments studying shape coexistence in the region, particularly investigations of 68,70Ni, will be presented and theoretical interpretations will be discussed.

  9. Coulomb excitation studies of shape coexistence in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas; Korten, Wolfram

    2016-02-01

    Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei and allows measuring electromagnetic moments that can be directly related to the nuclear shape. The availability of radioactive ion beams (RIBs) at energies near the Coulomb barrier has made it possible to study shape coexistence in a variety of short-lived exotic nuclei. This review presents a short overview of the methods related to multi-step Coulomb excitation experiments, followed by a discussion of several examples. The focus is on two mass regions where recent Coulomb excitation experiments have contributed to the quantitative understanding of shape coexistence: nuclei with mass A≈ 70 near the N = Z line and nuclei with A ≈ 100 near neutron number N = 60. Experimental results are summarized and their significance for understanding shape coexistence is discussed. Experimental observables such as quadrupole moments and electromagnetic transition strengths represent furthermore important benchmarks for advancing theoretical nuclear structure models. With several new RIB facilities planned and under construction, Coulomb excitation will remain to be an important tool to extend the studies of nuclear shapes toward more exotic systems, and to obtain a more comprehensive and quantitative understanding of shape coexistence.

  10. VAMPIR describes shape coexistence in nuclei

    SciTech Connect

    Faessler, A.

    1993-12-31

    The measurements of shape coexistence of the Vanderbilt-Oak Ridge-LSU-Georgia-Tech-Group is shortly reviewed for the Hg isotopes and the mass 70 region. Then this contribution concentrates on the description of shape coexistence with the help of refined self-consistent fields plus correlations. The basic approach is VAMPIR which starts from an angular momentum, proton and neutron number and parity projected Hartree-Fock-Bogoliubov quasi-particle Slater determinant. VAMPIR stands for Variation After Mean field Projection In Realistic models spaces. Minimization of orthogonalized projected HFB states yields also shape coexistence exited states of the same symmetries. Those states can then be diagonalized to include correlations (excited VAMPIR=EV). One can even improve on EV by adding in a second step to VAMPIR a second projected HFB-Slater determinant with unknown Bogoliubov transformation coefficients. The energy is now minimized by varying the mixing coefficients of the two Slater determinants and the Bogoliubov transformation in the second state. This can be continued step by step always using the previously fixed HFB-Slater determinants and determining only one in addition and the mixing coefficients of all the projected HFB-Slater determinants. The method is tested in sd-shell nuclei and applied in the A=70 region to the Ge and Se isotopes, where the Vanderbilt-Oak Ridge-group found a large number of different shapes in nuclei.

  11. Shape coexistence in the microscopically guided interacting boson model

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Otsuka, T.; Van Isacker, P.

    2016-02-01

    Shape coexistence has been a subject of great interest in nuclear physics for many decades. In the context of the nuclear shell model, intruder excitations may give rise to remarkably low-lying excited {0}+ states associated with different intrinsic shapes. In heavy open-shell nuclei, the dimension of the shell-model configuration space that includes such intruder excitations becomes exceedingly large, thus requiring a drastic truncation scheme. Such a framework has been provided by the interacting boson model (IBM). In this article we address the phenomenon of shape coexistence and its relevant spectroscopy from the point of view of the IBM. A special focus is placed on the method developed recently which makes use of the link between the IBM and the self-consistent mean-field approach based on the nuclear energy density functional. The method is extended to deal with various intruder configurations associated with different equilibrium shapes. We assess the predictive power of the method and suggest possible improvements and extensions, by considering illustrative examples in the neutron-deficient Pb region, where shape coexistence has been experimentally studied.

  12. Deformed Structures and Shape Coexistence in Zr-98

    NASA Astrophysics Data System (ADS)

    Olaizola, Bruno; 8pi Collaboration

    2015-10-01

    The nuclear structure of the zirconium isotopes evolves from a mid-open neutron shell deformed region (80Zr), through a closed shell (90Zr), to a closed subshell (96Zr), and then to a sudden reappearance of deformation (100Zr). This rapid onset of deformation across the Zr isotopes is unprecedented, and the issue of how collectivity appears and disappears in these isotopes is of special interest. Until recently, only 98Zr (and maybe 100Zr) had indirect and weak evidence for shape coexistence, with only speculative interpretation of the experiments. Recent results from high precision B(E2) measurements provided direct evidence of shape coexistence in 94Zr and suggested that it may happen in many other nuclei in this region. In order to provide direct evidence of shape coexistence in 98Zr a high-statistical-quality γγ experiment was carried out with the 8 π spectrometer at ISAC-TRIUMF. The array consists of 20 Compton-suppressed hyper-pure germanium detectors plus β particle and conversion electron detectors. Excited states up to ~ 5 MeV in 98Zr were populated in the β- decay of 98Y Jπ = (0-) and 98mY J = (4,5). Preliminary results on key branching ratios will be presented. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  13. Shape coexistence and evolution in 98Sr

    NASA Astrophysics Data System (ADS)

    Park, J.; Garnsworthy, A. B.; Krücken, R.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A.; Close, A.; Finlay, P.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Sjue, S.; Starosta, K.; Svensson, C. E.; Tardiff, E.

    2016-01-01

    Shape coexistence between the strongly deformed ground state and the weakly deformed 02+ state in 98Sr has been a major topic of interest due to the energy difference of 215 keV, which is the smallest in all even-even nuclei. The electric monopole transition strength ρ2(E 0 ) is an important quantity that can relate the deformation difference and the shape mixing between the two 0+ states, which are admixtures of the vibrational (S) and the rotational (D) states in a simple mixing model. In a β -decay spectroscopy experiment, the experimental ρ2(E 0 ) was measured. A value of 0.053(5) is consistent with the previous measurement and was combined with known electric quadrupole transition strengths B (E 2 ) in calculations of a two-state mixing model. Based on a systematic study on neighboring Kr, Zr, and Mo isotopes, the mixing of the 0+ and 2+ states in 98Sr was determined to be 8.6% and 1.3%, respectively, corresponding to deformation parameters βD=0.38 (1 ) and βS=-0.23 (2 ) . These parameters reproduce experimental transition strengths well except for the 41+→21+ transition, which suggests a smaller D-band deformation for J ≥4 .

  14. Shape Co-existence in ^174Pt

    NASA Astrophysics Data System (ADS)

    Goon, J. Tm.; Hartley, D. J.; Danchev, M.; Riedinger, L. L.; Zeidan, O.; Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Abu Saleem, K. H.; Ahmad, I.; Davids, C. N.; Heinz, A.; Khoo, T. L.; Lauritsen, T. L.; Lister, C. J.; Poli, G. L.; Ressler, J.; Seweryniak, D.; Wiedenhover, I.; Ma, W. C.; Amro, H.; Reviol, W.; Cizewski, J. A.; Smith, M.

    2002-10-01

    Nuclei near the region of the proton drip-line and Z = 82 shell have been a subject of great interest with repect to the phenomenon of shape co-existence. In fact, evidence for the spherical, prolate and oblate shapes within the same nucleus has been presented in ^186Pbte1, ^179Hgte2 and ^175Aute3. Deformed ground-state sequences resulting from particle-hole excitations across the Z=82 gap are found to cross the near spherical vacuum structure at low spin(I6). A classic example of this, is found in ^174Ptte4. This nucleus was produced in an experiment following the bombardment of ^92,94Mo targets position with a ^84Sr beam from the ATLAS facility at Argonne National Laboratory. The experiment utilized the GAMMASPHERE array at the target position in conjunction with the Fragment Mass Analyzer(FMA) for mass identification. The ground-state band in ^174Pt has been extended from I = 14^+ to 26^+ and a new side band is observed up to spin greater than (20^-). Based on systematics, it is likely that this sequence is an octupole vibration at low spin, but is crossed by a two-quasiparticle configuration at higher spin. There is also evidence that the side-band in ^174Pt displays transition from a spherical to a more deformed shape, which is similar to the ground-state band. 99 1 A. N. Andreyev et al., Nature 405,430 (2000). 2 F. G. Kondev et al., Phys. Lett. B528, 221 (2002). 3 F. G. Kondev et al., Phys. Lett. B512, 268 (2001) 4 G.D. Dracoulis et al., Phys. Rev. C44, R1246 (1991). thebibliography

  15. Shape Coexistence in Neutron Deficient Po Nuclei

    SciTech Connect

    Helariutta, K.; Cocks, J.F.C.; Enqvist, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Jamsen, P.; Kankaanpaa, H.; Kettunen, H.; Kuiusiniemi, P.; Leino, M.; Muikkui, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W.H.; Tormanen, S.; Uusitalo, J.; Allatt, R.G.; Butler, P.A.; Page, R.D.; Kapusta, M.

    1999-12-31

    The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.

  16. Shape coexistence in neutron deficient Po nuclei

    SciTech Connect

    Helariutta, K.; Cocks, J. F. C.; Enqvist, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Jaemsen, P.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Toermaenen, S.; Uusitalo, J.; Allatt, R. G.

    1999-11-16

    The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.

  17. Shape coexistence and triaxiality in nuclei near 80Zr

    NASA Astrophysics Data System (ADS)

    Zheng, S. J.; Xu, F. R.; Shen, S. F.; Liu, H. L.; Wyss, R.; Yan, Y. P.

    2014-12-01

    Total-Routhian-surface calculations have been performed to investigate the shape evolutions of A ˜80 nuclei: Zr-8480,Sr-8076 , and Mo,8684 . Shape coexistences of spherical, prolate, and oblate deformations have been found in these nuclei. Particularly for the nuclei 80Sr and 82Zr , the energy differences between two shape-coexisting states are less than 220 keV. At high spins, the g9 /2 shell plays an important role in shape evolutions. It has been found that the alignment of the g9 /2 quasiparticles drives nuclei to be triaxial.

  18. The role of shell evolution in shape coexistence

    NASA Astrophysics Data System (ADS)

    Otsuka, T.; Tsunoda, Y.

    2016-02-01

    We first review the shell evolution in exotic nuclei driven by nuclear forces. We then demonstrate that the underlying mechanism played by the balance of the tensor and central components in the effective nucleon-nucleon interaction is crucial when describing shape coexistence. This effect will be referred to as type II shell evolution, while the shell evolution passing through a series of isotopes or isotones is denoted as type I. We describe type II shell evolution in some detail for the case of the 68Ni nucleus as an example. We present how the fission dynamics can be related to enhanced deformation triggered by type II shell evolution, at its initial stage. It is suggested that the island of stability may be related to the suppression of this mechanism.

  19. E0 transitions in 106Pd: Implications for shape coexistence

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Prados-Estévez, F. M.; Chakraborty, A.; Mynk, M. G.; Bandyopadhyay, D.; Choudry, S. N.; Crider, B. P.; Garrett, P. E.; Hicks, S. F.; Kumar, A.; Lesher, S. R.; McKay, C. J.; Orce, J. N.; Scheck, M.; Vanhoy, J. R.; Wood, J. L.; Yates, S. W.

    2016-04-01

    Level lifetimes in 106Pd were measured with the Doppler-shift attenuation method following inelastic neutron scattering, and electric monopole transition strengths between low-lying 2+ states were deduced. The large ρ2( E0) values obtained provide evidence for shape coexistence, extending observation of such structures in the N = 60 isotones. Included in these results is the first determination of the E0 transition strength in the Pd nuclei between levels with K = 2.

  20. Shape Coexistence in Neutron-Rich Nickel Isotopes around N = 40

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; e14039 Collaboration; e14057 Collaboration

    2015-10-01

    Shape coexistence is a fascinating phenomenon in atomic nuclei characterized by multiple states with different intrinsic shapes coexisting at similar excitation energies. In even-even nuclei, a hallmark of shape coexistence is low-energy 0+ states. In 68Ni, the Monte-Carlo Shell Model (MCSM) employing the A3DA interaction, utilizing the fpg9/2d5 / 2 model space for protons and neutrons, predicts triple shape coexistence with three 0+ states below 3 MeV. Transitioning to 70Ni, the energy of the prolate-deformed 0+ state is predicted to drop precipitously from 2511 to 1525 keV. This is due to strengthening of the attractive νg9 / 2 - πf5 / 2 and repulsive νg9 / 2 - πf7 / 2 monopole interactions of the tensor force altering the effective single-particle energies of the πf7 / 2 and πf5 / 2 single-particle states, thereby reducing the spherical Z = 28 shell gap. Recent beta-decay spectroscopy experiments at the National Superconducting Cyclotron Laboratory (NSCL) have discovered a new excited 0+ state at 1567 keV in 70Ni. This result supports MCSM predictions extending the picture of shape coexistence to 70Ni and demonstrates the importance of the tensor force for describing the nuclear structure of neutron-rich nuclei. Results of the latest NSCL experiments will be presented. Supported by NSF Contract No. PHY-1102511, by the DOE NNSA Award Nos. DE-NA0000979 and DE-FG52-08NA28552, the U.S DOE SC NP Contract No. DE-AC-06CH11357 and Grant Nos. DE-FG02-94ER40834 and DE-FG02-96ER40983, and U.S. ARL Coop. Agreement W911NF-12-2-0019.

  1. Shape coexistence and triaxiality in the superheavy nuclei.

    PubMed

    Cwiok, S; Heenen, P-H; Nazarewicz, W

    2005-02-17

    Superheavy nuclei represent the limit of nuclear mass and charge; they inhabit the remote corner of the nuclear landscape, whose extent is unknown. The discovery of new elements with atomic numbers Z > or = 110 has brought much excitement to the atomic and nuclear physics communities. The existence of such heavy nuclei hangs on a subtle balance between the attractive nuclear force and the disruptive Coulomb repulsion between protons that favours fission. Here we model the interplay between these forces using self-consistent energy density functional theory; our approach accounts for spontaneous breaking of spherical symmetry through the nuclear Jahn-Teller effect. We predict that the long-lived superheavy elements can exist in a variety of shapes, including spherical, axial and triaxial configurations. In some cases, we anticipate the existence of metastable states and shape isomers that can affect decay properties and hence nuclear half-lives. PMID:15716943

  2. Conversion electron spectroscopy and its role in identifying shape coexisting structures in nuclei via E0 transitions

    NASA Astrophysics Data System (ADS)

    Zganjar, E. F.

    2016-02-01

    We present, from a historical perspective, the evolution of instruments and techniques developed by our group, in conjunction with other collaborators, to establish a program in conversion electron spectroscopy that could be routinely implemented in radioactive decay studies. We focus here mainly on the investigations that bear upon the study of nuclear shape coexistence and its relation to electric monopole (E0) transitions. We show that many I π → I π (I ≠ 0){ }transitions in both even and odd nuclei with mixed shape-coexisting configurations have large E0 components accompanying their M1 + E2 strength (in some cases nearly pure E0), and that this E0 enhancement is a clear ‘signature’ for nuclear shape coexistence.

  3. Evidence for shape coexistence in the N=Z nucleus 7236Kr36

    NASA Astrophysics Data System (ADS)

    Varley, B. J.; Campbell, M.; Chishti, A. A.; Gelletly, W.; Goettig, L.; Lister, C. J.; James, A. N.; Skeppstedt, O.

    1987-08-01

    Gamma rays associated with the decay of states in the N=Z nucleus 72Kr have been identified following the 16O(58Ni, 2n) 72Kr reaction at a mean beam energy of 170 MeV. Identification was made using the Daresbury Recoil Separator. The first excited state was found to be at 709.1 +/- 0.3 keV and to be populated with a cross section of 60 +/- 25 υb. The pattern of gamma rays associated with 72Kr indicates the co-existence of nuclear shapes.

  4. New Features of Shape Coexistence in {sup 152}Sm

    SciTech Connect

    Garrett, P. E.; Kulp, W. D.; Wood, J. L.; Bandyopadhyay, D.; Choudry, S.; Lesher, S. R.; McEllistrem, M. T.; Mynk, M.; Orce, J. N.; Yates, S. W.; Dashdorj, D.

    2009-08-07

    Excited states in {sup 152}Sm have been investigated with the {sup 152}Sm(n,n{sup '}gamma) reaction. The lowest four negative-parity band structures have been characterized in detail with respect to their absolute decay properties. Specifically, a new K{sup p}i=0{sup -} band has been assigned with its 1{sup -} band head at 1681 keV. This newly observed band has a remarkable similarity in its E1 transition rates for decay to the first excited K{sup p}i=0{sup +} band at 684 keV to the lowest K{sup p}i=0{sup -} band and its decay to the ground-state band. Based on these decay properties, as well as energy considerations, this new band is assigned as a K{sup p}i=0{sup -} octupole excitation based on the K{sup p}i=0{sub 2}{sup +} state. An emerging pattern of repeating excitations built on the 0{sub 2}{sup +} level similar to those built on the ground state may indicate that {sup 152}Sm is a complex example of shape coexistence rather than a critical point nucleus.

  5. The Role of Triaxiality in Shape-Coexistence in Light Krypton Isotopes

    NASA Astrophysics Data System (ADS)

    Fischer, S. M.; Lister

    2008-04-01

    Shape co-existence in lead^1 and krypton^2-4 isotopes has become a cutting-edge topic in understanding the structure of heavier nuclei. Prediction of the relative binding energies of different shapes, and understanding the mixing between configurations presents a discriminating challenge to nuclear theory. In ^72,74,76Kr the occurrence of two well bound shapes has been demonstrated through the observation of low-lying J^π = 0^+ isomers and through radioactive beam Coulomb excitation. Roughly speaking, the shapes correspond to oblate-like and prolate-like configurations. However, the exact shapes, and the role of triaxiality has yet to be fully explored. We present new results from ``in-beam'' heavy-ion spectroscopy on ^74Kr which shows that the population of the isomer is mainly through a gamma vibrational band and that considerable mixing is involved between the states built on the isomer and the gamma band. This research was supported by the DOE Office of Nuclear Physics under contract DE-AC02-06CH11357. ^1A. N. Andreyev et al., Nature 405, 430 (2000) ^2E. Clement et al., Phys. Rev. C 75, 054313 (2007) ^3E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003) ^4M. Bender et al., Phys. Rev. C 74, 024312 (2006)

  6. Shape coexistence at low spin in the Z = 50 region and its spectroscopic signatures

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.

    2016-08-01

    Nuclei in the Z = 50 region provide excellent examples of shape coexistence, the establishment of which occurred through the use of detailed spectroscopy, based not only on γ-ray spectroscopy but also conversion electron, particle transfer, Coulomb excitation, and lifetime measurements. The evidence to date strongly suggests that the presence of coexisting shapes arises from the promotion of protons across the Z = 50 closed shell and the strong correlations arising from interplay of the pairing and quadrupole interactions. The evidence for the presence of shape coexistence in the Z = 50 region, at low spin and low excitation energies, will be presented and clues for the microscopic origin explored.

  7. A microscopic study on shape transition and shape coexistence in superdeformed nuclei

    SciTech Connect

    Kanthimathi, G.; Boomadevi, N.; Rajasekaran, T. R.

    2012-08-15

    Superdeformed nuclei at high-spin states in several mass regions are investigated within a microscopic approach using cranked Nilsson-Strutinsky formalism to explore the equilibrium deformations in the ground state and their evolution with spin. Shape transition from normal deformed to superdeformed states with increasing spin is studied and a clear picture of shape coexistence is provided. Detailed information on spin, rotational energy, dynamical moment of inertia, and rotational frequency of superdeformed rotational bands is presented and the general features of superdeformed bands in certain mass regions are outlined. Rotational energy and dynamical moment of inertia are compared with available experimental data and the impact of temperature and pairing on superdeformed configuration are discussed.

  8. Examining Shape Co-existence in 116Sn via the Beta Decay of 116In

    NASA Astrophysics Data System (ADS)

    Pore, J.; Andreoiu, C.; Cross, D.; Ashley, R.; Chester, A.; Starosta, K.; Ball, G. C.; Bender, P.; Churchman, R.; Voss, P.; Wang, Z.; Garnsworthy, A. B.; Handinia, B.; Jigmeddorj, B.; Garrett, P. E.; Demand, G.; Laffoley, A. T.; Liblong, A.; Dunlop, R.; Svensson, C. E.; Valera, A. D.; Varela, A. D.; Kanungo, R.; Woods, J. L.; Yates, S. W.

    2012-10-01

    The stable even-even tin nuclei have a closed proton shell at Z=50 and occupy the mid-shell region of neutrons, which has led to interest in them, and they have emerged as good candidates for shape co-existence studies. The 116Sn nucleus, which sits exactly at the mid-shell (N=66), has been extensively studied in the past through fusion evaporation, coulomb excitation, neutron scattering and beta decay experiments, which has revealed an extensive level scheme and evidence for shape co-existence. However, with our advanced detection set-up and good beam intensity we are able to see additional weak transitions, some of which could yield evidence for another deformed excited state at 2545 keV. The experiment was conducted at TRIUMF, Canada's National Laboratory for Nuclear and Particle Physics. A beam of 116In was used to populate states in 116Sn via beta decay. The resulting gamma rays were observed with the 8pi array consisting of 20 high-purity germanium detectors coupled with a suite of ancillary detectors. We will present the enhanced level scheme constructed from this experiment.

  9. Tri-axial Shape Coexistence and a New Aligned Band in 178Os

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    2009-03-01

    The Os nuclei lie in the beginning of the transitional region between the well deformed rare earth and spherical lead isotopes. The nuclei in this region are believed to be soft to changes in gamma deformation due to the softness of nuclear potential which may result in the shape coexistence. The neutron Fermi levels in Os nuclei from A = 170 to A = 186 lie in the middle of i13/2 orbital so that their shape in the ground state tends to take an appreciable prolate deformation. Hence collective bands with the well defined moment of inertia occur and the effect of different proton orbitals is observed as a modulation of the prolate structure. The anomalies in the yrast sequence, an effect attributed to change in moment of inertia of the ground state rotational band and the band crossing phenomena, are very important and vary strongly with neutron number in case of Os nuclei. The nuclear structure of 178Os nucleus has been studied using the reaction 165Ho (20Ne, p6n) 178Os. Indian National Gamma Array (INGA) consisting of six Clover detectors with anti Compton shields was used for the detection of resulting gamma rays. The Direction Correlation of γ-rays de-exciting Oriented states (DCO) ratio and polarization of gamma rays were measured to assign spin, parity and multipolarity of transitions. Twenty one new transitions belonging to the 178Os nucleus have been identified. The sudden and rather strong gain in aligned angular momentum is observed in the yrast band of 178Os. A new aligned rotational band similar to 180Os is also discovered in this nucleus. This band exhibits a very complex decay pattern with a single linking transition of 1778 keV to the ground state band. The tri-axial shape co-existence is also observed in this nucleus at higher excitation. The experimental results are compared with the Microscopic Hartree-Fock model calculations.

  10. Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Wrzosek-Lipska, K.; Gaffney, L. P.

    2016-02-01

    Neutron-deficient isotopes of Pt-Hg-Pb-Po-Rn are the classic region in the investigation of shape coexistence in atomic nuclei. A large programme of Coulomb-excitation experiments has been undertaken at the REX-ISOLDE facility in CERN with a number of even-even isotopes in this region. These experiments have been used to probe the electromagnetic properties of yrast and non-yrast states of even-even exotic nuclei, above and below Z = 82. Amongst a large amount of different complementary techniques used to study nuclear structure, Coulomb excitation brings substantial and unique information detailing shape coexistence. In this paper we review the Coulomb-excitation campaign at REX-ISOLDE in the light-lead region together with most recently obtained results. Furthermore, we present some new interpretations that arise from this data and show testing comparisons to state-of-the-art nuclear models.

  11. Triaxiality and shape coexistence in the A ~ 30 island of inversion nuclei

    NASA Astrophysics Data System (ADS)

    Dong, GuoXiang; Wang, XiaoBao; Yu, ShaoYing

    2015-11-01

    Understanding the properties of nuclei inside "island of inversion" is still an interesting issue. Based on a simple Nilsson model with a new set of isospin-dependent parameters, and with non-axial deformations considered, we have performed three-dimensional potential-energy-surface calculations for Ne, Na, Mg and Al isotopes that are claimed to be in or nearby the A ~ 30 island of inversion. It is found that shape coexistence and triaxial deformation (or softness) exist in these nuclei. Large deformations are obtained by the improved Nilsson parameters, which explains the observed large electric quadrupole transition probabilities. The large deformations happening in 30Ne, 31Na, 32Mg and 33Al indicate the quenching of the spherical N = 20 neutron shell gap. The calculations of nuclear binding and two-neutron separation energies have been also improved with the isospin-dependent parameters and the inclusion of the non-axial deformation degree of freedom.

  12. New insight into the shape coexistence and shape evolution of {sup 157}Yb

    SciTech Connect

    Xu, C.; Hua, H.; Li, X. Q.; Meng, J.; Li, Z. H.; Xu, F. R.; Shi, Y.; Liu, H. L.; Zhang, S. Q.; Ye, Y. L.; Jiang, D. X.; Zheng, T.; Lou, J. L.; Ma, L. Y.; Wang, E. H.; Cheng, Y. Y.; He, C.; Li, Z. Y.; Zhu, L. H.; Wu, X. G.

    2011-01-15

    High-spin states in {sup 157}Yb have been populated in the {sup 144}Sm({sup 16}O,3n){sup 157}Yb fusion-evaporation reaction at a beam energy of 85 MeV. Two rotational bands built on the {nu}f{sub 7/2} and {nu}h{sub 9/2} intrinsic states, respectively, have been established for the first time. The newly observed {nu}f{sub 7/2} band and previously known {nu}i{sub 13/2} band in {sup 157}Yb are discussed in terms of total Routhian surface methods and compared with the structures in the neighboring N = 87 isotones. The structural characters observed in {sup 157}Yb provide evidence for shape coexistence of three distinct shapes: prolate, triaxial, and oblate. At higher spins, both the {nu}f{sub 7/2} band and {nu}i{sub 13/2} band in {sup 157}Yb undergo a shape evolution with sizable alignments occurring.

  13. Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles.

    PubMed

    Liu, Yun; Singharoy, Abhishek; Mayne, Christopher G; Sengupta, Arkajyoti; Raghavachari, Krishnan; Schulten, Klaus; Flood, Amar H

    2016-04-13

    Shape-persistent macrocycles are attractive functional targets for synthesis, molecular recognition, and hierarchical self-assembly. Such macrocycles are noncollapsible and geometrically well-defined, and they are traditionally characterized by having repeat units and low conformational flexibility. Here, we find it necessary to refine these ideas in the face of highly flexible yet shape-persistent macrocycles. A molecule is shape-persistent if it has a small change in shape when perturbed by external stimuli (e.g., heat, light, and redox chemistry). In support of this idea, we provide the first examination of the relationships between a macrocycle's shape persistence, its conformational space, and the resulting functions. We do this with a star-shaped macrocycle called cyanostar that is flexible as well as being shape-persistent. We employed molecular dynamics (MD), density functional theory (DFT), and NMR experiments. Considering a thermal bath as a stimulus, we found a single macrocycle has 332 accessible conformers with olefins undergoing rapid interconversion by up-down and in-out motions on short time scales (0.2 ns). These many interconverting conformations classify single cyanostars as flexible. To determine and confirm that cyanostars are shape-persistent, we show that they have a high 87% shape similarity across these conformations. To further test the idea, we use the binding of diglyme to the single macrocycle as guest-induced stimulation. This guest has almost no effect on the conformational space. However, formation of a 2:1 sandwich complex involving two macrocycles enhances rigidity and dramatically shifts the conformer distribution toward perfect bowls. Overall, the present study expands the scope of shape-persistent macrocycles to include flexible macrocycles if, and only if, their conformers have similar shapes. PMID:27014837

  14. Shape coexistence, shape evolution and Gamow-Teller {beta}-decay of neutron-rich A Asymptotically-Equal-To 100 nuclei

    SciTech Connect

    Petrovici, A.; Schmid, K. W.; Faessler, A.

    2012-11-20

    The structure of neutron-rich nuclei in the A Asymptotically-Equal-To 100 mass region relevant for the astrophysical r process manifests drastic changes in some isotopic chains and often sudden variations of particular nuclear properties have been identified. For a realistic description of the evolution in structure with increasing energy, spin, and isospin determined by shape coexistence and mixing beyond-mean-field approaches are required. Our recent studies represent an attempt to the self-consistent description of the shape coexistence phenomena in neutron-rich A Asymptotically-Equal-To 100 nuclei within the complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction based on the Bonn A potential in a large model space. Results concerning the triple shape coexistence and the shape evolution in the N=58 Sr and Zr isotopes, the shape evolution in a chain of Zr nuclei, as well as the Gamow-Teller {beta}-decay properties of neutron-rich Zr and Tc nuclei are presented.

  15. Tri-axial Shape Coexistence and a New Aligned Band in {sup 178}Os

    SciTech Connect

    Govil, I. M.

    2009-03-10

    The Os nuclei lie in the beginning of the transitional region between the well deformed rare earth and spherical lead isotopes. The nuclei in this region are believed to be soft to changes in gamma deformation due to the softness of nuclear potential which may result in the shape coexistence. The neutron Fermi levels in Os nuclei from A = 170 to A = 186 lie in the middle of i{sub 13/2} orbital so that their shape in the ground state tends to take an appreciable prolate deformation. Hence collective bands with the well defined moment of inertia occur and the effect of different proton orbitals is observed as a modulation of the prolate structure. The anomalies in the yrast sequence, an effect attributed to change in moment of inertia of the ground state rotational band and the band crossing phenomena, are very important and vary strongly with neutron number in case of Os nuclei. The nuclear structure of {sup 178}Os nucleus has been studied using the reaction {sup 165}Ho({sup 20}Ne, p6n){sup 178}Os. Indian National Gamma Array (INGA) consisting of six Clover detectors with anti Compton shields was used for the detection of resulting gamma rays. The Direction Correlation of {gamma}-rays de-exciting Oriented states (DCO) ratio and polarization of gamma rays were measured to assign spin, parity and multipolarity of transitions. Twenty one new transitions belonging to the {sup 178}Os nucleus have been identified. The sudden and rather strong gain in aligned angular momentum is observed in the yrast band of {sup 178}Os. A new aligned rotational band similar to {sup 180}Os is also discovered in this nucleus. This band exhibits a very complex decay pattern with a single linking transition of 1778 keV to the ground state band. The tri-axial shape co-existence is also observed in this nucleus at higher excitation. The experimental results are compared with the Microscopic Hartree-Fock model calculations.

  16. Investigation of shape coexistence in 118-128Te isotopes

    NASA Astrophysics Data System (ADS)

    Sabri, H.; Jahangiri, Z.; Mohammadi, M. A.

    2016-02-01

    In this paper, we have considered the vibration to gamma unstable phase transition in the 118-128Te isotopes. A transitional interacting boson model Hamiltonian in both IBM-1 and IBM-2 versions which are based on affine SU (1 , 1) ˆ Lie Algebra are employed to describe the evolution from spherical to deformed gamma unstable shapes along the chain of Te isotopes. The excitation energies, B (E 0) and B (E 2) transition rates are rather well reproduced in comparison with experimental counterparts when the weight of SO(6) limit is increased in Hamiltonian.

  17. Description of the shape coexistence in neutron-deficient 74,76Kr with IBM2

    NASA Astrophysics Data System (ADS)

    Zhang, DaLi; Mu, ChengFu

    2016-08-01

    The shape deformation and shape coexistence in 74,76Kr isotopes are investigated within the framework of the proton-neutron interacting boson model (IBM2). By considering the relative energy of the d proton boson to be different from that of the neutron boson, the low-lying energy spectrum is in good agreement with experimental results both qualitatively and quantitatively. In particular, the low-lying 0 2 + states associated with the shape-coexistence phenomenon are reproduced quite well. The calculated key sensitive quantities of B(E2) transition branch ratios are fairly consistent with the experimental data except for R 4. The predicated deformation parameter is very similar for the ground states in 74Kr and 76Kr, showing good agreement with the experimental result, and the calculated deformation parameter for the second 0+ state in 74Kr is close to the experimental data. The calculated results of the triaxiality parameter indicated an almost purely prolate shape for the ground state of 76Kr and a mostly prolate shape with a little triaxiality for the ground state of 74Kr. The calculations also show an oblate triaxial shape for the second 0+ state in 76Kr and maximum triaxiality for the second 0+ state in 74Kr. These results confirm the importance of the triaxial deformation for the description of such shape coexistence.

  18. Shape Coexistence and Band Terminations in N = 89 ^155Dy

    NASA Astrophysics Data System (ADS)

    Brown, T. B.; Riley, M. A.; Janssens, R. V. F.; Ahmad, I.; Blumenthal, D. J.; Carpenter, M. P.; Fallon, P.; Fischer, S. M.; Hackman, G.; Hartley, D. J.; Kalfas, C.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Nisius, D.; Ma, W. C.; Simpson, J.; Sharpey-Schafer, J. F.; Afanasiev, A.; Ragnarsson, I.

    1998-04-01

    A high spin study of the nucleus ^155_66Dy_89 has been performed using the GAMMASPHERE Spectrometer. The ^124Sn(^36S,5n) reaction was employed at beam energies of 175 and 165 MeV with thick and thin targets respectively. Eight new band sequences have been identified and the previously known sequences have been extended to higher spin. The yrast states of positive and negative parity have been identified up to spin 1/012 with quite different behavior illustrating beautifully the competition between collective prolate and terminating oblate shapes. Detailed comparisions are made with cranked Nilsson Strutinsky calculations. A new feature of the high spin calculations has been added to distinguish between neutrons in h_11/2 orbitals and other N=5 orbitals. This has been found necessary to explain the continuation of near yrast collective structures beyond spin 40 hbar. Additionally, the lowest energy negative parity sequences are observed to return to more collective behavior near spin 45 in a similar manner as N=88 ^154Dy.

  19. Nuclear collective excitations in a two-phase coexistence region

    SciTech Connect

    Aguirre, R. M.; De Paoli, A. L.

    2011-04-15

    The relation between collective modes and phase transitions in nuclear matter is examined. The dispersion relations for the low-lying excitations in a linear approach are evaluated within a Landau-Fermi liquid scheme by assuming coexisting phases in thermodynamical equilibrium. Temperature and isospin composition are used as relevant parameters. The in-medium nuclear interaction is provided by a recently proposed density functional model. The low density liquid-gas phase transition is taken as a typical situation for examination. We found significative modifications in the energy spectrum, within a certain range of temperatures and isospin asymmetry, due to the separation of matter into independent phases. The influence of the electromagnetic interaction over the dispersion relation of these collective excitations is also examined.

  20. Multi-quasiparticle excitation: Extending shape coexistence in A{approx}190 neutron-deficient nuclei

    SciTech Connect

    Shi Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.

    2010-10-15

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in {sup 188}Pb. Of particular interest is the prediction of low-lying 10{sup -} states in polonium isotopes, which indicate long-lived isomers.

  1. Multi-quasiparticle excitation: Extending shape coexistence in A~190 neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, F. R.; Liu, H. L.; Walker, P. M.

    2010-10-01

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in Pb188. Of particular interest is the prediction of low-lying 10- states in polonium isotopes, which indicate long-lived isomers.

  2. Shape coexistence in 67Co, 66,68,70,72Ni, and 71Cu

    NASA Astrophysics Data System (ADS)

    Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Weisshaar, D.; Otsuka, T.; Tsunoda, Y.; Recchia, F.; Gade, A.; Harker, J. L.; Albers, M.; Alcorta, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bertone, P. F.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Crawford, H. L.; David, H. M.; Doherty, D. T.; Hoffman, C. R.; Honma, M.; Kondev, F. G.; Korichi, A.; Langer, C.; Larson, N.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Macchiavelli, A. O.; Noji, S.; Prokop, C.; Rogers, A. M.; Seweryniak, D.; Shimizu, N.; Stroberg, S. R.; Suchyta, S.; Utsuno, Y.; Williams, S. J.; Wimmer, K.; Zhu, S.

    2015-10-01

    Analyses of data from both deep inelastic reactions at Argonne National Laboratory and single- and multiple-particle knockout reactions at Michigan State University revealed new γ-ray transitions in even-even 66,68,70,72Ni38,40,42,44 and in 67Co40 that provide strong evidence for multiple shape coexistence at N = 38 and 40 and deep prolate minima in 70Ni42 and isotonic 71Cu42. A new transition at 642 keV is proposed for 66Ni as the prolate 2+ to 0+ transition. Two new transitions in 72Ni at 915 and 1225 keV were identified in the knock-out reaction study and could represent de-population of prolate states. Taken together with recent theoretical work using the Monte Carlo shell model, a well defined region of shape coexistence can be seen existing precisely between 38 ≤ N ≤44 for Co, Ni, and Cu nuclei.

  3. New low-energy 0+ state and shape coexistence in 70Ni

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; Crider, B. P.; Liddick, S. N.; Ayangeakaa, A. D.; Carpenter, M. P.; Carroll, J. J.; Chen, J.; Chiara, C. J.; David, H. M.; Dombos, A. C.; Go, S.; Harker, J.; Janssens, R. V. F.; Larson, N.; Lauritsen, T.; Lewis, R.; Quinn, S. J.; Recchia, F.; Seweryniak, D.; Spyrou, A.; Suchyta, S.; Walters, W. B.; Zhu, S.

    2015-12-01

    In recent models, the neutron-rich Ni isotopes around N =40 are predicted to exhibit multiple low-energy excited 0+ states attributed to neutron and proton excitations across both the N =40 and Z =28 shell gaps. In 68Ni, the three observed 0+ states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (02+) state at an energy of 1567 keV has been discovered in 70Ni by using β -delayed, γ -ray spectroscopy following the decay of 70Co. The precipitous drop in the energy of the prolate-deformed 0+ level between 68Ni and 70Ni with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large f p g9 /2d5 /2 model space, which predict a 02+ state at 1525 keV in 70Ni. The result extends the shape-coexistence picture in the region to 70Ni and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.

  4. Shape coexistence and the role of axial asymmetry in 72Ge

    NASA Astrophysics Data System (ADS)

    Ayangeakaa, A. D.; Janssens, R. V. F.; Wu, C. Y.; Allmond, J. M.; Wood, J. L.; Zhu, S.; Albers, M.; Almaraz-Calderon, S.; Bucher, B.; Carpenter, M. P.; Chiara, C. J.; Cline, D.; Crawford, H. L.; David, H. M.; Harker, J.; Hayes, A. B.; Hoffman, C. R.; Kay, B. P.; Kolos, K.; Korichi, A.; Lauritsen, T.; Macchiavelli, A. O.; Richard, A.; Seweryniak, D.; Wiens, A.

    2016-03-01

    The quadrupole collectivity of low-lying states and the anomalous behavior of the 02+ and 23+ levels in 72Ge are investigated via projectile multi-step Coulomb excitation with GRETINA and CHICO-2. A total of forty six E2 and M1 matrix elements connecting fourteen low-lying levels were determined using the least-squares search code, GOSIA. Evidence for triaxiality and shape coexistence, based on the model-independent shape invariants deduced from the Kumar-Cline sum rule, is presented. These are interpreted using a simple two-state mixing model as well as multi-state mixing calculations carried out within the framework of the triaxial rotor model. The results represent a significant milestone towards the understanding of the unusual structure of this nucleus.

  5. First Evidence of Shape Coexistence in the 78Ni Region: Intruder 02+ State in 80Ge

    NASA Astrophysics Data System (ADS)

    Gottardo, A.; Verney, D.; Delafosse, C.; Ibrahim, F.; Roussière, B.; Sotty, C.; Roccia, S.; Andreoiu, C.; Costache, C.; Delattre, M.-C.; Deloncle, I.; Etilé, A.; Franchoo, S.; Gaulard, C.; Guillot, J.; Lebois, M.; MacCormick, M.; Marginean, N.; Marginean, R.; Matea, I.; Mihai, C.; Mitu, I.; Olivier, L.; Portail, C.; Qi, L.; Stan, L.; Testov, D.; Wilson, J.; Yordanov, D. T.

    2016-05-01

    The N =48 80Ge nucleus is studied by means of β -delayed electron-conversion spectroscopy at ALTO. The radioactive 80Ga beam is produced through the isotope separation on line photofission technique and collected on a movable tape for the measurement of γ and e- emission following β decay. An electric monopole E 0 transition, which points to a 639(1) keV intruder 02+ state, is observed for the first time. This new state is lower than the 21+ level in 80Ge, and provides evidence of shape coexistence close to one of the most neutron-rich doubly magic nuclei discovered so far, 78Ni. This result is compared with theoretical estimates, helping to explain the role of monopole and quadrupole forces in the weakening of the N =50 gap at Z =32 . The evolution of intruder 02+ states towards 78Ni is discussed.

  6. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  7. Spectroscopic Quadrupole Moments in Sr,9896 : Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N =60

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Görgen, A.; Korten, W.; Péru, S.; Libert, J.; Goutte, H.; Hilaire, S.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Delahaye, P.; Dijon, A.; Doherty, D. T.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-01-01

    Neutron-rich Sr,9896 isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N =60 .

  8. Identification of excited structures in proton unbound nuclei 173,175,177Au: shape co-existence and intruder bands

    NASA Astrophysics Data System (ADS)

    Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Abu Saleem, K.; Ahmad, I.; Amro, H.; Cizewski, J. A.; Danchev, M.; Davids, C. N.; Hartley, D. J.; Heinz, A.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Ma, W. C.; Poli, G. L.; Ressler, J.; Reviol, W.; Riedinger, L. L.; Seweryniak, D.; Smith, M. B.; Wiedenhöver, I.

    2001-07-01

    Excited states in the proton-unbound 173,175,177Au nuclei were identified for the first time. Level structures associated with three different shapes were observed in 175Au. While the yrast lines of 175Au and 177Au consist of a prolate band built upon the intruder 1/2+[660] (i13/2) proton orbital, no sign of collectivity was observed in the lighter 173Au isotope. Implications for the deformation associated with these structures are discussed with a focus on shape co-existence in the vicinity of the proton-drip line.

  9. Acquired phototrophy stabilises coexistence and shapes intrinsic dynamics of an intraguild predator and its prey.

    PubMed

    Moeller, Holly V; Peltomaa, Elina; Johnson, Matthew D; Neubert, Michael G

    2016-04-01

    In marine ecosystems, acquired phototrophs - organisms that obtain their photosynthetic ability by hosting endosymbionts or stealing plastids from their prey - are omnipresent. Such taxa function as intraguild predators yet depend on their prey to periodically obtain chloroplasts. We present a new theory for the effects of acquired phototrophy on community dynamics by analysing a mathematical model of this predator-prey interaction and experimentally verifying its predictions with a laboratory model system. We show that acquired phototrophy stabilises coexistence, but that the nature of this coexistence exhibits a 'paradox of enrichment': as light increases, the coexistence between the acquired phototroph and its prey transitions from a stable equilibrium to boom-bust cycles whose amplitude increases with light availability. In contrast, heterotrophs and mixotrophic acquired phototrophs (that obtain  < 30% of their carbon from photosynthesis) do not exhibit such cycles. This prediction matches field observations, in which only strict ( > 95% of carbon from photosynthesis) acquired phototrophs form blooms. PMID:26833622

  10. In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficient Z ≈ 82 nuclei

    NASA Astrophysics Data System (ADS)

    Julin, R.; Grahn, T.; Pakarinen, J.; Rahkila, P.

    2016-02-01

    In the present paper we focus on studies of shape coexistence in even-mass nuclei in the neutron-deficient Pb region. They are based on experiments carried out using tagging techniques in the Accelerator Laboratory of the University of Jyväskylä, Finland. Excited states in many of these nuclei can only be accessed via fusion-evaporation reactions employing high-intensity stable-ion beams. The key features in these experiments are high selectivity, clean spectra and instrumentation that enables high count rates. We review three spectroscopic highlights in this region.

  11. Shell Erosion and Shape Coexistence in {sub 16}{sup 43}S{sub 27}

    SciTech Connect

    Gaudefroy, L.; Daugas, J. M.; Girod, M.; Rosse, B.; Meot, V.; Morel, P.; Hass, M.; Kumar, V.; Grevy, S.; Stodel, Ch.; Thomas, J. C.; Force, C.; Angelique, J. C.; Simpson, G.; Balabanski, D. L.; Fiori, E.; Georgiev, G.; Lozeva, R. L.; Kameda, D.

    2009-03-06

    We report on the g-factor measurement of the first isomeric state in {sub 16}{sup 43}S{sub 27}[E{sub x}=320.5(5) keV, T{sub 1/2}=415(5) ns, and g=0.317(4)]. The 7/2{sup -} spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

  12. First Evidence of Shape Coexistence in the ^{78}Ni Region: Intruder 0_{2}^{+} State in ^{80}Ge.

    PubMed

    Gottardo, A; Verney, D; Delafosse, C; Ibrahim, F; Roussière, B; Sotty, C; Roccia, S; Andreoiu, C; Costache, C; Delattre, M-C; Deloncle, I; Etilé, A; Franchoo, S; Gaulard, C; Guillot, J; Lebois, M; MacCormick, M; Marginean, N; Marginean, R; Matea, I; Mihai, C; Mitu, I; Olivier, L; Portail, C; Qi, L; Stan, L; Testov, D; Wilson, J; Yordanov, D T

    2016-05-01

    The N=48 ^{80}Ge nucleus is studied by means of β-delayed electron-conversion spectroscopy at ALTO. The radioactive ^{80}Ga beam is produced through the isotope separation on line photofission technique and collected on a movable tape for the measurement of γ and e^{-} emission following β decay. An electric monopole E0 transition, which points to a 639(1) keV intruder 0_{2}^{+} state, is observed for the first time. This new state is lower than the 2_{1}^{+} level in ^{80}Ge, and provides evidence of shape coexistence close to one of the most neutron-rich doubly magic nuclei discovered so far, ^{78}Ni. This result is compared with theoretical estimates, helping to explain the role of monopole and quadrupole forces in the weakening of the N=50 gap at Z=32. The evolution of intruder 0_{2}^{+} states towards ^{78}Ni is discussed. PMID:27203316

  13. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  14. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026

  15. Joint modeling of cell and nuclear shape variation

    PubMed Central

    Johnson, Gregory R.; Buck, Taraz E.; Sullivan, Devin P.; Rohde, Gustavo K.; Murphy, Robert F.

    2015-01-01

    Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization. PMID:26354424

  16. Isomer Shift and Magnetic Moment of the Long-Lived 1/2^{+} Isomer in _{30}^{79}Zn_{49}: Signature of Shape Coexistence near ^{78}Ni.

    PubMed

    Yang, X F; Wraith, C; Xie, L; Babcock, C; Billowes, J; Bissell, M L; Blaum, K; Cheal, B; Flanagan, K T; Garcia Ruiz, R F; Gins, W; Gorges, C; Grob, L K; Heylen, H; Kaufmann, S; Kowalska, M; Kraemer, J; Malbrunot-Ettenauer, S; Neugart, R; Neyens, G; Nörtershäuser, W; Papuga, J; Sánchez, R; Yordanov, D T

    2016-05-01

    Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (^{79}Zn)=-1.1866(10)μ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (^{79m}Zn)=-1.0180(12)μ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6)  fm^{2}, providing first evidence of shape coexistence. PMID:27203317

  17. Shape coexistence at N=20 and N=28: Study of 0{sub 2}{sup +} states in {sup 34}Si and {sup 44}S

    SciTech Connect

    Grévy, S.; Rotaru, F.; Negoita, F.; Borcea, C.; Borcea, R.; Buta, A.; Calinescu, S.; Petrone, C.; Mrazek, J.; Lukyanov, S.; Penionzhkevich, Y.; Cáceres, L.; De Oliveira, F.; Force, C.; Lebhertz, D.; Sorlin, O.; Stodel, C.; Thomas, J. C.; Chevrier, R. [Grand Accélérateur National d'Ions Lourds , CEA and others

    2014-08-14

    It is well known that the nuclear shell structure changes for the most exotic nuclei. One of the consequences of this phenomenon is the modification of the 'classical' magic numbers, as experimentally observed at N = 20 and N = 28. Nevertheless, the mechanisms responsible for such changes are still under discussion and more experimental information is needed to better constrain the theoretical models. In these proceedings, we report on the discovery and the experimental study by precise spectroscopy experiments of the 0{sub 2}{sup +} state in {sup 34}Si and {sup 44}S. The {sup 34}Si is located between the magic spherical {sup 36}S and the deformed {sup 32}Mg, member of the so-called island of inversion, whereas {sup 44}S is located between the magic spherical {sup 48}Ca and the deformed {sup 42}Si. Therefore, the structure of these nuclei, and in particular the phenomenon of shape coexistence, is of crucial importance to understand how the intruder configurations progressively dominate the ground state structure of the most exotic nuclei at both N = 20 and N = 28.

  18. Isomer Shift and Magnetic Moment of the Long-Lived 1 /2+ Isomer in 30,79Zn49: Signature of Shape Coexistence near 78Ni

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wraith, C.; Xie, L.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Kraemer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papuga, J.; Sánchez, R.; Yordanov, D. T.

    2016-05-01

    Collinear laser spectroscopy is performed on the 30,79Zn49 isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in 79Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I =9 /2 and I =1 /2 are firmly assigned to the ground and isomeric states. The magnetic moment μ (79Zn)=-1.1866 (10 )μN , confirms the spin-parity 9 /2+ with a ν g9/2 -1 shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ (Znm79)=-1.0180 (12 )μN supports a positive parity for the isomer, with a wave function dominated by a 2 h -1 p neutron excitation across the N =50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ ⟨rc2⟩79 ,79 m=+0.204 (6 ) fm2 , providing first evidence of shape coexistence.

  19. Search for shape coexistence in {sup 188,190}Pb via fine structure in the alpha decay of {sup 192,194}Po

    SciTech Connect

    Ahmad, I.; Davids, C.; Janssens, R.V.F.

    1995-08-01

    The interaction between coexisting shapes in nuclei near closed shells was of great interest in the past decade. Excited 0{sup +} states at low energy can often be identified as the bandheads of structures with differing shapes built on those states, These structures were identified in {sup 190-198}Pb via beta decay and alpha decay {open_quotes}fine structure{close_quotes} studies. Coexistence of different shapes in Pb nuclei was predicted by Nilsson-Strutinsky calculations, in which both the oblate and prolate minima were predicted to have excitation energies near 1 MeV. It was our intention to continue the systematic study of the Pb nuclides by searching for excited O{sup +} states in {sup 188}Pb by observing the fine structure in the alpha decay of {sup 192}Po.

  20. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  1. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    PubMed

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60. PMID:26824536

  2. Study of extreme nuclear shapes in extreme conditions

    SciTech Connect

    Banerjee, Sudhee Ranjan

    2014-08-14

    Studies of extreme nuclear shapes have always fascinated scientists and are being pursued quite strongly over the years. Nuclei present themselves with interesting shapes and structures at different conditions of spin, excitation and also with the number of neutrons and/or protons in them. Gamma decays from the Giant dipole Resonances in nuclei can probe directly their shapes at different extreme conditions by looking at their resonant line-shapes, e.g., Jacobi shapes and shape-transitions, super/hyper-deformation etc. Similar such studies, done for the first time, using the LAMBDA high energy gamma spectrometer developed at VECC, is discussed here.

  3. Study of extreme nuclear shapes in extreme conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Sudhee Ranjan

    2014-08-01

    Studies of extreme nuclear shapes have always fascinated scientists and are being pursued quite strongly over the years. Nuclei present themselves with interesting shapes and structures at different conditions of spin, excitation and also with the number of neutrons and/or protons in them. Gamma decays from the Giant dipole Resonances in nuclei can probe directly their shapes at different extreme conditions by looking at their resonant line-shapes, e.g., Jacobi shapes and shape-transitions, super/hyper-deformation etc. Similar such studies, done for the first time, using the LAMBDA high energy gamma spectrometer developed at VECC, is discussed here.

  4. Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading

    PubMed Central

    Li, Yuan; Lovett, David; Zhang, Qiao; Neelam, Srujana; Kuchibhotla, Ram Anirudh; Zhu, Ruijun; Gundersen, Gregg G.; Lele, Tanmay P.; Dickinson, Richard B.

    2015-01-01

    The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes. PMID:26287620

  5. Isomers And E0 Transitions As A Probe Of Triple Shape Co-existence In 188Pb

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Byrne, A. P.; Lane, G. J.; Baxter, A. M.; Kibédi, T.; Macchiavelli, A. O.; Fallon, P.; Clark, R. M.

    2003-03-01

    New structures above and below the two-particle isomeric states in 188Pb have been identified. Their properties are consistent with the presence of three minima in the nuclear potential well, associated with spherical, weakly oblate and substantial prolate deformations. The fragmented decay of the weakly populated Kπ = 8-, 1 μs prolate isomer also provides a means of identifying non-yrast low-spin structures which are otherwise inaccessible. Through this mechanism, collective bands which can be associated with the excited 0+ states have been identified and E0 transitions between them inferred. Analysis of the excitation energies, branching ratios and E2/E0 decay-width ratios through a band-mixing model provides a test of shape differences and the separability of the wave functions at low spin.

  6. Study of nuclear shapes in extreme conditions

    NASA Astrophysics Data System (ADS)

    Muralithar, S.; Gamma spectroscopy Group in IUAC

    2013-04-01

    Studies of nuclear structure have fascinated physicists and was pursued for decades actively. Nuclear structure evolves as a function of proton and neutron ratio, energy and spin pumped into system. To facilitate nuclear structure study at high spin, a host of facilities were developed at Inter University Accelerator Centre, New Delhi and was used by users across this country for last twenty years. The tools developed, from Gamma detector array (GDA) with ancillary devices, to Indian National Gamma array (INGA) are presented with few physics cases.

  7. Nuclear hyperdeformation and the Jacobi shape transition

    SciTech Connect

    Schunck, N.; Dudek, J.

    2007-05-15

    The possibility that atomic nuclei possess stable, extremely elongated (hyperdeformed) shapes at very high angular momentum is investigated in the light of the most recent experimental results. The crucial role of the Jacobi shape transitions for the population of hyperdeformed states is discussed and emphasized. State-of-the-art mean-field calculations including the most recent parametrization of the liquid-drop energy together with thermal effects and minimization algorithms allowing the spanning of a large deformation space predict the existence of a region of hyperdeformed nuclei in the mass A{approx}120-130: Te, Cs, Xe, I, and Ba isotopes. In agreement with predictions presented in reviews by J. Dudek, K. Pomorski, N. Schunck, and N. Dubray [Eur. Phys. J. A 20, 15 (2003)] and J. Dudek, N. Schunck, and N. Dubray [Acta Phys Pol. B 36, 975 (2005)], our extended calculations predict that only very short hyperdeformed bands composed of a dozen discrete transitions at the most are to be expected-in contrast to the results known for the superdeformed bands. We stress the importance of the experimental research in terms of multiple-{gamma} correlation analysis that proved to be very efficient for the superdeformation studies and seems very helpful in the even more difficult search for the discrete transitions in hyperdeformed nuclei.

  8. Regulation of nuclear shape and size in plants.

    PubMed

    Meier, Iris; Griffis, Anna Hn; Groves, Norman R; Wagner, Alecia

    2016-06-01

    Nuclear shape and size changes have long been used by cytopathologists to diagnose, stage, and prognose cancer. However, the underlying causalities and molecular mechanisms are largely unknown. The current eukaryotic tree of life groups eukaryotes into five supergroups, with all organisms between humans and yeast falling into the supergroup Opisthokonta. The emergence of model organisms with strong molecular genetic methodology in the other supergroups has recently facilitated a broader evolutionary approach to pressing biological questions. Here, we review what is known about the control of nuclear shape and size in the Archaeplastidae, the supergroup containing the higher plants. We discuss common themes as well as differences toward a more generalized model of how eukaryotic organisms regulate nuclear morphology. PMID:27030912

  9. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  10. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheeny, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  11. Shape and topography corrections for planetary nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Hendricks, John S.

    2015-11-01

    The elemental composition of planetary surfaces can be determined using gamma ray and neutron spectroscopy. Most planetary bodies for which nuclear spectroscopy data have been acquired are round, and simple, analytic corrections for measurement geometry can be applied; however, recent measurements of the irregular asteroid 4 Vesta by Dawn required more detailed corrections using a shape model (Prettyman et al., Science 2012). In addition, subtle artifacts of topography have been observed in low altitude measurements of lunar craters, with potential implications for polar hydrogen content (Eke et al., JGR 2015). To explore shape and topography effects, we have updated the general-purpose Monte Carlo radiation transport code MCNPX to include a polygonal shape model (Prettyman and Hendricks, LPSC 2015). The shape model is fully integrated with the code’s 3D combinatorial geometry modules. A voxel-based acceleration algorithm enables fast ray-intersection calculations needed for Monte Carlo. As modified, MCNPX can model neutron and gamma ray transport within natural surfaces using global and/or regional shape/topography data (e.g. from photogrammetry and laser altimetry). We are using MCNPX to explore the effect of small-scale roughness, regional-, and global-topography for asteroids, comets and close-up measurements of high-relief features on larger bodies, such as the lunar surface. MCNPX can characterize basic effects on measurements by an orbiting spectrometer such as 1) the angular distribution of emitted particles, 2) shielding of galactic cosmic rays by surrounding terrain and 3) re-entrant scattering. In some cases, re-entrant scattering can be ignored, leading to a fast ray-tracing model that treats effects 1 and 2. The algorithm is applied to forward modeling and spatial deconvolution of epithermal neutron data acquired at Vesta. Analyses of shape/topography effects and correction strategies are presented for Vesta, selected small bodies and cratered

  12. Irradiation-induced changes in nuclear shape and cell cycle

    SciTech Connect

    Iwata, M.; Sasaki, H.; Kishino, Y.; Tsuboi, T.; Sugishita, T.; Hosokawa, T.

    1982-03-01

    Using human uterine cervical carcinoma cells transplanted in nude mice and mice leukemia L5178Y cells, changes in the cell cycle following irradiation were observed by flow cytometry (FCM), and changes in the cell nuclei during the course of irradiation were measured by FCM. Experiments in vivo as well as in vitro caused accumulation of cells in the G2 to M populations, resulting in the so-called G2 block phenomenon as revealed by FCM analysis of DNA distributions. The radiation-induced changes of nuclear shapes were dependent on abnormal mitoses, which occurred more frequently in the G2 to M phases. Therefore it is suggested that the G2 block phenomenon plays an important role in radiation-induced cell death because the process of cell death by irradiation has been shown to proceed via these abnormal mitoses.

  13. Multidimensionally constrained covariant density functional theories—nuclear shapes and potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Shan-Gui

    2016-06-01

    The intrinsic nuclear shapes deviating from a sphere not only manifest themselves in nuclear collective states but also play important roles in determining nuclear potential energy surfaces (PES’s) and fission barriers. In order to describe microscopically and self-consistently nuclear shapes and PES’s with as many shape degrees of freedom as possible included, we developed multidimensionally constrained covariant density functional theories (MDC-CDFTs). In MDC-CDFTs, the axial symmetry and the reflection symmetry are both broken and all deformations characterized by {β }λ μ with even μ are considered. We have used the MDC-CDFTs to study PES’s and fission barriers of actinides, the non-axial octupole Y 32 correlations in N = 150 isotones and shapes of hypernuclei. In this Review we will give briefly the formalism of MDC-CDFTs and present the applications to normal nuclei.

  14. Exact Analytic Study of Nuclear Shape Phase Transitions

    SciTech Connect

    Levai, G.

    2009-08-26

    The application of the sextic oscillator is proposed in the Bohr Hamiltonian to describe the phase transition between the spherical and gamma-unstable shape phases. It is shown that exact results can be obtained for the energy eigenvalues and wave functions of the low-lying levels, as well as for electric quadrupole transition rates between them. The {sup 134}Ba nucleus and the even Ru isotope chain are considered as examples. Possible generalizations of the model are also outlined.

  15. Nuclear states and shapes at high spin. [Good review

    SciTech Connect

    Diamond, R.M.

    1980-08-01

    As angular momentum is added to a nucleus, the balance of forces acting upon it to determine its shape, moment of inertia, mode of rotation, and type of level structure may undergo a series of changes. At relatively low spins a deformed nucleus will rotate collectively, and one may see the effect of Coriolis antipairing in gradually increasing the moment of inertia. Around spin 12 to 16 h-bar there may be an abrupt change (backbending) when a pair of high-j nucleons unpairs and the nucleons align with the axis of rotation; this process allows the nucleus to slow its collective rotation. This process, the start of a sharing of angular momentum between single-particle motion and the collective rotation, gives a lower total energy and corresponds to a change toward triaxiality in the shape of the nucleus. At much higher spins discrete ..gamma..-ray transitions can no longer be observed. This is the regime of continuum spectra; all the information on these high-spin states (to 65 h-bar) is contained in these continuum cascades. Knowledge is accumulating on how to study these spectra, experimentally and theoretically, and new techniques offer promise of revealing a great deal of information about the shapes and properties of very high spin states. 71 references, 34 figures.

  16. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.

    PubMed

    Latorre-Pellicer, Ana; Moreno-Loshuertos, Raquel; Lechuga-Vieco, Ana Victoria; Sánchez-Cabo, Fátima; Torroja, Carlos; Acín-Pérez, Rebeca; Calvo, Enrique; Aix, Esther; González-Guerra, Andrés; Logan, Angela; Bernad-Miana, María Luisa; Romanos, Eduardo; Cruz, Raquel; Cogliati, Sara; Sobrino, Beatriz; Carracedo, Ángel; Pérez-Martos, Acisclo; Fernández-Silva, Patricio; Ruíz-Cabello, Jesús; Murphy, Michael P; Flores, Ignacio; Vázquez, Jesús; Enríquez, José Antonio

    2016-07-28

    Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains. PMID:27383793

  17. {alpha} transitions to coexisting 0{sup +} states in Pb and Po isotopes

    SciTech Connect

    Xu Chang; Ren Zhongzhou

    2007-04-15

    The {alpha}-transitions ({delta}l=0) to ground and first excited 0{sup +} states in neutron deficient Pb and Po isotopes are systematically analyzed by the density-dependent cluster model. The magnitude of nuclear deformation of the coexisting 0{sub 1}{sup +} and 0{sub 2}{sup +} states is extracted directly from the experimental {alpha}-decay energies and half-lives. The phenomenon of shape coexistence around the Z=82 shell closure is clearly demonstrated in our present analysis. The obtained deformation values from Rn {yields} Po {yields} Pb decay chains are generally consistent with both the available experimental and theoretical studies.

  18. Identification of Fasciola species based on mitochondrial and nuclear DNA reveals the co-existence of intermediate Fasciola and Fasciola gigantica in Thailand.

    PubMed

    Wannasan, Anchalee; Khositharattanakool, Pathamet; Chaiwong, Prasong; Piangjai, Somsak; Uparanukraw, Pichart; Morakote, Nimit

    2014-11-01

    Molecular techniques were used to identify Fasciola species collected from Chiang Mai Thailand. Morphometrically, 65 stained and 45 fresh worms collected from cattle suggested the possible occurrence of both F. gigantica and F. hepatica. Twenty-two worms comprising 15 from cattle and 7 from human patients, were identified subsequently based on three genetic markers: mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1), mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2). All of them presented the F. gigantica type in maternally inherited mitochondrial sequences (nad1 and cox1), with six types in each sequence (FgNDI-CM1 to FgNDI-CM6 and FgCOI-CM1 to FgCOI-CM6, respectively). Remarkably, the predominant nad1 type, FgNDI-CM6, was identical to that of aspermic Fasciola sp. formerly reported from Thailand, Japan, Korea, China, Vietnam, and Myanmar. ITS2 sequences were analyzed successfully in 20 worms. Fifteen worms showed the F. gigantica type and five (including one worm from a patient) had mixed ITS2 sequences of both F. gigantica and F. hepatica in the same worms, with additional heterogeneity within both ITS2 types. This study revealed the intermediate form of Fasciola coexisting with F. gigantica for the first time in Thailand. PMID:25300764

  19. Masses and scaling relations for nuclear star clusters, and their co-existence with central black holes

    NASA Astrophysics Data System (ADS)

    Georgiev, Iskren Y.; Böker, Torsten; Leigh, Nathan; Lützgendorf, Nora; Neumayer, Nadine

    2016-04-01

    Galactic nuclei typically host either a nuclear star cluster (NSC, prevalent in galaxies with masses ≲1010 M⊙) or a massive black hole (MBH, common in galaxies with masses ≳1012 M⊙). In the intermediate-mass range, some nuclei host both an NSC and an MBH. In this paper, we explore scaling relations between NSC mass (M_NSC) and host-galaxy total stellar mass (M_{star ,gal}) using a large sample of NSCs in late- and early-type galaxies, including a number of NSCs harbouring an MBH. Such scaling relations reflect the underlying physical mechanisms driving the formation and (co)evolution of these central massive objects. We find ˜1.5σ significant differences between NSCs in late- and early-type galaxies in the slopes and offsets of the relations reff,NSC-M_NSC, reff,NSC-M_{star ,gal} and M_NSC-M_{star ,gal}, in the sense that (i) NSCs in late types are more compact at fixed M_NSC and M_{star ,gal}; and (ii) the M_NSC-M_{star ,gal} relation is shallower for NSCs in late types than in early types, similar to the M_BH-M_{star ,bulge} relation. We discuss these results in the context of the (possibly ongoing) evolution of NSCs, depending on host-galaxy type. For NSCs with an MBH, we illustrate the possible influence of an MBH on its host NSC, by considering the ratio between the radius of the MBH sphere of influence and reff,NSC. NSCs harbouring a sufficiently massive black hole are likely to exhibit surface brightness profile deviating from a typical King profile.

  20. Phase coexistence in proton glass

    SciTech Connect

    Schmidt, V.H.; Trybula, Z.; Pinto, N.J.; Shapiro, S.M.

    1996-11-01

    Proton glasses are crystals of composition M{sub 1{minus}x}(NW{sub 4}){sub x}W{sub 2}AO{sub 4}, where M = K,Rb, W = H,D, A = P,As. For x = 0 there is a ferroelectric (FE) transition, while for x = 1 there is an antiferroelectric (AFE) transition. In both cases, the transition is from a paraelectric (PE) state of tetragonal structure with dynamically disordered hydrogen bonds to an ordered state of orthorhombic structure. For an intermediate x range there is no transition, but the hydrogen rearrangements slow down, and eventually display nonergodic behavior characteristic of glasses. The authors and other have shown from spontaneous polarization, dielectric permittivity, nuclear magnetic resonance, and neutron diffraction experiments that for smaller x there is coexistence of ferroelectric and paraelectric phases, and for larger x there is coexistence of antiferroelectric and paraelectric phases. The authors present a method for analytically describing this coexistence, and the degree to which this coexistence is spatial or temporal.

  1. Self-consistent description of coexistence phenomena in medium mass nuclei

    SciTech Connect

    Petrovici, A.; Schmid, K. W.; Faessler, Amand; Andrei, O.

    2010-11-24

    Shape coexistence and mixing, isospin mixing, the competition between neutron-proton and like-nucleon pairing correlations have been identified as the main characteristic features of nuclei near the N = Z line in the A{approx_equal}70 mass region. The self-consistent treatment of exotic phenomena dominated by their interplay represents a challenge for the nuclear many-body models. The realistic description of tiny effects in this mass region aiming to test the fundamental interactions and symmetries as well as the required theoretical predictions concerning the nuclear properties relevant for astrophysical scenarios are still open problems of the low-energy nuclear physics today.

  2. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  3. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  4. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells

    NASA Astrophysics Data System (ADS)

    Lozoya, Oswaldo A.; Gilchrist, Christopher L.; Guilak, Farshid

    2016-03-01

    The ability of cells to proliferate, differentiate, transduce extracellular signals and assemble tissues involves structural connections between nucleus and cytoskeleton. Yet, how the mechanics of these connections vary inside stem cells is not fully understood. To address those questions, we combined two-dimensional particle-tracking microrheology and morphological measures using variable reduction techniques to measure whether cytoplasmic mechanics allow for discrimination between different human adherent stem cell types and across different culture conditions. Here we show that nuclear shape is a quantifiable discriminant of mechanical properties in the perinuclear cytoskeleton (pnCSK) of various stem cell types. Also, we find the pnCSK is a region with different mechanical properties than elsewhere in the cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features, and which obeys physical relations conserved among various stem cell types. Finally, we offer a prospective basis to discriminate between stem cell types by coupling perinuclear mechanical properties to nuclear shape.

  5. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells

    PubMed Central

    Lozoya, Oswaldo A.; Gilchrist, Christopher L.; Guilak, Farshid

    2016-01-01

    The ability of cells to proliferate, differentiate, transduce extracellular signals and assemble tissues involves structural connections between nucleus and cytoskeleton. Yet, how the mechanics of these connections vary inside stem cells is not fully understood. To address those questions, we combined two-dimensional particle-tracking microrheology and morphological measures using variable reduction techniques to measure whether cytoplasmic mechanics allow for discrimination between different human adherent stem cell types and across different culture conditions. Here we show that nuclear shape is a quantifiable discriminant of mechanical properties in the perinuclear cytoskeleton (pnCSK) of various stem cell types. Also, we find the pnCSK is a region with different mechanical properties than elsewhere in the cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features, and which obeys physical relations conserved among various stem cell types. Finally, we offer a prospective basis to discriminate between stem cell types by coupling perinuclear mechanical properties to nuclear shape. PMID:26976044

  6. Nuclear shape transitions in neutron-rich medium-mass nuclei

    SciTech Connect

    Sarriguren, P.; Rodriguez-Guzman, R.; Robledo, L. M.

    2012-10-20

    We study the isotopic evolution of the ground-state nuclear shapes in neutron-rich Kr, Rb, Sr, Y, Zr, Nb, and Mo isotopic chains. Both even-even and odd-A nuclei are included in the analysis. For the latter we also study the systematics of their one-quasiparticle low-lying configurations. The theoretical approach is based on a selfconsistent Hartree-Fock-Bogoliubov formalism with finite range Gogny energy density functionals. Neutron separation energies, charge radii, and the spin-parity of the ground states are calculated and compared with available data. Shape-transition signatures are identified around N= 60 isotones as discontinuities in both charge radii isotopic shifts and spin-parities of the ground states. The nuclear deformation including triaxiality is shown to play a relevant role in the understanding of the bulk and spectroscopic features of the ground and low-lying one-quasiparticle states.

  7. Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights on reproductive mode, infection age and evolutionary forces shaping genetic variation

    PubMed Central

    2010-01-01

    Background Maternally inherited endosymbionts like Wolbachia pipientis are in linkage disequilibrium with the mtDNA of their hosts. Therefore, they can induce selective sweeps, decreasing genetic diversity over many generations. This sex ratio distorter, that is involved in the origin of parthenogenesis and other reproductive alterations, infects the parthenogenetic weevil Naupactus cervinus, a serious pest of ornamental and fruit plants. Results Molecular evolution analyses of mitochondrial (COI) and nuclear (ITS1) sequences from 309 individuals of Naupactus cervinus sampled over a broad range of its geographical distribution were carried out. Our results demonstrate lack of recombination in the nuclear fragment, non-random association between nuclear and mitochondrial genomes and the consequent coevolution of both genomes, being an indirect evidence of apomixis. This weevil is infected by a single Wolbachia strain, which could have caused a moderate bottleneck in the invaded population which survived the initial infection. Conclusions Clonal reproduction and Wolbachia infection induce the coevolution of bacterial, mitochondrial and nuclear genomes. The time elapsed since the Wolbachia invasion would have erased the traces of the demographic crash in the mtDNA, being the nuclear genome the only one that retained the signal of the bottleneck. The amount of genetic change accumulated in the mtDNA and the high prevalence of Wolbachia in all populations of N. cervinus agree with the hypothesis of an ancient infection. Wolbachia probably had great influence in shaping the genetic diversity of N. cervinus. However, it would have not caused the extinction of males, since sexual and asexual infected lineages coexisted until recent times. PMID:21050430

  8. Oxydative stress alters nuclear shape through lamins dysregulation: a route to senescence.

    PubMed

    Barascu, Aurélia; Le Chalony, Catherine; Pennarun, Gaëlle; Genet, Diane; Zaarour, Nancy; Bertrand, Pascale

    2012-01-01

    Progeroid phenotypes are mainly encountered in 2 types of syndromes: in laminopathies, which are characterized by nuclear shape abnormalities due to lamin A alteration, and in DNA damage response defect syndromes. Because lamin A dysregulation leads to DNA damages, it has been proposed that senescence occurs in both types of syndromes through the accumulation of damages. We recently showed that elevated oxidative stress is responsible for lamin B1 accumulation, nuclear shape alteration and senescence in the DDR syndrome, ataxia telangiectasia (A-T). Interestingly, overexpression of lamin B1 in wild type cells is sufficient to induce senescence without the induction of DNA damages. Here, we will discuss the importance of controlling the lamins level in order for maintenance nuclear architecture and we will comment the relationships of lamins with other senescence mechanisms. Finally, we will describe emerging data reporting redox control by lamins, leading us to propose a general mechanism by which reactive oxygen species can induce senescence through lamin dysregulation and NSA. PMID:22895091

  9. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    SciTech Connect

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; De, A.; Gupta, D.

    2010-06-15

    The influence of alpha clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions {sup 20}Ne (E{sub lab}=145,160 MeV) + {sup 12}C and {sup 20}Ne (E{sub lab}=160 MeV) + {sup 27}Al, populating {sup 32}S and {sup 47}V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-alpha-like {sup 47}V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the alpha cluster {sup 32}S an extended prolate kind of shape is observed. This unusual deformation, seen directly via gamma decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of {sup 16}O + {sup 16}O in the {sup 32}S superdeformed band.

  10. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    NASA Technical Reports Server (NTRS)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Alpha-particles as probes of nuclear shape and structure effects in proton evaporation spectra

    SciTech Connect

    Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M. ); Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A. ); Griffin, H.C. )

    1990-01-01

    The emission barriers and subbarrier anisotropies in the alpha-particle decay with respect to the spin direction on Sn and rare earth compound nuclei are examined in the light of recent calculations incorporating deformation effects in the decay process. For the Sn systems the spectral shapes and anisotropies can be examined without involving deformation. For the rare earth systems deformation which increases with spin is necessary to explain the data. Energy spectra and angular correlations of evaporated protons from the {sup 52}Cr ({sup 34}S, 2p2n){sup 82}Sr reaction were measured in coincidence with discrete transitions. Large shifts in proton spectra were observed when high spin states in different rotational bands are populated. These effects cannot be explained by statistical model calculations that do not include explicitly nuclear structure effects in the deexcitation process. They are interpreted as due to near-yrast stretched proton emission, which preferentially populates the yrast band by subbarrier protons.

  12. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    NASA Astrophysics Data System (ADS)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  13. Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation.

    PubMed

    Szymański, S

    2009-12-28

    The damped quantum rotation (DQR) theory describes manifestations in nuclear magnetic resonance spectra of the coherent and stochastic dynamics of N-fold molecular rotors composed of indistinguishable particles. The standard jump model is only a limiting case of the DQR approach; outside this limit, the stochastic motions of such rotors have no kinematic description. In this paper, completing the previous two of this series, consequences of nuclear permutation symmetry for the properties of the DQR line shape equation are considered. The systems addressed are planar rotors, such as aromatic hydrocarbons' rings, occurring inside of molecular crystals oriented in the magnetic field. Under such conditions, oddfold rotors can have nontrivial permutation symmetries only for peculiar orientations while evenfold ones always retain their intrinsic symmetry element, which is rotation by 180 degrees about the N-fold axis; in specific orientations the latter can gain two additional symmetry elements. It is shown that the symmetry selection rules applicable to the classical rate processes in fluids, once recognized as having two diverse aspects, macroscopic and microscopic, are also rigorously valid for the DQR processes in the solid state. However, formal justification of these rules is different because the DQR equation is based on the Pauli principle, which is ignored in the jump model. For objects like the benzene ring, exploitation of these rules in simulations of spectra using the DQR equation can be of critical significance for the feasibility of the calculations. Examples of such calculations for the proton system of the benzene ring in a general orientation are provided. It is also shown that, because of the intrinsic symmetries of the evenfold rotors, many of the DQR processes, which such rotors can undergo, are unobservable in NMR spectra. PMID:20059076

  14. Brownian Shape Motion on Five-Dimensional Potential-Energy Surfaces:Nuclear Fission-Fragment Mass Distributions

    SciTech Connect

    Randrup, Joergen; Moeller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  15. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    PubMed

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value. PMID:21517377

  16. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (E<0.625 eV) are required as these affect the CR integrity through stresses/strains induced by coupled clad embrittlement / absorber swelling phenomena. The concept of the PSI scheme under development is to provide from validated core analysis models, the volumetric neutron source to a full core MCNPX model that is then used to compute the neutron fluxes. A particular aspect that needs scrutiny is the ability of the MCNPX-based calculation methodology to accurately predict the flux shapes along the control rod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  17. N6-isopentenyladenosine improves nuclear shape in fibroblasts from humans with progeroid syndromes by inhibiting the farnesylation of prelamin A.

    PubMed

    Bifulco, Maurizio; D'Alessandro, Alba; Paladino, Simona; Malfitano, Anna M; Notarnicola, Maria; Caruso, Maria G; Laezza, Chiara

    2013-12-01

    Hutchinson-Gilford progeria syndrome is caused by mutations in the lamin A/C gene that lead to expression of a truncated, permanently farnesylated prelamin A variant called progerin. The accumulation of progerin at the nuclear envelope causes mis-shapen nuclei and results in progeroid syndromes. Previous studies in cells from individuals with Hutchinson-Gilford progeria syndrome have shown that blocking of farnesylation of prelamin A ameliorates the nuclear shape abnormalities. Here we observed that an inhibitor of farnesyl diphosphate synthase, N6-isopentenyladenosine, impeded the farnesylation of prelamin A, causing a decrease in the frequency of nuclear shape abnormalities and redistribution of prelamin A away from the inner nuclear envelope. A combination of lovastatin and N6-isopentenyladenosine significantly improved nuclear shape in fibroblast cell lines from atypical progeria patients. These findings establish a paradigm for ameliorating the most obvious cellular pathology in lamin-related progeroid syndromes, and suggest a potential strategy for treating children with Hutchinson-Gilford progeria syndrome. PMID:24112551

  18. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  19. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons

    PubMed Central

    Coffinier, Catherine; Jung, Hea-Jin; Nobumori, Chika; Chang, Sandy; Tu, Yiping; Barnes, Richard H.; Yoshinaga, Yuko; de Jong, Pieter J.; Vergnes, Laurent; Reue, Karen; Fong, Loren G.; Young, Stephen G.

    2011-01-01

    Neuronal migration is essential for the development of the mammalian brain. Here, we document severe defects in neuronal migration and reduced numbers of neurons in lamin B1–deficient mice. Lamin B1 deficiency resulted in striking abnormalities in the nuclear shape of cortical neurons; many neurons contained a solitary nuclear bleb and exhibited an asymmetric distribution of lamin B2. In contrast, lamin B2 deficiency led to increased numbers of neurons with elongated nuclei. We used conditional alleles for Lmnb1 and Lmnb2 to create forebrain-specific knockout mice. The forebrain-specific Lmnb1- and Lmnb2-knockout models had a small forebrain with disorganized layering of neurons and nuclear shape abnormalities, similar to abnormalities identified in the conventional knockout mice. A more severe phenotype, complete atrophy of the cortex, was observed in forebrain-specific Lmnb1/Lmnb2 double-knockout mice. This study demonstrates that both lamin B1 and lamin B2 are essential for brain development, with lamin B1 being required for the integrity of the nuclear lamina, and lamin B2 being important for resistance to nuclear elongation in neurons. PMID:21976703

  20. The Co-Existence Daisy.

    ERIC Educational Resources Information Center

    Mahajna, Salah; Harel, Yael

    1992-01-01

    Activities that promote Arab-Jew coexistence at the English Department and Arab College at Beth Berl College are recounted. The authors' projects, each regarded as a petal in a "Coexistence Daisy," include those related to art encounters, interprofessional relationships, and inservice training. (LB)

  1. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells

    PubMed Central

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-01-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:25735303

  2. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells.

    PubMed

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-01-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell-cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:25735303

  3. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells.

    PubMed

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-03-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:26148352

  4. Phase coexistence far from equilibrium

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2016-04-01

    Investigation of simple far-from-equilibrium systems exhibiting phase separation leads to the conclusion that phase coexistence is not well defined in this context. This is because the properties of the coexisting nonequilibrium systems depend on how they are placed in contact, as verified in the driven lattice gas with attractive interactions, and in the two-temperature lattice gas, under (a) weak global exchange between uniform systems, and (b) phase-separated (nonuniform) systems. Thus, far from equilibrium, the notions of universality of phase coexistence (i.e., independence of how systems exchange particles and/or energy), and of phases with intrinsic properties (independent of their environment) are lost.

  5. Effective pairing interaction in semi-infinite nuclear matter in the Brueckner approach: Model {delta}-shaped NN interaction

    SciTech Connect

    Baldo, M.; Lombardo, U.; Saperstein, E.E.; Zverev, M.V.

    1995-09-01

    The problem of pairing in semi-infinite nuclear matter is considered in the Brueckner approach. Equations for effective pairing interaction in semi-infinite matter are derived for the case of the separable representation of realistic NN interaction. The propagator of two noninteracting particles in a semi-infinite potential well is calculated numerically. The equation for effective interaction is solved for a model 8-shaped NN interaction, which correctly reproduces NN scattering in the low-energy limit. 15 refs., 10 figs.

  6. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    SciTech Connect

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states.

  7. Novel plant SUN–KASH bridges are involved in RanGAP anchoring and nuclear shape determination

    PubMed Central

    Zhou, Xiao; Graumann, Katja; Evans, David E.

    2012-01-01

    Inner nuclear membrane Sad1/UNC-84 (SUN) proteins interact with outer nuclear membrane (ONM) Klarsicht/ANC-1/Syne homology (KASH) proteins, forming linkers of nucleoskeleton to cytoskeleton conserved from yeast to human and involved in positioning of nuclei and chromosomes. Defects in SUN–KASH bridges are linked to muscular dystrophy, progeria, and cancer. SUN proteins were recently identified in plants, but their ONM KASH partners are unknown. Arabidopsis WPP domain–interacting proteins (AtWIPs) are plant-specific ONM proteins that redundantly anchor Arabidopsis RanGTPase–activating protein 1 (AtRanGAP1) to the nuclear envelope (NE). In this paper, we report that AtWIPs are plant-specific KASH proteins interacting with Arabidopsis SUN proteins (AtSUNs). The interaction is required for both AtWIP1 and AtRanGAP1 NE localization. AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells. Together, our data identify the first KASH members in the plant kingdom and provide a novel function of SUN–KASH complexes, suggesting that a functionally diverged SUN–KASH bridge is conserved beyond the opisthokonts. PMID:22270916

  8. Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint.

    PubMed

    Noguchi, Hiroshi

    2016-08-23

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small perinuclear volume, osmotic pressure within nucleoplasm, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found. PMID:27558725

  9. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology.

    PubMed

    Kiss, Mate; Czimmerer, Zsolt; Nagy, Laszlo

    2013-08-01

    Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors. PMID:23905916

  10. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.

    PubMed

    Booth-Gauthier, Elizabeth A; Du, Vicard; Ghibaudo, Marion; Rape, Andrew D; Dahl, Kris Noel; Ladoux, Benoit

    2013-03-01

    Cell migration through tight interstitial spaces in three dimensional (3D) environments impacts development, wound healing and cancer metastasis and is altered by the aging process. The stiffness of the extracellular matrix (ECM) increases with aging and affects the cells and cytoskeletal processes involved in cell migration. However, the nucleus, which is the largest and densest organelle, has not been widely studied during cell migration through the ECM. Additionally, the nucleus is stiffened during the aging process through the accumulation of a mutant nucleoskeleton protein lamin A, progerin. By using microfabricated substrates to mimic the confined environment of surrounding tissues, we characterized nuclear movements and deformation during cell migration into micropillars where interspacing can be tuned to vary nuclear confinement. Cell motility decreased with decreased micropillar (μP) spacing and correlated with increased dysmorphic shapes of nuclei. We examined the effects of increased nuclear stiffness which correlates with cellular aging by studying Hutchinson-Gilford progeria syndrome cells which are known to accumulate progerin. With the expression of progerin, cells showed a threshold response to decreased μP spacing. Cells became trapped in the close spacing, possibly from visible micro-defects in the nucleoskeleton induced by cell crawling through the μP and from reduced force generation, measured independently. We suggest that ECM changes during aging could be compounded by the increasing stiffness of the nucleus and thus changes in cell migration through 3D tissues. PMID:23370891

  11. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  12. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGESBeta

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  13. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  14. Evolution of ground state nuclear shapes in tungsten nuclei in terms of interacting boson model

    NASA Astrophysics Data System (ADS)

    Khalaf, A. M.; El-Shal, A. O.; Taha, M. M.; El-Sayed, M. A.

    2016-03-01

    The tungsten nuclei 180-190W are investigated within the framework of the interacting boson model using an intrinsic coherent state formalism. The Hamiltonian operator contains only multipole operators of the subalgebra associated with the dynamical symmetries SU(3) and O(6). The study includes the behavior of potential energy surfaces (BES's) and critical points in the space of the model parameters to declare the geometric character of the tungsten isotopic chain. Some selected energy levels and reduced E2 transition probabilities B(E2) for each nucleus are calculated to adjust the model parameters by using a computer code PH INT and simulated computer fitting programme to fit the experimental data with the IBM calculation by minimizing the root mean square deviations. The 180-190W isotopes lies in shape transition SU(3)-O(6) region of the IBM such that the lighter isotopes comes very clare to the SU(3) limit, while the behavior ones tend to be near the γ-unstable O(6) limit.

  15. U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes

    NASA Astrophysics Data System (ADS)

    Kotb, M.

    2016-07-01

    In the framework of the interacting boson model (IBM) with intrinsic coherent state, the shape Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) are examined. The Hamiltonian used is composed of a single boson energy term and quadrupole term. The potential energy surfaces (PES' s) corresponding to the U(5)-SU(3) transition are calculated with variation of a scaling and control parameters. The model is applied to 150-162Dy chain of isotopes. In this chain a change from spherical to well deformed nuclei is observed when moving from the lighter to heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters of the model are determined by using a computer simulated search program in order to minimize the deviation between our calculated and some selected experimental energy levels, B(E2) transition rates and the two neutron separation energies S2n. We have also studied the energy ratios and the B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between ground-ground and ground-beta states are examined within IBM and boson intrinsic coherent framework.

  16. Probing nuclear shapes close to the fission limit with the giant dipole resonance in {sup 216}Rn

    SciTech Connect

    Kmiecik, M.; Maj, A.; Brekiesz, M.; Krolas, W.; Meczynski, W.; Styczen, J.; Zieblinski, M.; Million, B.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Wieland, O.; Brambilla, S.; Herskind, B.; Kicinska-Habior, M.; Dubray, N.; Dudek, J.; Schunck, N.

    2004-12-01

    The gamma-ray decay of the giant dipole resonance (GDR) in the compound nucleus {sup 216}Rn formed with the reaction {sup 18}O+{sup 198}Pt at the bombarding energy of 96 MeV was investigated. High-energy gamma-ray spectra in coincidence with both prompt and delayed low-energy transitions were measured. The obtained GDR width at the average temperature {approx_equal}1 MeV was found to be larger than that at T=0 MeV and to be approximately constant as a function of spin. The measured width value of 7 MeV is found to be consistent with the predictions based on calculations of the nuclear shape distribution using the newest approach for the treatment of the fission barrier within the liquid drop model. The present study is the first investigation of the giant dipole resonance width from the fusion-evaporation decay channel in this nuclear mass range.

  17. Competition, Competitive Repulsion, and Coexistence

    PubMed Central

    Darlington, P. J.

    1972-01-01

    This manuscript is concerned with concepts rather than abstruse details or mathematics. Discussed are: competition; extended competition, proposed for competition in the strict sense, extended and modified by all related interactions including predation, parasitism, disease, and even cooperation, all of which can be “weapons of competition”; competitive repulsion, proposed for the sum of forces that determine spacings, including ecologic spacings, of individuals and populations; Darwin (biotic) equilibriums; competitive extinction, Gause's principle, limited and limiting resources, and single-resource competition; de facto coexistence of competing species, exemplified by green plants competing for sunlight; niche competition; the two concepts of competitive exclusion; devision of resources and of their utilizers; cause and effect in real situations; and niches, niche overlap, and coexistence. Stressed is the complexity of the real world, and the confusion that can and does arise from modeling it too simply. PMID:4508308

  18. Algebraic benchmark for prolate-oblate coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Leviatan, A.; Shapira, D.

    2016-05-01

    We present a symmetry-based approach for prolate-oblate and spherical-prolate-oblate shape coexistence, in the framework of the interacting boson model of nuclei. The proposed Hamiltonian conserves the SU(3) and SU (3 ) ¯ symmetry for the prolate and oblate ground bands and the U(5) symmetry for selected spherical states. Analytic expressions for quadrupole moments and E 2 rates involving these states are derived and isomeric states are identified by means of selection rules.

  19. Probe of Triple Shape Coexistence In Neutron Deficient Polonium Nuclei

    SciTech Connect

    Wiseman, D. R.; Page, R. D.; Darby, I. G.; Andreyev, A. N.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Saren, J.; Scholey, C.; Uusitalo, J.; Sandzelius, M.

    2006-04-26

    {gamma}-ray transitions in the neutron deficient 190,197Po nuclei have been identified. The yrast band of 190Po has been extended up to a spin and parity of 14+ and is found to display similar systematic behaviour to isotones 186Hg and 188Pb above the 4+ level, thus confirming its prolate nature. In 197Po the band built upon the 13/2+ isomer has been extended up to a spin and parity of 33/2+, while the non-yrast side-band has been observed for the first time. The behaviour of 197Po is found to be similar to that of the nearby even-mass isotopes, which is consistent with the model in which the i13/2 neutron is weakly coupled to the states in the even-even core.

  20. Concealed configuration mixing and shape coexistence in the platinum nuclei

    SciTech Connect

    Garcia-Ramos, J. E.; Hellemans, V.; Heyde, K.

    2012-10-20

    The role of configuration mixing in the Pt region is investigated. The nature of the ground state changes smoothly, being spherical around mass A{approx} 174 and A{approx} 192 and deformed around the mid-shell N= 104 region. Interacting Boson Model with configuration mixing calculations are presented for deformations and isotope shifts. The assumption of the existence of two configurations with very different deformation provides a simple framework to explain the observed isotope shifts systematics.

  1. Intraspecific density dependence and a guild of consumers coexisting on one resource.

    PubMed

    McPeek, Mark A

    2012-12-01

    The importance of negative intraspecific density dependence to promoting species coexistence in a community is well accepted. However, such mechanisms are typically omitted from more explicit models of community dynamics. Here I analyze a variation of the Rosenzweig-MacArthur consumer-resource model that includes negative intraspecific density dependence for consumers to explore its effect on the coexistence of multiple consumers feeding on a single resource. This analysis demonstrates that a guild of multiple consumers can easily coexist on a single resource if each limits its own abundance to some degree, and stronger intraspecific density dependence permits a wider variety of consumers to coexist. The mechanism permitting multiple consumers to coexist works in a fashion similar to apparent competition or to each consumer having its own specialized predator. These results argue for a more explicit emphasis on how negative intraspecific density dependence is generated and how these mechanisms combine with species interactions to shape overall community structure. PMID:23431602

  2. Effects of heat input on the microstructure and toughness of the 8 MnMoNi 5 5 shape-welded nuclear steel

    NASA Astrophysics Data System (ADS)

    Million, Karl; Datta, Ratan; Zimmermann, Horst

    2005-04-01

    A weld metal well proven in the German nuclear industry served as the basis for the certification of a shape-welded steel to be used as base material for manufacture of nuclear primary components. The outstanding properties of this steel are attributed to the extremely fine-grained and stable primary microstructure. Subsequent reheating cycles caused by neighbouring weld beads do neither lead to coarsened brittle structures in the heat-affected zone nor to increase in hardness and decrease in toughness, as is the case with wrought steel materials. One of the largest new reactor vessel design amongst today's advanced reactor projects is considered to be particularly suitable for the use of shape-welded parts in place of forgings. In addition the need for design and development of new shape-welded steel grades for other new generation reactor projects is emphasized, in which the experience gained with this research could make a contribution.

  3. Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1

    PubMed Central

    Zhou, Xiao; Groves, Norman Reid; Meier, Iris

    2015-01-01

    Nuclei undergo dynamic shape changes during plant development, but the mechanism is unclear. In Arabidopsis, Sad1/UNC-84 (SUN) proteins, WPP domain-interacting proteins (WIPs), WPP domain-interacting tail-anchored proteins (WITs), myosin XI-i, and CROWDED NUCLEI 1 (CRWN1) have been shown to be essential for nuclear elongation in various epidermal cell types. It has been proposed that WITs serve as adaptors linking myosin XI-i to the SUN-WIP complex at the nuclear envelope (NE). Recently, an interaction between Arabidopsis SUN1 and SUN2 proteins and CRWN1, a plant analog of lamins, has been reported. Therefore, the CRWN1-SUN-WIP-WIT-myosin XI-i interaction may form a linker of the nucleoskeleton to the cytoskeleton complex. In this study, we investigate this proposed mechanism in detail for nuclei of Arabidopsis root hairs and trichomes. We show that WIT2, but not WIT1, plays an essential role in nuclear shape determination by recruiting myosin XI-i to the SUN-WIP NE bridges. Compared with SUN2, SUN1 plays a predominant role in nuclear shape. The NE localization of SUN1, SUN2, WIP1, and a truncated WIT2 does not depend on CRWN1. While crwn1 mutant nuclei are smooth, the nuclei of sun or wit mutants are invaginated, similar to the reported myosin XI-i mutant phenotype. Together, this indicates that the roles of the respective WIT and SUN paralogs have diverged in trichomes and root hairs, and that the SUN-WIP-WIT2-myosin XI-i complex and CRWN1 independently determine elongated nuclear shape. This supports a model of nuclei being shaped both by cytoplasmic forces transferred to the NE and by nucleoplasmic filaments formed under the NE. PMID:25759303

  4. Species coexistence: macroevolutionary relationships and the contingency of historical interactions.

    PubMed

    Germain, Rachel M; Weir, Jason T; Gilbert, Benjamin

    2016-03-30

    Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species. PMID:27009226

  5. Interference competition and species coexistence.

    PubMed Central

    Amarasekare, Priyanga

    2002-01-01

    Interference competition is ubiquitous in nature. Yet its effects on resource exploitation remain largely unexplored for species that compete for dynamic resources. Here, I present a model of exploitative and interference competition with explicit resource dynamics. The model incorporates both biotic and abiotic resources. It considers interference competition both in the classical sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, and interference on, the other species) and in the broad sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, but can experience an increase in growth rate via interference on, the other species). Coexistence cannot occur under classical interference competition even when the species inferior at resource exploitation is superior at interference. Such a trade-off can, however, change the mechanism of competitive exclusion from dominance by the superior resource exploiter to a priority effect. Now the inferior resource exploiter can exclude the superior resource exploiter provided it has a higher initial abundance. By contrast, when interference is beneficial to the interacting species, coexistence is possible via a trade-off between exploitation and interference. These results hold regardless of whether the resource is biotic or abiotic, indicating that the outcome of exploitative and interference competition does not depend on the exact nature of resource dynamics. The model makes two key predictions. First, species that engage in costly interference mechanisms (e.g. territoriality, overgrowth or undercutting, allelopathy and other forms of chemical competition) should not be able to coexist unless they also engage in beneficial interference mechanisms (e.g. predation or parasitism). Second, exotic invasive species that displace native biota should be superior resource exploiters that have strong interference effects on native species with little

  6. Coexistence: Exploration and the environment

    SciTech Connect

    Cunningham, P.S.; Winston, J.G.; Watt, G.L.

    1995-12-31

    One of the major challenges in our industry today is successfully meeting two needs of the planet that often appear to be conflicting: Meeting the economic needs of the people through sustainable development of natural resources while preserving the integrity and diversity of our environment. Nowhere is this more critical than in the world`s wetlands and rain forests. This presentation demonstrates the principles and practices that have fostered coexistence of environmental protection and sustainable development projects in wetlands and tropical forests in the Americas. Excerpts from two projects are shown. one in a national wildlife refuge in Louisiana, and one in the rain forests of Bolivia.

  7. Learning to coexist with wildfire.

    PubMed

    Moritz, Max A; Batllori, Enric; Bradstock, Ross A; Gill, A Malcolm; Handmer, John; Hessburg, Paul F; Leonard, Justin; McCaffrey, Sarah; Odion, Dennis C; Schoennagel, Tania; Syphard, Alexandra D

    2014-11-01

    The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed. PMID:25373675

  8. Interplay of order and chaos across a first-order quantum shape-phase transition in nuclei

    SciTech Connect

    Leviatan, A.; Macek, M.

    2012-10-20

    We study the nature of the dynamics in a first-order quantum phase transition between spherical and prolate-deformed nuclear shapes. Classical and quantum analyses reveal a change in the system from a chaotic Henon-Heiles behavior on the spherical side into a pronounced regular dynamics on the deformed side. Both order and chaos persist in the coexistence region and their interplay reflects the Landau potential landscape and the impact of collective rotations.

  9. Coexisting Cyclic Parthenogens Comprise a Holocene Species Flock in Eubosmina

    PubMed Central

    Faustová, Markéta; Sacherová, Veronika; Sheets, H. David; Svensson, Jan-Erik; Taylor, Derek J.

    2010-01-01

    Background Mixed breeding systems with extended clonal phases and weak sexual recruitment are widespread in nature but often thought to impede the formation of discrete evolutionary clusters. Thus, cyclic parthenogens, such as cladocerans and rotifers, could be predisposed to “species problems” and a lack of discrete species. However, species flocks have been proposed for one cladoceran group, Eubosmina, where putative species are sympatric, and there is a detailed paleolimnological record indicating a Holocene age. These factors make the Eubosmina system suitable for testing the hypotheses that extended clonal phases and weak sexual recruitment inhibit speciation. Although common garden experiments have revealed a genetic component to the morphotypic variation, the evolutionary significance of the morphotypes remains controversial. Methodology/Principal Findings In the present study, we tested the hypothesis of a single polymorphic species (i.e., mixing occurs but selection maintains genes for morphology) in four northern European lakes where the morphotypes coexist. Our evidence is based on nuclear DNA sequence, mitochondrial DNA sequence, and morphometric analysis of coexisting morphotypes. We found significant genetic differentiation, genealogical exclusivity, and morphometric differentiation for coexisting morphotypes. Conclusions We conclude that the studied morphotypes represent a group of young species undergoing speciation with apparent reproductive barriers despite coexistence in the freshwater pelagic zone. PMID:20661283

  10. Competitive coexistence in antiviral immunity.

    PubMed

    Arnaout, R A; Nowak, M A

    2000-06-01

    Adaptive immunity to viruses in vertebrates is mediated by two distinct but complementary branches of the immune system: the cellular response, which eliminates infected cells, and the humoral response, which eliminates infectious virus. This leads to an interesting contest, since the two responses compete, albeit indirectly, for proliferative stimuli. How can a host mount a coordinated antiviral campaign? Here we show that competition may lead to a state of "competitive coexistence" in which, counterintuitively, each branch complements the other, with clinical benefit to the host. The principle is similar to free-market economics, in which firms compete, but the consumer benefits. Experimental evidence suggests this is a useful paradigm in antiviral immunity. PMID:10816366

  11. Extremes of nuclear structure

    NASA Astrophysics Data System (ADS)

    1999-09-01

    With the advent of medium and large gamma detector arrays, it is now possible to look at nuclear structure at high rotational forces. The role of pairing correlations and their eventual breakdown, along with the shell effects have showed us the interesting physics for nuclei at high spins - superdeformation, shape co-existence, yrast traps, alignments and their dramatic effects on nuclear structure and so on. Nuclear structure studies have recently become even more exciting, due to efforts and possibilities to reach nuclei far off from the stability valley. Coupling of gamma ray arrays with 'filters', like neutron wall, charged particle detector array, gamma ray total energy and multiplicity castles, conversion electron spectrometers etc gives a great handle to study nuclei produced online with 'low' cross-sections. Recently we studied, nuclei in mass region 80 using an array of 8 germanium detectors in conjunction with the recoil mass analyser, HIRA at the Nuclear Science Centre and, most unexpectedly came across the phenomenon of identical bands, with two quasi-particle difference. The discovery of magnetic rotation is another highlight. Our study of light In nucleus, 107In brought us face to face with the 'dipole' bands. I plan to discuss some of these aspects. There is also an immensely important development - that of the 'radioactive ion beams'. The availability of RIB, will probably very dramatically influence our 'conventional' concept of nuclear structure. The exotic shapes of these exotic nuclei and some of their expected properties will also be touched upon.

  12. Spatial Complementarity and the Coexistence of Species

    PubMed Central

    Velázquez, Jorge; Garrahan, Juan P.; Eichhorn, Markus P.

    2014-01-01

    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each

  13. Intermittent control of coexisting attractors.

    PubMed

    Liu, Yang; Wiercigroch, Marian; Ing, James; Pavlovskaia, Ekaterina

    2013-06-28

    This paper proposes a new control method applicable for a class of non-autonomous dynamical systems that naturally exhibit coexisting attractors. The central idea is based on knowledge of a system's basins of attraction, with control actions being applied intermittently in the time domain when the actual trajectory satisfies a proximity constraint with regards to the desired trajectory. This intermittent control uses an impulsive force to perturb one of the system attractors in order to switch the system response onto another attractor. This is carried out by bringing the perturbed state into the desired basin of attraction. The method has been applied to control both smooth and non-smooth systems, with the Duffing and impact oscillators used as examples. The strength of the intermittent control force is also considered, and a constrained intermittent control law is introduced to investigate the effect of limited control force on the efficiency of the controller. It is shown that increasing the duration of the control action and/or the number of control actuations allows one to successfully switch between the stable attractors using a lower control force. Numerical and experimental results are presented to demonstrate the effectiveness of the proposed method. PMID:23690639

  14. Competitive coexistence in stoichiometric chaos.

    PubMed

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point. PMID:17902990

  15. Competitive coexistence in stoichiometric chaos

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Loladze, Irakli

    2007-09-01

    Classical predator-prey models, such as Lotka-Volterra, track the abundance of prey, but ignore its quality. Yet, in the past decade, some new and occasionally counterintuitive effects of prey quality on food web dynamics emerged from both experiments and mathematical modeling. The underpinning of this work is the theory of ecological stoichiometry that is centered on the fact that each organism is a mixture of multiple chemical elements such as carbon (C), nitrogen (N), and phosphorus (P). The ratios of these elements can vary within and among species, providing simple ways to represent prey quality as its C:N or C:P ratios. When these ratios modeled to vary, as they frequently do in nature, seemingly paradoxical results can arise such as the extinction of a predator that has an abundant and accessible prey. Here, for the first time, we show analytically that the reduction in prey quality can give rise to chaotic oscillations. In particular, when competing predators differ in their sensitivity to prey quality then all species can coexist via chaotic fluctuations. The chaos generating mechanism is based on the existence of a junction-fold point on the nullcline surfaces of the species. Conditions on parameters are found for such a point, and the singular perturbation method and the kneading sequence analysis are used to demonstrate the existence of a period-doubling cascade to chaos as a result of the point.

  16. Extinction of quasiparticle interference in underdoped cuprates with coexisting order

    NASA Astrophysics Data System (ADS)

    Andersen, Brian M.; Hirschfeld, P. J.

    2009-04-01

    Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].

  17. Membrane Elasticity in Giant Vesicles with Fluid Phase Coexistence

    PubMed Central

    Baumgart, T.; Das, S.; Webb, W. W.; Jenkins, J. T.

    2005-01-01

    Biological membranes are known to contain compositional heterogeneities, often termed rafts, with distinguishable composition and function, and these heterogeneities participate in vigorous transport processes. Membrane lipid phase coexistence is expected to modulate these processes through the differing mechanical properties of the bulk domains and line tension at phase boundaries. In this contribution, we compare the predictions from a shape theory derived for vesicles with fluid phase coexistence to the geometry of giant unilamellar vesicles with coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. We find a bending modulus for the Lo phase higher than that of the Ld phase and a saddle-splay (Gauss) modulus difference with the Gauss modulus of the Lo phase being more negative than the Ld phase. The Gauss modulus critically influences membrane processes that change topology, such as vesicle fission or fusion, and could therefore be of significant biological relevance in heterogeneous membranes. Our observations of experimental vesicle geometries being modulated by Gaussian curvature moduli differences confirm the prediction by the theory of Juelicher and Lipowsky. PMID:15894634

  18. Coexistence in dipolar fluids in a field

    NASA Astrophysics Data System (ADS)

    Stevens, Mark J.; Grest, Gary S.

    1994-06-01

    We examine two phase coexistence for soft sphere dipolar fluids in an applied field, H. Besides being a fundamental test system for theory, dipolar fluids are used as models for ferrofluids. Gibbs ensemble simulations were performed to determine the coexistence curve and an estimate of the critical temperature, Tc, and density, ρc, as a function of applied magnetic field. In zero field we show that coexistence most likely does not occur and if it does can only do so in a narrow range of densities much lower than predicted theoretically. We discuss the structure of soft sphere dipolar systems, which turns out to be much more complex than previously thought.

  19. Phase Coexistence in a Dynamic Phase Diagram.

    PubMed

    Gentile, Luigi; Coppola, Luigi; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2015-08-01

    Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed. PMID:26083451

  20. Nuclear Aerosols: Direct Simulation and Elucidation of the Role of Multiple Components, Radioactivity, Charge, Shape and Spatial Inhomogeneity

    SciTech Connect

    Sudarshan K. Loyalka

    2008-10-12

    Nuclear aerosols can originate from severe core damae in light water reactors, core disruptive accidents in fast reactors, nuclear accidents during nuclear material transport, at waste disposal sites, or explosions. These aerosols evolve under natural transport processes as well as under the influence of engineered safety features. Such aerosols can be hazardous for the equipment inside the reactor, and when leaked into the environment, pose potential risks to the public. Hence, the origin, movement and distribution of these aerosols need to be studied and controlled.

  1. Equilibrium coexistence of three amphiboles

    USGS Publications Warehouse

    Robinson, P.; Jaffe, H.W.; Klein, C., Jr.; Ross, M.

    1969-01-01

    Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (-101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (-101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21- Mn0.06Fe2+2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are

  2. Energetic Constraints on Species Coexistence in Birds

    PubMed Central

    Pigot, Alexander L.

    2016-01-01

    The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity. PMID:26974194

  3. Modification of nuclear mass formula by considering isospin effects

    SciTech Connect

    Wang Ning; Liu Min; Wu Xizhen

    2010-04-15

    We propose a semiempirical nuclear mass formula based on the macroscopic-microscopic method in which the isospin and mass dependence of model parameters are investigated with the Skyrme energy density functional. The number of model parameters is considerably reduced compared with the finite range droplet model. The rms deviation with respect to 2149 measured nuclear masses is reduced by 21%, falling to 0.516 MeV. The new magic number N=16 in light neutron-rich nuclei and the shape coexistence phenomena for some nuclei have been examined with the model. The shell corrections of superheavy nuclei are also predicted.

  4. Physical layer simulation study for the coexistence of WLAN standards

    SciTech Connect

    Howlader, M. K.; Keiger, C.; Ewing, P. D.; Govan, T. V.

    2006-07-01

    This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple access techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)

  5. Solvable model for template coexistence in protocells

    NASA Astrophysics Data System (ADS)

    Fontanari, J. F.; Serva, M.

    2013-02-01

    Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steady-state probability density of protocell compositions.

  6. Can pollination niches facilitate plant coexistence?

    PubMed

    Pauw, Anton

    2013-01-01

    The question of why there are so many plant species needs two kinds of answer: an explanation for the origin of plant species, and an explanation for how they can coexist. Pollinators are often implicated in the origin of plant species because adaptation to different modes of pollination can drive divergence in floral traits and bring about reproductive isolation. However, very few studies have attempted to answer the next question: 'Can plant species that differ only in their mode of pollination coexist?' Fragmentary evidence supports the idea that intraspecific competition for pollination resources can limit population growth rate, thus allowing the coexistence of species that use different pollinators, or the same pollinators at different times. PMID:22951227

  7. Trait-based tests of coexistence mechanisms.

    PubMed

    Adler, Peter B; Fajardo, Alex; Kleinhesselink, Andrew R; Kraft, Nathan J B

    2013-10-01

    Recent functional trait studies have shown that trait differences may favour certain species (environmental filtering) while simultaneously preventing competitive exclusion (niche partitioning). However, phenomenological trait-dispersion analyses do not identify the mechanisms that generate niche partitioning, preventing trait-based prediction of future changes in biodiversity. We argue that such predictions require linking functional traits with recognised coexistence mechanisms involving spatial or temporal environmental heterogeneity, resource partitioning and natural enemies. We first demonstrate the limitations of phenomenological approaches using simulations, and then (1) propose trait-based tests of coexistence, (2) generate hypotheses about which plant functional traits are likely to interact with particular mechanisms and (3) review the literature for evidence for these hypotheses. Theory and data suggest that all four classes of coexistence mechanisms could act on functional trait variation, but some mechanisms will be stronger and more widespread than others. The highest priority for future research is studies of interactions between environmental heterogeneity and trait variation that measure environmental variables at within-community scales and quantify species' responses to the environment in the absence of competition. Evidence that similar trait-based coexistence mechanisms operate in many ecosystems would simplify biodiversity forecasting and represent a rare victory for generality over contingency in community ecology. PMID:23910482

  8. Environmental variation, stochastic extinction, and competitive coexistence.

    PubMed

    Adler, Peter B; Drake, John M

    2008-11-01

    Understanding how environmental fluctuations affect population persistence is essential for predicting the ecological impacts of expected future increases in climate variability. However, two bodies of theory make opposite predictions about the effect of environmental variation on persistence. Single-species theory, common in conservation biology and population viability analyses, suggests that environmental variation increases the risk of stochastic extinction. By contrast, coexistence theory has shown that environmental variation can buffer inferior competitors against competitive exclusion through a storage effect. We reconcile these two perspectives by showing that in the presence of demographic stochasticity, environmental variation can increase the chance of extinction while simultaneously stabilizing coexistence. Our stochastic simulations of a two-species storage effect model reveal a unimodal relationship between environmental variation and coexistence time, implying maximum coexistence at intermediate levels of environmental variation. The unimodal pattern reflects the fact that the stabilizing influence of the storage effect accumulates rapidly at low levels of environmental variation, whereas the risk of extinction due to the combined effects of environmental variation and demographic stochasticity increases most rapidly at higher levels of variation. Future increases in environmental variation could either increase or decrease an inferior competitor's expected persistence time, depending on the distance between the present level of environmental variation and the optimal level anticipated by this theory. PMID:18817458

  9. How variation between individuals affects species coexistence.

    PubMed

    Hart, Simon P; Schreiber, Sebastian J; Levine, Jonathan M

    2016-08-01

    Although the effects of variation between individuals within species are traditionally ignored in studies of species coexistence, the magnitude of intraspecific variation in nature is forcing ecologists to reconsider. Compelling intuitive arguments suggest that individual variation may provide a previously unrecognised route to diversity maintenance by blurring species-level competitive differences or substituting for species-level niche differences. These arguments, which are motivating a large body of empirical work, have rarely been evaluated with quantitative theory. Here we incorporate intraspecific variation into a common model of competition and identify three pathways by which this variation affects coexistence: (1) changes in competitive dynamics because of nonlinear averaging, (2) changes in species' mean interaction strengths because of variation in underlying traits (also via nonlinear averaging) and (3) effects on stochastic demography. As a consequence of the first two mechanisms, we find that intraspecific variation in competitive ability increases the dominance of superior competitors, and intraspecific niche variation reduces species-level niche differentiation, both of which make coexistence more difficult. In addition, individual variation can exacerbate the effects of demographic stochasticity, and this further destabilises coexistence. Our work provides a theoretical foundation for emerging empirical interests in the effects of intraspecific variation on species diversity. PMID:27250037

  10. Homogeneous coexistence and phase segregation in 1111 iron-based pnictides studied via NMR

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Kamihara, Yoichi; Matsuishi, Satoru; Hosono, Hideo

    2013-06-01

    We performed 75As and 51Co nuclear magnetic resonance (NMR) measurements on LaFeAsO1- x F x (La1111), a prototype of iron-based superconductors, and on Ca(Fe1- x Co x )AsF (Ca1111), which has a small overlap between the antiferromagnetic (AF) and superconducting (SC) domes in the electronic phase diagram. We found in the Ca1111 series that AF and SC states coexist homogeneously in the overlapped region, while in the La1111 series, we found that paramagnetic (PM) and SC domains coexist around the AF-SC phase boundary. The coexistence of these domains indicates that the AF and SC domes segregate from each other in the electronic phase diagram.

  11. In vitro developmental competence of pig nuclear transferred embryos: effects of GFP transfection, refrigeration, cell cycle synchronization and shapes of donor cells.

    PubMed

    Zhang, Yun-Hai; Pan, Deng-Ke; Sun, Xiu-Zhu; Sun, Guo-Jie; Liu, Xiao-Hui; Wang, Xiao-Bo; Tian, Xing-Hua; Li, Yan; Dai, Yun-Ping; Li, Ning

    2006-08-01

    The present study was designed to evaluate the feasibility of producing pig transgenic blastocysts expressing enhanced green fluorescent protein (GFP) and to examine the effects of shape and preparation methods of donor cells on in vitro developmental ability of pig nuclear transferred embryos (NTEs). In experiment 1, the effect of GFP transfection on development of pig NTEs was evaluated. The cleavage and blastocyst rates showed no significant difference between NTEs derived from transfected and non-transfected donors. In experiment 2, the effect of different nuclear donor preparation methods on in vitro development of NTEs was examined. The cleavage rate showed no statistically significant differences among three preparation methods. The blastocyst rates of donor cells treated once at -4 degrees C and those of freshly digested cells were similar to each other (26.3% vs 17.9%). The lowest blastocyst rates (5.88%) were observed when cells cryopreserved at -196 degrees C were used as donors. In experiment 3, the effect of different cell cycle synchronization methods on the in vitro development potential of pig NTEs was evaluated. The cleavage rate of NTEs derived from cycling cells was much better than that of NTEs derived from serum-starved cells (64.4% vs 50.5%, p < 0.05), but no significant difference was observed between the the blastocyst rates of the two groups. In experiment 4, the effect of different shapes of cultured fibroblast cells on the in vitro development of pig NTEs was examined. The fusion rate for couplets derived from rough cells was poorer than that observed in couplets derived from round smooth cells (47.8% vs 76.8%, p < 0.05). However, there were no significant differences observed in the cleavage rate and blastocyst rate. In conclusion, the present study indicated that (i) refrigerated pig GFP-transfected cells could be used as donors in nuclear transfer and these NTEs could be effectively developed to blastocyst stage; (ii) serum starvation

  12. Alpha-particle and proton probes of nuclear shapes in the rare earth and mass 80 regions

    SciTech Connect

    Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M.; Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A.; Griffin, H.C.; Oak Ridge National Lab., TN; Michigan Univ., Ann Arbor, MI )

    1989-01-01

    Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. To explore the possibility of a correlation between the proton emission barriers and nuclear deformation, we studied proton spectra from the {sup 52}Cr({sup 34}S,2p2n){sup 82}Sr reaction. The proton spectra were observed with the Dwarf-Ball 4{pi} CsI(Tl) array, in coincidence with 18 Compton suppressed Ge detectors operated in conjunction with the Spin Spectrometer, a 4{pi} NaI(Tl) array. We found significant changes and shifts in the proton energy spectra as we selected gating transitions from bands of different moments of inertia or transitions from states of different spin in the same band. Substantial differences were also seen as a function of the {gamma}-ray multiplicity. These results are discussed in terms of statistical model calculations incorporating deformation and structure effects of the emitting system. 20 refs., 9 figs.

  13. Quantitative analysis of nuclear shape in oral squamous cell carcinoma is useful for predicting the chemotherapeutic response.

    PubMed

    Ogura, Maki; Yamamoto, Yoichiro; Miyashita, Hitoshi; Kumamoto, Hiroyuki; Fukumoto, Manabu

    2016-06-01

    The number of people afflicted with oral carcinoma in Japan has increased in recent years. Although preoperative neoadjuvant therapy with cisplatin and 5-fluorouracil are performed, chemotherapeutic response varies widely among the patients. With the aim of establishing novel indices to predict the therapeutic response to chemotherapy, we investigated the relationship between morphological features of pre-treatment oral carcinoma nuclei and the chemotherapeutic response using quantifying morphology of cell nuclei in pathological specimen images. We measured 4 morphological features of the nucleus of oral squamous cell carcinoma cases classified by the response to chemotherapy: No Change (NC) group, Partial Response (PR) group and Complete Response (CR) group. Furthermore, we performed immunohistochemical staining for p53 and Ki67 and calculated their positive rates in cancer tissues. Compactness and symmetry of the nucleus were significantly higher and nuclear edge response was significantly lower in cancer cells with lower chemotherapeutic responses compared high chemotherapeutic responders. As for positive rates of p53 and Ki67, there were no significant differences between any of the response groups. Morphological features of cancer cell nuclei in pathological specimens are sensitive predictive factors for the chemotherapeutic response to oral squamous cell carcinoma. PMID:26439725

  14. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

    PubMed

    Islam, Anowarul; Younesi, Mousa; Mbimba, Thomas; Akkus, Ozan

    2016-09-01

    Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone. PMID:27377355

  15. Co-existence of agricultural production systems.

    PubMed

    Jank, Bernhard; Rath, Johannes; Gaugitsch, Helmut

    2006-05-01

    Strategies and best practices for the co-existence of GM and non-GM crops need to be developed and implemented with the participation of farmers and other stakeholders. According to the principle of 'subsidiarity', decisions should be made by the lowest authority possible. When applying this concept to the case of GM crops, the affected society should determine their use and management in a regional decision-making process. Public participation is better accomplished at a lower level, and democratic deficits in decision-making on GMOs are better resolved, enabling farmers to manage or avoid GM crops. Ultimately, voluntary GMO-free zones might be a tool for sustainable co-existence and GM-free production and GMO-free zones might create a specific image for marketing regional products and services, such as tourism. PMID:16545877

  16. Hospice-Where Peace and Turmoil Coexist.

    PubMed

    Viswanath, Vidya

    2016-01-01

    It is often said that a hospice is much more than just a place providing supportive care for the terminally ill. This narrative describes Neha, a young mother who found her solace in the hospice and spent her last days there by choice. It reinforces the fact that the hospice is truly a philosophy of care where powerful and contrasting emotions do coexist. PMID:26862661

  17. How do telomeres and NHEJ coexist?

    PubMed Central

    Marcand, Stéphane

    2014-01-01

    The telomeres of eukaryotes are stable open double-strand ends that coexist with nonhomologous end joining (NHEJ), the repair pathway that directly ligates DNA ends generated by double-strand breaks. Since a single end-joining event between 2 telomeres generates a circular chromosome or an unstable dicentric chromosome, NHEJ must be prevented from acting on telomeres. Multiple mechanisms mediated by telomere factors act in synergy to achieve this inhibition. PMID:27308342

  18. Body Size Mediated Coexistence in Swans

    PubMed Central

    Engelhardt, Katharina A. M.; Ritchie, Mark E.; Powell, James A.

    2014-01-01

    Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource. PMID:24672347

  19. Species coexistence in a changing world

    PubMed Central

    Valladares, Fernando; Bastias, Cristina C.; Godoy, Oscar; Granda, Elena; Escudero, Adrián

    2015-01-01

    The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change. PMID:26528323

  20. Species coexistence in a changing world.

    PubMed

    Valladares, Fernando; Bastias, Cristina C; Godoy, Oscar; Granda, Elena; Escudero, Adrián

    2015-01-01

    The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change. PMID:26528323

  1. Competitive coexistence of two Pneumocystis species.

    PubMed

    Icenhour, Crystal R; Arnold, Jonathan; Medvedovic, Mario; Cushion, Melanie T

    2006-05-01

    Pneumocystis are fungal pathogens of mammalian lungs that can cause lethal pneumonia in immunocompromised hosts. In some mammals, coinfections of genetically distinct Pneumocystis populations have been identified, but the nature of their interaction and its significance are unknown. Two species that infect rats, Pneumocystis carinii and Pneumocystis wakefieldiae, were studied over a 6-year period, representing approximately 700 generations of Pneumocystis. Population densities of each species were analyzed within the framework of the Lotka-Volterra competition model, which revealed the two species were in competition and predicted competitive exclusion of one species. However, stable coexistence was observed in 460 replicate populations. Selected extrinsic factors that might mitigate the extinction were evaluated. Logistic-regression analyses showed that higher relative humidity and higher organism lung burdens were associated with infections comprised of P. carinii alone, while lower temperatures and an increased rat census were associated with the presence of P. wakefieldiae. PCR and immunofluorescent analysis of rat lung tissue showed that both species were present within the same alveoli, excluding habitat heterogeneity as a mechanism of coexistence. These data suggest that P. carinii and P. wakefieldiae were in competitive coexistence, which was influenced in part by extrinsic factors. To our knowledge, this is the first report to evaluate interactions of pathogenic fungal species within a mammalian host using ecological models. PMID:15949973

  2. Tuberous sclerosis complex coexistent with hippocampal sclerosis.

    PubMed

    Lang, Min; Prayson, Richard A

    2016-02-01

    Tuberous sclerosis and hippocampal sclerosis are both well-defined entities associated with medically intractable epilepsy. To our knowledge, there has been only one prior case of these two pathologies being co-existent. We report a 7-month-old boy who presented with intractable seizures at 2 months of age. MRI studies showed diffuse volume loss in the brain with bilateral, multiple cortical tubers and subcortical migration abnormalities. Subependymal nodules were noted without subependymal giant cell astrocytoma. Genetic testing revealed TSC2 and PRD gene deletions. Histopathology of the hippocampus showed CA1 sclerosis marked by loss of neurons in the CA1 region. Sections from the temporal, parietal and occipital lobes showed multiple cortical tubers characterized by cortical architectural disorganization, gliosis, calcifications and increased number of large balloon cells. Focal white matter balloon cells and spongiform changes were also present. The patient underwent resection of the right fronto-parietal lobe and a subsequent resection of the right temporal, parietal and occipital lobes. The patient is free of seizures on anti-epileptic medication 69 months after surgery. Although hippocampal sclerosis is well documented to be associated with coexistent focal cortical dysplasia, the specific co-existence of cortical tubers and hippocampal sclerosis appears to be rare. PMID:26498091

  3. Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas

    PubMed Central

    Holdo, Ricardo M.

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID

  4. Cloning and Functional Analysis of Histones H3 and H4 in Nuclear Shaping during Spermatogenesis of the Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Wu, Jiang-Li; Kang, Xian-Jiang; Guo, Ming-Shen; Mu, Shu-Mei; Zhang, Zhao-Hui

    2015-01-01

    During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin. PMID:25993499

  5. Unusual coexistence of extramedullary plasmacytoma and nasopharyngeal carcinoma in nasopharynx.

    PubMed

    Du, Ri-Chang; Li, Hai-Nan; Huang, Wei; Tian, Xiao-Ying; Li, Zhi

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is an EBV-associated malignant tumor of nasopharynx. As extremely rare condition, the second primary cancer of nasopharynx can occur in NPC patients synchronously or subsequently. Extramedullary plasmacytoma (EMP) is a rare tumor and commonly originates in the head and neck region. However, there is no report to describe a collision tumor of NPC and EMP occurring in the same nasopharyngeal mass. We report here an unusual case of synchronous coexistence of NPC and EMP occurring in the nasopharynx of an old male patient. A 63-year-old male patient presented with a 3-month history of right-sided nasal obstruction and recently intermittent epistaxis without enlargement of cervical lymph nodes. The solitary mass of nasopharynx was found by radiological and nasopharyngeal examination. Histologically, the mass contained two separated portions and displayed typically histological features of NPC and EMP, respectively. In EMP portion, the tumor was composed of monomorphic plasmacytoid-appearing cells with immuno-positive to CD79a, CD138, CD38, MUM-1 and CD56, but lack immunoreactivity to pan-CK (AE1/AE3), CD20, CD21 and EBERs. In NPC portion, the tumor cells formed irregular-shaped islands with diffusely immuno-positive to pan-CK (AE1/AE3), EMA and EBERs, but lack expressions of lymphoplasmacytic markers. A diagnosis of simultaneous occurrence of EMP and NPC in nasopharynx was made. There was no evidence of tumor recurrence or metastasis 18-month follow-up after radiotherapy. To our knowledge, it may be the first case of coexistence of EMP and NPC synchronously. In addition, the histological differential diagnosis and relevant potential mechanism of this unusual collision tumor were also discussed. PMID:26376733

  6. Two Types of Coexistence in Cross-Feeding Microbial Consortia

    NASA Astrophysics Data System (ADS)

    Nakaoka, Shinji; Takeuchi, Yasuhiro

    2008-07-01

    Exploitative competition of two cross-feeding strains is studied. We found that two types of coexistence of two cross-feeding strains, type-I coexistence (cultivated type) and type-II coexistence (self-sufficiency type) are possible for microbial cross-feeding strains. In all cases of coexistence, trade-off in nutrient availability is required. However, trade-off is necessary but is not sufficient for the coexistence of two strains. Over-production of metabolite can induce competitive exclusion on one hand (cultivated regime) whereas do support the coexistence of two strain on the other hand (self-sufficiency regime). Coexistence of two strains is evaluated by invasibility and permanence criteria and numerical simulations.

  7. Midpoint Shapes.

    ERIC Educational Resources Information Center

    Welchman, Rosamond; Urso, Josephine

    2000-01-01

    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  8. Measurements of the Coexistence Curve near the Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob

    2003-01-01

    The shape of the liquid-gas coexistence curve of He-3 very near the critical point (-2x10(exp -6) < t < -5x10(exp -3) was measured using the quasi-static thermogram method. The study was performed in Earth s gravitational field using two different height calorimetry cells, both originally designed for simultaneous measurements of the isochoric heat capacity, isothermal compressibility, and PVT. The heights of two cells were 0.5 mm and 4.8 cm. The uncertainty in measuring the phase transition temperature was typically +/-2 micro-K. The measured coexistence curve near the critical point was strongly affected by the gravitational field. Away from the critical point, the coexistence curve obtained using this technique was also consistent with the earlier work using the local density measurements of Pittman et al. The recent crossover parametric model of the equation-of-state are used to analyze the height-dependent measured coexistence curves. Data analyses have indicated that microgravity will permit measurements within two additional decades in reduced temperatures beyond the best gravity-free data obtained in Earth-bound experiments.

  9. Resident commensals shaping immunity

    PubMed Central

    Erturk-Hasdemir, Deniz; Kasper, Dennis L.

    2013-01-01

    All animals coexist with myriad commensal microorganisms in a symbiotic relationship that plays a key role in health and disease. Continuous commensal–host interactions profoundly affect the development and regulation of the host’s immune system. The complex interaction of the commensal microbiota with the immune system is a topic of substantial interest. An understanding of these interactions and the mechanisms through which commensal microbes actively shape host immunity may yield new insights into the pathogenesis of many immune-mediated diseases and lead to new prophylactic and therapeutic interventions. This review examines recent advances in this field and their potential implications not just for the colonized tissues but also for the entire immune system. PMID:23830047

  10. Coexistence of psoriasis with bullous pemphigoid

    PubMed Central

    Rao, Raghavendra; Gupta, Akash; Yunis, Fousiya; Handettu, Sripathi; Chandrashekar, Balachandran

    2012-01-01

    Psoriasis vulgaris and bullous pemphigoid (BP) represent two clinically well-characterized, chronic, inflammatory skin conditions. The concomitant occurrence of these two entities in a patient is rare. Here we report a 57-year-old male suffering from psoriasis vulgaris for 15 years on irregular medication who noticed eruption of blisters all over the body. We believe that this is the first case report of psoriasis vulgaris coexistent with bullous pemphigoid in Indian literature. Please check where you want bullous pemphigoid and where you want psoriasis pemphigoides. PMID:23130285

  11. Bidisperse colloids: nanoparticles and microemulsions in coexistence.

    PubMed

    Tabor, Rico F; Eastoe, Julian; Dowding, Peter J; Grillo, Isabelle; Rogers, Sarah E

    2010-04-15

    Mixed 'hard-soft' colloidal systems have been generated in which the 'hard' components (80 nm diameter silica nanoparticles) coexist with a population of 'soft' microemulsion droplets, both structures stabilised by the anionic surfactant sodium bis(ethylhexyl)sulfosuccinate (AOT) with toluene as solvent. The addition of water to swell the inverse micelles to form microemulsion droplets appears to increase attractive interactions between the silica particles (determined by DLS), possibly due to adsorption of some water at the silica-toluene interface; however, long-term stability of the dispersions is maintained. Small-angle neutron scattering was used to examine the structures present in these new colloidal systems. PMID:20144832

  12. Microscopic description of nuclear shapes

    SciTech Connect

    Egido, J.L.; Robledo, L.M.; Valor, A.; Villafranca, A.

    1996-12-31

    The approximate particle number theory for density dependent forces is sketched, the theory is applied to discuss properties of the superdeformed ground state and excited bands of {sup 192}Hg. The force used in the calculations is the finite range density dependent Gogny force. The agreement with the available experimental results is very satisfactory.

  13. Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol

    NASA Technical Reports Server (NTRS)

    Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.

    1996-01-01

    The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.

  14. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain.

    PubMed Central

    Holte, L. L.; Peter, S. A.; Sinnwell, T. M.; Gawrisch, K.

    1995-01-01

    Solid-state 2H nuclear magnetic resonance spectroscopy was used to determine the orientational order parameter profiles for a series of phosphatidylcholines with perdeuterated stearic acid, 18:0d35, in position sn-1 and 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:4 omega 6, 20:5 omega 3, or 22:6 omega 3 in position sn-2. The main phase transition temperatures were derived from a first moment analysis, and order parameter profiles of sn-1 chains were calculated from dePaked nuclear magnetic resonance powder patterns. Comparison of the profiles at 37 degrees C showed that unsaturation causes an inhomogenous disordering along the sn-1 chain. Increasing sn-2 chain unsaturation from one to six double bonds resulted in a 1.6-kHz decrease in quadrupolar splittings of the sn-1 chain in the upper half of the chain (or plateau region) and maximum splitting difference of 4.4 kHz at methylene carbon 14. The change in chain order corresponds to a decrease in the 18:0 chain length of 0.4 +/- 0.2 A with 18:2 omega 6 versus 18:1 omega 9 in position sn-2. Fatty acids containing three or more double bonds in sn-2 showed a decrease in sn-1 chain length of 0.7 +/- 0.2 A compared with 18:1 omega 9. The chain length of all lipids decreased with increasing temperature. Highly unsaturated phosphatidylcholines (three or more double bonds in sn-2) had shorter sn-1 chains, but the chain length was somewhat less sensitive to temperature. The profiles reveal that the sn-1 chain exhibits a selective increase in motional freedom in a region located toward the bottom half of the chain as sn-2 unsaturation is increased. This corresponds to an area increase around carbon atom number 14 that is three to four times greater than the increase for the top part of the chain. A similar asymmetric decrease in order, largest toward the methyl end of the chain, was observed when 1 -palmitoyl-2-oleoylphosphatidylethanolamine goes from a lamellar to an inverse hexagonal (H,,) phase. This is consistent with a

  15. How can flexibility be integrated into coexistence regulations? A review.

    PubMed

    Devos, Yann; Dillen, Koen; Demont, Matty

    2014-02-01

    Member states in the European Union (EU) implemented both ex ante coexistence regulations and ex post liability schemes to ensure that genetically modified (GM) and non-GM crops can be cultivated side by side without excluding any agricultural option. Although proportionate coexistence is best achieved if regulated in a flexible manner, most implemented coexistence regulations merely rely on rigid measures. Flexible coexistence regulations, however, would reduce the regulatory burden on certain agricultural options and avoid jeopardizing economic incentives for coexistence. Flexibility can be integrated at: (i) the regulatory level by relaxing the rigidity of coexistence measures in ex ante regulations, yet without offsetting incentives to implement coexistence measures; (ii) the farm level by recommending the use of pollen barriers instead of large and fixed isolation distances; and (iii) the national/regional level by allowing diversified coexistence measures, which are adapted to the heterogeneity of farming in the EU. Owing to difficulties of implementation, the adoption of flexible and proportionate coexistence regulations will inevitably entail challenges. PMID:23965758

  16. Meningioma and occlusive vasculopathy: coexisting complications of past extracranial radiation

    SciTech Connect

    Montanera, W.; Chui, M.; Hudson, A.

    1985-07-01

    Two cases are reported in which a meningioma and occlusion of the internal carotid artery with development of transdural collateral circulation coexisted following extracranial radiation in childhood.

  17. The Lion King and the Hyaena Queen: large carnivore interactions and coexistence.

    PubMed

    Périquet, Stéphanie; Fritz, Hervé; Revilla, Eloy

    2015-11-01

    Interactions among species, which range from competition to facilitation, have profound effects on ecosystem functioning. Large carnivores are of particular importance in shaping community structure since they are at the top of the food chain, and many efforts are made to conserve such keystone species. Despite this, the mechanisms of carnivore interactions are far from understood, yet they are key to enabling or hindering their coexistence and hence are highly relevant for their conservation. The goal of this review is thus to provide detailed information on the extents of competition and facilitation between large carnivores and their impact in shaping their life histories. Here, we use the example of spotted hyaenas (Crocuta crocuta) and lions (Panthera leo) and provide a comprehensive knowledge of their interactions based on meta-analyses from available literature (148 publications). Despite their strong potential for both exploitation and interference competition (range and diet overlap, intraguild predation and kleptoparasitism), we underline some mechanisms facilitating their coexistence (different prey-age selection and scavenging opportunities). We stress the fact that prey abundance is key to their coexistence and that hyaenas forming very large groups in rich ecosystems could have a negative impact on lions. We show that the coexistence of spotted hyaenas and lions is a complex balance between competition and facilitation, and that prey availability within the ecosystem determines which predator is dominant. However, there are still many gaps in our knowledge such as the spatio-temporal dynamics of their interactions. As both species' survival becomes increasingly dependent on protected areas, where their densities can be high, it is critical to understand their interactions to inform both reintroduction programs and protected area management. PMID:25530248

  18. Emergence of coexisting percolating clusters in networks.

    PubMed

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread. PMID:27415281

  19. Coexisting Liquid Phases Underlie Nucleolar Subcompartments.

    PubMed

    Feric, Marina; Vaidya, Nilesh; Harmon, Tyler S; Mitrea, Diana M; Zhu, Lian; Richardson, Tiffany M; Kriwacki, Richard W; Pappu, Rohit V; Brangwynne, Clifford P

    2016-06-16

    The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP. PMID:27212236

  20. Emergence of coexisting percolating clusters in networks

    NASA Astrophysics Data System (ADS)

    Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P.

    2016-06-01

    It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread.

  1. Coexistence of peptides with classical neurotransmitters.

    PubMed

    Hökfelt, T; Millhorn, D; Seroogy, K; Tsuruo, Y; Ceccatelli, S; Lindh, B; Meister, B; Melander, T; Schalling, M; Bartfai, T

    1987-07-15

    In the present article the fact is emphasized that neuropeptides often are located in the same neurons as classical transmitters such as acetylcholine, 5-hydroxy-tryptamine, catecholamines, gamma-aminobutyric acid (GABA) etc. This raises the possibility that neurons produce, store and release more than one messenger molecule. The exact functional role of such coexisting peptides is often difficult to evaluate, especially in the central nervous system. In the periphery some studies indicate apparently meaningful interactions of different types with the classical transmitter, but other types of actions including trophic effects have been observed. More recently it has been shown that some neurons contain more than one classical transmitter, e.g. 5-HT plus GABA, further underlining the view that transfer of information across synapses may be more complex than perhaps hitherto assumed. PMID:2885215

  2. Bronchial pleomorphic adenoma coexisting with lung cancer.

    PubMed

    Goto, Taichiro; Maeshima, Arafumi; Akanabe, Kumi; Hamaguchi, Reo; Wakaki, Misa; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Pleomorphic adenoma usually occurs in the salivary glands but rarely in the trachea or bronchi. A 71-year-old man had abnormal shadows on a chest X-ray. Chest CT revealed one tumor in the right basal segment of the lung and another, in the left main bronchus. Bronchoscopic biopsy of the right tumor revealed well-differentiated squamous cell carcinoma. Right lower lobectomy and lymph node dissection were performed (pT2N0M0, stage IB). At the orifice of the left main bronchus, bronchoscopy identified a polypoid lesion nearly obstructing the airway. The lesion was resected with hot snare ablation. The histological examination revealed a mixture of epithelial and myxoid mesenchymal elements, characterized by ductal structures, squamous metaplasia, and cartilage tissue. The diagnosis was bronchial pleomorphic adenoma coexisting with squamous cell carcinoma of the lung. PMID:21597416

  3. Coexistent digital gouty and infective flexor tenosynovitis.

    PubMed

    Akram, Qasim; Hughes, Michael; Muir, Lindsay

    2016-01-01

    Flexor tenosynovitis of the hand is often caused by trauma or infection. Gouty tenosynovitis is an uncommon presentation of the condition and is usually misdiagnosed as infection with the patient undergoing surgery. The coexistence of infection and gout causing flexor tenosynovitis has never been described before in the literature; we report the first ever case and emphasise the importance of its awareness for optimal treatment. A 54-year-old man was initially diagnosed and treated as having infective flexor tenosynovitis and, later, due to a lack of improvement in his symptoms, was discovered to also have gout. We review the literature and suggest management strategy for use in daily clinical practice, including an algorithm, for this presentation. PMID:27358092

  4. Coexistence of rheumatoid arthritis and ankylosing spondylitis

    PubMed Central

    Węgierska, Małgorzata; Żuchowski, Paweł; Dura, Marta; Zalewska, Joanna; Waszczak, Marzena; Jeka, Sławomir

    2015-01-01

    Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are chronic progressive inflammatory diseases, leading to joint damage and reducing the physical fitness of patients. They are among the most common rheumatic diseases. However, their etiology and symptomatology are different. Formerly, AS was often wrongly diagnosed as RA. Today there are no major diagnostic difficulties in differentiation between these diseases, thanks to modern laboratory tests and imaging. However, a problem may arise when the patient has symptoms typical for both diseases simultaneously. Cases of coexistence of RA with AS – according to our best knowledge – are rare. This study aims to compare our experience in diagnosis and treatment of concomitant RA and AS with the experience of other researchers. Implementation of the proper diagnostic algorithm, allowing for correct diagnosis of both diseases in one patient, may be useful for differential diagnosis of similar cases in the future.

  5. Surgical consequences in coexisting cataract and glaucoma.

    PubMed

    Blumenthal, M; Glovinsky, Y

    1995-04-01

    Of the three classical approaches to surgery for coexisting cataract and glaucoma, last year's publications dealt with the surgical consequences of combined cataract and glaucoma operations only. When used in combined cataract and glaucoma surgery, a small-incision extracapsular cataract extraction (ECCE) with phacoemulsification (PHACO) was found to be only slightly superior to the standard manual ECCE in terms of postoperative intraocular pressure (IOP) control. Injections of 5-fluorouracil postoperatively did not improve IOP control in PHACO-ECCE-trabeculectomy or manual ECCE-trabeculectomy. A preliminary uncontrolled report suggests, however, that intraoperative mitomycin C application in PHACO-ECCE-trabeculectomy may result in excellent postoperative IOP control without antiglaucomatous medications, and with no significant mitomycin C-related complications. Controlled studies on mitomycin C application in small-incision cataract and glaucoma surgery are needed to assess its long-term effect on IOP and astigmatism. PMID:10150852

  6. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae

    PubMed Central

    Suh, Alexander; Weber, Claudia C.; Kehlmaier, Christian; Braun, Edward L.; Green, Richard E.; Fritz, Uwe; Ray, David A.; Ellegren, Hans

    2014-01-01

    Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. PMID:25501991

  7. Schapiro Shapes

    ERIC Educational Resources Information Center

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  8. Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2010-03-01

    An interatomic potential for the diamond and graphite phases of carbon has been created using a neural-network (NN) representation of the ab initio potential energy surface. The NN potential combines the accuracy of a first-principles description of both phases with the efficiency of empirical force fields and allows one to perform a molecular-dynamics study, of ab initio quality, of the thermodynamics of graphite-diamond coexistence. Good agreement between the experimental and calculated coexistence curves is achieved if nuclear quantum effects are included in the simulation.

  9. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs

    PubMed Central

    Velásquez, Johanna; Sánchez, Juan A.

    2015-01-01

    Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral

  10. China and the Global Uranium Market: Prospects for Peaceful Coexistence

    PubMed Central

    Massot, Pascale

    2013-01-01

    China's recent reemergence has resulted in a significant increase in the global demand of commodities and is already having major impacts on the dynamics of global commodity markets. In the case of the global uranium market, we stand at the very beginning of a period of change. However, interesting trends are already emerging. Whereas China has had many policy reversals, and some difficulties in taking control of its procurement strategy in other commodity markets, it is seemingly more successful in managing its uranium procurement strategy. Why? The argument presented here is that a mixture of domestic and international level variables has allowed China more room for maneuver in fulfilling its uranium procurement strategy. On the domestic level, a centralized industry, and, on the international level, a geographically dispersed and uncoordinated market have allowed China to forge ahead with an ambitious civilian nuclear power plan and triple its total uranium imports, all within the span of a few years. Many challenges remain, not the least that of negative public opinion, which has surged since the Fukushima disaster in 2011. Nevertheless, should uranium demand continue to grow, this paper will consider the potential for continued peaceful coexistence among uranium market participants worldwide. PMID:23606818

  11. China and the global uranium market: prospects for peaceful coexistence.

    PubMed

    Massot, Pascale; Chen, Zhan-Ming

    2013-01-01

    China's recent reemergence has resulted in a significant increase in the global demand of commodities and is already having major impacts on the dynamics of global commodity markets. In the case of the global uranium market, we stand at the very beginning of a period of change. However, interesting trends are already emerging. Whereas China has had many policy reversals, and some difficulties in taking control of its procurement strategy in other commodity markets, it is seemingly more successful in managing its uranium procurement strategy. Why? The argument presented here is that a mixture of domestic and international level variables has allowed China more room for maneuver in fulfilling its uranium procurement strategy. On the domestic level, a centralized industry, and, on the international level, a geographically dispersed and uncoordinated market have allowed China to forge ahead with an ambitious civilian nuclear power plan and triple its total uranium imports, all within the span of a few years. Many challenges remain, not the least that of negative public opinion, which has surged since the Fukushima disaster in 2011. Nevertheless, should uranium demand continue to grow, this paper will consider the potential for continued peaceful coexistence among uranium market participants worldwide. PMID:23606818

  12. Co-Adaptation Is Key to Coexisting with Large Carnivores.

    PubMed

    Carter, Neil H; Linnell, John D C

    2016-08-01

    There is a pressing need to integrate large carnivore species into multi-use landscapes outside protected areas. However, an unclear understanding of coexistence hinders the realization of this goal. Here, we provide a comprehensive conceptualization of coexistence in which mutual adaptations by both large carnivores and humans have a central role. PMID:27377600

  13. 38 CFR 4.113 - Coexisting abdominal conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.113 Coexisting abdominal conditions. There are diseases of the digestive system, particularly within the abdomen, which, while... coexisting diseases in this area, as indicated in the instruction under the title “Diseases of the...

  14. 38 CFR 4.113 - Coexisting abdominal conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.113 Coexisting abdominal conditions. There are diseases of the digestive system, particularly within the abdomen, which, while... coexisting diseases in this area, as indicated in the instruction under the title “Diseases of the...

  15. 78 FR 65960 - Enhancing Agricultural Coexistence; Request for Public Input

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Office of the Secretary Enhancing Agricultural Coexistence; Request for Public Input ACTION: Request for... agricultural production systems in order to further agricultural coexistence. We are taking this action in... to Docket No. APHIS-2013-0047, Regulatory Analysis and Development, PPD, APHIS, Station 3A-03.8,...

  16. 38 CFR 4.113 - Coexisting abdominal conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Coexisting abdominal conditions. 4.113 Section 4.113 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Digestive System § 4.113 Coexisting abdominal conditions. There are diseases of the...

  17. Double Jeopardy for Children Who Stutter: Race and Coexisting Disorders

    ERIC Educational Resources Information Center

    Blood, Gordon W.; Blood, Ingrid; Kreiger, Jennifer; O'Connor, Shelah; Qualls, Constance Dean

    2009-01-01

    The primary purpose of this study was to examine the influence of racial and ethnic backgrounds in children who stutter (CWS) with 18 specific coexisting disorders. A sample of 1,184 speech-language pathologists responded to a detailed questionnaire designed to answer questions about the type and prevalence of coexisting disorders in 2,535 CWS.…

  18. Coexisting Disorders and Academic Achievement among Children with ADHD

    ERIC Educational Resources Information Center

    Barnard-Brak, Lucy; Sulak, Tracey N.; Fearon, Danielle D.

    2011-01-01

    Objective: ADHD is a commonly diagnosed neuropsychological disorder among school-aged children with reported high rates of coexisting or comorbid disorders. As ADHD has been associated with academic underachievement, the current study examines this association in view of the presence of coexisting disorders. The purpose of the current study is to…

  19. Nuclear shape descriptors by automated morphometry may distinguish aggressive variants of squamous cell carcinoma from relatively benign skin proliferative lesions: a pilot study.

    PubMed

    Yang, Weixi; Tian, Rong; Xue, Tongqing

    2015-08-01

    We evaluated whether degrees of dysplasia may be consistently accessed in an automatic fashion, using different kinds of non-melanoma skin cancer (NMSC) as a validatory model. Namely, we compared Bowen disease, actinic keratosis, basal cell carcinoma, low-grade squamous cell carcinoma, and invasive squamous cell carcinoma. We hypothesized that characterizing the shape of nuclei may be important to consistently diagnose the aggressiveness of a skin tumor. While basal cell carcinoma is comparatively relatively benign, management of squamous cell carcinoma is controversial because of its potential to recur and intraoperative dilemma regarding choice of the margin or the depth for the excision. We provide evidence here that progressive nuclear dysplasia may be automatically estimated through the thresholded images of skin cancer and quantitative parameters estimated to provide a quasi-quantitative data, which can thenceforth guide the management of the particular cancer. For circularity, averaging more than 2500 nuclei in each group estimated the means ± SD as 0.8 ± 0.007 vs. 0.78 ± 0.0063 vs. 0.42 ± 0.014 vs. 0.63 ± 0.02 vs. 0.51 ± 0.02 (F = 318063.56, p < 0.0001, one-way analyses of variance). The mean aspect ratios were (means ± SD) 0.97 ± 0.0014 vs. 0.95 ± 0.002 vs. 0.38 ± 0.018 vs. 0.84 ± 0.0035 vs. 0.74 ± 0.019 (F = 1022631.931, p < 0.0001, one-way analyses of variance). The Feret diameters averaged over 2500 nuclei in each group were the following: 1 ± 0.0001 vs. 0.9 ± 0.002 vs. 5 ± 0.031 vs. 1.5 ± 0.01 vs. 1.9 ± 0.004 (F = 33105614.194, p < 0.0001, one-way analyses of variance). Multivariate analyses of composite parameters potentially detect aggressive variants of squamous cell carcinoma as the most dysplastic form, in comparison to locally occurring squamous cell carcinoma and basal cell carcinoma, or benign skin lesions. PMID:25753477

  20. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1993-01-01

    Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the

  1. Environmental stress, facilitation, competition, and coexistence.

    PubMed

    Hart, Simon P; Marshall, Dustin J

    2013-12-01

    The major theories regarding the combined influence of the environment and species interactions on population and community dynamics appear to conflict. Stress/ disturbance gradient models of community organization, such as the stress gradient hypothesis, emphasize a diminished role for competition in harsh environments whereas modern coexistence theory does not. Confusion about the role of species interactions in harsh environments is perpetuated by a disconnect between population dynamics theory and data. We linked theory and data using response surface experiments done in the field to parameterize mathematical, population-dynamic competition models. We replicated our experiment across two environments that spanned a common and important environmental stress gradient for determining community structure in benthic marine systems. We generated quantitative estimates of the effects of environmental stress on population growth rates and the direction and strength of intra- and interspecific interactions within each environment. Our approach directly addressed a perpetual blind spot in this field by showing how the effects of competition can be intensified in stressful environments even though the apparent strength of competition remains unchanged. Furthermore, we showed how simultaneous, reciprocal competitive and facilitative effects can stabilize population dynamics in multispecies communities in stressful environments. PMID:24597219

  2. Management of coexisting Hodgkin's disease and pregnancy

    SciTech Connect

    Nisce, L.Z.; Tome, M.A.; He, S.; Lee, B.J. III; Kutcher, G.J.

    1986-04-01

    The management of pregnant women with active Hodgkin's disease (H.D.) should be individualized depending on the stage, the presence of infradiaphragmatic involvement, and age of gestation. Seventeen women aged 16-31 years with coexisting H.D. and pregnancy were followed between 1969 and 1982. H.D. was diagnosed during pregnancy in 15 patients and two became pregnant while on treatment. Seven women whose pregnancies were allowed to proceed uninterrupted were irradiated to supradiaphragmatic sites to doses of 1500-2000 rad during the second or third trimester; all had full term spontaneous normal deliveries and normal infants. Fetal doses ranged from 2-50 rad. Two patients treated with Vinblastine throughout three pregnancies delivered normal full term infants. Pregnancy was interrupted in six patients at 6-20 weeks of gestation for various reasons. In spite of several months delay in initiation of definitive therapy, the outcome of H.D. was not adversely affected in the majority of uninterrupted pregnancies as evidenced by long term disease-free survivals of 6-11 years in four of seven patients who were irradiated; the children now aged 6-11 years are also alive and reported normal.

  3. Coexistence in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Droz, Michel; Pȩkalski, Andrzej

    2001-05-01

    We propose a lattice model of two populations, predators and prey. The model is solved via Monte Carlo simulations. Each species moves randomly on the lattice and can live only a certain time without eating. The lattice cells are either grass (eaten by prey) or tree (giving cover for prey). Each animal has a reserve of food that is increased by eating (prey or grass) and decreased after each Monte Carlo step. To breed, a pair of animals must be adjacent and have a certain minimum of food supply. The number of offspring produced depends on the number of available empty sites. We show that such a predator-prey system may finally reach one of the following three steady states: coexisting, with predators and prey; pure prey; or an empty one, in which both populations become extinct. We demonstrate that the probability of arriving at one of the above states depends on the initial densities of the prey and predator populations, the amount of cover, and the way it is spatially distributed.

  4. Aggression and coexistence in female caribou

    USGS Publications Warehouse

    Weckerly, Floyd W.; Ricca, Mark A.

    2014-01-01

    Female caribou (Rangifer tarandus) are highly gregarious, yet there has been little study of the behavioral mechanisms that foster coexistence. Quantifying patterns of aggression between male and female, particularly in the only cervid taxa where both sexes grow antlers, should provide insight into these mechanisms. We asked if patterns of aggression by male and female caribou followed the pattern typically noted in other polygynous cervids, in which males display higher frequencies and intensity of aggression. From June to August in 2011 and 2012, we measured the frequency and intensity of aggression across a range of group sizes through focal animal sampling of 170 caribou (64 males and 106 females) on Adak Island in the Aleutian Archipelago, Alaska. Males in same-sex and mixed-sex groups and females in mixed-sex groups had higher frequencies of aggression than females in same-sex groups. Group size did not influence frequency of aggression. Males displayed more intense aggression than females. Frequent aggression in mixed-sex groups probably reflects lower tolerance of males for animals in close proximity. Female caribou were less aggressive and more gregarious than males, as in other polygynous cervid species.

  5. Coexistence of phage and bacteria on the boundary of self-organized refuges.

    PubMed

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2012-07-31

    Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage-bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution. PMID:22807479

  6. Coexistence of phage and bacteria on the boundary of self-organized refuges

    PubMed Central

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2012-01-01

    Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage–bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution. PMID:22807479

  7. Sizing and shaping the nucleus: mechanisms and significance

    PubMed Central

    Jevtić, Predrag; Edens, Lisa J.; Vuković, Lidija D.; Levy, Daniel L.

    2014-01-01

    The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression. PMID:24503411

  8. Pollinator Foraging Adaptation and Coexistence of Competing Plants

    PubMed Central

    Revilla, Tomás A.; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator’s diet maximizes pollinator’s fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community. PMID:27505254

  9. Long-Term Coexistence of Rotifer Cryptic Species

    PubMed Central

    Serra, Manuel; Gómez, Africa

    2011-01-01

    Despite their high morphological similarity, cryptic species often coexist in aquatic habitats presenting a challenge in the framework of niche differentiation theory and coexistence mechanisms. Here we use a rotifer species complex inhabiting highly unpredictable and fluctuating salt lakes to gain insights into the mechanisms involved in stable coexistence in cryptic species. We combined molecular barcoding surveys of planktonic populations and paleogenetic analysis of diapausing eggs to reconstruct the current and historical coexistence dynamics of two highly morphologically similar rotifer species, B. plicatilis and B. manjavacas. In addition, we carried out laboratory experiments using clones isolated from eight lakes where both species coexist to explore their clonal growth responses to salinity, a challenging, highly variable and unpredictable condition in Mediterranean salt lakes. We show that both species have co-occurred in a stable way in one lake, with population fluctuations in which no species was permanently excluded. The seasonal occurrence patterns of the plankton in two lakes agree with laboratory experiments showing that both species differ in their optimal salinity. These results suggest that stable species coexistence is mediated by differential responses to salinity and its fluctuating regime. We discuss the role of fluctuating salinity and a persistent diapausing egg banks as a mechanism for species coexistence in accordance with the ‘storage effect’. PMID:21738691

  10. Pollinator Foraging Adaptation and Coexistence of Competing Plants.

    PubMed

    Revilla, Tomás A; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator's diet maximizes pollinator's fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community. PMID:27505254

  11. Composite bulges: the coexistence of classical bulges and discy pseudo-bulges in S0 and spiral galaxies

    NASA Astrophysics Data System (ADS)

    Erwin, Peter; Saglia, Roberto P.; Fabricius, Maximilian; Thomas, Jens; Nowak, Nina; Rusli, Stephanie; Bender, Ralf; Vega Beltrán, Juan Carlos; Beckman, John E.

    2015-02-01

    We present an analysis of nine S0-Sb galaxies which have (photometric) bulges consisting of two distinct components. The outer component is a flattened, kinematically cool, disc-like structure: a `discy pseudo-bulge'. Embedded inside is a rounder, kinematically hot spheroidal structure: a `classical bulge'. This indicates that pseudo-bulges and classical bulges are not mutually exclusive phenomena: some galaxies have both. The discy pseudo-bulges almost always consist of an exponential disc (scalelengths = 125-870 pc, mean size ˜440 pc) with one or more disc-related subcomponents: nuclear rings, nuclear bars, and/or spiral arms. They constitute 11-59 per cent of the galaxy stellar mass (mean PB/T = 0.33), with stellar masses ˜7 × 109-9 × 1010 M⊙. The classical-bulge components have Sérsic indices of 0.9-2.2, effective radii of 25-430 pc and stellar masses of 5 × 108-3 × 1010 M⊙; they are usually <10 per cent of the galaxy's stellar mass (mean B/T = 0.06). The classical bulges do show rotation, but are clearly kinematically hotter than the discy pseudo-bulges. Dynamical modelling of three systems indicates that velocity dispersions are isotropic in the classical bulges and equatorially biased in the discy pseudo-bulges. In the mass-radius and mass-stellar mass density planes, classical-bulge components follow sequences defined by ellipticals and (larger) classical bulges. Discy pseudo-bulges also fall on this sequence; they are more compact than large-scale discs of similar mass. Although some classical bulges are quite compact, they are as a class clearly distinct from nuclear star clusters in both size and mass; in at least two galaxies they coexist with nuclear clusters. Since almost all the galaxies in this study are barred, they probably also host boxy/peanut-shaped bulges (vertically thickened inner parts of bars). NGC 3368 shows isophotal evidence for such a zone just outside its discy pseudo-bulge, making it a clear case of a galaxy with all three

  12. Full jet evolution in quark-gluon plasma and nuclear modification of jet production and jet shape in Pb+Pb collisions at 2.76 A TeV at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chang, Ning-Bo; Qin, Guang-You

    2016-08-01

    We study the evolution of the full jet shower in quark-gluon plasma by solving a set of coupled differential transport equations for the three-dimensional momentum distributions of quarks and gluons contained in full jets. In our jet evolution equations, we include all partonic splitting processes as well as the collisional energy loss and transverse momentum broadening for both the leading and radiated partons of the full jets. Combining with a realistic (2 +1 )-dimensional viscous hydrodynamic simulation for the spacetime profiles of the hot and dense nuclear medium produced in heavy-ion collisions, we apply our formalism to calculate the nuclear modification of single inclusive full jet spectra, the momentum imbalance of photon-jet and dijet pairs, and the jet shape function (at partonic level) in Pb+Pb collisions at 2.76 A TeV. The roles of various jet-medium interaction mechanisms on the full jet modification are studied. We find that the nuclear modification of jet shape is sensitive to the interplay of different interaction mechanisms as well as the energies of the full jets.

  13. Coexistence of reef organisms in the Abrolhos Archipelago, Brazil.

    PubMed

    Lins de Barros, M M; Castro, C B; Pires, D O; Segal, B

    2000-12-01

    The first study on coexistence of reef benthic organisms in Brazilian coral reefs was done in three localities of the Abrolhos Archipelago. Organisms were recorded in concentric circle samples (10 and 20 cm in diameter) randomly laid on transects. Type and frequency of "coexistence events" between pairs of organisms were determined. Most frequent organisms (massive and branched coralline algae, Favia gravida, and Agaricia agaricites) also had many significant positive coexistence events. These results might be related to the abundances of these organisms. The most frequent coral (Siderastrea stellata), however, exhibited only a few significant coexistence events (9% of 32 tests). Since the great majority of events were positive, and since there was high variation in the species/groups involved in significant events in different localities, benthic communities of Abrolhos Archipelago may well be structured primarily by abiotic rather than biotic factors. PMID:11487922

  14. Mixed evolutionary strategies imply coexisting opinions on networks

    NASA Astrophysics Data System (ADS)

    Cao, Lang; Li, Xiang

    2008-01-01

    An evolutionary battle-of-the-sexes game is proposed to model the opinion formation on networks. The individuals of a network are partitioned into different classes according to their unaltered opinion preferences, and their factual opinions are considered as the evolutionary strategies, which are updated with the birth-death or death-birth rules to imitate the process of opinion formation. The individuals finally reach a consensus in the dominate opinion or fall into (quasi)stationary fractions of coexisting mixed opinions, presenting a phase transition at the critical modularity of the multiclass individuals’ partitions on networks. The stability analysis on the coexistence of mixed strategies among multiclass individuals is given, and the analytical predictions agree well with the numerical simulations, indicating that the individuals of a community (or modular) structured network are prone to form coexisting opinions, and the coexistence of mixed evolutionary strategies implies the modularity of networks.

  15. Stable phase separation and heterogeneity away from the coexistence curve

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Belitz, D.

    2016-04-01

    Phase separation, i.e., the coexistence of two different phases, is observed in many systems away from the coexistence curve of a first-order transition, leading to a stable heterogeneous phase or region. Examples include various quantum ferromagnets, heavy-fermion systems, rare-earth nickelates, and others. These observations seem to violate basic notions of equilibrium thermodynamics, which state that phase separation can occur only on the coexistence curve. We show theoretically that quenched disorder allows for phase separation away from the coexistence curve even in equilibrium due to the existence of stable minority-phase droplets within the majority phase. Our scenario also answers a related question: How can a first-order transition remain sharp in the presence of quenched disorder without violating the rigorous lower bound ν ≥2 /d for the correlation-length exponent? We discuss this scenario in the context of experimental results for a large variety of systems.

  16. Infantile Perianal Pyramidal Protrusion with Coexisting Perineal and Perianal Hemangiomas: A Fortuitous Association or Incomplete PELVIS Syndrome?

    PubMed Central

    Verma, Shyam B; Wollina, Uwe

    2014-01-01

    Two cases of infantile perianal pyramidal protrusions (IPPP), one pyramidal in shape and one leaf shaped, are being described by us. Both were notable for coexisting hemangiomas in the close vicinity. To the best of our knowledge we are reporting these two variants of IPPP with the associated neighboring hemangiomas for the first time in Indian dermatologic literature. We suggest that this presentation may be a part of one of the syndromes that comprise anorectal malformations with hemangiomas like PELVIS syndrome and others mentioned in the table. PMID:24470664

  17. Coexistence of structured populations with size-based prey selection.

    PubMed

    Hartvig, Martin; Andersen, Ken Haste

    2013-11-01

    Species with a large adult-offspring size ratio and a preferred predator-prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending on the maximum adult sizes and population size distributions. We explore the assembly and potential for coexistence of small communities where all species experience ontogenetic trophic niche shifts. The life-history of each species is described by a physiologically structured model and species identity is characterised by the trait: size at maturation. We show that a single species can exist in two different states: a 'resource driven state' and a 'cannibalistic state' with a large scope for emergent Allee effects and bistable states. Two species can coexist in two different configurations: in a 'competitive coexistence' state when the ratio between sizes at maturation of the two species is less than a predator-prey mass ratio and the resource level is low to intermediate, or in a 'trophic ladder' state if the ratio of sizes at maturation is larger than the predator-prey mass ratio at all resource levels. While there is a large scope for coexistence of two species, the scope for coexistence of three species is limited and we conclude that further trait differentiation is required for coexistence of more species-rich size-structured communities. PMID:23927897

  18. Intraspecific genetic variation and species coexistence in plant communities.

    PubMed

    Ehlers, Bodil K; Damgaard, Christian F; Laroche, Fabien

    2016-01-01

    Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant-plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant-plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence. PMID:26790707

  19. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome.

    PubMed

    Wang, Yuexia; Ostlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and "blinded" electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials. PMID:21326826

  20. Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes

    NASA Astrophysics Data System (ADS)

    Kesteloot, N.; Bastin, B.; Gaffney, L. P.; Wrzosek-Lipska, K.; Auranen, K.; Bauer, C.; Bender, M.; Bildstein, V.; Blazhev, A.; Bönig, S.; Bree, N.; Clément, E.; Cocolios, T. E.; Damyanova, A.; Darby, I.; De Witte, H.; Di Julio, D.; Diriken, J.; Fransen, C.; García-Ramos, J. E.; Gernhäuser, R.; Grahn, T.; Heenen, P.-H.; Hess, H.; Heyde, K.; Huyse, M.; Iwanicki, J.; Jakobsson, U.; Konki, J.; Kröll, T.; Laurent, B.; Lecesne, N.; Lutter, R.; Pakarinen, J.; Peura, P.; Piselli, E.; Próchniak, L.; Rahkila, P.; Rapisarda, E.; Reiter, P.; Scheck, M.; Seidlitz, M.; Sferrazza, M.; Siebeck, B.; Sjodin, M.; Tornqvist, H.; Traykov, E.; Van De Walle, J.; Van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Zielińska, M.

    2015-11-01

    Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po 196 ,198 ,200 ,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po,202200, the transitional and diagonal matrix elements of the 21+ state are determined. In Po,198196 multistep Coulomb excitation is observed, populating the 41+,02+ , and 22+ states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from 196Po onwards. Three model descriptions are used to compare to the data. Calculations with the beyond-mean-field model, the interacting boson model, and the general Bohr Hamiltonian model show partial agreement with the experimental data. Finally, calculations with a phenomenological two-level mixing model hint at the mixing of a spherical structure with a weakly deformed rotational structure.

  1. Non-yrast states and shape co-existence in light Pt isotopes

    NASA Astrophysics Data System (ADS)

    Davidson, P. M.; Dracoulis, G. D.; Kibédi, T.; Byrne, A. P.; Anderssen, S. S.; Baxter, A. M.; Fabricius, B.; Lane, G. J.; Stuchbery, A. E.

    1999-09-01

    Low-lying states in the even-even light platinum isotopes 176Pt, 178Pt, 180Pt and 182Pt have been populated using β+ /EC decay from parent gold nuclei, created in (HI, xn) reactions. State energies, spins and parities and γ-ray branching ratios were determined using γ-ray and electron spectroscopy. Whereas non-yrast states were observed in 178Pt, 180Pt and 182Pt, none were seen in 176Pt. The excitation energies of the observed states are analysed in terms of a band-mixing model, yielding the moments of inertia of the unperturbed bands. Branching ratios and ground-state-band quadrupole moments are calculated and compared with experimental values. The results indicate that the two lowest-lying 0 + states in each of the light Pt isotopes are formed from the mixing of two intrinsic states of different deformation, and other low-lying states can be described as admixtures of rotational states built on these intrinsic states, and on γ-vibrational states.

  2. Decay-out of 151Tb Yrast Superdeformed Band and Shape Coexistence

    SciTech Connect

    Duchene, G.; Robin, J.; Odahara, A.; Byrski, Th.; Beck, F.A.; Bednarczyk, P.; Curien, D.; Courtin, S.; Dorvaux, O.; Gall, B.; Joshi, P.; Nourreddine, A.; Pachoud, E.; Piqueras, I.; Vivien, J.P.; Twin, P.J.; Cullen, D.M.; Ertueck, S.; King, S.L.; Paul, E.S.

    2004-02-27

    Linking transitions between the superdeformed (SD) and the normal deformed (ND) wells have been searched in 151Tb nucleus. Two experiments of 5 and 17 days have been performed with EUROBALL IV. Transitions of 2818 keV and 3748 keV with intensities of about 1 % relative to the yrast SD band have been observed. Their decay-out properties are discussed in the text. In addition the eight known SD bands have been extended towards higher rotational frequencies where orbital crossings are observed. For the first time, weakly populated collective ND structures, likely triaxial, similar to the ones recently identified in 152Dy, 153Ho and 155Er nuclei have been observed in 151Tb. The SD and ND structures are interpreted in the frame of Woods-Saxon theoretical calculations.

  3. Triaxial shape coexistence and new aligned band in {sup 178}Os

    SciTech Connect

    Kumar, Rajesh; Govil, I. M.; Dhal, A.; Chaturvedi, L.; Praharaj, C. R.; Rath, A. K.; Kumar, G. Kiran; Basu, S. K.; Chakraborty, A.; Krishichayan; Mukhopadhyay, S.; Pattabiraman, N. S.; Ghugre, S. S.; Sinha, A. K.

    2009-11-15

    High spin states in {sup 178}Os were studied by means of {sup 165}Ho({sup 20}Ne,p6n){sup 178}Os fusion evaporation reaction at a beam energy of 150 MeV, using a clover detector array. Several new transitions belonging to {sup 178}Os were placed in a level scheme and a new aligned rotational band was observed in addition to earlier known bands. Spin-parity assignments for most of the proposed levels were made using the deduced directional correlation orientation and polarization measurements for the de-exciting transitions. Experimental results are compared with the projected angular momentum deformed Hartree-Fock model calculations and cranked Woods-Saxon model calculations. This nucleus is predicted to be prolate deformed in the ground state but the {gamma}-softness at higher excitation is revealed by the cranked Woods-Saxon model and the geometrical asymmetric model calculations.

  4. Shape Coexistence in Pb-Rn Nuclei Studied by Particle Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andreyev, A. N.

    2006-08-01

    This contribution reviews the results of recent experiments at the velocity filter SHIP (GSI, Darmstadt) in which a number of very neutron-deficient nuclei with Z=83-88 and N< 126 were studied in detail and new nuclides 186,187Po, 192At and 193,194Rn were identified. Complete fusion reactions at beam energies close to the Coulomb barrier were used, followed by particle detection with various detection systems. Peculiarities in α-decay characteristics of the 186-191Po isotopes are discussed in detail. Very recent results for the neutron-deficient At-Ra nuclei from the gas-filled separator RITU (JYFL, Jyväskylä) are also highlighted. The application of a new method to reach nuclei in this region — spallation-evaporation reactions of 238U ions at 1 AGeV on a Be target, followed by the separation with the FRS at GSI is discussed as well.

  5. Shape Coexistence in Pb-Rn Nuclei Studied by Particle Decay Spectroscopy

    SciTech Connect

    Andreyev, A. N.

    2006-08-14

    This contribution reviews the results of recent experiments at the velocity filter SHIP (GSI, Darmstadt) in which a number of very neutron-deficient nuclei with Z=83-88 and N< 126 were studied in detail and new nuclides 186,187Po, 192At and 193,194Rn were identified. Complete fusion reactions at beam energies close to the Coulomb barrier were used, followed by particle detection with various detection systems. Peculiarities in {alpha}-decay characteristics of the 186-191Po isotopes are discussed in detail. Very recent results for the neutron-deficient At-Ra nuclei from the gas-filled separator RITU (JYFL, Jyvaeskylae) are also highlighted.The application of a new method to reach nuclei in this region - spallation-evaporation reactions of 238U ions at 1 AGeV on a Be target, followed by the separation with the FRS at GSI is discussed as well.

  6. Shape coexistence in {sup 180}Hg studied through the {beta} decay of {sup 180}Tl

    SciTech Connect

    Elseviers, J.; Bree, N.; Diriken, J.; Huyse, M.; Ivanov, O.; Van den Bergh, P.; Van Duppen, P.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Fedorov, D.; Cocolios, T. E.; Seliverstov, M.; Comas, V. F.; Heredia, J. A.; Fedosseyev, V. N.; Marsh, B. A.; Franchoo, S.; Page, R. D.

    2011-09-15

    The {beta}{sup +}/EC decay of {sup 180}Tl and excited states in the daughter nucleus {sup 180}Hg have been investigated at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. Many new low-lying energy levels were observed in {sup 180}Hg, of which the most significant are the 0{sub 2}{sup +} at 419.6 keV and the 2{sub 2}{sup +} at 601.3 keV. The former is the bandhead of an excited band in {sup 180}Hg assumed originally to be of prolate nature. From the {beta} feeding to the different states in {sup 180}Hg, the ground-state spin of {sup 180}Tl was deduced to be (4{sup -},5{sup -}).

  7. Spatial variation and density-dependent dispersal in competitive coexistence.

    PubMed Central

    Amarasekare, Priyanga

    2004-01-01

    It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density

  8. Phase coexistence of a Stockmayer fluid in an applied field

    NASA Astrophysics Data System (ADS)

    Stevens, Mark J.; Grest, Gary S.

    1995-06-01

    We examine two apects of Stockmayer fluids, which consist of point dipoles that additionally interact via an attractive Lennard-Jones potential. We perform Monte Carlo simulations to examine the effect of an applied field on the liquid-gas phase coexistence and show that a magnetic fluid phase does exist in the absence of an applied field. As part of the search for the magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase coexistence curves at large dipole moments, μ. The critical temperature is found to depend linearly on μ2 for intermediate values of μ beyond the initial nonlinear behavior near μ=0 and less than the μ where no liquid-gas phase coexistence has been found. For phase coexistence in an applied field, the critical temperatures as a function of the applied field for two different μ are mapped onto a single curve. The critical densities change very little as a function of applied field. We also verify that in an applied field the liquid droplets within the two-phase coexistence region become elongated in the direction of the field.

  9. Coexistence of competing metabolic pathways in well-mixed populations

    NASA Astrophysics Data System (ADS)

    Fernández, Lenin; Amado, André; Campos, Paulo R. A.; Ferreira, Fernando Fagundes

    2016-05-01

    Understanding why strains with different metabolic pathways that compete for a single limiting resource coexist is a challenging issue within a theoretical perspective. Previous investigations rely on mechanisms such as group or spatial structuring to achieve a stable coexistence between competing metabolic strategies. Nevertheless, coexistence has been experimentally reported even in situations where it cannot be attributed to spatial effects [Heredity 100, 471 (2008), 10.1038/sj.hdy.6801073]. According to that study a toxin expelled by one of the strains can be responsible for the stable maintenance of the two strain types. We propose a resource-based model in which an efficient strain with a slow metabolic rate competes with a second strain type which presents a fast but inefficient metabolism. Moreover, the model assumes that the inefficient strain produces a toxin as a by-product. This toxin affects the growth rate of both strains with different strength. Through an extensive exploration of the parameter space we determine the situations at which the coexistence of the two strains is possible. Interestingly, we observe that the resource influx rate plays a key role in the maintenance of the two strain types. In a scenario of resource scarcity the inefficient is favored, though as the resource influx rate is augmented the coexistence becomes possible and its domain is enlarged.

  10. Coexistence of competing metabolic pathways in well-mixed populations.

    PubMed

    Fernández, Lenin; Amado, André; Campos, Paulo R A; Ferreira, Fernando Fagundes

    2016-05-01

    Understanding why strains with different metabolic pathways that compete for a single limiting resource coexist is a challenging issue within a theoretical perspective. Previous investigations rely on mechanisms such as group or spatial structuring to achieve a stable coexistence between competing metabolic strategies. Nevertheless, coexistence has been experimentally reported even in situations where it cannot be attributed to spatial effects [Heredity 100, 471 (2008)HDTYAT0018-067X10.1038/sj.hdy.6801073]. According to that study a toxin expelled by one of the strains can be responsible for the stable maintenance of the two strain types. We propose a resource-based model in which an efficient strain with a slow metabolic rate competes with a second strain type which presents a fast but inefficient metabolism. Moreover, the model assumes that the inefficient strain produces a toxin as a by-product. This toxin affects the growth rate of both strains with different strength. Through an extensive exploration of the parameter space we determine the situations at which the coexistence of the two strains is possible. Interestingly, we observe that the resource influx rate plays a key role in the maintenance of the two strain types. In a scenario of resource scarcity the inefficient is favored, though as the resource influx rate is augmented the coexistence becomes possible and its domain is enlarged. PMID:27300918

  11. SAFSTOR and License Renewal: Making Them Coexist

    SciTech Connect

    Henries, William PE

    2008-01-15

    The Indian Point Energy Center is located on the eastern shore of the Hudson River in the town of Buchanan, New York. It lies approximately thirty miles north of New York City, and thus, holds the distinction of being the closest nuclear facility to a major metropolitan area. Units 1 and 2 were constructed and operated by Consolidated Edison and Unit 3 was owned and operated by the New York State Power Authority. All three units are now owned and operated by Entergy Nuclear- Northeast. Indian Point Unit 1 was powered by a pressurized water reactor which operated with an authorized maximum steady state power level of 615 thermal megawatts until October 31, 1974. On June 19, 1980, the Commission issued an order revoking authority to operate the facility. Although 244 spent fuel assemblies were successfully shipped offsite to a spent fuel reprocessing facility, 160 assemblies remain in the Unit 1 spent fuel pool awaiting relocation to dry cask storage. Units 2 and 3 are also pressurized water reactors which each produce slightly in excess of 1,000 MWe. Since 1974, Unit 1 has been maintained in a Safe Store Mode (SAFSTOR). For the purposes of this document, the term 'SAFSTOR' is intended to mean 'Custodial SAFSTOR' as described in section 2.4.3 of NUREG 0586 (Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities (GEIS) as follows: 'Custodial SAFSTOR requires a minimum cleanup and decontamination effort initially, followed by a period of continuing care with the active protection systems (principally the ventilation system) kept in service throughout the storage period. Full-time onsite surveillance by operating and security forces is required to carry out radiation monitoring, to maintain the equipment, and to prevent accidental or deliberate intrusion into the facility and the subsequent exposure to radiation or the disposal of radioactivity beyond the confines of the facility'. The decision to enter SAFSTOR was based upon the immediate

  12. The Coexistence of Rathke Cleft Cyst and Pituitary Adenoma.

    PubMed

    Gao, Mingtong; An, Yanyan; Huang, Zhihong; Niu, Jianyi; Yuan, Xunhui; Bai, Yun'an; Guo, Liemei

    2016-03-01

    Both of Pituitary adenoma (PA) and Rathke cleft cyst (RCC) are the most common and benign sellar lesions. Generally, the origin of RCC is considered to be derived from remnants of Rathke punch, while PA is formed by proliferation of the anterior wall of Rathke pouch. Although they have a possibility to share a common embryological origin, the coexistence of PA and RCC is extremely rare. Here, the authors report a 50-year-old male patient who was found to have a large cystic sellar lesion, and surgical resection revealed components of a RCC coexisting with a PA. This collision reminded us of the possibility of RCC coexisting with PA. Furthermore, a clinicopathologic relation of them were reviewed and investigated. PMID:26845092

  13. Diversity and becoming: implications of human existence as coexistence.

    PubMed

    Cody, William K

    2003-07-01

    Better ways of understanding and working with human diversity are needed in the healthcare and human service disciplines. Nursing, as the discipline that cares for whole persons throughout their lives and meets people where they are, is ideally suited to provide leadership to this effort. In this column, the author explores human diversity by explicating human existence as coexistence, with implications for nursing. The author locates his worldview within the human becoming school of thought. Human diversity and human existence as coexistence are explored within this context, with implications for nursing as a discipline identified. Ideas that are crucial in the explication of human existence as coexistence are difference, imagination, creativity, and wholeness. PMID:12876874

  14. [Coexistence of coeliac disease and inflammatory bowel disease in children].

    PubMed

    Krawiec, Paulina; Pawłowska-Kamieniak, Agnieszka; Pac-Kożuchowska, Elżbieta; Mroczkowska-Juchkiewcz, Agnieszka; Kominek, Katarzyna

    2016-01-01

    Coeliac disease and inflammatory bowel disease are chronic inflammatory conditions of gastrointestinal tract with complex aetiology with genetic, environmental and immunological factors contributing to its pathogenesis. It was noted that immune-mediated disorders often coexist. There is well-known association between coeliac disease and type 1 diabetes and ulcerative colitis and primary sclerosing cholangitis. However, growing body of literature suggests the association between coeliac disease and inflammatory bowel disease, particularly ulcerative colitis. This is an extremely rare problem in paediatric gastroenterology. To date there have been reported several cases of children with coexisting coeliac disease and inflammatory bowel disease. Herewith we present review of current literature on coexistence of coeliac disease and inflammatory bowel disease in children. PMID:26891438

  15. Interdisciplinary and Cross-Cultural Perspectives on Explanatory Coexistence.

    PubMed

    Watson-Jones, Rachel E; Busch, Justin T A; Legare, Cristine H

    2015-10-01

    Natural and supernatural explanations are used to interpret the same events in a number of predictable and universal ways. Yet little is known about how variation in diverse cultural ecologies influences how people integrate natural and supernatural explanations. Here, we examine explanatory coexistence in three existentially arousing domains of human thought: illness, death, and human origins using qualitative data from interviews conducted in Tanna, Vanuatu. Vanuatu, a Melanesian archipelago, provides a cultural context ideal for examining variation in explanatory coexistence due to the lack of industrialization and the relatively recent introduction of Christianity and Western education. We argue for the integration of interdisciplinary methodologies from cognitive science and anthropology to inform research on explanatory coexistence. PMID:26350158

  16. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  17. Nuclear magnetic resonance studies of guest species in clathrate hydrates: Line-shape anisotropies, chemical shifts, and the determination of cage occupancy ratios and hydration numbers

    SciTech Connect

    Collins, M.J.; Ratcliffe, C.I.; Ripmeester, J.A. )

    1990-01-11

    NMR spectra of the guest molecules PH{sub 3}, H{sub 2}Se, D{sub 2}Se, D{sub 2}S, CD{sub 3}F, CD{sub 3}Cl, CD{sub 3}Br, C{sub 2}D{sub 2}, and C{sub 2}D{sub 4} in their structure I clathrate hydrates have been obtained by use of {sup 2}H, {sup 19}F, {sup 31}P, and {sup 77}Se nuclei. Components due to guests in the small and large cages have been distinguished by using isotropic chemical shift and static line-shape anisotropy differences. Low-temperature magic angle spinning was used in some cases to resolve the two components. Guests in the small cages are invariably found to have a lower field isotropic shift than those in the large cage. The static line shapes are isotropic for guests in the small spherical cages, whereas in the large oblate cages they have a residual anisotropy. Relative cage occupancy ratios {theta}{sub S}/{theta}{sub L} have been obtained from the observed NMR intensities, and together with similar results from previous NMR studies, these have been used to derive hydration numbers. This represents a new and nondestructive method of determining structure I hydrate compositions.

  18. Hepatic encephalopathy coexists with acquired chronic hepatocerebral degeneration.

    PubMed

    Huang, Feng-Zhen; Hou, Xuan; Zhou, Tie-Qiao; Chen, Si

    2015-07-01

    Hyperkinetic extrapyramidal syndrome is the typical clinical characteristic of acquired hepatocerebral degeneration (AHD), but is usually not observed with hepatic encephalopathy (HE). We present a case of AHD coexisting with HE. Both conditions were secondary to liver cirrhosis and hepatitis C virus infection. The brain MRI showed bilateral and symmetric high T1 signal-intensity in the globus pallidus, and diffuse high signal-intensity of the hemispheric white matter on T2-FLAIR images. As we usually neglect the existence of AHD, the diagnosis is often ignored, especially when it coexists with HE. This case highlights the need to distinguish irreversible AHD from HE. PMID:26166598

  19. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  20. Evolution of Dispersal with Starvation Measure and Coexistence.

    PubMed

    Kim, Yong-Jung; Kwon, Ohsang

    2016-02-01

    Many biological species increase their dispersal rate if starvation starts. To model such a behavior, we need to understand how organisms measure starvation and response to it. In this paper, we compare three different ways of measuring starvation by applying them to starvation-driven diffusion. The evolutional selection and coexistence of such starvation measures are studied within the context of Lotka-Volterra-type competition model of two species. We will see that, if species have different starvation measures and different motility functions, both the coexistence and selection are possible. PMID:26817757

  1. Biodefense research: can secrecy and safety coexist?

    PubMed

    Kahn, Laura H

    2004-01-01

    Over the next 10 years, the United States will spend 6 billion US dollars to develop countermeasures against biological and chemical weapons. Much of this research on highly virulent pathogens will be done in academic settings around the country. This article explores the challenges in ensuring secrecy to protect national security while accommodating the right of local communities to have access to safety information regarding select agents and laboratory-acquired infections. Secrecy has been defended as being vital for protecting national security. Problems with secrecy can include the misinterpretation of intentions, particularly in laboratories located in nuclear weapons design facilities, and the restricted access to information relevant to public health and safety. While federal select agent legislation requires laboratories to have emergency plans in place with first responders, these plans do not necessarily include public health professionals, who will be responsible for any future public health action, such as quarantine, surveillance, or mass vaccinations, in the unlikely event that a laboratory-acquired infection spreads into a community. Laboratory-acquired infections do occur, even with the best safety mechanisms in place; however, the epidemiology of the incidence and severity of these infections are not known since there is no national surveillance reporting system. Evidence suggests that many of these infections occur in the absence of an actual laboratory accident. The best emergency plans and surveillance systems are only as good as the participation and vigilance of the laboratory workers themselves. Thus, laboratory workers have a responsibility to themselves and others to report all laboratory accidents and spills, regardless how minor. In addition, they should have a lower threshold than normal in seeking medical attention when feeling ill, and their physicians should be aware of what pathogens they work with to reduce the risk of a delay in

  2. Coexistence of Bulk and Surface Shubnikov-de Haas Oscillations in Bi2Se3

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Qu, Fanming; Du, Rui-Rui; Lu, Li

    2013-03-01

    Topological insulator possesses insulating bulk state and spin-momentum interlocked conducting topological surface state. Among many materials, bismuth selenide (Bi2Se3) is an important candidate, which hosts a single Dirac cone in the surface energy spectrum. In electron transport measurements, 3-dimensional Shubnikov-de Haas (SdH) oscillations of bulk state were observed. Under a very high magnetic field, our rotating sample experimental results exhibit the coexistence of bulk and surface SdH oscillations: Hall bar shape device based on Bi2Se3 nano-plate was fabricated and studied at a dilution temperature with a tilted magnetic field up to 45 T. Three types of carrier, one of 3-dimensional and two of 2-dimensional, were identified by analyzing the angular dependence of SdH oscillations, which confirmed the coexistence of bulk carrier and band bending induced two-dimensional electron gas in transport experiment. The co-contributions to quantum oscillations indicated the independence of these states, without smearing out by scattering with each other, which may pave off the way for studying topological surface states with residual bulk carriers in Bi2Se3. The data analysis and experimental results are included in the presentation. We would like to thank National High Magnetic Field Lab (NHMFL) in Florida, in which the high magnetic field measurements were conducted.

  3. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line.

    PubMed

    Míguez, J M; Conde, M M; Torré, J-P; Blas, F J; Piñeiro, M M; Vega, C

    2015-03-28

    The three phase equilibrium line (hydrate-liquid water-liquid carbon dioxide) has been estimated for the water + carbon dioxide binary mixture using molecular dynamics simulation and the direct coexistence technique. Both molecules have been represented using rigid nonpolarizable models. TIP4P/2005 and TIP4P/Ice were used for the case of water, while carbon dioxide was considered as a three center linear molecule with the parameterizations of MSM, EPM2, TraPPE, and ZD. The influence of the initial guest occupancy fraction on the hydrate stability has been analyzed first in order to determine the optimal starting configuration for the simulations, paying attention to the influence of the two different cells existing in the sI hydrate structure. The three phase coexistence temperature was then determined for a pressure range from 2 to 500 MPa. The qualitative shape of the equilibrium curve estimated is correct, including the high pressure temperature maximum that determines the hydrate re-entrant behaviour. However, in order to obtain quantitative agreement with experimental results, a positive deviation from the classical Lorentz-Berthelot combining rules must be considered. PMID:25833594

  4. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line

    NASA Astrophysics Data System (ADS)

    Míguez, J. M.; Conde, M. M.; Torré, J.-P.; Blas, F. J.; Piñeiro, M. M.; Vega, C.

    2015-03-01

    The three phase equilibrium line (hydrate-liquid water-liquid carbon dioxide) has been estimated for the water + carbon dioxide binary mixture using molecular dynamics simulation and the direct coexistence technique. Both molecules have been represented using rigid nonpolarizable models. TIP4P/2005 and TIP4P/Ice were used for the case of water, while carbon dioxide was considered as a three center linear molecule with the parameterizations of MSM, EPM2, TraPPE, and ZD. The influence of the initial guest occupancy fraction on the hydrate stability has been analyzed first in order to determine the optimal starting configuration for the simulations, paying attention to the influence of the two different cells existing in the sI hydrate structure. The three phase coexistence temperature was then determined for a pressure range from 2 to 500 MPa. The qualitative shape of the equilibrium curve estimated is correct, including the high pressure temperature maximum that determines the hydrate re-entrant behaviour. However, in order to obtain quantitative agreement with experimental results, a positive deviation from the classical Lorentz-Berthelot combining rules must be considered.

  5. Alpha-particles as probes of nuclear shape in the rare earths and structure effects on proton emission in the mass 80 region

    SciTech Connect

    Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M. . Dept. of Internal Medicine); Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A. ); Griffin, H.C. )

    1989-01-01

    Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. For the rare earth systems deformation which increases with spin is necessary to explain the data. Energy spectra and angular correlations of evaporated protons from the {sup 52}Cr({sup 34}S, 2p2n){sup 82}Sr reaction were measured in coincidence with discrete transition. Large changes in the shape of the proton spectra were observed when high spin states in different rotation al bands are populated. These effects cannot be explained by phase space arguments in the deexcitation process. They are interpreted as due to near-yrast to near-yrast stretched proton emission, which preferentially populates the yrast band by subbarrier protons. 20 refs., 8 figs.

  6. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  7. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  8. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  9. Climate change threatens coexistence within communities of Mediterranean forested wetlands.

    PubMed

    Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2012-01-01

    The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant) and Non-hygrophilous (drought resistant, flood sensitive), are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress) results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses. PMID:23077484

  10. Tracking the Roundup Ready® gene: implications for coexistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has been conducting research to address concerns voiced by the alfalfa industry regarding the coexistence of genetically engineered and non-GE alfalfa seed production. In 2011 a survey was conducted to get a baseline estimate of the presence of transgenic roadside alfalfa plants. We surveye...