Science.gov

Sample records for coherent differential absorption

  1. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  2. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  3. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  4. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood.

  5. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  6. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  7. Coherent perfect absorption in chiral metamaterials.

    PubMed

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2016-07-15

    We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535

  8. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  9. Coherent Absorption of N00N States.

    PubMed

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging. PMID:27447505

  10. Coherent Absorption of N00N States

    NASA Astrophysics Data System (ADS)

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging.

  11. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  12. Differential absorption lidar (DIAL) via atmospheric aerosol (cloud) backscattering: recent results of coherent CO2 lidar measurements conducted at the Maui Space Surveillance Site

    NASA Astrophysics Data System (ADS)

    Willman, Benjamin C.; Kovacs, Mark A.

    2001-01-01

    Textron Systems, under the US Army Space and Missile Defense Command's Field Ladar Tactical Transition Demonstration program, has been evaluating coherently detected, atmospheric aerosol backscattering as a method to extend the utility of the DIAL technique. This paper present recently obtained long range, multi-wavelength DIAL measurements utilizing cloud formations and a laboratory positioned absorption test cell. Good agreement between cloud and continuous wave laboratory measurements of the absorption spectra of ammonia have been obtained.

  13. Coherent perfect absorption in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanlin; Wan, Wenjie; Chen, Xianfeng

    2013-02-01

    Recently, a concept of time reversed lasing or coherent perfect absorber (CPA) has been proposed by A. D. Stone and co-workers, and was shortly experimentally demonstrated by them. The CPA system is illuminated coherently and monochromatically by the time reverse of the output of a lasing mode and the incident radiation is perfectly absorbed. Shortly afterwards, Stefano Longhi extended the idea to realize a CPA for colored incident light, and have theoretically shown that the time reversal of optical parametric oscillation (OPO) in a nonlinear medium could also realize a colored CPA for incident signal and idler fields which can be seemed as a kind of nonlinear CPA. Here we present the realization of such time-reversed processes in nonlinear optics regime, including time-reversed second harmonic generation (SHG) for coherent absorption at harmonic frequency of the pump and time-reversed optical parametric amplification (OPA) for coherent attenuation of colored travelling optical fields. Time reversed SHG is carried out at both phase matching and mismatching conditions, which shows parametric near perfect absorption at the harmonic frequency of the pump. The time reversal of OPA is demonstrated experimentally in a nonlinear medium to form a coherent absorber for perpendicularly polarized signal and idler travelling waves, realizing in the condition of OPA by a type II phase matching scheme. The absorption of signal/idler pair occurs at some specific phase difference. This is the first experimental demonstration of coherent absorption processes in nonlinear optics regime.

  14. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  15. Super-Resonant Intracavity Coherent Absorption

    PubMed Central

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; De Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  16. Negative refraction without absorption via quantum coherence

    NASA Astrophysics Data System (ADS)

    Fang, Ai-Ping; Ge, Wenchao; Wang, Meng; Li, Fu-li; Zubairy, M. Suhail

    2016-02-01

    Negative refraction of a probe field is studied in a dense gas consisting of cascade-type four-level atoms. By coupling the magnetic component of the probe field to a Λ scheme with initially prepared coherence in the two lower levels, strong negative permeability with minimal absorption can be obtained. The permittivity of the gas to the electric component of the probe field can be made negative by taking into account the local field effect of the dense atoms. Strong negative refraction with zero absorption can be achieved in a wide range of parameters in our scheme. A possible experimental realization is also discussed.

  17. Coherent absorption and enhanced photoluminescence in thin layers of nanorods

    NASA Astrophysics Data System (ADS)

    Pirruccio, G.; Lozano, G.; Zhang, Y.; Rodriguez, S. R. K.; Gomes, R.; Hens, Z.; Rivas, Jaime Gómez

    2012-04-01

    We demonstrate a large light absorptance (80%) in a nanometric layer of quantum dots in rods (QRs) with a thickness of 23 nm. This behavior is explained in terms of the coherent absorption by interference of the light incident at a certain angle onto the very thin QR layer. We exploit this coherent light absorption to enhance the photoluminescent emission from the QRs. Up to a seven- and fivefold enhancement of the photoluminescence is observed for p- and s-polarized incident light, respectively.

  18. Controllable coherent perfect absorption in a composite film.

    PubMed

    Dutta-Gupta, Shourya; Martin, O J F; Gupta, S Dutta; Agarwal, G S

    2012-01-16

    We exploit the versatility provided by metal-dielectric composites to demonstrate controllable coherent perfect absorption (CPA) or anti-lasing in a slab of heterogeneous medium. The slab is illuminated by coherent light from both sides, at the same angle of incidence and the conditions required for CPA are investigated as a function of the different system parameters. Our calculations clearly elucidate the role of absorption as a necessary prerequisite for CPA. We further demonstrate the controllability of the CPA frequency to the extent of having the same at two distinct frequencies even in presence of dispersion, rendering the realization of anti-lasers more flexible. PMID:22274478

  19. Coherent perfect absorption in an all-dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Xiao, Fajun; Kang, Ming; Premaratne, Malin

    2016-03-01

    We design and analyze an ultra-thin metasurface consists of mono-layer all-dielectric fishnet structure. It is demonstrated that coherent perfect absorption (CPA) can be achieved in such a metasurface, and the coherent absorptivity is controllable from 0.38% to 99.85% by phase modulation. The angular selectivity of the metasurface shows the feasibility of CPA in oblique incidence circumstances, where the CPA frequency splits into two frequency bands for TE and TM polarizations. Further study reveals that while retaining CPA, the CPA frequency of the metasurface can be manipulated from 8.56 to 13.47 GHz by solely adjusting the thickness of the fishnet metasurface.

  20. Coherent Enhanced Absorption in an Intracavity Atomic Medium

    NASA Astrophysics Data System (ADS)

    Smith, David D.; Myneni, Krishna; Chang, Hongrok; Odutola, Jamiu A.

    2011-05-01

    The conditions for coherent enhanced absorption of an intracavity atomic medium are discussed. For a symmetric cavity, a specific amplitude and phase relationship between two oppositely oriented input beams results in coherent perfect absorption by the medium. In contrast, for a single input beam, perfect absorption requires a perfectly asymmetric, i.e., single port, cavity. Even when the cavity is not perfectly asymmetric or lossless, we find that enhanced absorption can occur. For a single input to an asymmetric cavity, as the input intensity is increased and the medium saturates, the cavity passes from the over-coupled to the under-coupled regime. We find the counterintuitive result that the cavity absorptance can increase with increasing input intensity in the over-coupled regime, i.e., the atom-cavity system behaves as a reverse saturable absorber. These results were compared with measurements performed using a tunable laser incident on a Fabry-Perot cavity containing an Rb87 cell, taking into account the effects of saturation and beam divergence.

  1. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  2. Probing molecular chirality by coherent optical absorption spectra

    SciTech Connect

    Jia, W. Z.; Wei, L. F.

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  3. Coherent perfect absorption in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Feng, Simin; Halterman, Klaus

    2012-10-01

    In conventional materials, strong absorption usually requires that the material have either high loss or a large thickness-to-wavelength ratio (d/λ≫1). We find the situation to be vastly different for bilayer structures composed of a metallic substrate and an anisotropic epsilon-near-zero (ENZ) metamaterial, where the permittivity in the direction perpendicular to its surface, ɛz, vanishes. Remarkably, perfect absorption can occur in situations where the metamaterial is arbitrarily thin (d/λ≪1) and arbitrarily low loss. Our numerical and analytical solutions reveal that under the conditions ɛz→0 and ℑ(ɛz)≫ℜ(ɛz), at perfect absorption there is a linear relationship between the thickness and the loss, which means the thickness of the absorber can be pushed to zero by reducing the material loss to zero. This counterintuitive behavior is explained in terms of coherent perfect absorption (or stimulated absorption) via critical coupling to a fast wave propagating along the ENZ layer.

  4. Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Goetschy, Arthur; Bromberg, Yaron; Stone, A. Douglas; Cao, Hui

    2015-11-01

    Spatial modulation of the incident wave front has become a powerful method for controlling the diffusive transport of light in disordered media; however, such interference-based control is intrinsically sensitive to frequency detuning. Here, we show analytically and numerically that certain wave fronts can exhibit strongly enhanced total transmission or absorption across bandwidths that are orders of magnitude broader than the spectral correlation width of the speckles. Such broadband enhancement is possible due to long-range correlations in coherent diffusion, which cause the spectral degrees of freedom to scale as the square root of the bandwidth rather than the bandwidth itself.

  5. Differential absorption lidar sensing of ozone

    SciTech Connect

    Browell, E.V.

    1989-03-01

    The Differential Absorption Lidar (DIAL) technique has been used since the early 1970s for remote measurements of ozone (O/sub 3/) in the lower atmosphere. To investigate large-scale variations of O/sub 3/ and aerosols in the troposphere and lower stratosphere, a versatile airborne DIAL system was developed in 1980 at the NASA Langley Research Center. This DIAL system currently has the capability to measure O/sub 3/ and multiple-wavelength aerosol profiles to a range of over 8 km above and below the aircraft simultaneously. Eleven major field experiments have been conducted with the NASA air-borne DIAL system since 1980 to study the transport and chemistry related to O/sub 3/ and aerosols. This paper discusses the DIAL technique for deriving O/sub 3/ profiles from lidar measurements. The NASA airborne DIAL system is described, and examples of a broad range of O/sub 3/ and aerosol measurements are presented.

  6. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves

    SciTech Connect

    Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen

    2014-03-24

    We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.

  7. Ozone Differential Absorption Lidar Algorithm Intercomparison

    NASA Astrophysics Data System (ADS)

    Godin, Sophie; Carswell, Allen I.; Donovan, David P.; Claude, Hans; Steinbrecht, Wolfgang; McDermid, I. Stuart; McGee, Thomas J.; Gross, Michael R.; Nakane, Hideaki; Swart, Daan P. J.; Bergwerff, Hans B.; Uchino, Osamu; von der Gathen, Peter; Neuber, Roland

    1999-10-01

    An intercomparison of ozone differential absorption lidar algorithms was performed in 1996 within the framework of the Network for the Detection of Stratospheric Changes (NDSC) lidar working group. The objective of this research was mainly to test the differentiating techniques used by the various lidar teams involved in the NDSC for the calculation of the ozone number density from the lidar signals. The exercise consisted of processing synthetic lidar signals computed from simple Rayleigh scattering and three initial ozone profiles. Two of these profiles contained perturbations in the low and the high stratosphere to test the vertical resolution of the various algorithms. For the unperturbed profiles the results of the simulations show the correct behavior of the lidar processing methods in the low and the middle stratosphere with biases of less than 1% with respect to the initial profile to as high as 30 km in most cases. In the upper stratosphere, significant biases reaching 10% at 45 km for most of the algorithms are obtained. This bias is due to the decrease in the signal-to-noise ratio with altitude, which makes it necessary to increase the number of points of the derivative low-pass filter used for data processing. As a consequence the response of the various retrieval algorithms to perturbations in the ozone profile is much better in the lower stratosphere than in the higher range. These results show the necessity of limiting the vertical smoothing in the ozone lidar retrieval algorithm and questions the ability of current lidar systems to detect long-term ozone trends above 40 km. Otherwise the simulations show in general a correct estimation of the ozone profile random error and, as shown by the tests involving the perturbed ozone profiles, some inconsistency in the estimation of the vertical resolution among the lidar teams involved in this experiment.

  8. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  9. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    NASA Astrophysics Data System (ADS)

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-05-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications.

  10. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  11. First attempt to monitor atmospheric glyoxal using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Lundin, Patrik; Somesfalean, Gabriel; Hu, Jiandong; Zhao, Guangyu; Svanberg, Sune; Bood, Joakim; Vrekoussis, Mihalis; Papayannis, Alexandros

    2012-11-01

    Glyoxal (CHOCHO), as an indicator of photochemical "hot spots", was for the first time the subject of a differential absorption lidar (DIAL) campaign. The strongest absorption line of glyoxal in the blue wavelength region - 455.1 nm - was chosen as the experimental absorption wavelength. In order to handle the effects of absorption cross-section variation of the interfering gas - nitrogen dioxide (NO2) - three-wavelength DIAL measurements simultaneously detecting glyoxal and NO2, were performed. The differential absorption curves, recorded in July 2012, indicate an extremely low glyoxal concentration in Lund, Sweden, although it is expected to be peaking at this time of the year.

  12. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2015-02-01

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron-phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  13. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    SciTech Connect

    Toutounji, Mohamad

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  14. Effect of coherence loss in differential phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Ning, Ruola; Liu, Jiangkun

    2014-03-01

    Coherence property of x-rays is critical in the grating-based differential phase contrast (DPC) imaging because it is the physical foundation that makes any form of phase contrast imaging possible. Loss of coherence is an important experimental issue, which results in increased image noise and reduced object contrast in DPC images and DPC cone beam CT (DPC-CBCT) reconstructions. In this study, experimental results are investigated to characterize the visibility loss (a measurement of coherence loss) in several different applications, including different-sized phantom imaging, specimen imaging and small animal imaging. Key measurements include coherence loss (relative intensity changes in the area of interest in phase-stepping images), contrast and noise level in retrieved DPC images, and contrast and noise level in reconstructed DPC-CBCT images. The influence of size and composition of imaged object (uniform object, bones, skin hairs, tissues, and etc) will be quantified. The same investigation is also applied for moiré pattern-based DPC-CBCT imaging with the same exposure dose. A theoretical model is established to relate coherence loss, noise level in phase stepping images (or moiré images), and the contrast and noise in the retrieved DPC images. Experiment results show that uniform objects lead to a small coherence loss even when the attenuation is higher, while objects with large amount of small structures result in huge coherence loss even when the attenuation is small. The theoretical model predicts the noise level in retrieved DPC images, and it also suggests a minimum dose required for DPC imaging to compensate for coherence loss.

  15. REMOTE SENSING OF OZONE USING AN INFRARED DIFFERENTIAL ABSORPTION SYSTEM

    EPA Science Inventory

    A prototype airborne downlooking infrared differential absorption system using CO2 TEA (transverse excited atmospheric) lasers is described. The system uses two wavelengths and topographic reflection to measure the integrated column concentration of ozone between the laser source...

  16. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  17. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    PubMed

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  18. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  19. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light. PMID:23387142

  20. Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator.

    PubMed

    Rothenberg, Jacob M; Chen, Christine P; Ackert, Jason J; Dadap, Jerry I; Knights, Andrew P; Bergman, Keren; Osgood, Richard M; Grote, Richard R

    2016-06-01

    We present the first experimental demonstration of coherent perfect absorption (CPA) in an integrated device using a silicon racetrack resonator at telecommunication wavelengths. Absorption in the racetrack is achieved by Si+-ion-implantation, allowing for phase controllable amplitude modulation at the resonant wavelength. The device is measured to have an extinction of 24.5 dB and a quality-factor exceeding 3000. Our results will enable integrated CPA devices for data modulation and detection. PMID:27244408

  1. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation

    NASA Astrophysics Data System (ADS)

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2015-06-01

    Absorption of microwaves by metallic conductors is typically inefficient, albeit naturally broadband, due to the huge impedance mismatch between metal and free space. Reducing metal to ultrathin profile may improve absorption efficiency, but a maximal 50% absorption limit induced by the field continuity exists. Here, we experimentally show that broadband, perfect (100%) absorption of microwaves can be realized in a single layer of ultrathin conductive film when illuminated coherently by two oppositely directed incident beams. Our experiments keep the field continuity and simultaneously break the 50% limit. Inheriting the intrinsic broadband feature of metals, complete absorption is observed to be frequency independent in microwave experiments from 6 to 18 GHz. Remarkably, this occurs in films with thicknesses that are at the extreme subwavelength scales, ˜λ /10 000 or less. Our work proposes a way to achieve total electromagnetic wave absorption in an ultrawide spectrum of radio waves and microwaves with a simple conductive film.

  2. Coherent Control of the Optical Absorption in a Plasmonic Lattice Coupled to a Luminescent Layer

    NASA Astrophysics Data System (ADS)

    Pirruccio, Giuseppe; Ramezani, Mohammad; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gómez

    2016-03-01

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin luminescent layer. The coherent control is achieved by using two collinear, counterpropagating, and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.

  3. An equivalent realization of coherent perfect absorption under single beam illumination

    NASA Astrophysics Data System (ADS)

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2014-12-01

    We have experimentally and numerically demonstrated that the coherent perfect absorption (CPA) can equivalently be accomplished under single beam illumination. Instead of using the counter-propagating coherent dual beams, we introduce a perfect magnetic conductor (PMC) surface as a mirror boundary to the CPA configuration. Such a PMC surface can practically be embodied, utilizing high impedance surfaces, i.e., mushroom structures. By covering them with an ultrathin conductive film of sheet resistance 377 Ω, the perfect (100%) microwave absorption is achieved when the film is illuminated by a single beam from one side. Employing the PMC boundary reduces the coherence requirement in the original CPA setup, though the present implementation is limited to the single frequency or narrow band operation. Our work proposes an equivalent way to realize the CPA under the single beam illumination, and might have applications in engineering absorbent materials.

  4. An equivalent realization of coherent perfect absorption under single beam illumination

    PubMed Central

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2014-01-01

    We have experimentally and numerically demonstrated that the coherent perfect absorption (CPA) can equivalently be accomplished under single beam illumination. Instead of using the counter-propagating coherent dual beams, we introduce a perfect magnetic conductor (PMC) surface as a mirror boundary to the CPA configuration. Such a PMC surface can practically be embodied, utilizing high impedance surfaces, i.e., mushroom structures. By covering them with an ultrathin conductive film of sheet resistance 377 Ω, the perfect (100%) microwave absorption is achieved when the film is illuminated by a single beam from one side. Employing the PMC boundary reduces the coherence requirement in the original CPA setup, though the present implementation is limited to the single frequency or narrow band operation. Our work proposes an equivalent way to realize the CPA under the single beam illumination, and might have applications in engineering absorbent materials. PMID:25482592

  5. Coherent Control of the Optical Absorption in a Plasmonic Lattice Coupled to a Luminescent Layer.

    PubMed

    Pirruccio, Giuseppe; Ramezani, Mohammad; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gómez

    2016-03-11

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin luminescent layer. The coherent control is achieved by using two collinear, counterpropagating, and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures. PMID:27015478

  6. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G

    2016-07-01

    In this work, coherent perfect absorption of sound waves induced by the nonlinear response of a Helmholtz Resonator side loaded to a waveguide, is reported. It is shown that this two-port system can perfectly absorb two high amplitude symmetric incident waves under a certain condition. For the one-sided incidence configuration, this condition leads to an absorption equal to 0.5. Experiments verify these results and are in agreement with an analytical nonlinear impedance model for the resonator. The nonlinear control of perfect absorption opens new possibilities in the design of high amplitude sound attenuators for aero-engine applications. PMID:27475220

  7. AIR MONITORING BY DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETRY IN BAYTOWN, TEXAS

    EPA Science Inventory

    This report documents the results of a field study carried out in Baytown, Texas in August 1993. ne goal of the field study was to evaluate calibration and audit procedures for a differential optical absorption spectrometry (DOAS) system. he other major goal of the study was to c...

  8. REMOTE MONITORING OF GASEOUS POLLUTANTS BY DIFFERENTIAL ABSORPTION LASER TECHNIQUES

    EPA Science Inventory

    A single-ended laser radar (LIDAR) system was designed, built, and successfully operated to measure range-resolved concentrations of NO2, SO2, and O3 in the atmosphere using a Differential Absorption of Scattered Energy (DASE) LIDAR technique. The system used a flash-lamp pumped ...

  9. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  10. Optical coherence tomography in differential diagnosis of skin pathology

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Petrova, Galina P.; Derpaluk, Elena; Nikulin, Nikolai K.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kuranov, Roman V.

    2000-05-01

    The capabilities of optical coherence tomography (OCT) for imaging in vivo of optical patterns of pathomorphological processes in the skin and use of their optical patterns in clinical practice for differential diagnosis of dermatoses are presented. Images of skin tissue 0.8 - 1.5 mm deep were acquired with a resolution of 5, 12 and 20 micrometer using three compact fiber OCT devices developed at the Institute of Applied Physics RAS. The acquisition time of images of skin regions 2 - 6 mm in length was 2 - 4 s. The OCT capabilities were analyzed based on the study of 50 patients with different dermatoses. OCT images were interpreted by comparing with parallel histology. It is shown that OCT can detect in vivo optical patterns of morphological alterations in such general papulous dermatoses as lichen ruber planus and psoriasis, a capability that can be used in differential diagnosis of these diseases. Most informative are OCT images obtained with a resolution of 5 micrometer. The results of our study demonstrate the practical importance of OCT imaging for diagnosis of different dermatoses. OCT is noninvasive and, therefore, makes it possible to perform frequent multifocal examination of skin without any adverse effects.

  11. Direct Observation of the Coherent Nuclear Response after the Absorption of a Photon

    NASA Astrophysics Data System (ADS)

    Liebel, M.; Schnedermann, C.; Bassolino, G.; Taylor, G.; Watts, A.; Kukura, P.

    2014-06-01

    How molecules convert light energy to perform a specific transformation is a fundamental question in photophysics. Ultrafast spectroscopy reveals the kinetics associated with electronic energy flow, but little is known about how absorbed photon energy drives nuclear motion. Here we used ultrabroadband transient absorption spectroscopy to monitor coherent vibrational energy flow after photoexcitation of the retinal chromophore. In the proton pump bacteriorhodopsin, we observed coherent activation of hydrogen-out-of-plane wagging and backbone torsional modes that were replaced by unreactive coordinates in the solution environment, concomitant with a deactivation of the reactive relaxation pathway.

  12. Electromagnetically induced absorption via spontaneously generated coherence of a Λ system

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-pu; Gong, Shang-qing; Fan, Xi-jun; Xu, Zhi-zhan

    2004-02-01

    The effect of spontaneously generated coherence (SGC) on the pump-probe response of a nearly degenerate Λ system is investigated by taking into account the dephasing of the low-frequency coherence. It is found, in the case of small dephasing, that instead of electromagnetically induced transparency (EIT) at resonance, electromagnetically induced absorption (EIA) can occur due to the effect of SGC. We also study the effect of relative phase between the two applied fields and find that EIA and EIT can transform mutually by adjusting the relative phase.

  13. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  14. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  15. Coherence in the presence of absorption and heating in a molecule interferometer

    PubMed Central

    Cotter, J. P.; Eibenberger, S.; Mairhofer, L.; Cheng, X.; Asenbaum, P.; Arndt, M.; Walter, K.; Nimmrichter, S.; Hornberger, K.

    2015-01-01

    Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053

  16. Coherence in the presence of absorption and heating in a molecule interferometer.

    PubMed

    Cotter, J P; Eibenberger, S; Mairhofer, L; Cheng, X; Asenbaum, P; Arndt, M; Walter, K; Nimmrichter, S; Hornberger, K

    2015-01-01

    Matter-wave interferometry can be used to probe the foundations of physics and to enable precise measurements of particle properties and fundamental constants. It relies on beam splitters that coherently divide the wave function. In atom interferometers, such elements are often realised using lasers by exploiting the dipole interaction or through photon absorption. It is intriguing to extend these ideas to complex molecules where the energy of an absorbed photon can rapidly be redistributed across many internal degrees of freedom. Here, we provide evidence that center-of-mass coherence can be maintained even when the internal energy and entropy of the interfering particle are substantially increased by absorption of photons from a standing light wave. Each photon correlates the molecular center-of-mass wave function with its internal temperature and splits it into a superposition with opposite momenta in addition to the beam-splitting action of the optical dipole potential. PMID:26066053

  17. Coherent manipulation of absorption by intense fields in four level ladder system

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-05-01

    Nonlinear optical processes attributed to the dependence of the susceptibility of the medium on the input fluence can be remarkably manipulated by the quantum interference and coherence. One of these processes, the optical bistability (OB), that refers to the possibilities of two stable outputs for the same input fields, can also be modified by quantum coherence. Further, the nonlinear dependence of the absorption on the power of the input light gives rise to interesting processes like saturable absorption (SA) and reverse saturable absorption (RSA). While the SA corresponds to the decrease in the absorption coefficient with the increase of intensity of input light, the RSA corresponds to otherwise, that finds applications in optical limiting. We show, using a four-level Ladder system, how a control field manipulates these processes for an intense probe field applied in the excited state transition. The nonlinear absorption increases whereas the threshold of OB decreases in presence of a control field. We further delineates how the control field and the decay rates modifies SA and RSA. The control of these processes find applications in optical switching, optical limiting and optical communications.

  18. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  19. Effect of differential spectral reflectance on DIAL measurements using topographic targets. [Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1982-01-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

  20. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved. PMID:20539344

  1. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  2. Differential near-edge coherent diffractive imaging using a femtosecond high-harmonic XUV light source.

    PubMed

    Weise, Fabian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2012-11-19

    Element-specific contrast enhancement in tabletop coherent diffractive imaging (CDI) is demonstrated by employing an ultrafast extreme ultraviolet (XUV) light source with tunable photon energy. By combining two measurements performed at energies below and above the Al L(2,3) absorption edge, the spatial autocorrelation function of a micron-scale double pinhole in a 300 nm thick aluminum foil is retrieved despite a dominant background signal from directly transmitted light across the entire range of detectable diffraction angles. The fringe visibility in the diffraction patterns is 0 below the Al L(2,3) edge, 0.53 ± 0.06 above the edge, and 0.73 ± 0.08 in the differential image that combines the two measurements. The proof-of-principle experiment demonstrates that the variations of XUV optical constants in the vicinity of an inner-shell absorption edge can be utilized to improve the chemical sensitivity and image reconstruction quality of laboratory-based ultrafast imaging experiments. PMID:23187472

  3. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional

  4. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  5. [Retrieval of monocyclic aromatic hydrocarbons with differential optical absorption spectroscopy].

    PubMed

    Xie, Pin-Hua; Fu, Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Qin, Min; Li, Ang; Liu, Shi-Sheng; Wei, Qing-Nong

    2006-09-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, e. g. SO2, NO2, O3 etc. However, unlike the absorption spectra of SO2 and NO2, the analysis of aromatic compounds is difficult and strongly suffers from the cross interference of other absorbers (Herzberg bands of oxygen, ozone and sulfur dioxide), especially with relatively low concentrations of aromatic compounds in the atmosphere. In the present paper, the DOAS evaluation of aromatic compounds was performed by nonlinear least square fit with two interpolated oxygen optical density spectra at different path lengths and reference spectra of ozone at different temperature and SO2 cross section to correct the interference from absorbers of O2, O3 and SO2. The measurement of toluene, benzene, (m, p, o) xylene and phenol with a DOAS system showed that DOAS method is suitable for monocyclic aromatic compounds monitoring in the atmosphere. PMID:17112022

  6. Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption.

    PubMed

    Longhi, Stefano

    2015-04-01

    A method for realizing asymmetric (one-way) transmission of discretized light in modulated, linear, and purely passive optical lattices is suggested, which exploits the idea of unidirectional coherent perfect absorption. The system consists of a linear photonic lattice of coupled resonators or waveguides, side coupled to a chain of lossy elements, in which light can avoid the occupation of the dissipative sites when propagating in one way, but not in the opposite one. Non-reciprocity requires modulation of the resonator/waveguide parameters, realizing a dissipative optical Aharonov-Bohm diode with non-reciprocal behavior. PMID:25831312

  7. Coherent population trapping on 87Rb atoms in small-size absorption cells with buffer gas

    NASA Astrophysics Data System (ADS)

    Ermak, S. V.; Petrenko, M. V.; Semenov, V. V.

    2016-02-01

    Coherent population trapping (CPT) on 87Rb atoms in neon atmosphere has been studied in small-size glass absorption cells under conditions of pumping with narrow-band laser radiation at the D2 line of the main doublet. Parameters of the absorption signal have been measured in 3-mm-diameter cells at buffer gas (Ne) pressures varied within 200-400 Torr, cell temperatures within 65-120°C, and pumping radiation power densities within 30-400 μW/cm2. Optimum values of the buffer gas pressures, cell temperature, and pumping power are determined at which the short-term instability of the resonance line is at minimum. Orientational shifts of the CPT resonance signal in gas-filled cells and small-size cells with antirelaxation coating have been compared.

  8. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface

    PubMed Central

    Fan, Yuancheng; Liu, Zhe; Zhang, Fuli; Zhao, Qian; Wei, Zeyong; Fu, Quanhong; Li, Junjie; Gu, Changzhi; Li, Hongqiang

    2015-01-01

    Graphene has drawn considerable attention due to its intriguing properties in photonics and optoelectronics. However, its interaction with light is normally rather weak. Meta-surfaces, artificial structures with single planar function-layers, have demonstrated exotic performances in boosting light-matter interactions, e.g., for absorption enhancement. Graphene based high efficiency absorber is desirable for its potential applications in optical detections and signal modulations. Here we exploit graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the grapheme meta-surface with strong resonant behaviors. The CPA can be tuned substantially by merging the geometric design of the meta-surface and the electrical tunability of graphene. Furthermore, we found that the graphene nanoribbon meta-surface based CPA is realizable with experimentally achievable graphene sample. PMID:26400371

  9. Coherent phase control of resonance-mediated two-photon absorption in rare-earth ions

    SciTech Connect

    Zhang, Shian Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-11-04

    We theoretically and experimentally demonstrate the quantum coherent control of the resonance-mediated two-photon absorption in rare-earth ions by the phase-shaped femtosecond laser pulse. Our theoretical results show that the resonance-mediated two-photon absorption can be effectively controlled, but the control efficiency depends on the laser repetition rate in real experiment due to the long lifetime and the short decoherence time of the excited state, and the larger laser repetition rate yields the lower control efficiency. These theoretical results are experimentally confirmed in glass sample doped with Er{sup 3+} by utilizing the femtosecond lasers with low repetition rate of 1 kHz and high repetition rate of 80 MHz.

  10. Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Edner, H.; Svanberg, S.; Cecchi, G.; Pantani, L.; Ferrara, R.; Caltabiano, T.

    1998-10-01

    The total fluxes of sulphur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano were studied using optical remote sensing techniques in three shipborne field experiments (1992, 1994, and 1997). The main purpose of the experiments was to compare active (laser) techniques with passive monitoring. Differential absorption lidar (DIAL) measurements were implemented by placing the Swedish mobile lidar system on board the Italian research vessel Urania, sailing under the volcanic plumes. Simultaneously, the passive differential optical absorption spectroscopy (DOAS) technique was used for assessing the total overhead gas burden. Finally, correlation spectroscopy (COSPEC) was also implemented in one of the campaigns. Differences in integrated gas column assessment are expected and observed, mostly connected to complex scattering conditions influencing the passive measurements. Since such measurements are much employed in routine volcanic monitoring it is of great interest to model and provide corrections to the raw data obtained. Lidar measurements proved to be quite useful for this purpose. By combining the integrated gas concentration over the plume cross section with wind velocity data, SO2 fluxes of the order of 1000, 100, and 10 tonnes/day were measured for Mt. Etna, Stromboli, and Vulcano, respectively.

  11. In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents

    PubMed Central

    Makita, Shuichi; Yasuno, Yoshiaki

    2015-01-01

    In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with photothermal OCT has been derived. The phase-resolved thermal expansion detection algorithm without motion artifact enables in vivo detection of photothermal effect. Phantom imaging with a blood phantom and in vivo human skin imaging are conducted. A phantom with guinea-pig blood as absorber has been scanned by the photothermal OCT system to prove the concept of cross-sectional absorption agent imaging. An in vivo human skin measurement is also performed with endogenous absorption agents. PMID:26137374

  12. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy.

    PubMed

    Vos, M H; Lambry, J C; Robles, S J; Youvan, D C; Breton, J; Martin, J L

    1991-10-15

    It is shown that vibrational coherence modulates the femtosecond kinetics of stimulated emission and absorption of reaction centers of purple bacteria. In the DLL mutant of Rhodobacter capsulatus, which lacks the bacteriopheophytin electron acceptor, oscillations with periods of approximately 500 fs and possibly also of approximately 2 ps were observed, which are associated with formation of the excited state. The kinetics, which reflect primary processes in Rhodobacter sphaeroides R-26, were modulated by oscillations with a period of approximately 700 fs at 796 nm and approximately 2 ps at 930 nm. In the latter case, at 930 nm, where the stimulated emission of the excited state, P*, is probed, oscillations could only be resolved when a sufficiently narrow (10 nm) and concomitantly long pump pulse was used. This may indicate that the potential energy surface of the excited state is anharmonic or that low-frequency oscillations are masked when higher frequency modes are also coherently excited, or both. The possibility is discussed that the primary charge separation may be a coherent and adiabatic process coupled to low-frequency vibrational modes. PMID:1924348

  13. Water vapor differential absorption lidar development and evaluation.

    PubMed

    Browell, E V; Wilkerson, T D; McIlrath, T J

    1979-10-15

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements. PMID:20216627

  14. Water vapor differential absorption lidar development and evaluation

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  15. Toward absorption contrast imaging of biological tissues in vivo by using photothermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Yasuno, Yoshiaki

    2014-03-01

    Optical coherence tomography has been proven in the last two decades its clinical value by providing 3D non-invasive in vivo biopsy of the biological samples. In addition to structural information given by the backscattered intensity, the optical absorption will also provide another powerful contrast. Optical absorbers in biological tissues exhibits important role such as hemoglobin and melanin. However, current methods of absorption contrast take long time and not suitable for in vivo imaging. Toward in vivo absorption contrast imaging, we developed photothermal OCT system by combining swept-source OCT system and excitation laser. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate and range of 47 kHz and of 100 nm, respectively. Photocurrents from balanced photoreceivers are sampled by a high-speed digitizer by using k-clock from the source to sample optical spectrum in k-linear domain. The sensitivity of 107 dB for two polarization channels is achieved. At the sample arm, the OCT probe beam and an excitation laser are combined by a dielectric mirror. The fiber-coupled laser diode of 406 nm wavelength is used for excitation since the absorption of hemoglobin has peak around this wavelength. In order to evaluate the ability of this system, phase stability of the system was measured. The standard deviation of the phase shift is measured as 0.0028 radians, where the signal-to-noise-limited value is approximately 0.001. Several issues for in vivo case, motion, blood flow, thermal damage, and etc. will be addressed here.

  16. Coherence-assisted single-shot cooling by quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Woods, Mischa P.; Prior, Javier; Huber, Marcus

    2015-11-01

    The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three quantum bits (qubits). The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information processing purposes. We show that the coherent oscillations inherent to quantum dynamics can be harnessed to reach temperatures that are colder than the steady state in orders of magnitude less time, thereby providing a fast source of low-entropy qubits. This effect demonstrates that quantum thermal machines can surpass classical ones, reminiscent of quantum advantages in other fields, and is applicable to a broad range of technologically important scenarios.

  17. Laser speckle effects on hard target differential absorption lidar

    SciTech Connect

    MacKerrow, E.P.; Tiee, J.J.; Fite, C.B.

    1996-04-01

    Reflection of laser light from a diffuse surface exhibits a complex interference pattern known as laser speckle. Measurement of the reflected intensity from remote targets, common to ``hard-target`` differential absorption lidar (DIAL) requires consideration of the statistical properties of the reflected light. The authors have explored the effects of laser speckle on the noise statistics for CO{sub 2} DIAL. For an ensemble of independent speckle patterns it is predicted that the variance for the measured intensity is inversely proportional to the number of speckle measured. They have used a rotating drum target to obtain a large number of independent speckle and have measured the predicted decrease in the variance after correlations due to system drifts were accounted for. Measurements have been made using both circular and linear polarized light. These measurements show a slight improvement in return signal statistics when circular polarization is used. The authors have conducted experiments at close range to isolate speckle phenomena from other phenomena, such as atmospheric turbulence and platform motion thus allowing them to gain a full understanding of speckle. They have also studied how to remove correlation in the data due to albedo inhomogeneities producing a more statistically independent ensemble of speckle patterns. They find that some types of correlation are difficult to remove from the data.

  18. Progress Report on Frequency - Modulated Differential Absorption Lidar

    SciTech Connect

    Cannon, Bret D.; Harper, Warren W.; Myers, Tanya L.; Taubman, Matthew S.; Williams, Richard M.; Schultz, John F.

    2001-12-15

    Modeling done at Pacific Northwest National Laboratory (PNNL) in FY2000 predicted improved sensitivity for remote chemical detection by differential absorption lidar (DIAL) if frequency-modulated (FM) lasers were used. This improved sensitivity results from faster averaging away of speckle noise and the recently developed quantum cascade (QC) lasers offer the first practical method for implementing this approach in the molecular fingerprint region of the infrared. To validate this model prediction, a simple laboratory bench FM-DIAL system was designed, assembled, tested, and laboratory-scale experiments were carried out during FY2001. Preliminary results of the FM DIAL experiments confirm the speckle averaging advantages predicted by the models. In addition, experiments were performed to explore the use of hybrid QC - CO2 lasers for achieving sufficient frequency-modulated laser power to enable field experiments at longer ranges (up to one kilometer or so). This approach will allow model validation at realistic ranges much sooner than would be possible if one had to first develop master oscillator - power amplifier systems utilizing only QC devices. Amplification of a QC laser with a CO2 laser was observed in the first hybrid laser experiments, but the low gain and narrow linewidth of the CO2 laser available for these experiments prevented production of a high-power FM laser beam.

  19. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system. PMID:23187280

  20. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  1. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses

    SciTech Connect

    Alekseev, A E; Vdovenko, V S; Sergachev, I A; Simikin, D E; Gorshkov, B G; Potapov, V T

    2014-10-31

    We report a new method for reconstructing the signal shape of the external dynamic perturbations along the entire length of the fibre of an optical coherence reflectometer. The method proposed is based on differential phase-shift keying of a probe pulse and demodulation of scattered light by the phase diversity technique. Possibilities of the method are demonstrated experimentally. (fibre-optic sensors)

  2. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  3. Differentiating retroperitoneal liposarcoma tumors with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lev, Dina; Baranov, Stepan A.; Carbajal, Esteban F.; Young, Eric D.; Pollock, Raphael E.; Larin, Kirill V.

    2011-03-01

    Liposarcoma (LS) is a rare and heterogeneous group of malignant mesenchymal neoplasms exhibiting characteristics of adipocytic differentiation. Currently, radical surgical resection represents the most effective and widely used therapy for patients with abdominal/retroperitoneal LS, but the presence of contiguous essential organs, such as the kidney, pancreas, spleen, adrenal glands, esophagus or colon, as well as often reoccurrence of LS in A/RP calls for the enhancement of surgical techniques to minimize resection and avoid LS reoccurrences. Difficulty in detecting the margins of neoplasms due to their affinity to healthy fat tissue accounts for the high reoccurrence of LS within A/RP. Nowadays, the microscopic detection of margins is possible only by use of biopsy, and the minimization of surgical resection of healthy tissues is challenging. In this presentation we'll demonstrate the initial OCT results for the imaging and distinction of LS and normal human fat tissues and clear detection of tumor boundaries.

  4. Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals.

    PubMed

    Ramakrishnan, Gopakumar; Ramanandan, Gopika K P; Adam, Aurèle J L; Xu, Man; Kumar, Nishant; Hendrikx, Ruud W A; Planken, Paul C M

    2013-07-15

    We report on the surprisingly strong, broadband emission of coherent terahertz pulses from ultrathin layers of semiconductors such as amorphous silicon, germanium and polycrystalline cuprous oxide deposited on gold, upon illumination with femtosecond laser pulses. The strength of the emission is surprising because the materials are considered to be bad (amorphous silicon and polycrystalline cuprous oxide) or fair (amorphous germanium) terahertz emitters at best. We show that the strength of the emission is partly explained by cavity-enhanced optical absorption. This forces most of the light to be absorbed in the depletion region of the semiconductor/metal interface where terahertz generation occurs. For an excitation wavelength of 800 nm, the strongest terahertz emission is found for a 25 nm thick layer of amorphous germanium, a 40 nm thick layer of amorphous silicon and a 420 nm thick layer of cuprous oxide, all on gold. The emission from cuprous oxide is similar in strength to that obtained with optical rectification from a 300 μm thick gallium phosphide crystal. As an application of our findings we demonstrate how such thin films can be used to turn standard optical components, such as paraboloidal mirrors, into self-focusing terahertz emitters. PMID:23938530

  5. Assessment of the differential linear coherent scattering coefficient of biological samples

    NASA Astrophysics Data System (ADS)

    Conceição, A. L. C.; Antoniassi, M.; Poletti, M. E.

    2010-07-01

    New differential linear coherent scattering coefficient, μ CS, data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07≤ q≤70.5 nm -1), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the μ CS reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples.

  6. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  7. [Retrieval of tropospheric NO2 by multi axis differential optical absorption spectroscopy].

    PubMed

    Xu, Jin; Xie, Pin-hua; Si, Fu-qi; Dou, Ke; Li, Ang; Liu, Yu; Liu, Wen-qing

    2010-09-01

    A method of retrieving NO2 in troposphere based on multi axis differential optical absorption spectroscopy (MAX-DOAS) was introduced. The differential slant column density (dSCD) of NO2 was evaluated by differential optical absorption spectroscopy (DOAS), removing the Fraunhofer structure and Ring effect. Combining the results of different observing directions, the tropospheric NO2 differential slant column density (deltaSCD) was evaluated, and the air mass factor (AMF) was calculated with the radiative transfer model SCIATRAN and the tropospheric NO2 vertical column density (VCD) was retrieved. To ensure the accuracy of the results, it was compared with the results of long path differential optical absorption spectroscopy (LP-DOAS), a good accordance was shown with the correlation coefficients of 0.94027 and 0.96924. PMID:21105419

  8. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  9. Microscopic Description of Intraband Absorption in Graphene: The Occurrence of Transient Negative Differential Transmission

    NASA Astrophysics Data System (ADS)

    Kadi, Faris; Winzer, Torben; Malic, Ermin; Knorr, Andreas; Göttfert, F.; Mittendorff, M.; Winnerl, S.; Helm, M.

    2014-07-01

    We present a microscopic explanation of the controversially discussed transient negative differential transmission observed in degenerate optical pump-probe measurements in graphene. Our approach is based on the density matrix formalism allowing a time- and momentum-resolved study of carrier-light, carrier-carrier, and carrier-phonon interaction on microscopic footing. We show that phonon-assisted optical intraband transitions give rise to transient absorption in the optically excited hot carrier system counteracting pure absorption bleaching of interband transitions. While interband transition bleaching is relevant in the first hundreds of fs after the excitation, intraband absorption sets in at later times. In particular, in the low excitation regime, these intraband absorption processes prevail over the absorption bleaching resulting in a zero crossing of the differential transmission. Our findings are in good qualitative agreement with recent experimental pump-probe studies.

  10. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  11. Combined optical coherence phase microscopy and impedance sensing measurements of differentiating adipose derived stem cells

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    There is a growing interest in monitoring differentiating stem cells in 2D culture without the use of labelling agents. In this study we explore the feasibility of a multimodality method that combines impedance sensing (IS) and optical coherence phase microscopy (OCPM) to monitor the main biological events associated with adipose derived stem cells differentiation into different lineages. Adipose derived stem cells were cultured in Mesenpro RS medium on gold electrode arrays. The system (ECIS, Applied biophysics) is connected to a lock-in amplifier controlled by a computer, and the complex impedance is derived from the in phase and out of phase voltages. Multi-frequency measurements spanning from 500Hz to 100 kHz are recorded every 2 minutes. The Optical coherence phase microscope is build around a Thorlabs engine (930nm FWHM: 90nm) and connected to a custom build microscope probe. The IS and OCPM were successfully integrated. The electrode area (250um) was imaged with a lateral resolution of 1.5um during impedance measurements. Impedance sensing gave an average measurement of differentiation, as a change in impedance over the electrode area, whereas OCPM provides additional information on the cellular events occurring on top of the electrode. The information retrieved from OCPM will feed a mathematical model correlating cellular differentiation and impedance variation. In this study we have demonstrated the feasibility of integrating two non-invasive monitoring techniques that will be instrumental in designing stem cell based screening assays.

  12. Nature of quantum states created by one photon absorption: pulsed coherent vs pulsed incoherent light.

    PubMed

    Han, Alex C; Shapiro, Moshe; Brumer, Paul

    2013-08-29

    We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatiotemporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be dramatically different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed from ultrashort coherent excitation does not reflect what happens in processes induced by solar-like radiation, and conclusions drawn from one do not, in general, apply to the other. These results provide further support to the view that the dynamics observed in studies using ultrashort coherent pulses can be significantly different than those that would result from excitation with natural incoherent light. PMID:23879891

  13. Theory and experiment of coherent wave packet dynamics in rare earth solids: Absorption spectrum vs femtosecond fringe-resolved interferogram

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Dai, D. C.; Wang, G. Q.; Ninulescu, V.; Yu, X. Y.; Luo, L.; Zhou, J. Y.; Yan, YiJing

    2001-01-01

    Coherent dynamic property of neodymium yttrium aluminum garnet (Nd:YAG) crystal at 77 K is studied via the conventional absorption, the femtosecond fringe-resolved wave packet interferometry, and the related difference-phase spectrum. The recorded interferogram exhibits beatings in subpicosecond time scale arising from the interferences among various weakly split 4f-electronic states and the coupled vibronic optical phonon sidebands. The electron-phonon coupling in Nd:YAG can be well described by multiple Brownian oscillators model involving in each individual electronic transition. The parameters for characterizing material coherence and relaxation are determined via the theoretical modelings of both the frequency and the time-domain experimental signals.

  14. Coherent-backscatter effect - A vector formulation accounting for polarization and absorption effects and small or large scatterers

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.

    1992-01-01

    Previous theoretical work on the coherent-backscatter effect in the context of speckle time autocorrelation has gone beyond the diffusion approximation and the assumption of isotropic (point) scatterers. This paper extends the theory to include the effects of polarization and absorption, and to give the angular line shape. The results are expressions for angular variations valid for small and large scatterers and linear and circular polarizations, in lossless or lossy media. Calculations show that multiple anisotropic scattering results in the preservation of incident polarization. Application to a problem in radar astronomy is considered. It is shown that the unusual radar measurements (high reflectivity and polarization ratios) of Jupiter's icy Galilean satellites can be explained by coherent backscatter from anisotropic (forward) scatterers.

  15. A water vapor monitor using differential infrared absorption

    NASA Astrophysics Data System (ADS)

    Burch, D. E.; Goodsell, D. S.

    1981-09-01

    A water vapor monitor was developed with adequate sensitivity and versatility for a variety of applications. Two applications are the continuous monitoring of water in ambient air and the measuring of the mass of water desorbed from aerosol filters. The sample gas may be held static, or flow continuously through the 56 cc sample cell, temperature controlled at 45 C. Infrared energy from a tungsten-iodide bulb passes through a rotating filter wheel and the sample cell to a PbS detector. The infrared beam passes through the sample gas twice to produce a total optical path of 40 cm. The infrared beam passes alternately through two semicircular narrow bandpass filters. Absorption by the water vapor in the sample produces a 30-Hz modulation of the detector signal that is proportional to the water concentration. The maximum concentration that can be measured accurately is approximately 5%.

  16. Solidlike coherent vibronic dynamics in a room temperature liquid: Resonant Raman and absorption spectroscopy of liquid bromine

    NASA Astrophysics Data System (ADS)

    Branigan, Edward T.; van Staveren, Marie N.; Apkarian, V. Ara

    2010-01-01

    UV-visible absorption and resonance Raman (RR) spectra of liquid bromine are presented and rigorously interpreted. The RR spectra, which show an anharmonic vibrational progression of up to 30 overtones, define the ground state potential in the range 2.05 Åabsorption spectrum. The spectrum is first inverted under assumption of the classical reflection approximation, then corrected by forward simulations through quantum time correlations. The extrapolated B and C potentials are used to simulate RR spectra. Their validity is cross-checked by the interference pattern of the polarized spectra due to two-channel RR scattering. The discrepancy between calculated and observed intensities can be entirely assigned to vibrational dephasing, which is observed to follow the exponential energy gap law—dephasing rates perfectly trace the Birge-Sponer plot of the vibrational progression—suggesting that vibrational dissipation controls the decay of coherence. Despite strong intermolecular electronic interactions and vibrational energy gaps of ˜kT, vibrational coherences are long lived: Coherence times range from ≥25 to ≥2.4 ps between v =1 and v =25. Remarkably, the RR line shapes are skewed toward the red, indicating upchirp in frequencies that develop over a period of 400 fs. Evidently, the molecular vibrations adiabatically follow the solvent cage, which is impulsively driven into expansion during the ˜20 fs evolution on the electronically excited state. Liquid bromine retains coherence in ordered sluggish local cages with quadrupolar interactions—dynamics akin to molecules isolated in structured cryogenic rare gas solids.

  17. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  18. Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons

    NASA Astrophysics Data System (ADS)

    Ignatov, Anton I.; Nechepurenko, Igor A.; Baranov, Denis G.

    2016-08-01

    The ability to control propagation of electromagnetic guided modes lies at the heart of integrated nanophotonics. Surface plasmon-polaritons are a class of guided modes which can be employed in integrated optical systems. Here, we present a theoretical design of a coherent surface plasmon absorber which can perfectly harvest energy of coherently incident surface plasmons without parasitic scattering into free space modes. Excitation of free space modes which usually accompanies scattering of a surface plasmon by an interface boundary is avoided due to specially tailored anisotropy of the absorber. The concept of coherent SPP absorber is analyzed numerically for spatially non-uniform and finite-size structures. We believe that our results will be important for the development of integrated nanoplasmonic systems.

  19. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  20. Differential intensity contrast swept source optical coherence tomography for human retinal vasculature visualization

    NASA Astrophysics Data System (ADS)

    Motaghiannezam, Reza; Fraser, Scott

    2012-03-01

    We demonstrate an intensity-based motion sensitive method, called differential logarithmic intensity variance (DLOGIV), for 3D microvasculature imaging and foveal avascular zone (FAZ) visualization in the in vivo human retina using swept source optical coherence tomography (SS-OCT) at 1060 nm. A motion sensitive SS-OCT system was developed operating at 50,000 A-lines/s with 5.9 μm axial resolution, and used to collect 3D images over 4 mm2 in a normal subject eye. Multiple B-scans were acquired at each individual slice through the retina and the variance of differences of logarithmic intensities as well as the differential phase variances (DPV) was calculated to identify regions of motion (microvasculature). En face DLOGIV image were capable of capturing the microvasculature through depth with an equal performance compared to the DPV.

  1. Measurement of atmospheric coherence length with differential movement of the image sensor

    NASA Astrophysics Data System (ADS)

    Jia, Yu-gang; Tong, Shou-feng

    2013-08-01

    This paper gives the introduction about a new measuring device which is to measure th e atmospheric coherence length by using the differential movement principle.The system can observe the edge of the sun in the day time, and also observe planets at night. This system can measure the atmospheric coherence length in both horizontal and slant directions. The measurement in the day time requests the assistance of the attenuator and beacon beam of the atmospheric coherence length in the direction of the slant path.The working principle is the laser beam scattered by atmospheric turbulence through into the receiving optical system. Because the receiving system which is consists of two completely symmetrical telephoto optical system. Therefore,two optical channels in turbulence device are completely identical. After passing through the optical channels, the beam focusing is finished. By adjusting the optical system manually or automatically, two light point images can be formed on the photosensitive element of the CCD. Atmospheric turbulence can cause phase fluctuation of wave front. After aggregation by the receiving lens, The photosensitive element of CCD can collect the relative jitter of the two imaging optical centroid positions we require, and researchers can obtain relative changes from the two centroid positions by the calculations of computer software, as the result, the atmospheric coherence length is obtained. By means of the simulation of the optical system and the imaging quality optimization by Code V, researchers can rather achieve transfer function diagram, the circle of confusion value in different views and energy distribution. From above, researchers can examine whether the optical system is being qualified, or the method is leading to a better observation effect. At end of this dissertation, the limitations of this system will be analyzed, and the improvement methods and suggestions will be provided.

  2. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. PMID:23299022

  3. Ultra-violet and visible absorption characterization of explosives by differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E.

    2013-03-01

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R2 > 0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials.

  4. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  5. The concentration-estimation problem for multiple-wavelength differential absorption lidar

    SciTech Connect

    Payne, A.N.

    1994-07-01

    We are seeking to develop a reliable methodology for multi-chemicai detection and discrimination based upon multi-wavelength differential absorption lidar measurements. In this paper, we summarize some preliminary results of our efforts to devise suitable concentration-estimation algorithms for use in detection and discrimination schemes.

  6. LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER AND EPA-APPROVED FIXED POINT METHODS INTERCOMPARISON

    EPA Science Inventory

    Differential optical absorption spectrometry (DOAS) has been used by a number of investigators over the past 10 years to measure a wide range of gaseous air pollutants. ecently OPSIS AB, Lund, Sweden, has developed and made commercially available DOAS instrument that has a number...

  7. AIR QUALITY MONITORING IN ATLANTA WITH THE DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER

    EPA Science Inventory

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  8. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero. PMID:21428087

  9. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  10. Rb atoms in a blue-detuned dipole trap: Coherence and ground-state differential ac Stark shift

    NASA Astrophysics Data System (ADS)

    Sheng, D.; Zhang, J.; Orozco, L. A.

    2013-06-01

    Blue-detuned dipole traps and their ability to preserve atomic coherences are interesting for precision measurement applications. In this paper, we present experimental studies on the differential ac Stark shift of the ground-state hyperfine splitting in 87Rb atoms confined in a dynamic blue-detuned dipole trap. We systematically study the power and detuning effects on the Rabi resonance frequency (differential ac Stark shift) and its linewidth (coherence) and find that their performance is compatible with future parity violation experiments in Fr.

  11. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks. PMID:26274639

  12. Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Cioni, R.; Raco, B.; Taddeucci, G.

    1994-09-01

    The total flux of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano was determined using the differential absorption lidar technique. The measurements were performed from an oceanographic research ship making traverses under the volcanic plumes with the lidar system sounding vertically. By combining the integrated gas concentration over the plume cross section with wind velocity data, it was possible to determine the total fluxes of SO2 from the three volcanoes, all measured within a 3-day period in September 1992. We found total fluxes of about 25, 180, and 1300 t/d for Vulcano, Stromboli, and Etna, respectively. These data, collected with an active remote-sensing technique, were compared with simultaneous recording with passive differential optical absorption spectroscopy (DOAS) using the sky radiation as the light source. Since the geometry of the light paths crossing the volcanic plume is not well defined in the passive measurements, a correction to the DOAS data is required. The SO2 results are also compared with previously available data from correlation spectroscopy measurements. Lidar measurements on atomic mercury were also made for the plumes from Stromboli and Vulcano, but the system sensitivity and range only allowed estimates of upper limits for the Hg fluxes.

  13. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  14. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption

    NASA Astrophysics Data System (ADS)

    Zanotto, Simone; Melloni, Andrea

    2016-04-01

    By hybrid integration of plasmonic and dielectric waveguide concepts, it is shown that nearly perfect coherent absorption can be achieved in a co-propagating coupler geometry. First, the operating principle of the proposed device is detailed in the context of a more general 2 × 2 lossy coupler formalism. Then, it is shown how to tune the device in a wide region of possible working points, its broadband operation, and the tolerance to fabrication uncertainties. Finally, a complete picture of the electromagnetic modes inside the hybrid structure is analyzed, shining light onto the potentials which the proposed device holds in view of classical and quantum signal processing, nonlinear optics, polarization control, and sensing.

  15. Coherent perfect absorption in a homogeneously broadened two-level medium

    SciTech Connect

    Longhi, Stefano

    2011-05-15

    In recent works, it has been shown, rather generally, that the time-reversed process of lasing at threshold realizes a coherent perfect absorber (CPA). In a CPA, a lossy medium in an optical cavity with a specific degree of dissipation, equal in modulus to the gain of the lasing medium, can perfectly absorb coherent optical waves that are the time-reversed counterpart of the lasing field. Here, the time-reversed process of lasing is considered in detail for a homogeneously broadened two-level medium in an optical cavity and the conditions for CPA are derived. It is shown that, owing to the dispersive properties of the two-level medium, exact time-reversal symmetry is broken and the frequency of the field at which CPA occurs is generally different than the one of the lasing mode. Moreover, at a large cooperation parameter, the observation of CPA in the presence of bistability requires one to operate in the upper branch of the hysteresis cycle.

  16. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-07-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  17. Optical Coherence Tomography: An Adjunctive Tool for Differentiating between Choroidal Melanoma and Metastasis.

    PubMed

    Vishnevskia-Dai, Vicktoria; Zur, Dinah; Yaacobi, Shiran; Moroz, Iris; Newman, Hadas; Neudorfer, Meira

    2016-01-01

    Purpose. To investigate the value of optical coherence tomography (OCT) for differentiation between choroidal melanoma and metastasis based on characteristics of the anterior choroidal surface and the chorioretinal interface. Methods. This retrospective observational case series included 29 patients with untreated choroidal melanomas and 21 patients with untreated choroidal metastases. Regularity and lobularity characteristics of the anterior choroidal surface were evaluated in a masked manner. Retinal and retinal pigment epithelium (RPE) findings were documented as well. Results. OCT demonstrated a regular and smooth anterior choroidal surface in 89.7% of the eyes with melanoma and in 47.6% of the eyes with metastasis (p = 0.002; sensitivity = 89.7%; specificity = 52.4%). The anterior choroidal contour was lobulated in 81.0% of the eyes with metastasis versus 17.2% of the eyes with melanoma (p < 0.001; sensitivity = 82.8%; specificity = 81.0%). RPE thickness and neuroretinal characteristics (e.g., retinal thickness, the presence of cysts, and the presence of subretinal fluid) were similar in both choroidal tumors. Conclusion. OCT may serve as a noninvasive adjunctive tool for the differential diagnosis of choroidal tumors. Choroidal melanomas usually demonstrate regular surfaces on OCT, while choroidal metastases usually have an irregular and lobulated surface. PMID:26998354

  18. Optical Coherence Tomography: An Adjunctive Tool for Differentiating between Choroidal Melanoma and Metastasis

    PubMed Central

    Vishnevskia-Dai, Vicktoria; Zur, Dinah; Yaacobi, Shiran; Moroz, Iris; Newman, Hadas; Neudorfer, Meira

    2016-01-01

    Purpose. To investigate the value of optical coherence tomography (OCT) for differentiation between choroidal melanoma and metastasis based on characteristics of the anterior choroidal surface and the chorioretinal interface. Methods. This retrospective observational case series included 29 patients with untreated choroidal melanomas and 21 patients with untreated choroidal metastases. Regularity and lobularity characteristics of the anterior choroidal surface were evaluated in a masked manner. Retinal and retinal pigment epithelium (RPE) findings were documented as well. Results. OCT demonstrated a regular and smooth anterior choroidal surface in 89.7% of the eyes with melanoma and in 47.6% of the eyes with metastasis (p = 0.002; sensitivity = 89.7%; specificity = 52.4%). The anterior choroidal contour was lobulated in 81.0% of the eyes with metastasis versus 17.2% of the eyes with melanoma (p < 0.001; sensitivity = 82.8%; specificity = 81.0%). RPE thickness and neuroretinal characteristics (e.g., retinal thickness, the presence of cysts, and the presence of subretinal fluid) were similar in both choroidal tumors. Conclusion. OCT may serve as a noninvasive adjunctive tool for the differential diagnosis of choroidal tumors. Choroidal melanomas usually demonstrate regular surfaces on OCT, while choroidal metastases usually have an irregular and lobulated surface. PMID:26998354

  19. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  20. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases.

    PubMed

    Lohberger, Falko; Hönninger, Gerd; Platt, Ulrich

    2004-08-20

    We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror. PMID:15352396

  1. Error reduction methods for integrated-path differential-absorption lidar measurements.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2012-07-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log". PMID:22772254

  2. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air. PMID:20125492

  3. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    SciTech Connect

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

  4. Studies of the differential absorption rocket experiment. [to measure atmospheric electron density

    NASA Technical Reports Server (NTRS)

    Ginther, J. C.; Smith, L. G.

    1975-01-01

    Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.

  5. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  6. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  7. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  8. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  9. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  10. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign. PMID:21556111

  11. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  12. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  13. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method.

    PubMed

    Zhao, Yanjie; Chang, Jun; Ni, Jiasheng; Wang, Qingpu; Liu, Tongyu; Wang, Chang; Wang, Pengpeng; Lv, Guangping; Peng, Gangding

    2014-05-01

    A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours. PMID:24921822

  14. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  15. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  16. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  17. [Measurement and retrieval of indicators for fast VOCs atmospheric photochemistry with differential optical absorption spectroscopy].

    PubMed

    Peng, Fu-Min; Xie, Pin-Hua; Shao, Shi-Yong; Li, Yu-Jin; Lin, Yi-Hui; Li, Su-Wen; Qin, Min; Liu, Wen-Qing

    2008-03-01

    Featuring excellent response characteristics and detection sensitivity and with much lower operational cost, differential optical absorption spectroscopy (DOAS) can be a powerful tool to trace concentration variation of trace indicators -O3, Ox (O3 + NO2) and HCHO for fast VOCs atmospheric photochemistry. But it's difficult to measure those gases accurately because of trace concentration. Here using a self-made DOAS system, the accurate measurement of those indicators was achieved through improving the ratio of signal to noise ratio and correcting the background scattering light; the retrieving method of those indicators was developed through eliminating the temperature effect of absorption cross section, accurately removing the intrinsic structure and lamp structure of spectrum. The preference of different spectral windows that could be used for the concentration retrieval of those indicators was analyzed and compared including interfering factors, results retrieved and the accuracy. PMID:18536400

  18. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  19. Atmospheric effects on CO{sub 2} differential absorption lidar sensitivity

    SciTech Connect

    Petrin, R.R.; Nelson, D.H.; Schmitt, M.J.

    1996-03-01

    The ambient atmosphere between the laser transmitter and the target can affect CO{sub 2} differential absorption lidar (DIAL) measurement sensitivity through a number of different processes. In this work, we will address two of the sources of atmospheric interference with CO{sub 2} DIAL measurements: effects due to beam propagation through atmospheric turbulence and extinction due to absorption by atmospheric gases. Measurements of atmospheric extinction under different atmospheric conditions are presented and compared to a standard atmospheric transmission model (FASCODE). We have also investigated the effects of atmospheric turbulence on system performance. Measurements of the effective beam size after propagation are compared to model predictions using simultaneous measurements of atmospheric turbulence as input to the model. These results are also discussed in the context of the overall effect of beam propagation through atmospheric turbulence on the sensitivity of DIAL measurements.

  20. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.

    2015-10-01

    We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.

  1. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  2. Evaluation wavelength range mapping, a tool to optimize the evaluation window in differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-04-01

    Optical remote sensing via Differential Optical Absorption Spectroscopy (DOAS) has become a standard technique to assess various trace gases in the atmosphere. Measurement instruments are usually classified into active instruments applying an artificial light source and passive instruments using natural light sources, e.g., scattered or direct sunlight. Platforms range from ground based to satellites and trace gases are studied in all kinds of different environments. Naturally, the evaluation of gathered spectra needs to be tuned to each specific case and trace gas of interest due to the wide range of measurement conditions, atmospheric compositions and instruments used. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should be as large as possible and include the largest differential absorption features of the trace gas of interest in order to maximize sensitivity. However, the differential optical densities of other absorbers should be minimized in order to prevent interferences between different absorption cross sections. Furthermore, instrumental specific features and wavelength dependent radiative transfer effects may have malicious effects and lead to erroneous values. Usually a compromise needs to be found depending on the conditions at hand. Evaluation wavelength range mapping is an easily applied tool to visualize wavelength depending evaluation features of DOAS and to find the optimal retrieval wavelength range. As an example, synthetic spectra are studied which simulate passive DOAS measurements of stratospheric bromine monoxide (BrO) by Zenith-DOAS and Multi-Axis DOAS (MAX-DOAS) measurements of BrO in volcanic plumes. The influence of the I0-effect and the Ring-effect on the respective retrievals are demonstrated. However, due to the general nature of the tool it is applicable to any DOAS measurement and the technique also allows to study any other wavelength dependent influences on retrieved trace gas columns.

  3. COMPENSATIONAL THREE-WAVELENGTH DIFFERENTIAL-ABSORPTION LIDAR TECHNIQUE FOR REDUCING THE INFLUENCE OF DIFFERENTIAL SCATTERING ON OZONE-CONCENTRATION MEASUREMENTS.

    EPA Science Inventory

    A three-wavelength differential-absorption lidar (DIAL) technique for the UV spectral region is presented that reduces the influence of aerosol differential scattering on measured O3-concentration profiles. The principal advantage of this approach is that, to a good first approxi...

  4. Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu

    2015-01-10

    A fiber-optic differential absorption sensor was developed to accurately monitor biomass growth in a photobioreactor. The prepared sensor consists of two probes: the sensor and the reference. The sensor probe was employed to monitor the biomass and changes in the liquid-phase concentration in a culture. To separate the liquids from photosynthetic bacteria CQK 01 and measure the liquid-phase concentration, a proposed polyimide-silica hybrid membrane was coated on the sensing region of the reference probe. A linear relationship was observed between the sensor output signal and the biomass from the lag phase to the decline phase. PMID:25967621

  5. Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Geiger, Allen R.

    1996-04-01

    The development of a differential absorption lidar (DIAL) system in the mid-IR region for the detection and monitoring of light hydrocarbons is presented. Two lithium niobate optical parametric oscillators provided the signal and reference wavelengths. With the aid of a retroreflector, the system detected 0.63 ppm of propane and 0.05 ppm of methane in the atmosphere at a greater than 1 mile range in the controlled release tests. Subsequently, the system mapped a petroleum deposit in eastern New Mexico.

  6. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Herring, G. C.; Balla, R. Jeffrey

    2007-06-01

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  7. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  8. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  9. [Real-time forecasting model for monitoring pollutant with differential optical absorption spectroscopy].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Xie, Pin-Hua; Wang, Feng-Sui; Yang, Yi-Jun

    2009-11-01

    For real-time and on-line monitoring DOAS (differential optical absorption spectroscopy) system, a model based on an improved Elman network for monitoring pollutant concentrations was proposed. In order to reduce the systematical complexity, the forecasting factors have been obtained based on the step-wise regression method. The forecasting factors were current concentrations, temperature and relative humidity, and wind speed and wind direction. The dynamic back propagation (BP) algorithm was used for creating training set. The experiment results show that the predicted value follows the real well. So the modified Elman network can meet the demand of DOAS system's real time forecasting. PMID:20101985

  10. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  11. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar.

    PubMed

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B

    2012-12-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection integrated-path differential-absorption lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier pumped by a Nd:YAG laser, and the receiver used a photomultiplier detector and photon-counting electronics. The results follow the expected changes with aircraft altitude, and the measured line shapes and optical depths show good agreement with theoretical calculations. PMID:23207402

  12. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  13. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  14. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  15. UV differential optical absorption method for measuring sulfur content in coal

    NASA Astrophysics Data System (ADS)

    Song, Feihu; Xu, Chuanlong; Wang, Shimin

    2012-02-01

    Determining the sulfur content in coal rapidly and accurately can provide a technical basis for the enterprises and the environmental administration departments. A novel method for measuring the sulfur content in coal based on UV differential optical absorption is presented in this paper. However, compared with the applications in atmosphere monitoring, the UV differential optical absorption spectroscopy (DOAS) for the sulfur content measurement in coal has the problems that the concentration range of SO2 in the flue gas is wider and the optical path-length of the gas cell is shorter. To solve these problems, an improved DOAS algorithm based on a finite impulse response (FIR) filter and a nonlinear compensation technique is proposed. An experimental measurement system based on the modified DOAS is designed and established. The standard SO2 gas and five kinds of standard coals are experimentally tested. Theoretical and experimental results show that the lower detection limit of the system is better than 0.014%, and the repeatability of the measurement system fairly meets the national standard of China. The system has advantages of low maintenance and shorter measurement duration (4 min).

  16. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  17. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  18. [Retrieval of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy].

    PubMed

    Wang, Yang; Xie, Pin-hua; Li, Ang; Xu, Jin; Zeng, Yi; Si, Fu-qi; Wu, Feng-cheng

    2012-04-01

    An appropriate reference spectrum is essential for the direct-sun differential optical absorption spectroscopy (DS-DOAS). It depends on the real reference spectrum to retrieve the total vertical column density (VCD). The spectrum detected at the time with minimum sun zenith angle under the relative clear atmospheric condition in the measurement period was conventionally selected as the reference spectrum. Because there is still untracked NO2 absorption structure in the reference spectrum, the VCD retrieved based on the above spectrum is actually relative VCD, which results in larger error. To solve this problem, a new method was investigated. A convolution of extraterrestrial high-precision solar Fraunhofer spectrum and the instrumental function of the spectrometer was computed and chosen as the reference spectrum. The error induced by NO2 absorption structure in the reference spectrum was removed. Then the fitting error of slant column density (SCD) retrieved by this method was analyzed. The correlation between the absolute SCD and the differential slant column density (dSCD) was calculated. The result shows that the error of SCD retrieved by this new method is below 1.6 x 10(16) molecules x cm(-2) on March 7, 2011, while the error generated by the normal method is about 4.25 x 10(16) molecules x cm(-2). The new method decreased more than 62% error. In addition, the results throughout the day were compared to the troposphere VCD from MAX-DOAS and they are in good agreement. It indicates that the new method could effectively reduce the VCD error of the common way. PMID:22715747

  19. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2009-11-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). Therefore they are strictly valid for weak absorptions and narrow wavelength intervals (strictly only for monochromatic radiation). For medium and strong absorption (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is not linear anymore. As well, for large wavelength intervals the wavelength dependent differences in the travelled light-paths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, by taking into account these dependencies, the applicability of the DOAS method can be extended also to cases with medium to strong absorptions and for broader wavelength intervals. Common approaches for this correction are the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a-priori knowledge for the air mass factor or the weighting function calculation by radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself. This new approach gives a description of the SCD that is as close to reality as desired (depending on the order of the Taylor expansion), and is independent from any assumptions or a-priori knowledge of the considered absorbers. In case studies for

  20. ϒ Spike-Field Coherence in a Population of Olfactory Bulb Neurons Differentiates between Odors Irrespective of Associated Outcome

    PubMed Central

    Li, Anan; Gire, David H.

    2015-01-01

    Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go–no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation. PMID:25855190

  1. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  2. Advanced sine wave modulation of continuous wave laser system for atmospheric CO(2) differential absorption measurements.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R

    2014-02-10

    In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth. PMID:24663259

  3. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  4. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    PubMed

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  5. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  6. Elemental biological imaging by differential absorption with a laser-produced x-ray source

    NASA Astrophysics Data System (ADS)

    Tillman, C.; Mercer, I.; Svanberg, S.; Herrlin, K.

    1996-01-01

    We demonstrate the novel application of hard x rays emitted by a laser-produced plasma for differential imaging of elements. An x-ray-emitting laser-produced plasma, obtained by the focusing of radiation from a 10-Hz terawatt laser, is used for biological imaging. The x-ray source can be arranged to yield characteristic x-ray emission lines with photon energies that bridge the K absorption edge of a chosen atomic species. One can obtain element-specific radiographs by recording transillumination images for different target materials on digital image plates and by subsequently subtracting or dividing the images. Successful phantom and experimental animal imaging are performed utilizing tantalum and gadolinium as target materials for the terawatt laser and gadolinium as the imaged contrast agent.

  7. [Air pollutants study by differential optical absorption spectroscopy with transmit-receive fibers].

    PubMed

    Wei, Yong-Jie; Geng, Xiao-Juan; Chen, Bo; Liu, Cui-Cui; Chen, Wen-Liang

    2013-10-01

    The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring. PMID:24409736

  8. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period. PMID:22242505

  9. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  10. Development of a differential absorption lidar for identification of carbon sequestration site leakage

    NASA Astrophysics Data System (ADS)

    Johnson, William Eric

    This thesis describes the development and deployment of a near-infrared scanning micropulse differential absorption lidar (DIAL) system for monitoring carbon dioxide sequestration site integrity. The DIAL utilizes a custom-built lidar (light detection and ranging) transmitter system based on two commercial tunable diode lasers operating at 1.571 microm, an acousto-optic modulator, fiber optic switches, and an Erbium-doped fiber amplifier to generate 65 microJ 200 ns pulses at a 15 kHz repetition rate. Backscattered laser transmitter light is collected with an 11 inch Schmidt-Cassegrain telescope where it is optically filtered to reduce background noise. A fiber-coupled photomultiplier tube operating in the photon counting mode is then used to monitor the collected return signal. Averaging over periods typically of one hour permit range-resolved measurements of carbon dioxide from 1 to 2.5 km with a typical error of 40 ppm. For monitoring a field site, the system scans over a field area by pointing the transmitter and receiver with a computer controlled motorized commercial telescope base. The system has made autonomous field measurements in an agricultural field adjacent to Montana State University and at the Kevin Dome carbon sequestration site in rural northern Montana. Comparisons have been made with an in situ sensor showing agreement between the two measurements to within the 40 error of the DIAL. In addition to the work on the 1.57 micron DIAL, this thesis also presents work done at NASA Langley Research Center on the development and deployment of a 2 micron integrated path differential absorption (IPDA) lidar. The 2 micron system utilizes a low repetition rate 140 mJ double pulsed Ho:Tm:YLF laser developed at NASA Langley.

  11. New concept design of differential absorption lidar: fusion of DIAL and TDLS methods

    NASA Astrophysics Data System (ADS)

    Lytkine, Alexandre; Lau, Brian; Lim, Alan; Jaeger, Wolfgang; Tulip, John

    2007-10-01

    We propose a new approach to range-resolved remote gas sensing in the atmosphere based on a combination of a DIAL and tunable-laser diode spectroscopy (TDLS) methods. To add range-resolving capabilities to a TDLS sensor we propose to arrange a group of retroreflectors (RRs) dividing an absorption path into adjacent measurement sections similar to those utilized by conventional DIAL systems. We implemented two techniques for the interrogation of the RRs: 1) scanning a beam of a continuous-wave laser over RRs sequentially; 2) using a time delay between returns from different RRs illuminated with a pulsed laser. We employed scanning technique with a vertical-cavity surface-emitting laser (VCSEL) operating near 1389 nm. A single-pulse interrogation method was demonstrated with a 10.9-μm quantum cascade laser (QCL) suitable for detection of ammonia, ethylene and water vapor in the atmosphere. Gas sensing and ranging was performed over distances varying from ~ 1 m up to ~ 1 km. Using VCSEL we attained a 0.5-s time resolution in gas concentration profiling with a 10-cm spatial resolution. Minimum interrogation time of a group of RRs was ~ 9 ms. A new generation of differential absorption LIDARs can be developed for range-resolved gas sensing in the atmosphere over distances up to ~ 1 km. The instruments can be used for a variety of applications ranging from fencing industrial areas to monitor fluxes of atmospheric pollutants to continuous air quality control in populated areas

  12. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  13. Micropulse differential absorption lidar for identification of carbon sequestration site leakage.

    PubMed

    Johnson, William; Repasky, Kevin S; Carlsten, John L

    2013-05-01

    A scanning differential absorption lidar (DIAL) instrument for identification of carbon dioxide leaks at carbon sequestration sites has been developed and initial data has been collected at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes operating in the continuous-wave mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto-optic modulator is used to generate a pulse train used to injection seed an erbium-doped fiber amplifier to produce eye-safe laser pulses with maximum pulse energies of 66 μJ, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 μm. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photomultiplier tube module operating in the photon counting mode. The DIAL has measured carbon dioxide profiles from 1 to 2.5 km with 60 min temporal averaging. Comparisons of DIAL measurements with a Licor LI-820 gas analyzer point sensor have been made. PMID:23669765

  14. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  15. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  16. Upper bounds for the security of differential-phase-shift quantum key distribution with weak coherent states

    NASA Astrophysics Data System (ADS)

    Curty, Marcos; Tamaki, Kiyoshi; Moroder, Tobias; Gómez-Sousa, Hipólito

    2009-04-01

    In this paper we present limitations imposed by sequential attacks on the maximal distance achievable by a differential-phase-shift (DPS) quantum key distribution (QKD) protocol with weak coherent pulses. Specifically, we compare the performance of two possible sequential attacks against DPS QKD where Eve realizes, respectively, optimal unambiguous state discrimination of Alice's signal states, and optimal unambiguous discrimination of the relative phases between consecutive signal states. We show that the second eavesdropping strategy provides tighter upper bounds for the security of a DPS QKD scheme than the former one.

  17. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  18. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  19. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  20. Coherent potential approximation for the absorption spectra and the densities of states of cubic Frenkel exciton systems with Gaussian diagonal disorder

    NASA Astrophysics Data System (ADS)

    Avgin, I.; Boukahil, A.; Huber, D. L.

    2015-11-01

    Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.

  1. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique. PMID:17415396

  2. Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Smith, J. N.; Edner, H.; Svanberg, S.

    2003-10-01

    An all-solid-state fast-tuning lidar transmitter for range- and temporally resolved atmospheric gas concentration measurements has been developed and thoroughly tested. The instrument is based on a commercial optical parametric oscillator (OPO) laser system, which has been redesigned with piezoelectric transducers mounted on the wavelength-tuning mirror and on the crystal angle tuning element in the OPO. Piezoelectric transducers similarly control a frequency-mixing stage and doubling stage, which have been incorporated to extend system capabilities to the mid-IR and UV regions. The construction allows the system to be tuned to any wavelength, in any order, in the range of the piezoelectric transducers on a shot-to-shot basis. This extends the measurement capabilities far beyond the two-wavelength differential absorption lidar method and enables simultaneous measurements of several gases. The system performance in terms of wavelength, linewidth, and power stability is monitored in real time by an étalon-based wave meter and gas cells. The tests showed that the system was able to produce radiation in the 220-4300-nm-wavelength region, with an average linewidth better than 0.2 cm-1 and a shot-to-shot tunability up to 160 cm-1 within 20 ms. The utility of real-time linewidth and wavelength measurements is demonstrated by the ability to identify occasional poor quality laser shots and disregard these measurements. Also, absorption cell measurements of methane and mercury demonstrate the performance in obtaining stable wavelength and linewidth during rapid scans in the mid-IR and UV regions.

  3. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].

    PubMed

    Li, Ang; Xie, Pin-hua; Liu, Wen-qing; Liu, Jian-guo; Dou, Ke; Lin, Yi-hui

    2008-10-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure various trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range. Passive DOAS using the zenith scattered sunlight as the light source can obtain the continuous column density distribution of air pollutants (such as SO2 and NO2) by scanning the plume emitted from sources on a mobile platform, then with the plume velocity information the total emission value can be ultimately estimated. In practice it is hard to calculate the total emission because there is no efficient way to accurately get the plume velocity which is the most important parameter. Usually the wind speed near ground is used as the actual plume speed, which constitutes the greatest source of uncertainty in the passive DOAS measurements for the total emission calculation. A passive DOAS method for the determination of plume velocity of pollution source was studied in the present paper. Two passive DOAS systems were placed under the plume along the plume transmission direction to observed the scattered sunlight at one fixed sepasation angle, and then the plume velocity was derived from the time delay resulting from the plume moving a certain distance, and also the plume height needed in the plume velocity calculation was measured by the same two passive DOAS systems. Measurement of the plume emitted from a certain power plant was carried out by the two passive DOAS systems and the plume velocities of 3.6 and 5.4 m x s(-1) at two separate moments were derived. The comparison with the wind speed measured at the same time by the single theodolite wind observation method indicates that this optical remote sensing method based on passive DOAS can be used to determine the plume velocity by monitoring the total emission from sources. PMID:19123375

  4. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  5. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    SciTech Connect

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian; Kacprzak, Glenn G.; Charlton, Jane; Muzahid, Sowgat

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  6. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  7. Development of a Differential Absorption Lidar (DIAL) for Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Bares, A.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J.

    2010-12-01

    Rising levels of carbon dioxide (CO2) in the Earth’s atmosphere have been identified as a major contributor to climate change. Geologic carbon sequestration has the potential for mitigating CO2 emission into the atmosphere by capturing CO2 at power generation facilities and storing the CO2 in geologic formations. Several technological challenges need to be overcome for successful geologic sequestration of CO2 including surface monitoring tools and techniques for monitoring CO2 sequestration sites to ensure site integrity and public safety. Researchers at Montana State University are developing an eye-safe scanning differential absorption lidar (DIAL) capable of spatially mapping above-ground CO2 number densities for carbon sequestration site monitoring. The eye-safe scanning CO2 DIAL utilizes a temperature tunable fiber pigtailed distributed feedback (DFB) laser operating wavelength of 1.573 μm to access CO2 absorption features. The output of the DFB laser is split using an inline fiber splitter with part of the light sent to an optical wavemeter to monitor the operating wavelength of the laser transmitter. The remaining light is modulated using an inline acousto-optic modulator producing a pulse train with a 20 kHz pulse repetition frequency and a 2 μs duration. This pulse train is amplified in a commercial fiber amplifier producing up to 80 μJ per pulse energy. The output from the fiber amplifier is sent horizontally through the atmosphere and the scattered light is collected using a 28 cm diameter commercial Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and focused into a multimode optical fiber. A fiber coupled photomultiplier (PMT) tube is then used to monitor the light collected by the DIAL receiver. Data is collected in the following manner. The DFB laser is tuned to the online wavelength of the CO2 absorption feature and data is collected for a user defined time. A feedback loop utilizing the optical wavemeter is used

  8. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  9. Three-dimensional observations of atmospheric humidity with a scanning differential absorption Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Riede, Andrea; Wagner, Gerd; Pal, Sandip; Bauer, Heinz; Radlach, Marcus; Späth, Florian

    2009-09-01

    A novel scanning water vapor differential absorption lidar (DIAL) system has been developed. This instrument is mobile and was applied successfully in two field campaigns: COPS 2007 (Convective and Orographically-induced Precipitation Study), a research and development project of the World Weather Research Programme, and FLUXPAT2009 within the German Research Foundation project Patterns in Soil-Vegetation-Atmosphere Systems: monitoring, modeling and data assimilation". In this paper, the instrument is described and its capabilities are illustrated with measurements examples. The DIAL provides remote sensing data of the atmospheric water-vapor field with previously unachieved resolution. The data products of the DIAL are profiles of absolute humidity with typical resolutions of 15 to 300 m with a temporal resolution of 1 to 10 s and a maximum range of several kilometers at both day and night. But spatial and temporal resolution can be traded off against each other. Intercomparisons with other instruments confirm high accuracy. Beside humidity, also the backscatter field and thus aerosols and clouds are observed simultaneously. The DIAL transmitter is based on an injection-seeded Titanium:Sapphire laser operated at 820 nm which is end-pumped with a diode-pumped Nd:YAG laser. By use of a scanning transmitter with an 80-cm receiving telescope, the measurements can be performed in any direction of interest and the 3-dimensional structure of the water vapor field can be observed.

  10. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  11. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  12. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    PubMed

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  13. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    PubMed

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  14. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  15. Effect of temperature on passive remote sensing of chemicals by differential absorption radiometry

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Krauss, Roland H.; Laufer, Gabriel

    2005-10-01

    Differential absorption radiometry (DAR), using uncooled detectors, is a simple, low-cost method for passive remote sensing of hazardous chemicals for domestic security applications. However, radiometric temperature differences (ΔTeffective) between a target gas species and its background affect detection sensitivity. Two DARs with sensitivities to methanol, diisopropyl methylphosphonate (DIMP), and dimethyl methylphosphonate (DMMP), all spectral or physical simulants of hazardous chemicals, were developed and used to experimentally determine the effect of |ΔTeffective| on detection sensitivity. An analytical model was also developed and compared with the experimental results. With a signal-to-noise ratio (SNR)>5, a |ΔTeffective|≥2 K is sufficient for rapid (≤1 s) detection of methanol at <0.03 atm cm and DMMP and DIMP at <0.001 atm cm. These measured sensitivities suggest that rapid detection of hazardous chemical vapor clouds below lethal dose concentrations can be achieved using room-temperature pyroelectric detectors. Measurements were within 3% of the analytical predictions.

  16. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    SciTech Connect

    Rye, B.J. |; Machol, J.L.; Grund, C.J.; Hardesty, R.M.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  17. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

    NASA Astrophysics Data System (ADS)

    Spuler, S. M.; Repasky, K. S.; Morley, B.; Moen, D.; Hayman, M.; Nehrir, A. R.

    2015-03-01

    A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation - 50 days with a > 95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

  18. Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

    NASA Astrophysics Data System (ADS)

    Spuler, S. M.; Repasky, K. S.; Morley, B.; Moen, D.; Hayman, M.; Nehrir, A. R.

    2014-11-01

    A field deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes has been constructed and tested. Significant advances are discussed, including: a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with opto-mechanical and thermal stability, multi-stage optical filtering enabling measurement during daytime bright-cloud conditions, rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions, and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing and intercomparisons have been performed and are discussed. In general, the instrument has 150 m range resolution with 10 min temporal resolution - 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument was shown capable of autonomous long term field operation - 50 days with a >95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

  19. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments. PMID:21343997

  20. Urban atmospheric formaldehyde concentrations measured by a differential optical absorption spectroscopy method.

    PubMed

    Li, Xiang; Wang, Shangshang; Zhou, Rui; Zhou, Bin

    2014-02-01

    In this study a differential optical absorption spectroscopy (DOAS) method was used to monitor formaldehyde (HCHO) concentrations in Shanghai ambient air at a research station in Fudan University. The measurements were carried out during April 2010-April 2011 and a total of 120 940 recorded data points were obtained. The average HCHO concentration was found to be the highest (10.0 ppbv) during August 2010 and the lowest (2.0 ppbv) during April 2010. The diurnal variation of HCHO and O3 followed very similar trends in all the seasons. This was evident from the fact that HCHO had a strong positive correlation with O3. Both peaked once in the morning (07:00-09:00 local time), and once in the night (16:00-19:00 local time). The peak concentrations varied from season to season, which could be attributed to the seasonal variation in anthropogenic activity, traffic movement and atmospheric boundary layer conditions. The background HCHO concentration in 2011 winter (similar to 12.0 ppbv) was an order of magnitude higher than that observed in 2010 spring (similar to 2.0 ppbv); corresponding with the results of several pollution controls adopted by the Shanghai administrative government before and after the EXPO 2010 period (May 1, 2010-Oct. 31 2010). This study contributed the basic information for understanding the concentration level and the chemical processes of atmospheric HCHO in a major metropolitan area. PMID:24362786

  1. [Studies on the data processing method in chlorine measurement by differential optical absorption spectroscopy technology].

    PubMed

    Ye, Cong-Lei; Xie, Pin-Hua; Qin, Min; Li, Ang; Ling, Liu-Yi; Hu, Ren-Zhi; Yang, Jing-Wen

    2012-07-01

    In this paper, based on Differential Optical Absorption Spectroscopy (DOAS) technique, experimental measurements of chlorine was carried out in the laboratory with a small self-built experimental system. In dealing with the standard cross-section of chlorine, we presented two different methods: triangle filtering and polynomial fitting. Experiments showed that the concentration of chlorine could be accurately retrieved by the latter one. Simulation results showed that the error of retrieval result by fifth-order polynomial fitting was smaller than by other orders and an actual retrieval example shows that the fitting spectrums were nearly coincident with the measured spectrums with a residual delta(peak to peak) below 5 per hundred; The results measured in different sample pools displayed a high linearity of 0.9961 by this method. The main sources of errors during the entire experiment were simply analyzed. According to the experimental result above, it is feasible to detect chlorine using DOAS technology by polynomial fitting. PMID:23016314

  2. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  3. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  4. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  5. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  6. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  7. Differentially coherent detection of QASK for frequency-hopping systems. I - Performance in the presence of a Gaussian noise environment

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Huth, G. K.; Polydoros, A.

    1982-01-01

    Bandwidth-conserving modulation techniques, which trade average power for bandwidth in a favorable exchange, have recently found widespread application in digital radio and satellite communication systems. Quadrature amplitude-shift-keying (QASK) is a particular type of the considered techniques. QASK makes use of multilevel signals to amplitude modulate the in-phase and quadrature components of a carrier. Frequency hopping (FH) is used to protect a conventional communication system from radio frequency interference (RFI) or jamming. Differentially coherent detection provides a possible solution to the effect of phase discontinuities introduced by FH. The application of such a detection technique to QASK signals is discussed. A receiver structure is proposed and its symbol error probability performance for an additive white Gaussian noise (AWGN) background is investigated.

  8. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  9. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  10. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Hardesty, R. Michael; Rye, Barry J.

    1995-04-01

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution (e.g. high resolution infrared (IR) Fourier transform radiometry), poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  11. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  12. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    PubMed

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  13. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  14. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  15. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Local Control of Two-Photon Absorption in a Six-Level Atomic System by Using a Coherent Perturbation Field

    NASA Astrophysics Data System (ADS)

    Jia, Wen-Zhi; Wang, Shun-Jin

    2009-11-01

    If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast spectral feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.

  16. Differentiation of oral precancerous stages with optical coherence tomography based on the evaluation of optical scattering properties of oral mucosae

    NASA Astrophysics Data System (ADS)

    Tsai, M. T.; Lee, J. D.; Lee, Y. J.; Lee, C. K.; Jin, H. L.; Chang, F. Y.; Hu, K. Y.; Wu, C. P.; Chiang, C. P.; Yang, C. C.

    2013-04-01

    Optical coherence tomography (OCT) has been demonstrated to be a powerful tool for noninvasive, real-time oral cancer diagnosis. However, in previous reports, OCT has still been found to be difficult to use in the diagnosis of oral precancerous stages, including mild dysplasia and moderate dysplasia. In clinical applications, early diagnosis and treatment of oral cancer can greatly improve the survival rate. Therefore, in this study, we propose a new approach to differentiate the oral precancerous stages based on the evaluation of the optical scattering properties of the epithelial layer, which is where the dysplastic cells start to develop in the precancerous stages. Instead of using exponential decay fitting to evaluate the scattering properties of mucosal tissues based on the Beer-Lambert law, linear fitting of the OCT depth intensity is used to evaluate the scattering properties of normal and dysplastic cells. From the statistical results of the linear fitting, the slope, a, can be an effective indicator to discriminate healthy mucosa and moderate dysplasia when an a value equal to zero is the threshold value, and the intercept, b, can be used to differentiate healthy and dysplastic mucosae, as well as mild and moderate dysplasia, when b values of 0.15 and 0.18 are used as the threshold values, respectively. Furthermore, this approach is also applied to the determination of the safe margin between normal and abnormal mucosae, making it possible to provide real-time, in vivo inspection during oral maxillofacial surgery.

  17. Development and Testing of a Scanning Differential Absorption Lidar For Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.

    2013-12-01

    A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off

  18. Diode-Laser-Based Differential Absorption Lidar (DIAL) for Long Term Autonomous Field Deployment

    NASA Astrophysics Data System (ADS)

    Moen, D.; Repasky, K. S.; Spuler, S.; Nehrir, A. R.

    2015-12-01

    The rapidly changing spatial and temporal distribution of water vapor in the planetary boundary layer influences dynamical and physical processes that drive weather phenomena, general circulation patterns, radiative transfer, and the global water cycle. The ability to measure the water vapor distribution continuously within the lower troposphere has been identified as a high priority measurement capability needed by both the weather forecasting and climate science communities. This presentation provides an update on an economical and compact diode-laser-based differential absorption lidar (DIAL) which has demonstrated the capability of meeting these high priority measurement needs. The DIAL instrument utilizes two continuous wave distributed feedback diode lasers to injection seed a current modulated tapered semiconductor optical amplifier. An improved switching time between the on-line and off-line wavelength, on the order of 16.7 ms, allows the instrument to retrieve water vapor profiles in rapidly changing atmospheric conditions. A shared telescope design based on a 40.64 cm diameter Dobsonian telescope allows the outgoing beam to be eye-safe at the exit of the telescope. The DIAL receiver utilizes the Dobsonian telescope to collect the scattered light and direct it through an optical narrow bandpass filter (NBF) and a Fabry-Perot etalon with a free spectral range of 0.1 nm which is equal to the wavelength difference between the on-line and off-line DIAL wavelengths. A beam splitter directs 90% of the scattered light through a second NBF, and couples it onto a fiber coupled avalanche photodiode (APD), providing a far field measurement. The remaining 10% of the light passing through the beam splitter is incident on a free space coupled APD, providing a wider field of view for water vapor measurements at lower altitudes. The two channel receiver allows water vapor measurement between 500 m and 4 km/6km during daytime/nighttime operation, respectively. The DIAL

  19. Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Ehret, Gerhard; Giez, Andreas; Davis, Kenneth J.; Lenschow, Donald H.; Oncley, Steven P.

    1997-12-01

    The water vapor differential absorption lidar (DIAL) of the German Aerospace Research Establishment (DLR) was flown aboard the National Center for Atmospheric Research (NCAR) Electra research aircraft during the Boreal Ecosystem-Atmosphere Study (BOREAS). The downward looking lidar system measured two-dimensional fields of aerosol backscatter and water vapor mixing ratio in the convective boundary layer (CBL) and across the CBL top (zt). We show a case study of DIAL observations of vertical profiles of mean water vapor, water vapor variance, skewness, and integral scale in the CBL. In the entrainment zone (EZ) and down to about 0.3 zi the DIAL observations agree with in situ observations and mixed-layer similarity theory. Below, the water vapor optical depth becomes large and the DIAL signal-to-noise ratio degrades. Knowing the water vapor surface flux and the convective velocity scale w* from in situ aircraft measurements, we derive entrainment fluxes by applying the mixed-layer gradient (MLG) and mixed-layer variance (MLV) methods to DIAL mixing ratio gradient and variance profiles. Entrainment flux estimates are sensitive to our estimate of zt. They are shown to be rather insensitive to the input surface flux and to the DIAL data spatial resolution within the investigated range. The estimates break down above about 0.9 zt as the flux-gradient and flux-variance relationships were developed to describe the large-scale mixing in the mid-CBL. The agreement with in situ entrainment flux estimations is within 30% for the MLV method. On a flight leg with significant mesoscale variability the entrainment flux turns out to be 70% higher than the in situ value. This is in good agreement with the fact that large-eddy simulations (LES) of mean water vapor profiles and variances, upon which the MLG and MLV methods are based, do not include mesoscale variability. The additional water vapor variance from mesoscales may then lead to the overestimate of the flux. Deviations from

  20. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  1. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  2. [Research on the influence of LED temperature shifts on differential optical absorption spectroscopy for measuring NO2].

    PubMed

    Ling, Liu-Yi; Xie, Pin-Hua; Qin, Min; Zheng, Ni-Na; Ye, Cong-Lei; Li, Ang; Hu, Ren-Zhi

    2012-11-01

    Influences of LEDs (without etalon structure and center wavelengths are respectively 370 nm (near-UV), 452 nm (blue) and 660 nm(red)) temperature shifts on differential optical absorption spectroscopy(DOAS) for measuring NO2 were studied. NO2 absorption spectra were formed using LED emitting spectra at 10 degrees C. The measured LED spectra at other temperatures were used as reference spectra of DOAS. Thus, NO2 differential optical densities under different LED temperature shifts were acquired and then NO2 differential cross-sections were fitted to the acquired differential optical densities. From fitting results, the linear relations of 0.995, 0.945 and 0.989 correlation between delta of fitting residual and near-UV, blue and red LEDs temperature shifts were found and their slopes are respectively 1.12 x 10(-3), 5.25 x 10(-5) and 7.45 x 10(-4) degrees C(-1). The fitting results show that the influence of temperature shifts of blue LED on DOAS retrieval is negligible and the temperature shifts of near-UV and red LED are impressible to DOAS measurement resulting in degradation of detection sensitivity. The retrieval results of blue LED with and without etalon with similar temperature properties were compared and showed that etalon of LED will greatly increase the influence of temperature shifts of LED on DOAS retrieval. PMID:23387143

  3. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S.

    2008-03-01

    CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5 1.5 m) and laser average power (0.4 4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 μm, 0.4% for CO2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ± 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 μm.

  4. Thermooptic-based differential measurements of weak solute absorptions with an interferometer.

    PubMed

    Cremers, D A; Keller, R A

    1982-05-01

    An interferometric method of measuring small differences between weak optical absorptions of solutions has been developed using the thermooptic effect. To record the small changes in optical path length ~lambda/200 due to heating, it was necessary to stabilize the fringe pattern with respect to slow thermal drift using a galvanometer-driven compensator plate controlled by a closed feedback loop. Fringe shifts from background absorptions were nulled out to better than 1 part in 400, permitting the measurement of differences in absorptions between two solutions that were l/100th of background. Using laser powers of 100 mW, absorptions approximately 5 x 10(-6) cm(-1) (base e) could be measured with CC1(4) solutions. PMID:20389912

  5. Approximation of excitonic absorption in disordered systems using a compositional-component-weighted coherent-potential approximation

    NASA Astrophysics Data System (ADS)

    Schwabe, N. F.; Elliott, R. J.

    1996-03-01

    Employing a recently developed technique of component-weighted two-particle Green's functions in the coherent-potential approximation (CPA) of a binary substitutional alloy AcB1-c we extend the existing theory of excitons in such media using a contact potential model for the interaction between electrons and holes to an approximation which interpolates correctly between the limits of weak and strong disorder. With our approach we are also able to treat the case where the contact interaction between carriers varies between sites of different types, thus introducing further disorder into the system. Based on this approach we study numerically how the formation of exciton bound states changes as the strengths of the contact potentials associated with either of the two site types are varied through a large range of parameter values.

  6. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  7. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  8. [The retrieval of ozone column densities by passive differential optical absorption spectroscopy during summer at Zhongshan Station, Antarctic].

    PubMed

    Luo, Yu-Han; Liu, Wen-Qing; Bian, Lin-Gen; Lu, Chang-Gui; Xie, Pin-Hua; Si, Fu-Qi; Sun, Li-Guang

    2011-02-01

    Daily ozone column densities were monitored by Passive DOAS (differential optical absorption spectroscopy) from December 10th, 2008 to Feb 19th, 2009 at Zhongshan Station, Antarctic (69 degrees 22'24" S, 76 degrees 22'14" E). Considering the absorption of O3, OClO, NO2, O4, BrO and the Ring effect, ozone slant column densities were retrieved using the zenith scattered sunlight as the light source. The results showed that there was no obvious "ozone hole" during the monitoring period, but ozone VCD (vertical column density) had greatly changed within short time scale, especially in middle December and early February. The analysis of passive DOAS and Brewer measurements of ozone VCD showed good agreement with the correlative coefficient of 0.863, while satellite board OMI measurements with the correlative coefficient of 0.840, which confirmed the validity of the monitoring of Passive DOAS. PMID:21510403

  9. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator.

    PubMed

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences. PMID:23733020

  10. Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bei; Borri, Paola; Langbein, Wolfgang

    2013-06-01

    In the last decade, coherent anti-Stokes Raman scattering (CARS) microscopy has emerged as a powerful multiphoton imaging technique offering label-free chemical sensitivity and high three-dimensional resolution. However, its widespread application in the life sciences has been hampered by the use of costly pulsed lasers, the existence of a nonresonant background requiring involved technical solutions for its efficient suppression, and the limited acquisition speed of multiplex techniques addressing several vibrational resonances, if improved chemical specificity is needed. We have recently reported a differential CARS technique (D-CARS), which simultaneously measures two vibrational frequencies, enhancing the chemical selectivity and sensitivity without introducing costly hardware, while maintaining fast acquisition. In this study, we demonstrate a compact, fully automated, cost-effective module, which integrates on hardware and software level with a commercial multiphoton microscope based on a single 100 fs Ti:Sapphire oscillator and enables D-CARS microscopy in a user-friendly format for applications in the life sciences.

  11. In vivo measurement of differential motion inside the organ of Corti using a low coherence interferometer system

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Zha, Dingjun; Fridberger, Anders; Zheng, Jiefu; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2012-02-01

    The differential motion of the organ of Corti has been expected as a result of the outer hair cell force, believed to be necessary for the cochlear amplifier. In vitro experiments have been performed to demonstrate this motion but the in vivo data was unavailable due to the technical difficulties. Using a specially-designed time-domain optical coherence tomography system, we performed in vivo imaging and vibration measurement at the sensitive base of the guinea pig cochlea. This technique, for the first time, provides in vivo information about the internal vibration of the organ of Corti. At low sound level, when the cochlea is more sensitive, top surface of the organ of Corti, the reticular lamina (RL) showed tuning at a higher frequency than of the bottom surface, basilar membrane (BM) and its vibration amplitude is 2-3 times of that of the BM. Corresponding to the frequency difference, the phase of RL vibration is lead to that of the BM. Both the amplitude gain and the phase lead on RL is level dependent. This suggests that they are related to the cochlear amplification. The amplitude gain at the RL is an enhancement of the BM motion for stimulating the stereocillia. The advance in time of RL vibration can prepare proper timing of stereocillia stimulation for the cochlear amplification.

  12. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    SciTech Connect

    Schlaepfer, D.; Borel, C.C.; Keller, J.

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  13. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  14. Differential intestinal absorption of two fatty acid isomers: Elaidic and oleic acids

    SciTech Connect

    Bernard, A.; Echinard, B.; Carlier, H. )

    1987-12-01

    The absorption of {sup 14}C-labeled oleic acid and {sup 14}C-labeled elaidic acid was studied in bile- and pancreatic juice-diverted adult rats. In some cases these acids were compared with {sup 14}C-labeled palmitic acid absorption. Sodium taurocholate-emulsified test infusates containing an equimolar mixture of monopalmitin and two fatty acids (oleic and elaidic or palmitic), one of which was {sup 14}C labeled, were infused through a duodenal canula. The chyle was collected from the mesenteric lymphatic vessel by plastic tubing. Among the three fatty acids studied, oleic acid exhibited the highest lymphatic recovery rate. Elaidic and palmitic acids appeared more slowly and in lesser amounts. Simultaneously, the highest amount of chylomicrons was observed when the lipid emulsion contained oleic acid alone; the lowest was observed when elaidic acid was the only unsaturated fatty acid. Experimental data have also shown that compared with elaidic acid, oleic acid is preferentially incorporated into the lymph triglycerides. The authors conclude from the data presented that the enterocytic enzymes involved in the absorption of lipids show a high degree of specificity related to the fatty acid isomery, since the absorption of elaidic acid differs markedly from its isomer oleic acid.

  15. Acousto-optically tuned isotopic CO{sub 2} lasers for long-range differential absorption LIDAR

    SciTech Connect

    Thompson, D.C.; Busch, G.E.; Hewitt, C.J.; Remelius, D.K.; Shimada, Tsutomu; Strauss, C.E.M.; Wilson, C.W.

    1998-12-01

    The authors are developing 2--100 kHz repetition rate CO{sub 2} lasers with milliJoule pulse energies, rapid acousto-optic tuning and isotopic gas mixes, for Differential Absorption LIDAR (DIAL) applications. The authors explain the tuning method, which uses a pair of acousto-optic modulators and is capable of random access to CO{sub 2} laser lines at rates of 100 kHz or more. The laser system is also described, and they report on performance with both normal and isotopic gas mixes.

  16. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  17. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  18. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  19. X-ray Absorption Spectroscopy and Coherent X-ray Diffraction Imaging for Time-Resolved Investigation of the Biological Complexes: Computer Modelling towards the XFEL Experiment

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Yefanov, O. M.; Lorenz, U.; Soldatov, A. V.; Vartanyants, I. A.

    2016-05-01

    The development of the next generation synchrotron radiation sources - free electron lasers - is approaching to become an effective tool for the time-resolved experiments aimed to solve actual problems in various fields such as chemistry’ biology’ medicine’ etc. In order to demonstrate’ how these experiments may be performed for the real systems to obtain information at the atomic and macromolecular levels’ we have performed a molecular dynamics computer simulation combined with quantum chemistry calculations for the human phosphoglycerate kinase enzyme with Mg containing substrate. The simulated structures were used to calculate coherent X-ray diffraction patterns’ reflecting the conformational state of the enzyme, and Mg K-edge X-ray absorption spectra, which depend on the local structure of the substrate. These two techniques give complementary information making such an approach highly effective for time-resolved investigation of various biological complexes, such as metalloproteins or enzymes with metal-containing substrate, to obtain information about both metal-containing active site or substrate and the atomic structure of each conformation.

  20. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  1. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films.

    PubMed

    Kim, Tae Young; Badsha, Md Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  2. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    NASA Astrophysics Data System (ADS)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  3. Differentiation of biological hydroxyapatite compounds by infrared spectroscopy, x-ray diffraction and extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Chassot, E.; Oudadesse, H.; Irigaray, J.; Curis, E.; Bénazeth, S.; Nicolis, I.

    2001-12-01

    Pure hydroxyapatite (HAP) and HAP doped with 800 ppm of zinc were implanted in cortical bone of femur diaphysis of ovines [J. L. Irigaray et al., Mater. Clin. Appl. 28, 399 (1999)]. We observed that the doped HAP was better resorbed than pure HAP. The first hypothesis is that zinc acts as a stimulator on macrophage cells and improves quantity and quality of osteoblast cells. The second hypothesis is that zinc yields HAP structure that is better resorbed in biological field. For our experiment we used HAP doped with 3000 ppm of zinc in order to have a good sensitivity. In the present work, chemical studies by inductively coupled plasma absorption emission spectrometry, x ray diffraction, and infrared were carried out to determine the composition of major and trace elements in the doped hydroxyapatite, and the crystallographic structure. These studies can indicate possible modifications induced by the insertion of zinc. We used the extended x-ray absorption fine structure experimental station of LURE (Orsay, France) to try to clarify the atomic surroundings of zinc in doped HAP structure and transformations induced in initial lattice. Despite the low zinc concentration, we got good quality fluorescence mode spectra. These spectra showed medium range order of the material that is consistent with its crystalline form. To perform the analysis, we compared the result obtained with another models like β tricalcium phosphate and we created theoretical models of zinc in substitution of calcium in order to reproduce as well as possible the experimental spectrum. After this study, only two models are coherent with experimental spectrum, zinc in substitution of calcium in site I and zinc in the interstice between the two hydroxydes.

  4. A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes.

    PubMed

    Wang, Ya; Zhang, Chun Hua; Lin, Man Man; Ge, Ying

    2016-11-15

    In this study, we investigated the effects of a symbiotic bacterium and phosphate (PO4(3-)) nutrition on the toxicity and metabolism of arsenate (As(V)) in Dunaliella salina. The bacterium was identified as Alteromonas macleodii based on analysis of its 16S rRNA gene sequence. When no As(V) was added, A. macleodii significantly enhanced the growth of D. salina, irrespective of PO4(3-) nutrition levels, but this effect was reversed after As(V)+PO4(3-) treatment (1.12mgL(-1)) for 3 days. Arsenic (As) absorption by the non-axenic D. salina was significantly higher than that by its axenic counterpart during incubation with 1.12mgL(-1) PO4(3-). However, when the culture was treated with 0.112mgL(-1) PO4(3-), As(V) reduction and its subsequent arsenite (As(III)) excretion by non-axenic D. salina were remarkably enhanced, which, in turn, contributed to lower As absorption in non-axenic algal cells from days 7 to 9. Moreover, dimethylarsinic acid was synthesized by D. salina alone, and the rates of its production and excretion were accelerated when the PO4(3-) concentration was 0.112mgL(-1). Our data demonstrate that A. macleodii strongly affected As toxicity, uptake, and speciation in D. salina, and these impacts were mediated by PO4(3-) in the cultures. PMID:27450336

  5. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  6. Influence of spatial differential reflection parameters on 2,4,6- trinitrotoluene (TNT) absorption spectra

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Guetard, Ga"l.; Hummel, Rolf E.

    2012-06-01

    Differential reflectometry has been shown to be a sensitive and fast tool to detect explosive substances on surfaces such as luggage and parcel. This paper elucidates the influence of several parameters on the sensitivity of the technique. An expression for the reflected intensity that contains the influence of angle of incidence, wavelength of the incident light, and surface roughness has been established. The feature used to identify and detect TNT stems mainly from the diffuse component of the reflected light. This spectral "finger-print" shape does not change by varying these parameters. The maximum sensitivity is obtained for samples which are strongly diffusive and weakly specular.

  7. Long-Lived Electronic Coherence of Iodine in the Condensed Phase: Sharp Zero-Phonon Lines in the B↔X Absorption and Emission of I2 in Solid Xe.

    PubMed

    Hulkko, Eero; Lindgren, Johan; Kiljunen, Toni; Pettersson, Mika

    2012-07-01

    Our study of B←X absorption of molecular iodine (I2) isolated in a low-temperature crystalline xenon has revealed an exceptionally long-lived electronic coherence in condensed phase conditions. The visible absorption spectrum shows prominent vibronic structure in the form of zero-phonon lines (ZPLs) and phonon side bands (PSBs). The resolved spectrum implies weak interaction of the chromophore to the lattice degrees of freedom. The coherence extends past the vibrational period of the excited state molecule, unlike that observed in any condensed phase environment for I2 so far. The ZP transitions from the relaxing B-state populations were resolved in the hot luminescence when the 532 nm laser was used for excitation. PMID:26291871

  8. Active optics for dynamical correction of fluctuations of atmospheric refraction on a differential optical absorption spectroscopy device.

    PubMed

    Fuentes-Inzunza, Rodrigo A; Gutiérrez, Javier; Saavedra, Carlos

    2012-10-20

    We have designed and developed a feedback mechanism for continuous monitoring in a long-pass differential optical absorption spectroscopy (LP-DOAS) setup. This allows one to correct photo-thermal deflection due to the local fluctuations refraction index of the air. For this purpose, using an unbalanced beam splitter, a small fraction of the collected DOAS signal is imaged onto a low-cost CCD camera using a biconvex lens, while the other portion of the signal is coupled into a fiber optic for trace gas detection. By monitoring the registered signal at the CCD camera, a feedback mechanism acting on the transversal position of the lens is able to compensate an arbitrary transversal displacement of the collected signal at the focal plane of the receiver telescope, allowing an optimal coupling into the optical fiber. PMID:23089775

  9. Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths.

    PubMed

    Pundt, Irene; Mettendorf, Kai Uwe

    2005-08-10

    A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument. PMID:16114540

  10. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  11. Spectral x-ray phase contrast imaging for single-shot retrieval of absorption, phase, and differential-phase imagery.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-11-01

    In this Letter, we propose the first single-shot, noninterferometric x-ray imaging method for simultaneous retrieval of absorption, phase, and differential-phase imagery with quantitative accuracy. Our method utilizes a photon-counting spectral x-ray detector in conjunction with a simplified transport-of-intensity equation for coded-aperture phase-contrast imaging to efficiently solve the retrieval problem. This method can utilize an incoherent and polychromatic (clinical or laboratory) x-ray tube and can enable retrieval for a wide range and composition of material properties. The proposed method has been validated via computer simulations and is expected to significantly benefit applications that are sensitive to complexity of measurement, radiation dose and imaging time. PMID:25361350

  12. [Measurement of atmospheric NO3 radical with long path differential optical absorption spectroscopy based on red light emitting diodes].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Wang, Jiang-Tao; Xie, Pin-Hua; Wang, Xu-De

    2013-02-01

    Nitrate radical (NO3) is the most important oxidant in the tropospheric nighttime chemistry. Due to its high reactivity and low atmospheric concentrations, modern red light emitting diodes (LEDs) was proposed as light source in long path differential optical absorption spectroscopy (LP-DOAS) to measure NO3 radical in the atmosphere. The spectral properties of Luxeon LXHL-MD1D LEDs were analyzed in the present paper. The principle of LEDs-DOAS system to measure nitrate radical was studied in this paper. The experimental setup and retrieval method of NO3 radical were discussed in this paper. The retrieved example of NO3 was given and the time series of NO3 concentrations was performed for a week. The results showed that the detection limits of LEDs-DOAS system were 12 ppt for atmospheric NO3 radical when the optical path of LEDs-DOAS system was 2.8 km. PMID:23697129

  13. THz Differential Radar for Detection of Weak Molecular Absorption Lines in Bio-Aerosol

    NASA Astrophysics Data System (ADS)

    Javadi, Hamid

    2006-03-01

    THz frequency range (300-3000 GHz) promises unique capabilities and advantages for detection of trace gases and biological aerosols immersed in the atmosphere. Techniques used for microwave atmospheric remote sensing can be used within the atmospheric transmission windows to carry out standoff detection of biological markers in real time. THz spectroscopy has been used as an important new tool in investigations of atmospheric molecular gases and a wide range of airborne biological materials. We have embarked upon development of field deployable THz differential radar. Bio-aerosols are the most difficult analytes to face due to their heterogeneity in size, toxicity, and bio/chemical composition. JPL has demonstrated monolithic solid-state THz sources with impressive output power. The sources are enabled by W-band power amplifiers and planar Schottky diode multipliers. These, together with room temperature detectors (based on the same technology), allow one to make a compact and robust transmitter/receiver with sufficient sensitivity and frequency agility to carry out detailed investigation of various molecular vapors and bio-aerosols at standard temperature and pressure. Current status of the THz differential radar technology development effort along with future trends will be presented.

  14. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  15. Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Lu; Min, Qin; Pin-Hua, Xie; Jun, Duan; Wu, Fang; Liu-Yi, Ling; Lan-Lan, Shen; Jian-Guo, Liu; Wen-Qing, Liu

    2016-02-01

    NO3 radicals accumulate during the night, thereby being the most critical night oxidant. Owing to the low concentration and dramatic variation, the detection of atmospheric NO3 radicals is still challenging. In this paper, an LED-based Long Path Differential Optical Absorption Spectroscopy (LPDOAS) instrument is developed for measuring the atmospheric NO3 radicals. This instrument is composed of a Schmidt-Cassegrain telescope, a combined emitting and receiving fiber, and a red LED equipped with a thermostat, and has a center wavelength of 660 nm, covering the NO3 strongest absorption peak (662 nm). The influence of LED temperature fluctuations is discussed. The temperature of the LED lamp with a home-made thermostat is tested, showing a stability of ±0.1 °C. The principle and fitting analyses of LED-LPDOAS are presented. A retrieval example and a time series of NO3 radical concentrations with good continuity for one night are shown. The detection limit of NO3 for 2.6-km optical path is about 10 ppt. Project supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB05040200 and XDB05010500).

  16. Long term NO2 measurements in Hong Kong using LED based Long Path Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2011-11-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 concentrations in the Kowloon Tong and Mong Kok district of Hong Kong and we compare the measurement results to concentrations reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time.

  17. Differential effects of some natural compounds on the transdermal absorption and penetration of caffeine and salicylic acid.

    PubMed

    Muhammad, Faqir; Riviere, Jim E

    2015-04-10

    Many natural products have the potential to modulate the dermal penetration of topically applied drugs and chemicals. We studied the effect of five natural compounds (hydroxycitronellal, limonene 1,2-epoxide, terpinyl acetate, p-coumaric acid, transferrulic acid) and ethanol on the transdermal penetration of two marker drugs ((14)C-caffeine and (14)C-salicylic acid) in a flow through in vitro porcine skin diffusion system. The parameters of flux, permeability, diffusivity, and percent dose absorbed/retained were calculated and compared. The dermal absorption of (14)C-caffeine was significantly higher with terpinyl acetate and limonene 1,2-epoxide as compared to ethanol; while dermal absorption of (14)C-salicylic acid was significantly greater with hydroxycitronellal and limonene 1,2-epoxide as compared to ethanol. A 10-fold increase in flux and permeability of caffeine with terpinyl acetate was observed while limonene increased flux of caffeine by 4-fold and permeability by 3-fold. Hydroxycitronellal and limonene increased salicylic acid's flux and permeability over 2-fold. The other natural compounds tested did not produce statistically significant effects on dermal penetration parameters for both caffeine and salicylic acid (p≥0.05). These results emphasize the differential effects of natural substances on the transdermal penetration of hydrophilic (caffeine) and hydrophobic (salicylic acid) drugs. PMID:25681718

  18. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  19. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  20. Performance Simulations of Spaceborne Methane Observations by Integrated-Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Quatrevalet, Mathieu; Ehret, Gerhard; Amediek, Axel

    A lidar-based satellite instrument for global observations of atmospheric methane is foreseen whose expected performance and technical feasibility are currently investigated in planning phase 0/A. Methane is, after carbon dioxide, the second most important greenhouse gas, whereby its anthropogenic emissions are much more uncertain. In addition, climate change may cause an important positive feedback of yet unknown intensity by release of methane from melting permafrost soils and ocean sediments. The current observational network is not able to monitor these sources with sufficient density and accuracy: While the ground-based in-situ network is too sparse, existing passive remote sensors on spacecraft are not accurate enough. Preliminary studies show that lidar with a realistic instrument design on a LEO platform has the potential to overcome these shortcomings and to measure methane with an accuracy and spatial resolution that satisfies the requirements of the user community. The presentation will include basic issues such as the selection of suitable methane absorption wavelengths, key per-formance parameters of instrument and spacecraft, and an assessment of the residual bias. It will highlight critical performance parameters such as instrument noise and surface reflectivity, and list the instrument and platform characteristics needed to fulfil the user requirements.

  1. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    PubMed

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments. PMID:26138853

  2. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir A.; Bristow, Michael P.; McElroy, James L.

    1996-08-01

    A new technique is presented for the retrieval of ozone-concentration profiles (O 3 ) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O 3 profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O 3 profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation.

  3. Spatial and temporal variations in NO(2) distributions over Beijing, China measured by imaging differential optical absorption spectroscopy.

    PubMed

    Lee, Hanlim; Kim, Young J; Jung, Jinsang; Lee, Chulkyu; Heue, Klaus-Peter; Platt, Ulrich; Hu, Min; Zhu, Tong

    2009-04-01

    During the CAREBEIJING campaign in 2006, imaging differential optical absorption spectroscopy (I-DOAS) measurements were made from 08:00 to 16:00 on September 9 and 10 over Beijing, China. Detailed images of the near-surface NO(2) differential slant column density (DSCD) distribution over Beijing were obtained. Images with less than a 30-min temporal resolution showed both horizontal and vertical variations in NO(2) distributions. For DSCD to mixing ratio conversion, path length along the lines of I-DOAS lines of sight was estimated using the light-extinction coefficient and Angstrom exponent data obtained by a transmissometer and a sunphotometer, respectively. Mixing ratios measured by an in-situ NO(2) analyzer were compared with those estimated by the I-DOAS instrument. The obtained temporal and spatial variations in NO(2) distributions measured by I-DOAS for the two days are interpreted with consideration of the locations of the major NO(x) sources and local wind conditions. I-DOAS measurements have been applied in this study for estimating NO(2) distribution over an urban area with multiple and distributed emission sources. Results are obtained for estimated temporal and spatial NO(2) distributions over the urban atmosphere; demonstrating the capability of the I-DOAS technique. We discuss in this paper the use of I-DOAS measurements to estimate the NO(2) distribution over an urban area with multiple distributed emission sources. PMID:19111964

  4. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar.

    PubMed

    Kovalev, V A; Bristow, M P; McElroy, J L

    1996-08-20

    A new technique is presented for the retrieval of ozone-concentration profiles (O(3)) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O(3) profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O(3) profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation. PMID:21102905

  5. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R.; Elfick, Alistair P. D.

    2012-11-01

    Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy as a minimally invasive technology to monitor the differentiation of adipose-derived stem cells (ADSCs) into adipocytes and osteoblasts. The induction of ADSCs toward these two different cell lineages was monitored simultaneously using coherent anti-Stokes Raman scattering, two photon excitation fluorescence (TPEF), and second harmonic generation at different time points. Changes in the cell's morphology, together with the appearance of biochemical markers of cell maturity were observed, such as lipid droplet accumulation for adipo-induced cells and the formation of extra-cellular matrix for osteo-induced cells. In addition, TPEF of flavoproteins was identified as a proxy for changes in cell metabolism that occurred throughout ADSC differentiation toward both osteoblasts and adipocytes. These results indicate that multimodal microscopy has significant potential as an enabling technology for the label-free investigation of SC differentiation.

  6. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Murphy, J. G.; Pattey, E.; van Haarlem, R.; O'Brien, J. M.; Herndon, S. C.

    2009-12-01

    A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically cooled Mercury Cadmium Telluride (HgCdTe) infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering ammonia-free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS) during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of ammonia with sample tubing was investigated at mixing ratios ranging from 30-1000 ppb. Humidity was seen to worsen the ammonia time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation with 1 min time resolution (R2=0.93) between the two instruments at the beginning of the study, when regular background subtraction was applied to the QC

  7. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Murphy, J. G.; Pattey, E.; van Haarlem, R.; O'Brien, J. M.; Herndon, S. C.

    2010-03-01

    A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of ammonia (NH3) has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically-cooled Mercury Cadmium Telluride (HgCdTe) infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of NH3 to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering NH3-free background air and calibration gas standards. The level of noise in this instrument has been found to be 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS) during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of NH3 with sample tubing was investigated at mixing ratios ranging from 30-1000 ppb. Humidity was seen to worsen the NH3 time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence-based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an NH3 gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation at 1 min time resolution (R2 = 0.93) between the two instruments at the beginning of the study, when regular background subtraction was applied to the QC-TILDAS. An overall good

  8. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for Measurements of Atmospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R.; Murphy, J. G.; van Haarlem, R.; Pattey, E.; O'Brien, J.

    2009-05-01

    A compact, fast response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC- TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 76 m path length, 0.5 L volume multiple pass absorption cell. Detection is achieved using a thermoelectrically cooled HgCdTe infrared detector. A novel sampling technique was used, consisting of a short, heated, quartz inlet with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles and additional ports for delivering ammonia free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.3 ppb with a time resolution of 1 s. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser (TDL) absorption spectrometer during a laboratory intercomparison. Various lengths and types of sample inlet tubing material, heated and unheated, under dry and ambient humidity conditions with ammonia concentrations ranging from 10-1000 ppb were investigated. Preliminary analysis suggests the time response improves with the use of short, PFA tubing sampling lines. No significant improvement was observed when using a heated sampling line and humidity was seen to play an important role on the bi-exponential decay of ammonia. A field intercomparison of the QC-TILDAS with a modified Thermo 42C chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation

  9. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  10. Coherent perfect absorber based on metamaterials

    NASA Astrophysics Data System (ADS)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-01

    We demonstrate selective coherent perfect absorption based on interaction between bilayered asymmetrically split rings (ASRs) metamaterials and a standing wave formed by two coherent counter propagating beams. The selective coherent perfect absorbers with high absorption have been achieved depending on the phase difference between two coherent beams. The selective coherent control absorbers can be well designed by changing the thickness of the dielectric layer and the asymmetry of the ASRs. The coherently controlled metamaterials provide an opportunity to realize selective multiband absorption and ultrafast information processing.

  11. Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization

    NASA Astrophysics Data System (ADS)

    Motaghiannezam, S. M. Reza; Koos, David; Fraser, Scott E.

    2012-02-01

    Human retinal and choroidal vasculature was visualized by a differential phase-contrast (DPC) method using high-speed, swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was recognized as regions of motion by creating differential phase-variance (DPV) tomograms: multiple B-scans of individual slices through the retina were collected and the variance of the phase differences was calculated. DPV captured the small vessels and the meshwork of capillaries associated with the inner retina in en-face images over 4 mm2. The swept-source laser at 1060 nm offered the needed phase sensitivity to perform DPV and generated en-face images that capture motion in the inner choroidal layer exceeding the capabilities of previous spectrometer-based instruments. In comparison with the power Doppler phase-shift method, DPV provided better visualization of the foveal avascular zone in en-face images.

  12. Compact Ti:Sapphire laser with its Third Harmonic Generation (THG) for an airborne ozone Differential Absorption Lidar (DIAL) transmitter

    NASA Astrophysics Data System (ADS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2001-02-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonics at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After experimentally compared with Beta-Barium Borate (b-BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5'5'20 mm3) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900nm and its third harmonics at 300nm. The desired high ultraviolet (UV) output pulse energy is more than 30mJ at 300nm and the energy conversion efficiency from 900nm to 300nm is 30%.

  13. Measurements of NO2, SO2, O3, benzene and toluene using differential optical absorption spectroscopy (DOAS) in Shanghai, China.

    PubMed

    Hao, Nan; Zhou, Bin; Chen, Dan; Sun, Yi; Gao, Song; Chen, Limin

    2006-01-01

    NO2, SO2, O3, benzene, and toluene were measured in Taopu industry park of Shanghai during the period June to August 2003 by differential optical absorption spectroscopy (DOAS) technique. The daily average concentrations of SO2, NO2, and O3 ranged from 5.7 ppb to 40 ppb, 22 ppb to 123 ppb, and 10.6 ppb to 23 ppb respectively. SO2 and NO2 concentrations were found to depend on wind direction. The diurnal variation of NO2 concentrations had two peaks due to traffic emission. Our DOAS measurements of NO2, SO2 and O3 were compared with the conventional measurement instruments (API automatic monitoring instrument). The concept of a percent difference (PD) and linear regression methods were employed to study the difference between DOAS and API instruments. The correlation analysis between PD values and meteorological parameters and analysis of abnormal higher absolute PD values indicated that the lower visibility induced the bad compatibility between the two systems. The results showed that both systems exhibited strong compatibility with good correlation, therefore the DOAS system is able to provide reliable information on distribution patterns of major air pollutants. Average benzene and toluene concentrations were 1.4 and 8.0 ppb respectively. PMID:16948427

  14. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  15. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.

    PubMed

    Wulfmeyer, V; Bösenberg, J

    1998-06-20

    The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m(3) in the near range using 75 m and-depending on the meteorological conditions-approximately 0.25 g/m(3) at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites. PMID:18273352

  16. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates. PMID:24933364

  17. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Milovac, Josipa; Warrach-Sagi, Kirsten; Behrendt, Andreas; Späth, Florian; Ingwersen, Joachim; Wulfmeyer, Volker

    2016-01-01

    Six simulations with the Weather Research and Forecasting (WRF) model differing in planetary boundary layer (PBL) schemes and land surface models (LSMs) are investigated in a case study in western Germany during clear-sky weather conditions. The simulations were performed at 2 km resolution with two local and two nonlocal PBL schemes, combined with two LSMs (NOAH and NOAH-MP). Resulting convective boundary layer (CBL) features are investigated in combination with high-resolution water vapor differential absorption lidar measurements at an experimental area. Further, the simulated soil-vegetation-atmosphere feedback processes are quantified applying a mixing diagram approach. The investigation shows that the nonlocal PBL schemes simulate a deeper and drier CBL than the local schemes. Furthermore, the application of different LSMs reveals that the entrainment of dry air depends on the energy partitioning at the land surface. The study demonstrates that the impact of processes occurring at the land surface is not constrained to the lower CBL but extends up to the interfacial layer and the lower troposphere. With respect to the choice of the LSM, the discrepancies in simulating a diurnal change of the humidity profiles are even more significant at the interfacial layer than close to the land surface. This indicates that the representation of land surface processes has a significant impact on the simulation of mixing properties within the CBL.

  18. Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy.

    PubMed

    Pöhler, Denis; Vogel, Leif; Friess, Udo; Platt, Ulrich

    2010-04-13

    In the polar tropospheric boundary layer, reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. After polar sunrise, air masses enriched in reactive bromine cover areas of several million square kilometers. Still, the source and release mechanisms of halogens are not completely understood. We report measurements of halogen oxides performed in the Amundsen Gulf, Arctic, during spring 2008. Active long-path differential optical absorption spectroscopy (LP-DOAS) measurements were set up offshore, several kilometers from the coast, directly on the sea ice, which was never done before. High bromine oxide concentrations were detected frequently during sunlight hours with a characteristic daily cycle showing morning and evening maxima and a minimum at noon. The, so far, highest observed average mixing ratio in the polar boundary layer of 41 pmol/mol (equal to pptv) was detected. Only short sea ice contact is required to release high amounts of bromine. An observed linear decrease of maximum bromine oxide levels with ambient temperature during sunlight, between -24 degrees C and -15 degrees C, provides indications on the conditions required for the emission of RHS. In addition, the data indicate the presence of reactive chlorine in the Arctic boundary layer. In contrast to Antarctica, iodine oxide was not detected above a detection limit of 0.3 pmol/mol. PMID:20160121

  19. [Studies on the remote measurement of the distribution of city gaseous pollutant by mobile passive differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-cheng; Li, Ang; Xie, Pin-hua; Xu, Jin; Shi, Peng; Qin, Min; Wang, Man-hua; Wang, Jie; Zhang, Yong

    2011-03-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy for the measurement of the distribution of city gaseous pollutant was studied. The passive DOAS system, which was installed in a car, successively measures the interested area (such as city, industrial area) and the column density was obtained by DOAS fitting process using the zenith scattered sunlight. The mobile DOAS was applied to measurement in Shenzhen City during the continuous six days and got the distribution of SO2, NO2 in this paper. It showed that the pollution in the west is higher than in the east. The average concentration in the west is 2.0 times higher than the eastern for SO2 and 3.6 times for NO2. And comparison of the values between mobile DOAS and the point instrument was carried out in Baguang site. There was an agreement between the two instruments, the correlation coefficient was 0.86 for SO2, while 0.57 for NO2. The results indicate that this optical remote sensing method based on passive DOAS is an effective means of rapidly determining the distribution of city gaseous pollutant. PMID:21595196

  20. Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy

    PubMed Central

    Pöhler, Denis; Vogel, Leif; Frieß, Udo; Platt, Ulrich

    2010-01-01

    In the polar tropospheric boundary layer, reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. After polar sunrise, air masses enriched in reactive bromine cover areas of several million square kilometers. Still, the source and release mechanisms of halogens are not completely understood. We report measurements of halogen oxides performed in the Amundsen Gulf, Arctic, during spring 2008. Active long-path differential optical absorption spectroscopy (LP-DOAS) measurements were set up offshore, several kilometers from the coast, directly on the sea ice, which was never done before. High bromine oxide concentrations were detected frequently during sunlight hours with a characteristic daily cycle showing morning and evening maxima and a minimum at noon. The, so far, highest observed average mixing ratio in the polar boundary layer of 41 pmol/mol (equal to pptv) was detected. Only short sea ice contact is required to release high amounts of bromine. An observed linear decrease of maximum bromine oxide levels with ambient temperature during sunlight, between -24 °C and -15 °C, provides indications on the conditions required for the emission of RHS. In addition, the data indicate the presence of reactive chlorine in the Arctic boundary layer. In contrast to Antarctica, iodine oxide was not detected above a detection limit of 0.3 pmol/mol. PMID:20160121

  1. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 differential absorption lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas H.; Petrin, Roger R.; MacKerrow, Edward P.; Schmitt, Mark J.; Quick, Charles R., Jr.; Zardecki, Andrew; Porch, William M.; Whitehead, Michael C.; Walters, Donald L.

    1998-09-01

    The measurement sensitivity of CO2 differential absorption LIDAR (DIAL) can be affected by a number of different processes. We will address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO2 DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  2. Development of an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL) for Carbon Dioxide Profilings

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.

    2011-12-01

    A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period

  3. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2012-02-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia for 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day, the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales, the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  4. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2011-08-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM, the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia over 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  5. [Studies on the determination of the flux of gaseous pollutant from an area by passive differential optical absorption spectroscopy].

    PubMed

    Li, Ang; Xie, Pin-Hua; Liu, Wen-Qing; Liu, Jian-Guo; Dou, Ke

    2009-01-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy (DOAS) for the determination of the flux of SO2 or other gaseous pollutants from an area (such as industrial area, city) which includes many different atmospheric pollution sources was studied in the present paper. Passive DOAS using the zenith scattered sunlight as the light source provides the column density (the integrated concentration of atmospheric absorbers along the light path) and has been successfully applied to the determination of the flux of gaseous pollutants emitted from the volcano or point source. Passive DOAS instrument installed in a car scanned the plume emitted from an area by circling around the area in this paper. Column density of each selected gaseous pollutant was retrieved from zenith scattered sunlight spectra collected by the instrument by spectral analysis method of passive DOAS in their particular absorption spectral range respectively. Combined with the meteorological (wind field) information during the period of measurement, the net flux value of gaseous pollutant from this area during the measurement could be estimated. DOAS method used to obtain the column density of gaseous pollutant in the section plane of the plume emitted from source and the method of net flux calculation of gaseous pollutant from a certain area are described. Also a passive DOAS instrument was developed and installed in a car to scan the gaseous pollutants from the area surrounded by the 5th Ring Road in Beijing city during a field campaign in the summer of 2005. The SO2 net flux 1.13 x 10(4) kg x h(-1) and NO2 net flux 9.3 x 10(3) kg x h(-1) from this area were derived separately after the passive DOAS measured the entire ring road and the wind data were roughly estimated from wind profile radar. The results indicate that this optical remote sensing method based on passive DOAS can be used to rapidly determine the flux of gaseous pollutant (such as SO2, NO2

  6. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  7. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements.

    PubMed

    Menzies, Robert T; Tratt, David M

    2003-11-20

    We discuss the spectroscopic requirements for a laser absorption spectrometer (LAS) approach to high-precision carbon dioxide (CO2) measurements in the troposphere. Global-scale, high-precision CO2 measurements are highly desirable in an effort to improve understanding and quantification of the CO2 sources and sinks and their impact on global climate. We present differential absorption sounding characteristics for selected LAS transmitter laser wavelengths, emphasizing the effects of atmospheric temperature profile uncertainties. Candidate wavelengths for lower-troposphere measurements are identified in the CO2 bands centered near 1.57, 1.60, and 2.06 microm. PMID:14658457

  8. Comparison of performance capabilities of spread spectrum coherent and direct detection CO2 DIAL systems

    NASA Astrophysics Data System (ADS)

    Hasson, Victor H.; Kovacs, Mark A.

    2002-02-01

    This paper compares the performance of a conventional direct detection CO2 Differential Absorption Lidar (DIAL) system with the coherent spread spectrum approach developed and patented by Textron. The analysis shows that the coherent approach is far superior in terms of maximum attainable standoff range at a specified transmitter average power and substantially reduced system power and associated size and weight at a predetermined range. The requirements on local oscillator stability are fairly relaxed and the spread spectrum/coherent DIAL concept is fairly easy to implement. Some comparative validation data are provided.

  9. Climatology and Dynamics of Water Vapor: Three Years of Sounding with the Differential Absorption Lidar on Mt. Zugspitze

    NASA Astrophysics Data System (ADS)

    Vogelmann, Hannes; Trickl, Thomas

    2010-05-01

    Water vapor is the the most important greenhouse gas and its vertical distribution plays a major role for the radiative balance. In particular in the upper troposphere the radiative transfer is very sensitive to small changes of the water-vapor concentration. At the same time the water-vapor distribution strongly depends on atmospheric dynamics and, thus, can serve as a good tracer for airmass histories. In order to access water-vapor profiles with a high resolution in time (typically 15 min) and a high vertical resolution (50 m to 300 m) throughout the free troposphere (3 km to 12 km a.s.l.) a differential absorption lidar (DIAL) system with excellent daytime capability has been developed and installed at the Schneefernerhaus research station (UFS) on Mt. Zugspitze (Germany) at an altitude of 2675 m a.s.l. (Vogelmann and Trickl 2008). The DIAL system is in routine operation since January 2007 and recording water-vapor profiles on one or two days a week. We present results from the first three years of operation. A climatology is derived and different water-vapor profile-types are assigned to typical large-scale atmospheric circulation patterns as well as to local-scale circulation patterns for the lower altitudes, in particular in the summer season, when the orographic convection reaches altitudes higher than 3 km a.s.l.. Particular attention is spent on stratospheric air intrusion events, which exhibit a maximum at the Alpine summit levels during the winter season (Trickl et al., 2010). Based on daily intrusion forecast-model by ETH Zürich simultaneousmeasurements with the water-vapor DIAL and the ozone-lidar at Garmisch-Partenkirchen have been carried out. In combination also with the in-situ measurements at the Zugspitze summit several intrusions have been very well characterized. In one exciting case a large-scale stratospheric intrusion took place during a lidar intercomparison campaign (LUAMI 2008) with an airborne DIAL. The intrusion layer was mapped by

  10. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  11. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  12. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  13. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  14. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS)

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.

    2006-04-01

    Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  15. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet

    NASA Astrophysics Data System (ADS)

    Mount, George H.; Rumburg, Brian; Havig, Jeff; Lamb, Brian; Westberg, Hal; Yonge, David; Johnson, Kristen; Kincaid, Ronald

    Ammonia is the most abundant basic gas in the atmosphere, and after N 2 and N 2O is the most abundant nitrogen-containing specie (Seinfeld and Pandis, 1998. Atmospheric Chemistry and Physics: from air pollution to climate changes. Wiley, New York). Typical concentrations of ammonia in the boundary layer range from <1 part per billion by volume (ppbv) in the free continental troposphere to parts per million (ppmv) levels over animal waste lagoons and near animal stalls. Agricultural activities are the dominant global source of ammonia emissions and a major environmental concern. In the US, ≈85% of ammonia emissions come from livestock operations (EPA Trends, 1998. www.epa.gov/ttn/chief/trends98/chapter2.pdf). Dairy farms constitute a large fraction of the livestock inventory. Current estimates of ammonia emissions to the atmosphere are characterized by a high degree of uncertainty, and so it is very important to obtain better estimates of ammonia emissions. We are working at the Washington State University research dairy to quantify ammonia emissions and investigate the effects of various mitigation strategies on those emissions. We describe here a new instrument utilizing the differential optical absorption spectroscopy (DOAS) technique to measure ammonia in the mid-ultraviolet with a detectability limit of about 1 ppb. DOAS avoids many of the problems that have thwarted past ammonia concentration measurements. Initial results show concentrations in the barn/concrete yard areas in the tens of parts per million range, over the slurry lagoons of hundreds of parts per billion to low parts per million, and low parts per million levels after initial slurry applications onto pastureland. Future papers will report on emission fluxes from the various parts of the dairy and the results of mitigation strategies; we show here initial data results. For a recent review of ammonia volatilization from dairy farms, see Bussink and Oenema (Nutrient Cycling in Agroecosystems 51

  16. Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Lee, Young Jong; Vega, Sebastián L.; Patel, Parth J.; Aamer, Khaled A.; Moghe, Prabhas V.

    2014-01-01

    We use broadband coherent anti-Stokes Raman scattering (BCARS) microscopy to characterize lineage commitment of individual human mesenchymal stem cells cultured in adipogenic, osteogenic, and basal culture media. We treat hyperspectral images obtained by BCARS in two independent ways, obtaining robust metrics for differentiation. In one approach, pixel counts corresponding to functional markers, lipids, and minerals, are used to classify individual cells as belonging to one of the three lineage groups: adipocytes, osteoblasts, and undifferentiated stem cells. In the second approach, we use multivariate analysis of Raman spectra averaged exclusively over cytosol regions of individual cells to classify the cells into the same three groups, with consistent results. The exceptionally high speed of spectral imaging with BCARS allows us to chemically map a large number of cells with high spatial resolution, revealing not only the phenotype of individual cells, but also population heterogeneity in the degree of phenotype commitment. PMID:24224876

  17. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  18. Improving the Current Understanding of the Evolution and Vertical Processes of Tropospheric Ozone Using a Ground Based Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The GSFC TROPOZ DIAL measurements are analyzed alongside aircraft spirals over the lidar site, co-located ozonesonde launches, aerosol lidar profiles and other TOLNet ozone lidar profiles. In both case studies, back trajectories, meteorological maps, and comparisons to air quality models are presented to better explain the sources and evolution of ozone. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate

  19. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography.

    PubMed

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko; Marneffe, Alice; Jemec, Gregor; Del Marmol, Veronique

    2016-06-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot whereby an exponential function becomes linear has been implemented on HD-OCT signals. The relative attenuation factor (µraf ) at different skin layers could be assessed.. IV-OP of superficial BCC with high diagnostic accuracy (DA) and high negative predictive values (NPV) were (i) decreased µraf in lower part of epidermis and (ii) increased epidermal thickness (E-T). IV-OP of nodular BCC with good to high DA and NPV were (i) less negative µraf in papillary dermis compared to normal adjacent skin and (ii) significantly decreased E-T and papillary dermal thickness (PD-T). In infiltrative BCC (i) high µraf in reticular dermis compared to normal adjacent skin and (ii) presence of peaks and falls in reticular dermis had good DA and high NPV. HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with IV-OP analysis of BCC. This permits BCC sub-differentiation with higher accuracy than in vivo HD-OCT analysis of morphology alone. PMID:27375943

  20. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    PubMed Central

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko; Marneffe, Alice; Jemec, Gregor; Del Marmol, Veronique

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot whereby an exponential function becomes linear has been implemented on HD-OCT signals. The relative attenuation factor (µraf) at different skin layers could be assessed.. IV-OP of superficial BCC with high diagnostic accuracy (DA) and high negative predictive values (NPV) were (i) decreased µraf in lower part of epidermis and (ii) increased epidermal thickness (E-T). IV-OP of nodular BCC with good to high DA and NPV were (i) less negative µraf in papillary dermis compared to normal adjacent skin and (ii) significantly decreased E-T and papillary dermal thickness (PD-T). In infiltrative BCC (i) high µraf in reticular dermis compared to normal adjacent skin and (ii) presence of peaks and falls in reticular dermis had good DA and high NPV. HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with IV-OP analysis of BCC. This permits BCC sub-differentiation with higher accuracy than in vivo HD-OCT analysis of morphology alone. PMID:27375943

  1. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Han, Zhaolong; Singh, Manmohan; Twa, Michael D.; Larin, Kirill V.

    2014-11-01

    Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced elastic wave. The damping speed of the displacement amplitudes at each measurement position along the wave propagation were compared for different materials. This method was initially tested on gelatin and agar phantoms of the same stiffness for validation. Consequently, untreated and CXL-treated porcine corneas of the same measured stiffness, but at different IOPs, were also evaluated. The results suggest that this noninvasive method may have the potential to detect the early stages of ocular diseases such as keratoconus or may be applied during CLX procedures by factoring in the effects of IOP on the measured corneal stiffness.

  2. Differential roles of P-glycoprotein, multidrug resistance-associated protein 2, and CYP3A on saquinavir oral absorption in Sprague-Dawley rats.

    PubMed

    Usansky, Helen H; Hu, Peidi; Sinko, Patrick J

    2008-05-01

    The objective of this investigation was to differentiate the roles of P-glycoprotein (Pgp), multidrug resistance-associated protein 2 (Mrp2), and CYP3A on saquinavir (SQV) oral absorption. With use of single-pass jejunal perfusion (in situ) and portal vein-cannulated rats (in vivo), SQV absorption was studied under chemical inhibition of Pgp [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2 isoquinolinyl)-ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918)], Mrp2 [(3-(((3-(2-(7-chloro-2-quinolinyl)-(E)-ethenyl)phenyl) ((3-(dimethylamino-3-oxopropyl)thio)methyl)-thio) propanoic acid (MK571)], and/or CYP3A (midazolam). Plasma concentrations of SQV and related metabolites were analyzed by liquid chromatography-tandem mass spectrometry. When given alone, SQV absorption was extremely low both in situ (F(a) = 0.07%) and in vivo [C(max) = 0.068 microg/ml; area under the curve (AUC) = 6.8 microg x min/ml]. Coadministration of GF120918 boosted SQV absorption by more than 20-fold with decreased variation in AUCs (percent coefficient of variation = 30% versus 100%). In contrast, coadministration of MK571 or midazolam increased SQV absorption only 2- to 3-fold without improving the variation in AUCs. SQV oral absorption was not further improved when it was given with GF120918 and midazolam or with GF120918 and MK571. The current results provide, for the first time, direct and explicit evidence that the low oral absorption of SQV is controlled by a secretory transporter, Pgp, and not by limited passive diffusion owing to its poor physicochemical properties. Pgp-mediated transport is also responsible for the highly variable oral bioavailability of SQV. In contrast, intestinal Mrp2 and intestinal CYP3A appear to play minor roles in SQV oral bioavailability. Given the differential and complex roles of Pgp and CYP3A in SQV oral absorption, the optimization of AIDS boosting regimens requires careful consideration to avoid therapy-limiting drug-drug transporter

  3. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Differential Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...

  4. Wide-band coherent receiver development for enhanced surveillance

    SciTech Connect

    Simpson, M.L.; Richards, R.K.; Hutchinson, D.P.

    1998-03-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced coherent IR heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Recent progress in wide band IR detectors and high speed electronics has significantly enhanced the measurement capabilities of coherent receivers. In addition, developments in new HgCdTe and quantum well IR photodetector (QWIP) focal plane arrays are providing the possibility of both active and passive coherent imaging. In this paper the authors discuss the implications of these new enabling technologies to the IR remote sensing community for enhanced surveillance. Coherent receivers, as opposed to direct or thermal detection, provide multiple dimensions of information about a scene or target in a single detector system. Combinations of range, velocity, temperature, and chemical species information are all available from a coherent heterodyne receiver. They present laboratory data showing measured noise equivalent power (NEP) of new QWIP detectors with heterodyne bandwidths greater than 7 GHz. For absorption measurements, a wide band coherent receiver provides the capability of looking between CO{sub 2} lines at off-resonance peaks and thus the measurement of lines normally inaccessible with conventional heterodyne or direct detection systems. Also described are differential absorption lidar (DIAL) and Doppler laboratory measurements using an 8 x 8 HgCdTe focal plane array demonstrating the snapshot capability of coherent receiver detector arrays for enhanced chemical plume and moving hardbody capture. Finally they discuss a variety of coherent receiver configurations that can suppress (or enhance) sensitivity of present active remote sensing systems to speckle, glint, and other measurement anomalies.

  5. Femtosecond induced transparency and absorption in the extremeultraviolet by coherent coupling of the He 2s2p (1Po) and 2p2 (1Se)double excitation states with 800 nm light

    SciTech Connect

    Loh, Z.-H.; Greene, C.H.; Leone, S.R.

    2007-08-01

    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p ({sup 1}P{sup 0}) and 2p{sup 2} ({sup 1}S{sup e}) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s{sup 2} {yields} 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.

  6. A compact high repetition rate CO2 coherent Doppler lidar

    NASA Technical Reports Server (NTRS)

    Alejandro, S.; Frelin, R.; Dix, B.; Mcnicholl, P.

    1992-01-01

    As part of its program to develop coherent heterodyne detection lidar technology for space, airborne, and ground based applications, the Optical Environment Division of the USAF's Phillips Laboratory developed a compact coherent CO2 TEA lidar system. Although originally conceived as a high altitude balloon borne system, the lidar is presently integrated into a trailer for ground based field measurements of aerosols and wind fields. In this role, it will also serve as a testbed for signal acquisition and processing development for planned future airborne and space based solid state lidar systems. The system has also found significance in new areas of interest to the Air Force such as cloud studies and coherent Differential Absorption Lidar (DIAL) systems.

  7. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  8. Development of 3.0-3.45 μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Veerabuthiran, S.; Razdan, A. K.; Jindal, M. K.; Sharma, R. K.; Sagar, Vikas

    2015-10-01

    We have developed a tripod mounted 3.0-3.45 μm OPO laser based differential absorption lidar (DIAL) system for sensing of atmospheric methane. The system operates with Nd: YAG laser pumped OPO laser, a 20 cm aperture telescope and a pan-tilt system to scan the atmosphere. Atmospheric transmission spectra over the entire spectral region are measured and indentified the absorption region of the various molecules in comparison with HITRAN. The backscattered signal for range resolved and hard target configuration up to a range of 400 m are measured with range resolution of 15 m. The stable daytime measurements of methane concentration varied from 1.9 ppm to 2.4 ppm with rms deviation of 0.2 ppm have been achieved. The measured concentration is in good agreement with reported values.

  9. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  10. Thiazide-sensitive Na+ -Cl- cotransporter (NCC) gene inactivation results in increased duodenal Ca2+ absorption, enhanced osteoblast differentiation and elevated bone mineral density.

    PubMed

    Hsu, Yu-Juei; Yang, Sung-Sen; Cheng, Chih-Jen; Liu, Shu-Ting; Huang, Shih-Ming; Chau, Tom; Chu, Pauling; Salter, Donald M; Lee, Herng-Sheng; Lin, Shih-Hua

    2015-01-01

    Inactivation of the thiazide-sensitive sodium chloride cotransporter (NCC) due to genetic mutations in Gitelman's syndrome (GS) or pharmacological inhibition with thiazide diuretics causes hypocalciuria and increased bone mineral density (BMD) with unclear extrarenal calcium (Ca(2+) ) regulation. We investigated intestinal Ca(2+) absorption and bone Ca(2+) metabolism in nonsense Ncc Ser707X (S707X) homozygous knockin mice (Ncc(S707X/S707X) mice). Compared to wild-type and heterozygous knockin littermates, Ncc(S707X/S707X) mice had increased intestinal absorption of (45) Ca(2+) and expression of the active Ca(2+) transport machinery (transient receptor potential vanilloid 6, calbindin-D9K , and plasma membrane Ca(2+) ATPase isoform 1b). Ncc(S707X/S707X) mice had also significantly increased Ca(2+) content accompanied by greater mineral apposition rate (MAR) in their femurs and higher trabecular bone volume, cortical bone thickness, and BMD determined by μCT. Their osteoblast differentiation markers, such as bone alkaline phosphatase, procollagen I, osteocalcin, and osterix, were also significantly increased while osteoclast activity was unaffected. Analysis of marrow-derived bone cells, either treated with thiazide or directly cultured from Ncc S707X knockin mice, showed that the differentiation of osteoblasts was associated with increased phosphorylation of mechanical stress-induced focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). In conclusion, NCC inhibition stimulates duodenal Ca(2+) absorption as well as osteoblast differentiation and bone Ca(2+) storage, possibly through a FAK/ERK dependent mechanism. PMID:24984877

  11. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2016-06-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  12. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  13. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  15. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  16. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  17. Coherent catastrophism

    NASA Astrophysics Data System (ADS)

    Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.

    We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting

  18. Quantitative characterization of x-ray differential interference contrast microscopy using modulation transfer function

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Chang, Chang

    2011-08-01

    Performance of two types of differential interference contrast objectives, i.e., the XOR pattern and the zone-plate doublet, is quantitatively characterized and compared using modulation transfer function. Effects of partial coherence, finite absorption and phase in a complex object, as well as bias retardation are also examined.

  19. Quantitative characterization of x-ray differential interference contrast microscopy using modulation transfer function.

    PubMed

    Nakamura, Takashi; Chang, Chang

    2011-08-01

    Performance of two types of differential interference contrast objectives, i.e., the XOR pattern and the zone-plate doublet, is quantitatively characterized and compared using modulation transfer function. Effects of partial coherence, finite absorption and phase in a complex object, as well as bias retardation are also examined. PMID:21934894

  20. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  1. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  2. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  3. Open-path quantum cascade laser-based system for simultaneous remote sensing of methane, nitrous oxide, and water vapor using chirped-pulse differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred

    2015-10-01

    Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.

  4. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  5. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations.

    PubMed

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique. PMID:16623245

  6. 2-μm Coherent DIAL for CO2, H2O and Wind Field Profiling in the Lower Atmosphere: Instrumentation and Results

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica; Le Mounier, Florian; Dumas, Arnaud

    2016-06-01

    We report on 2-μm coherent differential absorption lidar (CDIAL) measurements of carbon dioxide (CO2), water vapour (H2O) absorption and wind field profiling in the atmospheric boundary layer. The CDIAL uses a Tm:fiber pumped, single longitudinal mode Q-switched seeded Ho:YLF laser and a fibercoupled coherent detection. The laser operates at a pulse repetition frequency of 2 kHz and emits an output energy of 10 mJ with a pulse width of 40 ns (FWHM). Experimental horizontal and vertical range-resolved measurements were made in the atmospheric boundary layer and compared to colocated in-situ sensor data.

  7. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  8. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  9. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.

    PubMed

    Gibert, Fabien; Joly, Lilian; Xuéref-Rémy, Irène; Schmidt, Martina; Royer, Adrien; Flamant, Pierre H; Ramonet, Michel; Parvitte, Bertrand; Durry, Georges; Zéninari, Virginie

    2009-01-01

    Remote sensing and in situ instruments are presented and compared in the same location for accurate CO(2) mixing ratio measurements in the atmosphere: (1) a 2.064 microm Heterodyne DIfferential Absorption Lidar (HDIAL), (2) a field deployable infrared Laser Diode Spectrometer (LDS) using new commercial diode laser technology at 2.68 microm, (3) LICOR NDIR analyzer and (4) flasks. LDS, LICOR and flasks measurements were made in the same location, LICOR and flasks being taken as reference. Horizontal HDIAL measurements of CO(2) absorption using aerosol backscatter signal are reported. Using new spectroscopic data in the 2 microm band and meteorological sensor measurements, a mean CO(2) mixing ratio is inferred by the HDIAL in a 1 km long path above the 15m height location of the CO(2) in situ sensors. We compare HDIAL and LDS measurements with the LICOR data for 30 min of time averaging. The mean standard deviation of the HDIAL and the LDS CO(2) mixing ratio results are 3.3 ppm and 0.89 ppm, respectively. The bias of the HDIAL and the LDS measurements are -0.54 ppm and -0.99 ppm, respectively. PMID:18718810

  10. Measurement of tropospheric trace gases by long-path differential absorption spectroscopy during the 1993 OH Photochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Harder, J. W.; Jakoubek, R. O.; Mount, G. H.

    1997-03-01

    In August and September 1993 a comparative study of tropospheric long-path absorption techniques with in situ methods was performed for both the hydroxyl radical and the other important trace species. Long-path measurements were made over the 10.3 km path between Fritz Peak Observatory and Caribou Mine in the mountains 17 km west of Boulder, Colorado. At Caribou Mine, a 121 element, 1 m2 retroreflector array folds the optical path to give a total path of 20.6 km. The in situ instruments were located at Idaho Hill 0.5 km northwest of Caribou Mine. The optical design and analysis techniques used to obtain the path-integrated concentrations of O3, CH2O, SO2, and NO2 will be presented. The spectrograph used in this study is a 1/4 m double, crossed Czerny-Turner that employs a diode array detector allowing the acquisition of 40 nm spectral bands in the near UV and visible spectral regions. This system also utilizes automatic alignment and self-adjusting time integration so the system will acquire data in an unattended mode. The spectral bands selected for this study permit the simultaneous measurement of O3, NO2, CH2O, and SO2; NO2 and H2O; and NO3 and H2O. The data analysis uses a nonlinear least squares regression procedure to deduce the concentration of each of the species present in the atmosphere and also provides an effective method for removing the influence of scattered solar light for daytime measurements. An estimate of the measurement precision can be found by comparing atmospheric spectra analyzed with two different IO spectra; one measured through the atmosphere and the other a direct arc lamp spectrum.

  11. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  12. Coherent detectors

    NASA Astrophysics Data System (ADS)

    Lawrence, C. R.; Church, S.; Gaier, T.; Lai, R.; Ruf, C.; Wollack, E.

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  13. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  14. CHARM-F: An airborne Integrated Path Differential Absorption (IPDA) LIDAR for the simultaneous measurement of CO2 and CH4 Columns

    NASA Astrophysics Data System (ADS)

    Wirth, M.; Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Hoffmann, D.; Löhring, J.; Klein, V.; Schöggl, R.

    2011-12-01

    Currently, Deutsches Zentrum für Luft- und Raumfahrt (DLR) - in collaboration with Fraunhofer-Institut für Lasertechnik (ILT) and Kayser-Threde GmbH (KT) - is developing CHARM-F, an Integrated Path Differential Absorption (IPDA) LIDAR for simultaneous measurement of CO2 and CH4 columns. Design goal is a compact and rugged instrument optimized for airborne use on board of DLR's long range research aircraft HALO. The main scientific goal of the instrument is to provide precise column measurements of CO2 and CH4 to infer fluxes of these important greenhouse gases by means of inverse modeling. For this purpose, very stringent requirements concerning accuracy and precision have to be met since typical surface sources and sinks alter the total column only by a few percent. To achieve this, CHARM-F uses laser sources emitting pulse-pairs with nanosecond duration which allows for a precise ranging and a proper separation of atmospheric influences (i.e. aerosol and clouds) from the ground return leading to an unambiguously defined column (no airmass factors involved). Two laser systems - one for each trace gas - are employed using highly efficient and robust Nd:YAG lasers to pump optical parametric oscillators (OPO) which convert the pump radiation to the desired measurement wavelengths in the near infrared. Each laser system emits a pulse pair having different wavelengths. One is tuned to an absorption line of the trace gas under consideration and the other one to a nearby wavelength with much less absorption. The close temporal pulse separation of 250 μs together with a relatively large spot size of 30 m on ground ensures that nearly the same area is illuminated by both pulses. To achieve single-mode operation, both the pump and the OPO are injection seeded. The seed lasers are locked to a gas cell filled with a mixture of CO2 and CH4 to ensure an absolute wavelength calibration. Furthermore, deviations of the wavelength between outgoing laser pulse and the seed lasers

  15. Are High-Coherent Concept Maps Better for Prior Knowledge Activation? Differential Effects of Concept Mapping Tasks on High School vs. University Students

    ERIC Educational Resources Information Center

    Gurlitt, J.; Renkl, A.

    2008-01-01

    We investigated whether and how prior knowledge activation improves learning outcomes for high school (less experienced learners) and university students (experienced learners) in a hypertext environment. Map coherence was defined as the extent to which relationships between the concepts in the map were made explicit. Therefore, we classified the…

  16. 2-μm Ho emitter-based coherent DIAL for CO(2) profiling in the atmosphere.

    PubMed

    Gibert, F; Edouart, D; Cénac, C; Le Mounier, F; Dumas, A

    2015-07-01

    We report on the use of a thulium-fiber-pumped holmium-based emitter in a coherent differential absorption lidar (CDIAL) experiment for high time and space resolution of CO(2) absorption field in the atmosphere. The 2-μm high-power dual-wavelength single-mode Q-switched Ho:YLF oscillator delivers 10-mJ pulses with a duration of 40 ns at 2 kHz. Both short pulse duration and high repetition rate were chosen to increase the DIAL precision and time and space resolution in coherent detection. The CDIAL provides 150-m range and 15-min time-resolved CO(2) absorption coefficient with a calculated instrumental error of 0.5% at 500 m and less than 2% at 1 km. Dry-air CO(2) mixing ratio estimates from the DIAL system are compared with simultaneous in situ gas analyzer measurements during a 20-h-long experiment. PMID:26125375

  17. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  18. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    PubMed

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km. PMID:23670775

  19. Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Xie, Pin-Hua; Si, Fu-Qi; Li, Ang; Wu, Feng-Cheng; Wang, Yang; Liu, Jian-Guo; Liu, Wen-Qing; Andreas, Hartl; Chan, Ka Lok

    2014-09-01

    An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.

  20. Huygens-Fresnel Wave-Optics Simulation of Atmosphere Optical Turbulence and Reflective Speckle in CO{sub 2} Differential Absorption Lidar (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Foy, B.R.; Koskelo, A.C.; McVey, B.D.; Quick, C.R.; Porch, W.M.; Tiee, J.J.; Fite, C.B.; Archuleta, F.A.; Whitehead, M.C.; Walters, D.L.

    1999-03-23

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. We have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these process: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, we briefly review a description of our model including the limitations along with previous simulation s of individual effects. The performance of our modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, advanced studies have been performed to demonstrate the utility of our model in assessing the effects for different lidar geometries on RMS noise and correlation ''size'' in the receiver plane.

  1. Huygens-Fresnel wave-optics simulation of atmospheric optical turbulence and reflective speckle in CO{sub 2} differential absorption lidar (DIAL)

    SciTech Connect

    Nelson, D.; Petrin, R.; MacKerrow, E.; Schmitt, M.; Foy, B.; Koskelo, A.; McVey, B.; Quick, C.; Porch, W.; Fite, C.; Archuleta, F.; Whitehead, M.; Tiee, J.; Walters, D.

    1999-04-01

    The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. The authors have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these processes: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements. The limitations of the model are also discussed. In addition, studies have been performed to determine the importance of key parameters in the simulation. The results of these studies and their impact on the overall results will be presented.

  2. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  3. Differential optical absorption spectrometer measurement of NO 2, SO 2, O 3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Kong Hwa; Sree, Usha; Hong Tseng, Sen; Wu, Chien-Hou; Lo, Jiunn-Guang

    UV-differential optical absorption spectrometer (DOAS) technique is considered as a promising technique to detect gaseous pollutants and was applied to conduct one-week continuous measurements in the Chinese Petroleum (CPC) refinery plant located in Lin Yuan industrial park of Kaohsiung, Southern Taiwan. With the combination of local meteorological information, including solar radiation, wind direction and speed, the results showed that the concentrations of aromatic compounds and formaldehyde (HCHO) were higher at night while the values of ozone, NO 2 and SO 2 were high during the day. The major source of aromatics was the aromatic extraction unit in the refinery while NO 2 and SO 2 were mainly emitted from chimneys with not very high average concentrations. Formaldehyde concentration was above 50 ppbv during night. There exists an apparent correlation between the variation of ground-level ozone concentration and photochemical reactions. The results indicate that in addition to benzene and toluene, ozone is a deleterious pollutant. The commercial DOAS system provides reliable information on distribution patterns of major air pollutants depending on their concentration levels in ambient air.

  4. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    PubMed

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system. PMID:21283225

  5. Simulation and Theory of Speckle Noise for an Annular Aperture Frequency-Modulation Differential-Absorption LIDAR (FM-DIAL) System

    SciTech Connect

    Keller, Paul E.; Batdorf, Michael T.; Strasburg, Jana D.; Harper, Warren W.

    2009-05-28

    This paper presents theory of speckle noise for a frequency-modulation differential-absorption LIDAR system along with simulation results. These results show an unexpected relationship between the signal-to-noise ratio (SNR) of the speckle and the distance to the retro-reflector or target. In simulation, the use of an annular aperture in the system results in a higher SNR at midrange distances than at short or long distances. This peak in SNR occurs in the region where the laser’s Gaussian beam profile approximately fills the target. This was unexpected since it does not occur in the theory or simulations of the same system with a circular aperture. By including the autocorrelation of this annular aperture and expanding the complex correlation factor used in speckle models to include conditions not generally covered, a more complete theoretical model is derived for this system. Obscuration of the center of the beam at near distances is also a major factor in this relationship between SNR and distance. We conclude by comparing the resulting SNR as a function of distance from this expanded theoretical model to the simulations of the system over a double-pass horizontal range of 10 meters to 10 km at a wavelength of 1.28 micrometers

  6. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  7. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    PubMed

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-01

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable. PMID:27607715

  8. Coherent orthogonal polynomials

    SciTech Connect

    Celeghini, E.; Olmo, M.A. del

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines

  9. Coherent beamsstrahlung

    SciTech Connect

    Spence, W.L.

    1987-11-01

    The radiation coherently emitted by a high energy bunched beam suffering an arbitrarily large disruption in a collision with an idealized undisrupted beam is calculated. The near-luminal velocity of the beam - such that the emitted radiation moves very slowly with respect to the bunch - implies that only a small part of the bunch radiates coherently and necessitates a careful treatment of the disrupted beam phase space during emission. The angular distribution and spectral density are presented. It is found that most of the radiation is at wave lengths greater than or equal to the bunch length and that the total energy lost by the beam due to coherent effects should be negligible in high energy-high luminosity linear colliders. 4 refs.

  10. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  11. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  12. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, Volker; Walther, Craig

    2001-10-01

    Taking into account Poisson, background, amplifier, and speckle noise, we can simulate the precision of water-vapor measurements by using a 10-W average-power differential absorption lidar (DIAL) system. This system is currently under development at Hohenheim University, Germany, and at the American National Center for Atmospheric Research. For operation in the 940-nm region, a large set of measurement situations is described, including configurations that are considered for the first time to the authors knowledge. They include ultrahigh-resolution measurements in the surface layer (resolutions, 1.5 m and 0.1 s) and vertically pointing measurements (resolutions, 30 m and 1 s) from the ground to 2 km in the atmospheric boundary layer. Even during daytime, the DIAL system will have a measurement range from the ground to the upper troposphere (300 m, 10 min) that can be extended from a mountain site to the lower stratosphere. From the ground, for the first time of which the authors are aware, three-dimensional fields of water vapor in the boundary layer can be investigated within a range of the order of 15 km and with an averaging time of 10 min. From an aircraft, measurements of the atmospheric boundary layer (60 m, 1 s) can be performed from a height of 4 km to the ground. At higher altitudes, up to 18 km, water-vapor profiles can still be obtained from aircraft height level to the ground. When it is being flown either in the free troposphere or in the stratosphere, the system will measure horizontal water-vapor profiles up to 12 km. We are not aware of another remote-sensing technique that provides, simultaneously, such high resolution and accuracy.

  13. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  14. Coherence, Pseudo-Coherence, and Non-Coherence.

    ERIC Educational Resources Information Center

    Enkvist, Nils Erik

    Analysis of the factors that make a text coherent or non-coherent suggests that total coherence requires cohesion not only on the textual surface but on the semantic level as well. Syntactic evidence of non-coherence includes lack of formal agreement blocking a potential cross-reference, anaphoric and cataphoric references that do not follow their…

  15. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  16. Objective Eulerian coherent structures.

    PubMed

    Serra, Mattia; Haller, George

    2016-05-01

    We define objective Eulerian Coherent Structures (OECSs) in two-dimensional, non-autonomous dynamical systems as the instantaneously most influential material curves. Specifically, OECSs are stationary curves of the averaged instantaneous material stretching-rate or material shearing-rate functionals. From these objective (frame-invariant) variational principles, we obtain explicit differential equations for hyperbolic, elliptic, and parabolic OECSs. As an illustration, we compute OECSs in an unsteady ocean velocity data set. In comparison to structures suggested by other common Eulerian diagnostic tools, we find OECSs to be the correct short-term cores of observed trajectory deformation patterns. PMID:27249950

  17. Objective Eulerian coherent structures

    NASA Astrophysics Data System (ADS)

    Serra, Mattia; Haller, George

    2016-05-01

    We define objective Eulerian Coherent Structures (OECSs) in two-dimensional, non-autonomous dynamical systems as the instantaneously most influential material curves. Specifically, OECSs are stationary curves of the averaged instantaneous material stretching-rate or material shearing-rate functionals. From these objective (frame-invariant) variational principles, we obtain explicit differential equations for hyperbolic, elliptic, and parabolic OECSs. As an illustration, we compute OECSs in an unsteady ocean velocity data set. In comparison to structures suggested by other common Eulerian diagnostic tools, we find OECSs to be the correct short-term cores of observed trajectory deformation patterns.

  18. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-09-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  19. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    USGS Publications Warehouse

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized 5 since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in 10 volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to vol- 15 canic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatepetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3◦) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to 25 the plume and SO2 was measured at all times well above the detection

  20. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  1. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-05-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ± 40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  2. Practical witness for electronic coherences

    SciTech Connect

    Johnson, Allan S.; Yuen-Zhou, Joel; Aspuru-Guzik, Alán; Krich, Jacob J.

    2014-12-28

    The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems. Here, we demonstrate a method for practically implementing such a test, whereby pump-probe signals are taken at several different pulse durations and used to extrapolate to the ultrashort-pulse limit. We present analytic and numerical results determining requirements for pulse durations and the optimal choice of pulse central frequency, which can be determined from an absorption spectrum. Our results suggest that for numerous systems, the required experiment could be implemented by many ultrafast spectroscopy laboratories using pulses of tens of femtoseconds in duration. Such experiments could resolve the standing debate over the nature of coherences in photosynthetic complexes.

  3. Coherent-state-induced transparency

    NASA Astrophysics Data System (ADS)

    Gogyan, A.; Malakyan, Yu.

    2016-04-01

    We examine electromagnetically induced transparency (EIT) in an ensemble of cold Λ -type atoms induced by a quantum control field in multimode coherent states and compare it with the transparency created by the classical light of the same intensity. We show that the perfect coincidence is achieved only in the case of a single-mode coherent state, whereas the transparency sharply decreases, when the number of the modes exceeds the mean number of control photons in the medium. The origin of the effect is the modification of photon statistics in the control field with increasing the number of the modes that weakens its interaction with atoms resulting in a strong probe absorption. For the same reason, the probe pulse transforms from EIT-based slow light into superluminal propagation caused by the absorption.

  4. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  5. Comparison of performance capabilities of spread spectrum coherent and direct detection CO2 DIAL systems and associated hardware fielding implications

    NASA Astrophysics Data System (ADS)

    Hasson, Victor H.; Dryden, Gordon L.

    2002-07-01

    This paper reviews the performance of a conventional direct detection CO2 Differential Absorption Lidar (DIAL) system with the coherent spread spectrum approach developed, validated and patented by Textron. The analysis shows that the coherent approach is far superior in terms of maximum attainable standoff range at a specified transmitter average power and substantially reduced system power and associated size and weight at a predetermined range. The requirements on local oscillator stability are fairly relaxed and the spread spectrum/coherent DIAL concept is fairly easy to implement. Performance parameter maps are presented for ground-based, low-altitude and high-altitude airborne systems with a range of aperture sizes and pulse formats.

  6. Putting Differentials Back into Calculus

    ERIC Educational Resources Information Center

    Dray, Tevian; Manogue, Corrine A.

    2010-01-01

    We argue that the use of differentials in introductory calculus courses is useful and provides a unifying theme, leading to a coherent view of the calculus. Along the way, we meet several interpretations of differentials, some better than others.

  7. Developments in Coherent Perfect Polarization Rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, James; Zhou, Chaunhong; Baker, Michael

    2015-05-01

    Coherent Perfect Polarization Rotation (CPR) is a useful technique akin to Coherent Perfect Absorption (CPA, also known as the anti-laser) but that results in very high efficiency optical mode conversion. We describe the analysis of recent experimental data from our CPR testbed, the use of CPR in miniaturizing optical isolators and CPR phenomena in non-linear optics. Work supported by the N.S.F. under Grant No. ECCS-1360725.

  8. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography.

    PubMed

    Boone, M A L M; Suppa, M; Dhaenens, F; Miyamoto, M; Marneffe, A; Jemec, G B E; Del Marmol, V; Nebosis, R

    2016-01-01

    One of the most challenging problems in clinical dermatology is the early detection of melanoma. Reflectance confocal microscopy (RCM) is an added tool to dermoscopy improving considerably diagnostic accuracy. However, diagnosis strongly depends on the experience of physicians. High-definition optical coherence tomography (HD-OCT) appears to offer additional structural and cellular information on melanocytic lesions complementary to that of RCM. However, the diagnostic potential of HD-OCT seems to be not high enough for ruling out the diagnosis of melanoma if based on morphology analysis. The aim of this paper is first to quantify in vivo optical properties such as light attenuation in melanocytic lesions by HD-OCT. The second objective is to determine the best critical value of these optical properties for melanoma diagnosis. The technique of semi-log plot whereby an exponential function becomes a straight line has been implemented on HD-OCT signals coming from four successive skin layers (epidermis, upper papillary dermis, deeper papillary dermis and superficial reticular dermis). This permitted the HD-OCT in vivo measurement of skin entrance signal (SES), relative attenuation factor normalized for the skin entrance signal (µ raf1) and half value layer (z 1/2). The diagnostic accuracy of HD-OCT for melanoma detection based on the optical properties, µ raf1 , SES and z 1/2 was high (95.6, 82.2 and 88.9 %, respectively). High negative predictive values could be found for these optical properties (96.7, 89.3 and 96.3 %, respectively) compared to morphologic assessment alone (89.9 %), reducing the risk of mistreating a malignant lesion to a more acceptable level (3.3 % instead of 11.1 %). HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with in vivo analysis of optical properties of tissue scatterers in melanocytic lesions. In vivo HD-OCT analysis of optical properties permits melanoma

  9. Revealing Hidden Coherence in Partially Coherent Light

    NASA Astrophysics Data System (ADS)

    Svozilík, Jiří; Vallés, Adam; Peřina, Jan; Torres, Juan P.

    2015-11-01

    Coherence and correlations represent two related properties of a compound system. The system can be, for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state, or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a local unitary transformation of the system does not affect its coherence, global unitary transformations modifying both the system and its surroundings can enhance its coherence, transforming mutual correlations into coherence. The question naturally arises of what is the best measure that quantifies the correlations that can be turned into coherence, and how much coherence can be extracted. We answer both questions, and illustrate its application for some typical simple systems, with the aim at illuminating the general concept of enhancing coherence by modifying correlations.

  10. Coherent spin dynamics of donor bound electrons in GaAs

    NASA Astrophysics Data System (ADS)

    Phelps, Carey; O'Leary, Shannon; Prineas, John; Wang, Hailin

    2011-08-01

    We report experimental studies of coherent spin dynamics of donor-bound electrons in high-purity GaAs by using transient differential transmission. The donor-bound exciton transitions, which are not visible in the linear absorption spectrum, are spectrally resolved in the nonlinear differential transmission spectra. The spin beats in the transient differential transmission response, arising from electron spin precession in an external magnetic field, are investigated with the pump and probe coupling to various donor-bound exciton transitions. The spectral dependence of the spin beats provides important information on the polarization selection rule for the underlying donor-bound exciton transitions. The polarization selection rules deduced from these experiments indicate that contributions from higher-energy donor-bound exciton transitions can severely limit the effectiveness of optical spin control using mechanisms such as polarization-dependent optical Stark shifts.

  11. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    PubMed Central

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  12. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.

    PubMed

    Ono, Daisuke; Honma, Sato; Honma, Ken-Ichi

    2016-09-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2 (-/-) ). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2 (-/-) SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  13. Neutrino induced coherent pion production

    SciTech Connect

    Hernandez, E.; Nieves, J.; Valverde, M.; Vicente-Vacas, M. J.

    2010-03-30

    We discuss different parameterizations of the C{sub 5}{sup A}(q{sup 2}) NDELTA form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low q{sup 2} behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.

  14. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  15. Coherent Scatter Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Mahboob

    In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.

  16. Digital self-coherent detection.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Leven, Andreas

    2008-01-21

    We review recent progresses on digital self-coherent detection of differential phase-shift keyed (DPSK) signal using orthogonal differential direct detection followed by high-speed analog-to-digital conversion and digital signal processing (DSP). Techniques such as data-aided multisymbol phase estimation for receiver sensitivity enhancement, unified detection scheme for multi-level DPSK signals, and optical field reconstruction are described. The availability of signal field information brings the possibility to compensate for some linear and nonlinear transmission impairments through further DSP. An adaptive DSP algorithm for simultaneous electronic polarization de-multiplexing and polarization-mode dispersion compensation is also presented. PMID:18542154

  17. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  18. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  19. Coherent acoustic phonons in YBa2Cu3O7/La1/3Ca2/3MnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Li, Wei; He, Bin; Zhang, Chunfeng; Liu, Shenghua; Liu, Xiaoran; Middey, S.; Chakhalian, J.; Wang, Xiaoyong; Xiao, Min

    2016-03-01

    We investigate photo-induced coherent acoustic phonons in complex oxide superlattices consisting of high-Tc superconductor YBa2Cu3O7-x and ferromagnetic manganite La1/3Ca2/3MnO3 epitaxial layers with broadband pump-probe spectroscopy. Two oscillatory components have been observed in time-resolved differential reflectivity spectra. Based on the analysis, the slow oscillation mode with a frequency sensitive to the probe wavelength is ascribed to the stimulated Brillouin scattering due to the photon reflection by propagating train of coherent phonons. The fast oscillation mode with a probe-wavelength-insensitive frequency is attributed to the Bragg oscillations caused by specular phonon reflections at oxide interfaces or the electron-coupling induced modulation due to free carrier absorption in the metallic superlattices. Our findings suggest that oxide superlattice is an ideal system to tailor the coherent behaviors of acoustic phonons and to manipulate the thermal and acoustic properties.

  20. Spontaneously generated coherence in a Rb atom via photon counting statistics

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Peng, Yonggang; Sun, Zhen-Dong; Zheng, Yujun

    2016-01-01

    We study the spontaneously generated coherence (SGC) in a Rb atom by employing photon counting statistics based on the four-level Y-type model driven by a probe field and two coherent control fields. A transparency channel induced by coherent population trapping (CPT) and ultra-narrow probe absorption peaks in the presence of SGC are found.

  1. Extracting coherent modes from partially coherent wavefields

    SciTech Connect

    Flewett, Samuel; Quiney, Harry M.; Tran, Chanh Q.; Nugent, Keith A.

    2009-09-08

    A method for numerically recovering the coherent modes and their occupancies from a known mutual optical intensity function is described. As an example, the technique is applied to previously published experimental data from an x-ray undulator source. The data are found to be described by three coherent modes, and the functional forms and relative occupancies of these modes are recovered.

  2. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  3. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-01

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. PMID:26320799

  4. Comparison of ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) and satellite DOAS measurements of NO2 distribution over Ulaanbaatar (Mongolia) during summer 2013

    NASA Astrophysics Data System (ADS)

    Böhnke, Sebastian; Behrendt, Thomas; Bruse, Michael; Meixner, Franz X.; Mamtimin, Buhalqem

    2014-05-01

    Cities are immense sources of air pollutants; however, emission inventories in many of them still are highly uncertain, particularly in developing countries. Ulaanbaatar is the most populous and polluted area in Mongolia. Tropospheric NO2 is proved to be harmful to both, the atmospheric environment and human health. It might be meaningful and important to observe pollutant concentrations in an area-integrated form (satellite observations) to create a sound data basis for air quality control measures. In our study, we preliminary present the results of both satellite and ground-based Differential Optical Absorption Spectroscopy (DOAS) measurements of vertical column densities (VCDs) of NO2 in Ulaanbaatar (urban area). As a ground validation tool, the MAX-DOAS measurements carried out in Ulaanbaatar (Mongolia) summer 2013 and are applied at 3 different sites in the west of Ulaanbaatar (106.73° E / 47.83° N), the city center (106.92° E / 47.92° N) and in the east (107.12° E / 47.87° N). Additionally, Automatic Weather Stations (AWS) have been set up and ozone was measured by UV absorption technique also at the 3 sites. Preliminary results show that the NO2 column densities increase during sunset and decrease after sunrise, which is most likely caused by a longer light path resulting from high solar zenith angles (SZA). The maximum DSCDs (Differential Slant Column Densities) are observed around sunset and sunrise (up to 10^17 molec cm-², mainly a measurement effect as stated above). The daily minima of the vertical column densities (VCD) appear in the morning and in the afternoon (DSCD ~2×10^15 molec cm-²) while, around noon, a second maximum can be observed (DSCD ~4×10^16 molec cm-²). Satellite data show mean VCDs of about 3×10^15 molec cm-² in July and a varying agreement with MAX-DOAS measurements.

  5. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  6. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  7. The Relationship between the Optical Depth of the 9.7 μm Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Chiar, J. E.; Ennico, K.; Pendleton, Y. J.; Boogert, A. C. A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A. G. G. M.; Werner, M.; Whittet, D. C. B.

    2007-09-01

    We have examined the relationship between the optical depth of the 9.7 μm silicate absorption feature (τ9.7) and the near-infrared color excess, E(J-Ks), in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard 68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra, spans E(J-Ks)=0.3-10 mag (corresponding to visual extinction between about 2 and 60 mag). All lines of sight show the 9.7 μm silicate feature. Unlike in the diffuse ISM where a tight linear correlation between the 9.7 μm silicate feature optical depth and the extinction (AV) is observed, we find that the silicate feature in dense clouds does not show a monotonic increase with extinction. Thus, in dense clouds, τ9.7 is not a good measure of total dust column density. With few exceptions, the measured τ9.7 values fall well below the diffuse ISM correlation line for E(J-Ks)>2 mag (AV>12 mag). Grain growth via coagulation is a likely cause of this effect.

  8. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  9. Painlevé IV coherent states

    SciTech Connect

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  10. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  11. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  12. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  13. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Goetz, E.; Riles, K.

    2016-04-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors.

  14. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  15. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Luebcke, P.; Alvarez Nieves, J.; Cárdenas Gonzáles, L.; Platt, U.

    2010-12-01

    Volcanic ash is a hazard to aviation mainly due to its threat to jet engines with the risk of total engine failure. Other hazards consist of abrasion of windshields and damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ashes provoked severe incidents of engine failure of jet aircrafts (e.g. Mt. St. Helens, USA, 1980; Mt. Galunggung, Indonesia, 1982 and Redoubt volcano, USA, 1989). In addition to volcanic ash, also volcanic gases pose a threat. Prolonged and/or cumulative exposure of sulfur dioxide (SO2) or sulfuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and provokes damage to engines. SO2 receives most attention because its presence above the lower troposphere atmosphere is a clear proxy for a volcanic plume and indicates that fine ash could also be present. One of the most recent examples of volcanic ash impairing aviation is the eruption of Eyjafjallajoküll, Iceland, between March and May 2010, which lead to temporal closure of the European air space. Although no severe incidents were reported, it affected an unprecedented number of people and had a considerable negative economic impact on carriers. Up to now, remote sensing of SO2 via Differential Optical Spectroscopy (DOAS) in the ultraviolet spectral region has primarily been used to measure volcanic clouds from satellites and ground-based platforms. Here we present a set of experimental and model data, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 distributions in two spatial dimensions. In order to prove the concept, simultaneous airborne and ground-based measurements were conducted at Popocatépetl volcano, Mexico, in April 2010. These observations were combined with radiative transfer studies modelling the conditions at hand. The ground based measurements were made by two stationary instruments, a further, mobile instrument was used to perform vehicle traverses below the plume

  16. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  17. Ordering states with coherence measures

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Yu, Xiao-Dong; Xu, G. F.; Tong, D. M.

    2016-07-01

    The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.

  18. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  19. Fragments and Coherence

    ERIC Educational Resources Information Center

    Watson, Anne

    2008-01-01

    Can teachers contact the inner coherence of mathematics while working in a context fragmented by always-new objectives, criteria, and initiatives? How, more importantly, can learners experience the inner coherence of mathematics while working in a context fragmented by testing, modular curricular, short-term learning objectives, and lessons that…

  20. Catalytic coherence transformations

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  1. Text Coherence in Translation

    ERIC Educational Resources Information Center

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  2. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-05-01

    In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.

  3. Reverse Coherent Information

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.

    2009-04-01

    We define a family of entanglement distribution protocols assisted by classical feedback communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This protocol family leads to the definition of a new entanglement distribution capacity that exceeds the unassisted entanglement distribution capacity for some interesting channels.

  4. Scalable coherent interface

    SciTech Connect

    Alnaes, K.; Kristiansen, E.H. ); Gustavson, D.B. ); James, D.V. )

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs.

  5. Partially coherent ultrafast spectrography

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-03-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.

  6. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  7. Partially coherent ultrafast spectrography

    PubMed Central

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-01-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080

  8. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  9. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence. PMID:19507812

  10. Coherent Polariton Laser

    NASA Astrophysics Data System (ADS)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  11. Design of a near-IR coherent lidar for high spatial and velocity resolution wind measurement

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Post, Madison J.

    1992-01-01

    A coherent Doppler lidar based on a CW diode-pumped, injection seeded, Th:YAG laser operating at approx. 2.02 microns is currently under development. This system is optimized for measurements of boundary layer winds with high spatial, temporal, and velocity resolution. Initially, the system will run alongside a new high repetition rate (5-10 kHz) CO2 mini-Master Oscillator Power Amplifier (mini-MOPA) Doppler lidar, which will provide simultaneous range-resolved Differential Absorption Lidar (DIAL) water vapor measurements. Water vapor DIAL operation of the 2 micron system is being considered as a future option. The anticipated specifications and the preliminary design are discussed.

  12. Application of a long-path differential optical absorption spectrometer (LP-DOAS) on the measurements of NO(2), SO(2), O(3), and HNO(2) in Gwangju, Korea.

    PubMed

    Lee, Jeongsoon; Kim, Ki-Hyun; Kim, Young J; Lee, Jaihoon

    2008-03-01

    A differential optical absorption spectrometer (DOAS) technique has been applied to monitor airborne trace pollutants including NO(2), SO(2), O(3), and HNO(2) in the ultraviolet (UV) region (290-350 nm) over a 1.5 km beam path (two ways) during an intensive measurement campaign held at Gwangju, Korea (March 2002). Their mean mixing ratios (and standard deviations) were computed as 11.3 (8.8), 1.9 (1.7), 17.1 (19.3), and 0.5 (0.4)ppbv, respectively. As a means to evaluate the performance of the long-path DOAS (LP-DOAS) system with conventional point monitoring systems (PMS), correlation analysis was conducted between the two data sets. These data sets were then inspected to account for the influence of the environmental conditions on the correlation strength between the two systems, especially with respect to light level and wind speed. To facilitate the comparison, correlation analyses were conducted after dividing the data sets for those parameters into several classes. The strength of the correlations between DOAS and meteorological parameters was also examined to evaluate their effects on the DOAS performance. It was found that, among the four pollutant species, O(3) is the most sensitive to changes in meteorological conditions in relation with atmospheric mixing conditions. The overall results of our study indicate that open-path monitoring techniques can be used to effectively diagnose air quality and be substituted for the conventional point monitoring methods with the proper consideration of those parameters affecting the DOAS sensitivity (e.g., light level and wind speed). PMID:17335958

  13. Interferometric phase reconstruction using simplified coherence network

    NASA Astrophysics Data System (ADS)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  14. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  15. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  16. Optical Coherence Tomography

    MedlinePlus

    ... Cardiac Magnetic Resonance Imaging (MRI and MRA) Computed Tomography (CT) Scan Diagnostic Tests and Procedures Echocardiography Electrocardiogram ... Ultrasound Nuclear Stress Test Nuclear Ventriculography Positron Emission Tomography (PET) Stress ... Optical Coherence Tomography | ...

  17. Coherence comes full circle

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Coherent synchrotron radiation has revolutionized the study of molecules and materials. Talking to Nature Materials, Gerhard Materlik, CEO of the Diamond Light Source, discusses the many uses of synchrotron sources and free electron lasers.

  18. Stable coherent states

    NASA Astrophysics Data System (ADS)

    Zipfel, Antonia; Thiemann, Thomas

    2016-04-01

    We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z =e-i Lχ Cq for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates.

  19. Undergraduate Coherent Optics Laboratory

    ERIC Educational Resources Information Center

    Yu, F. T. S.; Wang, E. Y.

    1973-01-01

    Discusses the use of a set of experiments to provide undergraduate electrical engineering students with a knowledge of the state of the art in modern coherent optics from an engineering standpoint. (CC)

  20. Influences of Doppler effect on spontaneously generated coherence in a Rb atom

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Zheng, Y.

    2015-11-01

    We study the influences of Doppler effect on spontaneously generated coherence in a Rb atom driven by a probe field and two control fields. We show that the propagating directions of the lasers and the wave-vector mismatch have influence on the absorption properties of the atom. By employing the Doppler effect and spontaneous generated coherence, the ultra-narrow lines in probe absorption profile near two-photon resonant position can be obtained.

  1. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  2. Reliability and Agreement of Intramuscular Coherence in Tibialis Anterior Muscle

    PubMed Central

    van Asseldonk, Edwin H. F.; Campfens, Sanne Floor; Verwer, Stan J. F.; van Putten, Michel J. A. M.; Stegeman, Dick F.

    2014-01-01

    Background Neuroplasticity drives recovery of walking after a lesion of the descending tract. Intramuscular coherence analysis provides a way to quantify corticomotor drive during a functional task, like walking and changes in coherence serve as a marker for neuroplasticity. Although intramuscular coherence analysis is already applied and rapidly growing in interest, the reproducibility of variables derived from coherence is largely unknown. The purpose of this study was to determine the test-retest reliability and agreement of intramuscular coherence variables obtained during walking in healthy subjects. Methodology/Principal Findings Ten healthy participants walked on a treadmill at a slow and normal speed in three sessions. Area of coherence and peak coherence were derived from the intramuscular coherence spectra calculated using rectified and non-rectified M. tibialis anterior Electromyography (EMG). Reliability, defined as the ability of a measurement to differentiate between subjects and established by the intra-class correlation coefficient, was on the limit of good for area of coherence and peak coherence when derived from rectified EMG during slow walking. Yet, the agreement, defined as the degree to which repeated measures are identical, was low as the measurement error was relatively large. The smallest change to exceed the measurement error between two repeated measures was 66% of the average value. For normal walking and/or other EMG-processing settings, not rectifying the EMG and/or high-pass filtering with a high cutoff frequency (100 Hz) the reliability was only moderate to poor and the agreement was considerably lower. Conclusions/significance Only for specific conditions and EMG-processing settings, the derived coherence variables can be considered to be reliable measures. However, large changes (>66%) are needed to indicate a real difference. So, although intramuscular coherence is an easy to use and a sufficiently reliable tool to quantify

  3. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  4. Pseudo-coherent demodulation for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    This paper proposes three so-called pseudo-coherent demodulation schemes for use in land mobile satellite channels. The schemes are derived based on maximum likelihood (ML) estimation and detection of an N-symbol observation of the received signal. Simulation results for all three demodulators are presented to allow comparison with the performance of differential PSK (DPSK) and ideal coherent demodulation for various system parameter sets of practical interest.

  5. Stimulated coherent transition radiation

    SciTech Connect

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  6. Temporal coherence length of light in semiclassical field theory models

    SciTech Connect

    Jagielski, Borys; Lein, Johanne; Inge Vistnes, Arnt

    2011-03-28

    The following work is motivated by the conceptual problems associated with the wave-particle duality and the notion of the photon. Two simple classical models for radiation from individual emitters are compared, one based on sines with random phasejumps, another based on pulse trains. The sum signal is calculated for a varying number of emitters. The focus lies on the final signal's statistical features quantified by means of the temporal coherence function and the temporal coherence length. We show how these features might be used to experimentally differentiate between the models. We also point to ambiguities in the definition of the temporal coherence length.

  7. On the detection of differentially encoded polyphase signals.

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1972-01-01

    Consideration of the transmission and detection of differentially encoded multiple phase-shift-keyed (MPSK) signals, paying particular attention to the ambiguity resolution problem resulting from suppression of the transmitted carrier. A study is made of the coherent detection of differentially encoded MPSK signals, and the performance of a differentially encoded MPSK system is compared with that of a system which transmits absolutely encoded polyphase signals and performs perfect ambiguity resolution. Both the perfect and noisy reference signal cases are treated. Also, the performance of coherent detection of differentially encoded MPSK signals is compared with that of differentially coherent reception of the same signal set.

  8. Computed tomography of refractive index by low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Ma, Zhenhe; Zhou, Hongxian

    2015-03-01

    We present a 3D imaging system for simultaneously imaging the distributions of refractive index and optical absorption using a transmission Fourier-domain low-coherence interferometer. The forward-scattering light travelling through a sample interferes with a reference light beam. The projections of refractive index and optical absorption within the sample are calculated from measured interference fringes. We acquire the projections at sufficient angular views and reconstruct the distributions of refractive index and optical absorption using the filter back-projection algorithm. The proposed method is experimentally verified by using a plastic tube phantom.

  9. SAR image effects on coherence and coherence estimation.

    SciTech Connect

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  10. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  11. Coherence and Coreference Revisited

    PubMed Central

    KEHLER, ANDREW; KERTZ, LAURA; ROHDE, HANNAH; ELMAN, JEFFREY L.

    2011-01-01

    For more than three decades, research into the psycholinguistics of pronoun interpretation has argued that hearers use various interpretation ‘preferences’ or ‘strategies’ that are associated with specific linguistic properties of antecedent expressions. This focus is a departure from the type of approach outlined in Hobbs (1979), who argues that the mechanisms supporting pronoun interpretation are driven predominantly by semantics, world knowledge and inference, with particular attention to how these are used to establish the coherence of a discourse. On the basis of three new experimental studies, we evaluate a coherence-driven analysis with respect to four previously proposed interpretation biases—based on grammatical role parallelism, thematic roles, implicit causality, and subjecthood—and argue that the coherence-driven analysis can explain the underlying source of the biases and predict in what contexts evidence for each will surface. The results further suggest that pronoun interpretation is incrementally influenced by probabilistic expectations that hearers have regarding what coherence relations are likely to ensue, together with their expectations about what entities will be mentioned next, which, crucially, are conditioned on those coherence relations. PMID:22923856

  12. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    PubMed

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50

  13. Optical absorption in semiconductor nanorings under electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Tong-Yi; Cao, Jun-Cheng; Zhao, Wei

    2005-01-01

    The optical absorption in semiconductor nanorings under a lateral DC field and a perpendicular magnetic field is numerically simulated by coherent wave approach. The exciton dominated optical absorption is compared with the free-carrier interband absorption to demonstrate the key role of Coulomb interaction between electron and hole. The influence of the lateral DC field and the perpendicular magnetic field on the optical absorption are discussed in detail. It shows that the lateral DC field can significantly enhance the Aharonov-Bohm effect of the neutral excitons in semiconductor nanorings.

  14. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  15. Coherent control of light interaction with graphene

    NASA Astrophysics Data System (ADS)

    Rao, Shraddha M.; Heitz, Julius J. F.; Roger, Thomas; Westerberg, Niclas; Faccio, Daniele

    2014-09-01

    We report the experimental observation of all-optical modulation of light in a graphene film. The graphene film is scanned across a standing wave formed by two counter-propagating laser beams in a Sagnac interferometer. Through a coherent absorption process the on-axis transmission is modulated with close to 80% efficiency. Furthermore we observe modulation of the scattered energy by mapping the off-axis scattered optical signal: scattering is minimized at a node of the standing wave pattern and maximized at an antinode. The results highlight the possibility to switch and modulate any given optical interaction with deeply sub-wavelength films.

  16. Maximal privacy without coherence.

    PubMed

    Leung, Debbie; Li, Ke; Smith, Graeme; Smolin, John A

    2014-07-18

    Privacy is a fundamental feature of quantum mechanics. A coherently transmitted quantum state is inherently private. Remarkably, coherent quantum communication is not a prerequisite for privacy: there are quantum channels that are too noisy to transmit any quantum information reliably that can nevertheless send private classical information. Here, we ask how much private classical information a channel can transmit if it has little quantum capacity. We present a class of channels N(d) with input dimension d(2), quantum capacity Q(N(d)) ≤ 1, and private capacity P(N(d)) = log d. These channels asymptotically saturate an interesting inequality P(N) ≤ (1/2)[log d(A) + Q(N)] for any channel N with input dimension d(A) and capture the essence of privacy stripped of the confounding influence of coherence. PMID:25083622

  17. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  18. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  19. Core hole-electron correlation in coherently coupled molecules.

    PubMed

    Scholz, M; Holch, F; Sauer, C; Wiessner, M; Schöll, A; Reinert, F

    2013-07-26

    We study the core hole-electron correlation in coherently coupled molecules by energy dispersive near edge x-ray absorption fine-structure spectroscopy. In a transient phase, which exists during the transition between two bulk arrangements, 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride multilayer films exhibit peculiar changes of the line shape and energy position of the x-ray absorption signal at the C K-edge with respect to the bulk and gas phase spectra. By a comparison to a theoretical model based on a coupling of transition dipoles, which is established for optical absorption, we demonstrate that the observed spectroscopic differences can be explained by an intermolecular delocalized core hole-electron pair. By applying this model we can furthermore quantify the coherence length of the delocalized core exciton. PMID:23931410

  20. Coherent control of metamaterials

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sangeeta; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2009-08-01

    We theoretically demonstrate the possibility of dynamically controlling the response of metamaterials at optical frequencies using the well known phenomenon of coherent control. Our results predict a variety of effects ranging from dramatic reduction of losses associated with the resonant response of metamaterials to switchable ultraslow to superluminal propagation of pulses governed by the magnetic field of the incident wave. These effects, generic to all metamaterials having a resonant response, involve embedding the metamaterial in resonant dispersive coherent atomic/molecular media. These effects may be utilized for narrow band switching applications and detectors for radiation below predetermined cut-off frequencies.

  1. Coherent soliton communication lines

    SciTech Connect

    Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.

    2014-11-15

    The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

  2. Apparatus for generating partially coherent radiation

    DOEpatents

    Naulleau, Patrick P.

    2005-02-22

    Techniques for generating partially coherent radiation and particularly for converting effectively coherent radiation from a synchrotron to partially coherent EUV radiation suitable for projection lithography.

  3. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  4. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  5. The importance of coherence in phototherapy

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; Duncan, Donald; Kirkpatrick, Sean; Jenkins, Peter; Hode, Lars

    2009-02-01

    The importance of coherence in phototherapy has been questioned over the last two decades, with the arguments largely being based on; 1) Lasers are just convenient machines that produce radiation, 2) It is the radiation that produces the photobiological and/or photophysical effects and therapeutic gains, not the machines, and 3) Radiation must be absorbed to produce a chemical or physical change, which results in a biological response. Whilst these conclusions are, in essence, true, they neglect to account for the effects of laser speckle in vivo. In a proportion of individual laser speckles the intensity is higher than the surrounding environment, and the light is partially linearly polarized. This is important because the probability for a photon absorption event to occur largely depends on intensity and the photon absorption cross section of the molecule (which in turn is influenced by polarization and several other factors). In superficial tissue, where the photon flux is high (less absorption has taken place), it is easy to reach necessary power density thresholds without the benefits of laser speckle. However, in deep tissue where the photon flux is extremely low, the increased probability of photon absorption from individual laser speckles increases the probability of reaching the necessary power density thresholds. Because of the non-coherent nature of radiation from light/IR emitting diodes speckle does not occur in the tissue with LED therapy, which may explain why head-to-head comparisons between lasers and LEDs in deep tissue seem to be in favor of lasers, and super-pulsed lasers in particular.

  6. Coherent Career Practice

    ERIC Educational Resources Information Center

    Magnusson, Kris; Redekopp, Dave

    2011-01-01

    Coherent career practice is conceptualized as an integrated reciprocal system involving 4 core elements: (1) career literacy; (2) career gumption; (3) career context; and (4) career integrity. It also accounts for "career integration", or the process by which these elements are assembled and reassembled. The source of client difficulties may…

  7. The Coherence of Autism

    ERIC Educational Resources Information Center

    Hobson, R. Peter

    2014-01-01

    There is a growing body of opinion that we should view autism as fractionable into different, largely independent sets of clinical features. The alternative view is that autism is a coherent syndrome in which principal features of the disorder stand in intimate developmental relationship with each other. Studies of congenitally blind children…

  8. Coherently combining antennas

    NASA Technical Reports Server (NTRS)

    Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)

    2009-01-01

    An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.

  9. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  10. Dental Optical Coherence Tomography

    PubMed Central

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei

    2013-01-01

    This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261

  11. Ultrafast Spectroscopic Signatures of Coherent Electron-Transfer Mechanisms in a Transition Metal Complex.

    PubMed

    Guo, Zhenkun; Giokas, Paul G; Cheshire, Thomas P; Williams, Olivia F; Dirkes, David J; You, Wei; Moran, Andrew M

    2016-07-28

    The prevalence of ultrafast electron-transfer processes in light-harvesting materials has motivated a deeper understanding of coherent reaction mechanisms. Kinetic models based on the traditional (equilibrium) form of Fermi's Golden Rule are commonly employed to understand photoinduced electron-transfer dynamics. These models fail in two ways when the electron-transfer process is fast compared to solvation dynamics and vibrational dephasing. First, electron-transfer dynamics may be accelerated if the photoexcited wavepacket traverses the point of degeneracy between donor and acceptor states in the solvent coordinate. Second, traditional kinetic models fail to describe electron-transfer transitions that yield products which undergo coherent nuclear motions. We address the second point in this work. Transient absorption spectroscopy and a numerical model are used to investigate coherent back-electron-transfer mechanisms in a transition metal complex composed of titanium and catechol, [Ti(cat)3](2-). The transient absorption experiments reveal coherent wavepacket motions initiated by the back-electron-transfer process. Model calculations suggest that the vibrationally coherent product states may originate in either vibrational populations or coherences of the reactant. That is, vibrational coherence may be produced even if the reactant does not undergo coherent nuclear motions. The analysis raises a question of broader significance: can a vibrational population-to-coherence transition (i.e., a nonsecular transition) accelerate electron-transfer reactions even when the rate is slower than vibrational dephasing? PMID:27362388

  12. Operational Resource Theory of Coherence.

    PubMed

    Winter, Andreas; Yang, Dong

    2016-03-25

    We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states. PMID:27058063

  13. Operational Resource Theory of Coherence

    NASA Astrophysics Data System (ADS)

    Winter, Andreas; Yang, Dong

    2016-03-01

    We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts—"coherence distillation" and "coherence cost"—in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.

  14. Emotion regulation and emotion coherence: evidence for strategy-specific effects.

    PubMed

    Dan-Glauser, Elise S; Gross, James J

    2013-10-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, about how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multichannel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it. PMID:23731438

  15. Emotion Regulation and Emotion Coherence: Evidence for Strategy-Specific Effects

    PubMed Central

    Dan-Glauser, Elise S.; Gross, James J.

    2014-01-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, on how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multi-channel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it. PMID:23731438

  16. Infrared frequency-tunable coherent thermal sources

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-04-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor-capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm-1. The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region.

  17. Maximally coherent mixed states: Complementarity between maximal coherence and mixedness

    NASA Astrophysics Data System (ADS)

    Singh, Uttam; Bera, Manabendra Nath; Dhar, Himadri Shekhar; Pati, Arun Kumar

    2015-05-01

    Quantum coherence is a key element in topical research on quantum resource theories and a primary facilitator for design and implementation of quantum technologies. However, the resourcefulness of quantum coherence is severely restricted by environmental noise, which is indicated by the loss of information in a quantum system, measured in terms of its purity. In this work, we derive the limits imposed by the mixedness of a quantum system on the amount of quantum coherence that it can possess. We obtain an analytical trade-off between the two quantities that upperbound the maximum quantum coherence for fixed mixedness in a system. This gives rise to a class of quantum states, "maximally coherent mixed states," whose coherence cannot be increased further under any purity-preserving operation. For the above class of states, quantum coherence and mixedness satisfy a complementarity relation, which is crucial to understand the interplay between a resource and noise in open quantum systems.

  18. On the detection of differentially encoded polyphase signals.

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1972-01-01

    Discussion of the transmission and detection of differentially encoded polyphase signals and of the ambiguity resolution problem which results from suppression of the transmitted carrier. In particular, an analysis is made of the performance of differentially encoded coherent multiple phase-shift keyed (MPSK) systems which reconstruct coherent reference signals by means of generalized Costas or nth-power loops. The performance of such systems is then compared with that of ideal reception of MPSK signals and differentially coherent detection of differentially encoded MPSK signals. Emphasis is placed upon the special cases of quadriphase and octaphase signaling.

  19. Coherent instabilities in a semiconductor laser with fast gain recovery

    SciTech Connect

    Wang, Christine Y.; Diehl, L.; Troccoli, M.; Capasso, Federico; Gordon, A.; Jirauschek, C.; Kaertner, F. X.; Belyanin, A.; Bour, D.; Corzine, S.; Hoefler, G.; Faist, J.

    2007-03-15

    We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlinearity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.

  20. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years. PMID:18542153

  1. Multiple symbol partially coherent detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  2. Complementarity relations for quantum coherence

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Hall, Michael J. W.

    2015-10-01

    Various measures have been suggested recently for quantifying the coherence of a quantum state with respect to a given basis. We first use two of these, the l1-norm and relative entropy measures, to investigate tradeoffs between the coherences of mutually unbiased bases. Results include relations between coherence, uncertainty, and purity; tight general bounds restricting the coherences of mutually unbiased bases; and an exact complementarity relation for qubit coherences. We further define the average coherence of a quantum state. For the l1-norm measure this is related to a natural "coherence radius" for the state and leads to a conjecture for an l2-norm measure of coherence. For relative entropy the average coherence is determined by the difference between the von Neumann entropy and the quantum subentropy of the state and leads to upper bounds for the latter quantity. Finally, we point out that the relative entropy of coherence is a special case of G-asymmetry, which immediately yields several operational interpretations in contexts as diverse as frame alignment, quantum communication, and metrology, and suggests generalizing the property of quantum coherence to arbitrary groups of physical transformations.

  3. Coherent revival of tunneling

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Yan; Rabitz, Herschel

    2015-07-01

    We introduce a tunneling effect by a driving field, referred to as coherent revival of tunneling (CRT), corresponding to complete tunneling (transmission coefficient =1 ) that is revived from the circumstance of total reflection (transmission coefficient ≈0 ) through application of an appropriate perpendicular high-frequency ac field. To illustrate CRT, we simulate electron transport through fish-bone-like quantum-dot arrays by using single-particle Green's functions along with Floquet theory, and we explore the corresponding current-field amplitude characteristics as well as current-polarization characteristics. In regard to the two characteristics, we show that CRT exhibits entirely different features than coherent destruction of tunneling and photon-assisted tunneling. We also discuss two practical conditions for experimental realization of CRT.

  4. Correlation, coherence and context

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.

    2016-08-01

    The modern theory of coherence is based on correlation functions. A generic example could be written < {{V}\\ast}≤ft({{t}1}\\right)V≤ft({{t}2}\\right)> , denoting an average of products of the values of a signal V(t) at two specified times. Here we infer that t is a degree of freedom that the signal depends on. Typically, physical variables depend on more than one degree of freedom, and recognition of this has prompted attention to some interesting questions for the correlation functions and the several coherences that can be attributed to the same optical field. We examine some of the questions arising from the standpoint of experimental contexts. Degree of polarizability and degree of entanglement (classical non-separability) can serve as starting points for quantitative assignments.

  5. Coherent OCDMA communication systems

    NASA Astrophysics Data System (ADS)

    Wang, Xu

    2012-01-01

    Coherent optical code division multiple access (OCDMA) technique, where encoding and decoding are based on the phase and amplitude of optical field instead of its intensity, is receiving much attention for the overall superior performance over incoherent OCDMA and the development of compact and reliable en/decoders (E/D) such as spatial light phase modulator (SLPM), superstructured fiber Bragg grating (SSFBG) and multi-port array waveguide grating (AWG)-type E/D. In this paper, we will discuss several recent progresses in coherent OCDMA: a. Novel coding technology such as multi-phase-level SSFBG encoder, 50x50 multiport en/decoder and reconfigurable time domain spectral phase en/decoding; b. New signal modulation formats in OCDMA including DPSK, DQPSK, CSK and M-ary CSK; and c. Field trials of high capacity WDM/OCDMA systems.

  6. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  7. Unraveling the nature of coherent beatings in chlorosomes

    NASA Astrophysics Data System (ADS)

    Dostál, Jakub; Mančal, Tomáš; Vácha, František; Pšenčík, Jakub; Zigmantas, Donatas

    2014-03-01

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm-1 that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.

  8. Unraveling the nature of coherent beatings in chlorosomes

    SciTech Connect

    Dostál, Jakub; Mančal, Tomáš; Pšenčík, Jakub; Vácha, František; Zigmantas, Donatas

    2014-03-21

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.

  9. Spectral coherence in windturbine wakes

    SciTech Connect

    Hojstrup, J.

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  10. Quantum correlation via quantum coherence

    NASA Astrophysics Data System (ADS)

    Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing

    2014-06-01

    Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.

  11. Interleaved optical coherence tomography.

    PubMed

    Lee, Hee Yoon; Sudkamp, Helge; Marvdashti, Tahereh; Ellerbee, Audrey K

    2013-11-01

    We present a novel and cost-effective technique--interleaved optical coherence tomography (iOCT)--to enhance the imaging speed of swept source OCT systems by acquiring data from multiple lateral positions simultaneously during a single wavelength sweep, using a single detector and a virtually imaged phase array (VIPA) as a multi-band demultiplexer. This technique uses spectral encoding to convert coherence length into higher imaging speed; the speed enhancement factor is independent of the source speed or center wavelength, and the effective A-scan rate scales linearly with sweep speed. The optical configuration requires only a change in the sample arm of a traditional OCT system and preserves the axial resolution and fall-off characteristic of a traditional SS-OCT using the same light source. Using 10 kHz, 20 kHz and 100 kHz sources we provide a first demonstration of image speed enhancement factors of up to 12, 6 and 10, respectively, which yield effective A-scan rates of 120 kHz, 120 kHz and 1 MHz for B-scan imaging, with a sensitivity of up to 82.5 dB. We also show that iOCT can image faster dynamics than traditional OCT B-scan imaging and is capable of 3D biological imaging. The iOCT concept suggests a new route to high-speed OCT imaging for laser developers: that is, by focusing on improving the coherence length and linewidth of existing and emerging sources. Hence, iOCT is a nice complement to ongoing research and commercial efforts to enable faster imaging through development of lasers with faster sweep rates, and offers new hope for existing sources with slow sweep rates and potential for enhancement of coherence length to compete with faster sources to achieve high-speed OCT. PMID:24216876

  12. Photoacoustics with coherent light

    PubMed Central

    Bossy, Emmanuel; Gigan, Sylvain

    2016-01-01

    Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging. PMID:27069874

  13. Coherent laser vision system

    SciTech Connect

    Sebastion, R.L.

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  14. Photoacoustics with coherent light.

    PubMed

    Bossy, Emmanuel; Gigan, Sylvain

    2016-03-01

    Since its introduction in the mid-nineties, photoacoustic imaging of biological tissue has been one of the fastest growing biomedical imaging modality, and its basic principles are now considered as well established. In particular, light propagation in photoacoustic imaging is generally considered from the perspective of transport theory. However, recent breakthroughs in optics have shown that coherent light propagating through optically scattering medium could be manipulated towards novel imaging approaches. In this article, we first provide an introduction to the relevant concepts in the field, and then review the recent works showing that it is possible to exploit the coherence of light in conjunction with photoacoustics. We illustrate how the photoacoustic effect can be used as a powerful feedback mechanism for optical wavefront shaping in complex media, and conversely show how the coherence of light can be exploited to enhance photoacoustic imaging, for instance in terms of spatial resolution or for designing minimally invasive endoscopic devices. Finally, we discuss the current challenges and perspectives down the road towards practical applications in the field of photoacoustic imaging. PMID:27069874

  15. Coherent spin-networks

    SciTech Connect

    Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio

    2010-07-15

    In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as the gauge-invariant projection of a product over links of Hall's heat kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). These states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.

  16. Coherency Sensitive Hashing.

    PubMed

    Korman, Simon; Avidan, Shai

    2016-06-01

    Coherency Sensitive Hashing (CSH) extends Locality Sensitivity Hashing (LSH) and PatchMatch to quickly find matching patches between two images. LSH relies on hashing, which maps similar patches to the same bin, in order to find matching patches. PatchMatch, on the other hand, relies on the observation that images are coherent, to propagate good matches to their neighbors in the image plane, using random patch assignment to seed the initial matching. CSH relies on hashing to seed the initial patch matching and on image coherence to propagate good matches. In addition, hashing lets it propagate information between patches with similar appearance (i.e., map to the same bin). This way, information is propagated much faster because it can use similarity in appearance space or neighborhood in the image plane. As a result, CSH is at least three to four times faster than PatchMatch and more accurate, especially in textured regions, where reconstruction artifacts are most noticeable to the human eye. We verified CSH on a new, large scale, data set of 133 image pairs and experimented on several extensions, including: k nearest neighbor search, the addition of rotation and matching three dimensional patches in videos. PMID:26372204

  17. Coherent electron cooling

    SciTech Connect

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  18. Coherence dynamics in photosynthesis: protein protection of excitonic coherence.

    PubMed

    Lee, Hohjai; Cheng, Yuan-Chung; Fleming, Graham R

    2007-06-01

    The role of quantum coherence in promoting the efficiency of the initial stages of photosynthesis is an open and intriguing question. We performed a two-color photon echo experiment on a bacterial reaction center that enabled direct visualization of the coherence dynamics in the reaction center. The data revealed long-lasting coherence between two electronic states that are formed by mixing of the bacteriopheophytin and accessory bacteriochlorophyll excited states. This coherence can only be explained by strong correlation between the protein-induced fluctuations in the transition energy of neighboring chromophores. Our results suggest that correlated protein environments preserve electronic coherence in photosynthetic complexes and allow the excitation to move coherently in space, enabling highly efficient energy harvesting and trapping in photosynthesis. PMID:17556580

  19. Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence

    NASA Astrophysics Data System (ADS)

    Lee, Hohjai; Cheng, Yuan-Chung; Fleming, Graham R.

    2007-06-01

    The role of quantum coherence in promoting the efficiency of the initial stages of photosynthesis is an open and intriguing question. We performed a two-color photon echo experiment on a bacterial reaction center that enabled direct visualization of the coherence dynamics in the reaction center. The data revealed long-lasting coherence between two electronic states that are formed by mixing of the bacteriopheophytin and accessory bacteriochlorophyll excited states. This coherence can only be explained by strong correlation between the protein-induced fluctuations in the transition energy of neighboring chromophores. Our results suggest that correlated protein environments preserve electronic coherence in photosynthetic complexes and allow the excitation to move coherently in space, enabling highly efficient energy harvesting and trapping in photosynthesis.

  20. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  1. Three-photon coherence of Rydberg atomic states

    NASA Astrophysics Data System (ADS)

    Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb

    2016-05-01

    We investigated three-photon coherence effects of the Rydberg state in a four-level ladder-type atomic system for the 5 S1/2 (F = 3) - 5 P3/2 (F' = 4) - 50 D5/2 - 51 P3/2 transition of 85 Rb atoms. By adding a resonant electric field of microwave (MW) at electromagnetically induced transparency (EIT) in Rydberg state scheme, we observed experimentally that splitting of EIT signal appears under the condition of three-photon resonance in the Doppler-broadened atomic system. Discriminating the two- and three-photon coherence terms from the calculated spectrum in a simple four-level ladder-type Doppler-broadened atomic system, we found that the physical origin of splitting of EIT was three-photon coherence effect, but not three-photon quantum interference phenomena such as three-photon electromagnetically induced absorption (TPEIA).

  2. Optical characterization in wide spectral range by a coherent spectrophotometer

    NASA Astrophysics Data System (ADS)

    Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.

    2003-11-01

    We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.

  3. Vibrationally coherent photochemistry in the femtosecond primary event of vision.

    PubMed

    Wang, Q; Schoenlein, R W; Peteanu, L A; Mathies, R A; Shank, C V

    1994-10-21

    Femtosecond pump-probe experiments reveal the impulsive production of photoproduct in the primary event in vision. The retinal chromophore of rhodopsin was excited with a 35-femtosecond pulse at 500 nanometers, and transient changes in absorption were measured with 10-femtosecond probe pulses. At probe wavelengths within the photo-product absorption band, oscillatory features with a period of 550 femtoseconds (60 wavenumbers) were observed whose phase and amplitude demonstrate that they are the result of nonstationary vibrational motion in the ground state of the photoproduct. The observation of coherent vibrational motion of the photoproduct supports the idea that the primary step in vision is a vibrationally coherent process and that the high quantum yield of the cis-->trans isomerization in rhodopsin is a consequence of the extreme speed of the excited-state torsional motion. PMID:7939680

  4. Phase jitter in a differential phase experiment.

    NASA Technical Reports Server (NTRS)

    Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.

    1973-01-01

    Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.

  5. Simple model of a coherent molecular photocell

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Bélanger, Marc-André; Mayou, Didier; Nemati Aram, Tahereh

    2016-04-01

    Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the role of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells.

  6. Coherent communication with linear optics

    SciTech Connect

    Wilde, Mark M.; Brun, Todd A.; Dowling, Jonathan P.; Lee, Hwang

    2008-02-15

    We show how to implement several continuous-variable coherent protocols with linear optics. Noise can accumulate when implementing each coherent protocol with realistic optical devices. Our analysis bounds the level of noise accumulation. We highlight the connection between a coherent channel and a nonlocal quantum nondemolition interaction and give two new protocols that implement a coherent channel. One protocol is superior to a previous method for a nonlocal quantum nondemolition interaction because it requires fewer communication resources. We then show how continuous-variable coherent superdense coding implements two nonlocal quantum nondemolition interactions with a quantum channel and bipartite entanglement. We finally show how to implement continuous-variable coherent teleportation experimentally and provide a way to verify the correctness of its operation.

  7. Assisted Distillation of Quantum Coherence.

    PubMed

    Chitambar, E; Streltsov, A; Rana, S; Bera, M N; Adesso, G; Lewenstein, M

    2016-02-19

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed. PMID:26943512

  8. Assisted Distillation of Quantum Coherence

    NASA Astrophysics Data System (ADS)

    Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M. N.; Adesso, G.; Lewenstein, M.

    2016-02-01

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

  9. Paraboson coherent states

    SciTech Connect

    Chakrabarti, R.; Stoilova, N. I.; Van der Jeugt, J.

    2010-02-15

    It is known that the defining relations of the orthosymplectic Lie superalgebra osp(1 | 2n) are equivalent to the defining (triple) relations of n pairs of paraboson operators b{sub i}{sup {+-}.} In particular, the 'parabosons of order p' correspond to a unitary irreducible (infinite-dimensional) lowest weight representation V(p) of osp(1 | 2n). Recently we constructed these representations V(p) giving the explicit actions of the osp(1 | 2n) generators. We apply these results for the n = 2 case in order to obtain 'coherent state' representations of the paraboson operators.

  10. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  11. Lasing efficiency of ethanol dye solutions under coherent microsecond pumping

    NASA Astrophysics Data System (ADS)

    Tarkovskiĭ, V. V.; Anufrik, S. S.

    2008-11-01

    It is established that the excitation wavelength plays an important role in the attainment of maximum efficiency and the time dependence of the pump and lasing pulses under coherent microsecond pumping of dye solutions because the losses due to the molecular absorption in the channel of excited triplet levels, thermooptical distortions, and products of photochemical transformations play a minor role in the total energy balance in comparison with the spectrally dependent loss in the channel of excited singlet levels.

  12. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  13. A pulsed, high repetition rate 2-micron laser transmitter for coherent CO2 DIAL

    NASA Astrophysics Data System (ADS)

    Yu, J.; Bai, Y.; Petzar, P.; Petros, M.; Chen, S.; Trieu, B.; Koch, G. J.; Kavaya, M. J.; Singh, U. N.

    2009-12-01

    A Holmium solid-state 2-µm pulsed laser, end-pumped by a Thulium fiber laser, is being developed for coherent CO2 Differential Absorption Lidar (DIAL). It combines the advantages of high efficient fiber laser technology with the mature high energy solid state laser technology to produce desired energy levels at a high repetition rate. To obtain high beam quality that is required by coherent detection technique, the effect of “spatial hole burning” in the laser gain medium must be prevented. This is achieved by the use of ring cavity configuration in which the laser light is forced to travel in one direction, so that no standing waves are formed. The pump beam and laser beam are mode-matched in the laser crystals to improve the laser efficiency. At the pumping power of 13.25W, optical-to-optical efficiency of 52% was obtained with the pulse repetition rate of 1.25 kHz, which gives the energy per pulse of ~5.5mJ. The pulse energy can be scaled by increasing the pump power or by reducing the pulse repetition rate. The pulse length of this laser is at ~50ns. The wavelengths of the Ho pulse laser are tunable over several characteristic absorption lines of CO2. The exact wavelengths of the Ho pulse laser are controlled by well-controlled continuous wave (CW) seed lasers to provide the required sequential, on-and-off line wavelength pulses for DIAL applications. Three CW lasers were used to provide the accurate on-and-off wavelengths. The first CW laser is locked to the center of a characteristic CO2 absorption line through a CO2 cell by the frequency modulation technique. The frequency of the second CW laser was shifted related to the first CW laser by a few GHz to the wing of the CO2 absorption line, and used as the on-line frequency of the CO2 DIAL. This frequency shift is necessary to obtain a better weighting function for the CO2 measurement. The standard deviation of the CW on-line frequency can be controlled within 250 KHz. The third CW laser provides the off

  14. Coherent optics in students' laboratories

    NASA Astrophysics Data System (ADS)

    Senderáková, Dagmar; Mesaros, Vladimir; Drzik, Milan

    2014-12-01

    Lasers provide us with unique kind of light - coherent light. Besides being the keystone of historical interferometric measuring methods, coherent waves, now accessible in a very easy way, become a base of new optical measuring and information processing methods. Moreover, holographic recording seems today to have become a common term, even among common, not especially optically educated people. The presentation deals with our attempt to take our students' interest in the coherence of light and getting them familiar with the phenomenon, indeed.

  15. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  16. The J-band of organic dyes: lineshape and coherence length

    NASA Astrophysics Data System (ADS)

    Eisfeld, Alexander; Briggs, John S.

    2002-07-01

    Self-organised J-aggregates of dye molecules, known for over 60 years, are emerging as remarkably versatile quantum systems with applications in photography, opto-electronics, solar cells, photobiology and as supra-molecular fibres. Recently there has been much effort to achieve quantum entanglement and coherence on the nanoscale in atom traps and quantum dot aggregates (for use in quantum computing). We point out that the excitonic state of the J-aggregate is a text-book case of mesoscopic quantum coherence and entanglement. The establishment of coherence can literally be seen since the dye changes colour dramatically on aggregation due to strong shifts in the absorption spectrum. Here we reproduce in a simple theory the shifts and shapes of optical absorption spectra upon aggregation to a polymer and calculate the coherence length of quantum entanglement of monomer wavefunctions.

  17. Converting Coherence to Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile

    2016-04-01

    Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.

  18. Measuring Quantum Coherence with Entanglement

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo

    2015-07-01

    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

  19. Spectroscopic optical coherence elastography

    PubMed Central

    Adie, Steven G.; Liang, Xing; Kennedy, Brendan F.; John, Renu; Sampson, David D.; Boppart, Stephen A.

    2010-01-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  20. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898