Science.gov

Sample records for coherent optical photons

  1. Combined two-photon microscopy and angiographic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Bumju; Wang, Tae Jun; Li, Qingyun; Nam, Jutaek; Hwang, Sekyu; Chung, Euiheon; Kim, Sungjee; Kim, Ki Hean

    2013-08-01

    A combined two-photon microscopy (TPM) and angiographic optical coherence tomography (OCT) is developed, which can provide molecular, cellular, structural, and vascular information of tissue specimens in vivo. This combined system is implemented by adding an OCT vasculature visualization method to the previous combined TPM and OCT, and then is applied to in vivo tissue imaging. Two animal models, a mouse brain cranial window model and a mouse ear cancer model, are used. Both molecular, cellular information at local regions of tissues, and structural, vascular information at relatively larger regions are visualized in the same sections. In vivo tissue microenvironments are better elucidated by the combined TPM and angiographic OCT.

  2. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers.

    PubMed

    Dudley, John M; Coen, Stéphane

    2002-07-01

    Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse's duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed. PMID:18026400

  3. Precision spectral manipulation of optical pulses using a coherent photon echo memory.

    PubMed

    Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K

    2010-04-01

    Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM. PMID:20364227

  4. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    NASA Astrophysics Data System (ADS)

    Xu, Xue-xiang; Yuan, Hong-chun

    2016-07-01

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality.

  5. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    SciTech Connect

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul; Harbola, Upendra

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  6. Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Cua, Michelle; Bonora, Stefano; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a novel system for adaptive optics two photon imaging. We utilize the bandwidth of the femtosecond excitation beam to perform coherence gated imaging (OCT) of the sample. The location of the focus is directly observable in the cross sectional OCT images, and adjusted to the desired depth plane. Next, using real time volumetric OCT, we perform Wavefront Sensorless Adaptive Optics (WSAO) aberration correction using a multi-element adaptive lens capable of correcting up to 4th order Zernike polynomials. The aberration correction is performed based on an image quality metric, for example intensity. The optimization time is limited only by the OCT acquisition rate, and takes ~30s. Following aberration correction, two photon fluorescence images are acquired, and compared to results without adaptive optics correction. This technique is promising for multiphoton imaging in multi-layered, scattering samples such as eye and brain, in which traditional wavefront sensing and guide-star sensorless adaptive optics approaches may not be suitable.

  7. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  8. Temporal Coherence of Photons Emitted by Single Nitrogen-Vacancy Defect Centers in Diamond Using Optical Rabi-Oscillations

    NASA Astrophysics Data System (ADS)

    Batalov, A.; Zierl, C.; Gaebel, T.; Neumann, P.; Chan, I.-Y.; Balasubramanian, G.; Hemmer, P. R.; Jelezko, F.; Wrachtrup, J.

    2008-02-01

    Photon interference among distant quantum emitters is a promising method to generate large scale quantum networks. Interference is best achieved when photons show long coherence times. For the nitrogen-vacancy defect center in diamond we measure the coherence times of photons via optically induced Rabi oscillations. Experiments reveal a close to Fourier-transform (i.e., lifetime) limited width of photons emitted even when averaged over minutes. The projected contrast of two-photon interference (0.8) is high enough to envisage applications in quantum information processing. We report 12 and 7.8 ns excited state lifetimes depending on the spin state of the defect.

  9. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    PubMed

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz). PMID:26560626

  10. Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes.

    PubMed

    Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing

    2016-01-01

    Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented. PMID:27338388

  11. Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes

    PubMed Central

    Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing

    2016-01-01

    Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented. PMID:27338388

  12. Two-photon indirect optical injection and two-color coherent control in bulk silicon

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Rioux, J.; Sipe, J. E.

    2011-12-01

    Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 and 300 K. At 4 K, the TA-phonon-assisted transitions dominate the injection at low photon energies and the TO-phonon-assisted transitions at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to the light propagation direction. For light propagating along the <001> direction, the carrier injection exhibits valley anisotropy, and the injection into the Z conduction band valley is larger than that into the X and Y valleys. For σ- light propagating along the <001> (<111>) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. For two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 and 300 K. We show the current control for three different polarization scenarios: For cocircularly polarized beams, the direction of the charge current and the polarization direction of the spin current can be controlled by a relative-phase parameter; for the collinearly and cross-linearly polarized beams, the current amplitude can be controlled by that parameter. The spectral dependence of the maximum swarm velocity shows that

  13. Optical communication with two-photon coherent states. II - Photoemissive detection and structured receiver performance

    NASA Technical Reports Server (NTRS)

    Shapiro, J. H.; Yuen, H. P.; Machado Mata, J. A.

    1979-01-01

    In a previous paper (1978), the authors developed a method of analyzing the performance of two-photon coherent state (TCS) systems for free-space optical communications. General theorems permitting application of classical point process results to detection and estimation of signals in arbitrary quantum states were derived. The present paper examines the general problem of photoemissive detection statistics. On the basis of the photocounting theory of Kelley and Kleiner (1964) it is shown that for arbitrary pure state illumination, the resulting photocurrent is in general a self-exciting point process. The photocount statistics for first-order coherent fields reduce to those of a special class of Markov birth processes, which the authors term single-mode birth processes. These general results are applied to the structure of TCS radiation, and it is shown that the use of TCS radiation with direct or heterodyne detection results in minimal performance increments over comparable coherent-state systems. However, significant performance advantages are offered by use of TCS radiation with homodyne detection. The abstract quantum descriptions of homodyne and heterodyne detection are derived and a synthesis procedure for obtaining quantum measurements described by arbitrary TCS is given.

  14. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  15. Multimodal imaging of lung tissue using optical coherence tomography and two photon microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Geissler, Stefan; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2012-02-01

    In the context of protective artificial ventilation strategies for patients with severe lung diseases, the contribution of ventilator settings to tissue changes on the alveolar level of the lung is still a question under debate. To understand the impact of respiratory settings as well as the dynamic process of respiration, high-resolution monitoring and visualization of the dynamics of lung alveoli are essential. An instrument allowing 3D imaging of lung tissue as well as imaging of functional constituents, such as elastin fibers, in in situ experimental conditions is presented in this study using a combination of Fourier domain optical coherence tomography (FD-OCT) and fiber-guided two photon microscopy. In a comparative study, fixed lung tissue, stained with sulforhodamine B for elastin fibers, was used to illustrate the ability of fiber-guided two photon excitation and single photon excitation for the visualization of elastin fibers within the tissue. Together with the fast 3D imaging capability of OCT, a new tool is given for the monitoring of alveolar lung dynamics in future in vivo experiments.

  16. Design of highly nonlinear dispersion flattened hexagonal photonic crystal fibers for dental optical coherence tomography applications

    NASA Astrophysics Data System (ADS)

    Namihira, Yoshinori; Hossain, Md. Anwar; Koga, Taito; Islam, Md. Ashraful; Razzak, S. M. Abdur; Kaijage, Shubi F.; Hirako, Yuki; Higa, Hiroki

    2012-03-01

    In this paper, we propose a highly nonlinear dispersion flattened hexagonal photonic crystal fiber (HNDF-HPCF) with nonlinear coefficients as large as 57.5W-1 km-1 at 1.31 μm wavelength for dental optical coherence tomography (OCT) applications. This HNDF-HPCF offers not only large nonlinear coefficient but also very flat dispersion slope and very low confinement losses. Using these characteristics of our proposed PCF, it is shown through simulations by using finite difference method with an anisotropic perfectly matched boundary layer that this PCF offers the efficient supercontinuum (SC) generation for dental OCT applications at 1.31 μm wavelength using a picosecond pulse easily produced by commercially available less expensive laser sources. Coherent length of light source using SC is found 10 μm and the spatial resolutions in the depth direction for dental applications of OCT are found about 6.1 μm for enamel and 6.5 μm for dentin.

  17. Combined two-photon microscopy and optical coherence tomography using individually optimized sources

    NASA Astrophysics Data System (ADS)

    Jeong, Bosu; Lee, Byunghak; Jang, Min Seong; Nam, Hyoseok; Kim, Hae Koo; Yoon, Sang June; Doh, Junsang; Lee, Sang-Joon; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Ki Hean

    2011-03-01

    Two-photon microscopy (TPM) and optical coherence tomography (OCT) are 3D tissue imaging techniques based on different contrast mechanisms. We developed a combined system of TPM and OCT to provide information of both imaging modalities for in-vivo tissue study. TPM and OCT were implemented by using separate light sources, a Ti-Sapphire laser and a wavelength-swept source centered at 1300 nm respectively, and scanners. Light from the two sources was combined for the simultaneous imaging of tissue samples. TPM provided molecular, cellular information of tissues in the region of a few hundred microns on one side at a sub-cellular resolution, and ran at approximately 40 frames per second. OCT provided structural information in the tissue region larger than TPM images at a sub-tenth micron resolution by using 0.1 numerical aperture. OCT had the field of view of 800 um × 800 um based on a 20x objective, the sensitivity of 97dB, and the imaging speed of 0.8 volumes per second. This combined system was tested with simple microsphere specimens, and then was applied to image the explanted intestine of a mouse model and the plant leaves. Morphology and micro-structures of the intestine villi and immune cells within the villi were shown in the intestine image, and chloroplasts and various microstructures of the maize leaves were visualized in 3D by the combined system.

  18. Visible and near infrared wavelength photonic crystal fiber splitter for multiwavelength spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eom, Joo Beom; Min, Eun Jung; Lee, Byeong Ha

    2012-01-01

    We report the fabrication and performance of the 2×2 photonic crystal fiber (PCF) splitter that was designed as a single mode splitter at the visible and near infrared and used as the beam splitter for a spectral domain optical coherence tomography (SD-OCT) system. The PCF splitter has been made by coupling PCFs to a planar lightwave circuit (PLC) splitter chip. The PLC splitter chip was fabricated to have a single mode property with 630 nm cutoff wavelength and the PCFs were securely connected to the PLC chip through PCF block arrays having lithographically fabricated V grooves. The core width of the splitter chip was about 4 μm×4 μm and the core-cladding index difference was about 0.15%. With the implemented PCF PLC splitter, we have obtained a low excess loss of 1.2 dB and a low polarization-dependent loss of 0.19 dB at 680 nm with wide band coupling property. With the proposed 2×2 PCF splitter, SD-OCT images of human finger, nail, and tooth successfully obtained by using 680 nm, 840 nm, and 930 nm SLD source. This PCF PLC splitter is expected to have high resolution OCT.

  19. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-12-01

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications

  20. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography.

    PubMed

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-01-01

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel 'nano-electrode-poling' technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications. PMID:26657190

  1. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

    PubMed Central

    Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki

    2015-01-01

    Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications PMID:26657190

  2. Discrimination of optical coherent states using a photon number resolving detector

    NASA Astrophysics Data System (ADS)

    Wittmann, Christoffer; Andersen, Ulrik L.; Leuchs, Gerd

    2010-02-01

    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal intermediate measurement between minimum error discrimination and unambiguous state discrimination.

  3. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of <0.5 Torr. An all-fiber pumped-through cell based on the commercial 2.6-m-long PCF with a 10-μm hollow-core diameter was used. The characteristic relaxation time T2 during which the optical coherent effects were typically observed in our experiments was estimated to be ≈8 ns. This time is governed by the limited time of the acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  4. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  5. Optical radio-photonic channel for transmission of a coherent narrowband analog signal

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Fokina, M. I.

    2015-10-01

    The channel of an optical transmission line of coherent narrowband analog signal consisting of a continuous-wave laser, an electro-optic modulator, and a vector phase rotator based on electrically controlled fiber-optical 1 × 2 splitter and fixed delay lines is analyzed. The scheme is constructed from commercially available components used in digital optical communication systems. The applicability of components for analog and small-signal circuits is determined. Variation of radio signal phase in the range from 0° to 170° for radio signal frequencies between 1 and 2 GHz is demonstrated experimentally. It is shown that phase variation is a linear function of frequency in this range.

  6. Large-core photonic microcells for coherent optics and laser metrology

    NASA Astrophysics Data System (ADS)

    Wheeler, N. V.; Grogan, M. D. W.; Wang, Y. Y.; Murphy, D. F.; Birks, T. A.; Benabid, F.

    2011-03-01

    A photonic microcell (PMC) is a length of gas-filled hollow core-photonic crystal fiber (HC-PCF) which is hermetically sealed at both ends by splicing to standard single mode fiber. We describe advances in the fabrication technique of PMCs which enable large core Kagome-lattice HC-PCFs to be integrated into PMC form. The modified fabrication technique uses fiber-tapering to accommodate the large dimensions of the fiber and enables low loss splices with single mode fiber by reducing mode field mismatch. Splice losses as low as 0.6 dB are achieved between 1-cell defect Kagome HC-PCF and single mode fiber. Relative to the previously reported PMCs, which were based on photonic bandgap HC-PCF, the present Kagome HC-PCF based PMC provides broad optical transmission, surface mode-free guidance and larger core at the cost of slightly increased fiber attenuation (~0.2 dB/m). Therefore, the integration of this fiber into PMC form opens up new applications for PMC-based devices. The advantage of the large core dimensions and surface mode free guidance for quantum optics in gas-filled HC-PCF are demonstrated by generation of narrow sub-Doppler features in an acetylenefilled large core PMC.

  7. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

    NASA Astrophysics Data System (ADS)

    Lassen, Mikael; Sabuncu, Metin; Huck, Alexander; Niset, Julien; Leuchs, Gerd; Cerf, Nicolas J.; Andersen, Ulrik L.

    2010-10-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation is generally the strongest limitation to quantum communication, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances.

  8. Coherent photon interference elimination and spectral correction in femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Dang, Wei; Mao, Pengcheng; Weng, Yuxiang

    2013-07-01

    We report an improved setup of femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) with a 210 fs temporal response. The system employs a Cassegrain objective to collect and focus fluorescence photons, which eliminates the interference from the coherent photons in the fluorescence amplification by temporal separation of the coherent photons and the fluorescence photons. The gain factor of the Cassegrain objective-assisted FNOPAS is characterized as 1.24 × 105 for Rhodamine 6G. Spectral corrections have been performed on the transient fluorescence spectra of Rhodamine 6G and Rhodamine 640 in ethanol by using an intrinsic calibration curve derived from the spectrum of superfluorescence, which is generated from the amplification of the vacuum quantum noise. The validity of spectral correction is illustrated by comparisons of spectral shape and peak wavelength between the corrected transient fluorescence spectra of these two dyes acquired by FNOPAS and their corresponding standard reference spectra collected by the commercial streak camera. The transient fluorescence spectra of the Rhodamine 6G were acquired in an optimized phase match condition, which gives a deviation in the peak wavelength between the retrieved spectrum and the reference spectrum of 1.0 nm, while those of Rhodamine 640 were collected in a non-optimized phase match condition, leading to a deviation in a range of 1.0-3.0 nm. Our results indicate that the improved FNOPAS can be a reliable tool in the measurement of transient fluorescence spectrum for its high temporal resolution and faithfully corrected spectrum.

  9. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy

    PubMed Central

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-01-01

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques. PMID:25321223

  10. Plant photonics: application of optical coherence tomography to monitor defects and rots in onion

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Buranachai, C.; Terry, L. A.

    2010-04-01

    The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.

  11. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    PubMed Central

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  12. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum

    SciTech Connect

    Gerrits, Thomas; Glancy, Scott; Clement, Tracy S.; Calkins, Brice; Lita, Adriana E.; Nam, Sae Woo; Mirin, Richard P.; Knill, Emanuel; Miller, Aaron J.; Migdall, Alan L.

    2010-09-15

    We have created heralded coherent-state superpositions (CSSs) by subtracting up to three photons from a pulse of squeezed vacuum light. To produce such CSSs at a sufficient rate, we used our high-efficiency photon-number-resolving transition edge sensor to detect the subtracted photons. This experiment is enabled by and utilizes the full photon-number-resolving capabilities of this detector. The CSS produced by three-photon subtraction had a mean-photon number of 2.75{sub -0.24}{sup +0.06} and a fidelity of 0.59{sub -0.14}{sup +0.04} with an ideal CSS. This confirms that subtracting more photons results in higher-amplitude CSSs.

  13. Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states: The quantum-classical divide and computational-complexity transitions in linear optics

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Olson, Jonathan P.; Motes, Keith R.; Rohde, Peter P.; Dowling, Jonathan P.

    2015-02-01

    Boson sampling is a specific quantum computation, which is likely hard to implement efficiently on a classical computer. The task is to sample the output photon-number distribution of a linear-optical interferometric network, which is fed with single-photon Fock-state inputs. A question that has been asked is if the sampling problems associated with any other input quantum states of light (other than the Fock states) to a linear-optical network and suitable output detection strategies are also of similar computational complexity as boson sampling. We consider the states that differ from the Fock states by a displacement operation, namely the displaced Fock states and the photon-added coherent states. It is easy to show that the sampling problem associated with displaced single-photon Fock states and a displaced photon-number detection scheme is in the same complexity class as boson sampling for all values of displacement. On the other hand, we show that the sampling problem associated with single-photon-added coherent states and the same displaced photon-number detection scheme demonstrates a computational-complexity transition. It transitions from being just as hard as boson sampling when the input coherent amplitudes are sufficiently small to a classically simulatable problem in the limit of large coherent amplitudes.

  14. Photonic networks that exploit digital coherent technologies

    NASA Astrophysics Data System (ADS)

    Mori, Yojiro; Sato, Ken-ichi

    2013-12-01

    The emergence of digital coherent optical transmission technologies is being eagerly awaited by the world. This enables us to develop spectrally-efficient transmission systems by means of polarization-division multiplexing and multilevelmodulation formats such as quadrature-phase-shift keying (QPSK) and higher-order quadrature-amplitude modulation (QAM). Thanks to recent rapid advances in the research and development of electronics, demodulation of such signals can be realized effectively by utilizing sophisticated digital signal processors (DSPs). Such digital coherent technologies have successfully been implemented in commercial systems. However, the transmission performance of photonic networks is limited by system impairments that include crosstalk and spectrum narrowing caused at reconfigurable optical add/drop multiplexers (ROADMs) and the nonlinearity of optical fibers. Current digital coherent technologies do not resolve these problems comprehensively necessitating further research. In this paper, we investigate the impacts of the system impairments through intensive computer simulations and show the maximum transmission distances of multilevel-modulation signals. Various transmission schemes for gridless networks including Nyquist wavelengthdivision- multiplexing (WDM) networks, which need digital coherent technologies, are evaluated. We also discuss DSP algorithms that suit photonic networks and permit digital coherent technologies to become more effective in realizing future networks.

  15. Optical Coherence Tomography

    MedlinePlus

    ... Cardiac Magnetic Resonance Imaging (MRI and MRA) Computed Tomography (CT) Scan Diagnostic Tests and Procedures Echocardiography Electrocardiogram ... Ultrasound Nuclear Stress Test Nuclear Ventriculography Positron Emission Tomography (PET) Stress ... Optical Coherence Tomography | ...

  16. Undergraduate Coherent Optics Laboratory

    ERIC Educational Resources Information Center

    Yu, F. T. S.; Wang, E. Y.

    1973-01-01

    Discusses the use of a set of experiments to provide undergraduate electrical engineering students with a knowledge of the state of the art in modern coherent optics from an engineering standpoint. (CC)

  17. Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources.

    PubMed

    Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A

    2010-12-20

    We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060

  18. Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources

    PubMed Central

    Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A.

    2010-01-01

    We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060

  19. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  20. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  1. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  2. Dental Optical Coherence Tomography

    PubMed Central

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei

    2013-01-01

    This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261

  3. Interleaved optical coherence tomography.

    PubMed

    Lee, Hee Yoon; Sudkamp, Helge; Marvdashti, Tahereh; Ellerbee, Audrey K

    2013-11-01

    We present a novel and cost-effective technique--interleaved optical coherence tomography (iOCT)--to enhance the imaging speed of swept source OCT systems by acquiring data from multiple lateral positions simultaneously during a single wavelength sweep, using a single detector and a virtually imaged phase array (VIPA) as a multi-band demultiplexer. This technique uses spectral encoding to convert coherence length into higher imaging speed; the speed enhancement factor is independent of the source speed or center wavelength, and the effective A-scan rate scales linearly with sweep speed. The optical configuration requires only a change in the sample arm of a traditional OCT system and preserves the axial resolution and fall-off characteristic of a traditional SS-OCT using the same light source. Using 10 kHz, 20 kHz and 100 kHz sources we provide a first demonstration of image speed enhancement factors of up to 12, 6 and 10, respectively, which yield effective A-scan rates of 120 kHz, 120 kHz and 1 MHz for B-scan imaging, with a sensitivity of up to 82.5 dB. We also show that iOCT can image faster dynamics than traditional OCT B-scan imaging and is capable of 3D biological imaging. The iOCT concept suggests a new route to high-speed OCT imaging for laser developers: that is, by focusing on improving the coherence length and linewidth of existing and emerging sources. Hence, iOCT is a nice complement to ongoing research and commercial efforts to enable faster imaging through development of lasers with faster sweep rates, and offers new hope for existing sources with slow sweep rates and potential for enhancement of coherence length to compete with faster sources to achieve high-speed OCT. PMID:24216876

  4. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  5. Spectroscopic optical coherence elastography

    PubMed Central

    Adie, Steven G.; Liang, Xing; Kennedy, Brendan F.; John, Renu; Sampson, David D.; Boppart, Stephen A.

    2010-01-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  6. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  7. Linear-optic heralded photon source

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, Thiago; Amaral, Gustavo C.; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-09-01

    We present a heralded photon source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function [ g2(0 )=0.556 ]. The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The technique presents yield comparable to state-of-the-art spontaneous parametric down-conversion-based sources, with high coherence and fiber-optic quantum communication compatibility.

  8. Cardiovascular Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Yonetsu, Taishi; Villiger, Martin; Bouma, Brett E.; Jang, Ik-Kyung

    The potential of optical coherence tomography (OCT) for intravascular imaging and assessing the microstructure of atherosclerosis was suggested already by Huang et al. at the very beginning of OCT [1]. For ophthalmology, the eye provides a natural window for OCT to image the retinal microstructure, and OCT has rapidly become the standard imaging modality to diagnose retinal disease and assess disease progression and response to therapy [1, 2]. Intravascular imaging is more invasive by nature and requires imaging through a catheter probe. This has triggered the development of advanced fiber-optic OCT systems with compact, rotating fiber probes, to image the vessel by circumferentially scanning the luminal wall [3, 4]. In 1998, we established the first cardiac OCT research group at the Massachusetts General Hospital to explore the clinical applications of OCT. The first imaging of rabbit aorta was reported by Fujimoto et al. [5], followed by the first swine measurements in vivo by Tearney et al. [6], and finally the first assessment of coronary arteries in patients by Jang et al. [7]. The scope of this chapter is to highlight the steps taken to bring intravascular OCT from bench to bedside over the last 15 years. We will give a general description of atherosclerosis and its pathophysiology and the specific technical implementation of OCT for intravascular imaging through a fiber-optic probe. The motivation is to provide sufficient medical details to provide a basic introduction to the terminology, principles, and challenges of intracoronary imaging.

  9. Coherent optics in students' laboratories

    NASA Astrophysics Data System (ADS)

    Senderáková, Dagmar; Mesaros, Vladimir; Drzik, Milan

    2014-12-01

    Lasers provide us with unique kind of light - coherent light. Besides being the keystone of historical interferometric measuring methods, coherent waves, now accessible in a very easy way, become a base of new optical measuring and information processing methods. Moreover, holographic recording seems today to have become a common term, even among common, not especially optically educated people. The presentation deals with our attempt to take our students' interest in the coherence of light and getting them familiar with the phenomenon, indeed.

  10. A new optical scheme for teleportation of entangled coherent state

    NASA Astrophysics Data System (ADS)

    Liao, Jie-Qiao; Kuang, Le-Man

    2006-10-01

    We propose a nearly perfect optical scheme for the quantum teleportation of entangled coherent states using optical devices such as nonlinear Kerr media, beam splitters, phase shifters, and photon detectors. Different from those previous schemes, our scheme needs only ``yes'' or `no' measurements of the photon number of the related modes, i.e. nonzero- and zero-photon measurements, while in previous schemes one has to exactly identify the even or odd parity character of the photon numbers detected by detectors.

  11. Multi-actuator adaptive lens for wavefront correction in optical coherence tomography and two-photon excitation fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Lee, Sujin; Jian, Yifan; Cua, Michelle; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a new type of adaptive lens with 18 actuators that can correct up the 4th order of aberration. The Multi-actuator Adaptive Lens (M-AL) can guarantee a good level of aberration correction for many applications and, with respect to deformable mirror, it allows the realization of more compact and simple optical systems. The adaptive lens is based on the use of piezoelectric actuators and, without any obstruction or electrodes in the clear aperture, can guarantee a fast response time, in the order of about 10ms. The clear aperture of the M-AL allows its use in "classical" Adaptive Optics configuration together with a wavefront sensor. To introduce a further simplification to the optical system design we show that the adaptive lens can be also driven with a wavefront sensorless control algorithm during in vivo optical coherence tomography of the human retina and for two-photon excitation fluorescence microscopy. In the experimental setup we used two aberration correcting devices a commercial adaptive lens (AL) with a high dynamic range to correct for defocus and the Multi-actuator Adaptive Lens (M-AL) to correct for the Zernike aberrations up to the 4th order. Experimental results show that the ocular aberrations of human eyes can be successfully corrected with our M-AL for pupils of 5mm and that retinal cones can be readily imaged.

  12. Endoscopic Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Fujimoto, James G.; Tsai, Tsung-Han; Mashimo, Hiroshi

    New gastrointestinal (GI) cancers are expected to affect more than 290,200 new patients and will cause more than 144,570 deaths in the United States in 2013 [1]. When detected and treated early, the 5-year survival rate for colorectal cancer increases by a factor of 1.4 [1]. For esophageal cancer, the rate increases by a factor of 2 [1]. The majority of GI cancers begin as small lesions that are difficult to identify with conventional endoscopy. With resolutions approaching that of histopathology, optical coherence tomography (OCT) is well suited for detecting the changes in tissue microstructure associated with early GI cancers. Since the lesions are not endoscopically apparent, however, it is necessary to survey a relatively large area of the GI tract. Tissue motion is another limiting factor in the GI tract; therefore, in vivo imaging must be performed at extremely high speeds. OCT imaging can be performed using fiber optics and miniaturized lens systems, enabling endoscopic OCT inside the human body in conjunction with conventional video endoscopy. An OCT probe can be inserted through the working channel of a standard endoscope, thus enabling depth-resolved imaging of tissue microstructure in the GI tract with micron-scale resolution simultaneously with the endoscopic view (Fig. 68.1).

  13. Coherent dynamics of a telecom-wavelength entangled photon source

    NASA Astrophysics Data System (ADS)

    Ward, M. B.; Dean, M. C.; Stevenson, R. M.; Bennett, A. J.; Ellis, D. J. P.; Cooper, K.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.; Shields, A. J.

    2014-02-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell’s inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  14. Coherent communication with linear optics

    SciTech Connect

    Wilde, Mark M.; Brun, Todd A.; Dowling, Jonathan P.; Lee, Hwang

    2008-02-15

    We show how to implement several continuous-variable coherent protocols with linear optics. Noise can accumulate when implementing each coherent protocol with realistic optical devices. Our analysis bounds the level of noise accumulation. We highlight the connection between a coherent channel and a nonlocal quantum nondemolition interaction and give two new protocols that implement a coherent channel. One protocol is superior to a previous method for a nonlocal quantum nondemolition interaction because it requires fewer communication resources. We then show how continuous-variable coherent superdense coding implements two nonlocal quantum nondemolition interactions with a quantum channel and bipartite entanglement. We finally show how to implement continuous-variable coherent teleportation experimentally and provide a way to verify the correctness of its operation.

  15. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  16. [Optical coherence tomography].

    PubMed

    von Braunmühl, T

    2015-07-01

    Optical coherence tomography (OCT) was introduced in the 1990s in dermatology and is nowadays established as a noninvasive high-resolution technique for the in vivo evaluation of the skin. To date several studies have been successfully demonstrated the application of OCT for various dermatological questions. The main indication for OCT in the daily practice is the noninvasive diagnosis of nonmelanoma skin cancer such as actinic keratosis and basal cell carcinoma. OCT has also been shown to be a valuable tool in treatment monitoring and evaluation of therapeutic success of noninvasive treatment strategies like topical immune modulators or photodynamic treatment. Other potential applications for OCT include inflammatory diseases, microbial or parasitic infestations of the skin, e.g. scabies mites or onychomycosis. In recent years high-definition OCT devices have been developed that can potentially be used for the evaluation of melanocytic lesions and, due to the higher resolution, for the visualization of intrafollicular demodex mites. Furthermore different commercially available devices offer-in addition to the cross-sectional images-a fast-generated horizontal (en face) imaging mode. With respect to resolution and penetration depth the OCT technique is taking a middle position in comparison to other noninvasive imaging devices in dermatology such as sonography and reflectance confocal microscopy. PMID:25809459

  17. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  18. Low Coherence Optic Source Characterization

    NASA Astrophysics Data System (ADS)

    Flores-Domínguez, C. E.; Ochoa-Valiente, R.; García-Trujillo, L. A.

    2015-01-01

    This work presents the results of characterization of the coherence length of an optic source using interferometric techniques and digital signal processing. Optic sources are not ideal because of random behavior in the emission process and spectral dispersion. Optical coherence is the ability of light to generate interference, either temporal or spatial. In time domain, coherence is expressed by the autocorrelation function. In case of monochromatic laser, it has larger coherence length, in the order of tenths to hundredth of meters, rather than a superluminiscent diode (SLD), which is shorter, in the orders of millimeters. This work presents a method for measuring coherence length using an automated Michelson interferometer and a SLD with central wavelength λ0 = 1302.4 nm and acquisition system.by means of a soundcard in a personal computer.

  19. Photon-number superselection and the entangled coherent-state representation

    SciTech Connect

    Sanders, Barry C.; Bartlett, Stephen D.; Rudolph, Terry; Knight, Peter L.

    2003-10-01

    We introduce the entangled coherent-state representation, which provides a powerful technique for efficiently and elegantly describing and analyzing quantum optics sources and detectors while respecting the photon-number superselection rule that is satisfied by all known quantum optics experiments. We apply the entangled coherent-state representation to elucidate and resolve the long-standing puzzles of the coherence of a laser output field, interference between two number states, and dichotomous interpretations of quantum teleportation of coherent states.

  20. Noncommutative q -photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Dey, Sanjib; Hussin, Véronique

    2016-05-01

    We construct the photon-added coherent states of a noncommutative harmonic oscillator associated to a q -deformed oscillator algebra. Various nonclassical properties of the corresponding system are explored, first, by studying two different types of higher-order quadrature squeezing, namely, the Hillery type and the Hong-Mandel type, and second, by testing the sub-Poissonian nature of photon statistics in higher order with the help of the correlation function and the Mandel parameter. Also, we compare the behavior of different types of quadrature and photon number squeezing of our system with those of the ordinary harmonic oscillator by considering the same set of parameters.

  1. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  2. Phase coherence length in silicon photonic platform.

    PubMed

    Yang, Yisu; Ma, Yangjin; Guan, Hang; Liu, Yang; Danziger, Steven; Ocheltree, Stewart; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2015-06-29

    We report for the first time two typical phase coherence lengths in highly confined silicon waveguides fabricated in a standard CMOS foundry's multi-project-wafer shuttle run in the 220nm silicon-on-insulator wafer with 248nm lithography. By measuring the random phase fluctuations of 800 on-chip silicon Mach-Zehnder interferometers across the wafer, we extracted, with statistical significance, the coherence lengths to be 4.17 ± 0.42 mm and 1.61 ± 0.12 mm for single mode strip waveguide and rib waveguide, respectively. We present a new experimental method to quantify the phase coherence length. The theory model is verified by both our and others' experiments. Coherence length is expected to become one key parameter of the fabrication non-uniformity to guide the design of silicon photonics. PMID:26191700

  3. Boson sampling with photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Olson, Jonathan; Seshadreesan, Kaushik; Motes, Keith; Rohde, Peter; Dowling, Jonathan

    2014-05-01

    Boson sampling is a simple and experimentally viable model for non-universal linear optics quantum computing. Boson sampling has been shown to implement a classically hard algorithm when fed with single photons. This raises the question as to whether there are other quantum states of light that implement similarly computationally complex problems. We consider a class of continuous variable states--photon-added coherent states--and demonstrate their computational complexity when evolved using linear optical networks and measured using photodetection. We find that, provided the coherent state amplitudes are upper bounded by an inverse polynomial in the size of the system, the sampling problem remains computationally hard. Air Force Office of Scientific Research, Army Research Office, Australian Research Council Centre of Excellence for Engineered Quantum Systems (Project number CE110001013).

  4. Entangled photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Domínguez-Serna, Francisco A.; Mendieta-Jimenez, Francisco J.; Rojas, Fernando

    2016-08-01

    We study the degree of entanglement of arbitrary superpositions of m, n photon-added coherent states (PACS) {|{ψ }rangle } ∝ u {|{{α },m}rangle }{|{{β },n }rangle }+ v {|{{β },n}rangle }{|{{α },m}rangle } using the concurrence and obtain the general conditions for maximal entanglement. We show that photon addition process can be identified as an entanglement enhancer operation for superpositions of coherent states (SCS). Specifically for the known bipartite positive SCS: {|{ψ }rangle } ∝ {|{α }rangle }_a{|{-α }rangle }_b + {|{-α }rangle }_a{|{α }rangle }_b whose entanglement tends to zero for α → 0, can be maximal if al least one photon is added in a subsystem. A full family of maximally entangled PACS is also presented. We also analyzed the decoherence effects in the entangled PACS induced by a simple depolarizing channel . We find that robustness against depolarization is increased by adding photons to the coherent states of the superposition. We obtain the dependence of the critical depolarization p_{ {crit}} for null entanglement as a function of m,n, α and β.

  5. Entangled photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Domínguez-Serna, Francisco A.; Mendieta-Jimenez, Francisco J.; Rojas, Fernando

    2016-05-01

    We study the degree of entanglement of arbitrary superpositions of m, n photon-added coherent states (PACS) {|{ψ }rangle } ∝ u {|{{α },m}rangle }{|{{β },n }rangle }+ v {|{{β },n}rangle }{|{{α },m}rangle } using the concurrence and obtain the general conditions for maximal entanglement. We show that photon addition process can be identified as an entanglement enhancer operation for superpositions of coherent states (SCS). Specifically for the known bipartite positive SCS: {|{ψ }rangle } ∝ {|{α }rangle }_a{|{-α }rangle }_b + {|{-α }rangle }_a{|{α }rangle }_b whose entanglement tends to zero for α → 0 , can be maximal if al least one photon is added in a subsystem. A full family of maximally entangled PACS is also presented. We also analyzed the decoherence effects in the entangled PACS induced by a simple depolarizing channel . We find that robustness against depolarization is increased by adding photons to the coherent states of the superposition. We obtain the dependence of the critical depolarization p_{crit} for null entanglement as a function of m,n, α and β.

  6. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  7. Optics of photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Vardeny, Z. Valy; Nahata, Ajay; Agrawal, Amit

    2013-03-01

    The physics of periodic systems are of fundamental importance and result in various phenomena that govern wave transport and interference. However, deviations from periodicity may result in higher complexity and give rise to a number of surprising effects. One such deviation can be found in the field of optics in the realization of photonic quasicrystals, a class of structures made from building blocks that are arranged using well-designed patterns but lack translational symmetry. Nevertheless, these structures, which lie between periodic and disordered structures, still show sharp diffraction patterns that confirm the existence of wave interference resulting from their long-range order. In this Review, we discuss the beautiful physics unravelled in photonic quasicrystals of one, two and three dimensions, and describe how they can influence optical transmission and reflectivity, photoluminescence, light transport, plasmonics and laser action.

  8. Crawling wave optical coherence elastography.

    PubMed

    Meemon, Panomsak; Yao, Jianing; Chu, Ying-Ju; Zvietcovich, Fernando; Parker, Kevin J; Rolland, Jannick P

    2016-03-01

    Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. Here we report for the first time, we believe, on an elastography technique-crawling wave optical coherence elastography (CRW-OCE)-which significantly lowers the requirements on the imaging speed and opens the path to high-resolution and high-sensitivity OCE at relatively low cost. Methods of crawling wave excitation, data acquisition, and crawling wave tracking are presented. PMID:26974061

  9. Experimental generation of optical coherence lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yahong; Ponomarenko, Sergey A.; Cai, Yangjian

    2016-08-01

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  10. Experiments in spatial coherent optical filtering

    NASA Technical Reports Server (NTRS)

    Larsen, R. K.

    1971-01-01

    Coherent optical techniques provide a means of processing entire pictures in parallel. Experiments were performed demonstrating the effectiveness of spatial frequency filtering in a coherent optical data processing system.

  11. Holoscopy--holographic optical coherence tomography.

    PubMed

    Hillmann, Dierck; Lührs, Christian; Bonin, Tim; Koch, Peter; Hüttmann, Gereon

    2011-07-01

    Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT. PMID:21725421

  12. Doppler Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhongping; Zhang, Jun

    Noninvasive techniques for imaging in vivo blood flow are of great value to biomedical research and clinical diagnostics where many diseases have a vascular etiology or component. In ophthalmology, many diseases involve disturbances in ocular blood flow, including diabetic retinopathy, low tension glaucoma, anterior ischemic optic neuritis, and macular degeneration. Simultaneous imaging of tissue structure and blood flow could provide critical information for early diagnosis of ocular diseases.

  13. Staying coherent after kent: From optical communications to biomedical optics

    NASA Astrophysics Data System (ADS)

    Sampson, David D.

    2011-12-01

    In this paper, an overview of author's research is presented, commencing at the University of Kent under Prof. David A. Jackson. Early research in short optical pulses and fiber-optic delay-line digital correlators led to optical communications research in code-division multiple access networking. This research was based on broadband incoherent light, and this theme continued with research into spectrum-sliced wavelength-division multiplexing. In shifting from photonics research to biomedical optics and biophotonics in the late 1990s, the emphasis on exploiting broadband light continued with research in optical coherence tomography, amongst other topics. In addition to the research outcomes, how these outcomes were attained is described, including mention of the exceptional contributions of many of my colleagues.

  14. Coherent optical methods for metallography

    SciTech Connect

    Pechersky, M.J.

    1991-12-31

    Numerous methods based on coherent optical techniques have been developed over the past two decades for nondestructive evaluation, vibration analysis and experimental mechanics. These methods have a great deal of potential for the enhancement of metallographic evaluations and for materials characterization in general. One such technique described in this paper is the determination of the material damping factors in metals. Damping loss factors as low as 10-5 were measured on bronze and aluminum specimens using a technique based on laser vibrometry. Differences between cast and wrought bronze were easily distinguishable as well as the difference between the bronze and aluminum. Other coherent optical techniques may be used to evaluate residual stresses and to locate and identify microcracking, subsurface voids and other imperfections. These techniques and others can serve as a bridge between microstructural investigations and the macroscopic behavior of materials.

  15. Coherent optical methods for metallography

    SciTech Connect

    Pechersky, M.J.

    1991-01-01

    Numerous methods based on coherent optical techniques have been developed over the past two decades for nondestructive evaluation, vibration analysis and experimental mechanics. These methods have a great deal of potential for the enhancement of metallographic evaluations and for materials characterization in general. One such technique described in this paper is the determination of the material damping factors in metals. Damping loss factors as low as 10-5 were measured on bronze and aluminum specimens using a technique based on laser vibrometry. Differences between cast and wrought bronze were easily distinguishable as well as the difference between the bronze and aluminum. Other coherent optical techniques may be used to evaluate residual stresses and to locate and identify microcracking, subsurface voids and other imperfections. These techniques and others can serve as a bridge between microstructural investigations and the macroscopic behavior of materials.

  16. Coherent control of optical polarization effects in metamaterials.

    PubMed

    Mousavi, Seyedmohammad A; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  17. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  18. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  19. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  20. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  1. Generation of photon-added coherent states via photon-subtracted generalised coherent states

    NASA Astrophysics Data System (ADS)

    Mojaveri, Bashir; Dehghani, Alireza

    2014-10-01

    Based on previous work [A. Dehghani, B. Mojaveri, J. Phys. A 45, 095304 (2012)], we introduce photon-subtracted generalised coherent states (PSGCSs) |z,m⟩r: = am|z⟩r, where m is a nonnegative integer and |z⟩r denote the generalised coherent states (GCSs). We have shown that the states |z,m⟩r are eigenstates of a non-Hermitian operator f(n̂,m)â, where f(n̂,m) is a nonlinear function of the number operator N̂ . Also, the states | z, - m ⟩ r can be considered as another set of eigenstates for negative values of m. They span the truncated Fock space without the first m lowest-lying basis states: | 0 ⟩ , | 1 ⟩ , | 2 ⟩ ,...,| m - 1 ⟩ which are reminiscent of the so-called photon-added coherent states. The resolution of the identity property, which is the most important property of coherent states, is realised for |z,m⟩r as well as for |z, - m⟩r. Some nonclassical features such as sub-Poissonian statistics and quadrature squeezing of the states |z, ± m⟩r are compared. We show that the annihilation operator diminishes the mean number of photons of the initial state |z⟩r. Finally we show that |z,m⟩r can be produced through a simple theoretical scheme.

  2. Theory of Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Izatt, Joseph A.; Choma, Michael A.; Dhalla, Al-Hafeez

    Several previous publications have addressed the theory of optical coherence tomography (OCT) imaging. These have included original articles, reviews, and books/book chapters . Many of these publications were authored before the major revolution that Fourier-domain techniques (here termed FDOCT) brought to OCT since their sensitivity advantage was confirmed in 2003. Thus, many of these prior works were written primarily from the perspective of time-domain OCT (TDOCT). Also, relatively few prior publications have addressed lateral resolution in OCT systems, which, from an end user perspective, is of equal importance to the axial resolving power derived from low-coherence interferometry. The goal of this chapter is to present a unified theory of OCT, which includes a discussion of imaging performance in all three dimensions and which treats both Fourier- and time-domain OCT on equal footing as specializations of the same underlying principles.

  3. Coherent control of the waveforms of recoilless γ-ray photons.

    PubMed

    Vagizov, Farit; Antonov, Vladimir; Radeonychev, Y V; Shakhmuratov, R N; Kocharovskaya, Olga

    2014-04-01

    The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10-100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime, electromagnetically induced transparency in a cavity, the collective Lamb shift, vacuum-assisted generation of atomic coherences and single-photon revival in nuclear absorbing multilayer structures. Also, realization of single-photon coherent storage and stimulated Raman adiabatic passage were recently proposed in this regime. More related work is discussed in a recent review. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions. PMID:24670656

  4. Structural and optical properties of (In,Ga)As/GaP quantum dots and (GaAsPN/GaPN) diluted-nitride nanolayers coherently grown onto GaP and Si substrates for photonics and photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Durand, O.; Robert, C.; Nguyen Thanh, T.; Almosni, S.; Quinci, T.; Kuyyalil, J.; Cornet, C.; Létoublon, A.; Levallois, C.; Jancu, J.-M.; Even, J.; Pédesseau, L.; Perrin, M.; Bertru, N.; Sakri, A.; Boudet, N.; Ponchet, A.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Marie, X.; Balocchi, A.; Turban, P.; Tricot, S.; Modreanu, Mircea; Loualiche, S.; Le Corre, A.

    2013-01-01

    Lattice-matched GaP-based nanostructures grown on silicon substrates is a highly rewarded route for coherent integration of photonics and high-efficiency photovoltaic devices onto silicon substrates. We report on the structural and optical properties of selected MBE-grown nanostructures on both GaP substrates and GaP/Si pseudo-substrates. As a first stumbling block, the GaP/Si interface growth has been optimised thanks to a complementary set of thorough structural analyses. Photoluminescence and time-resolved photoluminescence studies of self-assembled (In,Ga)As quantum dots grown on GaP substrate demonstrate a proximity of two different types of optical transitions interpreted as a competition between conduction band states in X and Γ valleys. Structural properties and optical studies of GaAsP(N)/GaP(N) quantum wells coherently grown on GaP substrates and GaP/Si pseudo substrates are reported. Our results are found to be suitable for light emission applications in the datacom segment. Then, possible routes are drawn for larger wavelengths applications, in order to address the chip-to-chip and within-a-chip optical interconnects and the optical telecom segments. Finally, results on GaAsPN/GaP heterostructures and diodes, suitable for PV applications are reported.

  5. Gabor domain optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Murali, Supraja

    Time domain Optical Coherence Tomography (TD-OCT), first reported in 1991, makes use of the low temporal coherence properties of a NIR broadband laser to create depth sectioning of up to 2mm under the surface using optical interferometry and point to point scanning. Prior and ongoing work in OCT in the research community has concentrated on improving axial resolution through the development of broadband sources and speed of image acquisition through new techniques such as Spectral domain OCT (SD-OCT). In SD-OCT, an entire depth scan is acquired at once with a low numerical aperture (NA) objective lens focused at a fixed point within the sample. In this imaging geometry, a longer depth of focus is achieved at the expense of lateral resolution, which is typically limited to 10 to 20 mum. Optical Coherence Microscopy (OCM), introduced in 1994, combined the advantages of high axial resolution obtained in OCT with high lateral resolution obtained by increasing the NA of the microscope placed in the sample arm. However, OCM presented trade-offs caused by the inverse quadratic relationship between the NA and the DOF of the optics used. For applications requiring high lateral resolution, such as cancer diagnostics, several solutions have been proposed including the periodic manual re-focusing of the objective lens in the time domain as well as the spectral domain C-mode configuration in order to overcome the loss in lateral resolution outside the DOF. In this research, we report for the first time, high speed, sub-cellular imaging (lateral resolution of 2 mum) in OCM using a Gabor domain image processing algorithm with a custom designed and fabricated dynamic focus microscope interfaced to a Ti:Sa femtosecond laser centered at 800 nm within an SD-OCM configuration. It is envisioned that this technology will provide a non-invasive replacement for the current practice of multiple biopsies for skin cancer diagnosis. The research reported here presents three important advances

  6. Catheters for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Atif, M.; Ullah, H.; Hamza, M. Y.; Ikram, M.

    2011-09-01

    The objective of this review article is to overview technology, clinical evidence, and future applications to date optical coherence tomography (OCT) probes to yield the diagnostic purpose. We have reviewed the designing, construction and working of different categories of OCT probes developed for optical diagnostics having a potential for non invasive and improved detection of different types of cancer as well as other neoplasm. Rotational and balloon catheters, imaging needles and hand-held, linear scanning, multichannel, micro electro mechanical systems (MEMS) technology based, dynamic focusing, forward view imaging, and common path interferometer based probes have been discussed in details. The fiber probes have shown excellent performance for two dimensional and three dimensional higher resolution, cross-sectional imaging of interior and exterior body tissues that can be compared with histopathology to provide the information about the angiogenesis and other lesions in the tissue. The MEMS-technology based probes are found to be more suitable for three dimensional morphological imaging.

  7. Developments in optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Rolland, J. P.; Meemon, P.; Thompson, K. P.; Murali, S.; Lee, K. S.

    2010-11-01

    Optical Coherence Microscopy (OCM) utilizes a high NA microscope objective in the sample arm to achieve an axially and laterally high resolution OCT image. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope designed specifically for optical imaging systems using a broadband light source centered at 800 nm with a 120 nm bandwidth. Subsequently, we have developed a Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. Finally, key developments in Phase-Resolved Doppler OCT (PR-DOCT) are key enablers to combine high-resolution structural imaging with functional imaging. In this paper we review achievements in GD-OCM and detail how portions of in-focus cross-sectional images can be extracted and fused to form an invariant lateral resolution image with multiple cross-sectional images acquired corresponding to a discrete refocusing step along depth enabled by the varifocal device. We demonstrate sub-cellular resolution imaging of an African frog tadpole (Xenopus Laevis) taken from a 500 μm × 500 μm cross-section as well as cellular imaging in in vivo skin. Finally, A novel dual-detection full-range Fourier-domain optical coherence tomography system was developed that provides 7 μm axial resolution (in air) at about 90 kHz axial scan rate for mirror-image phase resolved Doppler imaging

  8. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  9. Optical Microangiography Based on Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  10. Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing

    NASA Astrophysics Data System (ADS)

    Parker, John S.

    Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb

  11. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states.

    PubMed

    Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M

    2012-10-12

    We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions. PMID:23102368

  12. Three-photon coherence of Rydberg atomic states

    NASA Astrophysics Data System (ADS)

    Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb

    2016-05-01

    We investigated three-photon coherence effects of the Rydberg state in a four-level ladder-type atomic system for the 5 S1/2 (F = 3) - 5 P3/2 (F' = 4) - 50 D5/2 - 51 P3/2 transition of 85 Rb atoms. By adding a resonant electric field of microwave (MW) at electromagnetically induced transparency (EIT) in Rydberg state scheme, we observed experimentally that splitting of EIT signal appears under the condition of three-photon resonance in the Doppler-broadened atomic system. Discriminating the two- and three-photon coherence terms from the calculated spectrum in a simple four-level ladder-type Doppler-broadened atomic system, we found that the physical origin of splitting of EIT was three-photon coherence effect, but not three-photon quantum interference phenomena such as three-photon electromagnetically induced absorption (TPEIA).

  13. Optical coherence tomography in dermatology

    NASA Astrophysics Data System (ADS)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  14. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  15. Cancellation of coherent artifacts in optical coherence tomography imaging.

    PubMed

    Piao, D; Zhu, Q; Dutta, N K; Yan, S; Otis, L L

    2001-10-01

    Coherent artifacts in optical coherence tomography (OCT) images can severely degrade image quality by introducing false targets if no targets are present at the artifact locations. Coherent artifacts can also add constructively or destructively to the targets that are present at the artifact locations. This constructive or destructive interference will result in cancellation of the true targets or in display of incorrect echo amplitudes of the targets. We introduce the use of a nonlinear deconvolution algorithm, CLEAN, to cancel coherent artifacts in OCT images of extracted human teeth. The results show that CLEAN can reduce the coherent artifacts to the noise background, sharpen the air-enamel and enamel-dentin interfaces, and improve the image contrast. PMID:18364794

  16. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  17. Polarization Sensitive Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Park, B. Hyle; de Boer, Johannes F.

    Optical coherence tomography (OCT) is an interferometric technique capable of noninvasive high-resolution cross-sectional imaging by measuring the intensity of light reflected from within tissue [1]. This results in a noncontact imaging modality that provides images similar in scale and geometry to histology. Just as different stains can be used to enhance the contrast in histology, various extensions of OCT allow for visualization of features not readily apparent in traditional OCT. For example, optical Doppler tomography [2] can enable depth-resolved imaging of flow by observing differences in phase between successive depth scans [3-5]. This chapter will focus on polarization-sensitive OCT (PS-OCT), which utilizes depth-dependent changes in the polarization state of detected light to determine the light-polarization changing properties of a sample [6-11]. These properties, including birefringence, dichroism, and optic axis orientation, can be determined directly by studying the depth evolution of Stokes parameters [7-10, 12-16] or indirectly by using the changing reflected polarization states to first determine Jones or Mueller matrices [11, 17-21]. PS-OCT has been used in a wide variety of applications, including correlating burn depth with a decrease in birefringence [14], measuring the birefringence of the retinal nerve fiber layer [22, 23], and monitoring the onset and progression of caries lesions [24]. In this chapter, a discussion of polarization theory and its application to PS-OCTwill be followed by clinical uses of the technology and will conclude with mentionof more recent work and future directions of PS-OCT.

  18. Experimental realization of macroscopic coherence by phase-covariant cloning of a single photon

    SciTech Connect

    Nagali, Eleonora; De Angelis, Tiziano; De Martini, Francesco; Sciarrino, Fabio

    2007-10-15

    We investigate the multiphoton states generated by high-gain optical parametric amplification of a single injected photon, polarization encoded as a 'qubit'. The experiment configuration exploits the optimal phase-covariant cloning in the high gain regime. The interference fringe pattern showing the nonlocal transfer of coherence between the injected qubit and the mesoscopic amplified output field involving up to 4000 photons has been investigated. A probabilistic method to extract full information about the multiparticle output wave function has been implemented.

  19. Photon emission as a source of coherent behavior of polaritons.

    PubMed

    Vinck-Posada, Herbert; Rodriguez, Boris A; Guimaraes, P S S; Cabo, Alejandro; Gonzalez, Augusto

    2007-04-20

    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest-energy photon mode of a microcavity) are presented in support of this statement. PMID:17501462

  20. Optical Coherence Tomography in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  1. Hyperfine Coherence in the Presence of Spontaneous Photon Scattering

    SciTech Connect

    Ozeri, R.; Langer, C.; Jost, J.D.; Marco, B. de; Ben-Kish, A.; Blakestad, B.R.; Britton, J.; Chiaverini, J.; Itano, W.M.; Hume, D.B.; Leibfried, D.; Rosenband, T.; Schmidt, P.O.; Wineland, D.J.

    2005-07-15

    The coherence of a hyperfine-state superposition of a trapped {sup 9}Be{sup +} ion in the presence of off-resonant light is studied experimentally. It is shown that Rayleigh elastic scattering of photons that does not change state populations also does not affect coherence. We observe coherence times that exceed the average scattering time of 19 photons which is determined from measured Stark shifts. This result implies that, with sufficient control over its parameters, laser light can be used to manipulate hyperfine-state superpositions with very little decoherence.

  2. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  3. Optical Coherence Tomography (OCT) in ophthalmology: introduction.

    PubMed

    Fujimoto, James G; Drexler, Wolfgang; Schuman, Joel S; Hitzenberger, Christoph K

    2009-03-01

    The Optical Society (OSA) is pleased to present this special issue of Optics Express on "Optical Coherence Tomography (OCT) in Ophthalmology" as part of the new Interactive Science Publishing (ISP) project. The project is being performed in collaboration with the National Library of Medicine and represents a new paradigm for the publication of digital image and large dataset information. PMID:19259239

  4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  5. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  6. Photonic crystal chips for optical communications and quantum information processing

    NASA Astrophysics Data System (ADS)

    Englund, Dirk; Fushman, Ilya; Faraon, Andrei; Ellis, Bryan; Vučković, Jelena

    2008-08-01

    We discuss recent our recent progress on functional photonic crystals devices and circuits for classical and quantum information processing. For classical applications, we have demonstrated a room-temperature-operated, low threshold, nanocavity laser with pulse width in the picosecond regime; and an all-optical switch controlled with 60 fJ pulses that shows switching time on the order of tens of picoseconds. For quantum information processing, we discuss the promise of quantum networks on multifunctional photonic crystals chips. We also discuss a new coherent probing technique of quantum dots coupled to photonic crystal nanocavities and demonstrate amplitude and phase nonlinearities realized with control beams at the single photon level.

  7. Optically switchable photonic metasurfaces

    SciTech Connect

    Waters, R. F.; MacDonald, K. F.; Hobson, P. A.; Zheludev, N. I.

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  8. Sequential quantum teleportation of optical coherent states

    SciTech Connect

    Yonezawa, Hidehiro; Furusawa, Akira; Loock, Peter van

    2007-09-15

    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F{sub 1}=0.70{+-}0.02 and F{sub 2}=0.75{+-}0.02, while the fidelity between the input and the sequentially teleported states is determined as F{sup (2)}=0.57{+-}0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.

  9. Overlapped optics induced perfect coherent effects.

    PubMed

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-01-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on. PMID:24356577

  10. Coherent perfect absorption in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanlin; Wan, Wenjie; Chen, Xianfeng

    2013-02-01

    Recently, a concept of time reversed lasing or coherent perfect absorber (CPA) has been proposed by A. D. Stone and co-workers, and was shortly experimentally demonstrated by them. The CPA system is illuminated coherently and monochromatically by the time reverse of the output of a lasing mode and the incident radiation is perfectly absorbed. Shortly afterwards, Stefano Longhi extended the idea to realize a CPA for colored incident light, and have theoretically shown that the time reversal of optical parametric oscillation (OPO) in a nonlinear medium could also realize a colored CPA for incident signal and idler fields which can be seemed as a kind of nonlinear CPA. Here we present the realization of such time-reversed processes in nonlinear optics regime, including time-reversed second harmonic generation (SHG) for coherent absorption at harmonic frequency of the pump and time-reversed optical parametric amplification (OPA) for coherent attenuation of colored travelling optical fields. Time reversed SHG is carried out at both phase matching and mismatching conditions, which shows parametric near perfect absorption at the harmonic frequency of the pump. The time reversal of OPA is demonstrated experimentally in a nonlinear medium to form a coherent absorber for perpendicularly polarized signal and idler travelling waves, realizing in the condition of OPA by a type II phase matching scheme. The absorption of signal/idler pair occurs at some specific phase difference. This is the first experimental demonstration of coherent absorption processes in nonlinear optics regime.

  11. Coherent optical frequency-combs-based wideband signal channelization and analog to digital conversion

    NASA Astrophysics Data System (ADS)

    Yin, Feifei; Dai, Yitang; Li, Jianqiang; Xu, Kun

    2014-11-01

    We demonstrate a photonic-assisted broadband radio frequency (RF) channelization scheme based on dual coherent optical frequency combs (OFCs). The advantages include coarse optical alignment requirement, ideal rectangular frequency response in each channel without any ultra-narrow optical filters, and digitalized output for further processing. Meanwhile, the channel frequency response and crosstalk of the scheme are also evaluated experimentally.

  12. A two-state Raman coupler for coherent atom optics.

    PubMed

    Debs, J E; Döring, D; Robins, N P; Figl, C; Altin, P A; Close, J D

    2009-02-16

    We present results on a Raman laser-system that resonantly drives a closed two-photon transition between two levels in different hyperfine ground states of (87)Rb. The coupler is based on a novel optical design for producing two phase-coherent optical beams to drive a Raman transition. Operated as an outcoupler, it produces an atom laser in a single internal atomic state, with the lower divergence and increased brightness typical of a Raman outcoupler. Due to the optical nature of the outcoupling, the two-state outcoupler is an ideal candidate for transferring photon correlations onto atom-laser beams. As our laser system couples just two hyperfine ground states, it has also been used as an internal state beamsplitter, taking the next major step towards free space Ramsey interferometry with an atom laser. PMID:19219134

  13. Polarization and entanglement of photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Nogueira, K.; Silva, J. B. R.; Gonçalves, J. R.; Vasconcelos, H. M.

    2013-04-01

    Polarization of light has been used extensively in quantum information processing, and quantum entanglement is essential to many areas of research, including quantum computing. Here we investigate the degree of polarization and the entanglement of a family of quantum states known as photon-added entangled coherent states. Such states could serve as means of entanglement distribution and quantum key distribution. Using the quantum Stokes parameters and the Q function, we demonstrate that, in general, the degree of polarization of two two-mode photon-added coherent states increases significantly with the number of added photons. And using the concurrence, we show that the amount of entanglement in this kind of superposition presents a behavior that is dependent on whether or not the number of added photons in each mode is the same.

  14. Optical Coherence Tomography in Glaucoma

    NASA Astrophysics Data System (ADS)

    Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert

    Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

  15. Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2014-03-01

    We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.

  16. Coherent control to prepare an InAs quantum dot for spin-photon entanglement.

    PubMed

    Webster, L A; Truex, K; Duan, L-M; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2014-03-28

    We optically generated an electronic state in a single InAs/GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005). A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state. PMID:24724666

  17. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Local Control of Two-Photon Absorption in a Six-Level Atomic System by Using a Coherent Perturbation Field

    NASA Astrophysics Data System (ADS)

    Jia, Wen-Zhi; Wang, Shun-Jin

    2009-11-01

    If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast spectral feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.

  19. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively. PMID:27409920

  20. Optical coupling system for photon-photon coincidence experiments.

    NASA Technical Reports Server (NTRS)

    Masterson, K. D.

    1973-01-01

    An efficient optical coupling system is presented that promises to be useful in experiments where it is necessary to collect a large fraction of emitted photons, as in photon-photon coincidence experiments. Narrow bandpass interference filters are an integral part of the proposed system.

  1. Development of Coherent X-ray Diffraction Apparatus with Kirkpatrick-Baez Mirror Optics

    SciTech Connect

    Takahashi, Y.; Tsutsumi, R.; Mimura, H.; Matsuyama, S.; Nishino, Y.; Ishikawa, T.; Yamauchi, K.

    2011-09-09

    To realize coherent x-ray diffraction microscopy with higher spatial resolution, it is necessary to increase the density of x-ray photons illuminated onto the sample. In this study, we developed a coherent x-ray diffraction apparatus with Kirkpatrick-Baez mirror optics. By using mirrors fabricated by elastic emission machining, a high-density coherent x-ray beam was produced. In a demonstration experiment using a silver nanocube as a sample, a high-contrast coherent x-ray diffraction pattern was observed over a wide-q range. This proves that both the density and the degree of coherence of the focused beam were high.

  2. Multiple scattering in optical coherence microscopy.

    PubMed

    Yadlowsky, M J; Schmitt, J M; Bonner, R F

    1995-09-01

    We show that the multiple-scatter rejection provided by optical coherence microscopy (low-coherence interferometry) can be incomplete in optically turbid media and that multiple scattering manifests itself in two distinct ways. Multiple small-angle scattering results in an effective probe field that is stronger than expected from a first-order beam extinction model, but that contains a distorted wave front that enhances the apparent reflectance of small structures relative to those that are larger than the unscattered incident beam. Multiple wide-angle scattering produces a broad diffuse haze that reduces the contrast of subsequent features. PMID:21060400

  3. Quantum communication with coherent states and linear optics

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Lütkenhaus, Norbert

    2014-10-01

    We introduce a general mapping for encoding quantum communication protocols involving pure states of multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ a coherent state of light in a linear combination of optical modes, linear-optics transformations, and measurements with single-photon threshold detectors. This provides a general framework for transforming protocols in quantum communication into a form in which they can be implemented with current technology. We explore the similarity between properties of the original qubit protocols and the coherent-state protocols obtained from the mapping and make use of the mapping to construct additional protocols in the context of quantum communication complexity and quantum digital signatures. Our results have the potential of bringing a wide class of quantum communication protocols closer to their experimental demonstration.

  4. Coalition for photonics and optics

    NASA Astrophysics Data System (ADS)

    Breault, Robert P.

    2002-05-01

    The Coalition for Optics and Photonics (CPO) happened for all the best of reasons, while born out of a somewhat tumultuous past that could not have predicted it. First, there were optical societies. Born from each other, or because of each other, they had their own agendas. Each felt strongly that they had the one and only right path. There was little cooperation and even, from time to time, some non-constructive competition among the professional societies and trade associations. The optical industry was still in its infancy stage for the most part. It was probably due to the combination of intelligent people from all societies, and the rapid growth of the industry and their conferences that made some coordination necessary. What started as high-level discussions, complete with some staff, led to a better understanding and cooperation between the societies and preceded the formation of CPO.

  5. High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field

    SciTech Connect

    Jin Ruibo; Zhang Jun; Matsuda, Nobuyuki; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi; Shimizu, Ryosuke

    2011-03-15

    We present an experiment of nonclassical interference between an intrinsically pure heralded single-photon state and a weak coherent state. Our experiment demonstrates that, without the use of bandpass filters, spectrally pure single photons can have high-visibility (89.4{+-}0.5%) interference with photons from a weak coherent field. Our scheme lays the groundwork for future experiments requiring quantum interference between photons in nonclassical states and those in coherent states.

  6. Probing Lorentz Invariance Using Coherent Optical Phenomena

    NASA Astrophysics Data System (ADS)

    Cotter, J. P.; Hill, M. P.; Varcoe, B. T. H.

    2008-03-01

    We have demonstrated an experimental method for detecting extremely small frequency shifts which can be used to access the least well known of the photon sector parameters κtr. Using an interferometric coherent double resonance a spectral feature of ~ 50Hz in width can be generated in an Ives-Stilwell like apparatus. The feature is robust against Doppler broadening and can be observed in a vapour cell.

  7. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  8. Optical coupling to monolithic integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Palen, Edward

    2007-02-01

    Methods of coupling optical fiber and light sources to monolithic integrated photonic circuits are needed to expand future photonics communications markets. Requirements are low cost, high coupling efficiencies, and scalability to high volume production rates. Key features of the different optical coupling options will be discussed along with implementation examples. Requirements for low cost optical coupling and high volume production scalability will be shared.

  9. Coherent phonons excited by two optical pulses

    NASA Astrophysics Data System (ADS)

    Semenov, A. L.; Bezbat'ko, D. N.

    2016-02-01

    Theoretical dependences of the amplitude A and phase φ of photoinduced coherent oscillations of the crystal lattice on the delay time μ between two exciting optical pulses have been derived. It has been shown that φ(μ) is a periodic or decreasing function depending on the experimental conditions. Comparison with the experiment on Bi has been carried out.

  10. Experimental Quantum Optics with Photons

    NASA Astrophysics Data System (ADS)

    Wu, Ling-An

    2005-10-01

    Our group is engaged primarily in experimental quantum optics and related research involving single photon detection that may have future applications. There are six graduate students involved, of whom three are women. We have recently completed the first successful demonstration of correlated two-photon imaging and sub-wavelength interference with true thermal light from a hollow cathode lamp. The object was a pair of pinholes, and the corresponding thin lens equation was well satisfied. Although the visibility is substantially lower than in the case of entangled photons, it is conceivable that if the background could be removed by some means (e.g., digitally), there could be many applications for correlated imaging with thermal light. We have also built a quantum key distribution system based on two polarization beam splitters that cancel out the phase modulator's polarization dependence. A high key generation rate has been obtained for the first time at 1310 nm transmitted over a 25-km-long fiber, with a fringe visibility of 99.4%. A sifted key rate of about 0.6 kbits/s and quantum bit error rate of about 0.5% have been obtained.

  11. On the completeness of photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Sixdeniers, J.-M.; Penson, K. A.

    2001-04-01

    We demonstrate explicitly the completeness of photon-added coherent states (PACSs), introduced by Agarwal and Tara (Agarwal G S and Tara K 1991 Phys. Rev. A 43 492) and defined, up to normalization, by (†)M|z>, M = 0,1,2,...,, where † is the boson creation operator and |z> are conventional Glauber-Klauder coherent states. We find the analytical form of the positive weight function in their resolution of unity by solving the associated Stieltjes power-moment problem. We furnish an example of generation of another set of PACSs which are complete.

  12. Application of optical coherence tomography based microangiography for cerebral imaging

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  13. Dermascope guided multiple reference optical coherence tomography

    PubMed Central

    Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2014-01-01

    In this paper, we report the feasibility of integrating a novel low cost optical coherence tomography (OCT) system with a dermascope for point-of-care applications. The proposed OCT system is based on an enhanced time-domain optical coherence tomographic system, called multiple reference OCT (MR-OCT), which uses a single miniature voice coil actuator and a partial mirror for extending the axial scan range. The system can simultaneously register both the superficial dermascope image and the depth-resolved OCT sub-surface information by an interactive beam steering method. A practitioner is able to obtain the depth resolved information of the point of interest by simply using the mouse cursor. The proposed approach of combining a dermascope with a low cost OCT provides a unique powerful optical imaging modality for a range of dermatological applications. Hand-held dermascopic OCT devices would also enable point of care and remote health monitoring. PMID:25401004

  14. Temporal coherence and correlation of counterpropagating twin photons

    NASA Astrophysics Data System (ADS)

    Gatti, A.; Corti, T.; Brambilla, E.

    2015-11-01

    This work analyzes the temporal coherence and correlation of counterpropagating twin photons generated in a quasiphase matched nonlinear crystal by spontaneous parametric down-conversion. We find out different pictures depending on the pump pulse duration relative to two characteristic temporal scales, determined, respectively, by the temporal separation between the counterpropagating and the co-propagating wave packets. When the pump duration is intermediate between the two scales, we show a transition from a highly entangled state to an almost separable state, with strongly asymmetric spectral properties of the photons.

  15. Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunseok; Bae, Seunglee; Choi, Seongjeon

    2016-02-01

    We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.

  16. Two improved coherent optical feedback systems for optical information processing

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Bartholomew, B.; Cederquist, J.

    1976-01-01

    Coherent optical feedback systems are Fabry-Perot interferometers modified to perform optical information processing. Two new systems based on plane parallel and confocal Fabry-Perot interferometers are introduced. The plane parallel system can be used for contrast control, intensity level selection, and image thresholding. The confocal system can be used for image restoration and solving partial differential equations. These devices are simpler and less expensive than previous systems. Experimental results are presented to demonstrate their potential for optical information processing.

  17. Optical Coherence Tomography (OCT) in Optic Neuritis and Multiple Sclerosis

    PubMed Central

    Lamirel, Cédric; Newman, Nancy J.; Biousse, Valérie

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique routinely used in ophthalmology to visualize and quantify the layers of the retina. It also provides information on optic nerve head topography, peripapillary retinal nerve fiber layer thickness, and macular volume which correlate with axonal loss. These measurements are of particular interest in optic neuropathies and in multiple sclerosis, and OCT parameters are now used as endpoints in neurologic clinical trials. PMID:20605617

  18. Optical Coherence Tomography for the Neurologist.

    PubMed

    Nolan, Rachel C; Narayana, Kannan; Galetta, Steven L; Balcer, Laura J

    2015-10-01

    Optical coherence tomography (OCT) is a relatively new technology that is now routinely and very widely used by ophthalmologists for structural documentation of the optic nerve and retina. In neuro-ophthalmology and neurology, the value of OCT is ever expanding; its role in an increasing number of conditions is being reported in parallel with the advances of the technology. Currently, as a clinical tool, OCT is particularly useful for the structural measurement of peripapillary retinal nerve fiber layer thickness, optic nerve head volumetric analysis, and macular anatomy. Optic neuropathies of varied etiology (particularly from multiple sclerosis) may be the most common clinical indications for neurologists to obtain OCT imaging. Documentation and follow-up of disc edema of varied etiology (papilledema and idiopathic intracranial hypertension), discriminating true disc swelling from pseudopapilledema, and differentiating optic neuropathy from maculopathy are some other examples from clinical practice. PMID:26444402

  19. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  20. Ultrahigh Resolution Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Chen, Yu; Aguirre, Aaron D.; Považay, Boris; Unterhuber, Angelika; Fujimoto, James G.

    Since its invention in the late 1980s [1-4] and early 1990s [5-7], the original idea of OCT was to enable noninvasive optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and post-processing. An important advance toward this goal was the introduction of ultrahigh-resolution OCT (UHR OCT). By improving axial OCT resolution by one order of magnitude from the 10 to 15 μm to the sub-μm region [8-11], UHR OCT enables superior visualization of tissue microstructure, including all major intraretinal layers in ophthalmic applications as well as cellular resolution OCT imaging in nontransparent tissue. This chapter reviews state-of-the-art technology that enables ultrahigh-resolution OCT covering the entire wavelength region from 500 to 1,600 nm and discusses fundamental limitations of OCT image resolution.

  1. The multiparty coherent channel and its implementation with linear optics.

    PubMed

    He, Guangqiang; Liu, Taizhi; Tao, Xin

    2013-08-26

    The continuous-variable coherent (conat) channel is a useful resource for coherent communication, supporting coherent teleportation and coherent superdense coding. We extend the conat channel to multiparty conditions by proposing definitions on multiparty position-quadrature and momentum-quadrature conat channel. We additionally provide two methods to implement this channel using linear optics. One method is the multiparty version of coherent communication assisted by entanglement and classical communication (CCAECC). The other is multiparty coherent superdense coding. PMID:24105527

  2. Coherent noise remover for optical projection tomography

    NASA Astrophysics Data System (ADS)

    Shi, Liangliang; Dong, Di; Yang, Yujie; Wang, Jun; Arranz, Alicia; Ripoll, Jorge; Tian, Jie

    2015-03-01

    Optical Projection Tomography (OPT) is a 3-Dimentional (3D) imaging technique for small specimens between 1mm and 10mm in size. Due to its high resolution and whole-body imaging ability, OPT has been widely used for imaging of small specimens such as murine embryos, murine organs, zebra fish, and plant sections. During an OPT imaging experiment, the ring artifacts are very common which severely impact the image quality of OPT. A ring artifact is caused by a bad pixel on the camera, or impurities on surface of lens and index matching vessel. Here we term these noises as coherent noise because they stay in the same image region during an OPT experiment. Currently, there is still no effective method to remove coherent noises. To address this problem, we propose a novel method to suppress the coherent noises before 3D OPT reconstruction. Our method consists of two steps: 1) find bad pixel positions on a blank image without specimen by using threshold segmentation, then fix the bad pixels on the projection image by using average of their neighbor pixels, 2) remove remained coherent noises on the sinogram by using Variational Coherent noise Remover (VSNR) method. After the two steps, lots of method can be used to generate the tomographic slices from the modified sinograms. We apply our method to a mouse heart imaging with our home-made OPT system. The experimental results show that our method has a good suppression on coherent noise and greatly improves the image quality. The innovation of our method is that we remove coherent noise automatically from both projection image and sinogram and they complement each other.

  3. Optical Coherence Tomography Velocimetry with Complex Fluids

    NASA Astrophysics Data System (ADS)

    Malm, A.; Waigh, T. A.; Jaradat, S.; Tomlin, R.

    2015-04-01

    We present recent results obtained with an Optical Coherence Tomography Velocimetry technique. An optical interferometer measures the velocity of a sheared fluid at specific depths of the sample using the coherence length of the light source. The technique allows the dynamics of 3 pico liter volumes to be probed inside opaque complex fluids. In a study of opaque starch suspensions, classical bulk rheology experiments show non-linear shear thickening, whereas observations of the velocity profiles as a function of distance across the gap show Newtonian behavior. The ability of the technique to measure velocity fluctuations is also discussed for the case of polyacrylamide samples which were observed to display shear banding behavior. A relationship between the viscoelasticity of the sample and the size of the apparent fluctuations is observed.

  4. High-power-handling linear-integrated coherent photoreceivers for RF photonics

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Datta, Shubhashish; Rue, Jim; Rajagopalan, Sruti; Lemke, Shaun

    2013-05-01

    We report integrated coherent optical receivers designed specifically for RF Photonics applications. These receivers may be implemented in either single- or dual-polarization (DP) systems which utilize I/Q (in-phase, quadrature) phase modulation. The integrated receivers incorporate a monolithic 90 degree optical hybrid followed by eight high power-handling InGaAs photodiodes. Linear operation to +27 dBm of total optical input power, 20 mA photocurrent per diode, output third-order intercept (OIP3) > 40 dBm, third-order harmonic distortion < -100 dBc, and RF bandwidths > 4 GHz is presented. Such photoreceiver power-handling and linearity is required to optimize the photonic system spurious free dynamic range (SFDR), noise figure (NF) and link gain.

  5. Recent advances in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ding, Zhihua; Wang, Chuan; Shen, Yi; Huang, Liangming; Wu, Lan; Du, Chixin

    2012-12-01

    This paper reports recent advances in spectral domain Doppler optical coherence tomography (SD-DOCT) in our group. A high speed SD-DOCT system is developed and applied to animal study and microchip evaluation. Further improvements concerning SD-DOCT are presented, those including higher-order cross-correlation for phase retrieval, transit-time analysis for velocity quantification, and orthogonal dispersive SD-OCT for depth extension.

  6. Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption.

    PubMed

    Longhi, Stefano

    2015-04-01

    A method for realizing asymmetric (one-way) transmission of discretized light in modulated, linear, and purely passive optical lattices is suggested, which exploits the idea of unidirectional coherent perfect absorption. The system consists of a linear photonic lattice of coupled resonators or waveguides, side coupled to a chain of lossy elements, in which light can avoid the occupation of the dissipative sites when propagating in one way, but not in the opposite one. Non-reciprocity requires modulation of the resonator/waveguide parameters, realizing a dissipative optical Aharonov-Bohm diode with non-reciprocal behavior. PMID:25831312

  7. Coherent manipulation of spin-wave vector for polarization of photons in an atomic ensemble

    SciTech Connect

    Li Shujing; Xu Zhongxiao; Zheng Haiyan; Zhao Xingbo; Wu Yuelong; Wang Hai; Xie Changde; Peng Kunchi

    2011-10-15

    We experimentally demonstrate the manipulation of two orthogonal components of a spin wave in an atomic ensemble. Based on Raman two-photon transition and Larmor spin precession induced by magnetic field pulses, the coherent rotations between the two components of the spin wave are controllably achieved. Successively, the two manipulated spin-wave components are mapped into two orthogonal polarized optical emissions. By measuring Ramsey fringes of the retrieved optical signals, the {pi}/2-pulse fidelity of {approx}96% is obtained. The presented manipulation scheme can be used to build an arbitrary rotation for qubit operations in quantum information processing based on atomic ensembles.

  8. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology

    PubMed Central

    Tsai, Tsung-Han; Fujimoto, James G.; Mashimo, Hiroshi

    2014-01-01

    Optical coherence tomography (OCT) is a real-time optical imaging technique that is similar in principle to ultrasonography, but employs light instead of sound waves and allows depth-resolved images with near-microscopic resolution. Endoscopic OCT allows the evaluation of broad-field and subsurface areas and can be used ancillary to standard endoscopy, narrow band imaging, chromoendoscopy, magnification endoscopy, and confocal endomicroscopy. This review article will provide an overview of the clinical utility of endoscopic OCT in the gastrointestinal tract and of recent achievements using state-of-the-art endoscopic 3D-OCT imaging systems. PMID:26852678

  9. Optical coherence tomography guided dental drill

    DOEpatents

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  10. Coherent optical OFDM: theory and design.

    PubMed

    Shieh, W; Bao, H; Tang, Y

    2008-01-21

    Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion. In this paper, we first review the theoretical fundamentals for CO-OFDM and its channel model in a 2x2 MIMO-OFDM representation. We then present various design choices for CO-OFDM systems and perform the nonlinearity analysis for RF-to-optical up-converter. We also show the receiver-based digital signal processing to mitigate self-phase-modulation (SPM) and Gordon-Mollenauer phase noise, which is equivalent to the midspan phase conjugation. PMID:18542158

  11. Optical coherence tomography used for jade industry

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Chang, Guangming; Flueraru, Costel

    2010-11-01

    As an expensive natural stone, jade has a worldwide market. In the jade industry, the inspection and analysis basically rely on the human eye and/or experience, which cause unavoidable waste and damage of these expensive materials. Optical Coherence Tomography (OCT) is a fundamentally new type of optical sensing technology, which can perform high resolution, cross-sectional sensing of the internal structure of materials. As jade is almost translucent to infra red light, OCT becomes an ideal tool to change the traditional procedure to volume data based machine vision system. OCT can also be used for anti-counterfeit of the expensive jade ware.

  12. Experimental demonstration of photon efficient coherent temporal combining for data rate scaling

    NASA Astrophysics Data System (ADS)

    Geisler, D. J.; Yarnall, T. M.; Stevens, M. L.; Schieler, C. M.; Robinson, B. S.; Hamilton, S. A.

    2016-03-01

    The next generation free-space optical (FSO) communications infrastructure will need to support a wide range of links from space-based terminals at LEO, GEO, and deep space to the ground. Efficiently enabling such a diverse mission set requires a common ground station architecture capable of providing excellent sensitivity (i.e., few photons-per-bit) while supporting a wide range of data rates. One method for achieving excellent sensitivity performance is to use integrated digital coherent receivers. Additionally, coherent receivers provide full-field information, which enables efficient temporal coherent combining of block repeated signals. This method allows system designers to trade excess link margin for increased data rate without requiring hardware modifications. We present experimental results that show a 45-dB scaling in data rate over a 41-dB range of input powers by block-repeating and combining a PRBS sequence up to 36,017 times.

  13. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  14. Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%

    NASA Astrophysics Data System (ADS)

    Sabooni, M.; Beaudoin, F.; Walther, A.; Lin, N.; Amari, A.; Huang, M.; Kröll, S.

    2010-08-01

    We demonstrate experimentally an efficient coherent rephasing scheme for the storage and recall of weak coherent light pulses in an inhomogeneously broadened optical transition in a Pr3+:YSO crystal at 2.1 K. Precise optical pumping using a frequency stable (≈1kHz linewidth) laser is employed to create a highly controllable atomic frequency comb structure. We report single photon level storage and retrieval efficiencies of 25%, based on coherent photon-echo-type reemission in the forward direction. The high efficiency is mainly a product of our highly controllable and precise ensemble-shaping technique. The coherence property of the quantum memory is proved through interference between a super-Gaussian pulse and the emitted echo.

  15. All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Rogers, Lachlan J.; Jahnke, Kay D.; Metsch, Mathias H.; Sipahigil, Alp; Binder, Jan M.; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D.; Hemmer, Philip; Jelezko, Fedor

    2014-12-01

    The silicon-vacancy (SiV- ) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4 ±0.2 ms . Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35 ±3 ns . This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the Si 29 isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

  16. Quantum Coherence of Optomechanical Systems in the Single-photon Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Huang, Shang-Yu; Liao, Jie-Qiao; Tian, Lin; Goan, Hsi-Sheng

    2015-03-01

    Optomechanical systems with ultrastrong coupling could demonstrate nonlinear optical effects such as photon blockade. The system-bath couplings in these systems play an essential role in observing these effects. In this work, we use a dressed-state master equation approach to study the quantum coherence of an optomechanical system. In this approach, the system-bath couplings are decomposed in terms of the eigenbasis of the optomechanical system, where the mechanical state is displaced by finite photon occupation. Compared with the standard master equation often seen in the literature, our master equation includes photon-number-dependent terms that induce dephasing. We calculate cavity dephasing, second-order photon correlation, and two-cavity entanglement using the dressed-state master equation. At high temperature, our master equation predicts faster decay of the quantum coherence than with the standard master equation. The second-order photon correlation derived with our master equation shows less antibunching than that with the standard master equation. This work is supported by awards from DARPA, NSF, JSPS (Japan), MOST (Taiwan) and NTU (Taiwan).

  17. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  18. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  19. A Degenerate Optical Parametric Oscillator Network for Coherent Computation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Marandi, Alireza; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    Laws of physics have proved useful for solving combinatorial optimization problems. This chapter introduces a network of degenerate optical parametric oscillators which takes advantage of principles of quantum optics to tackle NP-hard problems. The underlying mechanism originates from the bistability of the output phase of each oscillator, coherent interactions between coupled oscillators, and the inherent preference of the network for oscillating in a mode with the minimum photon loss. Computational experiments have been extensively performed using instances of an NP-hard problem in graph theory with the number of vertices ranging from 4 to 20000. The numerical results clearly demonstrate the effectiveness of the network. In addition, the network can be physically implemented on a single ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings. The implementation has been realized for the instance on the cubic graph with 4 vertices, and no computational error is detected in 1000 runs.

  20. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    PubMed

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed. PMID:24281507

  1. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  2. Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links

    NASA Astrophysics Data System (ADS)

    Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun

    2016-06-01

    We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.

  3. Engineering Strong Interactions Between mm-wave and Optical Photons

    NASA Astrophysics Data System (ADS)

    Stone, Mark; Suleymanzade, Aziza; Estes, Jeremy; Eustice, Scott; Schuster, David; Simon, Jonathan

    2016-05-01

    We propose an atomic interface of Rydberg atoms as a means of engineering effective strong interactions between single mm-wave and optical photons. The atomic sample resides at the intersection of a high-finesse optical cavity and a superconducting mm-wave cavity, where it can coherently interact with photons of both regimes. The use of mm-wave (100 GHz) frequencies allows strong coupling at higher temperatures and with less sensitivity to stray electric fields. A hybrid cryogenic vacuum chamber at 4 Kelvin enables access to superconductivity as well as a UHV environment with optical access necessary for cold atom experiments. Strong interactions between these separate quantum degrees of freedom has important applications in quantum computing as well as simulation of many-body interacting systems.

  4. Modeling propagation of coherent optical pulses through molecular vapor

    SciTech Connect

    Shore, B.W.; Eberly, J.H.

    1982-01-01

    Results of modeling the mutual coupling of coherent molecular response and coherent optical pulses during propagation are described. The propagation is treated numerically, with particular emphasis on both continuum and discrete behavior associated with the quasicontinuum model.

  5. Extreme optical confinement in a slotted photonic crystal waveguide

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric; Combrié, Sylvain De Rossi, Alfredo

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  6. Joint photon and wave statistics in nonlinear optical couplers

    NASA Astrophysics Data System (ADS)

    Peřina, Jan; Křepelka, Jaromír

    2014-09-01

    Nonlinear optical couplers based on optical parametric processes and Raman-Brillouin scattering are discussed from the point of view of their nonclassical behaviour using joint photon-number and integrated-intensity probability distributions and derived quantum statistical quantities. Employing these tools quantum entanglement of modes and their nonclassical properties are demonstrated by means of conditional probability distributions and their Fano factors, difference-number probability distributions, quantum oscillations, squeezing of vacuum fluctuations and negative values of the joint wave probability quasidistributions in time evolution. Sub-Poissonian and sub-shot-noise properties are determined for initial coherent, chaotic and squeezed light.

  7. Interfacing microwave qubits and optical photons via spin ensembles

    NASA Astrophysics Data System (ADS)

    Blum, Susanne; O'Brien, Christopher; Lauk, Nikolai; Bushev, Pavel; Fleischhauer, Michael; Morigi, Giovanna

    2015-03-01

    A protocol is discussed which allows one to realize a transducer for single photons between the optical and the microwave frequency range. The transducer is a spin ensemble, where the individual emitters possess both an optical and a magnetic-dipole transition. Reversible frequency conversion is realized by combining optical photon storage, by means of electromagnetically induced transparency, with the controlled switching of the coupling between the magnetic-dipole transition and a superconducting qubit, which is realized by means of a microwave cavity. The efficiency is quantified by the global fidelity for coherently transferring a qubit excitation between a single optical photon and the superconducting qubit. We test various strategies and show that the total efficiency is essentially limited by the optical quantum memory: It can exceed 80% for ensembles of nitrogen-vacancy centers and approaches 99% for cold atomic ensemble, assuming state-of-the-art experimental parameters. This protocol allows one to bridge the gap between the optical and the microwave regime in order to efficiently combine superconducting and optical components in quantum networks.

  8. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  9. Current status of optical coherence tomography.

    PubMed

    Inami, Shigenobu; Wang, Zuoyan; Ming-Juan, Zhang; Takano, Masamichi; Mizuno, Kyoichi

    2011-09-01

    Optical coherence tomography (OCT) is a novel imaging technology based on low-coherence interferometry that use near-infrared light in real-time, and allows cross-sectional in-situ visualization of the vessel wall at the microscopic level. OCT provides 10-fold higher resolution than intravascular ultrasound which is currently the most used modality for intra-coronary imaging. OCT offers the obvious advantages when characterizing precise plaque microstructure and distinguishing various type of plaques. OCT is also being assessed for its potential role in the understanding of neointimal coverage, vascular healing and the progression of atherosclerosis in coronary vasculature after stenting on the micron scale. These unique capabilities could be helpful in guiding coronary management and interventions. Recent improvement in next generation OCT technology, such as frequency-domain OCT, will allow for a simple imaging procedure, providing more useful information and complementing other modalities on both clinical and research applications for the cardiologists. PMID:24122583

  10. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years. PMID:18542153

  11. Concept of coherence of learning physical optics

    NASA Astrophysics Data System (ADS)

    Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.

    1995-10-01

    The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it

  12. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  13. Spectral fusing Gabor domain optical coherence microscopy.

    PubMed

    Meemon, Panomsak; Widjaja, Joewono; Rolland, Jannick P

    2016-02-01

    Gabor domain optical coherence microscopy (GD-OCM) is one of many variations of optical coherence tomography (OCT) techniques that aims for invariant high resolution across a 3D field of view by utilizing the ability to dynamically refocus the imaging optics in the sample arm. GD-OCM acquires multiple cross-sectional images at different focus positions of the objective lens, and then fuses them to obtain an invariant high-resolution 3D image of the sample, which comes with the intrinsic drawback of a longer processing time as compared to conventional Fourier domain OCT. Here, we report on an alternative Gabor fusing algorithm, the spectral-fusion technique, which directly processes each acquired spectrum and combines them prior to the Fourier transformation to obtain a depth profile. The implementation of the spectral-fusion algorithm is presented and its performance is compared to that of the prior GD-OCM spatial-fusion approach. The spectral-fusion approach shows twice the speed of the spatial-fusion approach for a spectrum size of less than 2000 point sampling, which is a commonly used spectrum size in OCT imaging, including GD-OCM. PMID:26907410

  14. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  15. DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    LIANG, XING; CRECEA, VASILICA; BOPPART, STEPHEN A.

    2012-01-01

    With the development of optical coherence tomography, the application optical coherence elastography (OCE) has gained more and more attention in biomechanics for its unique features including micron-scale resolution, real-time processing, and non-invasive imaging. In this review, one group of OCE techniques, namely dynamic OCE, are introduced and discussed including external dynamic OCE mapping and imaging of ex vivo breast tumor, external dynamic OCE measurement of in vivo human skin, and internal dynamic OCE including acoustomotive OCE and magnetomotive OCE. These techniques overcame some of the major drawbacks of traditional static OCE, and broadened the OCE application fields. Driven by scientific needs to engineer new quantitative methods that utilize the high micron-scale resolution achievable with optics, results of biomechanical properties were obtained from biological tissues. The results suggest potential diagnostic and therapeutic clinical applications. Results from these studies also help our understanding of the relationship between biomechanical variations and functional tissue changes in biological systems. PMID:22448192

  16. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  17. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    PubMed

    Chan, Erwin H W

    2012-10-01

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated. PMID:23188262

  18. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion

    SciTech Connect

    Gupta, Subhadeep; Moore, Kevin L.; Murch, Kater W.; Stamper-Kurn, Dan M.

    2007-11-23

    We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to 10{sup 5} {sup 87}Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.

  19. Optical coherence tomography investigations of ceramic lumineers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.

    2016-02-01

    Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.

  20. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  1. Optical coherence tomography: from research to practice

    PubMed Central

    Gutiérrez-Chico, Juan Luis; Alegría-Barrero, Eduardo; Teijeiro-Mestre, Rodrigo; Chan, Pak Hei; Tsujioka, Hiroto; de Silva, Ranil; Viceconte, Nicola; Lindsay, Alistair; Patterson, Tiffany; Foin, Nicolas; Akasaka, Takashi; di Mario, Carlo

    2012-01-01

    Optical coherence tomography (OCT) is a high-resolution imaging technique with great versatility of applications. In cardiology, OCT has remained hitherto as a research tool for characterization of vulnerable plaques and evaluation of neointimal healing after stenting. However, OCT is now successfully applied in different clinical scenarios, and the introduction of frequency domain analysis simplified its application to the point it can be considered a potential alternative to intravascular ultrasound for clinical decision-making in some cases. This article reviews the use of OCT for assessment of lesion severity, characterization of acute coronary syndromes, guidance of intracoronary stenting, and evaluation of long-term results. PMID:22330231

  2. Improved methods of performing coherent optical correlation

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.

  3. Multi-Scale Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Oliveira, Michael Christopher

    An optical modality capable of quantitative, label-free, high-speed and high-resolution imaging across spatiotemporal scales coupled with sophisticated software for image reconstruction and quantitative analyses would be of great utility to scientists and engineers in the medical and life sciences fields. Currently, a combination of optical imaging techniques and software packages are needed to address the list of capabilities described previously. Optical coherence tomography is an optical imaging technique based on low coherence interferometry capable of measuring light backscattered from the sample at micrometer-level resolutions over millimeter-level penetration depths in biological tissue. Phase-sensitive extensions of OCT enable the functional assessment of biological tissue samples as well as the structural examination of samples down to the single-cell level. This dissertation describes the development and application of high-speed real-time multi-functional spectral-domain OCT (MF-SD-OCT) for structural and functional examination of biological samples across spatiotemporal scales. A discussion of the development of a GPU-accelerated high-speed MF-SD-OCT imaging system accompanied by demonstrations of the performance enhancements due to the GPU are presented initially. Next, the development of MF-SD-OCT-based quantitative methods for the structural and functional assessment and characterization and classification of biological tissue samples is discussed. The utility of these methods is demonstrated through structural, functional and optical characterization and classification of peripheral nerve and muscle tissue. The dissertation concludes with a discussion of the improvements made to spectral-domain optical coherence phase microscopy (SD-OCPM) to enable dynamic live cell imaging and the application of dynamic live cell SD-OCPM for morphological visualization of cheek epithelial cells and examination of functionally stimulated morphological changes in

  4. Coherent Two Photon Production in Superconductor-Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Baireuther, Paul; Vekhter, Ilya; Schmalian, Jörg

    2012-02-01

    Connecting a thin (direct band gap) p-n junction to a superconductor allows Cooper pairs to tunnel into the junction. This leads to an enhancement of the luminescence at the junction via Cooper pair based radiative recombination[1,2], an effect that has recently been observed experimentally[3]. Due to the proximity-induced Cooper pairs in the junction, anomalous photon production related to coherent two photon processes becomes allowed. Using a simple model for direct band gap luminescence we study a superconductor-p-n-superconductor heterostructure where the two photon state depends on the relative phase between the two superconductors. We investigate to what extend the production rate of entangled photons is controlled by the phase difference between the attached superconductors. [1] E. Hanamura, Phys. Stat. Sol. (b) 234, 166 (2002). [2] Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, Phys. Rev. Lett. 103, 187001 (2009). [3] I. Suemune, T. Akazaki, K. Tanaka, M. Jo, K. Uesugi, M. Endo1, H. Kumano, E. Hanamura, H. Takayanagi, M. Yamanishi and H. Kan, Jpn. Journ. of Appl. Phys. 45, 9264 (2006).

  5. Area scalable optically induced photorefractive photonic microstructures

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Xue, Yan Ling; Jiang, Dongdong

    2016-07-01

    A convenient approach to fabricate area scalable two-dimensional photonic microstructures was experimentally demonstrated by multi-face optical wedges. The approach is quite compact and stable without complex optical alignment equipment. Large-area square lattice microstructures are optically induced inside an iron-doped lithium niobate photorefractive crystal. The induced large-area microstructures are analyzed and verified by plane wave guiding, Brillouin-zone spectroscopy, angle-dependent transmission spectrum, and lateral Bragg reflection patterns. The method can be easily extended to generate other more complex area scalable photonic microstructures, such as quasicrystal lattices, by designing the multi-face optical wedge appropriately. The induced area scalable photonic microstructures can be fixed or erased even re-recorded in the photorefractive crystal, which suggests potential applications in micro-nano photonic devices.

  6. Quantum dots in photonic crystals: from quantum information processing to single photon nonlinear optics

    NASA Astrophysics Data System (ADS)

    Vuckovic, Jelena

    2009-05-01

    Quantum dots in photonic crystals are interesting both as a testbed for fundamental cavity quantum electrodynamics (QED) experiments, as well as a platform for quantum and classical information processing. Quantum dot-photonic crystal cavity QED has been probed both in photoluminescence and coherently, by resonant light scattering from such a system [1]. In the latter case, both intensity and photon statistics of the reflected beam have been analyzed as a function of wavelength, leading to observation of effects such as photon blockade and photon induced tunneling - for the first time in solid state [2]. The system has also been employed to achieve a controlled phase and amplitude modulation between two modes of light at the single photon level [3] - nonlinearity observed so far only in atomic physics systems. These demonstrations lie at the core of a number of proposals for quantum information processing, and could also be employed to build novel devices, such as optical switches controlled at a single photon level. [4pt] [1] Dirk Englund, Andrei Faraon, Ilya Fushman, Nick Stoltz, Pierre Petroff, and Jelena Vuckovic, ``Controlling cavity reflectivity with a single quantum dot," Nature ,ol. 450, No. 7171, pp. 857-861, December 2007[0pt] [2] Andrei Faraon, Ilya Fushman, Dirk Englund, Nick Stoltz, Pierre Petroff, and Jelena Vuckovic, ``Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade," Nature Physics ,ol. 4, pp. 859 - 863 (2008)[0pt] [3] Ilya Fushman, Dirk Englund, Andrei Faraon, Nick Stoltz, Pierre Petroff, and Jelena Vuckovic, ``Controlled phase shift with a single quantum dot," Science ,ol. 320, number 5877, pp. 769-772 ( 2008)

  7. Polarization-sensitive interleaved optical coherence tomography.

    PubMed

    Duan, Lian; Marvdashti, Tahereh; Ellerbee, Audrey K

    2015-05-18

    We introduce a new strategy for single-mode fiber based polarization-sensitive (PS-) optical coherence tomography (OCT) using orthogonally polarized optical frequency combs (OFC) in the sample arm. The two OFCs are tuned to be interleaved in the spectral domain, permitting simultaneous measurement of both polarization states from the same spatial region C close to the location of zero pathlength delay. The two polarization states of the beam in the sample arm are demultiplexed by interpolation after performing wavelength stabilization via a two-mirror calibration method. The system uses Jones matrix methods to measure quantitatively the round-trip phase retardation B-scans in the sample. A glass plate and quarter-wave plate were measured to validate the accuracy of the birefringence measurement. Further, we demonstrated the potential of this system for biomedical applications by measurement of chicken breast muscle. PMID:26074618

  8. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  9. Coherence and interferometry through optical fibers

    NASA Astrophysics Data System (ADS)

    Froehly, C.

    Attention is given to the way in which the insertion of optical fibers on the arms of a stellar interferometer modifies the conditions of interference and the intensity patterns in the observation plane. This modification is compared with the usual situation, where the light propagates in the free space between the foci of the telescopes and the detection plane. This problem is considered for both single-mode and multimode fibers and for monochromatic and polychromatic radiation, that is, in 'partially coherent' light. A Fourier analysis is made of the spatiotemporal distortions of the scalar optical field propagating along the fibers; this makes it possible to calculate the complex correlations of the field introduced by the guide. The analysis is begun by considering interferometry through single-mode fibers. Orders of magnitude are given for practical fiber length limitations for white light interferometry, with an allowance made for the usual losses and performances of the fibers and spectroscopic devices commercially available today.

  10. Coherent control of optical information with matter wave dynamics.

    PubMed

    Ginsberg, Naomi S; Garner, Sean R; Hau, Lene Vestergaard

    2007-02-01

    In recent years, significant progress has been achieved in manipulating matter with light, and light with matter. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose-Einstein condensates represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose-Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find

  11. Functional Optical Coherence Tomography: Principles and Progress

    PubMed Central

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  12. Functional optical coherence tomography: principles and progress.

    PubMed

    Kim, Jina; Brown, William; Maher, Jason R; Levinson, Howard; Wax, Adam

    2015-05-21

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  13. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  14. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting

    SciTech Connect

    Jeong, Hyunseok; Nguyen Ba An

    2006-08-15

    We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.

  15. Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs.

    PubMed

    Wang, Y Y; Wu, Chunbai; Couny, F; Raymer, M G; Benabid, F

    2010-09-17

    We show experimentally and theoretically that the spectral components of a multioctave frequency comb spontaneously created by stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber exhibit strong self-coherence and mutual coherence within each 12 ns driving laser pulse. This coherence arises in spite of the field's initiation being from quantum zero-point fluctuations, which causes each spectral component to show large phase and energy fluctuations. This points to the possibility of an optical frequency comb with nonclassical correlations between all comb lines. PMID:20867639

  16. Optically tuneable blue phase photonic band gaps

    SciTech Connect

    Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H.

    2010-03-22

    This study investigates an optically switchable band gap of photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. The trans-cis photoisomerization of azobenzene deforms the cubic unit cell of the blue phase and shifts the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with different wavelengths light. The crystal structure is verified using Kossel diffraction diagram. An optically addressable blue phase display, based on Bragg reflection from the photonic band gap, is also demonstrated. The tunable ranges are around red, green, and blue wavelengths and exhibit a bright saturated color.

  17. Review on recent progress of three-dimensional optical photonic crystal

    SciTech Connect

    Hsieh, Mei-Li; Kuang, Ping; Bur, James A.; Lin, Shawn-Yu; John, Sajeev

    2014-03-31

    Over the past two decades, the field of photonic-crystals has become one of the most influential realms of contemporary optics. In this paper, we will review two recent experimental progresses in three-dimensional photonic-crystal operating in optical wavelengths. The first is the observation of anomalous light-refraction, an acutely negative refraction, in a 3D photonic-crystal for light trapping, guiding and near-unity absorption. The second is the observation of quasi-coherent thermal emission from an all-metallic 3D photonic-crystal at elevated temperatures.

  18. Coherent control of atomic transport in spinor optical lattices

    SciTech Connect

    Mischuck, Brian; Deutsch, Ivan H.; Jessen, Poul S.

    2010-02-15

    Coherent transport of atoms trapped in an optical lattice can be controlled by microwave-induced spin flips that correlate with site-to-site hopping. We study the controllability of homogeneous one-dimensional systems of noninteracting atoms in the absence of site addressability. Given these restrictions, we construct a deterministic protocol to map an initially localized Wannier state to a wave packet that is coherently distributed over n sites. As an example, we consider a one dimensional quantum walk in the presence of both realistic photon scattering and inhomogeneous broadening of the microwave transition due to the optical lattice. Using composite pulses to suppress errors, fidelities of over 95% can be achieved for a 25-step walk. We extend the protocol for state preparation to analytic solutions for arbitrary unitary maps given homogeneous systems and in the presence of time-dependent uniform forces. Such control is important for applications in quantum information processing, such as quantum computing and quantum simulations of condensed matter phenomena.

  19. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a

  20. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  1. Coherent Ultrafast Measurement of Time-Bin Encoded Photons

    NASA Astrophysics Data System (ADS)

    Donohue, John M.; Agnew, Megan; Lavoie, Jonathan; Resch, Kevin J.

    2013-10-01

    Time-bin encoding is a robust form of optical quantum information, especially for transmission in optical fibers. To readout the information, the separation of the time bins must be larger than the detector time resolution, typically on the order of nanoseconds for photon counters. In the present work, we demonstrate a technique using a nonlinear interaction between chirped entangled time-bin photons and shaped laser pulses to perform projective measurements on arbitrary time-bin states with picosecond-scale separations. We demonstrate a tomographically complete set of time-bin qubit projective measurements and show the fidelity of operations is sufficiently high to violate the Clauser-Horne-Shimony-Holt-Bell inequality by more than 6 standard deviations.

  2. Coherent ultrafast measurement of time-bin encoded photons.

    PubMed

    Donohue, John M; Agnew, Megan; Lavoie, Jonathan; Resch, Kevin J

    2013-10-11

    Time-bin encoding is a robust form of optical quantum information, especially for transmission in optical fibers. To readout the information, the separation of the time bins must be larger than the detector time resolution, typically on the order of nanoseconds for photon counters. In the present work, we demonstrate a technique using a nonlinear interaction between chirped entangled time-bin photons and shaped laser pulses to perform projective measurements on arbitrary time-bin states with picosecond-scale separations. We demonstrate a tomographically complete set of time-bin qubit projective measurements and show the fidelity of operations is sufficiently high to violate the Clauser-Horne-Shimony-Holt-Bell inequality by more than 6 standard deviations. PMID:24160599

  3. Optical Coherence Tomography in a Needle Format

    NASA Astrophysics Data System (ADS)

    Lorenser, Dirk; McLaughlin, Robert A.; Sampson, David D.

    In this chapter, we review the technology and applications of needle probes for optical coherence tomography (OCT). Needle probes are miniaturized fiber-optic probes that can be mounted inside hypodermic needles, allowing them to be inserted deep into the body during OCT imaging. This overcomes the very limited imaging depth of OCT of only 2-3 mm in biological tissue, enabling access to deep-tissue locations that are beyond the reach of free-space optical scan heads or catheters. This chapter provides an in-depth review of the current state-of-the art in needle probe technology, including optical design and fabrication, scan mechanisms (including three-dimensional scanning), and integration into OCT systems. It also provides an overview of emerging applications of this fascinating new imaging tool in areas such as cancer diagnosis, pulmonary imaging, imaging of the eye and imaging of the brain. Finally, two case studies are presented, illustrating needle-based OCT imaging in breast cancer and lungs.

  4. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  5. Blood optical clearing studied by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhernovaya, Olga; Tuchin, Valery V.; Leahy, Martin J.

    2013-02-01

    The main limitation of optical imaging techniques for studying biological tissues is light scattering leading to decreasing of transmittance, which lowers the imaging quality. In this case, an immersion method for optical clearing of biological tissues can provide a possible solution to this problem, because the application of biocompatible clearing agents can reduce light scattering. Optical clearing represents a promising approach to increasing the imaging depth for various techniques, for example, various spectroscopy and fluorescent methods, and optical coherence tomography (OCT). We investigate the improvement of light penetration depth in blood after application of polyethylene glycol, polypropylene glycol, propylene glycol, and hemoglobin solutions using an OCT system. Influence of clearing agents on light transport in tissues and blood was also investigated in the mouse tail vein.

  6. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  7. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  8. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-01-01

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the

  9. Evaluation of microfluidic channels with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  10. Megahertz streak-mode Fourier domain optical coherence tomography

    PubMed Central

    Wang, Rui; Yun, Julie X.; Yuan, Xiaocong; Goodwin, Richard; Markwald, Roger R.; Gao, Bruce Z.

    2011-01-01

    Here we present an ultrahigh-speed Fourier-domain optical coherence tomography (OCT) that records the OCT spectrum in streak mode with a high-speed area scan camera, which allows higher OCT imaging speed than can be achieved with a line-scan camera. Unlike parallel OCT techniques that also use area scan cameras, the conventional single-mode fiber-based point-scanning mechanism is retained to provide a confocal gate that rejects multiply scattered photons from the sample. When using a 1000 Hz resonant scanner as the streak scanner, 1,016,000 A-scans have been obtained in 1 s. This method's effectiveness has been demonstrated by recording in vivo OCT-image sequences of embryonic chick hearts at 1000 frames/s. In addition, 2-megahertz OCT data have been obtained with another high speed camera. PMID:21721817

  11. Probing molecular chirality by coherent optical absorption spectra

    SciTech Connect

    Jia, W. Z.; Wei, L. F.

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  12. High-speed modelocked semiconductor lasers and applications in coherent photonic systems

    NASA Astrophysics Data System (ADS)

    Lee, Wangkuen

    1.55-mum high-speed modelocked semiconductor lasers are theoretically and experimentally studied for various coherent photonic system applications. The modelocked semiconductor lasers (MSLs) are designed with high-speed (>5 GHz) external cavity configurations utilizing monolithic two-section curved semiconductor optical amplifiers. By exploiting the saturable absorber section of the monolithic device, passive or hybrid mode-locking techniques are used to generate short optical pulses with broadband optical frequency combs. Laser frequency stability is improved by applying the Pound-Drever-Hall (PDH) frequency stabilization technique to the MSLs. The improved laser performance after the frequency stabilization (a frequency drifting of less than 350 MHz), is extensively studied with respect to the laser linewidth (˜ 3 MHz), the relative intensity noise (RIN) (< -150 dB/Hz), as well as the modal RIN (˜ 3 dB reduction). MSL to MSL, and tunable laser to MSL synchronization is demonstrated by using a dual-mode injection technique and a modulation sideband injection technique, respectively. Dynamic locking behavior and locking bandwidth are experimentally and theoretically studied. Stable laser synchronization between two MSLs is demonstrated with an injection seed power on the order of a few microwatt. Several coherent heterodyne detections based on the synchronized MSL systems are demonstrated for applications in microwave photonic links and ultra-dense wavelength division multiplexing (UD-WDM) system. In addition, efficient coherent homodyne balanced receivers based on synchronized MSLs are developed and demonstrated for a spectrally phase-encoded optical CDMA (SPE-OCDMA) system.

  13. Developing broadband sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, L. R.; Kashyap, R.; Azaña, J.; Maciejko, R.; Matei, R.; Baron, J.; Nemova, G.; Chauve, J.; Bojor, L.; Beitel, D.; Saqqa, S.; Singh, K.

    2006-09-01

    Optical coherence tomography (OCT) is an emerging medical diagnostic technology for noninvasive in situ and in vivo cross-sectional morphological imaging of transparent or nontransparent biological tissues and materials on a micrometer scale. The technique uses low coherence interferometry to extract the intensity of the reflected signal as a function of penetration depth in the sample and is analogous to ultrasound except that much shorter wavelength infrared radiation is used rather than sound waves. Among the key enabling technologies for OCT systems are high-power, broadband optical sources (BBS). Such sources are required to provide large dynamic range and sensitivity, as well as very high axial resolution. In this paper, we present our ongoing work on developing BBS based on the amplified spontaneous emission (ASE) from semiconductor optical amplifiers (SOAs) and erbium-doped fiber amplifiers (EDFAs). We target sources spanning the S, C, and L bands, with milliwatts of output power and smoothly shaped output spectra. In terms of shaping the output spectra, we consider different designs of gain flattening filters based on side-tapped fiber Bragg gratings (FBGs) as well as specially apodized FBGs operating in transmission. In terms of the source development, we have developed strained multiple-quantum well SOAs and hybrid SOA-EDFA structures. In the hybrid structures, we have also investigated the possibility of exploiting the unused ASE from the SOA as a secondary input to the L-band EDFA. We have also explored techniques such as double-passing to enhance efficiency as well as gain-clamping to provide some inherent spectral flattening.

  14. Monte Carlo modeling of human tooth optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-07-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth.

  15. Enhancing coherent transport in a photonic network using controllable decoherence

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Devon N.; Heilmann, René; Zecevik, Aidan A.; Gräfe, Markus; Broome, Matthew A.; Fedrizzi, Alessandro; Nolte, Stefan; Szameit, Alexander; White, Andrew G.; Kassal, Ivan

    2016-04-01

    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence.

  16. Enhancing coherent transport in a photonic network using controllable decoherence.

    PubMed

    Biggerstaff, Devon N; Heilmann, René; Zecevik, Aidan A; Gräfe, Markus; Broome, Matthew A; Fedrizzi, Alessandro; Nolte, Stefan; Szameit, Alexander; White, Andrew G; Kassal, Ivan

    2016-01-01

    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence. PMID:27080915

  17. Enhancing coherent transport in a photonic network using controllable decoherence

    PubMed Central

    Biggerstaff, Devon N.; Heilmann, René; Zecevik, Aidan A.; Gräfe, Markus; Broome, Matthew A.; Fedrizzi, Alessandro; Nolte, Stefan; Szameit, Alexander; White, Andrew G.; Kassal, Ivan

    2016-01-01

    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence. PMID:27080915

  18. Hybrid receiver system for single photon sensitive direct and coherent detection

    NASA Astrophysics Data System (ADS)

    Kondratko, Piotr K.; Bratcher, Andrew; Glennon, John; Suni, Paul

    2015-05-01

    Hybrid receivers that enable switching between direct and coherent detection provide many imaging functions beneficial to scientific and defense applications. A hybrid receiver system is presented wherein a single detector is switched between the Geiger-mode and linear amplification modes of operation. This system benefits from enhanced functionality and lower size, weight, power, cost, and complexity compared with dual receiver implementations. The hybrid receiver sensing modality is reconfigurable on-the-fly between single photon direct detection and amplitude/phase coherent detection. The reconfiguration is achieved by adjusting detector bias (electrically) and by simultaneously enabling or disabling the local oscillator (optically). This work describes these two sensing scenarios, discusses the operation of the receiver system and shows laboratory-scale imaging results for each mode of hybrid receiver operation.

  19. Mitigating Photon Jitter in Optical PPM Communication

    NASA Technical Reports Server (NTRS)

    Moision, Bruce

    2008-01-01

    A theoretical analysis of photon-arrival jitter in an optical pulse-position-modulation (PPM) communication channel has been performed, and now constitutes the basis of a methodology for designing receivers to compensate so that errors attributable to photon-arrival jitter would be minimized or nearly minimized. Photon-arrival jitter is an uncertainty in the estimated time of arrival of a photon relative to the boundaries of a PPM time slot. Photon-arrival jitter is attributable to two main causes: (1) receiver synchronization error [error in the receiver operation of partitioning time into PPM slots] and (2) random delay between the time of arrival of a photon at a detector and the generation, by the detector circuitry, of a pulse in response to the photon. For channels with sufficiently long time slots, photon-arrival jitter is negligible. However, as durations of PPM time slots are reduced in efforts to increase throughputs of optical PPM communication channels, photon-arrival jitter becomes a significant source of error, leading to significant degradation of performance if not taken into account in design. For the purpose of the analysis, a receiver was assumed to operate in a photon- starved regime, in which photon counts follow a Poisson distribution. The analysis included derivation of exact equations for symbol likelihoods in the presence of photon-arrival jitter. These equations describe what is well known in the art as a matched filter for a channel containing Gaussian noise. These equations would yield an optimum receiver if they could be implemented in practice. Because the exact equations may be too complex to implement in practice, approximations that would yield suboptimal receivers were also derived.

  20. Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources.

    PubMed

    Huang, K; Le Jeannic, H; Ruaudel, J; Verma, V B; Shaw, M D; Marsili, F; Nam, S W; Wu, E; Zeng, H; Jeong, Y-C; Filip, R; Morin, O; Laurat, J

    2015-07-10

    We propose and experimentally realize a novel versatile protocol that allows the quantum state engineering of heralded optical coherent-state superpositions. This scheme relies on a two-mode squeezed state, linear mixing, and a n-photon detection. It is optimally using expensive non-Gaussian resources to build up only the key non-Gaussian part of the targeted state. In the experimental case of a two-photon detection based on high-efficiency superconducting nanowire single-photon detectors, the freely propagating state exhibits a 67% fidelity with a squeezed even coherent-state superposition with a size |α|(2)=3. The demonstrated procedure and the achieved rate will facilitate the use of such superpositions in subsequent protocols, including fundamental tests and optical hybrid quantum information implementations. PMID:26207468

  1. Enhancement of electron spin coherence by optical preparation of nuclear spins.

    PubMed

    Stepanenko, Dimitrije; Burkard, Guido; Giedke, Geza; Imamoglu, Atac

    2006-04-01

    We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros. PMID:16712008

  2. Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave

    SciTech Connect

    Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K.; Schreiber, Michael; Kiffner, Martin; Schmiedmayer, Jörg

    2014-12-04

    In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.

  3. Optical coherence tomography: technology and applications

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Flueraru, Costel; Sherif, Sherif

    2008-12-01

    Optical coherence tomography (OCT) has recently emerged as a powerful optical imaging instrument and technology. OCT performs high resolution, cross-sectional tomographic imaging of the internal structure in 3D materials including biological tissues. Advantages of OCT vs. other imaging systems are: 1) High resolution: enables greater visualization of defects. (OCT: 5-10 microns, ultrasound: 150 microns. High resolution CT: 300 microns. MRI: 1,000 microns). 2) Noninvasive, non-contact: increase ease of use. 3) Fiber-optics delivery: allows OCT to be used in catheters and endoscopes. (Fiber diameter is normally 125 microns). 4) High speed: enables high-resolution 3D imaging. 5) Potential for additional information: polarization contrast and spectroscopic information can be obtained concurrently yielding new information of the testing tissues. 6) Use of non-harmful radiation. In this paper, we shortly review the technologies of OCT and present our works in design and implementation of fiber based OCT systems and full-field OCT systems, including high performance swept source, fibre probe, hardware, software design as well as system configurations. The applications of OCT involving in medical imaging, industrial inspection, information storage and retrieval, as well as biometrics and document security are also briefly introduced and demonstrated.

  4. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  5. Quantitative contrast-enhanced optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  6. Space-division multiplexing optical coherence tomography

    PubMed Central

    Zhou, Chao; Alex, Aneesh; Rasakanthan, Janarthanan; Ma, Yutao

    2013-01-01

    High speed, high resolution and high sensitivity are desirable for optical coherence tomography (OCT). Here, we demonstrate a space-division multiplexing (SDM) technology that translates long coherence length of a commercially available wavelength tunable laser into high OCT imaging speed. We achieved an effective 800,000 A-scans/s imaging speed using a 100,000 Hz tunable vertical cavity surface-emitting laser (VCSEL). A sensitivity of 94.6 dB and a roll-off of < 2 dB over ~30 mm imaging depth were measured from a single channel in the prototype SDM-OCT system. An axial resolution of ~11 μm in air (or ~8.3 μm in tissue) was achieved throughout the entire depth range. An in vivo, 3D SDM-OCT volume of an entire Drosophila larva consisting of 400 x 605 A-scans was acquired in 0.37 seconds. Synchronized cross-sectional OCT imaging of three different segments of a beating Drosophila larva heart is demonstrated. The SDM technology provides a new orthogonal dimension for further speed improvement for OCT with favorable cost scaling. SDM-OCT also preserves image resolution and allows synchronized cross-sectional and three-dimensional (3D) imaging of biological samples, enabling new biomedical applications. PMID:23938839

  7. Optical trapping apparatus, methods and applications using photonic crystal resonators

    SciTech Connect

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  8. All-optical formation of coherent dark states of silicon-vacancy spins in diamond.

    PubMed

    Pingault, Benjamin; Becker, Jonas N; Schulte, Carsten H H; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-31

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses. PMID:25615329

  9. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    SciTech Connect

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  10. Projection-resolved optical coherence tomographic angiography

    PubMed Central

    Zhang, Miao; Hwang, Thomas S.; Campbell, J. Peter; Bailey, Steven T.; Wilson, David J.; Huang, David; Jia, Yali

    2016-01-01

    Shadowgraphic projection artifacts from superficial vasculature interfere with the visualization of deeper vascular networks in optical coherence tomography angiography (OCT-A). We developed a novel algorithm to remove this artifact by resolving the ambiguity between in situ and projected flow signals. The algorithm identifies voxels with in situ flow as those where intensity-normalized decorrelation values are higher than all shallower voxels in the same axial scan line. This “projection-resolved” (PR) algorithm effectively suppressed the projection artifact on both en face and cross-sectional angiograms and enhanced depth resolution of vascular networks. In the human macula, the enhanced angiograms show three distinct vascular plexuses in the inner retina and no vessels in the outer retina. We demonstrate that PR OCT-A cleanly removes flow projection from the normally avascular outer retinal slab while preserving the density and continuity of the intermediate and deep retinal capillary plexuses. PMID:27231591

  11. Optical coherence tomography of the rat cochlea

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; de Boer, Johannes F.; Park, Boris H.; Chen, Zhongping; Nelson, J. Stuart

    2000-10-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea (ex vivo). Immediately following sacrifice, the temporal bone of a Sprague-Dawley rat was harvested. Axial OCT cross sectional images (over regions of interest, 1 X 1 mm-2 X 8 mm) were obtained with a spatial resolution of 10 - 15 micrometers . The osseous borders of the lateral membranous labyrinth overlying the cochlea and the scala vestibuli, media, and tympani, which were well demarcated by the modiolus, Reissner's and the basilar membranes, were clearly identified. OCT can be used to image internal structures in the cochlea without violating the osseous labyrinth using simple surgical exposure of the promontory, and may potentially be used to diagnose inner ear pathology in vivo in both animal and human subjects labyrinth.

  12. Molecular Imaging in Optical Coherence Tomography

    PubMed Central

    Mattison, Scott P.; Kim, Wihan; Park, Jesung; Applegate, Brian E.

    2015-01-01

    Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT’s impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT. PMID:25821718

  13. En-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian Gh.; Rosen, Richard B.; Rogers, John A.; Dobre, George M.; Cucu, Radu G.; Jackson, David A.; Dunne, Shane; Amaechi, Bennett T.

    2003-10-01

    A review is presented of the developments in Kent in the field of optical coherence tomography (OCT) based instrumentation. Original versatile imaging systems have been devised which allow operation in different regimes under software control. Using such systems, B-scan and C-scan images are demonstrated from retina, anterior chamber, skin and teeth. The systems developed in Kent employ the flying spot concept, i.e. they use en-face scanning of the beam across the target. This has opened the possibility of providing simultaneous en-face OCT and confocal images (C-scans). Application of a standalone OCT/confocal system for investigating the retina in eyes with pathology, the anterior chamber, skin and teeth is demonstrated.

  14. Digital filters for coherent optical receivers.

    PubMed

    Savory, Seb J

    2008-01-21

    Digital filters underpin the performance of coherent optical receivers which exploit digital signal processing (DSP) to mitigate transmission impairments. We outline the principles of such receivers and review our experimental investigations into compensation of polarization mode dispersion. We then consider the details of the digital filtering employed and present an analytical solution to the design of a chromatic dispersion compensating filter. Using the analytical solution an upper bound on the number of taps required to compensate chromatic dispersion is obtained, with simulation revealing an improved bound of 2.2 taps per 1000ps/nm for 10.7GBaud data. Finally the principles of digital polarization tracking are outlined and through simulation, it is demonstrated that 100krad/s polarization rotations could be tracked using DSP with a clock frequency of less than 500MHz. PMID:18542155

  15. Optical coherence tomography examination of hair

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Huang, Zheng; Xu, Jianshu; Yang, Hongqin; Li, Hui; Xie, Shusen

    2014-09-01

    Human hair is a keratinous tissue composed mostly of flexible keratin, which can form a complex architecture consisting of distinct compartments or units (e.g. hair bulb, inner root sheath, shaft). Variations in hair shaft morphology can reflect ethnical diversity, but may also indicate internal diseases, nutritional deficiency, or hair and scalp disorders. Hair shaft abnormalities in cross section and diameter, as well as ultramorphological characterization and follicle shapes, might be visualized non-invasively by high-speed 2D and 3D optical coherence tomography (OCT). In this study, swept source OCT (ThorLabs) was used to examine human hair. Preliminary results showed that the high-speed OCT was a suitable and promising tool for non-invasive analysis of hair conditions.

  16. Optical coherence tomography for diagnosing periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard

    1997-05-01

    We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.

  17. Lorentz force megahertz optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Singh, Manmohan; Han, Zhaolong; Raghunathan, Raksha; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Larin, Kirill V.

    2016-03-01

    Optical Coherence Elastography (OCE) is a rapidly developing technique for assessing tissue biomechanical properties. This study demonstrates the first use of the Lorentz force to induce elastic waves within tissue to quantify the elasticity of tissue in combination with a phase-sensitive OCE system at ~1.5 million A-scans per second. The feasibility of this technique was tested on tissue-mimicking agar phantoms of various concentrations. The results as assessed by OCE were in good agreement with standard mechanical testing of the samples. After the preliminary experiments, the stiffness of porcine liver was examined. The results demonstrate that Lorentz force MHz OCE can be applied to study the elasticity of biological tissue effectively and has the potential for clinical applications due to rapid excitation and imaging.

  18. Nanoparticles for enhanced contrast optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maule, César D.; Quaresma, Pedro; Carvalho, Patrícia A.; Jorge, Pedro; Pereira, Eulália; Rosa, Carla C.

    2008-09-01

    Recently the area of bioimaging has benefited from new types of image enhancing agents such as quantum dots, carbon nanotubes and other nanoparticles. Cellular or even molecular level resolution has been achieved with different techniques during these last years (i.a. Fluorescence microscopy, PET/CT scan, AFM). Optical Coherence Tomography (OCT) as an imaging technique should also profit from newly developed probes. In this work we explored the tunable properties of different types of nanoparticles as contrast enhancers in OCT applications. We mainly studied the development and characteristics of metallic nanoparticles with tunable properties: gold nanoshells made of a silica core coated with a gold shell. Nanoshell and nanoparticles processing techniques are discussed, as well as their optimization for designing particles with specific absorption and scattering characteristics, and its use in OCT imaging.

  19. Intracoronary Optical Coherence Tomography: A Comprehensive Review

    PubMed Central

    Bezerra, Hiram G.; Costa, Marco A.; Guagliumi, Giulio; Rollins, Andrew M.; Simon, Daniel I.

    2014-01-01

    Cardiovascular optical coherence tomography (OCT) is a catheter-based invasive imaging system. Using light rather than ultrasound, OCT produces high-resolution in vivo images of coronary arteries and deployed stents. This comprehensive review will assist practicing interventional cardiologists in understanding the technical aspects of OCT based upon the physics of light and will also highlight the emerging research and clinical applications of OCT. Semi-automated imaging analyses of OCT systems permit accurate measurements of luminal architecture and provide insights regarding stent apposition, overlap, neointimal thickening, and, in the case of bioabsorbable stents, information regarding the time course of stent dissolution. The advantages and limitations of this new imaging modality will be discussed with emphasis on key physical and technical aspects of intracoronary image acquisition, current applications, definitions, pitfalls, and future directions. PMID:19926041

  20. Optical characterization of contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Tin-Man; Toublan, Farah J.; Oldenburg, Amy; Sitafalwalla, Shoeb; Luo, Wei; Marks, Daniel L.; Suslick, Kenneth S.; Boppart, Stephen A.

    2003-07-01

    The use of contrast agents in almost every imaging modality has been known to enhance the sensitivity of detection and improve diagnostic capabilities by site-specifically labeling tissues or cells of interest. The imaging capabilities of Optical Coherence Tomography (OCT) need to be improved in order to detect early neoplastic changes in medicine and tumor biology. We introduce and characterize the optical properties of several types of optical contrast agents in OCT, namely encapsulating microspheres that incorporate materials including melanin, gold, and carbon. Micron-sized microspheres have been fabricated by state-of-the-art sonicating and ultrasound technology. The optical properties of optical contrast agents have been characterized according to their scattering and absorption coefficients and lifetimes using OCT and the oblique incidence reflectometry method. Finally, we demonstrate the use of these optical contrast agents in in vitro mice liver and analyze the contrast improvement from the OCT images. These optical contrast agents have the potential to improve the detection of in vivo pathologies in the future.

  1. Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier.

    PubMed

    Zhao, Youbo; Tu, Haohua; Liu, Yuan; Bower, Andrew J; Boppart, Stephen A

    2015-06-01

    We report the enhancement in imaging performance of a spectral-domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal-to-noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply-scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light-scattering media are demonstrated with the combined OPA-OCM setup. Typical OCM inteferograms (left) and images (right) without and with OPA. PMID:25196251

  2. Spontaneously generated coherence in a Rb atom via photon counting statistics

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Peng, Yonggang; Sun, Zhen-Dong; Zheng, Yujun

    2016-01-01

    We study the spontaneously generated coherence (SGC) in a Rb atom by employing photon counting statistics based on the four-level Y-type model driven by a probe field and two coherent control fields. A transparency channel induced by coherent population trapping (CPT) and ultra-narrow probe absorption peaks in the presence of SGC are found.

  3. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.

    PubMed

    Schaefer, Alexander W; Reynolds, J Joshua; Marks, Daniel L; Boppart, Stephen A

    2004-01-01

    We present the development and use of a real-time digital signal processing (DSP)-based optical coherence tomography (OCT) and Doppler OCT system. Images of microstructure and transient fluid-flow profiles are acquired using the DSP architecture for real-time processing of computationally intensive calculations. This acquisition system is readily configurable for a wide range of real-time signal processing and image processing applications in OCT. PMID:14723509

  4. Optical mirage in graded photonic crystals

    NASA Astrophysics Data System (ADS)

    Centeno, Emmanuel; Cassagne, David; Albert, Jean Paul

    2006-04-01

    We present the concept of graded photonic crystals (GPC) and show its ability to enhance the control of light propagation. It is shown that gradual modifications of photonic crystal parameters are able to curve the path of light. This light bending which depends on the wavelength and on the incident angle is examined through parametric studies of the iso-frequency curves. We demonstrate that photonic mirages originate from the same physical principles as the usual atmospheric mirages. Two optical components based on two-dimensional GPCs presenting a super bending effect and a large beam shifting are presented.

  5. Quantum optics with one or two photons

    PubMed Central

    Milburn, G. J.; Basiri-Esfahani, S.

    2015-01-01

    We discuss the concept of a single-photon state together with how they are generated, measured and interact with linear and nonlinear systems. In particular, we consider how a single-photon state interacts with an opto-mechanical system: an optical cavity with a moving mirror and how such states can be used as a measurement probe for the mechanical degrees of freedom. We conclude with a discussion of how single-photon states are modified in a gravitational field due to the red-shift. PMID:26339197

  6. Photon pair generation in birefringent optical fibers

    NASA Astrophysics Data System (ADS)

    Smith, Brian J.; Mahou, P.; Cohen, Offir; Lundeen, J. S.; Walmsley, I. A.

    2009-12-01

    We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

  7. Measuring the optical characteristics of medulloblastoma with optical coherence tomography

    PubMed Central

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X.D.

    2015-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor. Standard treatment consists of surgical resection, followed by radiation and high-dose chemotherapy. Despite these efforts, recurrence is common, leading to reduced patient survival. Even with successful treatment, there are often severe long-term neurologic impacts on the developing nervous system. We present two quantitative techniques that use a high-resolution optical imaging modality: optical coherence tomography (OCT) to measure refractive index, and the optical attenuation coefficient. To the best of our knowledge, this study is the first to demonstrate OCT analysis of medulloblastoma. Refractive index and optical attenuation coefficient were able to differentiate between normal brain tissue and medulloblastoma in mouse models. More specifically, optical attenuation coefficient imaging of normal cerebellum displayed layers of grey matter and white matter, which were indistinguishable in the structural OCT image. The morphology of the tumor was distinct in the optical attenuation coefficient imaging. These inherent properties may be useful during neurosurgical intervention to better delineate tumor boundaries and minimize resection of normal tissue. PMID:25909030

  8. Optical identification based on time domain optical coherence tomography.

    PubMed

    Gandhi, Vishal; Semenov, Dmitry; Honkanen, Seppo; Hauta-Kasari, Markku

    2015-09-01

    We present a novel method for optical identification, i.e., authenticating valuable documents such as a passport, credit cards, and bank notes, using optical coherence tomography (OCT). An OCT system can capture three-dimensional (3D) images and visualize the internal structure of an object. In our work, as an object, we consider a multilayered optical identification tag composed of a limited number of thin layers (10-100 μm thick). The thickness, width, and location of the layers in the tag encode a unique identification information. Reading of the tag is done using a time domain OCT (TD-OCT) system. Typically, a TD-OCT system requires continuous mechanical scanning in one or more directions to get a 3D volume image of an object. The continuous scanning implies a complicated optical setup, which makes an OCT system fragile and expensive. We propose to avoid the conventional scanning by (1) not requiring 3D imaging, and (2) utilizing the motion of the optical tag itself. The motion is introduced to the tag reader, for example, by a user, which replaces the need for conventional scanning. The absence of a conventional scanning mechanism makes the proposed OCT method very simple and suited for identification purposes; however, it also puts some constraints to the construction of the optical tag, which we discuss in this paper in detail. PMID:26368871

  9. Measuring the optical characteristics of medulloblastoma with optical coherence tomography.

    PubMed

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Sun, Cuiru; Taylor, Michael D; Yang, Victor X D

    2015-04-01

    Medulloblastoma is the most common malignant pediatric brain tumor. Standard treatment consists of surgical resection, followed by radiation and high-dose chemotherapy. Despite these efforts, recurrence is common, leading to reduced patient survival. Even with successful treatment, there are often severe long-term neurologic impacts on the developing nervous system. We present two quantitative techniques that use a high-resolution optical imaging modality: optical coherence tomography (OCT) to measure refractive index, and the optical attenuation coefficient. To the best of our knowledge, this study is the first to demonstrate OCT analysis of medulloblastoma. Refractive index and optical attenuation coefficient were able to differentiate between normal brain tissue and medulloblastoma in mouse models. More specifically, optical attenuation coefficient imaging of normal cerebellum displayed layers of grey matter and white matter, which were indistinguishable in the structural OCT image. The morphology of the tumor was distinct in the optical attenuation coefficient imaging. These inherent properties may be useful during neurosurgical intervention to better delineate tumor boundaries and minimize resection of normal tissue. PMID:25909030

  10. Optical coherence tomography used for internal biometrics

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel

    2007-06-01

    Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.

  11. Geodesic denoising for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Shahrian Varnousfaderani, Ehsan; Vogl, Wolf-Dieter; Wu, Jing; Gerendas, Bianca S.; Simader, Christian; Langs, Georg; Waldstein, Sebastian M.; Schmidt-Erfurth, Ursula

    2016-03-01

    Optical coherence tomography (OCT) is an optical signal acquisition method capturing micrometer resolution, cross-sectional three-dimensional images. OCT images are used widely in ophthalmology to diagnose and monitor retinal diseases such as age-related macular degeneration (AMD) and Glaucoma. While OCT allows the visualization of retinal structures such as vessels and retinal layers, image quality and contrast is reduced by speckle noise, obfuscating small, low intensity structures and structural boundaries. Existing denoising methods for OCT images may remove clinically significant image features such as texture and boundaries of anomalies. In this paper, we propose a novel patch based denoising method, Geodesic Denoising. The method reduces noise in OCT images while preserving clinically significant, although small, pathological structures, such as fluid-filled cysts in diseased retinas. Our method selects optimal image patch distribution representations based on geodesic patch similarity to noisy samples. Patch distributions are then randomly sampled to build a set of best matching candidates for every noisy sample, and the denoised value is computed based on a geodesic weighted average of the best candidate samples. Our method is evaluated qualitatively on real pathological OCT scans and quantitatively on a proposed set of ground truth, noise free synthetic OCT scans with artificially added noise and pathologies. Experimental results show that performance of our method is comparable with state of the art denoising methods while outperforming them in preserving the critical clinically relevant structures.

  12. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  13. Optical coherence tomography for endodontic imaging

    NASA Astrophysics Data System (ADS)

    van Soest, G.; Shemesh, H.; Wu, M.-K.; van der Sluis, L. W. M.; Wesselink, P. R.

    2008-02-01

    In root canal therapy, complications frequently arise as a result of root fracture or imperfect cleaning of fins and invaginations. To date, there is no imaging method for nondestructive in vivo evaluation of the condition of the root canal, during or after treatment. There is a clinical need for a technique to detect defects before they give rise to complications. In this study we evaluate the ability of optical coherence tomography (OCT) to image root canal walls, and its capacity to identify complicating factors in root canal treatment. While the potential of OCT to identify caries has been explored before, endodontic imaging has not been reported. We imaged extracted lower front teeth after endodontic preparation and correlated these images to histological sections. A 3D OCT pullback scan was made with an endoscopic rotating optical fiber probe inside the root canal. All oval canals, uncleaned fins, risk zones, and one perforation that were detected by histology were also imaged by OCT. As an example of an area where OCT has clinical potential, we present a study of vertical root fracture identification with OCT.

  14. Influence of coherent optical phonon on ultrafast energy relaxation

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Guo, L.; Liu, C. H.; Xu, X.; Chen, Y. F.

    2015-08-01

    Ultrafast energy relaxation process in Bi2Te3 thin films is studied using a collinear two color pump-probe technique. The coherent optical phonon is enhanced and destroyed by changing the separation times of double pump pulses. The non-oscillatory component of the reflectivity trace after the second pump pulse shows a distinct difference with and without the presence of coherent optical phonons, thus providing a direct evidence of the effect of optical phonon on the hot carrier relaxation process. The deduced characteristic times are systematically smaller when coherent optical phonons are involved in the energy transfer process. Comparatively, the conventional relaxation process is relatively slow, which is explained by the screening effect of the incoherent optical phonon. This work suggests that the energy relaxation can be manipulated through the excitation of coherent optical phonons.

  15. Spectral/Fourier Domain Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    de Boer, Johannes F.

    Optical coherence tomography is a low-coherence interferometric method for imaging of biological tissue [1, 2]. For more than a decade after its inception between 1988 and 1991, the dominant implementation has been time domain OCT (TD-OCT), in which the length of a reference arm is rapidly scanned. The first spectral or Fourier domain OCT (SD/FD-OCT) implementation was reported in 1995 [3]. In SD-OCT the reference arm is kept stationary, and the depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the detection arm of a Michelson interferometer. This approach has provided a significant advantage in signal-to-noise ratio (SNR), which despite reports as early as 1997 [4, 5] has taken about half a decade to be recognized fully by the OCT community in 2003 [6-8]. The first demonstration of SD-OCT for in vivo retinal imaging in 2002 [9] was followed by a full realization of the sensitivity advantage by video rate in vivo retinal imaging [10], including high-speed 3-D volumetric imaging [11], ultrahigh-resolution video rate imaging [12, 13], and Doppler blood flow determination in the human retina [14, 15]. The superior sensitivity of SD-OCT, combined with the lack of need for a fast mechanical scanning mechanism, has opened up the possibility of much faster scanning without loss of image quality and provided a paradigm shift from point sampling to volumetric mapping of biological tissue in vivo. The technology has been particularly promising for ophthalmology [16, 17]. In this chapter, the principles and system design considerations of SD-OCT will be discussed in more detail.

  16. Coherent Light induced in Optical Fiber by a Charged Particle

    NASA Astrophysics Data System (ADS)

    Artru, Xavier; Ray, Cédric

    2016-07-01

    Coherent light production in an optical fiber by a charged particle (named PIGL, for particle-induced guided, light) is reviewed. From the microscopic point of view, light is emitted by transient electric dipoles induced in the fiber medium by the Coulomb field of the particle. The phenomenon can also considered as the capture of virtual photons of the particle field by the fiber. Two types of captures are distinguished. Type-I takes place in a uniform part of the fiber; then the photon keeps its longitudinal momentum pz . Type-II takes place near an end or in a non-uniform part of the fiber; then pz is not conserved. Type-I PIGL is not affected by background lights external to the fiber. At grazing incidence it becomes nearly monochromatic. Its circular polarization depends on the angular momentum of the particle about the fiber and on the relative velocity between the particle and the guided wave. A general formula for the yield of Type-II radiation, based on the reciprocity theorem, is proposed. This radiation can be assisted by metallic objects stuck to the fiber, via plasmon excitation. A periodic structure leads to a guided Smith-Purcell radiation. Applications of PIGL in beam diagnostics are considered.

  17. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    PubMed

    Hall, Trevor J; Hasan, Mehedi

    2016-04-01

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical. PMID:27137048

  18. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  19. Ultrathin lensed fiber-optic probe for optical coherence tomography

    PubMed Central

    Qiu, Y.; Wang, Y.; Belfield, K. D.; Liu, X.

    2016-01-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging. PMID:27375934

  20. Ultrathin lensed fiber-optic probe for optical coherence tomography.

    PubMed

    Qiu, Y; Wang, Y; Belfield, K D; Liu, X

    2016-06-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging. PMID:27375934

  1. Nanophotonics: Dressed Photon Technology for Qualitatively Innovative Optical Devices, Fabrication, and Systems

    NASA Astrophysics Data System (ADS)

    Ohtsu, Motoichi

    This chapter reviews the theoretical picture of the dressed photon by combining the concepts of quantum field theory, optical science, and condensed-matter physics. Based on the exchange of dressed photons, energy transfer to an electric dipole-forbidden energy level is described. Furthermore, the possibility of coupling a dressed photon with a coherent phonon is presented, revealing a novel phonon-assisted process in light-matter interactions in nanometric space. Applications to qualitatively innovative optical devices, fabrication techniques, energy conversion, and systems are exemplified.

  2. Optical Coherence Tomography Angiography in Choroideremia

    PubMed Central

    Jain, Nieraj; Jia, Yali; Gao, Simon S.; Zhang, Xinbo; Weleber, Richard G.; Huang, David; Pennesi, Mark E.

    2016-01-01

    Importance Novel therapies for choroideremia, an X-linked recessive chorioretinal degeneration, demand a better understanding of the primary site(s) of cellular degeneration. Optical coherence tomography angiography allows for choriocapillaris (CC) imaging. We compared the extent of structural alterations of the CC, retinal pigment epithelium, and photoreceptors with multimodal imaging. Observations In a clinical case series conducted from September 15,2014, through February 5,2015,14 eyes of 7 male patients with choroideremia (median age, 34 years [interquartile range, 15-46 years]; age range, 13-48 years), 4 eyes of 2 women with choroideremia carrier state (both in mid-50s), and 6 eyes of 6 controls (median age, 42.5 years [interquartile range, 33-55 years]; age range, 24-55 years) underwent multimodal imaging with optical coherence tomography angiography and electroretinography. The mean (SD) macular CC density was 82.9% (13.4%) in patients with choroideremia, 93.0% (3.8%) in female carriers, and 98.2% (1.3%) in controls. The mean (SD) CC density in affected eyes was higher in regions with preserved (92.6% [5.8%]) vs absent (75.9% [12.6%]) ellipsoid zone (mean difference. 16.7%; 95% CI, 12.1% to 21.3%; P < .001). Seventeen of 18 eyes of the patients and carriers had outer retinal tubulations forming pseudopod-like extensions from islands of preserved ellipsoid zone. Outer retinal tubulations were associated with absence of underlying retinal pigment epithelium and were longer (r = −0.62; 95% CI, −0.84 to −0.19; P < .001) and more numerous (r = −0.71; 95% CI, −0.91 to −0.27; P < .001) in more severely affected eyes. Conclusions and Relevance These findings suggest that regional changes in CC density correlate with photoreceptor structural alterations in choroideremia. Although closely coupled, the results suggest that retinal pigment epithelium loss is more extensive than photoreceptor loss. PMID:27149258

  3. Silicon Photonic Devices for Optical Computing

    NASA Astrophysics Data System (ADS)

    Qiu, Ciyuan

    The requirement for high performance computer will be significantly increased by the fast development of the internet. However, traditional CMOS computer will meet its bottleneck due to the miniaturization problem. Optical computer comes to be the leading candidate to solve this issue. Silicon photonic technology has tremendous developments and thus it becomes an ideal platform to implement optical computing system. In Chapter 1, I will first show the development of the optical computing and silicon photonic technology. I will also discuss some key nonlinear optical effects of silicon photonic devices. Based on the current silicon photonic technology, I will then make a brief introduction on the optical direct logic for the 2D optical computing and spatial light modulator for the 3D optical computing, both of which will be discussed in detail in the followed chapters. In Chapter 2, I will discuss micro-ring resonator which is the key element of optical directed logic circuit discussed in Chapter 3. I will give the analytical model based on photonic circuit to explain the performance of the micro-ring resonator. The group delay and the loss of the micro-ring resonator will be analyzed. And I will also show the active tuning of the transmission spectrum by using the nonlinear effect of silicon. In Chapter 3, I will show a revised optical direct-logic (DL) circuit for 2D optical computer that is well suited for complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics. It can significantly reduce the latency compared with traditional CMOS computers. For proof of concept, I demonstrated a scalable and reconfigurable optical directed-logic architecture consisting of a regular array of micro-ring resonator based optical on-off switches. The switches are controlled by electrical input logic signals through embedded p-i-n junctions. The circuit can be reconfigured to perform any 2x2 combinational logic operations by thermally tuning the operation modes of

  4. Metallic photonic crystals at optical wavelengths

    NASA Astrophysics Data System (ADS)

    El-Kady, I.; Sigalas, M. M.; Biswas, R.; Ho, K. M.; Soukoulis, C. M.

    2000-12-01

    We theoretically study three-dimensional metallic photonic-band-gap (PBG) materials at near-infrared and optical wavelengths. Our main objective is to find the importance of absorption in the metal and the suitability of observing photonic band gaps in this structure. For that reason, we study simple cubic structures and the metallic scatterers are either cubes or interconnected metallic rods. Several different metals have been studied (aluminum, gold, copper, and silver). Copper gives the smallest absorption and aluminum is more absorptive. The isolated metallic cubes are less lossy than the connected rod structures. The calculations suggest that isolated copper scatterers are very attractive candidates for the fabrication of photonic crystals at the optical wavelengths.

  5. Nanoparticle contrast agents for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gabriele, Michelle Lynn

    Optical coherence tomography (OCT) provides real-time, objective, in-vivo, optical cross-sectional representations of the retina and optic nerve. Recent innovations in image acquisition, including the incorporation of Fourier/spectral-domain detection, have improved imaging speed, sensitivity and resolution. Still, there remain specific structures within ocular OCT images, such as retinal ganglion cells (RGCs), which are of clinical interest but consistently have low contrast. This makes it difficult to differentiate between surrounding layers and structures. The objectives of this project were: (1) To establish a reliable method for OCT imaging of the healthy and diseased mouse eye in order to provide a platform for testing the utility of OCT contrast agents for ocular imaging, (2) To develop antibody-conjugated gold nanoparticles suitable for targeting specific structures and enhancing OCT image contrast in the mouse eye, and (3) To examine the localized contrast-enhancing ability and biocompatibility of gold nanoparticle contrast agents in-vivo. Our organizing hypotheses were that nanoparticles could improve contrast by modulating the intensity of backscattered light detected by OCT and that they could be directed to ocular structures of interest using antibodies specific to cellular markers. A reproducible method for imaging the mouse retina and quantifying retinal thickness was developed and this technique was then applied to a mouse model for retinal ganglion cell loss, optic nerve crush. Gold nanorods were designed specifically to augment the backscattering OCT signal at the same wavelengths of light used in current ophthalmic OCT imaging schemes (resonant wavelength lambda = 840 nm). Anti-CD90.1 (Thy1.1) antibodies were conjugated to the gold nanorods and a protocol for characterization of the success of antibody conjugation was developed. Upon injection, the gold nanorods were found to remain in the vitreous post-injection, with many consumed by an early

  6. Optical Ranicon detectors for photon counting imaging.

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Crocker, Jim; Paresce, Francesco; Rafal, Marc

    1988-08-01

    The design and development of two detectors, known as Ranicon and advanced Ranicon, for optical photon counting imaging on ground-based telescopes are discussed. The proximity focusing, microchannel-plate stack, resistive anode, and signal processing characteristics are described. The theory behind the overall resolution of the Ranicon system is reviewed. Resolution measurements for the instruments are reported and discussed.

  7. Analog optical computing primitives in silicon photonics

    NASA Astrophysics Data System (ADS)

    Jiang, Yunshan; DeVore, Peter T. S.; Jalali, Bahram

    2016-03-01

    Optical computing accelerators may help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  8. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  9. Motion contrast using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  10. Optical coherence tomography in diagnosing cervical cancer

    NASA Astrophysics Data System (ADS)

    Kuznetzova, Irina A.; Shakhova, Natalia M.; Kachalina, Tatiana S.; Gladkova, Natalia D.; Myakov, Alexey V.; Iksanov, Rashid R.; Feldchtein, Felix I.

    2000-05-01

    Cervical cancer remains one of the most significant problem in oncogynecology. It tends towards treatment approaches that provide termination of pathological processes along with preservation of the patient's life quality. There is a need in earlier and more accurate diagnosis of pathological states, objective assessment of physiological processes, and adequate monitoring of the course of treatment. In our previous publications we have reported unique capabilities of the Optical Coherence Tomography (OCT) to image in vivo the mucosa structure of the cervix and to monitor various physiological and pathological alterations. In this report, we present results of OCT application to diagnose different stages of cervical cancer and to control its treatment at early stages. We have performed OCT-colposcopy in 11 female patients with cervical cancer to derive OCT criteria of this disease, to provide exact demarcation of a pathological area, and to determine a real size of a tumor. We have found that, in general, borders of a tumor, defined visually and detected with OCT by violation of the basement membrane in exocervix, do not coincide. The mismatch depends on a stage of cancer and can be as much as several millimeters. This information is especially important for evaluation of linear dimension of tumors with 3 - 5 mm invasion and also for differential diagnosis between the T1 and T2 stages with cancer extension onto vagina.

  11. Anterior Eye Imaging with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  12. Nano-sensitive optical coherence tomography.

    PubMed

    Alexandrov, Sergey A; Subhash, Hrebesh M; Zam, Azhar; Leahy, Martin

    2014-04-01

    Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale structural changes in the depth direction is visualized in just a single OCT scan. This label free approach provides new possibilities for depth resolved study of pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity. It offers a powerful opportunity for early diagnosis and treatment of diseases. Experimental results show the ability of the approach to differentiate structural changes of 30 nm in nanosphere aggregates, located at different depths, from a single OCT scan, and structural changes less than 30 nm in time from two OCT scans. Application for visualization of the structure of human skin in vivo is also demonstrated. PMID:24595392

  13. Optical coherence tomography in vulvar intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Wessels, Ronni; de Bruin, Daniel M.; Faber, Dirk J.; van Boven, Hester H.; Vincent, Andrew D.; van Leeuwen, Ton G.; van Beurden, Marc; Ruers, Theo J. M.

    2012-11-01

    Vulvar squamous cell carcinoma (VSCC) is a gynecological cancer with an incidence of two to three per 100,000 women. VSCC arises from vulvar intraepithelial neoplasia (VIN), which is diagnosed through painful punch biopsy. In this study, optical coherence tomography (OCT) is used to differentiate between normal and VIN tissue. We hypothesize that (a) epidermal layer thickness measured in OCT images is different in normal tissue and VIN, and (b) quantitative analysis of the attenuation coefficient (μoct) extracted from OCT data differentiates VIN from normal vulvar tissue. Twenty lesions from 16 patients are imaged with OCT. Directly after data acquisition, a biopsy is performed. Epidermal thickness is measured and values of μoct are extracted from 200 OCT scans of normal and VIN tissue. For both methods, statistical analysis is performed using Paired Mann-Whitney-test. Correlation between the two methods is tested using a Spearman-correlation test. Both epidermal layer thickness as well as the μoct are different between normal vulvar tissue and VIN lesions (p<0.0001). Moreover, no correlation is found between the epidermal layer thickness and μoct. This study demonstrates that both the epidermal thickness and the attenuation coefficient of vulvar epithelial tissue containing VIN are different from that of normal vulvar tissue.

  14. Complete denture analyzed by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Todea, Carmen; Podoleanu, Adrian G.

    2008-02-01

    The complete dentures are currently made using different technologies. In order to avoid deficiencies of the prostheses made using the classical technique, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Thus, at the present time, there are several injecting systems and technologies on the market, that use chemoplastic materials, which are heat cured (90-100°C), in dry or wet environment, or cold cured (below 60°C). There are also technologies that plasticize a hard cured material by thermoplastic processing (without any chemical changes) and then inject it into a mold. The purpose of this study was to analyze the existence of possible defects in several dental prostheses using a non invasive method, before their insertion in the mouth. Different dental prostheses, fabricated from various materials were investigated using en-face optical coherence tomography. In order to discover the defects, the scanning was made in three planes, obtaining images at different depths, from 0,01 μm to 2 mm. In several of the investigated prostheses we found defects which may cause their fracture. These defects are totally included in the prostheses material and can not be vizualised with other imagistic methods. In conclusion, en-face OCT is an important investigative tool for the dental practice.

  15. Polarization sensitive optical coherence tomography detection method

    SciTech Connect

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  16. Capabilities of optical coherence tomography in laryngology

    NASA Astrophysics Data System (ADS)

    Shakhov, Andrei; Terentjeva, Anna; Gladkova, Natalia D.; Snopova, Ludmila; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Sergeev, Alexander M.

    1999-06-01

    We present first result of using the optical coherence tomography (OCT) in complex clinical studies in laryngology. Mucosa of the upper and middle portions of larynx is of special interest for OCT applications: it is clinically important, easily accessed by an endoscopic OCT probe, and possesses a well defined and rich tomographic structure. We have examined several tens of patients with abnormalities in vocal folds. The diagnosis was made based on clinical data including laryngoscopy and finally confirmed morphologically. When examining larynx mucosa, an endoscopic OCT probe has been introduced through a standard laryngoscope lumen, so that OCT imaging has been performed in parallel with visual observation. The OCT studies have demonstrated that in comparison with stratified healthy mucosa, carcinomatous regions have no tomographically differentiated structure, thus allowing one to exactly define the border of a tumor. Vocal nodules are imaged as poorly scattering regions without clear boundaries under preserved epithelium. Cysts of gland mucosa are seen with OCT as sharply delineated shadows at the depth of several hundred micrometers. We have also examined several patients with carcinoma after a course of radiation therapy and observed different changes in OCT images of adjoining epithelium corresponding to metaplasia, hyperplasia, and sclerosis.

  17. Optical Coherence Tomography Angiography in Healthy Subjects.

    PubMed

    Coscas, Gabriel; Lupidi, Marco; Coscas, Florence

    2016-01-01

    Fluorescein angiography and indocyanine green angiography provide information about normal retinal and choroidal anatomy that is nearly comparable to histological findings. These results are absolutely fundamental for the evaluation of retinal and choroidal vascular diseases and allow the clinician to define and diagnose several pathological conditions. Fluorescein angiography has become the 'gold standard' in retinal imaging due to its capacity to allow visualization of the retinal capillary bed and its changes, particularly in the macular area. Although the fluorescence of the injected dye enables improved visualization of retinal capillaries, not all of the different layers of the retinal capillary network can be visualized using this bi-dimensional examination technique, possibly because of a light scattering phenomenon. Optical coherence tomography angiography allows depth-resolved visualization of the retinal and choroidal microvasculature by calculating the difference between static and nonstatic tissue. Given that the main moving elements in the eye fundus are contained within vessels, determining a vascular decorrelation signal enables three-dimensional visualization of the retinal and choroidal vascular network without the administration of intravenous dye and therefore reduces the risk of potential adverse events. PMID:27023473

  18. Optical Coherence Tomography Angiography in Retinal Diseases

    PubMed Central

    Chalam, K. V.; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  19. Optical Coherence Tomography Angiography in Retinal Diseases.

    PubMed

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  20. Image quality metrics for optical coherence angiography.

    PubMed

    Lozzi, Andrea; Agrawal, Anant; Boretsky, Adam; Welle, Cristin G; Hammer, Daniel X

    2015-07-01

    We characterized image quality in optical coherence angiography (OCA) en face planes of mouse cortical capillary network in terms of signal-to-noise ratio (SNR) and Weber contrast (Wc) through a novel mask-based segmentation method. The method was used to compare two adjacent B-scan processing algorithms, (1) average absolute difference (AAD) and (2) standard deviation (SD), while varying the number of lateral cross-sections acquired (also known as the gate length, N). AAD and SD are identical at N = 2 and exhibited similar image quality for N<10. However, AAD is relatively less susceptible to bulk tissue motion artifact than SD. SNR and Wc were 15% and 35% higher for AAD from N = 25 to 100. In addition data sets were acquired with two objective lenses with different magnifications to quantify the effect of lateral resolution on fine capillary detection. The lower power objective yielded a significant mean broadening of 17% in Full Width Half Maximum (FWHM) diameter. These results may guide study and device designs for OCA capillary and blood flow quantification. PMID:26203372

  1. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  2. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    NASA Astrophysics Data System (ADS)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  3. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  4. Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma

    PubMed Central

    Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David

    2014-01-01

    Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT

  5. Self-analysis of coherent oscillations in time-resolved optical signals.

    PubMed

    Egorova, Dassia

    2014-11-01

    The specific origin of oscillations in time-resolved optical signals, in particular, for complex systems with nontrivial interstate couplings and nonseparable electron-nuclear motion, is often difficult to assign. Here, we show that coherent oscillations in two-dimensional photon-echo are capable of self-analysis; their beating maps provide a tool to tell apart ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions to the oscillatory signal component. Because GSB carries information on ground-state coherence while SE and ESA reflect the excited-state coherence, the observed oscillations can be unambiguously assigned to ground-state or excited-state coherent motion. The findings prove especially advantageous for systems with dense detectable manifolds of states pertaining to each electronic state. An analogous analysis for frequency-resolved (dispersed) pump-probe spectroscopy is discussed briefly. PMID:25289505

  6. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node. PMID:25969046

  7. Qubit dephasing due to photon shot noise from coherent and thermal sources

    NASA Astrophysics Data System (ADS)

    Gustavsson, S.; Yan, F.; Kamal, A.; Orlando, T. P.; Oliver, W. D.; Birenbaum, J.; Sears, A.; Hover, D.; Gudmundsen, T.; Yoder, J.

    We investigate qubit dephasing due to photon shot noise in a superconducting flux qubit transversally coupled to a coplanar microwave resonator. Due to the AC Stark effect, photon fluctuations in the resonator cause frequency shifts of the qubit, which in turn lead to dephasing. While this is universally understood, we have made the first quantitative spectroscopy of this noise for both thermal (i.e., residual photons from higher temperature stages) and coherent photons (residual photons from the readout and control pulses). We find that the bandwidth of the shot noise from thermal and coherent photons differ by approximately a factor of two, which we attribute to differences in the correlation time for the two noise sources. By comparing the results with noise spectra measured without any externally applied photons, we conclude that the qubit coherence times in our setup were limited by photon shot noise from thermal radiation, with an average resonator photon population of 0.006. Equipped with this knowledge, we improved the filtering for thermal noise and thereby improved the qubit coherence times by more than a factor of two, with T2 echo times approaching 100 us. From the measured T2 decay, we determine an upper bound on the residual photon population of 0.0004. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT LL under Air Force Contract No. FA8721-05-C-0002.

  8. The gold flashlight: Coherent photons (and Pomerons) at RHIC

    SciTech Connect

    Klein, S.; Scannapieco, E.

    1997-06-01

    The Relativistic Heavy Ion Collider (RHIC) will be the first heavy ion accelerator energetic enough to produce hadronic final states via coherent {gamma}{gamma}, {gamma}P, and PP interactions. Because the photon flux scales as Z{sup 2}, up to an energy of about {gamma}{h_bar}c/R {approx} 3 GeV/c, the {gamma}{gamma} interaction rates are large. RHIC {gamma}P interactions test how Pomerons couple to nuclei and measure how different vector mesons, including the J/{psi}, interact with nuclear matter. PP collisions can probe Pomeron couplings. Because these collisions can involve identical initial states, for identical final states, the {gamma}{gamma}, {gamma}P, and PP channels may interfere, producing new effects. The authors review the physics of these interactions and discuss how these signals can be detected experimentally, in the context of the STAR detector. Signals can be separated from backgrounds by using isolation cuts (rapidity gaps) and p{perpendicular}. The authors present Monte Carlo studies of different backgrounds, showing that representative signals can be extracted with good rates and signal to noise ratios.

  9. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    NASA Astrophysics Data System (ADS)

    Phien, Ho Ngoc; An, Nguyen Ba

    2008-04-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful.

  10. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  11. Optical coherence tomography in a patient with congenital vitreous cyst

    PubMed Central

    Dragnev, Daniel; Shanmugalingam, Sinnathamboo

    2014-01-01

    A case of congenital vitreous cyst is presented. An optical coherence tomography scan has been performed, which has shown that the cyst is free floating and is multilobular. Its content was hyper-reflective. PMID:24962488

  12. Combined optical coherence tomography and optical coherence elastography for glomerulonephritis classification

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.

    2016-03-01

    Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.

  13. Adaptive optics optical coherence tomography at 1 MHz.

    PubMed

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band. PMID:25574431

  14. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  15. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGESBeta

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  16. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    PubMed Central

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Weng, Tsu-Chien; Bergmann, Uwe

    2015-01-01

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source. PMID:25931076

  17. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    SciTech Connect

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Weng, Tsu -Chien; Bergmann, Uwe

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

  18. Nonlinear waveguide optics and photonic crystal fibers.

    PubMed

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics

    Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas. PMID:19550822

  19. Photonic encryption using all optical logic.

    SciTech Connect

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an

  20. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, R.; Wu, Haibin

    2016-03-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology.

  1. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    PubMed Central

    Zhang, X.; Li, R.; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  2. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.

    PubMed

    Zhang, X; Li, R; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the "dark-state polariton," three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the "bright polariton," the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g((3))(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  3. Nano-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergey A.; Subhash, Hrebesh M.; Zam, Azhar; Leahy, Martin

    2014-03-01

    Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale structural changes in the depth direction is visualized in just a single OCT scan. This label free approach provides new possibilities for depth resolved study of pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity. It offers a powerful opportunity for early diagnosis and treatment of diseases. Experimental results show the ability of the approach to differentiate structural changes of 30 nm in nanosphere aggregates, located at different depths, from a single OCT scan, and structural changes less than 30 nm in time from two OCT scans. Application for visualization of the structure of human skin in vivo is also demonstrated.Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale

  4. All-optical processing in coherent nonlinear spectroscopy

    SciTech Connect

    Oron, Dan; Dudovich, Nirit; Silberberg, Yaron

    2004-08-01

    In spectroscopy, the fingerprint of a substance is usually comprised of a sequence of spectral lines with characteristic frequencies and strengths. Identification of substances often involves postprocessing, where the measured spectrum is compared with tabulated fingerprint spectra. Here we suggest a scheme for nonlinear spectroscopy, where, through coherent control of the nonlinear process, the information from the entire spectrum can be practically collected into a single coherent entity. We apply this for all-optical analysis of coherent Raman spectra and demonstrate enhanced detection and effective background suppression using coherent processing.

  5. Statistical Modeling of Retinal Optical Coherence Tomography.

    PubMed

    Amini, Zahra; Rabbani, Hossein

    2016-06-01

    In this paper, a new model for retinal Optical Coherence Tomography (OCT) images is proposed. This statistical model is based on introducing a nonlinear Gaussianization transform to convert the probability distribution function (pdf) of each OCT intra-retinal layer to a Gaussian distribution. The retina is a layered structure and in OCT each of these layers has a specific pdf which is corrupted by speckle noise, therefore a mixture model for statistical modeling of OCT images is proposed. A Normal-Laplace distribution, which is a convolution of a Laplace pdf and Gaussian noise, is proposed as the distribution of each component of this model. The reason for choosing Laplace pdf is the monotonically decaying behavior of OCT intensities in each layer for healthy cases. After fitting a mixture model to the data, each component is gaussianized and all of them are combined by Averaged Maximum A Posterior (AMAP) method. To demonstrate the ability of this method, a new contrast enhancement method based on this statistical model is proposed and tested on thirteen healthy 3D OCTs taken by the Topcon 3D OCT and five 3D OCTs from Age-related Macular Degeneration (AMD) patients, taken by Zeiss Cirrus HD-OCT. Comparing the results with two contending techniques, the prominence of the proposed method is demonstrated both visually and numerically. Furthermore, to prove the efficacy of the proposed method for a more direct and specific purpose, an improvement in the segmentation of intra-retinal layers using the proposed contrast enhancement method as a preprocessing step, is demonstrated. PMID:26800532

  6. En-face optical coherence tomography revival

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian Gh.

    2016-03-01

    Quite recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), especially to deliver en-face images. MS-OCT operates like a time domain OCT, selecting signal from a selected depth only while scanning the laser beam across the sample. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. MS-OCT is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. However, as the MS-OCT method requires important computational resources, the number of multiple depth en-face images produced in real-time is limited. Here, we demonstrate that taking advantage of the parallel processing feature of the MS-OCT technology by harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the traditional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of a set of 384 depth locations, as well as their axial resolution. Here, we present in parallel with the 40 en-face OCT images of a human tooth, a confocal microscopy lookalike image, together with two B-scan OCT images along rectangular directions.

  7. Spatial-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Langevin, L.; Gay, D.; Piché, M.

    2008-06-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique invented in 1991 and allowing the observation of biological tissues with millimeter depth of penetration and a few micrometer resolution. In the standard time-domain OCT setup (TD-OCT), a broadband light source is used with a Michelson interferometer where one of the mirrors is replaced by the sample (which is mechanically moved transversally during data acquisition) while the other is axially vibrating. By analyzing the temporal signal at the exit of the interferometer, a high resolution tomographic cut of the sample can be obtained. A number of new OCT setups have been proposed since 1991 in order to improve the data acquisition speed. In particular, Fourier-domain OCT (FD-OCT) has allowed in vivo observation of samples by eliminating the necessity of the axial motion of the reference mirror in the setup. We propose in this paper new OCT setups having the same potential without requiring numerical treatment of the signal (as it is the case in FD-OCT). Because those setups are such that the axial information of the sample becomes linearly distributed at different points of space in an interference pattern, we call them spatial-domain OCT setups (SD-OCT). SD-OCT setups use a tilted mirror in a Michelson interferometer to produce an interference pattern which is imaged on a CCD detector. The pattern contains all the information on the sample and is obtained without mechanical motion or numerical treatment of the recorded signal. In order to validate the proposed scheme, prototypes of the setups have been made in the laboratories of COPL at Laval University; biological samples such as onion peels and phloem of trees have been tested in order to produce their tomographic images. Comparisons of some of our results with those from a commercial setup with the same samples had notably confirmed the capacity of ours prototypes to effectively image biological samples.

  8. Carious growth monitoring with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Freitas, A. Z.; Zezell, D. M.; Mayer, M. P. A.; Ribeiro, A. C.; Gomes, A. S. L.; Vieira, N. D., Jr.

    2006-02-01

    Optical Coherence Tomography was used to monitor subsurface caries evolution process in vitro. Human tooth was used and bacteria were employed to induce caries lesions. Twenty-five human third molars, were used in this study. The teeth were cut longitudinally at mesio-distal direction; the surfaces were coated with nail varnish except for two squared windows (2x4 mm); at the cement-enamel junction. Artificial lesions were induced by a S. Mutans microbiological culture. The samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9 and 11 days. The culture medium, was changed each 48 hours. After the demineralization process the samples were rinsed with double-deionized water and stored in a humid environment. The OCT system was implemented with average power of 96 μW in the sample arm, providing a 23 μm of axial resolution. The images were produced with lateral scans step of 10 μm. The detection system was composed by a detector, a demodulator and a computer. With the images generated by OCT it was possible to determine the lesion depth as function of sample exposition time to microbiological culture. We observed that the depth of the lesion in the root dentine increased from 70 μm to 230 μm, depending of exposure time, and follows the bacterial population growth law. This OCT system accurately depicts hard dental tissue and it was able to detect early caries in its structure, providing a powerful contactless high resolution image of lesions.

  9. Imaging Granulomatous Lesions with Optical Coherence Tomography

    PubMed Central

    Banzhaf, Christina; Jemec, Gregor B.E.

    2012-01-01

    Aim To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors. Methods Two patients with granulomas, tophi and granuloma annulare (GA), respectively, were photographed digitally, OCT-scanned and biopsied in the said order. Normal skin was OCT-scanned for comparison, but not biopsied. The OCT images from each lesion were compared with their histologic images as well as with OCT images with similar characteristics obtained from nonmelanoma skin tumors. Results The OCT images of the tophi showed hyperreflective, rounded cloud-like structures in dermis, their upper part sharply delineated by a hyporeflective fringe. The deeper areas appeared blurred. The crystalline structures were delineated by a hyporeflective fringe. OCT images of GA showed two different structures in dermis: a hyporeflective rounded one, and one that was lobulated and wing-like. Conclusion Granulomatous tissue surrounding urate deposits appeared as a clear hyporeflective fringe surrounding a light, hyperreflective area. The urate crystals appeared as hyperreflective areas, shielding the deeper part of dermis, meaning OCT could only visualize the upper part of the lesions. The lobulated, wing-like structure in GA may resemble diffuse GA or a dense lymphocytic infiltrate as seen on histology. The rounded structure in GA may represent an actual granuloma or either diffuse GA or a dense lymphocytic infiltrate as described above. This case suggests that OCT images granulomatous tissue as absorbent, hyporeflective areas, and urate crystals appear as reflective areas, obscuring the underlying tissue. In GA a new image shape looking like a wing has been found. The frequency, specificity and sensitivity of this new pattern in OCT imaging will require further studies. PMID:22493578

  10. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator

    PubMed Central

    Zhai, Yan-Hua; Goulart, Christiane; Sharping, Jay E.; Wei, Huifeng; Chen, Su; Tong, Weijun; Slipchenko, Mikhail N.; Zhang, Delong; Cheng, Ji-Xin

    2011-01-01

    We report on multimodal coherent anti-Stokes Raman scattering (CARS) imaging with a source composed of a femtosecond fiber laser and a photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). By switching between two PCFs with different zero dispersion wavelengths, a tunable signal beam from the FOPO covering the range from 840 to 930 nm was produced. By combining the femtosecond fiber laser and the FOPO output, simultaneous CARS imaging of a myelin sheath and two-photon excitation fluorescence imaging of a labeled axons in rat spinal cord have been demonstrated at the speed of 20 μs per pixel. PMID:21677908

  11. Bandpass sampling in heterodyne receivers for coherent optical access networks.

    PubMed

    Bakopoulos, Paraskevas; Dris, Stefanos; Schrenk, Bernhard; Lazarou, Ioannis; Avramopoulos, Hercules

    2012-12-31

    A novel digital receiver architecture for coherent heterodyne-detected optical signals is presented. It demonstrates the application of bandpass sampling in an optical communications context, to overcome the high sampling rate requirement of conventional receivers (more than twice the signal bandwidth). The concept is targeted for WDM coherent optical access networks, where applying heterodyne detection constitutes a promising approach to reducing optical hardware complexity. The validity of the concept is experimentally assessed in a 76 km WDM-PON scenario, where the developed DSP achieves a 50% ADC rate reduction with penalty-free operation. PMID:23388768

  12. Hybrid materials for optics and photonics.

    PubMed

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references). PMID:21212891

  13. Quantum Discord in Photon-Added Glauber Coherent States of GHZ-Type

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Kaydi, W.; El Hadfi, H.

    2015-11-01

    We investigate the influence of photon excitations on quantum correlations in tripartite Glauber coherent states of Greenberger-Horne-Zeilinger type (GHZ-type). The pairwise correlations are measured by means of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord in this class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation order.

  14. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    A major development in biomedical imaging in the last decade has been optical coherence tomography (OCT). This technique enables microscale resolution, depth resolved imaging of the detailed morphology of transparent and nontransparent biological tissue in a noncontact and quasi-noninvasive way. In the first part of this dissertation, we will describe the development and the performance of our home-made OCT systems working with different wavelength regions based on free-space and optical fiber Michelson interferometers. The second part will focus on Doppler OCT (DOCT), an important extension of OCT, which enables the simultaneous evaluation of the structural information and of the fluid flow distribution at a localized position beneath the sample surface. Much effort has been spent during the past few years in our laboratory aimed at providing more accurate velocity measurements with an extended dynamic range. We also applied our technique in different research areas such as microfluidics and hemodynamics. Investigations on the optical properties of the biological tissues (such as absorption and scattering) corresponding to different center wavelengths, have been performed in our laboratory. We used a 10 femtosecond Ti:sapphire laser centered at about 810 nm associated with a free-space Michelson interferometer. The infrared sources were centered at about 1310 and 1560 nm with all-fiber interferometers. Comparative studies using three different sources for several in vitro biological tissues based on a graphical method illustrated how the optical properties affect the quality of the OCT images in terms of the penetration depth and backscattering intensity. We have shown the advantage of working with 810-nm emission wavelength for good backscattering amplitude and contrast, while sources emitting at 1570 nm give good penetration depth. The 1330-nm sources provide a good compromise between the two. Therefore, the choice of the source will ultimately determine the

  15. Generation of optical vortices by apodized photon sieves

    NASA Astrophysics Data System (ADS)

    Sun, Hai-bin; Wang, Xing-hai; Chen, Jun; Sun, Ping

    2016-05-01

    As a novel diffractive optical element, photon sieve has good focusing properties. We propose a method to verify the focusing properties by using apodized photon sieves. The apodized photon sieve is obtained by using a Gaussian window function to modulate the general photon sieve. Focusing properties of apodized photon sieve are studied by numerical simulations and experiments. It shows that photon sieves have good focusing ability, and the focusing ability of the photon sieve on the focal plane is stronger than that on other image planes. The experimental results also demonstrate that photon sieves can be used to generate optical vortices. The existence of optical vortices is confirmed by the formation of fork fringes. This apodized photon sieve is expected to have some practical applications in focusing analysis, optical imaging, and optical communication.

  16. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  17. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    NASA Astrophysics Data System (ADS)

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-05-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications.

  18. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.

    PubMed

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V

    2016-08-01

    Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys. PMID:26791097

  19. Realization of non-linear coherent states by photonic lattices

    SciTech Connect

    Dehdashti, Shahram Li, Rujiang; Chen, Hongsheng; Liu, Jiarui Yu, Faxin

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  20. Confocal device and application strategies for endoluminal optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    George, Markus; Schnieder, Ludger; Buess, Gerhard F.

    2003-10-01

    While endoscopic optical coherence tomography has been established successfully in vivo ,implementation of endoluminal optical coherence microscopy remains demanding,s suitable confocal probe is lacking. A miniaturized confocal laser scanning microscope is presented,which fulfills the requirements for endoluminal optical coherence microscopy. First,imaging experience gained for optical coherence microscopy of nimal gastrointestinal tissue samples is described. For this purpose,laboratory scale optical coherence microscope with an image acquisition time of 1min 30 s was employed. Cellular membranes can be identified throughout the gastrointestinal organs. Frequency domain image analysis can be used to distinguish columnar from squamous epithelium. Profilometric information on sample surfaces can be obtained directly as isophase lines. Second, the miniaturized confocal laser scanning microscope is characterized. Having an effective diameter of 25 mm, it houses single-mode optical fiber,scanning mirror and an objective lens. The micro-electro-mechanical mirror with gimballed suspension allows two dimensional scanning without introducing an optical path difference. The sinusoidal movement of both axes has to be considered to approximate cartesian image coordinates. Field geometry is illustrated s function of excitation amplitude and frequency. Acceptable image quality is chieved for frame rate of 0.5 Hz. A strategy to position the focal plane axially within the sample volume is discussed.

  1. Coherent control of optically induced birefringence in azoaromatic molecules

    SciTech Connect

    Mendonca, C. R.; Neves, U. M.; Guedes, I.; Zilio, S. C.; Misoguti, L.

    2006-08-15

    Here we present the coherent control of two-photon induced birefringence in polymeric films containing Disperse Red 13 (DR13) azoaromatic molecules. Such control is achieved by enhancing and reducing the azochromophor cis-trans photoisomerization rate, which leads to the molecular orientation, inducing the birefringence. The dependence on chirp and phase mask of the birefringence signal was studied and modeled.

  2. Optical characterization of vocal folds using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lüerßen, Kathrin; Lubatschowski, Holger; Radicke, Nicole; Ptok, Martin

    2006-02-01

    The current standard procedure to ensure the diagnosis, if tissue is malignant, is still an invasive one. Optical coherence tomography (OCT) is a new non-invasive method to investigate biological tissue. In this study OCT was used on porcine and on human vocal folds. The optical penetration depth of the used radiation is up to 2 mm. Three different OCT application systems were used. The first is a high resolution OCT, which works in contact mode. It was used to examine porcine vocal folds ex vivo. Porcine vocal folds were assigned to defined areas and examined by OCT in contact mode followed by traditional histo-morphological analysis. The second OCT is fiber based. It also works in contact mode. Images of human vocal folds were done in contact mode. They were compared with a typical histo-morphological image of a human vocal fold. The third application system works in non contact to the tissue. It was integrated in a conventional laryngoscope. Human vocal folds were examined in vivo. Single layers of the vocal folds could be distinguished from each other with all used systems. Pathological alterations could be seen. Imaging is possible in real time. General anaesthesia is not necessary. OCT makes it possible to get a view under the surface of the vocal fold without being invasive.

  3. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  4. Adaptive optics optical coherence tomography with dynamic retinal tracking.

    PubMed

    Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T

    2014-07-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  5. Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Herz, Paul R.; Chen, Yu; Aguirre, Aaron D.; Fujimoto, James G.; Mashimo, Hiroshi; Schmitt, Joseph; Koski, Amanda; Goodnow, John; Petersen, Chris

    2004-07-01

    Optical coherence tomography (OCT) is an emerging medical imaging technology that can generate high resolution, cross-sectional images of tissue in situ and in real time. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10-15 µm for in vivo studies. In this study, in vivo imaging of the rabbit gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 µm), using a broadband Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, trachea, and colon reveal high resolution details of tissue architecture. Definitive correlation of architectural features in OCT images and histological sections is shown. The ability of ultrahigh resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo advances the development of OCT as a potential imaging tool for the early detection of neoplastic changes in biological tissue.

  6. Optical communication noise rejection using corelated photons

    NASA Technical Reports Server (NTRS)

    Jackson, D.; Hockney, G. M.; Dowling, J. P.

    2002-01-01

    This paper describes a completely new way to perform noise rejection using photons correlated through quantum entanglement to improve an optical communications link in the presence of uncorrelated noise. In particular, a detailed analysis is made of the case where a classical link would be saturated by an intense background, such as when a satellite is in front of the sun, and identifies where the quantum correlating system has superior performance.

  7. Analog optical computing primitives in silicon photonics.

    PubMed

    Jiang, Yunshan; DeVore, Peter T S; Jalali, Bahram

    2016-03-15

    Optical computing accelerators help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation and the recovery of a signal in the presence of multiplicative distortion. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide. PMID:26977687

  8. Optical coherence tomography imaging of the optic nerve head pre optic and post optic nerve sheath fenestration.

    PubMed

    Chowdhury, Haziq Raees; Rajak, Saul; Heath, Dominic; Brittain, Paul

    2015-01-01

    Idiopathic intracranial hypertension (IIH) is a disorder of unknown aetiology, and causes elevated intracranial pressures. This is often associated with papilloedema with subsequent degrees of optic atrophy if the intracranial pressures are not controlled in a timely manner. Optical coherence tomography imaging is widely recognised for its use in the monitoring of optic nerves in glaucoma, and this report is the first to describe its use to monitor the optic nerve head pre optic and post optic nerve sheath fenestration. PMID:26150609

  9. Optical isolation via unidirectional resonant photon tunneling

    SciTech Connect

    Moccia, Massimo; Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2014-01-28

    We show that tri-layer structures combining epsilon-negative and magneto-optical material layers can exhibit unidirectional resonant photon tunneling phenomena that can discriminate between circularly polarized (CP) waves of given handedness impinging from opposite directions, or between CP waves with different handedness impinging from the same direction. This physical principle, which can also be interpreted in terms of a Fabry-Perot-type resonance, may be utilized to design compact optical isolators for CP waves. Within this framework, we derive simple analytical conditions and design formulae, and quantitatively assess the isolation performance, also taking into account the unavoidable imperfections and nonidealities.

  10. Multiscale imaging of human thyroid pathologies using integrated optical coherence tomography (OCT) and optical coherence microscopy (OCM)

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-02-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. Thirty four thyroid gland specimens were imaged from 17 patients, covering a spectrum of pathology, ranging from normal thyroid to neoplasia and benign disease. The integrated OCT and OCM imaging system allows seamlessly switching between low and high magnifications, in a way similar to traditional microscopy. Good correspondence was observed between optical images and histological sections. The results provide a basis for interpretation of future OCT and OCM images of the thyroid tissues and suggest the possibility of future in vivo evaluation of thyroid pathology.

  11. Photonics technology development for optical fuzing

    NASA Astrophysics Data System (ADS)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  12. Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    2013-04-01

    Although low coherence microscopy (LCM) has been known for long time in the context of interference microscopy, coherence radar and white light interferometry, the whole subject has attracted a wide interest in the last two decades particularly accelerated by the entrance of OCT, as a noninvasive powerful technique for biomedical imaging. Today LCM can be classified into two types, both acts as three-dimensional imaging tool. The first is low temporal coherence microscopy; also known as optical coherence tomography (OCT), which is being used for medical diagnostics. The second is full field OCT in various modes and applied to various applications. FF-OCT uses low spatial and temporal coherence similar to the well-known coherence probe microscope (CPM) that have been in use for long time in optical metrology. The CPM has many advantages over conventional microscopy in its ability to discriminate between different transparent layers in a scattering medium thus allowing for precise noninvasive optical probing of dense tissue and other turbid media. In this paper the status of this technology in optical metrology applications will be discussed, on which we have been working to improve its performance, as well as its limitations and future prospective.

  13. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    PubMed Central

    Czegledi, Cristian B.; Karlsson, Magnus; Agrell, Erik; Johannisson, Pontus

    2016-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue. PMID:26905596

  14. Polarization Drift Channel Model for Coherent Fibre-Optic Systems.

    PubMed

    Czegledi, Cristian B; Karlsson, Magnus; Agrell, Erik; Johannisson, Pontus

    2016-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue. PMID:26905596

  15. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    NASA Astrophysics Data System (ADS)

    Czegledi, Cristian B.; Karlsson, Magnus; Agrell, Erik; Johannisson, Pontus

    2016-02-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts, emulating a random walk on the Poincaré sphere, which has been successfully verified using experimental data. The model is described in the Jones, Stokes and real four-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future systems, where polarization-multiplexed transmission and sophisticated digital signal processing will be natural parts. The proposed polarization drift model is the first of its kind as prior work either models polarization drift as a deterministic process or focuses on polarization-mode dispersion in systems where the state of polarization does not affect the receiver performance. We expect the model to be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue.

  16. Atherosclerosis diagnostic imaging by optical spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hewko, M. D.; Choo-Smith, L. P.; Ko, A. C. T.; Smith, M. S. D.; Kohlenberg, E. M.; Bock, E. R.; Leonardi, L.; Sowa, M. G.

    2006-02-01

    Atherosclerosis is traditionally viewed as a disease of uncontrolled plaque growth leading to arterial occlusion. More recently, however, occlusion of the arterial lumen is being viewed as an acute event triggered by plaque rupture and thrombosis. An atheromatous plaque becomes vulnerable to sudden activation and/or rupture when a constellation of processes are activated by various trigger mechanisms. There is growing evidence that the vulnerability (i.e. susceptibility to rupture) and thrombogenic nature of the plaque need to be taken into account in the planning and treatment of the disease. X-ray fluoroscopy and intravascular ultrasound, the current clinical diagnostic tools are not capable of the providing a complete histological picture of the plaque region. Intravascular diagnostic imaging of coronary atherosclerotic plaques by optical means to assess plaque, patient risk and assist in planning treatment strategies represents the future in angioplasty treatment by interventional cardiologists. The techniques which will enable a clinically acceptable and reliable intravascular diagnostic platform are currently being investigated and compared to the clinical standard of histology. Currently, we are investigating the use of a number of optical and imaging techniques for biochemical analysis of arterial tissue including Raman, near infrared and fluorescence spectroscopies. Biochemical imaging will provide compositional information on collagen, elastin, lipid and thrombogenic by-products as well as gauging inflammation and tissue remodeling activity levels. To complement the functional biochemical imaging, optical coherence tomography will be provide structural morphological imaging. The synergistic combination of functional and structural imagery will provide the interventional cardiologist with a complete clinical picture of the atherosclerotic plaque region. The clinician can use this diagnostic information to plan a personalized treatment procedure based on

  17. Cavity-Free Scheme for Nondestructive Detection of a Single Optical Photon.

    PubMed

    Xia, Keyu; Johnsson, Mattias; Knight, Peter L; Twamley, Jason

    2016-01-15

    Detecting a single photon without absorbing it is a long-standing challenge in quantum optics. All experiments demonstrating the nondestructive detection of a photon make use of a high quality cavity. We present a cavity-free scheme for nondestructive single-photon detection. By pumping a nonlinear medium we implement an interfield Rabi oscillation which leads to a ∼π phase shift on a weak probe coherent laser field in the presence of a single signal photon without destroying the signal photon. Our cavity-free scheme operates with a fast intrinsic time scale in comparison with similar cavity-based schemes. We implement a full real-space multimode numerical analysis of the interacting photonic modes and confirm the validity of our nondestructive scheme in the multimode case. PMID:26824538

  18. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  19. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  20. A Method of Assembling Compact Coherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James

    2007-01-01

    A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.

  1. Developing a Parametric Downconversion Apparatus for Single-Photon Experiments in Quantum Optics

    NASA Astrophysics Data System (ADS)

    Diiorio, Stephen

    2015-05-01

    We report our progress toward developing a parametric downconversion apparatus for studying single-photon quantum optics in undergraduate laboratory classes, following the model of Galvez et al.. We pump a beta barium borate (BBO) crystal with a 405 nm diode laser to produce correlated pairs of single-photons that we detect using avalanche photodiodes (APD). We can conduct coincidence and anti-coincidence counts and a measurement of the degree of second-order coherence with the apparatus, and we expect to report on single- and bi-photon interferometry experiments.

  2. Master/slave interferometry - ideal tool for coherence revival swept source optical coherence tomography.

    PubMed

    Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2016-07-01

    In this paper, we demonstrate that the master slave (MS) interferometry method can significantly simplify the practice of coherence revival swept source optical coherence tomography (OCT) technique. Previous implementations of the coherence revival technique required considerable resources on dispersion compensation and data resampling. The total tolerance of the MS method to nonlinear tuning, to dispersion in the interferometer and to dispersion due to the laser cavity, makes the MS ideally suited to the practice of coherence revival. In addition, enhanced versatility is allowed by the MS method in displaying shorter axial range images than that determined by the digital sampling of the data. This brings an immediate improvement in the speed of displaying cross-sectional images at high rates without the need of extra hardware such as graphics processing units or field programmable gate arrays. The long axial range of the coherence revival regime is proven with images of the anterior segment of healthy human volunteers. PMID:27446682

  3. Master/slave interferometry – ideal tool for coherence revival swept source optical coherence tomography

    PubMed Central

    Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2016-01-01

    In this paper, we demonstrate that the master slave (MS) interferometry method can significantly simplify the practice of coherence revival swept source optical coherence tomography (OCT) technique. Previous implementations of the coherence revival technique required considerable resources on dispersion compensation and data resampling. The total tolerance of the MS method to nonlinear tuning, to dispersion in the interferometer and to dispersion due to the laser cavity, makes the MS ideally suited to the practice of coherence revival. In addition, enhanced versatility is allowed by the MS method in displaying shorter axial range images than that determined by the digital sampling of the data. This brings an immediate improvement in the speed of displaying cross-sectional images at high rates without the need of extra hardware such as graphics processing units or field programmable gate arrays. The long axial range of the coherence revival regime is proven with images of the anterior segment of healthy human volunteers. PMID:27446682

  4. Coherent controllers for optical-feedback cooling of quantum oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Mabuchi, Hideo

    2013-01-01

    We study the cooling performance of optical-feedback controllers for open optical and mechanical resonators in the linear quadratic Gaussian setting of stochastic control theory. We utilize analysis and numerical optimization of closed-loop models based on quantum stochastic differential equations to show that coherent control schemes, where we embed the resonator in an interferometer to achieve all-optical feedback, can outperform optimal measurement-based feedback control schemes in the quantum regime of low steady-state excitation number. These performance gains are attributed to the coherent controller's ability to simultaneously process both quadratures of an optical probe field without measurement or loss of fidelity, and may guide the design of coherent feedback schemes for more general problems of robust nonlinear and robust control.

  5. Amplifier Noise Based Optical Steganography with Coherent Detection

    NASA Astrophysics Data System (ADS)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  6. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond.

    PubMed

    Rogers, Lachlan J; Jahnke, Kay D; Metsch, Mathias H; Sipahigil, Alp; Binder, Jan M; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D; Hemmer, Philip; Jelezko, Fedor

    2014-12-31

    The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2  ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3  ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface. PMID:25615330

  7. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.

    PubMed

    Viennot, J J; Dartiailh, M C; Cottet, A; Kontos, T

    2015-07-24

    Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate, and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the megahertz range at the single-spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60 nanoseconds. We thereby demonstrate a mesoscopic device suitable for nondestructive spin readout and distant spin coupling. PMID:26206930

  8. Photonic processing with polylithic integrated optical devices

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.; Morrison, Charles B.; Shi, Yongqiang

    1998-07-01

    Recent developments in nonlinear optical polymer materials and devices combined with epitaxial liftoff (ELO) and grafting of semiconductor materials are leading to dramatic new possibilities in devices for photonic signal processing. For example, the development of new device architectures is leading to electro-optic modulators that have halfwave voltages of approximately 1V. Applications include very large bandwidth (greater than 100 GHz) electro-optic modulators and high speed (less than 1 ns) switches for programmable optical delay lines for use in phased array systems. Also, with the increase in operating frequency and angular scan resolution, the delay length accuracy can reach magnitudes of micrometers for millimeter wave frequencies. With micro fabrication methods, integrated delay line/switch networks can achieve superior delay performance with a single integrated optic chip that is compact, light weight, and has low optical insertion loss. The use of ELO allows electronic device driver circuits to be integrated with the polymer chip to provide further miniaturization. Also, ELO methods can be used to fabricate very high speed metal-semiconductor-metal (MSM) photodetectors for optical signal detection and monitoring. Here ELO methods can find applications in the fabrication of multispectral detectors and focal plane arrays. Yet other applications include very high speed analog-to-digital converters.

  9. Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.

    2013-02-01

    A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.

  10. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-06-01

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000-1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  11. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    SciTech Connect

    Rybak, Leonid; Levin, Liat; Amitay, Zohar; Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michal; Moszynski, Robert; Koch, Christiane P.

    2011-12-30

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  12. CHOROIDAL IMAGING USING SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY

    PubMed Central

    Regatieri, Caio V.; Branchini, Lauren; Fujimoto, James G.; Duker, Jay S.

    2012-01-01

    Background A structurally and functionally normal choroidal vasculature is essential for retinal function. Therefore, a precise clinical understanding of choroidal morphology should be important for understanding many retinal and choroidal diseases. Methods PUBMED (http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed) was used for most of the literature search for this article. The criterion for inclusion of an article in the references for this review was that it included materials about both the clinical and the basic properties of choroidal imaging using spectral-domain optical coherence tomography. Results Recent reports show successful examination and accurate measurement of choroidal thickness in normal and pathologic states using spectral-domain optical coherence tomography systems. This review focuses on the principles of the new technology that make choroidal imaging using optical coherence tomography possible and on the changes that subsequently have been documented to occur in the choroid in various diseases. Additionally, it outlines future directions in choroidal imaging. Conclusion Optical coherence tomography is now proven to be an effective noninvasive tool to evaluate the choroid and to detect choroidal changes in pathologic states. Additionally, choroidal evaluation using optical coherence tomography can be used as a parameter for diagnosis and follow-up. PMID:22487582

  13. Optical coherence tomography of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were

  14. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  15. Optics in Microstructured and Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-10-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly—and fundamentally—broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more "special" than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.

  16. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade.

    PubMed

    Müller, Kai; Rundquist, Armand; Fischer, Kevin A; Sarmiento, Tomas; Lagoudakis, Konstantinos G; Kelaita, Yousif A; Sánchez Muñoz, Carlos; del Valle, Elena; Laussy, Fabrice P; Vučković, Jelena

    2015-06-12

    The on-chip generation of nonclassical states of light is a key requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such nonclassical light can be generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon tunneling) or diminish (photon blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and quantum-dot resonances enables the generation of high-purity nonclassical light from strongly coupled systems. For specific detunings we show that not only the purity but also the efficiency of single-photon generation increases significantly, making high-quality single-photon generation by photon blockade possible with current state-of-the-art samples. PMID:26196801

  17. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  18. Coherent propagation of a single photon in a lossless medium: 0π pulse formation, storage, and retrieval in multiple temporal modes

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sh.; Malakyan, Yu.

    2013-12-01

    Single-photon coherent optics represents a fundamental importance for the investigation of quantum light-matter interactions. While most work has considered the interaction in the steady-state regime, here we demonstrate that a single-photon pulse shorter than any relaxation time in a medium propagates without energy loss and is consistently transformed into a zero-area pulse. A general analytical solution is found for photon passage through a cold ensemble of Λ-type atoms confined inside a hollow core of a single-mode photonic-crystal fiber. We use the robust far-off-resonant Raman scheme to control the pulse reshaping by an intense control laser beam and show that in the case of cw control field, for exact two-photon resonance, the outgoing photon displays an oscillating temporal distribution, which is the quantum counterpart of a classical field ringing, while for nonzero two-photon detuning a slow photon is produced. We demonstrate also that a train of readout control pulses coherently recalls the stored photon in many well-separated temporal modes, thus producing time-bin entangled single-photon states. Such states, which allow sharing quantum information among many users, are highly demanded for applications in long-distance quantum communication.

  19. Polarization sensitive optical coherence microscopy for brain imaging.

    PubMed

    Wang, Hui; Akkin, Taner; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Kostis, William J; Yaseen, Mohammad A; Cramer, Avilash; Sakadžić, Sava; Boas, David

    2016-05-15

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) have demonstrated the ability to investigate cyto- and myelo-architecture in the brain. Polarization-sensitive OCT provides sensitivity to additional contrast mechanisms, specifically the birefringence of myelination and, therefore, is advantageous for investigating white matter fiber tracts. In this Letter, we developed a polarization-sensitive optical coherence microscope (PS-OCM) with a 3.5 μm axial and 1.3 μm transverse resolution to investigate fiber organization and orientation at a finer scale than previously demonstrated with PS-OCT. In a reconstructed mouse brain section, we showed that at the focal depths of 20-70 μm, the PS-OCM reliably identifies the neuronal fibers and quantifies the in-plane orientation. PMID:27176965

  20. OPTICAL COHERENCE TOMOGRAPHY IN JUVENILE NEURONAL CEROID LIPOFUSCINOSIS

    PubMed Central

    Hove, Marianne N.; Jensen, Hanne; Larsen, Michael

    2016-01-01

    Purpose: To report optical coherence tomography findings obtained in two patients with juvenile neuronal ceroid lipofuscinosis. Methods: Two case reports. Results: Two 7-year-old girls presented with decreased visual acuity, clumsiness, night blindness, and behavioral problems. Optical coherence tomography showed an overall reduction in thickness of the central retina, as well as the outer and the inner retinal layers. The degenerative retinal changes were the same, despite different mutations in the CLN3 gene. Conclusion: In these rare cases of juvenile neuronal ceroid lipofuscinosis, optical coherence tomography enabled unambiguous detection of prominent morphologic abnormalities of the retina at the patient's first presentation. The advanced stage of photoreceptor degeneration seen in our patients shows that a diagnosis can potentially be made much earlier. PMID:26308342

  1. Heterodyne and coherent optical fiber communications - Recent progress

    NASA Astrophysics Data System (ADS)

    Okoshi, T.

    1982-08-01

    It is pointed out that the present optical fiber communications are in a sense as primitive as the radio communications prior to 1930. The modulation/demodulation scheme being employed in the present standard optical fiber communications is often called the intensity-modulation/direct-detection (IM/DD) scheme. According to this scheme, no attention is paid to the phase of the carrier. On the other hand, in the history of radio communications, the heterodyne scheme became common since 1930, and coherent modulations such as FM, PM, FSK, and PSK are currently widely used. The question arises whether a similar development might occur in optical communications. The IM/DD system has a great advantage in system simplicity and low cost. However, for certain applications a heterodyne/coherent system would provide distinct improvements. An investigation indicates that, despite technical difficulties, and heterodyne/coherent system is a promising and interesting technical target.

  2. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  3. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    PubMed

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  4. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits

    NASA Astrophysics Data System (ADS)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1,550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radiofrequency field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic-crystal waveguides, or optically through the strong photoelastic effect. Together with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which radiofrequency-driven coherent mechanical motion is cancelled by optically driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical and mechanical domains.

  5. Imaging of the Rotator Cuff With Optical Coherence Tomography.

    PubMed

    Hartshorn, Timothy; Ren, Jian; Vangsness, C Thomas

    2015-09-01

    This study evaluated the utility of optical coherence tomography (OCT) in imaging porcine and human rotator cuff (RTC) tissue, analyzed its effectiveness in identifying clinical pathology, and correlated these findings with histologic examination. Twelve human cadaveric and 6 porcine shoulders were evaluated. Six-millimeter-wide bone sections were harvested from the proximal humerus of each specimen, with each containing the entire enthesis of the respective RTC tendon, as well as 2 cm of tendon medial to the enthesis. Only the supraspinatus tendon was evaluated in the human specimens, whereas the enthesis of multiple RTC tendons were evaluated in the porcine model. All specimens were imaged using OCT and correlated with histologic evaluation. Optical coherence tomography evaluation of macroscopically healthy tissue consistently showed an easily identifiable banding pattern (birefringence) in contrast to a disorganized, homogeneous appearance in grossly diseased tissue. Optical coherence tomography was more effective for qualitative evaluation of RTC tissue, identification of bursal-sided RTC tears, and localization of calcific deposits, whereas intrasubstance tendon delaminations and partial articular-sided tendon avulsion lesions were relatively more difficult to identify. Optical coherence tomography correlated well with histologic evaluation in all specimens. Optical coherence tomography provides high-resolution, subsurface imaging of rotator cuff tissue in real-time to a depth of up to 4 mm with excellent correlation to histology in a cadaveric model. Optical coherence tomography could be an effective adjunctive tool for the identification and localization of rotator cuff pathology. The use of OCT in arthroscopic shoulder surgery potentially provides a minimally invasive modality for qualitative assessment of rotator cuff pathology. This may allow for a decrease in soft tissue dissection, improved qualitative assessment of cuff tissue, and improved patient

  6. Optical characterization in wide spectral range by a coherent spectrophotometer

    NASA Astrophysics Data System (ADS)

    Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.

    2003-11-01

    We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.

  7. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  8. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.

    PubMed

    Türkpençe, Deniz; Müstecaplıoğlu, Özgür E

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies. PMID:26871061

  9. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine

    NASA Astrophysics Data System (ADS)

    Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.

    2016-01-01

    We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  10. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  11. Experimental Demonstration of Spectral Intensity Optical Coherence Tomography

    PubMed Central

    Ryczkowski, Piotr; Turunen, Jari; Friberg, Ari T.; Genty, Goëry

    2016-01-01

    We demonstrate experimentally spectral-domain intensity optical coherence tomography using a Mach-Zehnder interferometer with balanced detection. We show that the technique allows for a point spread function with reduced full-width at half maximum compared to conventional optical coherence tomography. The method further provides benefits similar to those of chirped-pulse interferometry in terms of dispersion cancellation but only requires a broadband incoherent source and standard detectors. The measurements are in excellent agreement with the theoretical predictions. Finally, we propose an approach that enables the elimination of potential artefacts arising from multiple interfaces. PMID:26916668

  12. Real-time incoherent-to-coherent optical converter

    NASA Technical Reports Server (NTRS)

    Vohl, P.; Nisenson, P.; Oliver, D. S.

    1973-01-01

    Description of a real-time incoherent-to-coherent optical converter designed for application in image processing systems. The converter utilizes the photoconductivity effect of the compound Bi(12)SiO(20) for spatial modulation of electrical polarization in the compound. An optically absorbed write-in image is stored as an image polarization pattern in the device. Readout is effectuated electrooptically by using phase retardation in a polarized coherent light beam during the passage through the crystal. The operating mode required for achieving continuous image conversion with a high-speed recyclability is discussed. The performance characteristics of the converter are given and the fabrication technology is described.

  13. Optical coherence tomography findings of bilateral foveal leukemic infiltration.

    PubMed

    Le, John Q; Braich, Puneet S; Brar, Vikram S

    2016-01-01

    We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec(®)), he was treated with omacetaxine (Synribo(®)) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture. PMID:27540313

  14. Optical coherence tomography findings of bilateral foveal leukemic infiltration

    PubMed Central

    Le, John Q; Braich, Puneet S; Brar, Vikram S

    2016-01-01

    We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec®), he was treated with omacetaxine (Synribo®) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture. PMID:27540313

  15. Complete characterization of partially coherent and partially polarized optical fields.

    PubMed

    Basso, Gabriel; Oliveira, Luimar; Vidal, Itamar

    2014-03-01

    We suggest a method to access the second-order, or two-point, Stokes parameters of a partially coherent and partially polarized Gaussian model optical field from an intensity interferometry experiment. Through a remarkably simple experimental arrangement, it is possible to measure the two-point and one-point Stokes parameters simultaneously, allowing the reconstruction of the coherence matrix and the polarization matrix, thus completely characterizing the optical field both statistically and locally on the observation plane. Developments, automation, and applications are pointed out. PMID:24690711

  16. Coherent Optical Focal Plane Array Receiver for PPM Signals: Investigation and Applications

    NASA Technical Reports Server (NTRS)

    Fernandez, Michela Munoz

    2006-01-01

    The performance of a coherent optical focal plane array receiver for PPM signals under atmospheric turbulence is investigated and applications of this system are addressed. The experimental demonstration of this project has already been explained in previous publications [1]. This article shows a more exhaustive analysis of the expressions needed to obtain the Bit Error Rate (BER) for the real system under study in the laboratory. Selected experimental results of this system are described and compared with theoretical BER expressions, and array combining gains are presented. Receiver sensitivity in terms of photons per bit (PPB) is examined; BER results are shown as a function of signal to noise ratios, (SNR), as well as a function of photons per symbol, and photons per bit.

  17. Optical nanofiber-based photonic crystal cavity.

    PubMed

    Nayak, K P; Zhang, Pengfei; Hakuta, K

    2014-01-15

    We demonstrate the fabrication of photonic crystal (PhC) cavities on optical nanofibers using femtosecond laser ablation. PhC cavities with cavity lengths varying from 0.54 to 3.43 mm are fabricated by controlling the profile of the nanocrater array formed on the nanofiber. Such PhC cavities show high transmission of 87% for a finesse of 39. For higher finesse values from 150 to 500, the transmission can still be maintained at 20%-25%. Due to the strong confinement of the field and the efficient coupling to single-mode optical fibers, such nanofiber-based PhC cavities may become an interface between quantum and classical networks. PMID:24562114

  18. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography

    SciTech Connect

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  19. Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY

    NASA Astrophysics Data System (ADS)

    Wagner, Ulrich H.; Rau, Christoph

    2010-06-01

    I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components. In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

  20. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  1. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    SciTech Connect

    Lee, Su-Yong; Kim, Ho-Joon; Ji, Se-Wan; Nha, Hyunchul

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  2. Control of coherent backscattering by breaking optical reciprocity

    NASA Astrophysics Data System (ADS)

    Bromberg, Y.; Redding, B.; Popoff, S. M.; Cao, H.

    2016-02-01

    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics, and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we experimentally show that by tuning a nonreciprocal phase we can coherently control complex coherent phenomena, rather than simply suppress them. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, observe the optical analog of weak antilocalization, and realize a continuous transition from weak localization to weak antilocalization. Our results may open new possibilities for coherent control of waves in complex systems.

  3. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography

    PubMed Central

    Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E. M.

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  4. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    PubMed

    Giardini, Mario E; Zippo, Antonio G; Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E M

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  5. Analysis of the optical design of the NSLS-II coherent hard x-ray beamline

    NASA Astrophysics Data System (ADS)

    Fluerasu, Andrei; Chubar, Oleg; Kaznatcheev, Konstantine; Baltser, Jana; Wiegart, Lutz; Evans-Lutterodt, Kenneth; Carlucci-Dayton, Mary; Berman, Lonny

    2011-09-01

    Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a "photon hungry" technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the

  6. Analysis of the optical design of the NSLS-II Coherent Hard X-ray beamline

    SciTech Connect

    Fluerasu A.; Chubar, O.; Kaznatcheev, K.; Baltser, J.; Wiegart, Lutz; Evans-Lutterodt, K.; Carlucci-Dayton, M.; Berman, L.

    2011-08-21

    Ultra-low emittance third-generation synchrotron radiation sources such as the NSLS-II offer excellent opportunities for the development of experimental techniques exploiting x-ray coherence. Coherent light scattered by a heterogeneous sample produces a speckle pattern characteristic for the specific arrangement of the scatterers. This may vary over time, and the resultant intensity fluctuations can be measured and analyzed to provide information about the sample dynamics. X-ray photon correlation spectroscopy (XPCS) extends the capability of dynamic light scattering to opaque and turbid samples and extends the measurements of time evolution to nanometer length scales. As a consequence XPCS became crucial in the study of dynamics in systems including, but not being limited to, colloids, polymers, complex fluids, surfaces and interfaces, phase ordering alloys, etc. In this paper we present the conceptual optical design and the theoretical performance of the Coherent Hard X-ray (CHX) beamline at NSLS-II, dedicated to XPCS and other coherent scattering techniques. For the optical design of this beamline, there is a tradeoff between the coherence needed to distinguish individual speckles and the phase acceptance (high intensity) required to measure fast dynamics with an adequate signal-to-noise level. As XPCS is a 'photon hungry' technique, the beamline optimization requires maximizing the signal-to-noise ratio of the measured intensity-intensity autocorrelation function. The degree of coherence, as measured by a two-slit (Young) experiment, is used to characterize the speckle pattern visibilities. The beamline optimization strategy consists of maximization of the on-sample intensity while keeping the degree of coherence within the 0.1-0.5 range. The resulted design deviates substantially from an ad-hoc modification of a hard x-ray beamline for XPCS measurements. The CHX beamline will permit studies of complex systems and measurements of bulk dynamics down to the

  7. Optical performance monitoring for OFDM using low bandwidth coherent receivers.

    PubMed

    Chen, Simin; Anderson, Trevor; Hewitt, Don; Tran, An V; Zhu, Chen; Du, Liang B; Lowery, Arthur J; Skafidas, Efstratios

    2012-12-17

    We propose using low bandwidth coherent receivers for distributed optical performance monitoring. We demonstrate optical signal-to-noise ratio (OSNR) monitoring of both 20-Gb/s single-polarization and 40-Gb/s polarization-multiplexed coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals with a 0.8-GHz receiver using both data-aided (DA) and non-data-aided (NDA) approaches. The sampling rate of the performance monitor is much lower than the signal baud rate, so provides a cost-effective solution for distributed optical performance monitoring. The proposed method is demonstrated experimentally and through simulation. The results show that after calibration the OSNR monitoring error is less than 1 dB and the two approaches are not affected by fiber dispersion after 800-km transmission and 30-ps differential group delay (DGD). PMID:23263110

  8. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  9. Precision spectral manipulation: A demonstration using a coherent optical memory

    SciTech Connect

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C.

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  10. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    PubMed

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  11. Efficient and coherent frequency conversions and nonlinear interference in optical parametric and atomic Raman processes

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    By implementing a parametric down-conversion process with a strong signal field injection, we demonstrate that frequency down-conversion from pump photons to idler photons can be a coherent process. Contrary to a common misconception, we show that the process can be free of quantum noise. With an interference experiment, we demonstrate that coherence is preserved in the conversion process. This technique could lead to a high-fidelity quantum state transfer from a high-frequency photon to a low-frequency photon and connect a missing link in quantum networks. Coherent and efficient nonlinear interaction and frequency conversion are of great interest in many areas of quantum optics. Traditionally, the low efficiency of Raman scattering is improved by a high-finesse optical resonator or stimulated Raman conversion. It was recently found that the atomic spin wave initially built through electromagnetically induced transparency or a weak Raman process can actively enhance the Raman frequency conversion. An experimental demonstration of an efficient Raman conversion scheme with coherent feedback of both pump and Stokes fields is presented. The temporal profile of the generated Raman pulse shows that the coherence time of the atomic spin wave is ˜1.8 ms. A laser-like power threshold is observed and its low threshold is attributed to the long coherence time of the atomic spin wave. The mechanism of the conversion enhancement process is discussed and the conversion efficiency of a single pass of the beams is compared with that of double passes. Finally, a beat signal is observed between the two Stokes fields and its Fourier transform shows that the frequency difference is caused by the AC Stark effect. Precision phase measurement is traditionally restricted by the standard quantum limit. However, this limit is not as fundamental as the Heisenberg limit and can be circumvented by use of nonclassical quantum states and structure modification of the interferometers. Several

  12. Optical Coherence Tomography: History, Current Status, and Laboratory Work

    PubMed Central

    Gabriele, Michelle L.; Wollstein, Gadi; Ishikawa, Hiroshi; Kagemann, Larry; Xu, Juan; Folio, Lindsey S.

    2011-01-01

    Optical coherence tomography (OCT) imaging has become widespread in ophthalmology over the past 15 years, because of its ability to visualize ocular structures at high resolution. This article reviews the history of OCT imaging of the eye, its current status, and the laboratory work that is driving the future of the technology. PMID:21493951

  13. Ultrafast coherent optical control of a single diamond spin

    NASA Astrophysics Data System (ADS)

    Bassett, L. C.; Heremans, F. J.; Awschalom, D. D.; Burkard, G.

    2013-03-01

    As an optically addressable solid-state electronic spin, the nitrogen-vacancy (NV) center in diamond has great promise for applications in quantum information science and metrology. At temperatures below ~ 10 K, the NV center's optical fine structure facilitates coherent coupling between the electronic spin and light, providing the means for all-optical spin control and other applications in quantum optics. Here, using ultrafast optical pump-probe techniques, we investigate the interplay of orbital, vibrational, and spin dynamics on timescales ranging from femtoseconds to nanoseconds. These techniques provide a flexible and powerful probe of orbital dynamics in the NV center's optically excited state, and enable optical spin control with sub-picosecond resolution. Work supported by AFOSR, ARO, and DARPA.

  14. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    SciTech Connect

    Abdullah, Nzar Rauf Gudmundsson, Vidar; Tang, Chi-Shung; Manolescu, Andrei

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  15. Distribution of geometric quantum discord in photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Kaydi, W.; El Hadfi, H.

    2015-12-01

    In this paper, we examine the influence of photon excitation on the monogamy property of quantum discord in tripartite coherent states of Greenberger-Horne-Zeilinger (GHZ) type. The Hilbert-Schmidt norm is used as quantifier of pairwise quantum correlations. The geometric quantum discord in all bipartite subsystems are explicitly given. We show that the geometric discord is monogamous for any photon excitation order.

  16. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    SciTech Connect

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  17. Electromagnetism, Optics and Lasers: Handbook of Coherent Domain Optical Methods, Biomedical Diagnostics, Environment and Material Science

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research c ontaining the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters.

  18. Resonance fluorescence spectra from coherently driven quantum dots coupled to slow-light photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Roy-Choudhury, Kaushik; Mann, Nishan; Manson, Ross; Hughes, Stephen

    2016-06-01

    Using a polaron master equation approach, we investigate the resonance fluorescence spectra from coherently driven quantum dots (QDs) coupled to an acoustic phonon bath and photonic crystal waveguides with a rich local density of photon states (LDOS). Resonance fluorescence spectra from QDs in semiconductor crystals are known to show strong signatures of electron-phonon interactions, but when coupled to a structured photonic reservoir, the QD emission properties are also determined by the frequency dependence of the LDOS of the photon reservoir. Here, we investigate the simultaneous role of coupled photon and phonon baths on the characteristic Mollow triplet spectra from a strongly driven QD. As an example structured photonic reservoir, we first study a photonic crystal coupled cavity waveguide, and find that photons and phonons have counterinteracting effects near the upper mode edge of the coupled-cavity waveguide, thus establishing the importance of their separate roles in determining the emission spectra. The general theory is developed for arbitrary photonic reservoirs and is further applied to determine the resonance fluorescence spectra from a realistic, disordered W1 photonic crystal waveguide showing important photon-phonon interaction effects that are directly relevant to emerging experiments and theoretical proposals.

  19. Coherent manipulation of a solid-state artificial atom with few photons

    PubMed Central

    Giesz, V.; Somaschi, N.; Hornecker, G.; Grange, T.; Reznychenko, B.; De Santis, L.; Demory, J.; Gomez, C.; Sagnes, I.; Lemaître, A.; Krebs, O.; Lanzillotti-Kimura, N. D.; Lanco, L.; Auffeves, A.; Senellart, P.

    2016-01-01

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom–photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment. PMID:27312189

  20. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-01-01

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment. PMID:27312189

  1. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    NASA Astrophysics Data System (ADS)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei

    2016-01-01

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  2. Design and fabrication of optical polymer waveguide devices for optical interconnects and integrated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin

    Optical interconnects is a promising technique to boost the speed of electronic systems through replacing high speed electrical data buses using optical ones. Optical coherence tomography is an attractive imaging technique that has been widely used in medical imaging applications with capability of high resolution subsurface cross sectional imaging in living tissues. Both the optical interconnects and the optical coherence tomography imaging may benefit from the use of integrated optics technology in particular polymer waveguides that can be designed and fabricated to improve the device capability, system compactness, and performance reliability. In this dissertation, we first present our innovative design and realization on the polymer waveguides with 45° integrated mirrors for optical interconnects using the vacuum assisted microfluidic (VAM) soft lithography. VAM is a new microfluidic based replication technique which can be utilized to improve the performance of imprinted devices by eliminating the residue planar layer and accomplish complex devices incorporating different materials in the same layer. A prism-assisted inclined UV lithography technique is introduced to increase the slanted angles of the side walls of the microstructures and to fabricate multidirectional slanted microstructures. It is also used to fabricate 45° integrated mirrors in polymer waveguides to support surface normal optical coupling for optical interconnects. A dynamic card-to-backplane optical interconnects system has also been demonstrated based on polymer waveguides with tunable optofluidic couplers. The operation of the tunable optofluidic coupler is accomplished by controlling the position of air bubbles and index matching liquid in the perpendicular microfluidic channel for refractive index modulation. The dynamic activation and deactivation of the backplane optofluidic couplers can save the optical signal power. 10 Gbps eye diagrams of the dynamic optical interconnect link

  3. Optical coherence tomography application by using optical phase shift based on fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Lee, Seung Suk; Kim, Joo Ha; Eom, Tae Joong; Choi, Eun Seo

    2016-03-01

    We demonstrate fiber-optic sensor applications to full-range complex optical coherence tomography (OCT). To extend imaging range in OCT, real value or interferogram measured from an interferometer is needed to convert into complex value. For the purpose, various treatments such as mechanical, electro-optical, optical and programming based methods have been exploited in the interferometer. To make complex signal in fiber-optic interferometer, we propose vibrationbased optical phase shifting method. The proposed method utilizes optical fiber sensors that are for the detection of vibration using optical fiber. When coiled fiber was exposed to vibration, interferogram presents fringe shift without periodicity variations, which means that vibration induces phase shift in the interferometer. Therefore, intentionally generated vibration could be applicable to controlling of the optical phase shift and retrieval of the complex signal. As a result, the vibrations applied to coiled fiber were able to remove mirror image in Fourier domain. This result proved the feasibility of the proposed method on the extending of optical imaging range.

  4. Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.

    2016-02-01

    We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.

  5. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGESBeta

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; et al

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  6. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    PubMed Central

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing; Bostedt, Christoph

    2015-01-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. PMID:25931058

  7. Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source

    NASA Astrophysics Data System (ADS)

    Dai, Cuixia; Liu, Xiaojing; Jiao, Shuliang

    2012-08-01

    We have accomplished simultaneous spectral domain optical coherence tomography (SD-OCT) and autofluorescence (AF) microscopy with a broadband light source centered at 415 nm. The light source was provided by frequency-doubling of an ultra-fast broadband Ti:Sapphire laser. With a bandwidth of 8 nm, the visible SD-OCT achieved a depth resolution of ˜12 μm. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. The dual-modal system is capable of providing OCT imaging and molecular contrasts simultaneously. The imaging system was tested on imaging biological samples ex vivo and in vivo.

  8. Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Santori, Charles; Pelc, Jason S.; Beausoleil, Raymond G.; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-06-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  9. How optics and photonics is simply applied in agriculture?

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2013-06-01

    This paper highlights based on author's experience how optics and photonics is applied in Thai agriculture. These include spectral imaging based systems and mobile applications that have been implemented in the last 5 years for rice, fishery, and sericulture. Brief review of optics and photonics in agriculture will also be introduced.

  10. Super receiver design for superchannel coherent optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Pan, Jie; Detwiler, Thomas; Stark, Andrew; Hsueh, Yu-Ting; Chang, Gee-Kung; Ralph, Stephen E.

    2012-01-01

    Recently efforts have been focused on ultra-high speed optical communication systems which can support 1Tb/s per channel transmission. However, 1Tb/s over a single carrier requires either or both very high-level modulation format (i.e. PDM-1024QAM) and high baud rate. Therefore, grouping a number of tightly spaced "sub-carriers", to form a terabit channel has been considered and this has been refered to as a superchannel. Nyquist-WDM and Coherent Optical- OFDM (CO-OFDM) are the two approaches to achieve ultra-high spectral efficiency in superchannel coherent optical systems. In Nyquist-WDM systems, optical subcarriers are tightly packed at channel spacing near or equal to the baud rate, potentially inducing strong inter-channel interference (ICI). The traditional way to mitigate the impact of ICI is by applying aggressive optical filters to each channel; however this typically induces severe inter-symbol interference (ISI). In this paper, we investigate receiver architectures for Nyquist-WDM superchannel coherent systems, and propose a new "super receiver" architecture, which jointly detects and demodulates multiple channels simultaneously. Several joint DSP algorithms are developed and tested through experimental and simulated data. The simulation results showed that more than 5 dB ONSR gain was achieved comparing to conventional method at narrow channel spacing conditions.

  11. Characterization of the dental pulp using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  12. Imaging of dental implant osseointegration using optical coherent tomography

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Reisen, P.

    2009-02-01

    Investigation of initial implant stability with different dental implant designs is an important task to obtain good quality dental implants. Failure of a dental implant is often related to failure to osseointegrate correctly. Optical Coherent Tomography is a competitive non-invasive method of osseointegration investigation. FD-OCT with Swept Source was used to obtain 3-D image of the peri-implant tissue (soft and hard) in the case of mandible fixed screw. 1350 nm centered laser source give better images than 850 nm laser source for hard tissue imaging. Present work suggests that Optical Coherent Tomography is a proper technique to obtain the image of the contact tissue-metal screw. OCT images are useful to evaluate optical properties of bone tissues.

  13. Optical coherence elastography for tissue characterization: a review

    PubMed Central

    Wang, Shang; Larin, Kirill V.

    2015-01-01

    Optical coherence elastography (OCE) represents the frontier of optical elasticity imaging techniques and focuses on the micro-scale assessment of tissue biomechanics in 3D that is hard to achieve with traditional elastographic methods. Benefit from the advancement of optical coherence tomography, and driven by the increasing requirements in nondestructive biomechanical characterization, this emerging technique recently has experienced a rapid development. In this paper, we start with the description of the mechanical contrast that has been employed by OCE and review the state-of-the-art techniques based on the reported applications and discuss the current technical challenges, emphasizing the unique role of OCE in tissue mechanical characterization. The position of OCE among other elastography techniques. PMID:25412100

  14. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    PubMed Central

    He, Li; Li, Huan; Li, Mo

    2016-01-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  15. Photon Jitter Mitigation for the Optical Channel

    NASA Astrophysics Data System (ADS)

    Moision, B.

    2007-11-01

    We consider a pulse-position-modulated (PPM) optical communications channel where photon arrival times are offset by a random jitter. This models jitter introduced by timing synchronization or detector delay, which is a significant degradation for very short slot widths. We derive the symbol likelihoods in the presence of inter-slot interference (ITI) as well as a number of practical approximations to the likelihoods. The impact on performance of a coded system is illustrated, where we show that using the proper likelihoods yields large gains over a conventional receiver that does not model the ITI. We show that, for large PPM orders and moderate jitter, inter-symbol interference (ISI) may be ignored in the receiver while incurring only small losses.

  16. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  17. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  18. Visible-light optical coherence tomography for retinal oximetry.

    PubMed

    Yi, Ji; Wei, Qing; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2013-06-01

    We applied a visible-light spectroscopic optical coherence tomography (vis-OCT) for in vivo retinal oximetry. To extract hemoglobin oxygen saturation (sO(2)) in individual retinal vessels, we established a comprehensive analytical model to describe optical absorption, optical scattering, and blood cell packing factor in the whole blood and fit the acquired vis-OCT signals from the bottom of each imaged vessel. We found that averaged sO(2) values in arterial and venous bloods were 95% and 72%, respectively. PMID:23722747

  19. [Application of spectral optical coherent tomography (SOCT) in ophthalmology].

    PubMed

    Bieganowski, Lech; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kałuzny, Jakub J

    2004-01-01

    The article describes spectral optical coherent tomography (SOCT) constructed by Medical Physics Group, Faculty of Physics, Astronomy and Informatics at Nicholas Copernicus University in Toruń (Poland). It presents the physical bases for the functioning of the constructed device and includes pictures of optical sections of various elements of the eyeball: an optic disc and the region of central fovea, a cornea and angle structures (trabecular meshwork). The article also discusses potential application of SOCT in ophthalmic diagnosis of anterior and posterior segments of the eye. PMID:15646498

  20. Time-domain optical coherence tomography with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Massatsch, Pia; Charrière, Florian; Cuche, Etienne; Marquet, Pierre; Depeursinge, Christian D.

    2005-04-01

    We show that digital holography can be combined easily with optical coherence tomography approach. Varying the reference path length is the means used to acquire a series of holograms at different depths, providing after reconstruction images of slices at different depths in the specimen thanks to the short-coherence length of light source. A metallic object, covered by a 150-µm-thick onion cell, is imaged with high resolution. Applications in ophthalmology are shown: structures of the anterior eye, the cornea, and the iris, are studied on enucleated porcine eyes. Tomographic images of the iris border close to the pupil were obtained 165 µm underneath the eye surface.

  1. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    SciTech Connect

    Liu, X.; Kumano, H.; Nakajima, H.; Odashima, S.; Asano, T.; Suemune, I.; Kuroda, T.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.

  2. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics.

    PubMed

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel's Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel's Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  3. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  4. Dicke coherent narrowing in two-photon and Raman spectroscopy of thin vapor cells

    NASA Astrophysics Data System (ADS)

    Dutier, Gabriel; Todorov, Petko; Hamdi, Ismahène; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-10-01

    The principle of coherent Dicke narrowing in a thin vapor cell, in which sub-Doppler spectral line shapes are observed under a normal irradiation for a λ/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300-nm-thick Cs cell. Extension to the Raman situation is finally considered.

  5. Coherent Effects in Tiny Optics: Tunneling Through the Looking Glass

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2003-01-01

    I will discuss two types of one-dimensional photonic bandgap (PBG) effects that can arise in systems of coupled spherical resonators: (1) nearly-free-photon Fabry-Perot photonic bands that arise in quarter-wave concentrically stratified spheres and, (2) tight- binding photonic bands that arise in weakly-coupled mutually-resonant spheres as a result of whispering-gallery mode splitting. These effects can be derived directly from Mie theory, in a more straightforward manner, by exploiting an analogy with stratified planar systems. For odd numbers of mutually-resonant lossless coupled ring resonators, the circulating intensity can increase exponentially with the number of resonators, which can potentially be exploited for the development of advanced sensors. For even numbers of resonators, mode splitting and classical destructive interference lead to a cancellation of absorption and slow light on-resonance, reminiscent of electromagnetic induced transparency. The analogy between these coherent photon trapping effects and population trapping in an atomic system will be explored.

  6. Two-Photon Optical Pulse Propagation in Sodium Vapor.

    NASA Astrophysics Data System (ADS)

    Rabbani, Syed Golam

    A detailed experimental study of two-photon coherent interaction of short optical pulses with a simple atomic system is carried out. A comparison of experimental results with the theory is also presented. The simple atomic system chosen was sodium vapor. The 3S_{1/2}-3P_ {1/2} transition was used for the one -photon interaction with a two-level system while 3S _{1/2}-3P_{1/2 }-4D_{3/2} transition was used for the two-photon interaction with a three-level system. Pulses from two single-axial-mode dye lasers, pumped synchronously by the second harmonic beam of an injection seeded Nd:YAG laser, propagate co -axially through a pyrex cell containing sodium vapor. The laser beams were focused to a diameter of about 200 μm and typical power was about 10 W, so that maximum intensities of 10^5 W/cm ^2 occurred in the Na cell. The intensity for the experiment was varied by using ND (neutral density) filters. For the two-level one-photon interaction; one of the dye lasers (Rhodamine B) was adjusted such that (lambda_1 = 589.6 nm) it was resonant with the 3S_{1/2} to 3P_{1/2} transition. For the two-photon interaction with the three-level system, the dye lasers were adjusted such that (lambda _1 = 589.6 nm and lambda_2 = 568.3 nm) they were resonant with the 3S _{1/2} to 3P_{1/2 } and 3P_{1/2} to 4D_{3/2} transition. That is lambda_1+lambda_2 were held at the 3S_{1/2} -4D_{3/2} two-photon transition. The wavelength lambda_2 was generated by the second dye laser where Rhodamine 6G was used as the gain medium. After passing through the cell, the laser pulses were focused on an aperture in order to image only a uniform -plane-wave region in the cell. The output of the aperture was then (separately lambda_1 and lambda_2) focused on two fast photodiodes, the output of which were displayed on two storage oscilloscope. The resonance of 3S _{1/2}-3P_{1/2 } transition is confirmed by collecting the D_1 fluorescence (589.6 nm) on a PMT by a fiber cable. Two-photon resonance condition

  7. Study of Optical Phase Lock Loops and the Applications in Coherent Beam Combining and Coherence Cloning

    NASA Astrophysics Data System (ADS)

    Liang, Wei

    Optical Phase-Lock loops (OPLLs) have potential applications in phase coherent optics including frequency synthesis, clock distribution and recovery, jitter and noise reduction, etc. However, most implemented OPLLs are based on solid state lasers, fiber lasers, or specially designed semiconductor lasers, whose bulky size and high cost inhibit the applications of OPLLs. Semiconductor lasers have the advantages of low cost, small size, and high efficiency. In this thesis, I report on a study of OPLLs using commercial SCLs, and explore their novel applications in coherent beam combining and coherence cloning. In chapter 1-3, I will first introduce the theory of OPLLs and presents the experimental study of OPLLs made of different commercial SCLs. To improve the performance of OPLLs, electronic compensations using filter designs are also discussed and studied. In chapter 4-5, I will study the application of OPLLs in coherent beam combining. Using OPLLs, an array of slave lasers can be phase locked to the same master laser at the same frequency, their outputs can then be coherently combined. The phase variations of the element beams due to the optical path-length variations in fibers can be further corrected for by using multi-level OPLLs. This approach eliminates the use of the optical phase/frequency shifters conventionally required in a coherent beam combining system. In the proof of principle experiment, we have combined two lasers with a combining efficiency of 94% using the filled-aperture combining configuration. Furthermore, I will discuss the scalability of a cascaded filled-aperture combining system for the combination of a large number of lasers. OPLLs can also be used to reduce the phase noise of SCLs by locking them to a low noise master laser. In chapter 6, I will describe the theory of coherence cloning using OPLLs and present the experimental measurements of the linewidths and frequency noises of a low noise fiber laser, a free-running and locked slave

  8. Communication: Conditions for one-photon coherent phase control in isolated and open quantum systems

    SciTech Connect

    Spanner, Michael; Arango, Carlos A.; Brumer, Paul

    2010-10-21

    Coherent control of observables using the phase properties of weak light that induces one-photon transitions is considered. Measurable properties are shown to be categorizable as either class A, where control is not possible, or class B, where control is possible. Using formal arguments, we show that phase control in open systems can be environmentally assisted.

  9. PHYSICAL FOUNDATIONS OF QUANTUM ELECTRONICS: Interference properties of coherent photons selectively reflected from resonance media

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2002-05-01

    It is shown that, according to the quantum theory of light, the spatial period of an interference pattern formed by light incident on a medium and reflected from it is determined both by the wavelength of light and the number of coherent photons in a scattered mode. The scattered signal is assumed arbitrarily weak.

  10. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  11. Optical coherence tomography in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Wei, Jay; Zhao, Yonghua; Kulkarni, Manish D.; Kirschbaum, Alan R.; Everett, Matthew J.; Harman, Jonathan W.; Pedersen, Per

    2003-07-01

    Image resolution, tissue penetration, and scan speed are among the most important parameters when designing an OCT system for ophthalmic use. Human retinal tissue is highly reflective in the near infrared spectrum range. A SLD at 820nm with 25nm FWHM spectral bandwidth provides 10μm coherence length in retinal tissue. Its appropriate power level, simplicity of use, high resolution, and relatively low cost, make the 820nm SLD the best choice light source for retinal OCT. A 1300nm SLD can penetrate deeper into the sclera tissue and since the 1300nm wavelength is highly absorbed in the vitreous, the ANSI laser safety standard allows higher maximum permissible power to the human eye. Higher scan speed can also be achieved. In this paper, we report two OCT systems that are designed specifically for retinal and anterior segment imaging of the human eye. Retinal OCT scans 400 A-scans per second, 2mm depth in tissue, and 10 μm image resolution with an 820nm SLD. Anterior segment OCT (AC-OCT) scans 2000 A-scans per second, 6mm depth in tissue, and 16μm image resolution with a 1300nm SLD. Benefits of suitable wavelength selection in scanning different tissue are clearly seen in the OCT images. Retinal OCT (OCT3) demonstrates significant improvement over the previous generation (OCT1/OCT2) from both a technical and cost point of view. AC-OCT performs 8 frames of 256 A-scans per second and is capable of imaging the human eye in vivo with minimum eye motion artifacts. It has potential use in refractive surgery, angle-closure glaucoma, and cataract surgery.

  12. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. PMID:26351155

  13. Two-electron coherence and its measurement in electron quantum optics

    NASA Astrophysics Data System (ADS)

    Thibierge, É.; Ferraro, D.; Roussel, B.; Cabart, C.; Marguerite, A.; Fève, G.; Degiovanni, P.

    2016-02-01

    Engineering and studying few-electron states in ballistic conductors is a key step towards understanding entanglement in quantum electronic systems. In this Rapid Communication, we introduce the intrinsic two-electron coherence of an electronic source in quantum Hall edge channels and relate it to two-electron wave functions and to current noise in a Hanbury Brown-Twiss interferometer. Inspired by the analogy with photon quantum optics, we propose to measure the intrinsic two-electron coherence of a source using low-frequency current correlation measurements at the output of a Franson interferometer. To illustrate this protocol, we discuss how it can distinguish between a time-bin-entangled pure state and a statistical mixture of time-shifted electron pairs.

  14. Multi-aperture digital coherent combining for free-space optical communication receivers.

    PubMed

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture. PMID:27410287

  15. Probing myocardium biomechanics using quantitative optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  16. Digital signal processing techniques for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Goldfarb, Gilad

    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge

  17. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  18. Microcontrollers and optical sensors for education in optics and photonics

    NASA Astrophysics Data System (ADS)

    Dressler, Paul; Wielage, Heinz; Haiss, Ulrich; Vauderwange, Oliver; Wozniak, P.; Curticapean, Dan

    2014-09-01

    The digital revolution is going full steam ahead, with a constantly growing number of new devices providing a steady increase in complexity and power. Most of the success is based on one important invention: the microprocessor/microcontroller. In this paper the authors present how to integrate microcontrollers and optical sensors in the curricula of media engineering by combining subjects of media technology, optics, information technology and media design. Hereby the aim is not to teach these topics separate from each other, but to bring them together in interdisciplinary lectures, projects and applications. Microcontrollers can be applied in various ways to teach content from the fields of optics and photonics. They can be used to control LEDs, displays, light detectors and infrared sensors, which makes it possible to build measuring instruments like e.g. a lux meter, a light barrier or an optical distance meter. The learning goals are to stimulate the student's interest in the multiplicity of subjects related to this course and to support a deeper understanding of the close connections between them. The teaching method that the authors describe in their paper turned out to be very successful, as the participants are motivated to bring in their own ideas for projects, they spend more time than requested and as many students return to the courses as tutors. It is an example for effectual knowledge transfer and exchange of ideas among students.

  19. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  20. Novel catheter enabling simultaneous radiofrequency ablation and optical coherence reflectometry

    PubMed Central

    Herranz, D.; Lloret, Juan; Jiménez-Valero, Santiago; Rubio-Guivernau, J. L.; Margallo-Balbás, Eduardo

    2015-01-01

    A novel radiofrequency ablation catheter has been developed with integrated custom designed optics, enabling real-time monitoring of radiofrequency ablation procedures through polarization-sensitive optical coherence reflectometry. The optics allow for proper tissue illumination through a view-port machined in the catheter tip, thus providing lesion depth control over the RF ablation treatment. The system was verified in an in-vitro model of swine myocardium. Optical performance and thermal stability was confirmed after more than 25 procedures, without any damage to the optical assembly induced by thermal stress or material degradation. The use of this catheter in RF ablation treatments may make possible to assess lesion depth during therapy, thus translating into a reduction of potential complications on the procedure. PMID:26417499

  1. Proposal for a coherent quantum memory for propagating microwave photons

    NASA Astrophysics Data System (ADS)

    Afzelius, M.; Sangouard, N.; Johansson, G.; Staudt, M. U.; Wilson, C. M.

    2013-06-01

    We describe a multi-mode quantum memory for propagating microwave photons that combines a solid-state spin ensemble resonantly coupled to a frequency tunable single-mode microwave cavity. We first show that high efficiency mapping of the quantum state transported by a free photon to the spin ensemble is possible both for strong and weak coupling between the cavity mode and the spin ensemble. We also show that even in the weak coupling limit unit efficiency and faithful retrieval can be obtained through time reversal inhomogeneous dephasing based on spin echo techniques. This is possible provided that the cavity containing the spin ensemble and the transmission line are impedance matched. We finally discuss the prospects for an experimental implementation using a rare-earth doped crystal coupled to a superconducting resonator.

  2. Optical Coherence Tomography in Pulmonary Medicine

    NASA Astrophysics Data System (ADS)

    Murgu, Septimiu Dan; Brenner, Matthew; Chen, Zhongping; Suter, Melissa J.

    Advances in pulmonary diagnostics and therapeutics offer a major potential for optical imaging applications both in clinical practice and research settings. Complexities of pulmonary structures and function have restricted widespread OCT investigations and clinical applications, but these will likely be overcome by developments in OCT technology [1]. Some factors that have limited adaptation of OCT into the pulmonary setting in the past have been the shallow depth of penetration, resolution limitations, relatively slow access times, need to examine large surface areas with numerous branching airways, motion artifacts, as well as a need for development of practical imaging probes to reach the relevant locations in a minimally invasive way. Considerable recent engineering and analytical advances in OCT technology [2-8] have already overcome several of these obstacles and will enable much more extensive investigations into the role for structural and functional pulmonary OCT imaging [1].

  3. Single-Photon Nonlinear Optics with Graphene Plasmons

    NASA Astrophysics Data System (ADS)

    Gullans, M.; Chang, D. E.; Koppens, F. H. L.; de Abajo, F. J. García; Lukin, M. D.

    2013-12-01

    We show that it is possible to realize significant nonlinear optical interactions at the few photon level in graphene nanostructures. Our approach takes advantage of the electric field enhancement associated with the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a system could provide a powerful platform for quantum nonlinear optical control of light. As an example, we consider an integrated optical device that exploits this large nonlinearity to realize a single photon switch.

  4. Use of a photonic crystal for optical amplifier gain control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  5. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  6. Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexey; Cai, Yong Q.; Sutter, John P.; Chubar, Oleg

    2014-09-01

    Up to now simulation of perfect crystal optics in the "Synchrotron Radiation Workshop" (SRW) wave-optics computer code was not available, thus hindering the accurate modelling of synchrotron radiation beamlines containing optical components with multiple-crystal arrangements, such as double-crystal monochromators and high-energy-resolution monochromators. A new module has been developed for SRW for calculating dynamical diffraction from a perfect crystal in the Bragg case. We demonstrate its successful application to the modelling of partially-coherent undulator radiation propagating through the Inelastic X-ray Scattering (IXS) beamline of the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The IXS beamline contains a double-crystal and a multiple-crystal highenergy- resolution monochromator, as well as complex optics such as compound refractive lenses and Kirkpatrick-Baez mirrors for the X-ray beam transport and shaping, which makes it an excellent case for benchmarking the new functionalities of the updated SRW codes. As a photon-hungry experimental technique, this case study for the IXS beamline is particularly valuable as it provides an accurate evaluation of the photon flux at the sample position, using the most advanced simulation methods and taking into account parameters of the electron beam, details of undulator source, and the crystal optics.

  7. Congenital retinal macrovessel: atypical presentation using optical coherence tomography.

    PubMed

    Ceylan, Osman M; Gullulu, Gulay; Akin, Tugrul; Bilen, Harun

    2011-02-01

    To describe a congenital retinal macrovessel with macular thickening. This case was investigated using fundus photography, fluorescein angiography, Spectralis optical coherence tomography and a 10-2 visual field test. A 23-year-old man was referred to our clinic with decreased vision in the right eye. Fundus examination of the right eye revealed a congenital retinal macrovessel that originated inferior to the superotemporal branch of the central retinal vein. Using fluorescein angiography, early filling and delayed emptying of the aberrant vein were observed. Spectralis optical coherence tomography demonstrated macular thickening and was supported by a 10-2 visual field test that revealed a relative scotoma corresponding to the same location. At the 18-month follow-up, visual acuity remained stable. Although rare, this case demonstrated that macular thickening can cause decreased visual acuity in the presence of a congenital retinal macrovessel. PMID:20922460

  8. Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography

    PubMed Central

    Gordon, Andrew Y; Jayagopal, Ashwath

    2014-01-01

    Optical coherence tomography has emerged as valuable imaging modalityin ophthalmology and other fields by enabling high-resolution three-dimensional imaging of tissue. In this paper, we review recent progress in the field of contrast-enhanced optical coherence tomography (OCT). We discuss exogenous and endogenous sources of OCT contrast, focusing on their use with standard OCT systems as well as emerging OCT-based imaging modalities. We include advances in the processing of OCT data that generate improved tissue contrast, including spectroscopic OCT (SOCT), as well as work utilizing secondary light sources and/or detection mechanisms to create and detect enhanced contrast, including photothermal OCT (PTOCT) and photoacoustic OCT (PAOCT). Finally, we conclude with a discussion of the translational potential of these developments as well as barriers to their clinical use. PMID:25009761

  9. Parametric imaging of viscoelasticity using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  10. Dynamic spectral-domain optical coherence elastography for tissue characterization.

    PubMed

    Liang, Xing; Adie, Steven G; John, Renu; Boppart, Stephen A

    2010-06-21

    A dynamic spectral-domain optical coherence elastography (OCE) imaging technique is reported. In this technique, audio-frequency compressive vibrations are generated by a piezoelectric stack as external excitation, and strain rates in the sample are calculated and mapped quantitatively using phase-sensitive spectral-domain optical coherence tomography. At different driving frequencies, this technique provides contrast between sample regions with different mechanical properties, and thus is used to mechanically characterize tissue. We present images of a three-layer silicone tissue phantom and rat tumor tissue ex vivo, based on quantitative strain rate. Both acquisition speed and processing speed are improved dramatically compared with previous OCE imaging techniques. With high resolution, high acquisition speed, and the ability to characterize the mechanical properties of tissue, this OCE technique has potential use in non-destructive volumetric imaging and clinical applications. PMID:20588552

  11. Optical Field Shaping with Broadband Coherent Raman Generation

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei; Wang, Kai; Zhi, Miaochan; Bahari, Aysan; Shutova, Mariia; Zhdanova, Alexandra

    2016-05-01

    We work toward developing a novel light source capable of producing sub-cycle optical waveforms with prescribed temporal and spatial shapes. Our Raman-based technique utilizes highly coherent molecular motion to modulate light and produce a broadband spectrum of mutually coherent sidebands. The total bandwidth of our source spans infrared, visible, and ultraviolet spectral regions, generating bursts of light synchronized with respect to molecular oscillations. Controlled spectral and temporal shaping of the resultant waveform allows arbitrary ultrafast, potentially non-sinusoidal, field synthesis. Our use of spatial light modulators to shape the transverse beam profiles adds another dimension to the laser field engineering. These are steps toward production of space- and time-tailored sub-cycle optical fields. This work is supported by the National Science Foundation (Grant No. PHY-1307153) and the Welch Foundation (Grant No. A-1547).

  12. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  13. The Role of Anterior Segment Optical Coherence Tomography in Glaucoma

    PubMed Central

    Salim, Sarwat

    2012-01-01

    The anterior segment optical coherence tomography provides an objective method to assess the anterior segment of the eye, including the anatomy of the anterior chamber angle. This technology allows both qualitative and quantitative analyses of the angle and has shown potential in detecting and managing angle-closure glaucoma. In addition, it has a role in identifying pathology in some forms of secondary open-angle glaucoma and postsurgical management of glaucoma. Limitations of this technology include its cost and inability to visualize well structures posterior to the iris, such as the ciliary body. This paper focuses on potential benefits and limitations of anterior segment optical coherence tomography when compared with conventional gonioscopy and ultrasound biomicroscopy. Various clinical entities will be described to discuss its potential role in glaucoma practice. PMID:22900146

  14. Dynamic spectral-domain optical coherence elastography for tissue characterization

    PubMed Central

    Liang, Xing; Adie, Steven G.; John, Renu; Boppart, Stephen A.

    2010-01-01

    A dynamic spectral-domain optical coherence elastography (OCE) imaging technique is reported. In this technique, audio-frequency compressive vibrations are generated by a piezoelectric stack as external excitation, and strain rates in the sample are calculated and mapped quantitatively using phase-sensitive spectral-domain optical coherence tomography. At different driving frequencies, this technique provides contrast between sample regions with different mechanical properties, and thus is used to mechanically characterize tissue. We present images of a three-layer silicone tissue phantom and rat tumor tissue ex vivo, based on quantitative strain rate. Both acquisition speed and processing speed are improved dramatically compared with previous OCE imaging techniques. With high resolution, high acquisition speed, and the ability to characterize the mechanical properties of tissue, this OCE technique has potential use in non-destructive volumetric imaging and clinical applications. PMID:20588552

  15. Coherent control of plasmonic nanoantennas using optical eigenmodes

    PubMed Central

    Kosmeier, Sebastian; De Luca, Anna Chiara; Zolotovskaya, Svetlana; Di Falco, Andrea; Dholakia, Kishan; Mazilu, Michael

    2013-01-01

    The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light. PMID:23657743

  16. Speckle reduction in optical coherence tomography images using digital filtering

    PubMed Central

    Ozcan, Aydogan; Bilenca, Alberto; Desjardins, Adrien E.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased. PMID:17728812

  17. Continuous focus tracking for real-time optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cobb, Michael J.; Liu, Xiumei; Li, Xingde

    2005-07-01

    We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.

  18. Ultrahigh-Resolution Optical Coherence Tomography Using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Fujimoto, J. G.; Aguirre, A. D.; Chen, Y.; Herz, P. R.; Hsiung, P.-L.; Ko, T. H.; Nishizawa, N.; Kärtner, F. X.

    Optical coherence tomography (OCT) is an emerging optical imaging modality for biomedical research and clinical medicine. OCT can perform high resolution, cross-sectional tomographic imaging in materials and biological systems by measuring the echo time delay and magnitude of backreflected or backscattered light [1]. In medical applications, OCT has the advantage that imaging can be performed in situ and in real time, without the need to remove and process specimens as in conventional excisional biopsy and histopathology. OCT can achieve axial image resolutions of 1 to 15 μm; one to two orders of magnitude higher than standard ultrasound imaging. The image resolution in OCT is determined by the coherence length of the light source and is inversely proportional to its bandwidth. Femtosecond lasers can generate extremely broad bandwidths and have enabled major advances in ultrahigh-resolution OCT imaging. This chapter provides an overview of OCT technology and ultrahigh-resolution OCT imaging using femtosecond lasers.

  19. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers.

    PubMed

    Heidt, Alexander M; Hartung, Alexander; Bosman, Gurthwin W; Krok, Patrizia; Rohwer, Erich G; Schwoerer, Heinrich; Bartelt, Hartmut

    2011-02-14

    We present the first detailed demonstrations of octave-spanning SC generation in all-normal dispersion photonic crystal fibers (ANDi PCF) in the visible and near-infrared spectral regions. The resulting spectral profiles are extremely flat without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi PCF is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. For the first time we confirm the exceptional temporal properties of the generated SC pulses experimentally and demonstrate their applicability in ultrafast transient absorption spectroscopy. The experimental results are in excellent agreement with numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking. To our knowledge, we present the broadest spectra generated in the normal dispersion regime of an optical fiber. PMID:21369202

  20. Automated optic-nerve-head analysis using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manish D.; Harman, Jonathan W.; Kim, Robert; Kirschbaum, Alan R.; Pedersen, Per; Everett, Matthew J.; Wei, Jay

    2002-06-01

    The early identification of glaucomatous development is extremely important for treatment of glaucoma. Analysis of optic-nerve-head features may play a crucial role for early glaucoma diagnostics. Here we propose a critical parameter, viz., nerve tissue area, which may prove to be extremely useful for detection of glaucoma in early stages. We report a novel and robust algorithm for OCT-based automatic, objective extraction of critical optic-nerve-head features such as optic disc, nerve tissue area, and optic cup for the first time.

  1. Concise Review of Optical Coherence Tomography in Clinical Practice

    PubMed Central

    Su, Min-I; Chen, Chun-Yen; Yeh, Hung-I; Wang, Kuang-Te

    2016-01-01

    Optical coherence tomography (OCT) is a novel image modality with higher resolution in the catheterization laboratory. It can differentiate tissue characteristics and provide detailed information, including dissection, tissue prolapse, thrombi, and stent apposition. In this study, we comprehensively reviewed the current pros and cons of OCT clinical applications and presented our clinical experiences associated with the advantages and limitations of this new imaging modality. PMID:27471350

  2. Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity.

    PubMed

    Kam, Jason; Zhang, Qinqin; Lin, Jason; Liu, Jin; Wang, Ruikang K; Rezaei, Kasra

    2016-04-01

    Optical coherence tomography based microangiography (OMAG) is a new, non-invasive imaging modality capable of providing three dimentional (3D) retinal and choroidal microvascular maps without a need for exogenous dye. In this study, we evaluated the retinal and choroidal microvascular architecture of the macula in a patient with hydroxychloroquine (HCQ) toxicity using OMAG. Detailed microvascular information of the retina and the underlying choroid showed loss of parafoveal outer retinal vasculature with sparing of the central fovea vasculature. PMID:27190770

  3. Imaging tamoxifen retinopathy using spectral-domain optical coherence tomography

    PubMed Central

    Caramoy, Albert; Scholz, Paula; Fauser, Sascha; Kirchhof, Bernd

    2011-01-01

    A case of tamoxifen retinopathy examined with spectral-domain optical coherence tomography (SD-OCT) is presented. The typical refractile deposits are located between ganglion cell layer and inner plexiform layer in SD-OCT. A defect on the outer retinal layer with disruption of the photoreceptor layer with sharp edges is seen. The still attached posterior hyaloids gives evidence of other pathomechanism involved in the outer retinal defect than that of macular hole, as suggested in the literature.

  4. Theory, developments and applications of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tomlins, P. H.; Wang, R. K.

    2005-08-01

    In this paper, we review the developments in optical coherence tomography (OCT) for three-dimensional non-invasive imaging. A number of different OCT techniques are discussed in some detail including time-domain, frequency-domain, full-field, quantum and Doppler OCT. A theoretical treatment is given and some relevant comparisons made between various implementations. The current and potential applications of OCT are discussed, with close attention paid to biomedical imaging and its metrological issues.

  5. Optical coherence tomography based microangiography findings in hydroxychloroquine toxicity

    PubMed Central

    Kam, Jason; Zhang, Qinqin; Lin, Jason; Liu, Jin; Rezaei, Kasra

    2016-01-01

    Optical coherence tomography based microangiography (OMAG) is a new, non-invasive imaging modality capable of providing three dimentional (3D) retinal and choroidal microvascular maps without a need for exogenous dye. In this study, we evaluated the retinal and choroidal microvascular architecture of the macula in a patient with hydroxychloroquine (HCQ) toxicity using OMAG. Detailed microvascular information of the retina and the underlying choroid showed loss of parafoveal outer retinal vasculature with sparing of the central fovea vasculature. PMID:27190770

  6. Coherent optical determination of the leaf angle distribution of corn

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Pihlman, M.

    1981-01-01

    A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.

  7. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation

    PubMed Central

    Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin

    2015-01-01

    Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696

  8. Design of a handheld optical coherence microscopy endoscope

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali R.; Liebmann, Erica; Barton, Jennifer K.

    2009-02-01

    Optical Coherence Microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope with a 6 mm diameter tip, 1 mm scan width, and 1 mm imaging depth. This probe will allow noninvasive imaging of fine structural detail in vivo. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. Two scanning doublet lenses relay the stop from the galvonometers to the afocal relay stop. The endoscope optical design consists of an afocal Hopkins relay lens system and a 0.4 NA objective. To allow focusing at various depths in the tissue, the endoscope housing is designed in two pieces screwed together with a fine pitch threads. A small rotation of the outer housing moves the lenses proximal and distal relative to the window, causing the focal location in the tissue to change. The space between the final objective lens and the window is filled with distilled water to avoid misalignment of the focus and coherence gate. A knife edge test was performed and the line spread function FWHM was measured to be 2.25 μm. The MTF has at least 0.3 contrast at a 5 μm line pair. This rigid handheld OCM endoscope will be useful for application ranging from minimally invasive surgical imaging to assessing dysplasia and sun damage in skin.

  9. Optical Coherence Tomography as a Tool for Ocular Dynamics Estimation

    PubMed Central

    Siedlecki, Damian; Kowalik, Waldemar; Kasprzak, Henryk

    2015-01-01

    Purpose. The aim of the study is to demonstrate that the ocular dynamics of the anterior chamber of the eye can be estimated quantitatively by means of optical coherence tomography (OCT). Methods. A commercial high speed, high resolution optical coherence tomographer was used. The sequences of tomographic images of the iridocorneal angle of three subjects were captured and each image from the sequence was processed in MATLAB environment in order to detect and identify the contours of the cornea and iris. The data on pulsatile displacements of the cornea and iris and the changes of the depth of the gap between them were retrieved from the sequences. Finally, the spectral analysis of the changes of these parameters was performed. Results. The results of the temporal and spectral analysis manifest the ocular microfluctuation that might be associated with breathing (manifested by 0.25 Hz peak in the power spectra), heart rate (1–1.5 Hz peak), and ocular hemodynamics (3.75–4.5 Hz peak). Conclusions. This paper shows that the optical coherence tomography can be used as a tool for noninvasive estimation of the ocular dynamics of the anterior segment of the eye, but its usability in diagnostics of the ocular hemodynamics needs further investigations. PMID:26557659

  10. Development of a nonlinear optical measurement-4 coherent imaging system

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Song, Yinglin; Gu, Jihua; Yang, Junyi; Shui, Min; Hou, Dengke; Zhu, Zongjie

    2009-07-01

    After the nonlinear optical phenomena were discovered, people began to research the techniques to detect the optical nonlinearities of materials. In this paper, a new optical nonlinear measurement technique-4f coherent imaging system is recommended. The system has many advantages: single shot real-time measurement, simple experimental apparatus, high sensitivity, being able to detect the magnitude and sign of both nonlinear absorption and refraction at the same time, low requirement of beam spatial distribution, and so on. This paper introduces the theory of the 4f system and makes a detailed review and expounds development and application of the 4f coherent image system. The nerve of the experiment is improving the phase diaphragm. The shape of the diaphragm from the double-slits to the small rectangular object, and transition to a circular aperture, finally forming a circular phase diaphragm, which is a circular aperture in the center add a phase object. Following these diaphragm changes, the sensitivity of the system is greatly improved. The latest developments of the system are series-wound double 4f coherent imaging technique and the time-resolved pump-probe system based on NIT-PO. The time-resolved pump-probe system based on NIT-PO can be used to measure the dynamic characteristics of excited states nonlinear absorption and refraction.

  11. Optical Coherence Tomography for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  12. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography.

    PubMed

    Enfield, Joey; McGrath, James; Daly, Susan M; Leahy, Martin

    2016-08-01

    Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue. PMID:27311423

  13. Evaluation of whole blood coagulation process by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Lin, Jia

    2010-11-01

    This study was to investigate the feasibility of using optical coherence tomography (OCT) to evaluate whole blood coagulation process. Attenuation coefficients and 1/e light penetration depth (D1/e) against time of human whole blood during in vitro clot formation under static were measured from the OCT profiles of reflectance vs depth. The results obtained clearly showed that the optical parameters are able to identify three stages during the in vitro blood clotting process. It is concluded that D1/e measured by OCT is a potential parameter to quantify and follow the liquid-gel transition of blood during clotting.

  14. Optical laser systems at the Linac Coherent Light Source

    DOE PAGESBeta

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  15. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  16. Artery phantoms for intravascular optical coherence tomography: healthy arteries.

    PubMed

    Bisaillon, Charles-Étienne; Dufour, Marc L; Lamouche, Guy

    2011-09-01

    We present a method to make phantoms of coronary arteries for intravascular optical coherence tomography (IV-OCT). The phantoms provide a calibrated OCT response similar to the layered structure of arteries. The optical properties of each layer are achieved with specific concentrations of alumina and carbon black in a silicone matrix. This composition insures high durability and also approximates the elastic properties of arteries. The phantoms are fabricated in a tubular shape by the successive deposition and curing of liquid silicone mixtures on a lathe setup. PMID:21991552

  17. Jade detection and analysis based on optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Chang, Guangming; Flueraru, Costel

    2010-06-01

    Optical coherence tomography is a fundamentally new type of optical sensing technology that can perform high-resolution, cross sectional sensing of the internal structure of materials and biological samples. This work briefly describes its capability of exploring and analyzing the internal structures and textures of various jades. With a depth resolution of 4 μm in jade and penetration range of 5 mm in jade, swept-source OCT could be used as a new powerful instrument to generate 3-D volume data of jade, which is important for applications in jade industry and artwork, particularly for jade detection and classification, counterfeit recognition, and guided artistic carving.

  18. Optical laser systems at the Linac Coherent Light Source

    PubMed Central

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R.

    2015-01-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS. PMID:25931064

  19. The diagnosis of nasopharyngeal carcinoma by optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Du, Y.

    2016-06-01

    We have attempted to explore the intrinsic differences in the optical properties of the nasopharyngeal carcinoma (NPC) and normal tissue by optical coherence tomography (OCT). OCT imaging of normal tissue provided three layers of epithelium, lamina propria, and the brighter interface of basement membrane; while carcinomas disrupted the layered construction embedded in signal-poor images. The morphologies were consistent with histological findings. Sensitivity and specificity were 90% and 100%, respectively. This pilot study demonstrates that NPC could be diagnosed by visualization, which implies that OCT might be potentially used to differentiate normal from NPC tissue in the early stage as an invasive biopsy.

  20. Optical coherence tomography as film thickness measurement technique

    NASA Astrophysics Data System (ADS)

    Manallah, Aissa; Bouafia, Mohamed; Meguellati, Said

    2015-01-01

    Optical coherence tomography (OCT) is a powerful optical method, noninvasive and noncontact diagnostic method. Although it is usually used for medical examinations, particularly in ocular exploration; it can also be used in optical metrology as measure technique. In this work, we use OCT to measure thicknesses of films. In OCT, depth profiles are constructed by measuring the time delay of back reflected light by interferometry measurements. Frequency in k-space is proportional to optical path difference. Then the reflectivity profile is obtained by a Fourier transformation, and the difference between two successive peaks of the resulting spectrum gives the film thickness. Several films, food-type, of different thicknesses were investigated and the results were very accurate.

  1. Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation

    SciTech Connect

    Ferretti, Sara; Andreani, Lucio Claudio; Tuereci, Hakan E.; Gerace, Dario

    2010-07-15

    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.

  2. Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival

    PubMed Central

    Dhalla, Al-Hafeez; Nankivil, Derek; Izatt, Joseph A.

    2012-01-01

    We describe a simple and low-cost technique for resolving the complex conjugate ambiguity in Fourier domain optical coherence tomography (OCT) that is applicable to many swept source OCT (SSOCT) systems. First, we review the principles of coherence revival, wherein an interferometer illuminated by an external cavity tunable laser (ECTL) exhibits interference fringes when the two arms of the interferometer are mismatched by an integer multiple of the laser cavity length. Second, we report observations that the spectral interferogram obtained from SSOCT systems employing certain ECTLs are automatically phase modulated when the arm lengths are mismatched this way. This phase modulation results in a frequency-shifted interferogram, effectively creating an extended-depth heterodyne SSOCT system without the use of acousto-optic or electro-optic modulators. We suggest that this phase modulation may be caused by the ECTL cavity optical pathlength varying slightly over the laser sweep, and support this hypothesis with numerical simulations. We also report on the successful implementation of this technique with two commercial swept source lasers operating at 840nm and 1040nm, with sweep rates of 8kHz and 100kHz respectively. The extended imaging depth afforded by this technique was demonstrated by measuring the sensitivity fall-off profiles of each laser with matched and mismatched interferometer arms. The feasibility of this technique for clinical systems is demonstrated by imaging the ocular anterior segments of healthy human volunteers. PMID:22435108

  3. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  4. Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography

    PubMed Central

    Li, Yan; Shekhar, Raj; Huang, David

    2006-01-01

    Objective To map corneal thickness before and after LASIK with optical coherence tomography (OCT). Design Cross-sectional observational study. Participants Forty-two eyes of 21 normal subjects undergoing LASIK. Methods A high-speed (2000 axial scans/second) 1.3-μm-wavelength corneal and anterior segment OCT prototype was used for corneal scanning. The scan pattern consisted of 10-mm radial lines on 8 meridians centered on the vertex reflection. The entire scan pattern of 1024 a-scans was acquired in 0.5 seconds. We developed automated computer processing for 3-dimensional corneal reconstruction and measurement. Corneal thickness was measured normal to the anterior surface and presented as color pachymetry maps and zonal statistics. The maps were divided into a central zone (<2 mm) and 3 annular areas (pericentral, 2–5 mm; transitional, 5–7 mm; peripheral, 7–10 mm), which were further divided into quadrantal zones. The average, minimum, and maximum corneal thicknesses were computed for zones within the 7-mm diameter. Optical coherence tomography and ultrasound pachymetry were measured 3 times at the preoperative and 3-month postoperative visits. Reproducibility was assessed by the pooled standard deviations (SDs) of the repeated measurements. Main Outcome Measures Optical coherence tomography pachymetric map and zonal statistic, and ultrasound pachymetry. Results Before LASIK, central corneal thicknesses (CCTs) were 546.9±29.4 μm (mean ± SD) for OCT and 553.3±33.0 μm for ultrasound. After LASIK, CCTs were 513.7±44.5 μm for OCT and 498±46.6 μm for ultrasound. Optical coherence tomography and ultrasound CCT were highly correlated (Pearson correlation r = 0.97 before LASIK and 0.98 afterwards). Optical coherence tomography CCT was slightly less than ultrasound CCT before surgery (mean difference, −6.4 μm; 95% limits of agreement, −23.2 to 10.4 μm) but slightly greater after LASIK (15.7 μm; −1.6 to 33 μm). These differences were statistically

  5. Direct Observation of the Coherent Nuclear Response after the Absorption of a Photon

    NASA Astrophysics Data System (ADS)

    Liebel, M.; Schnedermann, C.; Bassolino, G.; Taylor, G.; Watts, A.; Kukura, P.

    2014-06-01

    How molecules convert light energy to perform a specific transformation is a fundamental question in photophysics. Ultrafast spectroscopy reveals the kinetics associated with electronic energy flow, but little is known about how absorbed photon energy drives nuclear motion. Here we used ultrabroadband transient absorption spectroscopy to monitor coherent vibrational energy flow after photoexcitation of the retinal chromophore. In the proton pump bacteriorhodopsin, we observed coherent activation of hydrogen-out-of-plane wagging and backbone torsional modes that were replaced by unreactive coordinates in the solution environment, concomitant with a deactivation of the reactive relaxation pathway.

  6. Construction of photon-added spin coherent states and their statistical properties

    SciTech Connect

    Berrada, K.

    2015-07-15

    In the present work, we construct and investigate some properties of the photon-added spin coherent states (PA-SCSs). The Klauder’s minimal set of conditions required to obtain coherent states are discussed. We give the analytical form for the positive weight function in the resolution of unity. Finally, we examine the statistical properties of the PA-SCSs in terms of different parameters using the Mandel’s Q-parameter. All these quantities are expressed in terms of hypergeometric and Meijer G-functions, and so, the PA-SCSs are a new field of application for these functions.

  7. Scattering of two coherent photons inside a one-dimensional coupled-resonator waveguide

    SciTech Connect

    Alexanian, Moorad

    2010-01-15

    We consider the coherent propagation of n photons in a one-dimensional coupled-resonator waveguide for n=2,3,4.... The scattering by a three-level atom, which resides in one of the resonators of the waveguide and gives rise to only two-photon transitions, results in a perfect quantum switch that allows either total reflection or total transmission. This is to be contrasted to the case of a single photon inside a one-dimensional resonant waveguide scattered by a two-level system with single-photon transitions where only total reflection can be accomplished; viz. the system behaves only as a perfect mirror but not as an ideal, transparent medium.

  8. Toward optical signal processing using photonic reservoir computing.

    PubMed

    Vandoorne, Kristof; Dierckx, Wouter; Schrauwen, Benjamin; Verstraeten, David; Baets, Roel; Bienstman, Peter; Van Campenhout, Jan

    2008-07-21

    We propose photonic reservoir computing as a new approach to optical signal processing in the context of large scale pattern recognition problems. Photonic reservoir computing is a photonic implementation of the recently proposed reservoir computing concept, where the dynamics of a network of nonlinear elements are exploited to perform general signal processing tasks. In our proposed photonic implementation, we employ a network of coupled Semiconductor Optical Amplifiers (SOA) as the basic building blocks for the reservoir. Although they differ in many key respects from traditional software-based hyperbolic tangent reservoirs, we show using simulations that such a photonic reservoir can outperform traditional reservoirs on a benchmark classification task. Moreover, a photonic implementation offers the promise of massively parallel information processing with low power and high speed. PMID:18648434

  9. Dynamics and Coherence of Cold Atoms in Atom Optics Billiards

    NASA Astrophysics Data System (ADS)

    Grunzweig, Tzahi

    This thesis describes basic experimental research of dynamics and loss of hyperfine-states-coherence of ultra-cold atoms in atom-optics billiards. Ultra-cold atoms trapped in an optical-dipole trap and prepared in a coherent superposition of their hyperfine split ground-states, decohere as they interact with the environment. Here we realized microwave spectroscopy as a tool to study dynamics of ensembles of trapped atoms, with a controlled environment. First, we demonstrated that under the special conditions of a dark optical trap, Ramsey spectroscopy can be interpreted as Loschmidt echo (or fidelity), which is a measure of evolution of hyperfine coherence as a function of time. The detuning of the trapping laser is used to change the "perturbation", which causes a decay in the Ramsey fringe contrast. However, revivals of fringe contrast are observed in contrast to the predictions of random matrix theory. We suggest these system specific revivals originate from dynamical resonances in the fidelity. To minimize inhomogeneous effects we used a microwave echo spectroscopy technique. We measured the coherence properties of the system under different perturbation strengths. Two different regimes were observed: First, a perturbative regime in which the decay of echo coherence is non-monotonic and partial revivals of coherence were observed. These revivals are more pronounced in traps with mixed dynamics as compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction can be made between chaotic traps and traps with mixed dynamics. Next, by using compensating techniques to minimize the inherent trap perturbations, and application of artificial, tailored perturbations we showed that the decay of coherence is closely related to the symmetry properties of the perturbations. We considered two generic perturbations: speckle

  10. Ultraflat-top midinfrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ben Salem, Amine; Diouf, Mbaye; Cherif, Rim; Wague, Ahmadou; Zghal, Mourad

    2016-06-01

    We report more than two octave spanning mid-IR flat-top supercontinuum (SC) generation using all normal As2S5-borosilicate hybrid photonic crystal fiber. Our design is based on a chalcogenide As2S5 photonic crystal fiber (PCF), where the first ring composed of six air holes is made by borosilicate glass. By injecting 50-fs pulses with 1.6 nJ energy at 2.5 μm in the all normal dispersion (ANDi) regime, a flat-top broadband SC extending from 1 to 5 μm with high-spectral flatness of 8 dB is obtained in only 4-mm fiber length. To the best of our knowledge, we present the broadest flat mid-IR spectrum generated in the ANDi regime of an optical fiber. The self-phase modulation and the optical wave breaking are identified as the main broadening mechanisms. The obtained broadband light source can be potentially used in the field of spectroscopy and in high-resolution optical coherent tomography owing to the high-spectral SC flatness generated by our designed fiber.

  11. A miniature forward-imaging optical coherence tomography (OCT) probe

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Shen, Jin-Hui

    2012-03-01

    Optical coherence tomography (OCT) has had a tremendous global health impact upon the current ability to diagnose, treat, and monitor multiple eye diseases. We propose that a miniature forward-imaging OCT probe can be developed for real-time ocular imaging. A miniature 25-gauge forward-imaging probe was designed and developed to use with an 850 nm spectral-domain optical coherence tomography (SDOCT) system (Bioptigen, Inc. Durham, NC). Imaging parameters were determined. Ocular tissues were examined with the miniature OCT probe. A miniature SDOCT probe was developed with the scanning driver within the hand piece. The SDOCT fiber-scanning probe maximally transmitted power of 800 μW. The scanning range was 3 mm when the probe tip was held 3 to 5 mm from the tissue surface. The axial resolution was 6 μm and the lateral resolution was 30-35 μm. The 25-gauge forward-imaging probe was used to image cellophane tape, eyelid skin, cornea, conjunctiva, sclera, iris, anterior lens, anterior chamber angle, retina, retinal tear, retinal detachment, optic nerve head, and optic nerve sheath. Images obtained from the miniature probe appeared similar to images from a 3 mm scanning range of a commercial large handheld OCT probe (Bioptigen, Inc. Durham, NC).

  12. Phase-coherent detection of an optical dipole force by Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Biercuk, M. J.; Uys, H.; Britton, J. W.; Vandevender, A. P.; Bollinger, J. J.

    2011-05-01

    We report phase-coherent Doppler detection of optical dipole forces using large ion crystals in a Penning trap. The technique is based on laser Doppler velocimetry using a cycling transition in $^{9}$Be$^{+}$ near 313 nm and the center-of-mass (COM) ion motional mode. The optical dipole force is tuned to excite the COM mode, and measurements of photon arrival times synchronized with the excitation potential show oscillations with a period commensurate with the COM motional frequency. Experimental results compare well with a quantitative model for a driven harmonic oscillator. This technique permits characterization of motional modes in ion crystals; the measurement of both frequency and phase information relative to the driving force is a key enabling capability -- comparable to lockin detection -- providing access to a parameter that is typically not available in time-averaged measurements. This additional information facilitates discrimination of nearly degenerate motional modes.

  13. Phase-coherent detection of an optical dipole force by Doppler velocimetry.

    PubMed

    Biercuk, M J; Uys, H; Britton, J W; Vandevender, A P; Bollinger, J J

    2011-05-23

    We report phase-coherent Doppler detection of optical dipole forces using large ion crystals in a Penning trap. The technique is based on laser Doppler velocimetry using a cycling transition in 9Be+ near 313 nm and the center-of-mass (COM) ion motional mode. The optical dipole force is tuned to excite the COM mode, and measurements of photon arrival times synchronized with the excitation potential show oscillations with a period commensurate with the COM motional frequency. Experimental results compare well with a quantitative model for a driven harmonic oscillator. This technique permits characterization of motional modes in ion crystals; the measurement of both frequency and phase information relative to the driving force is a key enabling capability--comparable to lockin detection - providing access to a parameter that is typically not available in time-averaged measurements. This additional information facilitates discrimination of nearly degenerate motional modes. PMID:21643288

  14. Optical coupling elements for coherent optical multiport receivers

    NASA Astrophysics Data System (ADS)

    Langenhorst, Ralf

    1992-05-01

    Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.

  15. Invited Article: A compact optically coherent fiber frequency comb

    NASA Astrophysics Data System (ADS)

    Sinclair, L. C.; Deschênes, J.-D.; Sonderhouse, L.; Swann, W. C.; Khader, I. H.; Baumann, E.; Newbury, N. R.; Coddington, I.

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ˜200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  16. Preparing displaced adults for the optics/photonics workforce

    NASA Astrophysics Data System (ADS)

    Hull, Darrell M.

    2000-06-01

    As the optics/photonics industry continues to grow, the demand for workers is assumed to increase proportionally. Empirical data seem to support this assumption. This increase presents a challenge to optics/photonics education, since they control and assume responsibility for a key factor in the ability of industry to further expand. At the same time, the U.S. government through the Department of Labor and the Workforce Investment Act has requested that communities enact programs for displaced adults to transition to the workplace. A program of study is provided that would assist adults in making this transition from unemployment to the optics/photonics industry, with the necessary general work skills, occupational optics/photonics skills, and ability to progress on the job with academic foundations in math and science.

  17. Swept-source anatomic optical coherence elastography of porcine trachea

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.

    2016-02-01

    Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.

  18. Optically addressable nuclear spins in a solid with a six-hour coherence time.

    PubMed

    Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J

    2015-01-01

    Space-like separation of entangled quantum states is a central concept in fundamental investigations of quantum mechanics and in quantum communication applications. Optical approaches are ubiquitous in the distribution of entanglement because entangled photons are easy to generate and transmit. However, extending this direct distribution beyond a range of a few hundred kilometres to a worldwide network is prohibited by losses associated with scattering, diffraction and absorption during transmission. A proposal to overcome this range limitation is the quantum repeater protocol, which involves the distribution of entangled pairs of optical modes among many quantum memories stationed along the transmission channel. To be effective, the memories must store the quantum information encoded on the optical modes for times that are long compared to the direct optical transmission time of the channel. Here we measure a decoherence rate of 8 × 10(-5) per second over 100 milliseconds, which is the time required for light transmission on a global scale. The measurements were performed on a ground-state hyperfine transition of europium ion dopants in yttrium orthosilicate ((151)Eu(3+):Y2SiO5) using optically detected nuclear magnetic resonance techniques. The observed decoherence rate is at least an order of magnitude lower than that of any other system suitable for an optical quantum memory. Furthermore, by employing dynamic decoupling, a coherence time of 370 ± 60 minutes was achieved at 2 kelvin. It has been almost universally assumed that light is the best long-distance carrier for quantum information. However, the coherence time observed here is long enough that nuclear spins travelling at 9 kilometres per hour in a crystal would have a lower decoherence with distance than light in an optical fibre. This enables some very early approaches to entanglement distribution to be revisited, in particular those in which the spins are transported rather than the light

  19. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector

    PubMed Central

    Bina, Matteo; Allevi, Alessia; Bondani, Maria; Olivares, Stefano

    2016-01-01

    Phase estimation represents a crucial challenge in many fields of Physics, ranging from Quantum Metrology to Quantum Information Processing. This task is usually pursued by means of interferometric schemes, in which the choice of the input states and of the detection apparatus is aimed at minimizing the uncertainty in the estimation of the relative phase between the inputs. State discrimination protocols in communication channels with coherent states also require the monitoring of the optical phase. Therefore, the problem of phase estimation is relevant to face the issue of coherent states discrimination. Here we consider a quasi-optimal Kennedy-like receiver, based on the interference of two coherent signals, to be discriminated, with a reference local oscillator. By means of the Bayesian processing of a small amount of data drawn from the outputs of the shot-by-shot discrimination protocol, we demonstrate the achievement of the minimum uncertainty in phase estimation, also in the presence of uniform phase noise. Moreover, we show that the use of photon-number resolving detectors in the receiver improves the phase-estimation strategy, especially with respect to the usually employed on/off detectors. From the experimental point of view, this comparison is realized by employing hybrid photodetectors. PMID:27189140

  20. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector.

    PubMed

    Bina, Matteo; Allevi, Alessia; Bondani, Maria; Olivares, Stefano

    2016-01-01

    Phase estimation represents a crucial challenge in many fields of Physics, ranging from Quantum Metrology to Quantum Information Processing. This task is usually pursued by means of interferometric schemes, in which the choice of the input states and of the detection apparatus is aimed at minimizing the uncertainty in the estimation of the relative phase between the inputs. State discrimination protocols in communication channels with coherent states also require the monitoring of the optical phase. Therefore, the problem of phase estimation is relevant to face the issue of coherent states discrimination. Here we consider a quasi-optimal Kennedy-like receiver, based on the interference of two coherent signals, to be discriminated, with a reference local oscillator. By means of the Bayesian processing of a small amount of data drawn from the outputs of the shot-by-shot discrimination protocol, we demonstrate the achievement of the minimum uncertainty in phase estimation, also in the presence of uniform phase noise. Moreover, we show that the use of photon-number resolving detectors in the receiver improves the phase-estimation strategy, especially with respect to the usually employed on/off detectors. From the experimental point of view, this comparison is realized by employing hybrid photodetectors. PMID:27189140