Science.gov

Sample records for coilin phosphorylation mediates

  1. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  2. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein.

    PubMed

    Hebert, M D; Szymczyk, P W; Shpargel, K B; Matera, A G

    2001-10-15

    Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN complex to Cajal bodies. Mutation or deletion of specific RG dipeptide residues within coilin inhibits the interaction both in vivo and in vitro. Interestingly, GST-pulldown experiments show that coilin also binds directly to SmB'. Competition studies show that coilin competes with SmB' for binding sites on SMN. Ectopic expression of SMN and coilin constructs in mouse embryonic fibroblasts lacking endogenous coilin confirms that recruitment of SMN and splicing snRNPs to Cajal bodies depends on the coilin C-terminal RG motif. A cardinal feature of SMA patient cells is a defect in the targeting of SMN to nuclear foci; our results uncover a role for coilin in this process. PMID:11641277

  3. Human UBL5 protein interacts with coilin and meets the Cajal bodies

    SciTech Connect

    Švéda, Martin; Častorálová, Markéta; Lipov, Jan; Ruml, Tomáš; Knejzlík, Zdeněk

    2013-06-28

    Highlights: •Localization of the UBL5 protein in Hela cells was determined by fluorescence microscopy and biochemical fractionation. •Colocalization of UBL5 with Cajal bodies was observed. •Interaction of UBL5 with coilin was proven by pull-down. -- Abstract: UBL5 protein, a structural homologue of ubiquitin, was shown to be involved in pre-mRNA splicing and transcription regulation in yeast and Caenorhabditis elegans, respectively. However, role of the UBL5 human orthologue is still elusive. In our study, we observed that endogenous human UBL5 that was localized in the nucleus, partially associates with Cajal bodies (CBs), nuclear domains where spliceosomal components are assembled. Simultaneous expression of exogenous UBL5 and coilin resulted in their nuclear colocalization in HeLa cells. The ability of UBL5 to interact with coilin was proved by GST pull-down assay using coilin that was either in vitro translated or extracted from HEK293T cells. Further, our results showed that the UBL5–coilin interaction was not influenced by coilin phosphorylation. These results suggest that UBL5 could be targeted to CBs via its interaction with coilin. Relation between human UBL5 protein and CBs is in the agreement with current observations about yeast orthologue Hub1 playing important role in alternative splicing.

  4. Coilin: The first 25 years

    PubMed Central

    Machyna, Martin; Neugebauer, Karla M; Staněk, David

    2015-01-01

    Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments. PMID:25970135

  5. Coilin Shuttles between the Nucleus and Cytoplasm In Xenopus Oocytes

    PubMed Central

    Bellini, Michel; Gall, Joseph G.

    1999-01-01

    Coiled bodies are discrete nuclear organelles often identified by the marker protein p80-coilin. Because coilin is not detected in the cytoplasm by immunofluorescence and Western blotting, it has been considered an exclusively nuclear protein. In the Xenopus germinal vesicle (GV), most coilin actually resides in the nucleoplasm, although it is highly concentrated in 50–100 coiled bodies. When affinity-purified anti-coilin antibodies were injected into the cytoplasm of oocytes, they could be detected in coiled bodies within 2–3 h. Coiled bodies were intensely labeled after 18 h, whereas other nuclear organelles remained negative. Because the nuclear envelope does not allow passive diffusion of immunoglobulins, this observation suggests that anti-coilin antibodies are imported into the nucleus as an antigen–antibody complex with coilin. Newly synthesized coilin is not required, because cycloheximide had no effect on nuclear import and subsequent targeting of the antibodies. Additional experiments with myc-tagged coilin and myc-tagged pyruvate kinase confirmed that coilin is a shuttling protein. The shuttling of Nopp140, NO38/B23, and nucleolin was easily demonstrated by the targeting of their respective antibodies to the nucleoli, whereas anti-SC35 did not enter the germinal vesicle. We suggest that coilin, perhaps in association with Nopp140, may function as part of a transport system between the cytoplasm and the coiled bodies. PMID:10512877

  6. SMN and coilin negatively regulate dyskerin association with telomerase RNA.

    PubMed

    Poole, Aaron R; Hebert, Michael D

    2016-01-01

    Telomerase is a ribonucleoprotein comprising telomerase RNA and associated proteins. The formation of the telomerase holoenzyme takes place in the Cajal body (CB), a subnuclear domain that participates in the formation of ribonucleoproteins. CBs also contribute to the delivery of telomerase to telomeres. The protein WRAP53 is enriched within the CB and is instrumental for the targeting of telomerase RNA to CBs. Two other CB proteins, SMN and coilin, are also suspected of taking part in some aspect of telomerase biogenesis. Here we demonstrate newly discovered associations between SMN and coilin with telomerase components, and further show that reduction of SMN or coilin is correlated with increased association of telomerase RNA with one these components, dyskerin. These findings argue that SMN and coilin may negatively regulate the formation of telomerase. Furthermore, clinically defined SMN mutants found in individuals with spinal muscular atrophy are altered in their association with telomerase complex proteins. Additionally, we observe that a coilin derivative also associates with dyskerin, and the amount of this protein in the complex is regulated by SMN, WRAP53 and coilin levels. Collectively, our findings bolster the link between SMN, coilin and the coilin derivative in the biogenesis of telomerase. PMID:27215323

  7. SMN and coilin negatively regulate dyskerin association with telomerase RNA

    PubMed Central

    Poole, Aaron R.

    2016-01-01

    ABSTRACT Telomerase is a ribonucleoprotein comprising telomerase RNA and associated proteins. The formation of the telomerase holoenzyme takes place in the Cajal body (CB), a subnuclear domain that participates in the formation of ribonucleoproteins. CBs also contribute to the delivery of telomerase to telomeres. The protein WRAP53 is enriched within the CB and is instrumental for the targeting of telomerase RNA to CBs. Two other CB proteins, SMN and coilin, are also suspected of taking part in some aspect of telomerase biogenesis. Here we demonstrate newly discovered associations between SMN and coilin with telomerase components, and further show that reduction of SMN or coilin is correlated with increased association of telomerase RNA with one these components, dyskerin. These findings argue that SMN and coilin may negatively regulate the formation of telomerase. Furthermore, clinically defined SMN mutants found in individuals with spinal muscular atrophy are altered in their association with telomerase complex proteins. Additionally, we observe that a coilin derivative also associates with dyskerin, and the amount of this protein in the complex is regulated by SMN, WRAP53 and coilin levels. Collectively, our findings bolster the link between SMN, coilin and the coilin derivative in the biogenesis of telomerase. PMID:27215323

  8. Reduced Viability, Fertility and Fecundity in Mice Lacking the Cajal Body Marker Protein, Coilin

    PubMed Central

    Walker, Michael P.; Tian, Liping; Matera, A. Gregory

    2009-01-01

    Background Coilin is the signature protein of the Cajal body, a conserved nuclear organelle involved in multiple aspects of small ribonucleoprotein (RNP) biogenesis. Coilin is required for Cajal body homeostasis in both plants and animals. Mice lacking coilin are viable when the mutation is crossed to an outbred strain but only partially viable when crossed to inbred lines. Methodology/Principal Findings In order to clarify this issue, we backcrossed the coilin deletion onto the C57BL6/J background for ten generations and then investigated the consequences of coilin removal on overall viability and reproductive success. We conclude that semi-lethal phenotype observed in mixed-background crosses is due to loss of the Coilin gene (or a very tightly-linked locus). Interestingly, coilin knockout embryos die relatively late in gestation, between E13.5 and birth. We show that the maternal contribution of coilin is not important for organismal viability. Importantly, coilin knockout mice display significant fertility and fecundity defects. Mutant males that escape the embryonic lethality display reduced testis size, however, both males and females contribute to the observed reduction in reproductive fitness. Conclusions/Significance The evolutionary conservation of coilin from plants to animals suggests that the protein plays an important role, perhaps coordinating the activities of various RNA-processing machineries. Our observations are consistent with the idea that coilin functions to ensure robust organismal development, especially during periods of rapid growth. PMID:19587784

  9. Plant Coilin: Structural Characteristics and RNA-Binding Properties

    PubMed Central

    Protopopova, Anna; Yaminsky, Igor; Arutiunian, Alexander; Love, Andrew J.; Taliansky, Michael; Kalinina, Natalia

    2013-01-01

    Cajal bodies (CBs) are dynamic subnuclear compartments involved in the biogenesis of ribonucleoproteins. Coilin is a major structural scaffolding protein necessary for CB formation, composition and activity. The predicted secondary structure of Arabidopsis thaliana coilin (Atcoilin) suggests that the protein is composed of three main domains. Analysis of the physical properties of deletion mutants indicates that Atcoilin might consist of an N-terminal globular domain, a central highly disordered domain and a C-terminal domain containing a presumable Tudor-like structure adjacent to a disordered C terminus. Despite the low homology in amino acid sequences, a similar type of domain organization is likely shared by human and animal coilin proteins and coilin-like proteins of various plant species. Atcoilin is able to bind RNA effectively and in a non-specific manner. This activity is provided by three RNA-binding sites: two sets of basic amino acids in the N-terminal domain and one set in the central domain. Interaction with RNA induces the multimerization of the Atcoilin molecule, a consequence of the structural alterations in the N-terminal domain. The interaction with RNA and subsequent multimerization may facilitate coilin’s function as a scaffolding protein. A model of the N-terminal domain is also proposed. PMID:23320094

  10. Structure, expression and chromosomal localization of human p80-coilin gene.

    PubMed Central

    Chan, E K; Takano, S; Andrade, L E; Hamel, J C; Matera, A G

    1994-01-01

    Coiled bodies (CBs) are non-capsular nuclear bodies with a diameter of 0.3-1 micron and appear to be composed of coiled fibrils. Human autoantibodies to CBs recognize an 80-kD nuclear protein highly enriched in CBs, and this protein has been named p80-coilin. CBs are known to assemble and disassemble during the cell cycle, with the highest number of CBs occurring at mid to late G1 where p80-coilin is assembled into several small nuclear body-like structures. In S and G2 phases, CBs become larger and their number decreases and often they are undetectable during mitosis. Using a human autoantibody as a probe for expression cloning, we initially isolated a partial cDNA encoding p80-coilin. In this report, the 5' end of the complete cDNA for p80-coilin was obtained using the 5'-RACE (rapid amplification of cDNA ends) methodology. The size of the reconstructed full-length cDNA corresponds to the 2.7-kb mRNA detected in Northern blot analysis. The complete p80-coilin protein consists of 576 amino acids with a predicted molecular mass of 62,608. A putative p80-coilin pseudogene was also detected during the rescreening of p80-coilin cDNA. To confirm the validity of the cDNA sequence, three overlapping genomic DNA clones representing the human p80-coilin gene were selected for further analysis. The complete gene for p80-coilin contains 7 exons spanning approximately 25kb. Sequence analysis of exons 1 and 2 in genomic DNA clones confirmed the accuracy of the 5' cDNA sequence derived from the 5'-RACE procedure. Furthermore, the human p80-coilin gene was localized to chromosome 17q22-23 by fluorescence in situ hybridization. Images PMID:7971277

  11. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    PubMed

    Kethidi, Damu R; Li, Yiping; Palli, Subba R

    2006-03-01

    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  12. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    SciTech Connect

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  13. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance

    PubMed Central

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis. PMID:25477378

  14. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana

    PubMed Central

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L.; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J. M.; Matzke, Marjori

    2016-01-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  15. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana.

    PubMed

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J M; Matzke, Marjori

    2016-08-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  16. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo. PMID:14512875

  17. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  18. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.

    PubMed

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li2CO3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li2CO3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity. PMID:24950409

  19. XGef Mediates Early CPEB Phosphorylation during Xenopus Oocyte Meiotic Maturation

    PubMed Central

    Martínez, Susana E.; Yuan, Lei; Lacza, Charlemagne; Ransom, Heather; Mahon, Gwendolyn M.; Whitehead, Ian P.; Hake, Laura E.

    2005-01-01

    Polyadenylation-induced translation is an important regulatory mechanism during metazoan development. During Xenopus oocyte meiotic progression, polyadenylation-induced translation is regulated by CPEB, which is activated by phosphorylation. XGef, a guanine exchange factor, is a CPEB-interacting protein involved in the early steps of progesterone-stimulated oocyte maturation. We find that XGef influences early oocyte maturation by directly influencing CPEB function. XGef and CPEB interact during oogenesis and oocyte maturation and are present in a c-mos messenger ribonucleoprotein (mRNP). Both proteins also interact directly in vitro. XGef overexpression increases the level of CPEB phosphorylated early during oocyte maturation, and this directly correlates with increased Mos protein accumulation and acceleration of meiotic resumption. To exert this effect, XGef must retain guanine exchange activity and the interaction with CPEB. Overexpression of a guanine exchange deficient version of XGef, which interacts with CPEB, does not enhance early CPEB phosphorylation. Overexpression of a version of XGef that has significantly reduced interaction with CPEB, but retains guanine exchange activity, decreases early CPEB phosphorylation and delays oocyte maturation. Injection of XGef antibodies into oocytes blocks progesterone-induced oocyte maturation and early CPEB phosphorylation. These findings indicate that XGef is involved in early CPEB activation and implicate GTPase signaling in this process. PMID:15635100

  20. Negative regulation of Vps34 by Cdk mediated phosphorylation

    PubMed Central

    Furuya, Tsuyoshi; Kim, Minsu; Lipinski, Marta; Li, Juying; Kim, Dohoon; Lu, Tao; Shen, Yong; Rameh, Lucia; Yankner, Bruce; Tsai, Li-Huei; Yuan, Junying

    2010-01-01

    Summary Vps34 (vacuolar protein sorting 34) complexes, the class III PtdIns3 kinase, specifically phosphorylate the D3-position of PtdIns to produce PtdIns3P. Vps34 is involved in the control of multiple key intracellular membrane trafficking pathways including endocytic sorting and autophagy. In mammalian cells, Vps34 interacts with Beclin 1, an orthologue of Atg6 in yeast, to regulate the production of PtdIns3P and autophagy. We show that Vps34 is phosphorylated on Thr159 by Cdk1, which negatively regulates its interaction with Beclin1 during mitosis. Cdk5/p25, a neuronal cdk shown to play a role in Alzheimer’s disease, can also phosphorylate Thr159 of Vps34. Phosphorylation of Vps34 on Thr159 inhibits its interaction with Beclin 1. We propose that phosphorylation of Thr159 in Vps34 is a key regulatory mechanism that controls the class III PtdIns3 kinase activity in cell cycle progression, development and human diseases including neurodegeneration and cancers. PMID:20513426

  1. Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43

    PubMed Central

    Gauthier-Kemper, Anne; Igaev, Maxim; Sündermann, Frederik; Janning, Dennis; Brühmann, Jörg; Moschner, Katharina; Reyher, Hans-Jürgen; Junge, Wolfgang; Glebov, Konstantin; Walter, Jochen; Bakota, Lidia; Brandt, Roland

    2014-01-01

    Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43. PMID:25165142

  2. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission.

    PubMed

    Jungas, Thomas; Perchey, Renaud T; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Davy, Alice

    2016-08-29

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  3. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  4. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection

    PubMed Central

    Hurt, K. Joseph; Sezen, Sena F.; Lagoda, Gwen F.; Musicki, Biljana; Rameau, Gerald A.; Snyder, Solomon H.; Burnett, Arthur L.

    2012-01-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor l-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction. PMID:23012472

  5. Serine 133 phosphorylation is not required for hippocampal CREB-mediated transcription and behavior

    PubMed Central

    Briand, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.

    2015-01-01

    The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the activation of CREB. However, the importance of phosphorylation for CREB binding to DNA and subsequent gene transcription in vivo is controversial. To definitively address the role of CREB phosphorylation in gene transcription and learning and memory, we derived mutant mice lacking the Ser133 phosphorylation site. These mice exhibit normal CREB-mediated gene transcription for a number of genes implicated in learning and memory processes. Furthermore these mice have no deficits in hippocampus- or striatum-dependent learning. Strikingly, our findings show that CREB phosphorylation at Ser133 is not necessary for CREB binding to CRE sites, CREB-mediated transcription, or CREB-mediated behavioral phenotypes associated with learning and memory. PMID:25593297

  6. PSD-93 MEDIATES TYROSINE-PHOSPHORYLATION OF THE N-METHYL-D-ASPARTATE RECEPTORS

    PubMed Central

    Sato, Yuko; Tao, Yuan-Xiang; Su, Qingning; Johns, Roger A

    2009-01-01

    Src family protein kinases (SFKs)-mediated tyrosine-phosphorylation regulates N-methyl-D-aspartate (NMDA) receptor synaptic function. Some members of the membrane-associated guanylate kinase (MAGUK) family of proteins bind to both SFKs and NMDA receptors, but it is unclear whether the MAGUK family of proteins is required for SFKs-mediated tyrosine-phosphorylation of the NMDA receptors. Here, we showed by co-immunoprecipitation that PSD-93, a member of the MAGUK family of proteins, interacts with the NMDA receptor subunits NR2A and NR2B as well as with Fyn, a member of the SFKs, in mouse cerebral cortex. Using a biochemical fractionation approach to isolate subcellular compartments revealed that the expression of Fyn, but not of other members of the SFKs (Lyn, Src, and Yes), was significantly decreased in synaptosomal membrane fractions derived from the cerebral cortex of PSD-93 knockout mice. Interestingly, we found that PSD-93 disruption causes reduction of tyrosine-phosphorylated NR2A and NR2B in the same fraction. Moreover, PSD-93 deletion markedly blocked the SFKs-mediated increase in tyrosine-phosphorylated NR2A and NR2B through the protein kinase C pathway after induction with 4β-PMA in cultured cortical neurons. Our findings indicate that PSD-93 appears to mediate tyrosine-phosphorylation of the NMDA receptors and synaptic localization of Fyn. PMID:18423999

  7. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels

    PubMed Central

    Sozio, Margaret S.; Shin, Eric; Zhao, Zhenwen; Xu, Yan; Ross, Ruth A.; Zeng, Yan; Crabb, David W.

    2010-01-01

    Ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMP-activated protein kinase (AMPK). This study shows that the inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of the phosphorylation of upstream kinases and the activation of protein phosphatase 2A (PP2A).Inhibition of AMPK phosphorylation by palmitate was attributed to ceramide-dependent PP2A activation. We hypothesized that the inhibitory effect of ethanol on AMPK phosphorylation was mediated partly through the generation of ceramide. The effect of ethanol and inhibitors of ceramide synthesis on AMPK phosphorylation, ceramide levels, and PP2A activity were assessed in rat hepatoma cells (H4IIEC3). The effect of ethanol on hepatic ceramide levels was also studied in C57BL/6J mice fed the Lieber-DeCarli diet. In H4IIEC3 cells, ceramide reduced AMPK phosphorylation when they were treated for between 4 and 12 h. The basal level of AMPK phosphorylation in hepatoma cells was increased with the treatment of ceramide synthase inhibitor, fumonisin B1. Ethanol treatment significantly increased cellular ceramide content and PP2A activity by ∼18–23%, when the cells were treated with ethanol for between 4 and 12 h. These changes in intracellular ceramide concentrations and PP2A activity correlated with the time course over which ethanol inhibited AMPK phosphorylation. The activation of PP2A and inhibition of AMPK phosphorylation caused by ethanol was attenuated by fumonisin B1 and imipramine, an acid sphingomyelinase (SMase) inhibitor. There was a significant increase in the levels of ceramide and acid SMase mRNA in the livers of ethanol-fed mice compared with controls. We concluded that the effect of ethanol on AMPK appears to be mediated in part through increased cellular levels of ceramide and activation of PP2A. PMID:20224005

  8. Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint.

    PubMed

    Kim, J M; Kakusho, N; Yamada, M; Kanoh, Y; Takemoto, N; Masai, H

    2008-05-29

    Cdc7 kinase is evolutionarily conserved and is involved in initiation and progression of DNA replication. However, roles of Cdc7 in checkpoint responses remain largely unknown. In this study, we show that deletion of the Cdc7 genes in mouse embryonic stem (ES) cells abrogates hydroxyurea (HU)- or UV-induced activation of Chk1. HU-induced Chk1 activation is also impaired in human cancer cell lines in which Cdc7 is depleted by siRNA, and Cdc7-depleted cells are more sensitive to HU treatment. In contrast, ATR and Rad17 are relocated to chromatin in these cells following HU treatment, indicating that stalled DNA replication forks are detected normally. Cdc7-depleted cells exhibit defects in chromatin association and phosphorylation of Claspin, suggesting that Cdc7 exerts its effect at least partially through Claspin. Consistent with this prediction, Cdc7 interacts with and phosphorylates Claspin. We propose that Cdc7 is required for activation of the ATR-Chk1 checkpoint pathway through regulation of Claspin. PMID:18084324

  9. MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival.

    PubMed

    Yu, Yung-Luen; Chiang, Yun-Jung; Chen, Yu-Chun; Papetti, Michael; Juo, Chiun-Gung; Skoultchi, Arthur I; Yen, Jeffrey J Y

    2005-08-19

    In the interleukin 3-dependent hematopoietic cell line Ba/F3, inhibition of mitogen-activated protein kinase, a member of the MAPK/c-Jun N-terminal kinase/stress-activated protein kinase kinase family that plays an important role in cell growth and death control, rapidly leads to severe apoptosis. However, most of the antiapoptotic substrates of MAPK remain to be identified. Here we report that, upon interleukin-3 stimulation of Ba/F3 cells, the transcription factor GATA-1 is strongly phosphorylated at residue serine 26 by a MAPK-dependent pathway. Phosphorylation of GATA-1 increases GATA-1-mediated transcription of the E4bp4 survival gene without significantly changing the DNA-binding affinity of GATA-1. Further characterization of GATA-1 phosphorylation site mutants revealed that the antiapoptotic function of GATA-1 is strongly dependent upon its phosphorylation at the Ser-26 position and is probably mediated through its up-regulation of Bcl-X(L) expression. Taken together, our data demonstrate that MAPK-dependent GATA-1 phosphorylation is important for its transactivation of the E4bp4 gene, Bcl-X(L) expression and cell survival. Therefore, GATA-1 may represent a novel MAPK substrate that plays an essential role in a cytokine-mediated antiapoptotic response. PMID:15967790

  10. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks.

    PubMed

    White, Forest M; Wolf-Yadlin, Alejandro

    2016-06-12

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks. PMID:27049636

  11. PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage.

    PubMed

    Gresko, E; Ritterhoff, S; Sevilla-Perez, J; Roscic, A; Fröbius, K; Kotevic, I; Vichalkovski, A; Hess, D; Hemmings, B A; Schmitz, M L

    2009-02-01

    The promyelocytic leukemia (PML) tumor suppressor protein, a central regulator of cell proliferation and apoptosis, is frequently fused to the retinoic acid receptor-alpha (RARalpha) in acute PML. Here we show the interaction of PML with another tumor suppressor protein, the serine/threonine kinase homeodomain-interacting protein kinase (HIPK2). In response to DNA damage, HIPK2 phosphorylates PML at serines 8 and 38. Although HIPK2-mediated phosphorylation of PML occurs early during the DNA damage response, the oncogenic PML-RARalpha fusion protein is phosphorylated with significantly delayed kinetics. DNA damage or HIPK2 expression leads to the stabilization of PML and PML-RARalpha proteins. The N-terminal phosphorylation sites contribute to the DNA damage-induced PML SUMOylation and are required for the ability of PML to cooperate with HIPK2 for the induction of cell death. PMID:19015637

  12. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    PubMed Central

    Putz, Eva Maria; Gotthardt, Dagmar; Hoermann, Gregor; Csiszar, Agnes; Wirth, Silvia; Berger, Angelika; Straka, Elisabeth; Rigler, Doris; Wallner, Barbara; Jamieson, Amanda M.; Pickl, Winfried F.; Zebedin-Brandl, Eva Maria; Müller, Mathias; Decker, Thomas; Sexl, Veronika

    2013-01-01

    Summary The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance. PMID:23933255

  13. Perilipin Promotes HSL-Mediated Adipocyte Lipolysis via Phosphorylation-dependent and Independent Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis, in response to catecholamines, is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-ass...

  14. Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior

    ERIC Educational Resources Information Center

    Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.

    2015-01-01

    The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…

  15. P70 S6 kinase mediates tau phosphorylation and synthesis.

    PubMed

    Pei, Jin-Jing; An, Wen-Lin; Zhou, Xin-Wen; Nishimura, Takeshi; Norberg, Jan; Benedikz, Eirikur; Götz, Jürgen; Winblad, Bengt

    2006-01-01

    Currently, we found that the 70-kDa p70 S6 kinase (p70S6K) directly phosphorylates tau at S262, S214, and T212 sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424) showed a close association with p-tau (S262 and S396/404). Zinc-induced p70S6K activation could only upregulate translation of total S6 and tau but not global proteins in SH-SY5Y cells. The requirement of p70S6K activation was confirmed in the SH-SY5Y cells that overexpress wild-type htau40. Level of p-p70S6K (T421/S424) was only significantly correlated with p-tau at S262, S214, and T212, but not T212/S214, in Alzheimer's disease (AD) brains. These suggested that p70S6K might contribute to tau related pathologies in AD brains. PMID:16364302

  16. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation.

    PubMed

    Zhao, Wei; Zhang, Tao; Qu, Bingqian; Wu, Xingxin; Zhu, Xu; Meng, Fanyu; Gu, Yanhong; Shu, Yongqian; Shen, Yan; Sun, Yang; Xu, Qiang

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML. PMID:20881478

  17. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  18. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets

    PubMed Central

    Barbosa, Sónia; Carreira, Suzanne; Bailey, Daniel; Abaitua, Fernando; O'Hare, Peter

    2015-01-01

    CREB‑H, an endoplasmic reticulum–anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87–S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCFFbw1a E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV. PMID:26108621

  19. Mitogen-activated Protein Kinase Signaling Mediates Phosphorylation of Polycomb Ortholog Cbx7*

    PubMed Central

    Wu, Hsan-au; Balsbaugh, Jeremy L.; Chandler, Hollie; Georgilis, Athena; Zullow, Hayley; Shabanowitz, Jeffrey; Hunt, Donald F.; Gil, Jesus; Peters, Gordon; Bernstein, Emily

    2013-01-01

    Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function. PMID:24194518

  20. Phosphorylation of Cardiac Myosin Binding Protein-C is a Critical Mediator of Diastolic Function

    PubMed Central

    Rosas, Paola C.; Liu, Yang; Abdalla, Mohamed I.; Thomas, Candice M.; Kidwell, David T.; Dusio, Giuseppina F.; Mukhopadhyay, Dhriti; Kumar, Rajesh; Baker, Kenneth M.; Mitchell, Brett M.; Powers, Patricia A.; Fitzsimons, Daniel P.; Patel, Bindiya G.; Warren, Chad M.; Solaro, R. John; Moss, Richard L.; Tong, Carl W.

    2015-01-01

    Background Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of all cases of heart failure and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. Methods and Results We compared mouse models expressing phosphorylation deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and WT-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide (BNP) levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of heart failure. Echocardiography (ejection fraction, myocardial relaxation velocity) and pressure/volume measurements (−dP/dtmin, pressure decay time constant Tau-Glantz, passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice while deficient cMyBP-C phosphorylation causes diastolic dysfunction with preserved ejection fraction in cMyBP-C(t3SA) mice. Simultaneous force and [Ca2+]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not due to altered [Ca2+]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. Conclusions cMyBP-C phosphorylation enhances relaxation while deficient phosphorylation causes diastolic dysfunction and phenotypes

  1. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death.

    PubMed

    Kim, C; Yun, N; Lee, J; Youdim, M B H; Ju, C; Kim, W-K; Han, P-L; Oh, Y J

    2016-02-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIP(S20A), but not CHIP(WT), attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli. PMID:26206088

  2. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  3. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a.

    PubMed

    Deplus, Rachel; Blanchon, Loïc; Rajavelu, Arumugam; Boukaba, Abdelhalim; Defrance, Matthieu; Luciani, Judith; Rothé, Françoise; Dedeurwaerder, Sarah; Denis, Hélène; Brinkman, Arie B; Simmer, Femke; Müller, Fabian; Bertin, Benjamin; Berdasco, Maria; Putmans, Pascale; Calonne, Emilie; Litchfield, David W; de Launoit, Yvan; Jurkowski, Tomasz P; Stunnenberg, Hendrik G; Bock, Christoph; Sotiriou, Christos; Fraga, Mario F; Esteller, Manel; Jeltsch, Albert; Fuks, François

    2014-08-01

    DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns. PMID:25066127

  4. LK6/Mnk2a is a new kinase of alpha synuclein phosphorylation mediating neurodegeneration

    PubMed Central

    Zhang, Shiqing; Xie, Jiang; Xia, Ying; Yu, Shu; Gu, Zhili; Feng, Ruili; Luo, Guanghong; Wang, Dong; Wang, Kai; Jiang, Meng; Cheng, Xiao; Huang, Hai; Zhang, Wu; Wen, Tieqiao

    2015-01-01

    Parkinson’s disease (PD) is a movement disorder due to the loss of dopaminergic (DA) neurons in the substantia nigra. Alpha-synuclein phosphorylation and α-synuclein inclusion (Lewy body) become a main contributor, but little is known about their formation mechanism. Here we used protein expression profiling of PD to construct a model of their signalling network from drsophila to human and nominate major nodes that regulate PD development. We found in this network that LK6, a serine/threonine protein kinase, plays a key role in promoting α-synuclein Ser129 phosphorylation by identification of LK6 knockout and overexpression. In vivo test was further confirmed that LK6 indeed enhances α-synuclein phosphorylation, accelerates the death of dopaminergic neurons, reduces the climbing ability and shortens the the life span of drosophila. Further, MAP kinase-interacting kinase 2a (Mnk2a), a human homolog of LK6, also been shown to make α-synuclein phosphorylation and leads to α-synuclein inclusion formation. On the mechanism, the phosphorylation mediated by LK6 and Mnk2a is controlled through ERK signal pathway by phorbolmyristate acetate (PMA) avtivation and PD98059 inhibition. Our findings establish pivotal role of Lk6 and Mnk2a in unprecedented signalling networks, may lead to new therapies preventing α-synuclein inclusion formation and neurodegeneration. PMID:26220523

  5. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    PubMed Central

    van der Harg, J M; Nölle, A; Zwart, R; Boerema, A S; van Haastert, E S; Strijkstra, A M; Hoozemans, J JM; Scheper, W

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstrate that metabolic stress induces the phosphorylation of endogenous tau via activation of the UPR. Strikingly, upon restoration of the metabolic homeostasis, not only the levels of the UPR markers pPERK, pIRE1α and BiP, but also tau phosphorylation are reversed both in cell models as well as in torpor, a physiological hypometabolic model in vivo. Intervention in the UPR using the global UPR inhibitor TUDCA or a specific small-molecule inhibitor of the PERK signaling pathway, inhibits the metabolic stress-induced phosphorylation of tau. These data support a role for UPR-mediated tau phosphorylation as part of an adaptive response to metabolic stress. Failure to restore the metabolic homeostasis will lead to prolonged UPR activation and tau phosphorylation, and may thus contribute to AD pathogenesis. We demonstrate that the UPR is functionally involved in the early stages of tau pathology. Our data indicate that targeting of the UPR may be employed for early intervention in tau-related neurodegenerative diseases. PMID:25165879

  6. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    PubMed Central

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein–protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1–CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1–P-BMAL1 loop is an integral part of the core clock oscillator. PMID:26562092

  7. A GAPDH Mutant Defective in Src-Dependent Tyrosine Phosphorylation Impedes Rab2-Mediated Events

    PubMed Central

    Tisdale, Ellen J.; Artalejo, Cristina R.

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple intracellular activities in addition to its role in gluconeogenesis. Indeed, we have reported that GAPDH is required for Rab2-mediated retrograde transport from vesicular tubular clusters (VTCs). These diverse GAPDH activities are the result of post-translational modifications that confer a new function to the enzyme. In that regard, GAPDH is tyrosine phosphorylated by Src. To establish the functional significance of this modification for GAPDH activity in Rab2-dependent events, an amino acid substitution was made at tyrosine 41 (GAPDH Y41F). The inability of Src to phosphorylate purified recombinant GAPDH Y41F was confirmed in an in vitro kinase assay. The mutant was then employed in a quantitative membrane-binding assay that measures Rab2 recruitment of soluble components to VTCs. As we observed with GAPDH wild type, Rab2 promoted GAPDH Y41F binding to membranes in a dose-dependent manner indicating that GAPDH tyrosine phosphorylation is not required for VTC association. However, GAPDH was tyrosine phosphorylated on VTCs. Importantly, GAPDH Y41F blocked VSV-G transport in an assay that reconstitutes endoplasmic reticulum (ER) to Golgi trafficking indicating that phosphorylation of tyrosine 41 is essential for GAPDH activity in the early secretory pathway. The block in transport is due to the decreased binding of atypical protein kinase C iota/lambda (aPKCι/λ) to GAPDH Y41F, which reduces β-COP association with the VTC and subsequent formation of Rab2-mediated retrograde vesicles. Our results suggest that Src plays a pivotal role in regulating the interaction of Rab2 effectors on the VTC. PMID:17488287

  8. Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation

    PubMed Central

    Miyazaki, Hiroaki

    2012-01-01

    Shrinkage-induced inhibition of the Caenorhabditis elegans cell volume and cell cycle-dependent CLC anion channel CLH-3b occurs by concomitant phosphorylation of S742 and S747, which are located on a 175 amino acid linker domain between cystathionine-β-synthase 1 (CBS1) and CBS2. Phosphorylation is mediated by the SPAK kinase homolog GCK-3 and is mimicked by substituting serine residues with glutamate. Type 1 serine/threonine protein phosphatases mediate swelling-induced channel dephosphorylation. S742E/S747E double mutant channels are constitutively inactive and cannot be activated by cell swelling. S742E and S747E mutant channels were fully active in the absence of GCK-3 and were inactive when coexpressed with the kinase. Both channels responded to cell volume changes. However, the S747E mutant channel activated and inactivated in response to cell swelling and shrinkage, respectively, much more slowly than either wild-type or S742E mutant channels. Slower activation and inactivation of S747E was not due to altered rates of dephosphorylation or dephosphorylation-dependent conformational changes. GCK-3 binds to the 175 amino acid inter-CBS linker domain. Coexpression of wild-type CLH-3b and GCK-3 with either wild-type or S742E linkers gave rise to similar channel activity and regulation. In contrast, coexpression with the S747E linker greatly enhanced basal channel activity and increased the rate of shrinkage-induced channel inactivation. Our findings suggest the intriguing possibility that the phosphorylation state of S742 in S747E mutant channels modulates GCK-3/channel interaction and hence channel phosphorylation. These results provide a foundation for further detailed studies of the role of multisite phosphorylation in regulating CLH-3b and GCK-3 activity. PMID:22357738

  9. Phosphorylation Regulates Id2 Degradation and Mediates the Proliferation of Neural Precursor Cells

    PubMed Central

    Sullivan, Jaclyn M.; Havrda, Matthew C.; Kettenbach, Arminja N.; Paolella, Brenton R.; Zhang, Zhonghua; Gerber, Scott A.; Israel, Mark A.

    2016-01-01

    Inhibitor of DNA binding proteins (Id1-Id4) function to inhibit differentiation and promote proliferation of many different cell types. Among the Id family members, Id2 has been most extensively studied in the central nervous system (CNS). Id2 contributes to cultured neural precursor cell (NPC) proliferation as well as to the proliferation of CNS tumors such as glioblastoma that are likely to arise from NPC-like cells. We identified three phosphorylation sites near the N-terminus of Id2 in NPCs. To interrogate the importance of Id2 phosphorylation, Id2−/− NPCs were modified to express wild type (WT) Id2 or an Id2 mutant protein that could not be phosphorylated at the identified sites. We observed that NPCs expressing this mutant lacking phosphorylation near the N-terminus had higher steady-state levels of Id2 when compared to NPCs expressing WT Id2. This elevated level was the result of a longer half-life and reduced proteasome-mediated degradation. Moreover, NPCs expressing constitutively de-phosphorylated Id2 proliferated more rapidly than NPCs expressing WT Id2, a finding consistent with the well-characterized function of Id2 in driving proliferation. Observing that phosphorylation of Id2 modulates the degradation of this important cell-cycle regulator, we sought to identify a phosphatase that would stabilize Id2 enhancing its activity in NPCs and extended our analysis to include human glioblastoma-derived stem cells (GSCs). We found that expression of the phosphatase PP2A altered Id2 levels. Our findings suggest that inhibition of PP2A may be a novel strategy to regulate the proliferation of normal NPCs and malignant GSCs by decreasing Id2 levels. PMID:26756672

  10. Phosphorylation Regulates Id2 Degradation and Mediates the Proliferation of Neural Precursor Cells.

    PubMed

    Sullivan, Jaclyn M; Havrda, Matthew C; Kettenbach, Arminja N; Paolella, Brenton R; Zhang, Zhonghua; Gerber, Scott A; Israel, Mark A

    2016-05-01

    Inhibitor of DNA binding proteins (Id1-Id4) function to inhibit differentiation and promote proliferation of many different cell types. Among the Id family members, Id2 has been most extensively studied in the central nervous system (CNS). Id2 contributes to cultured neural precursor cell (NPC) proliferation as well as to the proliferation of CNS tumors such as glioblastoma that are likely to arise from NPC-like cells. We identified three phosphorylation sites near the N-terminus of Id2 in NPCs. To interrogate the importance of Id2 phosphorylation, Id2(-/-) NPCs were modified to express wild type (WT) Id2 or an Id2 mutant protein that could not be phosphorylated at the identified sites. We observed that NPCs expressing this mutant lacking phosphorylation near the N-terminus had higher steady-state levels of Id2 when compared to NPCs expressing WT Id2. This elevated level was the result of a longer half-life and reduced proteasome-mediated degradation. Moreover, NPCs expressing constitutively de-phosphorylated Id2 proliferated more rapidly than NPCs expressing WT Id2, a finding consistent with the well-characterized function of Id2 in driving proliferation. Observing that phosphorylation of Id2 modulates the degradation of this important cell-cycle regulator, we sought to identify a phosphatase that would stabilize Id2 enhancing its activity in NPCs and extended our analysis to include human glioblastoma-derived stem cells (GSCs). We found that expression of the phosphatase PP2A altered Id2 levels. Our findings suggest that inhibition of PP2A may be a novel strategy to regulate the proliferation of normal NPCs and malignant GSCs by decreasing Id2 levels. Stem Cells 2016;34:1321-1331. PMID:26756672

  11. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

    PubMed

    Hanft, Laurin M; Cornell, Timothy D; McDonald, Colin A; Rovetto, Michael J; Emter, Craig A; McDonald, Kerry S

    2016-07-01

    Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA

  12. WASH has a critical role in NK cell cytotoxicity through Lck-mediated phosphorylation.

    PubMed

    Huang, L; Zhu, P; Xia, P; Fan, Z

    2016-01-01

    Natural killer (NK) cells are important effector cells of the innate immune system to kill certain virus-infected and transformed cells. Wiskott-Aldrich Syndrome protein (WASP) and SCAR homolog (WASH) has been identified as a member of WASP family proteins implicated in regulating the cytoskeletal reorganization, yet little is known about its function in lymphocytes. Here we demonstrate that WASH is crucial for NK cell cytotoxicity. WASH was found to colocalize with lytic granules upon NK cell activation. Knockdown of WASH expression substantially inhibited polarization and release of lytic granules to the immune synapse, resulting in the impairment of NK cell cytotoxicity. More importantly, our data also define a previously unappreciated mechanism for WASH function, in which Src family kinase Lck can interact with WASH and induce WASH phosphorylation. Mutation of tyrosine residue Y141, identified here as the major site of WASH phosphorylation, partially blocked WASH tyrosine phosphorylation and NK cell cytotoxicity. Taken together, these observations suggest that WASH has a pivotal role for regulation of NK cell cytotoxicity through Lck-mediated Y141 tyrosine phosphorylation. PMID:27441653

  13. The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation

    NASA Astrophysics Data System (ADS)

    Melero, Roberto; Hug, Nele; López-Perrote, Andrés; Yamashita, Akio; Cáceres, Javier F.; Llorca, Oscar

    2016-02-01

    Nonsense-mediated decay (NMD) is a messenger RNA quality-control pathway triggered by SMG1-mediated phosphorylation of the NMD factor UPF1. In recent times, the RNA helicase DHX34 was found to promote mRNP remodelling, leading to activation of NMD. Here we demonstrate the mechanism by which DHX34 functions in concert with SMG1. DHX34 comprises two distinct structural units, a core that binds UPF1 and a protruding carboxy-terminal domain (CTD) that binds the SMG1 kinase, as shown using truncated forms of DHX34 and electron microscopy of the SMG1-DHX34 complex. Truncation of the DHX34 CTD does not affect binding to UPF1; however, it compromises DHX34 binding to SMG1 to affect UPF1 phosphorylation and hence abrogate NMD. Altogether, these data suggest the existence of a complex comprising SMG1, UPF1 and DHX34, with DHX34 functioning as a scaffold for UPF1 and SMG1. This complex promotes UPF1 phosphorylation leading to functional NMD.

  14. The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation

    PubMed Central

    Melero, Roberto; Hug, Nele; López-Perrote, Andrés; Yamashita, Akio; Cáceres, Javier F.; Llorca, Oscar

    2016-01-01

    Nonsense-mediated decay (NMD) is a messenger RNA quality-control pathway triggered by SMG1-mediated phosphorylation of the NMD factor UPF1. In recent times, the RNA helicase DHX34 was found to promote mRNP remodelling, leading to activation of NMD. Here we demonstrate the mechanism by which DHX34 functions in concert with SMG1. DHX34 comprises two distinct structural units, a core that binds UPF1 and a protruding carboxy-terminal domain (CTD) that binds the SMG1 kinase, as shown using truncated forms of DHX34 and electron microscopy of the SMG1–DHX34 complex. Truncation of the DHX34 CTD does not affect binding to UPF1; however, it compromises DHX34 binding to SMG1 to affect UPF1 phosphorylation and hence abrogate NMD. Altogether, these data suggest the existence of a complex comprising SMG1, UPF1 and DHX34, with DHX34 functioning as a scaffold for UPF1 and SMG1. This complex promotes UPF1 phosphorylation leading to functional NMD. PMID:26841701

  15. Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation

    PubMed Central

    Simon, Jillian N.; Chowdhury, Shamim A.K.; Warren, Chad M.; Sadayappan, Sakthivel; Wieczorek, David F.; Solaro, R. John; Wolska, Beata M.

    2015-01-01

    Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide’s role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca2+]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2 dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present. PMID:25280528

  16. EMT phenotype is induced by increased Src kinase activity via Src-mediated caspase-8 phosphorylation.

    PubMed

    Zhao, Yang; Li, XiaoJun; Sun, XiangFei; Zhang, YunFeng; Ren, Hong

    2012-01-01

    Caspase-8 governs multiple cell responses to the microenvironmental cues. However, its integration of "death-life" signalings remains elusive. In our study, the role of caspase-8-Src is well-established as a promoter for migration or metastasis in Casp8(+)Src(+) A549/H226 cells in vivo and in vitro. In particular for nude mice models, mice implanted with Casp8(+)Src(+) A459/H226 cells remarkably increased spontaneous tumor metastatic burden with a significant survival disadvantage. Additionally, we detect that Src-mediated caspase-8 phosphorylation stimulates Src phosphorylation at Tyr-416 via the linkage of Src SH2 domain with phosph-Tyr-380 site of caspase-8. In turn, activated Src can efficiently induce epithelial-mesenchymal transition (EMT) phenotypic features to promote tumor cells metastasis. Surprisingly, RXDLL motif deletion in the DEDa of caspase-8 attenuates tumor cell migration or metastasis via impairing the recruitment of caspase-8 into the cellular periphery where activated Src is subject to caspase-8 phosphorylation. Together, a simple model is that the peripherization of caspase-8 is well-poised to facilitate Src-mediated caspase-8 phosphrylation at Tyr-380, then binding of phospho-Tyr380 of caspase-8 to Src SH2 domain may maintain Src in an active conformation to induce EMT phenotype, a key step toward cancer metastasis. PMID:22508042

  17. Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury

    PubMed Central

    Nakamura, Michinari; Zhai, Peiyong; Del Re, Dominic P.; Maejima, Yasuhiro; Sadoshima, Junichi

    2016-01-01

    Mst1 is a central Ser-Thr kinase in the Hippo pathway, which promotes apoptosis and inhibits cell proliferation. We have shown previously that, in cardiomyocytes, oxidative stress activates Mst1 at mitochondria, where Mst1 phosphorylates Bcl-xL at Ser14, inducing dissociation of Bcl-xL from Bax and thereby promoting apoptosis. However, the functional significance of Ser14 phosphorylation of endogenous Bcl-xL in vivo remains elusive. We generated knockin (KI) mice in which Ser14 of Bcl-xL is replaced with Ala. KI mice were born at the expected Mendelian ratio, and adult KI mice exhibited normal cardiac morphology and function at baseline. However, KI mice were protected from myocardial ischemia/reperfusion (I/R) injury and exhibited reduced cardiomyocyte apoptosis. Although suppression of endogenous Mst1 also reduced I/R injury, there was no additive protective effect when Mst1 was inhibited in KI mice. The development of dilated cardiomyopathy induced by cardiac-specific overexpression of Mst1 was also ameliorated in KI mice. Lats2 and YAP, two other key components of the Hippo pathway, were not affected in KI mice. These results suggest that Ser14 phosphorylation of Bcl-xL plays an essential role in mediating both cardiomyocyte apoptosis and myocardial injury by acting as a key downstream mediator of Mst1 independently of the canonical Hippo pathway. PMID:27218122

  18. PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation

    PubMed Central

    Wu, Judy Qiju; Guo, Jessie Yanxiang; Tang, Wanli; Yang, Chih-Sheng; Freel, Christopher D.; Chen, Chen; Nairn, Angus C.; Kornbluth, Sally

    2009-01-01

    Loss of Cdc2 activity following Cyclin B degradation is necessary, but not sufficient, for mitotic exit. Proteins phosphorylated by Cdc2 and downstream mitotic kinases must also be dephosphorylated. We report here that protein phosphatase-1 (PP1) is the major catalyst of mitotic phosphoprotein dephosphorylation. Suppression of PP1 during early mitosis is maintained through the dual inhibition of PP1 by Cdc2 phosphorylation and the binding of Inhibitor-1 (I1), which is facilitated by PKA-mediated I1 phosphorylation. As Cdc2 levels drop following Cyclin B degradation, autodephosphorylation of PP1 at the site of Cdc2 phosphorylation (T320) allows partial PP1 activation. This promotes PP1-regulated dephosphorylation of I1 at its activating site (T35), dissociation of the I1-PP1 complex, and full PP1 activation to promote mitotic exit. Thus, Cdc2 both phosphorylates multiple mitotic substrates and inhibits their PP1-mediated dephosphorylation. PMID:19396163

  19. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  20. Glycogen Synthase Kinase 3β Is Positively Regulated by Protein Kinase Cζ-Mediated Phosphorylation Induced by Wnt Agonists

    PubMed Central

    Tejeda-Muñoz, Nydia; González-Aguilar, Héctor; Santoyo-Ramos, Paula; Castañeda-Patlán, M. Cristina

    2015-01-01

    The molecular events that drive Wnt-induced regulation of glycogen synthase kinase 3β (GSK-3β) activity are poorly defined. In this study, we found that protein kinase Cζ (PKCζ) and GSK-3β interact mainly in colon cancer cells. Wnt stimulation induced a rapid GSK-3β redistribution from the cytoplasm to the nuclei in malignant cells and a transient PKC-mediated phosphorylation of GSK-3β at a different site from serine 9. In addition, while Wnt treatment induced a decrease in PKC-mediated phosphorylation of GSK-3β in nonmalignant cells, in malignant cells, this phosphorylation was increased. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of PKCζ abolished all of these effects, but unexpectedly, it also abolished the constitutive basal activity of GSK-3β. In vitro activity assays demonstrated that GSK-3β phosphorylation mediated by PKCζ enhanced GSK-3β activity. We mapped Ser147 of GSK-3β as the site phosphorylated by PKCζ, i.e., its mutation into alanine abolished GSK-3β activity, resulting in β-catenin stabilization and increased transcriptional activity, whereas phosphomimetic replacement of Ser147 by glutamic acid maintained GSK-3β basal activity. Thus, we found that PKCζ phosphorylates GSK-3β at Ser147 to maintain its constitutive activity in resting cells and that Wnt stimulation modifies the phosphorylation of Ser147 to regulate GSK-3β activity in opposite manners in normal and malignant colon cells. PMID:26711256

  1. RNA Polymerase II C-terminal Heptarepeat Domain Ser-7 Phosphorylation Is Established in a Mediator-dependent Fashion*

    PubMed Central

    Boeing, Stefan; Rigault, Caroline; Heidemann, Martin; Eick, Dirk; Meisterernst, Michael

    2010-01-01

    The largest subunit of RNA polymerase II (RNAPII) C-terminal heptarepeat domain (CTD) is subject to phosphorylation during initiation and elongation of transcription by RNA polymerase II. Here we study the molecular mechanisms leading to phosphorylation of Ser-7 in the human enzyme. Ser-7 becomes phosphorylated before initiation of transcription at promoter regions. We identify cyclin-dependent kinase 7 (CDK7) as one responsible kinase. Phosphorylation of both Ser-5 and Ser-7 is fully dependent on the cofactor complex Mediator. A subform of Mediator associated with an active RNAPII is critical for preinitiation complex formation and CTD phosphorylation. The Mediator-RNAPII complex independently recruits TFIIB and CDK7 to core promoter regions. CDK7 phosphorylates Ser-7 selectively in the context of an intact preinitiation complex. CDK7 is not the only kinase that can modify Ser-7 of the CTD. ChIP experiments with chemical inhibitors provide evidence that other yet to be identified kinases further phosphorylate Ser-7 in coding regions. PMID:19901026

  2. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis.

    PubMed

    Kim, Sue Kyung; Kim, Woo-Jung; Yoon, Jung-Ho; Ji, Jae-Hoon; Morgan, Michael J; Cho, Hyeseong; Kim, You Chan; Kim, You-Sun

    2015-08-01

    Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction involving extensive keratinocyte death in the epidermis. Histologically, the skin from TEN patients exhibits separation at the dermo-epidermal junction and accompanying necrosis of epidermal keratinocytes. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed", or "regulated", necrosis and has a key role in spontaneous cell death and inflammation in keratinocytes under certain conditions. Here we show that RIP3 expression is highly upregulated in skin sections from TEN patients and may therefore contribute to the pathological damage in TEN through activation of programmed necrotic cell death. The expression level of mixed lineage kinase domain-like protein (MLKL), a key downstream component of RIP3, was not significantly different in skin lesions of TEN. However, elevated MLKL phosphorylation was observed in the skin from TEN patients, indicating the presence of RIP3-dependent programmed necrosis. Importantly, in an in vitro model of TEN, dabrafenib, an inhibitor of RIP3, prevented RIP3-mediated MLKL phosphorylation and decreased cell death. Results from this study suggest that the high expression of RIP3 in keratinocytes from TEN patients potentiates MLKL phosphorylation/activation and necrotic cell death. Thus, RIP3 represents a potential target for treatment of TEN. PMID:25748555

  3. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer. PMID:27237051

  4. NEK6-mediated phosphorylation of human TPP1 regulates telomere length through telomerase recruitment.

    PubMed

    Hirai, Yugo; Tamura, Miki; Otani, Junji; Ishikawa, Fuyuki

    2016-08-01

    Shelterin component TPP1 plays critical roles in chromosome end protection and telomere length regulation. Specifically, TPP1 contains an OB-fold domain that provides an interface to recruit telomerase. However, it remains largely unknown how telomerase recruitment is regulated by cell cycle regulators. We show that TPP1 interacts with the cell cycle regulator kinase NEK6 in human cells. We found that NEK6-mediated phosphorylation of TPP1 Ser255 in G2/M phase regulates the association between telomerase activity and TPP1. Furthermore, we found evidence that POT1 negatively regulates TPP1 phosphorylation because the level of Ser255 phosphorylation was elevated when telomeres were elongated by a POT1 mutant lacking its OB-fold domains. Ser255 is located in the intervening region between the telomerase-recruiting OB-fold and the POT1 recruitment domains. Ser255 and the surrounding amino acids are conserved among vertebrates. These observations suggest that a region adjacent to the OB-fold domain of TPP1 is involved in telomere length regulation via telomerase recruitment. PMID:27396482

  5. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  6. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  7. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein.

    PubMed

    Fugmann, Tim; Hausser, Angelika; Schöffler, Patrik; Schmid, Simone; Pfizenmaier, Klaus; Olayioye, Monilola A

    2007-07-01

    Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the endoplasmic reticulum to the Golgi complex is mediated by the lipid transfer protein CERT (ceramide transport). In this study, we identify CERT as a novel in vivo PKD substrate. Phosphorylation on serine 132 by PKD decreases the affinity of CERT toward its lipid target phosphatidylinositol 4-phosphate at Golgi membranes and reduces ceramide transfer activity, identifying PKD as a regulator of lipid homeostasis. We also show that CERT, in turn, is critical for PKD activation and PKD-dependent protein cargo transport to the plasma membrane. Thus, the interdependence of PKD and CERT is key to the maintenance of Golgi membrane integrity and secretory transport. PMID:17591919

  8. Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein

    PubMed Central

    Fugmann, Tim; Hausser, Angelika; Schöffler, Patrik; Schmid, Simone; Pfizenmaier, Klaus; Olayioye, Monilola A.

    2007-01-01

    Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the endoplasmic reticulum to the Golgi complex is mediated by the lipid transfer protein CERT (ceramide transport). In this study, we identify CERT as a novel in vivo PKD substrate. Phosphorylation on serine 132 by PKD decreases the affinity of CERT toward its lipid target phosphatidylinositol 4-phosphate at Golgi membranes and reduces ceramide transfer activity, identifying PKD as a regulator of lipid homeostasis. We also show that CERT, in turn, is critical for PKD activation and PKD-dependent protein cargo transport to the plasma membrane. Thus, the interdependence of PKD and CERT is key to the maintenance of Golgi membrane integrity and secretory transport. PMID:17591919

  9. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma

    PubMed Central

    Kikuchi, Jiro; Koyama, Daisuke; Wada, Taeko; Izumi, Tohru; Hofgaard, Peter O.; Bogen, Bjarne; Furukawa, Yusuke

    2015-01-01

    Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3–lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion–mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion–dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug–induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index. PMID:26517694

  10. Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2*

    PubMed Central

    Wiemhoefer, Anne; Stargardt, Anita; van der Linden, Wouter A.; Renner, Maria C.; van Kesteren, Ronald E.; Stap, Jan; Raspe, Marcel A.; Tomkinson, Birgitta; Kessels, Helmut W.; Ovaa, Huib; Overkleeft, Herman S.; Florea, Bogdan; Reits, Eric A.

    2015-01-01

    Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function. PMID:26041847

  11. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function.

    PubMed

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya; Sørensen, Claus S

    2016-05-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poorly understood. Here, we show that PALB2 is markedly phosphorylated in response to genotoxic stresses such as ionizing radiation and hydroxyurea. This response is mediated by the ATM and ATR kinases through three N-terminal S/Q-sites in PALB2, the consensus target sites for ATM and ATR Importantly, a phospho-deficient PALB2 mutant is unable to support proper RAD51 foci formation, a key PALB2 regulated repair event, whereas a phospho-mimicking PALB2 version supports RAD51 foci formation. Moreover, phospho-deficient PALB2 is less potent in HDR than wild-type PALB2. Further, this mutation reveals a separation in PALB2 function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress. PMID:27113759

  12. LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2-dependent IKK-β phosphorylation

    PubMed Central

    Menden, Heather; Tate, Everett; Hogg, Neil

    2013-01-01

    Lipopolysaccharide (LPS)-mediated endothelial activation contributes to lung inflammation and alveolar remodeling seen in premature infants with bronchopulmonary dysplasia (BPD). The mechanisms underlying LPS-mediated oxidative stress and proinflammatory signaling in human pulmonary microvascular endothelial cells (HPMEC) remain unclear. We hypothesized that NADPH oxidase (Nox) mediates LPS-induced endothelial activation in HPMEC by regulating phosphorylation of Toll-like receptor (TLR) pathway proteins. LPS-induced expression of intercellular adhesion molecule 1 (ICAM-1) was associated with increased 2-OH-E+ (marker for superoxide formation) levels and was attenuated by apocynin and the Nox inhibitor, VAS2870. LPS triggered membrane translocation of p67phox, suggesting activation of Nox2. Silencing Nox2, but not Nox4, suppressed LPS-induced ICAM-1 expression in HPMEC. Immunoprecipitation studies showed that inhibitor of κ-B kinase-β (IKK-β) serine phosphorylation induced by LPS was inhibited by Nox2 silencing. We examined whether Nox2-dependent, LPS-mediated IKK-β phosphorylation was regulated by protein phosphatase 2A (PP2A) or TGF-β associated kinase-1 (TAK1) in HPMEC. LPS increased PP2A activity in HPMEC, and inhibition of PP2A did not alter LPS-mediated ICAM-1 expression but attenuated IKK-β phosphorylation. TAK1 inhibition decreased LPS-induced ICAM-1 expression in HPMEC, and Nox2 silencing attenuated LPS-mediated TAK1 phosphorylation (Thr184/187). We demonstrate that Nox2 regulates LPS-mediated endothelial activation in pulmonary endothelial cells by modulating phosphorylation of key kinases in the TLR signaling cascade. Our data support a novel mechanism by which Nox-dependent signaling regulates proinflammatory signaling in pulmonary endothelial cells. Inhibition of vascular Nox may potentially limit lung injury and alveolar remodeling caused by infections in BPD. PMID:23333803

  13. Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain

    PubMed Central

    Kawasaki, Yuki; Sakimura, Ayaka; Park, Chul Min; Tomaru, Rika; Tanaka, Tomohiro; Ozawa, Tatsuhiko; Zhou, Yue; Narita, Kaori; Kishi, Hiroyuki; Muraguchi, Atsushi; Sakurai, Hiroaki

    2016-01-01

    Tyrosine kinase activity of the asymmetric EGFR homodimer is negatively regulated via ERK-mediated phosphorylation of Thr-669 in the juxtamembrane domain. In the present study, we investigated in human breast cancer cells whether a similar mechanism plays a role in the feedback regulation of the ErbB2/ErbB3 heterodimer, the most potent ErbB receptor dimer. Constitutive tyrosine phosphorylation of ErbB2 and ErbB3 was significantly decreased in phorbol ester- and growth factor-treated BT-474 and MDA-MB-453 cells. In contrast to the decreased tyrosine phosphorylation, Phos-tag Western blot analysis revealed that TPA induced phosphorylation of ErbB2 in an ERK-dependent manner. The target threonine residue corresponding to EGFR Thr-669 and the surrounding residues are highly conserved in ErbB2, but not in ErbB3. Therefore, we demonstrated ERK-mediated phosphorylation of ErbB2 at Thr-677 by generating phospho-specific monoclonal antibodies. Moreover, treatment with trametinib and SCH772984, inhibitors of the MEK-ERK pathway, and substitution of Thr-677 to alanine impaired the feedback inhibition of ErbB2 and ErbB3. These results demonstrated that ERK-mediated phosphorylation of the conserved threonine is a common mechanism for the negative feedback control of active ErbB receptor dimers. PMID:27531070

  14. Role of STAT3 Phosphorylation in Ethanol-Mediated Proliferation of Breast Cancer Cells

    PubMed Central

    Narayanan, Poornima devi; Nandabalan, Sangeetha Kadapakkam

    2016-01-01

    Purpose In this study, we investigated the molecular mechanism involved in ethanol (EtOH)-mediated proliferation of breast cancer cells. Methods EtOH concentration was optimized by studying its effect on cell proliferation in MCF-7 and MDA MB-231 cells. We used flow cytometry and immunoblot analysis to evaluate the increased proliferation caused by the optimized concentrations of EtOH. The mechanism of EtOH-mediated proliferation was determined using reactive oxygen species (ROS) release assay, reverse transcription polymerase chain reaction, and immunoblot studies. Gene silencing followed by quantitative real-time polymerase chain reaction studies and inhibitor studies indicated the involvement of signal transducer and activator of transcription 3 (STAT3) in EtOH-mediated breast cancer proliferation. Results Exposure to EtOH caused an increase in cell proliferation and an accumulation of cells in S-phase in MCF-7 (347 µM EtOH) and MDA MB-231 (173 µM EtOH) cells. Additionally, increased release of ROS and the expression of pro-inflammatory cytokines, such as interleukin 6 and tumor necrosis factor α, confirmed that the proliferation was induced by the ROS-linked inflammatory response in breast cancer. The proinflammatory response was followed by phosphorylation of STAT3. The importance of STAT3 activation in EtOH-mediated proliferation was confirmed through the silencing of STAT3, followed by an investigation on the expression of cyclins and matrix metalloproteinases. Finally, studies using specific inhibitors indicated that the EtOH-mediated effect on STAT3 activation could be regulated by phosphoinositide-3-kinase and Janus kinase 2. Conclusion The study demonstrates the involvement of STAT3 signaling in EtOH-mediated breast cancer proliferation. PMID:27382387

  15. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366.

    PubMed Central

    Sapkota, Gopal P; Deak, Maria; Kieloch, Agnieszka; Morrice, Nick; Goodarzi, Aaron A; Smythe, Carl; Shiloh, Yosef; Lees-Miller, Susan P; Alessi, Dario R

    2002-01-01

    The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1. PMID:12234250

  16. Beryllium Alters Lipopolysaccharide-Mediated Intracellular Phosphorylation and Cytokine Release in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M.; Gupta, Goutam; McCleskey, T. Mark; Chaudhary, Anu

    2013-01-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide - mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We find that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1β is enhanced. Additionally, not all lipopolysaccharide - mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1β secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling. PMID:19894180

  17. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA. Stem Cells 2016;34:960-971. PMID:26676373

  18. Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation.

    PubMed

    Watson, Lewis J; Alexander, Kevin M; Mohan, Maradumane L; Bowman, Amber L; Mangmool, Supachoke; Xiao, Kunhong; Naga Prasad, Sathyamangla V; Rockman, Howard A

    2016-10-01

    β2-Adrenergic receptors (β2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a β2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for β2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes β2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following βAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling. PMID:27169346

  19. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition

    PubMed Central

    Yuan, Hai-Xin; Wang, Zhen; Yu, Fa-Xing; Li, Fulong; Russell, Ryan C.; Jewell, Jenna L.; Guan, Kun-Liang

    2015-01-01

    The mechanistic target of rapamycin (mTOR) is a central cell growth controller and forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates a wide range of upstream signals, both positive and negative, to regulate cell growth. Although mTORC1 activation by positive signals, such as growth factors and nutrients, has been extensively investigated, the mechanism of mTORC1 regulation by stress signals is less understood. In this study, we identified the Nemo-like kinase (NLK) as an mTORC1 regulator in mediating the osmotic and oxidative stress signals. NLK inhibits mTORC1 lysosomal localization and thereby suppresses mTORC1 activation. Mechanistically, NLK phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. Our study reveals a function of NLK in stress-induced mTORC1 modulation and the underlying biochemical mechanism of NLK in mTORC1 inhibition in stress response. PMID:26588989

  20. PACS-1 Mediates Phosphorylation-Dependent Ciliary Trafficking of the CNG Channel in Olfactory Sensory Neurons

    PubMed Central

    Jenkins, Paul M.; Zhang, Lian; Thomas, Gary; Martens, Jeffrey R.

    2009-01-01

    Impaired ciliary protein transport in olfactory sensory neurons (OSNs) leads to anosmia, and is a newly recognized clinical manifestation of a class of human disorders called ciliopathies. Surprisingly little is known regarding the mechanisms controlling trafficking to this unique neuronal compartment. Here, we show a novel role for phosphofurin acidic cluster-sorting protein 1 (PACS-1) in the ciliary trafficking of the olfactory CNG channel. PACS-1 is an intracellular sorting protein that mediates its effects through the binding of acidic clusters on cargo protein. This interaction is dependent on CK2 phosphorylation of both PACS-1 and its cargo. We show that CNGB1b contains two putative PACS-1 binding sites, which are phosphorylated by the serine/threonine protein kinase, CK2. Additionally, we show that PACS-1 is expressed in OSNs and interacts in complex with the CNG channel. CK2 inhibition in native OSNs causes a loss of CNG channel from cilia and subsequent olfactory dysfunction, while adenoviral expression of mutant PACS-1 causes similar mislocalization. These results provide a mechanism for the subunit-dependent ciliary trafficking of the CNG channel and offer insight into the mechanisms of ciliary transport. PMID:19710307

  1. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis

    PubMed Central

    Huntwork-Rodriguez, Sarah; Wang, Bei; Watkins, Trent; Ghosh, Arundhati Sengupta; Pozniak, Christine D.; Bustos, Daisy; Newton, Kim; Kirkpatrick, Donald S.

    2013-01-01

    Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin–proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults. PMID:23979718

  2. A- Kinase Anchoring Protein 150 Controls Protein Kinase C-mediated Phosphorylation and Sensitization of TRPV1

    PubMed Central

    Jeske, Nathaniel A.; Patwardhan, Amol M.; Ruparel, Nikita B.; Akopian, Armen N; Shapiro, Mark S.; Henry, Michael A.

    2009-01-01

    Post-translational modifications on various receptor proteins have significant effects on receptor activation. For the Transient Receptor Potential family V type 1 (TRPV1) receptor, phosphorylation of certain serine/threonine amino acid residues sensitizes the receptor to activation by capsaicin and heat. Although Protein Kinase C (PKC) phosphorylates TRPV1 on certain serine/threonine residues, it is not completely understood how PKC functionally associates with TRPV1. Recent studies have reported that the A-kinase Anchoring Protein 150 (AKAP150) mediates PKA phosphorylation of TRPV1 in several nociceptive models. Here, we demonstrate that AKAP150 also mediates PKC-directed phosphorylation and sensitization of TRPV1. In cultured rat trigeminal ganglia, immunocytochemical analyses demonstrate co-localization of AKAP150 and PKC isoforms α, δ, ε, and γ in TRPV1-positive neurons. Additional biochemical evidence supports immunocytochemical results, indicating that AKAP150 preferentially associates with certain PKC isoforms in rat trigeminal ganglia neurons. Employing siRNA-mediated knock-down of AKAP150 expression, we demonstrate that PKC-mediated phosphorylation of TRPV1 and sensitization to a capsaicin response is dependent upon functional expression of the AKAP150 scaffolding protein. Furthermore, PKC-induced sensitization to a thermal stimulus is abrogated in AKAP150 knock-out animals relative to wild-type. Collectively, results from these studies indicate that the AKAP150 scaffolding protein functionally modulates PKC-mediated phosphorylation and sensitization of the TRPV1 receptor in rat sensory neurons, suggesting the scaffolding protein to be an integral regulator of peripheral inflammatory hyperalgesia. PMID:19767149

  3. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.

    PubMed

    Damerill, Ian; Biggar, Kyle K; Abu Shehab, Majida; Li, Shawn Shun-Cheng; Jansson, Thomas; Gupta, Madhulika B

    2016-02-01

    In fetal growth restriction (FGR), fetal growth is limited by reduced nutrient and oxygen supply. Insulin-like growth factor I (IGF-I) is a key regulator of fetal growth and IGF binding protein -1(IGFBP-1) is the principal regulator of fetal IGF-I bioavailability. Phosphorylation enhances IGFBP-1's affinity for IGF-I. Hypoxia induces IGFBP-1 hyperphosphorylation, markedly decreasing IGF-I bioavailability. We recently reported that fetal liver IGFBP-1 hyperphosphorylation is associated with inhibition of the mechanistic target of rapamycin (mTOR) in a nonhuman primate model of FGR. Here, we test the hypothesis that IGFBP-1 hyperphosphorylation in response to hypoxia is mediated by mTOR inhibition. We inhibited mTOR either by rapamycin or small interfering RNA (siRNA) targeting raptor (mTOR complex [mTORC]1) and/or rictor (mTORC2) in HepG2 cells cultured under hypoxia (1% O2) or basal (20% O2) conditions. Conversely, we activated mTORC1 or mTORC1+mTORC2 by silencing endogenous mTOR inhibitors (tuberous sclerosis complex 2/DEP-domain-containing and mTOR-interacting protein). Immunoblot analysis demonstrated that both hypoxia and inhibition of mTORC1 and/or mTORC2 induced similar degrees of IGFBP-1 phosphorylation at Ser101/119/169 and reduced IGF-I receptor autophosphorylation. Activation of mTORC1+mTORC2 or mTORC1 alone prevented IGFBP-1 hyperphosphorylation in response to hypoxia. Multiple reaction monitoring-mass spectrometry showed that rapamycin and/or hypoxia increased phosphorylation also at Ser98 and at a novel site Ser174. In silico structural analysis indicated that Ser174 was in close proximity to the IGF-binding site. Together, we demonstrate that signaling through the mTORC1 or mTORC2 pathway is sufficient to induce IGFBP-1 hyperphosphorylation in response to hypoxia. This study provides novel understanding of the cellular mechanism that controls fetal IGFBP-1 phosphorylation in hypoxia, and we propose that mTOR inhibition constitutes a mechanistic link

  4. Differential effects of vasopressin and phenylephrine on protein kinase C-mediated protein phosphorylations in isolated hepatocytes

    SciTech Connect

    Cooper, R.H.; Johanson, R.A.; Wiliamson, J.R.

    1986-05-01

    Receptor-mediated breakdown of inositol lipids produces two intracellular signals, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes release of intracellular vesicular Ca/sup 2 +/. This study examined the effects of Ca/sup 2 +/-ionophores, vasopressin, phenylephrine, and phorbol ester (PMA) on hepatocyte protein phosphorylations. (/sup 32/P) Phosphoproteins from hepatocytes prelabeled with /sup 32/P were resolved by 2-dimensional SDS-PAGE and corresponding autoradiographs were quantitated by densitometric analysis. The phosphorylation of five proteins, a plasma membrane bound 16 kDa protein with pI 6.4, a cytosolic 16 kDa protein with pI 5.8, and proteins with Mr's of 36 kDa, 52 kDa, and 68 kDa, could be attributed to phosphorylation by protein kinase C since the phosphorylation was stimulated by PMA. When the vasopressin concentration was varied, low vasopressin stimulated the phosphorylation of only the membrane bound 16 kDa protein of the above set of proteins, while higher vasopressin concentrations were required to stimulate the phosphorylation of all five proteins. Phenylephrine, even at supramaximal concentrations, stimulated the phosphorylation of only the membrane bound 16 kDa protein. These results suggest that phenylephrine is a less potent activator of protein kinase C than vasopressin by virtue of limited or localized diacylglycerol production.

  5. Proteomic analysis of ERK1/2-mediated human sickle red blood cell membrane protein phosphorylation

    PubMed Central

    2013-01-01

    Background In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs). ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown. Results To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2. Conclusions These findings

  6. TFIIH phosphorylation of the Pol II CTD stimulates Mediator dissociation from the preinitiation complex and promoter escape

    PubMed Central

    Wong, Koon Ho; Jin, Yi; Struhl, Kevin

    2014-01-01

    The transition between transcriptional initiation and elongation by RNA polymerase (Pol) II is associated with phosphorylation of its C-terminal tail (CTD). Depletion of Kin28, the TFIIH subunit that phosphorylates the CTD, does not affect elongation but causes Pol II occupancy profiles to shift upstream in a FACT-independent manner indicative of a defect in promoter escape. Stronger defects in promoter escape are linked to stronger effects on preinitiation complex formation and transcription, suggesting that impairment in promoter escape results in premature dissociation of general factors and Pol II near the promoter. Kin28 has a stronger effect on genes whose transcription is dependent on SAGA as opposed to TFIID. Strikingly, Kin28 depletion causes a dramatic increase in Mediator at the core promoter. These observations suggest that TFIIH phosphorylation of the CTD causes Mediator dissociation, thereby permitting rapid promoter escape of Pol II from the preinitiation complex. PMID:24746699

  7. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  8. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  9. Cyclin-dependent kinase-mediated Sox2 phosphorylation enhances the ability of Sox2 to establish the pluripotent state.

    PubMed

    Ouyang, Juan; Yu, Wei; Liu, Jing; Zhang, Nian; Florens, Laurence; Chen, Jiekai; Liu, He; Washburn, Michael; Pei, Duanqing; Xie, Ting

    2015-09-11

    Sox2 is a key factor in maintaining self-renewal of embryonic stem cells (ESCs) and adult stem cells as well as in reprogramming differentiated cells back into pluripotent or multipotent stem cells. Although previous studies have shown that Sox2 is phosphorylated in human ESCs, the biological significance of Sox2 phosphorylation in ESC maintenance and reprogramming has not been well understood. In this study we have identified new phosphorylation sites on Sox2 and have further demonstrated that Cdk2-mediated Sox2 phosphorylation at Ser-39 and Ser-253 is required for establishing the pluripotent state during reprogramming but is dispensable for ESC maintenance. Mass spectrometry analysis of purified Sox2 protein has identified new phosphorylation sites on two tyrosine and six serine/Threonine residues. Cdk2 physically interacts with Sox2 and phosphorylates Sox2 at Ser-39 and Ser-253 in vitro. Surprisingly, Sox2 phosphorylation at Ser-39 and Ser-253 is dispensable for ESC self-renewal and cell cycle progression. In addition, Sox2 phosphorylation enhances its ability to establish the pluripotent state during reprogramming by working with Oct4 and Klf4. Finally, Cdk2 can also modulate the ability of Oct4, Sox2, and Klf4 in reprogramming fibroblasts back into pluripotent stem cells. Therefore, this study has for the first time demonstrated that Sox2 phosphorylation by Cdk2 promotes the establishment but not the maintenance of the pluripotent state. It might also help explain why the inactivation of CDK inhibitors such as p53, p21, and Arf/Ink4 promotes the induction of pluripotent stem cells. PMID:26139602

  10. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors.

    PubMed

    Ditte, Peter; Dequiedt, Franck; Svastova, Eliska; Hulikova, Alzbeta; Ohradanova-Repic, Anna; Zatovicova, Miriam; Csaderova, Lucia; Kopacek, Juraj; Supuran, Claudiu T; Pastorekova, Silvia; Pastorek, Jaromir

    2011-12-15

    In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment. PMID:22037869

  11. IRS1Ser³⁰⁷ phosphorylation does not mediate mTORC1-induced insulin resistance.

    PubMed

    Herrema, Hilde; Lee, Jaemin; Zhou, Yingjiang; Copps, Kyle D; White, Morris F; Ozcan, Umut

    2014-01-10

    Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance. PMID:24333417

  12. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14.

    PubMed

    Park, Ji-Man; Jung, Chang Hwa; Seo, Minchul; Otto, Neil Michael; Grunwald, Douglas; Kim, Kwan Hyun; Moriarity, Branden; Kim, Young-Mi; Starker, Colby; Nho, Richard Seonghun; Voytas, Daniel; Kim, Do-Hyung

    2016-03-01

    ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation. PMID:27046250

  13. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    PubMed

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our

  14. c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway.

    PubMed

    Zimmerman, Brandon; Simaan, May; Lee, Mi-Hye; Luttrell, Louis M; Laporte, Stéphane A

    2009-01-01

    Clathrin-mediated endocytosis is a complex process regulated at many different levels. We showed previously that activation of the angiotensin type 1 receptor (AT1R), which belongs to the G protein-coupled receptor (GPCR) family, leads to c-Src-dependent tyrosine phosphorylation of beta2-adaptin, a subunit of the clathrin adaptor AP-2. The phosphorylation of beta2-adaptin on tyrosine residue 737 (Y737) negatively regulates its interaction with betaarrestin, another important clathrin adaptor for GPCR internalization. Here we sought to determine whether AP-2 phosphorylation represents a general mechanism for different receptors internalizing through the clathrin pathway. Using a specifically designed antibody against the phosphorylated form of Y737 on beta2-adaptin, we demonstrate that this residue is phosphorylated by AT1R in different cell types like HEK293, COS-7 and vascular smooth muscle cells. Using RNA interference approaches, we reveal that this agonist-mediated event is both betaarrestin- and c-Src-dependent, and that it occurs at the plasma membrane in clathrin-coated vesicles (CCVs). We further show that this is not only a common event employed by other GPCRs like the beta2-adrenergic, vasopressin V2, bradykinin type 2, platelet-activating factor and endothelin A receptors but that the epidermal growth factor receptor is capable of eliciting the phosphorylation of AP-2 in CCVs. Our results imply that tyrosine phosphorylation of Y737 on beta2-adaptin is a common regulatory mechanism employed by different receptors undergoing clathrin-dependent endocytosis, and suggest a wider function for this event than originally anticipated. PMID:18938240

  15. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  16. TNFα Mediated IL-6 Secretion Is Regulated by JAK/STAT Pathway but Not by MEK Phosphorylation and AKT Phosphorylation in U266 Multiple Myeloma Cells

    PubMed Central

    Lee, Chansu; Oh, Jeong-In; Park, Juwon; Choi, Jee-Hye; Bae, Eun-Kyung; Lee, Hyun Jung; Jung, Woo June; Lee, Dong Soon; Ahn, Kwang-Sung; Yoon, Sung-Soo

    2013-01-01

    IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma. PMID:24151609

  17. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress

    PubMed Central

    Chen, Yu-Hung; Jones, Mathew J. K.; Yin, Yandong; Crist, Sarah B.; Colnaghi, Luca; Sims, Robert J.; Rothenberg, Eli; Jallepalli, Prasad V.; Huang, Tony T.

    2015-01-01

    SUMMARY Excess dormant origins bound by the minichromosome maintenance (MCM) replicative helicase complex play a critical role in preventing replication stress, chromosome instability and tumorigenesis. In response to DNA damage, replicating cells must coordinate DNA repair and dormant origin firing to ensure complete and timely replication of the genome; how cells regulate this process remains elusive. Herein, we identify a member of the Fanconi Anemia (FA) DNA repair pathway, FANCI, as a key effector of dormant origin firing in response to replication stress. Cells lacking FANCI have reduced number of origins, increased inter-origin distances and slowed proliferation rates. Intriguingly, ATR-mediated FANCI phosphorylation inhibits dormant origin firing while promoting replication fork restart/DNA repair. Using super-resolution microscopy, we show that FANCI co-localizes with MCM-bound chromatin in response to replication stress. These data reveal a unique role for FANCI as a modulator of dormant origin firing and links timely genome replication to DNA repair. PMID:25843623

  18. Keratins control intercellular adhesion involving PKC-α–mediated desmoplakin phosphorylation

    PubMed Central

    Kröger, Cornelia; Loschke, Fanny; Schwarz, Nicole; Windoffer, Reinhard; Leube, Rudolf E.

    2013-01-01

    Maintenance of epithelial cell adhesion is crucial for epidermal morphogenesis and homeostasis and relies predominantly on the interaction of keratins with desmosomes. Although the importance of desmosomes to epidermal coherence and keratin organization is well established, the significance of keratins in desmosome organization has not been fully resolved. Here, we report that keratinocytes lacking all keratins show elevated, PKC-α–mediated desmoplakin phosphorylation and subsequent destabilization of desmosomes. We find that PKC-α activity is regulated by Rack1–keratin interaction. Without keratins, desmosomes assemble but are endocytosed at accelerated rates, rendering epithelial sheets highly susceptible to mechanical stress. Re-expression of the keratin pair K5/14, inhibition of PKC-α activity, or blocking of endocytosis reconstituted both desmosome localization at the plasma membrane and epithelial adhesion. Our findings identify a hitherto unknown mechanism by which keratins control intercellular adhesion, with potential implications for tumor invasion and keratinopathies, settings in which diminished cell adhesion facilitates tissue fragility and neoplastic growth. PMID:23690176

  19. G Protein-coupled Receptor Kinase 2–mediated Phosphorylation of Ezrin Is Required for G Protein-coupled Receptor–dependent Reorganization of the Actin Cytoskeleton

    PubMed Central

    Cant, Sarah H.; Pitcher, Julie A.

    2005-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the β2-adrenergic receptor (β2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized β2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the β2AR. Inhibition of ezrin function impedes β2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals. PMID:15843435

  20. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  1. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation.

    PubMed

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L

    2015-07-31

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  2. Silver(I)-Mediated Phosphorylation/Cyclization Cascade of N-Cyanamide Alkenes for Divergent Access to Quinazolinones and Dihydroisoquinolinones.

    PubMed

    Zheng, Jing; Zhang, Yan; Wang, Dahai; Cui, Sunliang

    2016-04-15

    A silver(I)-mediated phosphorylation/cyclization radical cascade of N-cyanamide alkenes has been developed. The addition of in situ generated phosphorus radical to N-cyanamide alkenes triggers the cascade, resulting in late-stage cyclization toward divergent access to 4-quinazolinones and dihydroisoquinolinones. Both terminal and internal N-cyanamide alkenes are applicable in this protocol, and the cyclizations are consistent with Baldwin's rule. PMID:27026261

  3. Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells.

    PubMed

    Qi, Dandan; Wang, Qianqian; Yu, Min; Lan, Rongfeng; Li, Shuiming; Lu, Fei

    2016-08-01

    Transcription factor SOX2 is multiple phosphorylated. However, the kinase and the timing regulating SOX2 phosphorylation remains poorly understood. Here we reported mitotic phosphorylation of SOX2 by Aurora kinase A (AURKA). AURKA inhibitors (VX680, Aurora kinase Inhibitor I) but not PLK1 inhibitors (BI2536, CBB2001) eliminate the mitotic phosphorylation of SOX2. Consistently, siRNA inhibition of AURKA can eliminate mitotic SOX2 phosphorylation. Ser220 and Ser251 are two sites that identified for mitotic phosphorylation on SOX2. Moreover, SOX2 mutants (S220A and S251A) can promote SOX2 induced OCT4 re-expression in differentiated cells. These findings reveal a novel regulation mechanism of SOX2 phosphorylation mediated by AURKA in mitosis and its function in stem cell pluripotency maintenance in cancer cells. PMID:27249336

  4. PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila

    PubMed Central

    Shiba-Fukushima, Kahori; Inoshita, Tsuyoshi; Hattori, Nobutaka; Imai, Yuzuru

    2014-01-01

    Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. PMID:24901221

  5. PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation.

    PubMed

    Plum, Laura Marie; Brieger, Anne; Engelhardt, Gabriela; Hebel, Silke; Nessel, Andreas; Arlt, Marcus; Kaltenberg, Jennifer; Schwaneberg, Ulrich; Huber, Michael; Rink, Lothar; Haase, Hajo

    2014-07-01

    Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity. PMID:24759986

  6. Eukaryotic-Type Ser/Thr Protein Kinase Mediated Phosphorylation of Mycobacterial Phosphodiesterase Affects its Localization to the Cell Wall

    PubMed Central

    Malhotra, Neha; Chakraborti, Pradip K.

    2016-01-01

    Phosphodiesterase enzymes, involved in cAMP hydrolysis reaction, are present throughout phylogeny and their phosphorylation mediated regulation remains elusive in prokaryotes. In this context, we focused on this enzyme from Mycobacterium tuberculosis. The gene encoded by Rv0805 was PCR amplified and expressed as a histidine-tagged protein (mPDE) utilizing Escherichia coli based expression system. In kinase assays, upon incubation with mycobacterial Clade I eukaryotic-type Ser/Thr kinases (PknA, PknB, and PknL), Ni-NTA purified mPDE protein exhibited transphosphorylation ability albeit with varying degree. When mPDE was co-expressed one at a time with these kinases in E. coli, it was also recognized by an anti-phosphothreonine antibody, which further indicates its phosphorylating ability. Mass spectrometric analysis identified Thr-309 of mPDE as a phosphosite. In concordance with this observation, anti-phosphothreonine antibody marginally recognized mPDE-T309A mutant protein; however, such alteration did not affect the enzymatic activity. Interestingly, mPDE expressed in Mycobacterium smegmatis yielded a phosphorylated protein that preferentially localized to cell wall. In contrast, mPDE-T309A, the phosphoablative variant of mPDE, did not show such behavior. On the other hand, phosphomimics of mPDE (T309D or T309E), exhibited similar cell wall anchorage as was observed with the wild-type. Thus, our results provide credence to the fact that eukaryotic-type Ser/Thr kinase mediated phosphorylation of mPDE renders negative charge to the protein, promoting its localization on cell wall. Furthermore, multiple sequence alignment revealed that Thr-309 is conserved among mPDE orthologs of M. tuberculosis complex, which presumably emphasizes evolutionary significance of phosphorylation at this residue. PMID:26904001

  7. Negative control of circadian clock regulator E4BP4 by casein kinase Iepsilon-mediated phosphorylation.

    PubMed

    Doi, Masao; Okano, Toshiyuki; Yujnovsky, Irene; Sassone-Corsi, Paolo; Fukada, Yoshitaka

    2004-06-01

    Light-dependent transcriptional regulation of clock genes is a crucial step in the entrainment of the circadian clock. E4bp4 is a light-inducible gene in the chick pineal gland, and it encodes a bZIP protein that represses transcription of cPer2, a chick pineal clock gene. Here, we demonstrate that prolonged light period-dependent accumulation of E4BP4 protein is temporally coordinated with a delay of the rising phase of cPer2 in the morning. E4BP4 was phosphorylated progressively and then disappeared in parallel with induced cPer2 expression. Characterization of E4BP4 revealed Ser182, a phosphoacceptor site located at the amino-terminal border of the Ser/Thr cluster, which forms the phosphorylation motifs for casein kinase 1epsilon (CK1epsilon). CK1epsilon physically associated with E4BP4 and phosphorylated it. CK1epsilon-catalyzed phosphorylation of E4BP4 resulted in proteasomal proteolysis-dependent decrease of E4BP4 levels, while E4BP4 nuclear accumulation was attenuated by CK1epsilon in a kinase activity-independent manner. CK1epsilon-mediated posttranslational regulation was accompanied by reduction of the transcriptional repression executed by E4BP4. These results not only demonstrate a phosphorylation-dependent regulatory mechanism for E4BP4 function but also highlight the role of CK1epsilon as a negative regulator for E4BP4-mediated repression of cPer2. PMID:15182670

  8. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen

    PubMed Central

    Zhang, Yujie; Stefanovic, Branko

    2016-01-01

    La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen α2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis. PMID:26932461

  9. Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes.

    PubMed

    Vaughan, R A; Huff, R A; Uhl, G R; Kuhar, M J

    1997-06-13

    Dopamine transporters (DATs) are members of a family of Na+- and Cl--dependent neurotransmitter transporters responsible for the rapid clearance of dopamine from synaptic clefts. The predicted primary sequence of DAT contains numerous consensus phosphorylation sites. In this report we demonstrate that DATs undergo endogenous phosphorylation in striatal synaptosomes that is regulated by activators of protein kinase C. Rat striatal synaptosomes were metabolically labeled with [32P]orthophosphate, and solubilized homogenates were subjected to immunoprecipitation with an antiserum specific for DAT. Basal phosphorylation occurred in the absence of exogenous treatments, and the phosphorylation level was rapidly increased when synaptosomes were treated with the phosphatase inhibitors okadaic acid or calyculin. Treatment of synaptosomes with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also increased the level of phosphate incorporation. This occurred within 10 min and was dosedependent between 0.1 and 1 microM PMA. DAT phosphorylation was also significantly increased by two other protein kinase C activators, (-)-indolactam V and 1-oleoyl-2-acetyl-sn-glycerol. The inactive phorbol ester 4alpha-phorbol 12,13-didecanoate at 10 microM was without effect, and PMA-induced phosphorylation was blocked by treatment of synaptosomes with the protein kinase C inhibitors staurosporine and bisindoylmaleimide. These results indicate that DATs undergo rapid in vivo phosphorylation in response to protein kinase C activation and that a robust mechanism exists in synaptosomes for DAT dephosphorylation. Dopamine transport activity in synaptosomes was reduced by all treatments that promoted DAT phosphorylation, with comparable dose, time, and inhibitor characteristics. The change in transport activity was produced by a reduction in Vmax with no significant effect on the Km for dopamine. These results suggest that synaptosomal dopamine transport activity is regulated by

  10. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation.

    PubMed

    Avril, Tony; Freeman, Sylvie D; Attrill, Helen; Clarke, Rosemary G; Crocker, Paul R

    2005-05-20

    Siglec-5 (CD170) is a member of the recently described human CD33-related siglec subgroup of sialic acid binding Ig-like lectins and is expressed on myeloid cells of the hemopoietic system. Similar to other CD33-related siglecs, Siglec-5 contains two tyrosine-based motifs in its cytoplasmic tail implicated in signaling functions. To investigate the role of these motifs in Siglec-5-dependent signaling, we used transfected rat basophil leukemia cells as a model system. Tyrosine phosphorylation of Siglec-5 led to recruitment of the tyrosine phosphatases SHP-1 and SHP-2, as seen in both pull-down assays and microscopy. Siglec-5 could efficiently inhibit FcepsilonRI-mediated calcium fluxing and serotonin release after co-cross-linking. Surprisingly, a double tyrosine to alanine mutant of Siglec-5 could still mediate strong inhibition of serotonin release in the absence of detectable tyrosine phosphorylation, whereas a double tyrosine to phenylalanine mutant lost all inhibitory activity. In comparison, suppression of Siglec-5-dependent adhesion to red blood cells was reversed by either tyrosine to alanine or tyrosine to phenylalanine mutations of the membrane proximal tyrosine-based motif. Using an in vitro phosphatase assay with synthetic and recombinant forms of the cytoplasmic tail, it was shown that a double alanine mutant of Siglec-5 had weak, but significant SHP-1 activating properties similar to those of wild type, non-phosphorylated cytoplasmic tail, whereas a double phenylalanine mutant was inactive. These findings establish that Siglec-5 can be classified as an inhibitory receptor with the potential to mediate SHP-1 and/or SHP-2-dependent signaling in the absence of tyrosine phosphorylation. PMID:15769739

  11. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK

    PubMed Central

    SHARMA, Mukesh Kumar; KAMDAR, Radhika Pankaj; FUKUCHI, Mikoto; MATSUMOTO, Yoshihisa

    2014-01-01

    XRCC4 (X-ray cross-complementation group 4) is a protein associated with DNA ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end-joining. It has been shown that, in response to irradiation or treatment with DNA damaging agents, XRCC4 undergoes phosphorylation, requiring DNA-PK. Here we explored possible role of ATM, which is structurally related to DNA-PK, in the regulation of XRCC4. The radiosensitizing effects of DNA-PK inhibitor and/or ATM inhibitor were dependent on XRCC4. DNA-PK inhibitor and ATM inhibitor did not affect the ionizing radiation-induced chromatin recruitment of XRCC4. Ionizing radiation-induced phosphorylation of XRCC4 in the chromatin-bound fraction was largely inhibited by DNA-PK inhibitor but further diminished by the combination with ATM inhibitor. The present results indicated that XRCC4 phosphorylation is mediated through ATM as well as DNA-PK, although DNA-PK plays the major role. We would propose a possible model that DNA-PK and ATM acts in parallel upstream of XRCC4, regulating through phosphorylation. PMID:25391321

  12. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. PMID:21477078

  13. Stk1-mediated phosphorylation stimulates the DNA-binding properties of the Staphylococcus aureus SpoVG transcriptional factor.

    PubMed

    Bischoff, Markus; Brelle, Solène; Minatelli, Sabrina; Molle, Virginie

    2016-05-13

    The stage V sporulation protein G (SpoVG) homolog of Staphylococcus aureus is a modulator of virulence factor synthesis and antibiotic resistance in this clinically important gram-positive pathogen. Here we demonstrate that SpoVG can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation positively affects its DNA-binding properties. Mass spectrometric analyses and site directed mutagenesis identified Thr4, Thr13, Thr24 and Ser41 as phospho-acceptors. Stk1-mediated phosphorylation markedly enhanced the DNA binding activity of SpoVG towards the promoter regions of target genes such as capA, lip, and nuc1. Similarly, trans-complementation of the S. aureus ΔyabJ-spoVG mutant SM148 with a SpoVG derivative that mimics constitutive phosphorylation, SpoVG_Asp, exhibited capA, lip, and nuc1 transcript levels that were comparable to the levels seen with the wild-type, whereas trans-complementation with a phosphoablative variant of SpoVG (SpoVG_Ala) produced transcript levels similar to the ones seen in SM148. Our data suggest that the expression/activity of this transcription factor is tightly controlled in S. aureus by transcriptional, post-transcriptional and post-translational mechanisms. PMID:27091430

  14. p53-Derived Host Restriction of HIV-1 Replication by Protein Kinase R-Mediated Tat Phosphorylation and Inactivation

    PubMed Central

    Yoon, Cheol-Hee; Kim, Sang-Yoon; Byeon, Se Eun; Jeong, Yideul; Lee, Jinjoo; Kim, Kwang Pyo; Park, Jinseu

    2015-01-01

    ABSTRACT Tumor suppressor p53 has been suggested to be a host restriction factor against HIV-1 replication, but the detailed molecular mechanism has remained elusive for decades. Here, we demonstrate that p53-mediated HIV-1 suppression is attributed to double-stranded RNA (dsRNA)-dependent protein kinase (PKR)-mediated HIV-1 trans-activator (Tat) phosphorylation and inactivation. p53 silencing significantly enhanced HIV-1 replication in infected cells. Ectopic expression of p53 suppressed Tat activity, which was rescued by PKR silencing. In addition, ectopic expression of PKR abolished Tat activity in p53−/− and eIF2αCA cells. Finally, we found that HIV-1 infection activates p53, followed by the induction and activation of PKR. PKR directly interacted with HIV-1 Tat and phosphorylates the first exon of Tat exclusively at five Ser/Thr residues (T23, T40, S46, S62, and S68), which inhibits Tat-mediated provirus transcription in three critical steps: (i) phosphorylation near the arginine-rich motif (ARM) inhibits Tat translocation into the nucleus, (ii) accumulation of Tat phosphorylation abolishes Tat–Tat-responsive region (TAR) binding, and (iii) Tat phosphorylation at T23 and/or T40 obliterates the Tat-cyclin T1 interaction. These five Ser/Thr sites on Tat were highly conserved in HIV-1 strains prevalent in Europe and the United States. Taken together, our findings indicate that p53-derived host restriction of HIV-1 replication is likely attributable, at least in part, to a noncanonical p53/PKR/Tat phosphorylation and inactivation pathway in HIV-1 infection and AIDS pathogenesis. IMPORTANCE HIV-1-mediated disease progression to AIDS lasts for years to decades after primary infection. Host restriction and associated viral latency have been studied for several decades. p53 has been suggested as an important host restriction factor against HIV-1 replication. However, the detailed molecular mechanism is still unclear. In the present study, we found that the p53

  15. Lipopolysaccharide-induced cytokine expression in alveolar epithelial cells: role of PKCζ-mediated p47phox phosphorylation.

    PubMed

    Leverence, Jeremy T; Medhora, Meetha; Konduri, Girija G; Sampath, Venkatesh

    2011-01-15

    Chronic inflammation incited by bacteria in the saccular lung of premature infants contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). LPS-mediated type II alveolar epithelial cell (AEC) injury induces the expression of pro-inflammatory cytokines that trigger pulmonary neutrophil influx, alveolar matrix degradation and lung remodeling. We hypothesized that NADPH oxidase (Nox)-dependent mechanisms mediate LPS-induced cytokine expression in AEC. We examined the role of p47phox in mediating LPS-dependent inflammatory cytokine expression in A549 cells (which exhibit phenotypic features characteristic of type II AEC) and elucidated the proximal signaling events by which Nox is activated by LPS. LPS-induced ICAM-1 and IL-8 expression was associated with increased superoxide formation in AEC. LPS-mediated oxidative stress and cytokine expression was inhibited by apocynin and augmented by PMA demonstrating that Nox-dependent redox signaling regulates LPS-dependent pro-inflammatory signaling in AEC. In LPS-treated cells, p47phox translocated from the cytoplasm to the perinuclear region and co-localized with gp91phox. LPS also induced a temporal increase in p47phox serine304 phosphorylation in AEC. While inhibition of classical PKC and novel PKC with calphostin and rottlerin did not inhibit ICAM-1 or IL-8 expression, the myristolyated PKCζ pseudosubstrate peptide (a specific inhibitor of PKCζ) inhibited LPS-induced cytokine expression in AEC. Inhibition of PKCζ also attenuated LPS-mediated p47phox phosphorylation and perinuclear translocation in AEC. Consistent with these data, LPS activated PKCζ in AEC as evidenced by increased threonine410 phophorylation. We conclude that PKCζ-mediated p47phox activation regulates LPS-dependent cytokine expression in AEC. Selective inhibition of PKCζ or p47phox might attenuate LPS-mediated inflammation and alveolar remodeling in BPD. PMID:20920494

  16. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation

    PubMed Central

    Kolliputi, Narasaiah; Waxman, Aaron B.

    2009-01-01

    IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg+) mice exposed to 100% O2 and in human umbilical vein endothelial cells (HUVEC) treated with H2O2 and IL-6. In control HUVEC treated with H2O2 or in WT mice exposed to 100% O2, a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg+ mice exposed to 100% O2 exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser184 compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation. PMID:19376889

  17. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development.

    PubMed

    Cho, Hyunwoo; Ryu, Hojin; Rho, Sangchul; Hill, Kristine; Smith, Stephanie; Audenaert, Dominique; Park, Joonghyuk; Han, Soeun; Beeckman, Tom; Bennett, Malcolm J; Hwang, Daehee; De Smet, Ive; Hwang, Ildoo

    2014-01-01

    The phytohormone auxin is a key developmental signal in plants. So far, only auxin perception has been described to trigger the release of transcription factors termed Auxin Response Factors (ARFs) from their auxin/indole-3-acetic acid (AUX/IAA) repressor proteins. Here, we show that phosphorylation of ARF7 and ARF19 by BRASSINOSTEROID-insensitive2 (BIN2) can also potentiate auxin signalling output during lateral root organogenesis. BIN2-mediated phosphorylation of ARF7 and ARF19 suppresses their interaction with AUX/IAAs, and subsequently enhances the transcriptional activity to their target genes lateral organ boundaries-domain16 (LBD16) and LBD29. In this context, BIN2 is under the control of the Tracheary element differentiation inhibitory factor (TDIF)-TDIF receptor (TDR) module. TDIF-initiated TDR signalling directly acts on BIN2-mediated ARF phosphorylation, leading to the regulation of auxin signalling during lateral root development. In summary, this study delineates a TDIF-TDR-BIN2 signalling cascade that controls regulation of ARF and AUX/IAA interaction independent of auxin perception during lateral root development. PMID:24362628

  18. PDGF-BB-mediated activation of p42(MAPK) is independent of PDGF beta-receptor tyrosine phosphorylation.

    PubMed

    Cartel, N J; Liu, J; Wang, J; Post, M

    2001-10-01

    Herein, we investigated the activity of mitogen-activated protein kinase (MAPK), a key component of downstream signaling events, which is activated subsequent to platelet-derived growth factor (PDGF)-BB stimulation. Specifically, p42(MAPK) activity peaked 60 min after addition of PDGF-BB, declined thereafter, and was determined not to be a direct or necessary component of glycosaminoglycan (GAG) synthesis. PDGF-BB also activated MAPK kinase 2 (MAPKK2) but had no effect on MAPKK1 and Raf-1 activity. Chemical inhibition of Janus kinase, phosphatidylinositol 3-kinase, Src kinase, or tyrosine phosphorylation inhibition of the PDGF beta-receptor (PDGFR-beta) did not abrogate PDGF-BB-induced p42(MAPK) activation or its threonine or tyrosine phosphorylation. A dominant negative cytoplasmic receptor for hyaluronan-mediated motility variant 4 (RHAMMv4), a regulator of MAPKK-MAPK interaction and activation, did not inhibit PDGF-BB-induced p42(MAPK) activation nor did a construct expressing PDGFR-beta with cytoplasmic tyrosines mutated to phenylalanine. However, overexpression of a dominant negative PDGFR-beta lacking the cytoplasmic signaling domain abrogated p42(MAPK) activity. These results suggest that PDGF-BB-mediated activation of p42(MAPK) requires the PDGFR-beta but is independent of its tyrosine phosphorylation. PMID:11557582

  19. MEK/ERK-Mediated Phosphorylation of Bim is Required to Ensure Survival of T and B Lymphocytes during Mitogenic Stimulation

    PubMed Central

    O’Reilly, Lorraine A; Kruse, Elizabeth A; Puthalakath, Hamsa; Kelly, Priscilla N; Kaufmann, Thomas; Huang, David CS; Strasser, Andreas

    2010-01-01

    Survival and death of lymphocytes is regulated by the balance between pro- and anti-apoptotic members of the Bcl-2 family, and this is coordinated with the control of cell cycling and differentiation. Bim, a pro-apoptotic BH3-only member of the Bcl-2 family, can be regulated by MEK/ERK-mediated phosphorylation, which affects its binding to pro-survival Bcl-2 family members and its turnover. We investigated Bim modifications in mouse B and T lymphoid cells after exposure to apoptotic stimuli and during mitogenic activation. Treatment with ionomycin or cytokine withdrawal caused an elevation in BimEL, the most abundant Bim isoform. In contrast, in mitogenically stimulated T and B cells, BimEL was rapidly phosphorylated and its levels declined. Pharmacological inhibitors of MEK/ERK-signaling prevented both of these changes in Bim, reduced proliferation and triggered apoptosis of mitogen-stimulated T and B cells. Remarkably, loss of Bim prevented this cell killing but did not restore cell cycling. These results show that during mitogenic stimulation of T and B lymphocytes MEK/ERK signaling is critical for two distinct processes, cell survival, mediated (at least in part) through phosphorylation and consequent inhibition of Bim, and cell cycling, which proceeds independently of Bim inactivation. PMID:19542438

  20. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  1. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis

    PubMed Central

    Chen, W; Wang, Q; Bai, L; Chen, W; Wang, X; Tellez, C S; Leng, S; Padilla, M T; Nyunoya, T; Belinsky, S A; Lin, Y

    2014-01-01

    Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy. PMID:24583643

  2. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    PubMed

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  3. Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation

    PubMed Central

    Lin, Rongtuan; Heylbroeck, Christophe; Pitha, Paula M.; Hiscott, John

    1998-01-01

    The interferon regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the alpha beta interferon (IFN-α/β) gene promoters, as well as the interferon-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the ISG15 promoter. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. In the present study, we demonstrate that following Sendai virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, which are located in the carboxy terminus of IRF-3. A combination of IRF-3 deletion and point mutations localized the inducible phosphorylation sites to the region -ISNSHPLSLTSDQ- between amino acids 395 and 407; point mutation of residues Ser-396 and Ser-398 eliminated virus-induced phosphorylation of IRF-3 protein, although residues Ser-402, Thr-404, and Ser-405 were also targets. Phosphorylation results in the cytoplasm-to-nucleus translocation of IRF-3, DNA binding, and increased transcriptional activation. Substitution of the Ser-Thr sites with the phosphomimetic Asp generated a constitutively active form of IRF-3 that functioned as a very strong activator of promoters containing PRDI-PRDIII or ISRE regulatory elements. Phosphorylation also appears to represent a signal for virus-mediated degradation, since the virus-induced turnover of IRF-3 was prevented by mutation of the IRF-3 Ser-Thr cluster or by proteasome inhibitors. Interestingly, virus infection resulted in the association of IRF-3 with the CREB binding protein (CBP) coactivator, as detected by coimmunoprecipitation with anti-CBP antibody, an interaction mediated by the C-terminal domains of both proteins. Mutation of residues Ser-396 and

  4. Identification of the in vitro phosphorylation sites on Gs alpha mediated by pp60c-src.

    PubMed

    Moyers, J S; Linder, M E; Shannon, J D; Parsons, S J

    1995-01-15

    Overexpression of pp60c-src in mouse fibroblasts potentiates both agonist-induced signalling through beta-adrenergic receptors and cyclic AMP accumulation in response to cholera toxin [Bushman, Wilson, Luttrell, Moyers and Parsons (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7462-7466; Moyers, Bouton and Parsons (1993) Mol. Cell. Biol. 13, 2391-2400]. In reconstitution experiments in vitro, phosphorylation of Gs alpha by immune-complexed pp60c-src resulted in enhanced rates of receptor-mediated guanosine 5'-[gamma-thio]triphosphate (GTP[S]) binding and GTP hydrolysis [Hausdorff, Pitcher, Luttrell, Linder, Kurose, Parsons, Caron and Lefkowitz (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5720-5724]. These results suggest that one mechanism by which pp60c-src affects signalling through the beta-adrenergic receptor is by phosphorylation and functional alteration of the G protein. To elucidate how phosphorylation of Gs alpha might affect its function, we subjected phosphorylated, recombinant Gs alpha to tryptic phosphopeptide analysis. Phosphotryptic peptides were purified by h.p.l.c. and analysed by Edman degradation to determine the cycle numbers at which radiolabelled phosphotyrosine was released. Candidate peptides that contained Tyr residues at the corresponding positions were synthesized, phosphorylated in vitro by pp60c-src, and their migrations in two-dimensional electrophoresis/t.l.c. were compared with those of tryptic phosphopeptides from intact Gs alpha. We report here that Gs alpha is phosphorylated on two residues by pp60c-src, namely, Tyr-37 and Tyr-377. Tyr-37 lies near the site of beta gamma binding in the N-terminus, within a region postulated to modulate GDP dissociation and activation by GTP [Johnson, Dhanasekaran, Gupta, Lowndes, Vaillancourt and Ruoho (1991) J. Cell Biochem. 47, 136-146], while Tyr-377 is located in the extreme C-terminus, within a region of Gs alpha important for receptor interaction [Sullivan, Miller, Masters, Beiderman, Heideman and

  5. PECAM-1 affects GSK-3beta-mediated beta-catenin phosphorylation and degradation.

    PubMed

    Biswas, Purba; Canosa, Sandra; Schoenfeld, David; Schoenfeld, Jonathan; Li, Puyau; Cheas, Lydia C; Zhang, Jin; Cordova, Alfredo; Sumpio, Bauer; Madri, Joseph A

    2006-07-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates a variety of endothelial and immune cell biological responses. PECAM-1-null mice exhibit prolonged and increased permeability after inflammatory insults. We observed that in PECAM-1-null endothelial cells (ECs), beta-catenin remained tyrosine phosphorylated, coinciding with a sustained increase in permeability. Src homology 2 domain containing phosphatase 2 (SHP-2) association with beta-catenin was diminished in PECAM-1-null ECs, suggesting that lack of PECAM-1 inhibits the ability of this adherens junction component to become dephosphorylated, promoting a sustained increase in permeability. beta-Catenin/Glycogen synthase kinase 3 (GSK-3beta) association and beta-catenin serine phosphorylation levels were increased and beta-catenin expression levels were reduced in PECAM-1-null ECs. Glycogen synthase kinase 3 (GSK-3beta) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress. Our data suggest that PECAM-1 serves as a critical dynamic regulator of endothelial barrier permeability. On stimulation by a vasoactive substance or shear stress, PECAM-1 became tyrosine phosphorylated, enabling recruitment of SHP-2 and tyrosine-phosphorylated beta-catenin to its cytoplasmic domain, facilitating dephosphorylation of beta-catenin, and allowing reconstitution of adherens junctions. In addition, PECAM-1 modulated the levels of beta-catenin by regulating the activity of GSK-3beta, which in turn affected the serine phosphorylation of beta-catenin and its proteosomal degradation, affecting the ability of the cell to reform adherens junctions in a timely fashion. PMID:16816383

  6. PECAM-1 Affects GSK-3β-Mediated β-Catenin Phosphorylation and Degradation

    PubMed Central

    Biswas, Purba; Canosa, Sandra; Schoenfeld, David; Schoenfeld, Jonathan; Li, Puyau; Cheas, Lydia C.; Zhang, Jin; Cordova, Alfredo; Sumpio, Bauer; Madri, Joseph A.

    2006-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates a variety of endothelial and immune cell biological responses. PECAM-1-null mice exhibit prolonged and increased permeability after inflammatory insults. We observed that in PECAM-1-null endothelial cells (ECs), β-catenin remained tyrosine phosphorylated, coinciding with a sustained increase in permeability. Src homology 2 domain containing phosphatase 2 (SHP-2) association with β-catenin was diminished in PECAM-1-null ECs, suggesting that lack of PECAM-1 inhibits the ability of this adherens junction component to become dephosphorylated, promoting a sustained increase in permeability. β-Catenin/Glycogen synthase kinase 3 (GSK-3β) association and β-catenin serine phosphorylation levels were increased and β-catenin expression levels were reduced in PECAM-1-null ECs. Glycogen synthase kinase 3 (GSK-3β) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress. Our data suggest that PECAM-1 serves as a critical dynamic regulator of endothelial barrier permeability. On stimulation by a vasoactive substance or shear stress, PECAM-1 became tyrosine phosphorylated, enabling recruitment of SHP-2 and tyrosine-phosphorylated β-catenin to its cytoplasmic domain, facilitating dephosphorylation of β-catenin, and allowing reconstitution of adherens junctions. In addition, PECAM-1 modulated the levels of β-catenin by regulating the activity of GSK-3β, which in turn affected the serine phosphorylation of β-catenin and its proteosomal degradation, affecting the ability of the cell to reform adherens junctions in a timely fashion. PMID:16816383

  7. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression.

    PubMed

    Wu, D-W; Wu, T-C; Wu, J-Y; Cheng, Y-W; Chen, Y-C; Lee, M-C; Chen, C-Y; Lee, H

    2014-08-28

    Paxillin (PXN) is required for receptor tyrosine kinase-mediated ERK activation, and the activation of the Raf/MEK/ERK cascade has been linked with Bcl-2 expression. We hypothesized that phosphorylation of PXN by the EGFR/Src pathway might contribute to cisplatin resistance via increased Bcl-2 expression. We show that cisplatin resistance was dependent on PXN expression, as evidenced by PXN overexpression in TL-13 and TL-10 cells and PXN knockdown in H23 and CL1-5 cells. Specific inhibitors of signaling pathways indicated that the phosphorylation of PXN at Y118 and Y31 via the Src pathway was responsible for cisplatin resistance. We further demonstrated that ERK activation was also dependent on this PXN phosphorylation. Bcl-2 transcription was upregulated by phosphorylated PXN-mediated ERK activation via increased binding of phosphorylated CREB to the Bcl-2 promoter. A subsequent increase in Bcl-2 levels by a PXN/ERK axis was responsible for the resistance to cisplatin. Animal models further confirmed the findings of in vitro cells indicating that xenograft tumors induced by TL-13-overexpressing cells were successfully suppressed by cisplatin combined with Src or ERK inhibitor compared with treatment of cisplatin, Src inhibitor or ERK inhibitor alone. A positive correlation of phosphorylated PXN with phosphorylated ERK and Bcl-2 was observed in lung tumors from NSCLC patients. Patients with tumors positive for PXN, phosphorylated PXN, phosphorylated ERK and Bcl-2 more commonly showed a poorer response to cisplatin-based chemotherapy than did patients with negative tumors. Collectively, PXN phosphorylation might contribute to cisplatin resistance via activating ERK-mediated Bcl-2 transcription. Therefore, we suggest that Src or ERK inhibitor might be helpful to improve the sensitivity for cisplatin-based chemotherapy in NSCLC patients with PXN-positive tumors. PMID:24096476

  8. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. PMID:26777665

  9. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition.

    PubMed

    McQuade, Jennifer L; Vashisht Gopal, Yn

    2015-01-01

    Mitochondrial oxidative phosphorylation (OxPhos) induces resistance to MAPK pathway inhibitors in melanoma. However, therapeutic targeting of mitochondria is challenging. In a recent study, we showed that inhibition of mTOR kinase activity resensitized resistant melanomas by indirectly inhibiting OxPhos via a novel mechanism. Here, we discuss the implications of these findings. PMID:27308473

  10. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition

    PubMed Central

    McQuade, Jennifer L; Vashisht Gopal, Yn

    2015-01-01

    Mitochondrial oxidative phosphorylation (OxPhos) induces resistance to MAPK pathway inhibitors in melanoma. However, therapeutic targeting of mitochondria is challenging. In a recent study, we showed that inhibition of mTOR kinase activity resensitized resistant melanomas by indirectly inhibiting OxPhos via a novel mechanism. Here, we discuss the implications of these findings. PMID:27308473

  11. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation.

    PubMed

    Garris, Christopher S; Wu, Linfeng; Acharya, Swati; Arac, Ahmet; Blaho, Victoria A; Huang, Yingxiang; Moon, Byoung San; Axtell, Robert C; Ho, Peggy P; Steinberg, Gary K; Lewis, David B; Sobel, Raymond A; Han, David K; Steinman, Lawrence; Snyder, Michael P; Hla, Timothy; Han, May H

    2013-11-01

    Sphingosine 1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. The sphingosine phosphate receptor 1 (S1P1) agonist FTY-720 (Gilenya) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring an S1pr1 gene encoding phosphorylation-deficient receptors (S1P1(S5A)) developed severe experimental autoimmune encephalomyelitis (EAE) due to autoimmunity mediated by interleukin 17 (IL-17)-producing helper T cells (TH17 cells) in the peripheral immune and nervous system. S1P1 directly activated the Jak-STAT3 signal-transduction pathway via IL-6. Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS. PMID:24076635

  12. Nuclear Localization of Haa1, Which Is Linked to Its Phosphorylation Status, Mediates Lactic Acid Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Horie, Hitoshi; Kaneko, Yoshinobu

    2014-01-01

    Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast. PMID:24682296

  13. p38MAPK/MK2-mediated phosphorylation of RBM7 regulates the human nuclear exosome targeting complex

    PubMed Central

    Lubas, Michal; Tehrani, Mohammad; Menon, Manoj B.; Ronkina, Natalia; Rousseau, Simon; Cohen, Philip; Kotlyarov, Alexey

    2015-01-01

    The nuclear exosome targeting complex (NEXT) directs a major 3′–5′ exonuclease, the RNA exosome, for degradation of nuclear noncoding (nc) RNAs. We identified the RNA-binding component of the NEXT complex, RBM7, as a substrate of p38MAPK/MK2-mediated phosphorylation at residue S136. As a result of this phosphorylation, RBM7 displays a strongly decreased RNA-binding capacity, while inhibition of p38MAPK or mutation of S136A in RBM7 increases its RNA association. Interestingly, promoter-upstream transcripts (PROMPTs), such as proRBM39, proEXT1, proDNAJB4, accumulated upon stress stimulation in a p38MAPK/MK2-dependent manner, a process inhibited by overexpression of RBM7S136A. While there are no stress-dependent changes in RNA-polymerase II (RNAPII) occupation of PROMPT regions representing unchanged transcription, stability of PROMPTs is increased. Hence, we propose that phosphorylation of RBM7 by the p38MAPK/MK2 axis increases nuclear ncRNA stability by blocking their RBM7-binding and subsequent RNA exosome targeting to allow stress-dependent modulations of the noncoding transcriptome. PMID:25525152

  14. RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin.

    PubMed

    Truffi, Marta; Dubreuil, Véronique; Liang, Xuan; Vacaresse, Nathalie; Nigon, Fabienne; Han, Siew Ping; Yap, Alpha S; Gomez, Guillermo A; Sap, Jan

    2014-06-01

    Epithelial junctions are fundamental determinants of tissue organization, subject to regulation by tyrosine phosphorylation. Homophilic binding of E-cadherin activates tyrosine kinases, such as Src, that control junctional integrity. Protein tyrosine phosphatases (PTPs) also contribute to cadherin-based adhesion and signaling, but little is known about their specific identity or functions at epithelial junctions. Here, we report that the receptor PTP RPTPα (human gene name PTPRA) is recruited to epithelial adherens junctions at the time of cell-cell contact, where it is in molecular proximity to E-cadherin. RPTPα is required for appropriate cadherin-dependent adhesion and for cyst architecture in three-dimensional culture. Loss of RPTPα impairs adherens junction integrity, as manifested by defective E-cadherin accumulation and peri-junctional F-actin density. These effects correlate with a role for RPTPα in cellular (c)-Src activation at sites of E-cadherin engagement. Mechanistically, RPTPα is required for appropriate tyrosine phosphorylation of cortactin, a major Src substrate and a cytoskeletal actin organizer. Expression of a phosphomimetic cortactin mutant in RPTPα-depleted cells partially rescues F-actin and E-cadherin accumulation at intercellular contacts. These findings indicate that RPTPα controls cadherin-mediated signaling by linking homophilic E-cadherin engagement to cortactin tyrosine phosphorylation through c-Src. PMID:24652832

  15. Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

    PubMed Central

    Jeon, Yong-Joon; Kim, Jin Hyun; Shin, Jong-Il; Jeong, Mini; Cho, Jaewook; Lee, Kyungho

    2016-01-01

    Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells. PMID:26743901

  16. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus.

    PubMed

    Santama, Niovi; Ogg, Stephen C; Malekkou, Anna; Zographos, Spyros E; Weis, Karsten; Lamond, Angus I

    2005-10-28

    Coilin is a marker protein for the Cajal body, a subnuclear domain acting as a site for assembly and maturation of nuclear RNA-protein complexes. Using a yeast two-hybrid screen to identify coilin-interacting proteins, we have identified hCINAP (human coilin interacting nuclear ATPase protein), a nuclear factor of 172 amino acids with a P-loop nucleotide binding motif and ATPase activity. The hCINAP protein sequence is highly conserved across its full-length from human to plants and yeast and is ubiquitously expressed in all human tissues and cell lines tested. The yeast orthologue of CINAP is a single copy, essential gene. Tagged hCINAP is present in complexes containing coilin in mammalian cells and recombinant, Escherichia coli expressed hCINAP binds directly to coilin in vitro. The 214 carboxyl-terminal residues of coilin appear essential for the interaction with hCINAP. Both immunofluorescence and fluorescent protein tagging show that hCINAP is specifically nuclear and distributed in a widespread, diffuse nucleoplasmic pattern, excluding nucleoli, with some concentration also in Cajal bodies. Overexpression of hCINAP in HeLa cells results in a decrease in the average number of Cajal bodies per nucleus, consistent with it affecting either the stability of Cajal bodies and/or their rate of assembly. The hCINAP mRNA is an alternatively spliced transcript from the TAF9 locus, which encodes the basal transcription factor subunit TAFIID32. However, hCINAP and TAFIID32 mRNAs are translated from different ATG codons and use distinct reading frames, resulting in them having no identity in their respective protein sequences. PMID:16079131

  17. Phosphorylated S6 Kinase and S6 Ribosomal Protein are Diagnostic Markers of Antibody Mediated Rejection in Heart Allografts

    PubMed Central

    Valenzuela, Nicole M.; Lai, Chi; Zhang, Qiuheng; Gjertson, David; Fishbein, Michael C; Kobashigawa, Jon A; Deng, Mario; Reed, Elaine F.

    2014-01-01

    Background Anti-MHC class I alloantibodies have been implicated in the processes of acute and chronic rejection. These antibodies (Ab) bind to endothelial cells (EC) and transduce signals leading to the activation of cell survival and proliferation pathways, including Src, FAK, mTOR, and downstream targets ERK, S6 kinase (S6K) and S6 ribosomal protein (S6RP). We tested the hypothesis that phosphorylation of S6K, S6RP and ERK in capillary endothelium may serve as an adjunct diagnostic tool for antibody mediated rejection (AMR) in heart allografts. Methods Diagnosis of AMR was based on histology or immunoperoxidase staining of paraffin-embedded tissue consistent with 2013 ISHLT criteria. Diagnosis of acute cellular rejection (ACR) was based on ISHLT criteria. Endomyocardial biopsies from 67 heart transplant recipients diagnosed with acute rejection [33 with pAMR, 18 with ACR (15 with grade 1R, 3 with grade >2R), 16 with pAMR+ACR (13 with 1R and 3 with >2R)] and 40 age- and gender-matched recipients without rejection were tested for the presence of phosphorylated forms of ERK, S6RP and S6K by immunohistochemistry. Results Immunostaining of endomyocardial biopsies with evidence of pAMR showed significant increase in expression of p-S6K and p-S6RP in capillary EC compared to controls. A weaker association was observed between pAMR and p-ERK. Conclusions Biopsies diagnosed with pAMR often showed phosphorylation of S6K and S6RP, indicating that staining for p-S6K and p-S6RP is useful for the diagnosis of AMR. Our findings support a role for antibody-mediated HLA signaling in the process of graft injury. PMID:25511749

  18. Interferon regulatory factor 4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells.

    PubMed

    Wang, Ling; Ning, Shunbin

    2013-09-01

    The importance of the oncogenic transcription factor interferon regulatory factor 4 (IRF4) in hematological malignancies has been increasingly recognized. We have previously identified the B cell integration cluster (BIC), the gene encoding miR-155, as the first microRNA (miRNA)-encoding gene transcriptionally targeted by IRF4 in virus-transformed cancer cells. Activation of IRFs is prerequisite for their functions. However, how IRF4 is activated in cancer is an open question. Our phosphoproteome profiling has identified several tyrosine phosphorylation sites on IRF4 in Epstein-Barr virus (EBV)-transformed cells. Further, we show here that c-Src dramatically stimulates IRF4 phosphorylation and activity and that Y61 and Y124 are two key sites responding to c-Src-mediated activation. Consistently, c-Src is constitutively expressed and active in EBV-transformed cells. However, c-Src is unlikely to be a direct kinase for IRF4. Furthermore, we have a polyclonal antibody specific to phospho-IRF4(Y121/124) developed in rabbit. We have further shown that inhibition of c-Src activity reduces p-IRF4(Y121/124) and significantly represses transcription of the IRF4 target BIC in EBV-transformed cells. Our results therefore, for the first time, demonstrate that IRF4 is phosphorylated and activated through a c-Src-mediated pathway in virus-transformed cells. These findings will improve our understanding of IRF4 in neoplasia and will provide profound insights into the interaction of oncogenic viruses with IRF4 in the development of hematological malignancies. PMID:23804646

  19. CDK-mediated RNF4 phosphorylation regulates homologous recombination in S-phase

    PubMed Central

    Luo, Kuntian; Deng, Min; Li, Yunhui; Wu, Chenming; Xu, Ziwen; Yuan, Jian; Lou, Zhenkun

    2015-01-01

    There are the two major pathways responsible for the repair of DNA double-strand breaks (DSBs): non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ operates throughout the cell-cycle, while HR is primarily active in the S/G2 phases suggesting that there are cell cycle-specific mechanisms that regulate the balance between NHEJ and HR. Here we reported that CDK2 could phosphorylate RNF4 on T26 and T112 and enhance RNF4 E3 ligase activity, which is important for MDC1 degradation and proper HR repair during S phase. Mutation of the RNF4 phosphorylation sites results in MDC1 stabilization, which in turn compromised HR during S-phase. These results suggest that in addition to drive cell cycle progression, CDK also targets RNF4, which is involved in the regulatory network of DSBs repair. PMID:25948581

  20. CDK-mediated RNF4 phosphorylation regulates homologous recombination in S-phase.

    PubMed

    Luo, Kuntian; Deng, Min; Li, Yunhui; Wu, Chenming; Xu, Ziwen; Yuan, Jian; Lou, Zhenkun

    2015-06-23

    There are the two major pathways responsible for the repair of DNA double-strand breaks (DSBs): non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ operates throughout the cell-cycle, while HR is primarily active in the S/G2 phases suggesting that there are cell cycle-specific mechanisms that regulate the balance between NHEJ and HR. Here we reported that CDK2 could phosphorylate RNF4 on T26 and T112 and enhance RNF4 E3 ligase activity, which is important for MDC1 degradation and proper HR repair during S phase. Mutation of the RNF4 phosphorylation sites results in MDC1 stabilization, which in turn compromised HR during S-phase. These results suggest that in addition to drive cell cycle progression, CDK also targets RNF4, which is involved in the regulatory network of DSBs repair. PMID:25948581

  1. Endogenous IGFBP-3 Mediates Intrinsic Apoptosis Through Modulation of Nur77 Phosphorylation and Nuclear Export.

    PubMed

    Agostini-Dreyer, Allyson; Jetzt, Amanda E; Stires, Hillary; Cohick, Wendie S

    2015-11-01

    In nontransformed bovine mammary epithelial cells, the intrinsic apoptosis inducer anisomycin (ANS) induces IGFBP-3 expression and nuclear localization and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. Others have shown in prostate cancer cells that exogenous IGFBP-3 induces apoptosis by facilitating nuclear export of the orphan nuclear receptor Nur77 and its binding partner, retinoid X receptor-α (RXRα). The goal of the present work was to determine whether endogenous IGFBP-3 plays a role in ANS-induced apoptosis by facilitating nuclear transport of Nur77 and/or RXRα in nontransformed cells. Knockdown of Nur77 with siRNA decreased ANS-induced cleavage of caspase-3 and -7 and their downstream target, PARP, indicating a role for Nur77 in ANS-induced apoptosis. In cells transfected with IGFBP-3, IGFBP-3 associated with RXRα but not Nur77 under basal conditions, however, IGFBP-3 co-precipitated with phosphorylated forms of both proteins in ANS-treated cells. Indirect immunofluorescence and cell fractionation techniques showed that ANS induced phosphorylation and transport of Nur77 from the nucleus to the cytoplasm and these effects were attenuated by knockdown of IGFBP-3. These data suggest that endogenous IGFBP-3 plays a role in intrinsic apoptosis by facilitating phosphorylation and nuclear export of Nur77 to the cytoplasm where it exerts its apoptotic effect. Whether this mechanism involves a physical association between endogenous IGFBP-3 and Nur77 or RXRα remains to be determined. PMID:26340041

  2. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  3. The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation

    PubMed Central

    Jaleel, Mahaboobi; Villa, Fabrizio; Deak, Maria; Toth, Rachel; Prescott, Alan R.; van Aalten, Daan M. F.; Alessi, Dario R.

    2006-01-01

    Recent work indicates that the LKB1 tumour suppressor protein kinase, which is mutated in Peutz–Jeghers cancer syndrome, phosphorylates and activates a group of protein kinases that are related to AMPK (AMP-activated protein kinase). Ten of the 14 AMPK-related protein kinases activated by LKB1, including SIK (salt-induced kinase), MARK (microtubule-affinity-regulating kinase) and BRSK (brain-specific kinase) isoforms, possess a ubiquitin-associated (UBA) domain immediately C-terminal to the kinase catalytic domain. These are the only protein kinases in the human genome known to possess a UBA domain, but their roles in regulating AMPK-related kinases are unknown. We have investigated the roles that the UBA domain may play in regulating these enzymes. Limited proteolysis of MARK2 revealed that the kinase and UBA domains were contained within a fragment that was resistant to trypsin proteolysis. SAXS (small-angle X-ray scattering) analysis of inactive and active LKB1-phosphorylated MARK2 revealed that activation of MARK2 is accompanied by a significant conformational change that alters the orientation of the UBA domain with respect to the catalytic domain. Our results indicate that none of the UBA domains found in AMPK-related kinases interact with polyubiquitin or other ubiquitin-like molecules. Instead, the UBA domains appear to play an essential conformational role and are required for the LKB1-mediated phosphorylation and activation of AMPK-related kinases. This is based on the findings that mutation or removal of the UBA domains of several AMPK-related kinases, including isoforms of MARK, SIK and BRSK, markedly impaired the catalytic activity and LKB1-mediated phosphorylation of these enzymes. We also provide evidence that the UBA domains do not function as LKB1–STRAD (STE20-related adaptor)–MO25 (mouse protein 25) docking/interacting sites and that mutations in the UBA domain of SIK suppressed the ability of SIK to localize within punctate regions of the

  4. Anchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70

    PubMed Central

    Tang, Hai-Lin; Zhu, Shi-Ying; Zhao, Lan-Juan; Ren, Hao; Zhao, Ping; Qi, Zhong-Tian; Wang, Wen

    2015-01-01

    Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase A anchoring protein (AKAP). In addition, RAI16 also interacted with heat shock protein 70 (HSP70) and 14-3-3θ. Further studies indicated that RAI16 mediated PKA phosphorylation of HSP70 at serine 486, resulting in anti-apoptosis events. RAI16 was also phosphorylated by the anchored PKA at serine 325, which promoted the recruitment of 14-3-3θ, which, in turn, inhibited RAI16 mediated PKA phosphorylation of HSP70. These findings offer mechanism insight into RAI16 mediated anti-apoptosis signaling in HCC. PMID:25900241

  5. Akt-mediated Phosphorylation of XLF Impairs Non-homologous End Joining DNA Repair

    PubMed Central

    Liu, Pengda; Gan, Wenjian; Guo, Chunguang; Xie, Anyong; Gao, Daming; Guo, Jianping; Zhang, Jinfang; Willis, Nicholas; Su, Arthur; Asara, John M.; Scully, Ralph; Wei, Wenyi

    2015-01-01

    SUMMARY Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCFβ-TRCP in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis. PMID:25661488

  6. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors

    PubMed Central

    Du, Yi; Yamaguchi, Hirohito; Wei, Yongkun; Hsu, Jennifer L.; Wang, Hung-Ling; Hsu, Yi-Hsin; Lin, Wan-Chi; Yu, Wen-Hsuan; Leonard, Paul G.; Lee, Gilbert R.; Chen, Mei-Kuang; Nakai, Katsuya; Hsu, Ming-Chuan; Chen, Chun-Te; Sun, Ye; Wu, Yun; Chang, Wei-Chao; Huang, Wen-Chien; Liu, Chien-Liang; Chang, Yuan-Ching; Chen, Chung-Hsuan; Park, Morag; Jones, Philip; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising therapeutics for many diseases, including cancer, in clinical trials1. One PARP inhibitor, olaparib (Lynparza™, AstraZeneca), was recently approved by the FDA to treat ovarian cancer with BRCA mutations. BRCA1 and BRCA2 play essential roles in repairing DNA double strand breaks, and a deficiency of BRCA proteins sensitizes cancer cells to PARP inhibition2,3. Here we show that receptor tyrosine kinase c-Met associates with and phosphorylates PARP1 at Tyr907. Phosphorylation of PARP1 Tyr907 increases PARP1 enzymatic activity and reduces binding to a PARP inhibitor, thereby rendering cancer cells resistant to PARP inhibition. Combining c-Met and PARP1 inhibitors synergized to suppress growth of breast cancer cells in vitro and xenograft tumor models. Similar synergistic effects were observed in a lung cancer xenograft tumor model. These results suggest that PARP1 pTyr907 abundance may predict tumor resistance to PARP inhibitors, and that treatment with a combination of c-Met and PARP inhibitors may benefit patients bearing tumors with high c-Met expression who do not respond to PARP inhibition alone. PMID:26779812

  7. Pellino Proteins Contain a Cryptic FHA Domain that Mediates Interaction with Phosphorylated IRAK1

    SciTech Connect

    Lin, Chun-Chi; Huoh, Yu-San; Schmitz, Karl R.; Jensen, Liselotte E.; Ferguson, Kathryn M.

    2009-03-23

    Pellino proteins are RING E3 ubiquitin ligases involved in signaling events downstream of the Toll and interleukin-1 (IL-1) receptors, key initiators of innate immune and inflammatory responses. Pellino proteins associate with and ubiquitinate proteins in these pathways, including the interleukin-1 receptor associated kinase-1 (IRAK1). We determined the X-ray crystal structure of a Pellino2 fragment lacking only the RING domain. This structure reveals that the IRAK1-binding region of Pellino proteins consists largely of a previously unidentified forkhead-associated (FHA) domain. FHA domains are well-characterized phosphothreonine-binding modules, and this cryptic example in Pellino2 can drive interaction of this protein with phosphorylated IRAK1. The Pellino FHA domain is decorated with an unusual appendage or wing composed of two long inserts that lie within the FHA homology region. Delineating how this E3 ligase associates with substrates, and how these interactions are regulated by phosphorylation, is crucial for a complete understanding of Toll/IL-1 receptor signaling.

  8. Pin1-mediated Sp1 phosphorylation by CDK1 increases Sp1 stability and decreases its DNA-binding activity during mitosis.

    PubMed

    Yang, Hang-Che; Chuang, Jian-Ying; Jeng, Wen-Yih; Liu, Chia-I; Wang, Andrew H-J; Lu, Pei-Jung; Chang, Wen-Chang; Hung, Jan-Jong

    2014-12-16

    We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis. PMID:25398907

  9. Aldose Reductase-Mediated Phosphorylation of p53 Leads to Mitochondrial Dysfunction, and Damage in Diabetic Platelets

    PubMed Central

    Tang, Wai Ho; Stitham, Jeremiah; Jin, Yu; Liu, Renjing; Lee, Seung Hee; Du, Jing; Atteya, Gourg; Gleim, Scott; Spollett, Geralyn; Martin, Kathleen; Hwa, John

    2014-01-01

    Background Platelet abnormalities are well-recognized complications of diabetes mellitus (DM). Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in DM. The molecular pathway for hyperglycemia-induced mitochondrial dysfunction in DM platelets is unknown. Methods and Results Using both human and humanized mouse models, we report that hyperglycemia-induced aldose reductase (AR) activation, and subsequent reactive oxygen species (ROS) production, leads to increased p53 phosphorylation (Ser15), which promotes mitochondrial dysfunction, damage and rupture by sequestration of the anti-apoptotic protein Bcl-xL. In a glucose dose dependent manner, severe mitochondrial damage leads to loss of mitochondrial membrane potential and platelet apoptosis (cytochrome c release, caspase 3 activation and phosphatidylserine exposure). Although platelet hyperactivation, mitochondrial dysfunction, AR activation, ROS production and p53 phosphorylation are all induced by hyperglycemia, we demonstrate that platelet apoptosis and hyperactivation are two distinct states, dependent upon the severity of the hyperglycemia and mitochondrial damage. Combined, both lead to increased thrombus formation in a mouse blood stasis model. Conclusions AR contributes to diabetes-mediated mitochondrial dysfunction and damage through the activation of p53. The degree of mitochondrial dysfunction and damage determines whether hyperactivity (mild damage) or apoptosis (severe damage) will ensue. These signaling components provide novel therapeutic targets for DM thrombotic complications. PMID:24474649

  10. Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements

    PubMed Central

    Kaushansky, Alexis; Pompaiah, Malvika; Thorn, Hans; Brinkmann, Volker; MacBeath, Gavin; Meyer, Thomas F.

    2010-01-01

    Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. PMID:20808760

  11. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

    PubMed Central

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W.; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T.; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R.; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M.; Lee, Brendan H.L.; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-01-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  12. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma.

    PubMed

    Yan, Junli; Li, Boheng; Lin, Baohong; Lee, Pei Tsung; Chung, Tae-Hoon; Tan, Joy; Bi, Chonglei; Lee, Xue Ting; Selvarajan, Viknesvaran; Ng, Siok-Bian; Yang, Henry; Yu, Qiang; Chng, Wee-Joo

    2016-08-18

    The best-understood mechanism by which EZH2 exerts its oncogenic function is through polycomb repressive complex 2 (PRC2)-mediated gene repression, which requires its histone methyltransferase activity. However, small-molecule inhibitors of EZH2 that selectively target its enzymatic activity turn out to be potent only for lymphoma cells with EZH2-activating mutation. Intriguingly, recent discoveries, including ours, have placed EZH2 into the category of transcriptional coactivators and thus raised the possibility of noncanonical signaling pathways. However, it remains unclear how EZH2 switches to this catalytic independent function. In the current study, using natural killer/T-cell lymphoma (NKTL) as a disease model, we found that phosphorylation of EZH2 by JAK3 promotes the dissociation of the PRC2 complex leading to decreased global H3K27me3 levels, while it switches EZH2 to a transcriptional activator, conferring higher proliferative capacity of the affected cells. Gene expression data analysis also suggests that the noncanonical function of EZH2 as a transcriptional activator upregulates a set of genes involved in DNA replication, cell cycle, biosynthesis, stemness, and invasiveness. Consistently, JAK3 inhibitor was able to significantly reduce the growth of NKTL cells, in an EZH2 phosphorylation-dependent manner, whereas various compounds recently developed to inhibit EZH2 methyltransferase activity have no such effect. Thus, pharmacological inhibition of JAK3 activity may provide a promising treatment option for NKTL through the novel mechanism of suppressing noncanonical EZH2 activity. PMID:27297789

  13. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies.

    PubMed

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M; Lee, Brendan H L; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-05-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  14. CD166-mediated epidermal growth factor receptor phosphorylation promotes the growth of oral squamous cell carcinoma.

    PubMed

    Jia, Guodong; Wang, Xu; Yan, Ming; Chen, Wantao; Zhang, Ping

    2016-08-01

    CD166 has been considered a relatively specific marker of stem cells and cancer stem cells, and the altered expression of CD166 has also been reported as a prognostic marker of several other types of cancer. However, the molecular functions of CD166 in these cancer cells are largely unknown. In this study, we found that CD166 significantly enhanced epidermal growth factor receptor (EGFR) phosphorylation and prolonged epidermal growth factor (EGF)/EGFR signalling activation. In addition, EGF stimulation in CD166-overexpressing oral squamous carcinoma cells led to enhanced colony formation, invasion capacity and cytoskeletal re-organization in vitro and elevated tumourigenesis in vivo. Taken together, the results of our study identify CD166 as an intriguing therapeutic target for patients suffering from oral squamous cell carcinoma (OSCC). PMID:27424177

  15. Platelet-derived growth factor (PDGF)-AB-mediated phosphorylation of PDGF beta receptors.

    PubMed Central

    Coats, S R; Love, H D; Pledger, W J

    1994-01-01

    Platelet-derived growth factor (PDGF) stimulates the proliferation of Balb/c-3T3 fibroblasts through binding and subsequent activation of PDGF receptors. Activation of the PDGF receptors has been proposed to involve receptor dimerization. PDGF-AB has been shown to bind PDGF alpha and beta receptor subunits to form PDGF alpha beta and alpha alpha receptor dimers. In this paper we demonstrate that, following the down-regulation of PDGF alpha receptors, the binding of PDGF-AB to beta receptors occurred at 37 degrees C but not at 4 degrees C. PDGF-AB stimulated the phosphorylation of PDGF beta receptor monomers in cells depleted of PDGF alpha receptors by prior exposure to PDGF-AA. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8297345

  16. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation.

    PubMed

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-07-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  17. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  18. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia

    PubMed Central

    Zhu, Qiu-Ju; Kong, Fan-Shu; Xu, Hao; Wang, Yi; Du, Cai-Ping; Sun, Chang-Cheng; Liu, Yong; Li, Ting; Hou, Xiao-Yu

    2014-01-01

    Although kainate receptors play important roles in ischemic stroke, the molecular mechanisms underlying postischemic regulation of kainate receptors remain unclear. In this study we demonstrate that Src family kinases contribute to the potentiation of kainate receptor function. Brain ischemia and reperfusion induce rapid and sustained phosphorylation of the kainate receptor subunit GluK2 by Src in the rat hippocampus, implicating a critical role for Src-mediated GluK2 phosphorylation in ischemic brain injury. The NMDA and kainate receptors are involved in the tyrosine phosphorylation of GluK2. GluK2 binds to Src, and the tyrosine residue at position 590 (Y590) on GluK2 is a major site of phosphorylation by Src kinases. GluK2 phosphorylation at Y590 is responsible for increases in whole-cell currents and calcium influx in response to transient kainate stimulation. In addition, GluK2 phosphorylation at Y590 facilitates the endocytosis of GluK2 subunits, and the activation of JNK3 and its substrate c-Jun after long-term kainate treatment. Thus, Src phosphorylation of GluK2 plays an important role in the opening of kainate receptor channels and downstream proapoptosis signaling after brain ischemia. The present study reveals an additional mechanism for the regulation of GluK2-containing kainate receptors by Src family kinases, which may be of pathological significance in ischemic stroke. PMID:25201974

  19. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1

    PubMed Central

    DeMille, Desiree; Badal, Bryan D.; Evans, J. Brady; Mathis, Andrew D.; Anderson, Joseph F.; Grose, Julianne H.

    2015-01-01

    We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase–deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase–dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low. PMID:25428989

  20. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  1. cAMP-dependent Protein Kinase and c-Jun N-terminal Kinase Mediate Stathmin Phosphorylation for the Maintenance of Interphase Microtubules during Osmotic Stress*

    PubMed Central

    Yip, Yan Y.; Yeap, Yvonne Y. C.; Bogoyevitch, Marie A.; Ng, Dominic C. H.

    2014-01-01

    Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress. PMID:24302736

  2. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  3. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation to promote metastasis

    PubMed Central

    LeBleu, Valerie S.; O'Connell, Joyce T.; Herrera, Karina N. Gonzalez; Wikman-Kocher, Harriet; Pantel, Klaus; Haigis, Marcia C.; de Carvalho, Fernanda Machado; Damascena, Aline; Chinen, Ludmilla Thome Domingos; Rocha, Rafael M.; Asara, John M.; Kalluri, Raghu

    2014-01-01

    Cancer cells can divert metabolites into anabolic pathways to support their rapid proliferation and to accumulate the cellular building blocks required for tumor growth. However, the specific bioenergetic profile of invasive and metastatic cancer cells is unknown. Here we report that migratory/invasive cancer cells specifically favor mitochondrial respiration and increased ATP production. Invasive cancer cells use transcription co-activator, PGC-1α to enhance oxidative phosphorylation, mitochondrial biogenesis and oxygen consumption rate. Clinical analysis of human invasive breast cancers revealed a strong correlation between PGC-1α expression in invasive cancer cells and formation of distant metastases. Silencing of PGC-1α in cancer cells suspended their invasive potential and attenuated metastasis without affecting proliferation, primary tumor growth or epithelial-to-mesenchymal (EMT) program. While inherent genetics of cancer cells determine the transcriptome framework required for invasion and metastasis, mitochondrial biogenesis and respiration induced by PGC-1α is also essential for functional motility of cancer cells and metastasis. PMID:25241037

  4. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors.

    PubMed

    Du, Yi; Yamaguchi, Hirohito; Wei, Yongkun; Hsu, Jennifer L; Wang, Hung-Ling; Hsu, Yi-Hsin; Lin, Wan-Chi; Yu, Wen-Hsuan; Leonard, Paul G; Lee, Gilbert R; Chen, Mei-Kuang; Nakai, Katsuya; Hsu, Ming-Chuan; Chen, Chun-Te; Sun, Ye; Wu, Yun; Chang, Wei-Chao; Huang, Wen-Chien; Liu, Chien-Liang; Chang, Yuan-Ching; Chen, Chung-Hsuan; Park, Morag; Jones, Philip; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-02-01

    Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising therapeutics for many diseases, including cancer, in clinical trials. One PARP inhibitor, olaparib (Lynparza, AstraZeneca), was recently approved by the FDA to treat ovarian cancer with mutations in BRCA genes. BRCA1 and BRCA2 have essential roles in repairing DNA double-strand breaks, and a deficiency of BRCA proteins sensitizes cancer cells to PARP inhibition. Here we show that the receptor tyrosine kinase c-Met associates with and phosphorylates PARP1 at Tyr907 (PARP1 pTyr907 or pY907). PARP1 pY907 increases PARP1 enzymatic activity and reduces binding to a PARP inhibitor, thereby rendering cancer cells resistant to PARP inhibition. The combination of c-Met and PARP1 inhibitors synergized to suppress the growth of breast cancer cells in vitro and xenograft tumor models, and we observed similar synergistic effects in a lung cancer xenograft tumor model. These results suggest that the abundance of PARP1 pY907 may predict tumor resistance to PARP inhibitors, and that treatment with a combination of c-Met and PARP inhibitors may benefit patients whose tumors show high c-Met expression and who do not respond to PARP inhibition alone. PMID:26779812

  5. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation.

    PubMed

    Lin, Tien-Chen; Neuner, Annett; Schlosser, Yvonne T; Scharf, Annette N D; Weber, Lisa; Schiebel, Elmar

    2014-01-01

    Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains.DOI: http://dx.doi.org/10.7554/eLife.02208.001. PMID:24842996

  6. Repair of chromosomal RAG-mediated DNA breaks by mutant RAG proteins lacking phosphatidylinositol 3-like kinase consensus phosphorylation sites.

    PubMed

    Gapud, Eric J; Lee, Baeck-Seung; Mahowald, Grace K; Bassing, Craig H; Sleckman, Barry P

    2011-08-15

    Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination. PMID:21742970

  7. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  8. (S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5.

    PubMed

    Moutal, Aubin; François-Moutal, Liberty; Perez-Miller, Samantha; Cottier, Karissa; Chew, Lindsey Anne; Yeon, Seul Ki; Dai, Jixun; Park, Ki Duk; Khanna, May; Khanna, Rajesh

    2016-04-01

    The neuronal circuit remodels during development as well as in human neuropathologies such as epilepsy. Neurite outgrowth is an obligatory step in these events. We recently reported that alterations in the phosphorylation state of an axon specification/guidance protein, the collapsin response mediator protein 2 (CRMP2), play a major role in the activity-dependent regulation of neurite outgrowth. We also identified (S)-LCM, an inactive stereoisomer of the clinically used antiepileptic drug (R)-LCM (Vimpat®), as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Here, we investigated the mechanism by which (S)-LCM affects CRMP2 phosphorylation by two key kinases, cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β (GSK-3β). (S)-LCM application to embryonic cortical neurons resulted in reduced levels of Cdk5- and GSK-3β-phosphorylated CRMP2. Mechanistically, (S)-LCM increased CRMP2 binding to both Cdk5- and GSK-3β without affecting binding of CRMP2 to its canonical partner tubulin. Saturation transfer difference nuclear magnetic resonance (STD NMR) and differential scanning fluorimetry (DSF) experiments demonstrated direct binding of (S)-LCM to CRMP2. Using an in vitro luminescent kinase assay, we observed that (S)-LCM specifically inhibited Cdk5-mediated phosphorylation of CRMP2. Cross-linking experiments and analytical ultracentrifugation showed no effect of (S)-LCM on the oligomerization state of CRMP2. The increased association between Cdk5-phosphorylated CRMP2 and CaV2.2 was reduced by (S)-LCM in vitro and in vivo. This reduction translated into a decrease of calcium influx via CaV2.2 in (S)-LCM-treated neurons compared to controls. (S)-LCM, to our knowledge, is the first molecule described to directly inhibit CRMP2 phosphorylation and may be useful for delineating CRMP2-facilitated functions. PMID:25846820

  9. In vitro neutrophil migration requires protein kinase c-delta (δ-PKC) mediated MARCKS (Myristoylated Alanine Rich C-Kinase Substrate) phosphorylation

    PubMed Central

    Sung, Eui Jae; Adler, Kenneth B.; Jones, Samuel L.

    2015-01-01

    Dysregulated release of neutrophil reactive oxygen species and proteolytic enzymes contributes to both acute and chronic inflammatory diseases. Therefore, molecular regulators of these processes are potential targets for new anti-inflammatory therapies. We have shown previously that MARCKS (Myristoylated Alanine Rich C-Kinase Substrate), a well-known PKC substrate protein, is a key regulator of neutrophil functions. In the current study we investigate the role of PKC-mediated MARCKS phosphorylation in neutrophil migration and adhesion in vitro. We report that treatment of human neutrophils with the δ-PKC inhibitor rottlerin significantly attenuates fMLF induced MARCKS phosphorylation (IC50 = 5.709 μM), adhesion (IC50 = 8.4 uM) and migration (IC50 = 6.7 uM); while α-, β- and ζ-PKC inhibitors had no significant effect. We conclude that δ-PKC mediated MARCKS phosphorylation is essential for human neutrophil migration and adhesion in vitro. These results implicate δ-PKC mediated MARCKS phosphorylation as a key step in the inflammatory response of neutrophils. PMID:25515270

  10. Effects of Cardiac Troponin I Mutation P83S on Contractile Properties and the Modulation by PKA-Mediated Phosphorylation.

    PubMed

    Cheng, Yuanhua; Lindert, Steffen; Oxenford, Lucas; Tu, An-Yue; McCulloch, Andrew D; Regnier, Michael

    2016-08-25

    cTnI(P82S) (cTnI(P83S) in rodents) resides at the I-T arm of cardiac troponin I (cTnI) and was initially identified as a disease-causing mutation of hypertrophic cardiomyopathy (HCM). However, later studies suggested this may not be true. We recently reported that introduction of an HCM-associated mutation in either inhibitory-peptide (cTnI(R146G)) or cardiac-specific N-terminus (cTnI(R21C)) of cTnI blunts the PKA-mediated modulation on myofibril activation/relaxation kinetics by prohibiting formation of intrasubunit contacts between these regions. Here, we tested whether this also occurs for cTnI(P83S). cTnI(P83S) increased both Ca(2+) binding affinity to cTn (KCa) and affinity of cTnC for cTnI (KC-I), and eliminated the reduction of KCa and KC-I observed for phosphorylated-cTnI(WT). In isolated myofibrils, cTnI(P83S) maintained maximal tension (TMAX) and Ca(2+) sensitivity of tension (pCa50). For cTnI(WT) myofibrils, PKA-mediated phosphorylation decreased pCa50 and sped up the slow-phase relaxation (especially for those Ca(2+) conditions that heart performs in vivo). Those effects were blunted for cTnI(P83S) myofibrils. Molecular-dynamics simulations suggested cTnI(P83S) moderately inhibited an intrasubunit interaction formation between inhibitory-peptide and N-terminus, but this "blunting" effect was weaker than that with cTnI(R146G) or cTnI(R21C). In summary, cTnI(P83S) has similar effects as other HCM-associated cTnI mutations on troponin and myofibril function even though it is in the I-T arm of cTnI. PMID:27150586

  11. Role played by paxillin and paxillin tyrosine phosphorylation in hepatocyte growth factor/sphingosine-1-phosphate-mediated reactive oxygen species generation, lamellipodia formation, and endothelial barrier function

    PubMed Central

    Usatyuk, Peter V.; Jacobson, Jeffrey; Cress, Anne E.; Garcia, Joe G. N.; Salgia, Ravi; Natarajan, Viswanathan

    2015-01-01

    Abstract Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47phox to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47phox to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability. PMID:26697169

  12. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease

    PubMed Central

    Martin, Ian; Kim, Jungwoo Wren; Lee, Byoung Dae; Kang, Ho Chul; Xu, Jin-Chong; Jia, Hao; Stankowski, Jeannette; Kim, Min-Sik; Zhong, Jun; Kumar, Manoj; Andrabi, Shaida A.; Xiong, Yulan; Dickson, Dennis W.; Wszolek, Zbigniew K.; Pandey, Akhilesh; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Summary Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phospho-deficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation, and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phospho-deficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo. PMID:24725412

  13. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation

    PubMed Central

    Saraceno, C; Marcello, E; Di Marino, D; Borroni, B; Claeysen, S; Perroy, J; Padovani, A; Tramontano, A; Gardoni, F; Di Luca, M

    2014-01-01

    A disintegrin and metalloproteinase 10 (ADAM10) is the major α-secretase that catalyzes the amyloid precursor protein (APP) ectodomain shedding in the brain and prevents amyloid formation. Its activity depends on correct intracellular trafficking and on synaptic membrane insertion. Here, we describe that in hippocampal neurons the synapse-associated protein-97 (SAP97), an excitatory synapse scaffolding element, governs ADAM10 trafficking from dendritic Golgi outposts to synaptic membranes. This process is mediated by a previously uncharacterized protein kinase C phosphosite in SAP97 SRC homology 3 domain that modulates SAP97 association with ADAM10. Such mechanism is essential for ADAM10 trafficking from the Golgi outposts to the synapse, but does not affect ADAM10 transport from the endoplasmic reticulum. Notably, this process is altered in Alzheimer's disease brains. These results help in understanding the mechanism responsible for the modulation of ADAM10 intracellular path, and can constitute an innovative therapeutic strategy to finely tune ADAM10 shedding activity towards APP. PMID:25429624

  14. eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation.

    PubMed

    Yu, Yang; Tian, Ling; Feng, Xiao; Cheng, Jin; Gong, Yanping; Liu, Xinjian; Zhang, Zhengxiang; Yang, Xuguang; He, Sijia; Li, Chuan-Yuan; Huang, Qian

    2016-05-28

    Pancreatic cancer is a devastating disease characterized by treatment resistance and high recurrence rate. Repopulation of surviving tumor cells undergoing radiotherapy is one of the most common reasons for recurrence. Our previous studies have discovered a novel mechanism for repopulation after irradiation that activation of caspase-3 in irradiated tumor cells activates PKCδ/p38 axis to transmit proliferation signals promoting repopulation of surviving tumor cells. Here we found Sox2 expression is up-regulated in irradiated pancreatic cancer cells, which played a major role in tumor cell repopulation after irradiation. Over-expression of Sox2 strongly enhanced the growth-stimulating effect of irradiated dying tumor cells on living tumor cells through a paracrine modality. Furthermore, we identified activated eIF4E, which is phosphorylated by MNK1, as a regulator of Sox2 expression after irradiation, and pharmacologic inhibition of eIF4E with CGP57380 and Ribavirin significantly weakened Sox2-mediated tumor cell repopulation. Finally, we showed the activation of caspase 3/PKCδ/p38/MNK1 signal pathway in irradiated pancreatic tumor cells. Together, we showed a novel pathway regulating Sox2 expression and Sox2 may be a promising target to reduce recurrence due to repopulation of surviving tumor cells after radiotherapy. PMID:26945967

  15. Phosphorylation-mediated stabilization of Bora in mitosis coordinates Plx1/Plk1 and Cdk1 oscillations

    PubMed Central

    Feine, Oren; Hukasova, Elvira; Bruinsma, Wytse; Freire, Raimundo; Fainsod, Abraham; Gannon, Julian; Mahbubani, Hiro M; Lindqvist, Arne; Brandeis, Michael

    2014-01-01

    Cdk1 and Plk1/Plx1 activation leads to their inactivation through negative feedback loops. Cdk1 deactivates itself by activating the APC/C, consequently generating embryonic cell cycle oscillations. APC/C inhibition by the mitotic checkpoint in somatic cells and the cytostatic factor (CSF) in oocytes sustain the mitotic state. Plk1/Plx1 targets its co-activator Bora for degradation, but it remains unclear how embryonic oscillations in Plx1 activity are generated, and how Plk1/Plx1 activity is sustained during mitosis. We show that Plx1-mediated degradation of Bora in interphase generates oscillations in Plx1 activity and is essential for development. In CSF extracts, phosphorylation of Bora on the Cdk consensus site T52 blocks Bora degradation. Upon fertilization, Calcineurin dephosphorylates T52, triggering Plx1 oscillations. Similarly, we find that GFP-Bora is degraded when Plk1 activity spreads to somatic cell cytoplasm before mitosis. Interestingly, GFP–Bora degradation stops upon mitotic entry when Cdk1 activity is high. We hypothesize that Cdk1 controls Bora through an incoherent feedforward loop synchronizing the activities of mitotic kinases. PMID:24675888

  16. PRL-3 mediates the protein maturation of ULBP2 by regulating the tyrosine phosphorylation of HSP60

    PubMed Central

    Leung, Wai-Hang; Vong, Queenie P.; Lin, Wenwei; Bouck, David; Wendt, Susanne; Sullivan, Erin; Li, Ying; Bari, Rafijul; Chen, Taosheng; Leung, Wing

    2015-01-01

    Many malignant cells release the NKG2D ligand ULBP2 from their cell surface to evade immunosurveillance by natural killer cells and CD8 T cells. Although the shedding mechanism remains unclear, various inhibitors of matrix metalloproteinases have been shown to efficiently block the release of soluble ULBP2. The clinical use of these inhibitors however is limited because of adverse side effects. Using high throughput screening technique, we identified a specific inhibitor of phosphatase of regenerating liver 3 (PRL-3) that could reduce the level of soluble ULBP2 in the culture supernatant of various cancer cell lines. Inhibition or gene knockdown of PRL-3 did not reduce ULBP2 shedding but rather suppressed post-translational maturation of ULBP2, resulting in intracellular retention of immature ULBP2. We then found that ULBP2 was constitutively associated with heat shock protein HSP60. Complete maturation of ULBP2 required tyrosine phosphorylation of HSP60 which was mediated by PRL-3. PMID:25687758

  17. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  18. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

    PubMed Central

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.11402.001 PMID:26878753

  19. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis.

    PubMed

    Wike, Candice L; Graves, Hillary K; Hawkins, Reva; Gibson, Matthew D; Ferdinand, Michelle B; Zhang, Tao; Chen, Zhihong; Hudson, Damien F; Ottesen, Jennifer J; Poirier, Michael G; Schumacher, Jill; Tyler, Jessica K

    2016-01-01

    Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation. PMID:26878753

  20. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling.

    PubMed

    Rochman, Yrina; Kashyap, Mohit; Robinson, Gertraud W; Sakamoto, Kazuhito; Gomez-Rodriguez, Julio; Wagner, Kay-Uwe; Leonard, Warren J

    2010-11-01

    Thymic stromal lymphopoietin (TSLP) is a type I cytokine that plays essential roles in allergic/inflammatory skin and airway disorders, in helminth infections, and in regulating intestinal immunity. TSLP signals via IL-7Rα and a specific TSLPR subunit that is highly related to the common cytokine receptor γ chain, γ(c). Although TSLP has effects on a broad range of hematopoetic cells and can induce STAT5 phosphorylation, TSLP was reported to not signal via JAK kinases, and the mechanism by which TSLP regulates STAT5 phosphorylation has been unclear. We now demonstrate the role of JAK1 and JAK2 in TSLP-mediated STAT5 phosphorylation in mouse and human primary CD4(+) T cells, in contrast to the known activation of JAK1 and JAK3 by the related cytokine, IL-7. We also show that just as JAK1 interacts with IL-7Rα, JAK2 is associated with TSLPR protein. Moreover, we demonstrate the importance of STAT5 activation for TSLP-mediated survival and proliferation of CD4(+) T cells. These findings clarify the basis for TSLP-mediated signaling and provide an example wherein a cytokine uses JAK1 and JAK2 to mediate the activation of STAT5. PMID:20974963

  1. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression

    PubMed Central

    Sadowski, Martin; Mawson, Amanda; Baker, Rohan; Sarcevic, Boris

    2007-01-01

    The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1–S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34–SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34–SCFCdc4 ubiquitination activity and cell cycle progression. PMID:17461777

  2. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

    PubMed

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens

    2014-09-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  3. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177

    PubMed Central

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T.; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N.; Wakula, Paulina; Groschner, Klaus; Maier, Lars S.; Spiess, Joachim; Blatter, Lothar A.; Pieske, Burkert

    2014-01-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca2+-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  4. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families.

    PubMed

    Krisch, Linda M; Posselt, Gernot; Hammerl, Peter; Wessler, Silja

    2016-09-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  5. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families

    PubMed Central

    Krisch, Linda M.; Posselt, Gernot; Hammerl, Peter

    2016-01-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori. CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori. We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  6. CDK2 and PKA Mediated-Sequential Phosphorylation Is Critical for p19INK4d Function in the DNA Damage Response

    PubMed Central

    Marazita, Mariela C.; Ogara, M. Florencia; Sonzogni, Silvina V.; Martí, Marcelo; Dusetti, Nelson J.; Pignataro, Omar P.; Cánepa, Eduardo T.

    2012-01-01

    DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with 32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage. PMID:22558186

  7. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation[OPEN

    PubMed Central

    2015-01-01

    Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1T178A, a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1T178D phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation. PMID:26508764

  8. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    SciTech Connect

    Short, T.W.; Briggs, W.R. )

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactions described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.

  9. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation

    PubMed Central

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N.; Bridges, Dave; Park, Edwards A.; Cole, Robert N.; Elam, Marshall B.; Raghow, Rajendra

    2015-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c–SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCFFbw7 ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  10. Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase.

    PubMed Central

    Watanabe, Yasuo; Song, Tao; Sugimoto, Katsuyoshi; Horii, Mariko; Araki, Nobukazu; Tokumitsu, Hiroshi; Tezuka, Tohru; Yamamoto, Tadashi; Tokuda, Masaaki

    2003-01-01

    Post-synaptic density-95 (PSD-95) is a neuronal scaffolding protein that associates with N -methyl-D-aspartate (NMDA) receptors and links them to intracellular signalling molecules. In neurons, neuronal nitric oxide synthase (nNOS) binds selectively to the second PDZ domain (PDZ2) of PSD-95, thereby exhibiting physiological activation triggered via NMDA receptors. We have demonstrated previously that Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaM-K IIalpha) directly phosphorylates nNOS at residue Ser(847), and can attenuate the catalytic activity of the enzyme in neuronal cells [Komeima, Hayashi, Naito and Watanabe (2000) J. Biol. Chem. 275, 28139-28143]. In the present study, we examined how CaM-K II participates in the phosphorylation by analysing the functional interaction between nNOS and PSD-95 in cells. The results showed that PSD-95 directly promotes the nNOS phosphorylation at Ser(847) induced by endogenous CaM-K II. In transfected cells, this effect of PSD-95 required its dual palmitoylation and the PDZ2 domain, but did not rely on its guanylate kinase domain. CaM-K Ialpha and CaM-K IV failed to phosphorylate nNOS at Ser(847) in transfected cells. Thus PSD-95 mediates cellular trafficking of nNOS, and may be required for the efficient phosphorylation of nNOS at Ser(847) by CaM-K II in neuronal cells. PMID:12630910

  11. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation.

    PubMed

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N; Bridges, Dave; Park, Edwards A; Cole, Robert N; Elam, Marshall B; Raghow, Rajendra

    2016-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c-SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCF(Fbw7) ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  12. cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation.

    PubMed

    Seibert, F S; Tabcharani, J A; Chang, X B; Dulhanty, A M; Mathews, C; Hanrahan, J W; Riordan, J R

    1995-02-01

    Hormonal regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is largely mediated via cAMP-dependent protein kinase (PKA). CFTR contains 10 dibasic consensus sites for potential PKA phosphorylation ((R/K) (R/K)X(S*/T*)). Previous studies (Chang, X.-B., Tabcharani, J. A., Hou, Y.-X., Jensen, T. J., Kartner, N., Alon, N., Hanrahan, J. W., and Riordan, J.R (1993) J. Biol. Chem. 268, 11304-11311) showed that approximately 25% of the CFTR wild-type response to PKA activation remained upon inhibition of most detectable phosphorylation by in vitro mutagenesis of all 10 dibasic consensus sites (10SA CFTR). To identify potential additional sites responsible for the residual activity, large amounts of this mutant CFTR were phosphorylated with PKA using high specific activity [gamma-32P]ATP. Cyanogen bromide cleavage indicated that a large portion of the observed PKA phosphorylation occurred within a 5.8-kDa fragment of the R domain between residues 722-773. Removal of serines at potential PKA sites in this fragment showed that Ser-753 accounted for all of the gamma-32P labeling of the 5.8-kDa peptide. Replacement of Ser-753 with alanine reduced the level of residual CFTR activity by a further 40%, indicating that phosphorylation at this previously unidentified site contributes to the activation of 10SA CFTR. PMID:7530719

  13. Functional impact of Aurora A-mediated phosphorylation of HP1γ at serine 83 during cell cycle progression

    PubMed Central

    2013-01-01

    Background Previous elegant studies performed in the fission yeast Schizosaccharomyces pombe have identified a requirement for heterochromatin protein 1 (HP1) for spindle pole formation and appropriate cell division. In mammalian cells, HP1γ has been implicated in both somatic and germ cell proliferation. High levels of HP1γ protein associate with enhanced cell proliferation and oncogenesis, while its genetic inactivation results in meiotic and mitotic failure. However, the regulation of HP1γ by kinases, critical for supporting mitotic progression, remains to be fully characterized. Results We report for the first time that during mitotic cell division, HP1γ colocalizes and is phosphorylated at serine 83 (Ser83) in G2/M phase by Aurora A. Since Aurora A regulates both cell proliferation and mitotic aberrations, we evaluated the role of HP1γ in the regulation of these phenomena using siRNA-mediated knockdown, as well as phosphomimetic and nonphosphorylatable site-directed mutants. We found that genetic downregulation of HP1γ, which decreases the levels of phosphorylation of HP1γ at Ser83 (P-Ser83-HP1γ), results in mitotic aberrations that can be rescued by reintroducing wild type HP1γ, but not the nonphosphorylatable S83A-HP1γ mutant. In addition, proliferation assays showed that the phosphomimetic S83D-HP1γ increases 5-ethynyl-2´-deoxyuridine (EdU) incorporation, whereas the nonphosphorylatable S83A-HP1γ mutant abrogates this effect. Genome-wide expression profiling revealed that the effects of these mutants on mitotic functions are congruently reflected in G2/M gene expression networks in a manner that mimics the on and off states for P-Ser83-HP1γ. Conclusions This is the first description of a mitotic Aurora A-HP1γ pathway, whose integrity is necessary for the execution of proper somatic cell division, providing insight into specific types of posttranslational modifications that associate to distinct functional outcomes of this important chromatin

  14. Phosphorylation of ΔNp63α via a Novel TGFβ/ALK5 Signaling Mechanism Mediates the Anti-Clonogenic Effects of TGFβ

    PubMed Central

    Cherukuri, Pratima; DeCastro, Andrew J.; Balboni, Amanda L.; Downey, Sondra L.; Liu, Jennifer Y.; Hutchinson, Justine A.; DiRenzo, James

    2012-01-01

    Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5IKD). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5IKD mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation. PMID:23166821

  15. Rapid BDNF-dependent sequestration of amygdala and hippocampal GABAA receptors via different TrkB-mediated phosphorylation pathways

    PubMed Central

    Mou, Liping; Heldt, Scott A.; Ressler, Kerry

    2011-01-01

    During the consolidation of fear memory, it has been shown that GABAA receptors (GABAAR) are rapidly downregulated in amygdala. This rapid decrease in GABAAR functioning may permit transient hyperexcitablity, contributing to cellular mechanisms of memory consolidation. Memory consolidation also requires BDNF activation of TrkB receptors in the amygdala and hippocampus. We hypothesized that rapid internalization of GABAARα1 is mediated via TrkB activation of PKA and PKC-dependent processes. Primary neuronal cell cultures, from postnatal day 14–21 mouse amygdala and hippocampus, were analyzed with immunofluorescence using cell-surface, whole-cell permeabilization, and antibody internalization techniques, as well as with 3H-muscimol binding assays. In both hippocampal and amygdala cultures, we found a >60% reduction in surface GABAARα1 within 5 minutes of BDNF treatment. Notably, the rapid decrease in surface GABAARα1 was confirmed biochemically using surface biotinylation assays followed by western blotting. This rapid effect was accompanied by TrkB phosphorylation and increased internal GABAARα1 immunofluorescence, and was blocked by k252a, a broad-spectrum tyrosine kinase antagonist. To further demonstrate TrkB specificity, we used previously characterized TrkBF616A mice, in which the highly selective TrkB-mutant specific antagonist, 1NMPP1, prevented the BDNF-dependent GABAARα1 internalization. In hippocampus, we found both PKA and PKC inhibition, using Rp-8-Br-cAMP and Calphostin C, respectively, blocked GABAARα1 internalization, whereas inhibition of MAPK (U0126) and PI3K (LY294002) did not prevent rapid internalization. By contrast in amygdala cultures, Rp-8-Br-cAMP had no effect. Together, these data suggest that rapid GABAAR internalization during memory consolidation is BDNF-TrkB dependent. Further, it appears that hippocampal GABAAR internalization is PKA and PKC dependent, while it may be primarily PKC dependent in amygdala, implying differential

  16. Protein Tyrosine Phosphatase φ Regulates Paxillin Tyrosine Phosphorylation and Mediates Colony-Stimulating Factor 1-Induced Morphological Changes in Macrophages

    PubMed Central

    Pixley, Fiona J.; Lee, Pierre S. W.; Condeelis, John S.; Stanley, E. Richard

    2001-01-01

    Removal of colony-stimulating factor 1 (CSF-1) causes macrophages to round up and to increase their expression of protein tyrosine phosphatase φ (PTPφ). This is accompanied by the disruption of focal complexes and the formation of ruffles. Here we have overexpressed wild-type (WT) PTPφ and a phosphatase-inactive (C325S) mutant in a macrophage cell line in the presence and absence of CSF-1. In the presence of CSF-1, WT PTPφ induces cell rounding and ruffle formation, while C325S PTPφ has no effect. In contrast, in CSF-1-starved cells, C325S PTPφ behaves in a dominant negative fashion, preventing rounding and ruffling. Furthermore, C325S PTPφ increases adhesion in cycling cells, while WT PTPφ enhances motility. In WT PTPφ-overexpressing cells, the focal contact protein paxillin is selectively depleted from focal complexes and specifically dephosphorylated on tyrosine. In contrast, paxillin is hyperphosphorylated in C325S PTPφ-expressing cells. Moreover, a complex containing PTPφ, paxillin, and a paxillin-associated tyrosine kinase, Pyk2, can be immunoprecipitated from macrophage lysates, and the catalytic domain of PTPφ selectively binds paxillin and Pyk2 in vitro. Although PTPφ and Pyk2 do not colocalize with paxillin in focal complexes, all three proteins are colocalized in dorsal ruffles. The results suggest that paxillin is dephosphorylated by PTPφ in dorsal ruffles, using Pyk2 as a bridging molecule, resulting in a reduced pool of tyrosine-phosphorylated paxillin available for incorporation into focal complexes, thereby mediating CSF-1 regulation of macrophage morphology, adhesion, and motility. PMID:11238916

  17. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with β-amyloid burden and synaptic deficits in Lewy body dementias.

    PubMed

    Xing, Huayang; Lim, Yun-An; Chong, Joyce R; Lee, Jasinda H; Aarsland, Dag; Ballard, Clive G; Francis, Paul T; Chen, Christopher P; Lai, Mitchell K P

    2016-01-01

    Collapsin response mediator protein-2 (CRMP2) regulates axonal growth cone extension, and increased CRMP2 phosphorylation may lead to axonal degeneration. Axonal and synaptic pathology is an important feature of Lewy body dementias (LBD), but the state of CRMP2 phosphorylation (pCRMP2) as well as its correlations with markers of neurodegeneration have not been studied in these dementias. Hence, we measured CRMP2 phosphorylation at Thr509, Thr514 and Ser522, as well as markers of β-amyloid (Aβ), tau-phosphorylation, α-synuclein and synaptic function in the postmortem neocortex of a longitudinally assessed cohort of LBD patients characterized by low (Parkinson's disease dementia, PDD) and high (dementia with Lewy bodies, DLB) burden of Alzheimer type pathology. We found specific increases of pCRMP2 at Thr514 in DLB, but not PDD. The increased CRMP2 phosphorylation correlated with fibrillogenic Aβ as well as with losses of markers for axon regeneration (β-III-tubulin) and synaptic integrity (synaptophysin) in LBD. In contrast, pCRMP2 alterations did not correlate with tau-phosphorylation or α-synuclein, and also appear unrelated to immunoreactivities of putative upstream kinases glycogen synthase kinase 3β and cyclin-dependent kinase 5, as well as to protein phosphatase 2A. In conclusion, increased pCRMP2 may underlie the axonal pathology of DLB, and may be a novel therapeutic target. However, antecedent signaling events as well as the nature of pCRMP2 association with Aβ and other neuropathologic markers require further study. PMID:27609071

  18. Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion.

    PubMed

    Adada, Mohamad M; Canals, Daniel; Jeong, Nara; Kelkar, Ashwin D; Hernandez-Corbacho, Maria; Pulkoski-Gross, Michael J; Donaldson, Jane C; Hannun, Yusuf A; Obeid, Lina M

    2015-11-01

    The bioactive sphingolipid sphingosine-1-phosphate (S1P) mediates cellular proliferation, mitogenesis, inflammation, and angiogenesis. These biologies are mediated through S1P binding to specific GPCRs [sphingosine-1-phosphate receptor (S1PR)1-5] and some other less well-characterized intracellular targets. Ezrin-radixin-moesin (ERM) proteins, a family of adaptor molecules linking the cortical actin cytoskeleton to the plasma membrane, are emerging as critical regulators of cancer invasion via regulation of cell morphology and motility. Recently, we identified S1P as an acute ERM activator (via phosphorylation) through its action on S1PR2. In this work, we dissect the mechanism of S1P generation downstream of epidermal growth factor (EGF) leading to ERM phosphorylation and cancer invasion. Using pharmacologic inhibitors, small interfering RNA technologies, and genetic approaches, we demonstrate that sphingosine kinase (SK)2, and not SK1, is essential and sufficient in EGF-mediated ERM phosphorylation in HeLa cells. In fact, knocking down SK2 decreased ERM activation 2.5-fold. Furthermore, we provide evidence that SK2 is necessary to mediate EGF-induced invasion. In addition, overexpressing SK2 causes a 2-fold increase in HeLa cell invasion. Surprisingly, and for the first time, we find that this event, although dependent on S1PR2 activation, does not generate and does not require extracellular S1P secretion, therefore introducing a potential novel model of autocrine/intracrine action of S1P that still involves its GPCRs. These results define new mechanistic insights for EGF-mediated invasion and novel actions of SK2, therefore setting the stage for novel targets in the treatment of growth factor-driven malignancies. PMID:26209696

  19. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  20. ERK2-Mediated Phosphorylation of Transcriptional Coactivator Binding Protein PIMT/NCoA6IP at Ser298 Augments Hepatic Gluconeogenesis

    PubMed Central

    Parsa, Kishore V. L.; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K.; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMTS298D) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMTS298D but not PIMTS298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  1. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis.

    PubMed

    Kapadia, Bandish; Viswakarma, Navin; Parsa, Kishore V L; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298) and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D)) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D) but not PIMT(S298A) augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298) phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298) is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia. PMID:24358311

  2. Src-Mediated Phosphorylation of the Tyrosine Phosphatase PRL-3 Is Required for PRL-3 Promotion of Rho Activation, Motility and Invasion

    PubMed Central

    Fiordalisi, James J.; Dewar, Brian J.; Graves, Lee M.; Madigan, James P.; Cox, Adrienne D.

    2013-01-01

    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins. PMID:23691193

  3. Endogenous ephrinB2 mediates colon-urethra cross-organ sensitization via Src kinase-dependent tyrosine phosphorylation of NR2B.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Hung; Tung, Kwong-Chung; Chang, Junn-Liang; Lin, Tzer-Bin

    2010-01-01

    Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in spinal pain-related neural plasticity has been identified. To test whether Src-family non-receptor tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor (NMDAR) NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate cross-organ sensitization between the colon and the urethra, external urethra sphincter electromyogram activity evoked by pelvic nerve stimulation and protein expression in the lumbosacral (L6-S2) dorsal horn were studied before and after intracolonic mustard oil (MO) instillation. We found MO instillation produced colon-urethra reflex sensitization along with an upregulation of endogenous ephrinB2 expression as well as phosphorylation of EphB 1/2, Src-family kinase, and NR2B tyrosine residues. Intrathecal immunoglobulin fusion protein of EphB1 and EphB2 as well as PP2 reversed the reflex sensitization and NR2B phosphorylation caused by MO. All these results suggest that EphBR-ephrinB interactions, which provoke Src-family kinase-dependent NMDAR NR2B phosphorylation at the lumbosacral spinal cord level, are involved in cross-organ sensitization, contributing to the development of viscero-visceral referred pain between the bowel and the urethra. PMID:19864302

  4. ROS-mediated EB1 phosphorylation through Akt/GSK3β pathway: implication in cancer cell response to microtubule-targeting agents

    PubMed Central

    Grand, Marion Le; Rovini, Amandine; Bourgarel-Rey, Veronique; Honore, Stephane; Bastonero, Sonia; Braguer, Diane; Carre, Manon

    2014-01-01

    Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3β activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies. PMID:24930764

  5. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis. PMID:27048259

  6. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2

    PubMed Central

    Rao, Feng; Cha, Jiyoung; Xu, Jing; Xu, Risheng; Vandiver, M. Scott; Tyagi, Richa; Tokhunts, Robert; Koldobskiy, Michael A.; Fu, Chenglai; Barrow, Roxanne; Wu, Mingxuan; Fiedler, Dorothea; Barrow, James C.; Snyder, Solomon H.

    2014-01-01

    The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) co-chaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks) of which IP6K2 has been implicated in p53-associated cell death. In the present study we report a novel apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine-15 to activate the cell death program in human cancer cells and in murine B cells. PMID:24657168

  7. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity

    PubMed Central

    Wang, Y; Sun, H; Wang, J; Wang, H; Meng, L; Xu, C; Jin, M; Wang, B; Zhang, Y; Zhang, Y; Zhu, T

    2016-01-01

    EZH2 is a histone methyltransferase whose functions in stem cells and tumor cells are well established. Accumulating evidence shows that EZH2 has critical roles in T cells and could be a promising therapeutic target for several immune diseases. To further reveal the novel functions of EZH2 in human T cells, protein co-immunoprecipitation combined mass spectrometry was conducted and several previous unknown EZH2-interacting proteins were identified. Of them, we focused on a DNA damage responsive protein, Ku80, because of the limited knowledge regarding EZH2 in the DNA damage response. Then, we demonstrated that instead of being methylated by EZH2, Ku80 bridges the interaction between the DNA-dependent protein kinase (DNA-PK) complex and EZH2, thus facilitating EZH2 phosphorylation. Moreover, EZH2 histone methyltransferase activity was enhanced when Ku80 was knocked down or DNA-PK activity was inhibited, suggesting DNA-PK-mediated EZH2 phosphorylation impairs EZH2 histone methyltransferase activity. On the other hand, EZH2 inhibition increased the DNA damage level at the late phase of T-cell activation, suggesting EZH2 involved in genomic integrity maintenance. In conclusion, our study is the first to demonstrate that EZH2 is phosphorylated by the DNA damage responsive complex DNA-PK and regulates DNA damage-mediated T-cell apoptosis, which reveals a novel functional crosstalk between epigenetic regulation and genomic integrity. PMID:27468692

  8. Accumulation and Phosphorylation of RecQ-Mediated Genome Instability Protein 1 (RMI1) at Serine 284 and Serine 292 during Mitosis

    PubMed Central

    Xu, Chang; Wang, Yan; Wang, Lu; Wang, Qin; Du, Li-Qing; Fan, Saijun; Liu, Qiang; Li, Lei

    2015-01-01

    Chromosome instability usually leads to tumorigenesis. Bloom syndrome (BS) is a genetic disease associated with chromosome instability. The BS gene product, BLM, has been reported to function in the spindle assembly checkpoint (SAC) to prevent chromosome instability. BTR complex, composed of BLM, topoisomerase IIIα (Topo IIIα), RMI1 (RecQ-mediated genome instability protein 1, BLAP75) and RMI2 (RecQ-mediated genome instability protein 2, BLAP18), is crucial for maintaining genome stability. Recent work has demonstrated that RMI2 also plays critical role in SAC. However, little is know about RMI1 regulation during the cell cycle. Here we present that RMI1 protein level does not change through G1, S and G2 phases, but significantly increases in M phase. Moreover, phosphorylation of RMI1 occurs in mitosis. Upon microtubule-disturbing agent, RMI1 is phosphorylated primarily at the sites of Serine 284 and Serine 292, which does not interfere with the formation of BTR complex. Additionally, this phosphorylation is partially reversed by roscovitine treatment, implying cycling-dependent kinase 1 (CDK1) might be one of the upstream kinases. PMID:26556339

  9. Casein Kinase 2 (CK2)-mediated Phosphorylation of Hsp90β as a Novel Mechanism of Rifampin-induced MDR1 Expression*

    PubMed Central

    Kim, So Won; Hasanuzzaman, Md.; Cho, Munju; Heo, Ye Rang; Ryu, Min-Jung; Ha, Na-Young; Park, Hyun June; Park, Hyung-Yeon; Shin, Jae-Gook

    2015-01-01

    The P-glycoprotein (P-gp) encoded by the MDR1 gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein 90β (Hsp90β) and subsequent stabilization of PXR is a key mechanism in the regulation of MDR1 expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90β at the Ser-225/254 residues. Phosphorylated Hsp90β then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90β enhances the down-regulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression. PMID:25995454

  10. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  11. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity.

    PubMed

    Wang, Y; Sun, H; Wang, J; Wang, H; Meng, L; Xu, C; Jin, M; Wang, B; Zhang, Y; Zhang, Y; Zhu, T

    2016-01-01

    EZH2 is a histone methyltransferase whose functions in stem cells and tumor cells are well established. Accumulating evidence shows that EZH2 has critical roles in T cells and could be a promising therapeutic target for several immune diseases. To further reveal the novel functions of EZH2 in human T cells, protein co-immunoprecipitation combined mass spectrometry was conducted and several previous unknown EZH2-interacting proteins were identified. Of them, we focused on a DNA damage responsive protein, Ku80, because of the limited knowledge regarding EZH2 in the DNA damage response. Then, we demonstrated that instead of being methylated by EZH2, Ku80 bridges the interaction between the DNA-dependent protein kinase (DNA-PK) complex and EZH2, thus facilitating EZH2 phosphorylation. Moreover, EZH2 histone methyltransferase activity was enhanced when Ku80 was knocked down or DNA-PK activity was inhibited, suggesting DNA-PK-mediated EZH2 phosphorylation impairs EZH2 histone methyltransferase activity. On the other hand, EZH2 inhibition increased the DNA damage level at the late phase of T-cell activation, suggesting EZH2 involved in genomic integrity maintenance. In conclusion, our study is the first to demonstrate that EZH2 is phosphorylated by the DNA damage responsive complex DNA-PK and regulates DNA damage-mediated T-cell apoptosis, which reveals a novel functional crosstalk between epigenetic regulation and genomic integrity. PMID:27468692

  12. Gi-mediated tyrosine phosphorylation of Grb2 (growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid.

    PubMed Central

    Kranenburg, O; Verlaan, I; Moolenaar, W H

    1999-01-01

    Lysophosphatidic acid (LPA) is the prototypic G-protein-coupled receptor agonist that activates the Ras-mitogen-activated protein (MAP) kinase cascade through pertussis toxin (PTX)-sensitive Gi and enhanced tyrosine kinase activity. We recently detected a 100 kDa protein (p100) that binds to the C-terminal SH3 domain of growth-factor-receptor-bound protein 2 (Grb2) and becomes tyrosine phosphorylated in a PTX-sensitive manner in LPA-treated Rat-1 cells [Kranenburg, Verlaan, Hordijk and Moolenaar (1997) EMBO J. 16, 3097-3105]. Through glutathione S-transferase-Grb2 affinity purification and microsequencing, we have now identified p100 as dynamin-II, a GTPase that regulates clathrin-mediated endocytosis. We show that in Rat-1 cells, Grb2-bound dynamin-II is rapidly tyrosine phosphorylated in response to LPA in a PTX-sensitive manner. Thus, tyrosine phosphorylation of Grb2-bound dynamin-II may be a critical event in Gi-mediated activation of the Ras-MAP kinase cascade in fibroblasts. PMID:10085221

  13. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    PubMed Central

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  14. SMRT-mediated co-shuttling enables export of class IIa HDACs independent of their CaM kinase phosphorylation sites

    PubMed Central

    Soriano, Francesc X; Chawla, Sangeeta; Skehel, Paul; Hardingham, Giles E

    2013-01-01

    The Class IIa histone deacetylases (HDAC)4 and HDAC5 play a role in neuronal survival and behavioral adaptation in the CNS. Phosphorylation at 2/3 N-terminal sites promote their nuclear export. We investigated whether non-canonical signaling routes to Class IIa HDAC export exist because of their association with the co-repressor Silencing Mediator Of Retinoic And Thyroid Hormone Receptors (SMRT). We found that, while HDAC5 and HDAC4 mutants lacking their N-terminal phosphorylation sites (HDAC4MUT, HDAC5MUT) are constitutively nuclear, co-expression with SMRT renders them exportable by signals that trigger SMRT export, such as synaptic activity, HDAC inhibition, and Brain Derived Neurotrophic Factor (BDNF) signaling. We found that SMRT's repression domain 3 (RD3) is critical for co-shuttling of HDAC5MUT, consistent with the role for this domain in Class IIa HDAC association. In the context of BDNF signaling, we found that HDAC5WT, which was more cytoplasmic than HDAC5MUT, accumulated in the nucleus after BDNF treatment. However, co-expression of SMRT blocked BDNF-induced HDAC5WT import in a RD3-dependent manner. In effect, SMRT-mediated HDAC5WT export was opposing the BDNF-induced HDAC5 nuclear accumulation observed in SMRT's absence. Thus, SMRT's presence may render Class IIa HDACs exportable by a wider range of signals than those which simply promote direct phosphorylation. PMID:23083128

  15. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  16. The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle.

    PubMed

    Rostam, Muhamad A; Kamato, Danielle; Piva, Terence J; Zheng, Wenhua; Little, Peter J; Osman, Narin

    2016-08-01

    Hyperelongation of glycosaminoglycan chains on proteoglycans facilitates increased lipoprotein binding in the blood vessel wall and the development of atherosclerosis. Increased mRNA expression of glycosaminoglycan chain synthesizing enzymes in vivo is associated with the development of atherosclerosis. In human vascular smooth muscle, transforming growth factor-β (TGF-β) regulates glycosaminoglycan chain hyperelongation via ERK and p38 as well as Smad2 linker region (Smad2L) phosphorylation. In this study, we identified the involvement of TGF-β receptor, intracellular serine/threonine kinases and specific residues on transcription factor Smad2L that regulate glycosaminoglycan synthesizing enzymes. Of six glycosaminoglycan synthesizing enzymes, xylosyltransferase-1, chondroitin sulfate synthase-1, and chondroitin sulfotransferase-1 were regulated by TGF-β. In addition ERK, p38, PI3K and CDK were found to differentially regulate mRNA expression of each enzyme. Four individual residues in the TGF-β receptor mediator Smad2L can be phosphorylated by these kinases and in turn regulate the synthesis and activity of glycosaminoglycan synthesizing enzymes. Smad2L Thr220 was phosphorylated by CDKs and Smad2L Ser250 by ERK. p38 selectively signalled via Smad2L Ser245. Phosphorylation of Smad2L serine residues induced glycosaminoglycan synthesizing enzymes associated with glycosaminoglycan chain elongation. Phosphorylation of Smad2L Thr220 was associated with XT-1 enzyme regulation, a critical enzyme in chain initiation. These findings provide a deeper understanding of the complex signalling pathways that contribute to glycosaminoglycan chain modification that could be targeted using pharmacological agents to inhibit the development of atherosclerosis. PMID:27153775

  17. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair

    PubMed Central

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-01-01

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR. PMID:25978431

  18. Streptococcus sanguis-induced platelet activation involves two waves of tyrosine phosphorylation mediated by FcgammaRIIA and alphaIIbbeta3.

    PubMed

    Pampolina, Caroline; McNicol, Archibald

    2005-05-01

    The low-affinity IgG receptor, FcgammaRIIA, has been implicated in Streptococcus sanguis-induced platelet aggregation. Therefore, it is likely that signal transduction is at least partly mediated by FcgammaRIIA activation and a tyrosine kinase-dependent pathway. In this study the signal transduction mechanisms associated with platelet activation in response to the oral bacterium, S. sanguis were characterised. In the presence of IgG, S. sanguis strain 2017-78 caused the tyrosine phosphorylation of FcgammaRIIA 30s following stimulation, which led to the phosphorylation of Syk, LAT, and PLCgamma2. These early events were dependent on Src family kinases but independent of either TxA(2) or the engagement of the alpha(IIb)beta(3) integrin. During the lag phase prior to platelet aggregation, FcgammaRIIA, Syk, LAT, and PLCgamma2 were each dephosphorylated, but were re-phosphorylated as aggregation occurred. Platelet stimulation by 2017-78 also induced the tyrosine phosphorylation of PECAM-1, an ITIM-containing receptor that recruits protein tyrosine phosphatases. PECAM-1 co-precipitated with the protein tyrosine phosphatase SHP-1 in the lag phase. SHP-1 was also maximally tyrosine phosphorylated during this phase, suggesting a possible role for SHP-1 in the observed dephosphorylation events. As aggregation occurred, SHP-1 was dephosphorylated, while FcgammaRIIA, Syk, LAT, and PLCgamma2 were rephosphorylated in an RGDS-sensitive, and therefore alpha(IIb)beta(3)-dependent, manner. Additionally, TxA(2) release, 5-hydroxytryptamine secretion and phosphatidic acid formation were all blocked by RGDS. Aspirin also abolished these events, but only partially inhibited alpha(IIb)beta(3) -mediated re-phosphorylation. Therefore, S. sanguis -bound IgG cross links FcgammaRIIA and initiates a signaling pathway that is down-regulated by PECAM-1-bound SHP-1. Subsequent engagement of alpha(IIb)beta(3) leads to SHP-1 dephosphorylation permiting a second wave of signaling leading to TxA(2

  19. Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation.

    PubMed

    Piccini, Alessandra; Perlini, Laura E; Cancedda, Laura; Benfenati, Fabio; Giovedì, Silvia

    2015-09-23

    Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a

  20. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    PubMed

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells. PMID:25444929

  1. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.

    PubMed Central

    von Manteuffel, S R; Gingras, A C; Ming, X F; Sonenberg, N; Thomas, G

    1996-01-01

    It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8633019

  2. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    PubMed Central

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  3. TRIM24 Is a p53-Induced E3-Ubiquitin Ligase That Undergoes ATM-Mediated Phosphorylation and Autodegradation during DNA Damage

    PubMed Central

    Jain, Abhinav K.; Allton, Kendra; Duncan, Aundrietta D.

    2014-01-01

    Tumor suppressor p53 protects cells from genomic insults and is a target of mutation in more than 50% of human cancers. Stress-mediated modification and increased stability of p53 promote p53 interaction with chromatin, which results in transcription of target genes that are critical for the maintenance of genomic integrity. We recently discovered that TRIM24, an E3-ubiquitin ligase, ubiquitinates and promotes proteasome-mediated degradation of p53. Here, we show that TRIM24 is destabilized by ATM-mediated phosphorylation of TRIM24S768 in response to DNA damage, which disrupts TRIM24-p53 interactions and promotes the degradation of TRIM24. Transcription of TRIM24 is directly induced by damage-activated p53, which binds p53 response elements and activates expression of TRIM24. Newly synthesized TRIM24 interacts with phosphorylated p53 to target it for degradation and termination of the DNA damage response. These studies indicate that TRIM24, like MDM2, controls p53 levels in an autoregulatory feedback loop. However, unlike MDM2, TRIM24 also targets activated p53 to terminate p53-regulated response to DNA damage. PMID:24820418

  4. TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy.

    PubMed

    Zimmermann, Christine; Santos, Aline; Gable, Kenneth; Epstein, Sharon; Gururaj, Charulatha; Chymkowitch, Pierre; Pultz, Dennis; Rødkær, Steven V; Clay, Lorena; Bjørås, Magnar; Barral, Yves; Chang, Amy; Færgeman, Nils J; Dunn, Teresa M; Riezman, Howard; Enserink, Jorrit M

    2013-11-27

    Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis. PMID:24239358

  5. Structural evaluation of BTK and PKCδ mediated phosphorylation of MAL at positions Tyr86 and Tyr106.

    PubMed

    Paracha, Rehan Zafar; Ali, Amjad; Ahmad, Jamil; Hussain, Riaz; Niazi, Umar; Muhammad, Syed Aun

    2014-08-01

    A number of diseases including sepsis, rheumatoid arthritis, diabetes, cardiovascular diseases and hyperinflammatory immune disorders have been associated with Toll like receptor (TLR) 2 and TLR4. Endogenous adaptor protein known as MyD88 adapter-like protein (MAL) bind exclusively to the cytosolic portions of TLR2 and TLR4 to initiate downstream signalling. Brutons tyrosine kinase (BTK) and protein kinase C delta (PKCδ) have been implicated to phosphorylate MAL and activate it to initiate downstream signalling. BTK has been associated with phosphorylation at positions Tyr86 and Tyr106, necessary for the activation of MAL but definite residual target of PKCδ in MAL is still to be explored. To produce a better understanding of the functional domains involved in the formation of MAL-kinase complexes, computer-aided studies were used to characterize the protein-protein interactions (PPIs) of phosphorylated BTK and PKCδ with MAL. Docking and physicochemical studies indicated that BTK was involved in close contact with Tyr86 and Tyr106 of MAL whereas PKCδ may phosphorylate Tyr106 only. Moreover, the electrostatics charge distribution of binding interfaces of BTK and PKCδ were distinct but compatible with respective regions of MAL. Our results implicate that position of Tyr86 is specifically phosphorylated by BTK whereas Tyr106 can be phosphorylated by competitive action of both BTK and PKCδ. Additionally, the residues of MAL which are necessary for interaction with TLR2, TLR4, MyD88 and SOCS-1 also play their roles in maintaining interaction with kinases and can be targeted in future to reduce TLR2 and TLR4 induced pathological responses. PMID:24840642

  6. P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation

    PubMed Central

    Li, Tingting; Zhang, Jishuai; Zhu, Feng; Wen, Weihong; Zykova, Tatyana; Li, Xiang; Liu, Kangdong; Peng, Cong; Ma, Weiya; Shi, Guozheng; Dong, Ziming; Bode, Ann M.; Dong, Zigang

    2011-01-01

    The oncoprotein c-Jun is one of the components of the activator protein-1 (AP-1) transcription factor complex. AP-1 regulates the expression of many genes and is involved in a variety of biological functions such as cell transformation, proliferation, differentiation and apoptosis. AP-1 activates a variety of tumor-related genes and therefore promotes tumorigenesis and malignant transformation. Here, we found that epidermal growth factor (EGF) induces phosphorylation of c-Jun by P21-activated kinase (PAK) 2. Our data showed that PAK2 binds and phosphorylates c-Jun at five threonine sites (Thr2, Thr8, Thr89, Thr93 and Thr286) in vitro and ex vivo. Knockdown of PAK2 in JB6 Cl41 (P+) cells had no effect on c-Jun phosphorylation at Ser63 or Ser73 but resulted in decreases in EGF-induced anchorage-independent cell transformation, proliferation and AP-1 activity. Mutation at all five c-Jun threonine sites phosphorylated by PAK2 decreased the transforming ability of JB6 cells. Knockdown of PAK2 in SK-MEL-5 melanoma cells also decreased colony formation, proliferation and AP-1 activity. These results indicated that PAK2/c-Jun signaling plays an important role in EGF-induced cell proliferation and transformation. PMID:21177766

  7. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta. PMID:19458083

  8. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    PubMed

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment. PMID:22011578

  9. A phosphorylated conformational state of the (Ca2+-Mg2+)-ATPase of fast skeletal muscle sarcoplasmic reticulum can mediate rapid Ca2+ release.

    PubMed

    Chiesi, M; Wen, Y S

    1983-05-25

    A rapid Ca2+ release from Ca2+-loaded sarcoplasmic reticulum vesicles from fast skeletal muscle can be induced under conditions which permit the formation of a stable phosphorylated intermediate of the (Ca2+-Mg2+)-ATPase. Such a state can be achieved experimentally by phosphorylating the ATPase in the absence of Mg2+ ions, which otherwise would stimulate the dephosphorylation step(s). Also, quercetine stimulates the rapid release of Ca2+ if used in the concentration range which does not produce inhibition of phosphoenzyme formation, but which inhibits phosphoenzyme dephosphorylation. The rapid efflux of Ca2+ ions proceeds as long as the low affinity Ca2+-binding sites facing the lumen of the vesicles are saturated and as long as Ca2+ is removed from the catalytic sites facing the cytosol. A molecular mechanism of the phosphoenzyme-mediated Ca2+ release is proposed. This mechanism is based on a rapid shuttling of the ATPase molecules between an ADP-sensitive and an ADP-insensitive phosphorylated state. PMID:6133856

  10. Preferential phosphorylation of focal adhesion kinase tyrosine 861 is critical for mediating an anti-apoptotic response to hyperosmotic stress.

    PubMed

    Lunn, J Adrian; Jacamo, Rodrigo; Rozengurt, Enrique

    2007-04-01

    The results presented here demonstrate that focal adhesion kinase (FAK) Tyr-861 is the predominant tyrosine phosphorylation site stimulated by hyperosmotic stress in a variety of cell types, including epithelial cell lines (ileum-derived IEC-18, colon-derived Caco2, and stomach-derived NCI-N87), FAK null fibroblasts re-expressing FAK, and Src family kinase triple null fibroblasts (SYF cells) in which c-Src has been restored (YF cells). We show that hyperosmotic stress-stimulated FAK phosphorylation in epithelial cells is inhibited by Src family kinase inhibitors PP2 and SU6656 and that it does not occur in SYF cells. Unexpectedly, hyperosmotic stress-induced phosphorylation of FAK at Tyr-397, Tyr-576, and most dramatically at Tyr-861 was completely insensitive to the F-actin-disrupting agents, latrunculin A and cytochalasin D. Finally, we show that in FAK null cells exposed to hyperosmotic stress or growth factor withdrawal, re-expression of wild type FAK restored cell survival, whereas re-expression of FAK mutated from tyrosine to phenylalanine at position 861 (FAKY861F) did not. Our results indicate that FAK Tyr-861 phosphorylation is required for mammalian cell survival of hyperosmotic stress. Furthermore, the results suggest that FAK is an upstream regulator (rather than downstream effector) of F-actin reorganization in response to hyperosmotic stress. We propose that FAK/c-Src bipartite enzyme is a sensor of cytoplasmic shrinkage, and that the phosphorylation on FAK Tyr-861 by Src and subsequent reorganization of F-actin can initiate an anti-apoptotic signaling pathway that protects cells from hyperosmotic stress. PMID:17289681

  11. Impact of Rosuvastatin Treatment on HDL-Induced PKC-βII and eNOS Phosphorylation in Endothelial Cells and Its Relation to Flow-Mediated Dilatation in Patients with Chronic Heart Failure.

    PubMed

    Winzer, Ephraim B; Gaida, Pauline; Höllriegel, Robert; Fischer, Tina; Linke, Axel; Schuler, Gerhard; Adams, Volker; Erbs, Sandra

    2016-01-01

    Background. Endothelial function is impaired in chronic heart failure (CHF). Statins upregulate endothelial NO synthase (eNOS) and improve endothelial function. Recent studies demonstrated that HDL stimulates NO production due to eNOS phosphorylation at Ser(1177), dephosphorylation at Thr(495), and diminished phosphorylation of PKC-βII at Ser(660). The aim of this study was to elucidate the impact of rosuvastatin on HDL mediated eNOS and PKC-βII phosphorylation and its relation to endothelial function. Methods. 18 CHF patients were randomized to 12 weeks of rosuvastatin or placebo. At baseline, 12 weeks, and 4 weeks after treatment cessation we determined lipid levels and isolated HDL. Human aortic endothelial cells (HAEC) were incubated with isolated HDL and phosphorylation of eNOS and PKC-βII was evaluated. Flow-mediated dilatation (FMD) was measured at the radial artery. Results. Rosuvastatin improved FMD significantly. This effect was blunted after treatment cessation. LDL plasma levels were reduced after rosuvastatin treatment whereas drug withdrawal resulted in significant increase. HDL levels remained unaffected. Incubation of HAEC with HDL had no impact on phosphorylation of eNOS or PKC-βII. Conclusion. HDL mediated eNOS and PKC-βII phosphorylation levels in endothelial cells do not change with rosuvastatin in CHF patients and do not mediate the marked improvement in endothelial function. PMID:27563480

  12. Impact of Rosuvastatin Treatment on HDL-Induced PKC-βII and eNOS Phosphorylation in Endothelial Cells and Its Relation to Flow-Mediated Dilatation in Patients with Chronic Heart Failure

    PubMed Central

    Gaida, Pauline; Höllriegel, Robert; Fischer, Tina; Linke, Axel; Schuler, Gerhard; Adams, Volker; Erbs, Sandra

    2016-01-01

    Background. Endothelial function is impaired in chronic heart failure (CHF). Statins upregulate endothelial NO synthase (eNOS) and improve endothelial function. Recent studies demonstrated that HDL stimulates NO production due to eNOS phosphorylation at Ser1177, dephosphorylation at Thr495, and diminished phosphorylation of PKC-βII at Ser660. The aim of this study was to elucidate the impact of rosuvastatin on HDL mediated eNOS and PKC-βII phosphorylation and its relation to endothelial function. Methods. 18 CHF patients were randomized to 12 weeks of rosuvastatin or placebo. At baseline, 12 weeks, and 4 weeks after treatment cessation we determined lipid levels and isolated HDL. Human aortic endothelial cells (HAEC) were incubated with isolated HDL and phosphorylation of eNOS and PKC-βII was evaluated. Flow-mediated dilatation (FMD) was measured at the radial artery. Results. Rosuvastatin improved FMD significantly. This effect was blunted after treatment cessation. LDL plasma levels were reduced after rosuvastatin treatment whereas drug withdrawal resulted in significant increase. HDL levels remained unaffected. Incubation of HAEC with HDL had no impact on phosphorylation of eNOS or PKC-βII. Conclusion. HDL mediated eNOS and PKC-βII phosphorylation levels in endothelial cells do not change with rosuvastatin in CHF patients and do not mediate the marked improvement in endothelial function. PMID:27563480

  13. Phosphorylation of Adaptor Protein Containing Pleckstrin Homology Domain, Phosphotyrosine Binding Domain, and Leucine Zipper Motif 1 (APPL1) at Ser430 Mediates Endoplasmic Reticulum (ER) Stress-induced Insulin Resistance in Hepatocytes*

    PubMed Central

    Liu, Meilian; Zhou, Lijun; Wei, Li; Villarreal, Ricardo; Yang, Xin; Hu, Derong; Riojas, Ramon A.; Holmes, Bekke M.; Langlais, Paul R.; Lee, Hakjoo; Dong, Lily Q.

    2012-01-01

    APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser430 and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser430 is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser430 in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser430 as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser430 in insulin signaling, overexpression of APPL1S430D but not APPL1S430A impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr308. Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser430. PMID:22685300

  14. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3

    SciTech Connect

    Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard; Graham, Charles H.; Markert, Udo R.

    2009-06-10

    The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lower phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.

  15. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  16. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells.

    PubMed

    Zhou, Yuxin; Lu, Na; Qiao, Chen; Ni, Ting; Li, Zhiyu; Yu, Boyang; Guo, Qinglong; Wei, Libin

    2016-09-01

    In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc. PMID:26258875

  17. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions

    PubMed Central

    Wang, Juan; Liu, Guomu; Li, Qiongshu; Wang, Fang; Xie, Fei; Zhai, Ruiping; Guo, Yingying; Chen, Tanxiu; Zhang, Nannan; Ni, Weihua; Yuan, Hongyan; Tai, Guixiang

    2015-01-01

    Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-β)1, TGF-β type I receptor (TβRI) inhibitor, TGF-β1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-β via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by TβRI inhibitor or TGF-β1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-β/TβRI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy. PMID:26057631

  18. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  19. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome

    PubMed Central

    Zhao, Weidong; Wang, Jiaqin; Song, Shunyi; Li, Fang; Yuan, Fangfang

    2015-01-01

    Fragile X syndrome (FXS) caused by lack of fragile X mental retardation protein (Fmr1) is the most common cause of inherited intellectual disability and characterized by many cognitive disturbances like attention deficit, autistic behavior, and audiogenic seizure and have region-specific altered expression of some gamma-aminobutyric acid (GABAA) receptor subunits. Quantitative real-time polymerase chain reaction and western blot experiments were performed in the cultured cortical neurons and forebrain obtained from wild-type (WT) and Fmr1 KO mice demonstrate the reduction in the expression of α1 gamma-aminobutyric acid (α1GABAA) receptor, phospho-α1GABAA receptor, PKC and phosphor-PKC in Fmr1 KO mice comparing with WT mice, both in vivo and in vitro. Furthermore, we found that the phosphorylation of the α1GABAA receptor was mediated by PKC. Our results elucidate that the lower phosphorylation of the α1GABAA receptor mediated by PKC neutralizes the seizure-promoting effects in Fmr1 KO mice and point to the potential therapeutic targets of α1GABAA agonists for the treatment of fragile X syndrome. PMID:26550246

  20. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells

    SciTech Connect

    Piquer, Sandra; Gomis, Ramon . E-mail: rgomis@clinic.ub.es

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  1. Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2.

    PubMed

    No, Yi Ran; He, Peijian; Yoo, Byong Kwon; Yun, C Chris

    2015-07-01

    Na(+)/H(+) exchange by Na(+)/H(+) exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR activates proline-rich tyrosine kinase 2 (Pyk2) and ERK, both of which are necessary for NHE3 regulation. However, Pyk2 and ERK are regulated by EGFR via independent pathways and appear to converge on an unidentified intermediate that ultimately targets NHE3. The p90 ribosomal S6 kinase (RSK) family of Ser/Thr protein kinases is a known effector of EGFR and ERK. Hence, we hypothesized that RSK may be the convergent effector of Pyk2 and ERK although it is not known whether Pyk2 regulates RSK. In this study, we show that Pyk2 is necessary for the maintenance of phosphoinositide-dependent kinase 1 (PDK1) autophosphorylation, and knockdown of Pyk2 or PDK1 mitigated LPA-induced phosphorylation of RSK and stimulation of NHE3 activity. Additionally, we show that RSK2, but not RSK1, is responsible for NHE3 regulation. RSK2 interacts with NHE3 at the apical membrane domain, where it phosphorylates NHE3. Alteration of S663 of NHE3 ablated LPA-induced phosphorylation of NHE3 and stimulation of the transport activity. Our study identifies RSK2 as a new kinase that regulates NHE3 activity by direct phosphorylation. PMID:25855080

  2. Btk29A-mediated tyrosine phosphorylation of armadillo/β-catenin promotes ring canal growth in Drosophila oogenesis.

    PubMed

    Hamada-Kawaguchi, Noriko; Nishida, Yasuyoshi; Yamamoto, Daisuke

    2015-01-01

    Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis. PMID:25803041

  3. Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2

    PubMed Central

    No, Yi Ran; He, Peijian; Yoo, Byong Kwon

    2015-01-01

    Na+/H+ exchange by Na+/H+ exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane. EGFR activates proline-rich tyrosine kinase 2 (Pyk2) and ERK, both of which are necessary for NHE3 regulation. However, Pyk2 and ERK are regulated by EGFR via independent pathways and appear to converge on an unidentified intermediate that ultimately targets NHE3. The p90 ribosomal S6 kinase (RSK) family of Ser/Thr protein kinases is a known effector of EGFR and ERK. Hence, we hypothesized that RSK may be the convergent effector of Pyk2 and ERK although it is not known whether Pyk2 regulates RSK. In this study, we show that Pyk2 is necessary for the maintenance of phosphoinositide-dependent kinase 1 (PDK1) autophosphorylation, and knockdown of Pyk2 or PDK1 mitigated LPA-induced phosphorylation of RSK and stimulation of NHE3 activity. Additionally, we show that RSK2, but not RSK1, is responsible for NHE3 regulation. RSK2 interacts with NHE3 at the apical membrane domain, where it phosphorylates NHE3. Alteration of S663 of NHE3 ablated LPA-induced phosphorylation of NHE3 and stimulation of the transport activity. Our study identifies RSK2 as a new kinase that regulates NHE3 activity by direct phosphorylation. PMID:25855080

  4. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-{alpha}/{beta} signaling

    SciTech Connect

    Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis; Jacob, Yves; Jones, Louis M.; Wild, Fabian; Tangy, Frederic Vidalain, Pierre-Olivier

    2007-11-25

    Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate that MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.

  5. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin

    PubMed Central

    Nishiyama, Tomoko; Sykora, Martina M.; Huis in ’t Veld, Pim J.; Mechtler, Karl; Peters, Jan-Michael

    2013-01-01

    Sister chromatid cohesion depends on Sororin, a protein that stabilizes acetylated cohesin complexes on DNA by antagonizing the cohesin release factor Wings-apart like protein (Wapl). Cohesion is essential for chromosome biorientation but has to be dissolved to enable sister chromatid separation. To achieve this, the majority of cohesin is removed from chromosome arms in prophase and prometaphase in a manner that depends on Wapl and phosphorylation of cohesin’s subunit stromal antigen 2 (SA2), whereas centromeric cohesin is cleaved in metaphase by the protease separase. Here we show that the mitotic kinases Aurora B and Cyclin-dependent kinase 1 (Cdk1) destabilize interactions between Sororin and the cohesin subunit precocious dissociation of sisters protein 5 (Pds5) by phosphorylating Sororin, leading to release of acetylated cohesin from chromosome arms and loss of cohesion. At centromeres, the cohesin protector shugoshin (Sgo1)-protein phosphatase 2A (PP2A) antagonizes Aurora B and Cdk1 partly by dephosphorylating Sororin and thus maintains cohesion until metaphase. We propose that the stepwise loss of cohesion between chromosome arms and centromeres is caused by local regulation of Wapl activity, which is controlled by the phosphorylation state of Sororin. PMID:23901111

  6. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression.

    PubMed

    Wu, Shwu-Yuan; Nin, Dawn Sijin; Lee, A-Young; Simanski, Scott; Kodadek, Thomas; Chiang, Cheng-Ming

    2016-08-01

    Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4), a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV) to viral early gene and cellular matrix metalloproteinase-9 (MMP-9) promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment. PMID:27477287

  7. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  8. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells.

    PubMed

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  9. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  10. Enterovirus 71 2C protein inhibits TNF-α-mediated activation of NF-κB by suppressing IκB kinase β phosphorylation.

    PubMed

    Zheng, Zhenhua; Li, Hongxia; Zhang, Zhenfeng; Meng, Jin; Mao, Da; Bai, Bingke; Lu, Baojing; Mao, Panyong; Hu, Qinxue; Wang, Hanzhong

    2011-09-01

    Enterovirus 71 (EV71), a single, positive-stranded RNA virus, has been regarded as the most important neurotropic enterovirus after the eradication of the poliovirus. EV71 infection can cause hand, foot, and mouth disease or herpangina. Cytokine storm with elevated levels of proinflammatory and inflammatory cytokines, including TNF-α, has been proposed to explain the pathogenesis of EV71-induced disease. TNF-α-mediated NF-κB signaling pathway plays a key role in inflammatory response. We hypothesized that EV71 might also moderate host inflammation by interfering with this pathway. In this study, we tested this hypothesis and identified EV71 2C protein as an antagonist of TNF-α-mediated activation of NF-κB signaling pathway. Expression of 2C protein significantly reduced TNF-α-mediated NF-κB activation in 293T cells as measured by gene reporter and gel mobility shift assays. Furthermore, overexpression of TNFR-associated factor 2-, MEK kinase 1-, IκB kinase (IKK)α-, or IKKβ-induced NF-κB activation, but not constitutively active mutant of IKKβ (IKKβ SS/EE)-induced NF-κB activation, was inhibited by 2C protein. These data together suggested that the activation of IKKβ is most likely targeted by 2C; this notion was further strengthened by immunoblot detection of IKKβ phosphorylation and IκBα phosphorylation and degradation. Coimmunoprecipitation and colocalization of 2C and IKKβ expressed in mammalian cells provided compelling evidence that 2C interacts with IKKβ. Collectively, our data indicate that EV71 2C protein inhibits IKKβ activation and thus blocks NF-κB activation. PMID:21810613