These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Atmospheric pressure cold plasma as an antifungal therapy  

SciTech Connect

A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

Sun Peng; Wu Haiyan [College of Engineering, Peking University, Beijing 100871 (China); Sun Yi; Liu Wei; Li Ruoyu [Department of Dermatology and Venereology, Peking Univ. 1st Hospital and Research Center for Medical Mycology, Peking Univ., Beijing 100034 (China); Zhu Weidong; Lopez, Jose L. [Department of Applied Science and Technology and Center for Microplasma Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [College of Engineering, Peking University, Beijing 100871 (China); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

2011-01-10

2

Prospect of life on cold planets with low atmospheric pressures  

NASA Astrophysics Data System (ADS)

Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.

Pavlov, A. A.; Vdovina, M.

2009-12-01

3

Rapid allergen inactivation using atmospheric pressure cold plasma.  

PubMed

Allergies have become a global problem, and effective control is greatly needed. Here, the inactivation effects of the atmospheric pressure cold plasma (APCP) on aerosolized allergens including Der p 1, Der f 1, Asp f 1, Alt a 1, and Can f 1 as well as those from indoor and outdoor environments were investigated. The effectiveness of the APCP treatment was further studied using blood sera from the allergen sensitized humans. In addition, the allergen samples were also analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Results revealed that the APCP was highly effective in reducing the allergenicity of both lab-prepared and environmental allergen aerosols. The airborne reductions were shown to range from 30% for Der p 1 to 80% for Can f 1 allergen for 0.12 s exposure. Allergnicity tests showed that the APCP treated Asp f 1 allergens caused 50% less binding with IgEs in the blood sera compared to the control. The observed allergenicity loss was due to hydroxyl radicals produced by the plasma device. The results from SDS-PAGE showed that the plasma treatment resulted in decreased size of the Asp f 1 allergen. The developed technology holds great promise in combating the allergic diseases. PMID:24490983

Wu, Yan; Liang, Yongdong; Wei, Kai; Li, Wei; Yao, Maosheng; Zhang, Jue

2014-03-01

4

Cold Micro-Plasma Jets in Atmospheric Pressure Air  

NASA Astrophysics Data System (ADS)

Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 ?m thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 ?m range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

2003-10-01

5

Development of a new atmospheric pressure cold plasma jet generator and application in sterilization  

NASA Astrophysics Data System (ADS)

This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30°C. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0×1016cm-3 which is acquired by using the ultraviolet absorption spectroscopy.

Cheng, Cheng; Liu, Peng; Xu, Lei; Zhang, Li-Ye; Zhan, Ru-Juan; Zhang, Wen-Rui

2006-07-01

6

Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution  

NASA Astrophysics Data System (ADS)

Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

2014-07-01

7

Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma  

NASA Astrophysics Data System (ADS)

Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 10^7 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

2011-11-01

8

Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?  

PubMed

Healthcare-associated infections (HCAIs) affect ?4.5 million patients in Europe alone annually. With the ever-increasing number of 'multi-resistant' micro-organisms, alternative and more effective methods of environmental decontamination are being sought as an important component of infection prevention and control. One of these is the use of cold atmospheric pressure plasma (CAPP) systems with clinical applications in healthcare facilities. CAPPs have been shown to demonstrate antimicrobial, antifungal and antiviral properties and have been adopted for other uses in clinical medicine over the past decade. CAPPs vary in their physical and chemical nature depending on the plasma-generating mechanism (e.g. plasma jet, dielectric barrier discharge, etc.). CAPP systems produce a 'cocktail' of species including positive and negative ions, reactive atoms and molecules (e.g. atomic oxygen, ozone, superoxide and oxides of nitrogen), intense electric fields, and ultraviolet radiation (UV). The effects of these ions have been studied on micro-organisms, skin, blood, and DNA; thus, a range of possible applications of CAPPs has been identified, including surface decontamination, wound healing, biofilm removal, and even cancer therapy. Here we evaluate plasma devices, their applications, mode of action and their potential role specifically in combating HCAIs on clinical surfaces. PMID:25146226

O'Connor, N; Cahill, O; Daniels, S; Galvin, S; Humphreys, H

2014-10-01

9

Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma  

SciTech Connect

To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

Tani, Atsushi; Fukui, Satoshi [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ono, Yusuke; Kitano, Katsuhisa [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Ikawa, Satoshi [Technology Research Institute of Osaka Prefecture, Izumi, Osaka 594-1157 (Japan)

2012-06-18

10

In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas  

NASA Astrophysics Data System (ADS)

Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced.

Olszewski, P.; Willett, T. C.; Theodosiou, E.; Thomas, O. R. T.; Walsh, J. L.

2013-05-01

11

Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation  

NASA Astrophysics Data System (ADS)

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

2012-05-01

12

Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation  

SciTech Connect

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T. [Centre for Plasma Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

2012-05-25

13

Plasma decontamination of chemical & biological warfare agents by a cold arc plasma jet at atmospheric pressure  

Microsoft Academic Search

The cold arc plasma jet was introduced to decontaminate chemical and biological warfare (CBW) agents for the application of a portable CBW decontamination system. The cold arc plasma jet is a low temperature, high density plasma that produces highly reactive species such as oxygen atoms and ozone. Moreover, it is possible to maintain stable plasma without He or Ar. The

Man Hyeop Han; Joo Hyun Noh; Ki Wan Park; Hyeon Seok Hwang; Hong Koo Baik

2008-01-01

14

In-package atmospheric pressure cold plasma treatment of cherry tomatoes.  

PubMed

Cold plasma is increasingly under research for decontamination of foods, especially fresh fruits and vegetables. The effect of cold plasma on food quality, however, remains under researched. This study investigates the effects of cold plasma generated within a sealed package from a dielectric barrier discharge on the physical quality parameters and respiration rates of cherry tomatoes. Respiration rates and weight loss were monitored continuously, while other parameters are reported at the end of storage period. Differences among weight loss, pH and firmness for control and treated cherry tomatoes were insignificant towards the end of storage life. Changes in respiration rates and colour of tomatoes were recorded as a function of treatment, which were not drastic. The results implicate that cold plasma could be employed as a means for decontamination of cherry tomatoes while retaining product quality. PMID:24650730

Misra, Nrusimha Nath; Keener, Kevin M; Bourke, Paula; Mosnier, Jean-Paul; Cullen, Patrick J

2014-08-01

15

Atmospheric-pressure plasma technology  

Microsoft Academic Search

Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona

U. Kogelschatz

2004-01-01

16

Modification of Glassy Carbon Surfaces by an Atmospheric Pressure Cold Plasma H. Mortensen 1  

E-print Network

/FAX: +45-4677-4532/+45-4677-4565. E-mail: henrik.junge.mortensen@risoe.dk Plasma treatment of glassy carbon processes, however, at- mospheric pressure (AP) plasma treatment generally pre- sents distinct environmental

17

Cold Atmospheric-Pressure Plasmas Applied to Active Packaging of Fruits and Vegetables  

NASA Astrophysics Data System (ADS)

Active packaging of fruits and vegetables uses films that absorb molecules from or contribute molecules to the produce. Applying uniform film to specific parts of a plant will enhance safe and economic adoption of expensive biofilms and biochemicals which would damage the plant or surrounding environment if misapplied. The pilot application will be to apply wax film to apples, replacing hot wax which is expensive and lowers the textural quality of the apple. The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (Argon + monomer) is sufficiently high to yield electron avalanches. The ``corona onset criterion'' is used to design the cold plasma reactor. The apple will be placed in a treatment chamber downstream from the activation zone. Key physical properties of the film will be measured. The deposition rate will be optimized in terms of economics and fruit surface quality for the purpose of determining if the technique is competitive in food processing plants.

Pedrow, Patrick; Fernandez, Sulmer; Pitts, Marvin

2008-10-01

18

High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet  

NASA Astrophysics Data System (ADS)

In this study, a high-density polyethylene (HDPE, 5-mm-thick, 0.95 g/cm3) surface was treated using an RF capacitive atmospheric pressure cold Ar plasma jet. By using this Ar plasma jet, a hydrophilic HDPE surface was formed during the plasma treatment. In particular, the effects of an additive gas (N2 or O2) on the HDPE surface treatment were investigated in detail. It was shown that the addition of N2 or O2 gas had an important influence on the HDPE surface treatment. Compared to pure Ar plasma treatment, a lower value of water contact angle (WCA) was obtained when a trace of N2 or O2 gas was added. It was also found that besides the quantities of active species in the plasma jet, the treatment temperature played an important role in the HDPE surface treatment. This is because surface molecular motion is not negligible when the treatment temperature is close to the melting point of the polymer.

Fei, Xiaomeng; Shin-ichi, Kuroda; Tamio, Mori; Katsuhiko, Hosoi

2013-06-01

19

Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet  

NASA Astrophysics Data System (ADS)

Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O2(2%) to Ar/O2(2%)/N2(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, 1O2, OH, NO, H2O2, O3, and NO3-/NO2- as well as Cu+/Cu2+. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

Zhang, Qian; Sun, Peng; Feng, Hongqing; Wang, Ruixue; Liang, Yongdong; Zhu, Weidong; Becker, Kurt H.; Zhang, Jue; Fang, Jing

2012-06-01

20

An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium  

NASA Astrophysics Data System (ADS)

A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca2+) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca2+ concentration, cell mitochondrial membrane potential (??m) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of ??m and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy.

Ma, R. N.; Feng, H. Q.; Liang, Y. D.; Zhang, Q.; Tian, Y.; Su, B.; Zhang, J.; Fang, J.

2013-07-01

21

Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet  

SciTech Connect

Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O{sub 2}(2%) to Ar/O{sub 2}(2%)/N{sub 2}(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, {sup 1}O{sub 2}, OH, NO, H{sub 2}O{sub 2}, O{sub 3}, and NO{sub 3}{sup -}/NO{sub 2}{sup -} as well as Cu{sup +}/Cu{sup 2+}. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

Zhang Qian; Wang Ruixue [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun Peng; Feng Hongqing; Liang Yongdong [College of Engineering, Peking University, Beijing 100871 (China); Zhu Weidong [Department of Applied Science and Technology, Saint Peter's College, New Jersey 07031 (United States); Becker, Kurt H. [Department of Applied Physics, Polytechnic Institute of New York University, New York 11201 (United States); Zhang Jue; Fang Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

2012-06-15

22

In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models.  

PubMed

Dental plaque critically affects the etiology of caries, periodontitis and periimplantitis. The mechanical removal of plaque can only be performed partially due to limited accessibility. Therefore, plaque still represents one of the major therapeutic challenges. Even though antiseptic mouth rinses reduce the extent of biofilm temporarily, plaque removal remains incomplete and continuous usage can even result in side effects. Here we tested argon plasma produced by kinpen09 as one option to inactivate microorganisms and to eliminate plaque. S. sanguinis biofilms cultivated in either the European Biofilm Reactor (EUREBI) or in 24 well plates were treated with argon plasma. In both test systems a homogeneous, good analyzable and stable biofilm was produced on the surface of titan plates within 72 h (>6,9 log10 CFU/ml). Despite the significantly more powerful biofilm production in EUREBI, the difference of 0.4 log10 CFU/ml between EUREBI and the 24 well plates was practically not relevant. For that reason both test models were equally qualified for the analysis of efficacy of cold atmospheric pressure plasma. We demonstrate a significant reduction of the biofilm compared to the control in both test models. After plasma application of 180 s the biofilm produced in EUREBI or in 24 well plates was decreased by 0.6 log10 CFU/ml or 0.5 log10 CFU/ml, respectively. In comparison to recently published studies analyzing the efficacy of kinpen09, S. sanguinis produces a hardly removable biofilm. Future investigations using reduced distances between plasma source and biofilm, various compositions of plasma and alternative plasma sources will contribute to further optimization of the efficacy against S. sanguinis biofilms. PMID:23967387

Gorynia, Susanne; Koban, Ina; Matthes, Rutger; Welk, Alexander; Gorynia, Sabine; Hübner, Nils-Olaf; Kocher, Thomas; Kramer, Axel

2013-01-01

23

Mid-infrared PS and LIF detection of CH 4 and C 2H 6 in cold flows and flames at atmospheric pressure  

Microsoft Academic Search

Mid-infrared polarization spectroscopy (IRPS) and laser-induced fluorescence (IRLIF) have been applied for detection of methane and ethane in atmospheric pressure cold flows and flames. Lines belonging to the asymmetric C–H stretching vibration bands ?3 and ?7 for methane and ethane, respectively, were probed with a tunable infrared laser beam at about 3.4?m, which was obtained from difference frequency generation in

Z. S. Li; M. Rupinski; J. Zetterberg; M. Aldén

2005-01-01

24

Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms  

PubMed Central

Introduction: The increasing microbial resistance against antibiotics complicates the therapy of bacterial infections. Therefore new therapeutic options, particularly those causing no resistance, are of high interest. Cold atmospheric plasma is one possible option to eradicate multidrug resistant microorganisms, and so far no resistance development against physical plasma is known. Method: We tested 6-fold repeated plasma applications on a Staphylococcus aureus strain embedded in biofilm and compared the reduction of the colony forming units between the different treatment periods to asses a possible development of resistance. Result: For all treatment periods, the control biofilms were reduced by plasma in average by 1.7 log10 CFU, and decreased from 7.6 to 5.8 log10 (CFU/cm2) within 5 hours. The results demonstrated that repeated plasma doses not induce resistance or habituation against plasma applied within short time periods. Conclusion: The repeated application of cold plasma is a promising option for the treatment of infected wounds without the risk of development of resistance against plasma. PMID:25285261

Matthes, Rutger; Assadian, Ojan; Kramer, Axel

2014-01-01

25

Development of an atmospheric-pressure homogeneous and cold Ar/O{sub 2} plasma source operating in glow discharge  

SciTech Connect

An atmospheric-pressure Ar/O{sub 2} glow discharge is generated in a parallel bare metal plate reactor with a radio-frequency power supply by introducing a dielectric strip in the inlet of the gas flow. The role of the dielectric strip is discussed experimentally. The allowable oxygen-to-argon ratio reaches 1.0 vol % and the generated Ar/O{sub 2} plasma discharge is characterized by a low gas temperature and good spatial homogeneity, implying its feasible application as a type of material treatment for a large-area surface, as illustrated experimentally by the ashing of carbon black.

Li Shouzhe; Wu Qi; Zhang Jialiang; Wang Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Uhm, Han S. [Kwangwoon Academy of Advanced Studies, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 137-701 (Korea, Republic of)

2010-06-15

26

Atmospheric-pressure plasma technology  

NASA Astrophysics Data System (ADS)

Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays.

Kogelschatz, U.

2004-12-01

27

Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet  

NASA Astrophysics Data System (ADS)

A radio-frequency atmospheric pressure argon plasma jet is used for the inactivation of bacteria (Pseudomonas aeruginosa) in solutions. The source is characterized by measurements of power dissipation, gas temperature, absolute UV irradiance as well as mass spectrometry measurements of emitted ions. The plasma-induced liquid chemistry is studied by performing liquid ion chromatography and hydrogen peroxide concentration measurements on treated distilled water samples. Additionally, a quantitative estimation of an extensive liquid chemistry induced by the plasma is made by solution kinetics calculations. The role of the different active components of the plasma is evaluated based on either measurements, as mentioned above, or estimations based on published data of measurements of those components. For the experimental conditions being considered in this work, it is shown that the bactericidal effect can be solely ascribed to plasma-induced liquid chemistry, leading to the production of stable and transient chemical species. It is shown that HNO2, ONOO- and H2O2 are present in the liquid phase in similar quantities to concentrations which are reported in the literature to cause bacterial inactivation. The importance of plasma-induced chemistry at the gas-liquid interface is illustrated and discussed in detail.

van Gils, C. A. J.; Hofmann, S.; Boekema, B. K. H. L.; Brandenburg, R.; Bruggeman, P. J.

2013-05-01

28

A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants  

NASA Astrophysics Data System (ADS)

The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

Feng, Hongqing; Wang, Ruixue; Sun, Peng; Wu, Haiyan; Liu, Qi; Fang, Jing; Zhu, Weidong; Li, Fangting; Zhang, Jue

2010-09-01

29

A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants  

SciTech Connect

The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

Feng Hongqing; Wang Ruixue [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun Peng; Wu Haiyan [College of Engineering, Peking University, Beijing 100871 (China); Liu Qi; Li Fangting [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Physics, Peking University, Beijing 100871 (China); Fang Jing; Zhang Jue [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Zhu Weidong [Department of Applied Science and Technology, Saint Peter's College, New Jersey 07031 (United States)

2010-09-27

30

Aircraft Performance: Atmospheric Pressure  

E-print Network

· Factors in: ­ Weather ­ Aerodynamic Lift ­ Flight Instrument · Altimeter · Vertical Speed Indicator is less efficient in thin air) ­ Reduces Lift (thin air exerts less force on the airfoils) #12;High Density Altitude (worse performance) · High elevations · Low atmospheric pressures · High

31

In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry  

NASA Astrophysics Data System (ADS)

A molecular beam mass spectrometer has been calibrated and used to measure the air entrainment, nitric oxide and ozone concentrations in the effluent of a cold atmospheric pressure argon RF driven plasma jet. The approaches for calibrating the mass spectrometer for different species are described in detail. Gas phase densities of ozone and nitric oxide up to 7.5 ppm and 4 ppm, respectively, have been measured in the far effluent of the argon plasma jet. The difference in air entrainment when the plasma is undisturbed or is close to a well, which is the case for e.g. in vitro plasma-cell interaction studies, is shown. In addition, an exponential decay of the positive ion flux as a function of distance in the effluent is obtained. Furthermore, the effect of plasma power, duty cycle and air and O2 admixtures introduced into the argon flow on the NO and O3 production is presented, including the possibility of independent control of the NO and O3 flux from the jet.

van Ham, B. T. J.; Hofmann, S.; Brandenburg, R.; Bruggeman, P. J.

2014-06-01

32

Cold atmospheric plasma in cancer therapya)  

NASA Astrophysics Data System (ADS)

Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m-3. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

Keidar, Michael; Shashurin, Alex; Volotskova, Olga; Ann Stepp, Mary; Srinivasan, Priya; Sandler, Anthony; Trink, Barry

2013-05-01

33

Cold atmospheric plasma in cancer therapy  

SciTech Connect

Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States)] [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States)] [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States)] [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)] [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

2013-05-15

34

DC powered atmospheric pressure micro-plasmajet for biomedical applications  

Microsoft Academic Search

Summary form only given. Nonthermal (cold) plasmas operated in air at atmospheric pressure offer an appealing method for the processing and decontamination of surfaces. Most existing devices are operated with radiofrequency high voltages. Microhollow cathode discharges (MHCDs), on the other hand, allow us to generate a direct current driven plasma jet in atmospheric pressure gases, including air. The discharge is

J. F. Kolb; R. O. Price; A.-A. H. Mohamed; K. H. Schoenbach

2006-01-01

35

Microwave Atmospheric-Pressure Sensor  

NASA Technical Reports Server (NTRS)

Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

Flower, D. A.; Peckham, G. E.; Bradford, W. J.

1986-01-01

36

Atmospheric Pressure Indicator.  

ERIC Educational Resources Information Center

Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

Salzsieder, John C.

1995-01-01

37

Atmospheric-Pressure Plasma Process and Applications.  

National Technical Information Service (NTIS)

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those ...

P. Kong

2006-01-01

38

Atmospheric Pressure During Landing  

NASA Technical Reports Server (NTRS)

This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

1997-01-01

39

Cold microplasmas at one atmosphere: Simulation and characterization  

NASA Astrophysics Data System (ADS)

Cold atmospheric pressure plasma offers many of the same technical advantages as conventional low pressure glow discharges, but without the need for a vacuum system. The cold atmospheric plasma is distinct from most high-pressure plasmas, such as arcs and sparks, because the low gas temperature allows for the treatment of temperature sensitive materials. This talk focuses on the generation of microwave-frequency microplasmas of air and inert gases. These plasmas exhibit gas temperatures of 300-600 K, but electron temperatures of 1-2x10^4 K. The electron density is greater than 10^14 cm-3. Microplasma is generated in a 200 micron-wide gap in a ring-shaped microstrip transmission line. When operated at electrical resonance, a microwave potential forms across the discharge gap and generates a microplasma. Microplasma generation becomes more efficient at higher frequencies. Inert gas microplasmas are characterized using excitation frequencies of 450 MHz, 900 MHz, and 1.8 GHz at both 1 atm and 0.5 mbar. The microplasma resistance decreases with increasing frequency. Simultaneously, the reactive sheath impedance and the microwave electrode voltage also decrease. At higher microwave frequency, the decreased electrode voltage reduces both the plasma potential and the ion kinetic energy losses, thus increasing the electron density. A three-dimensional fluid model confirms these experimental measurements.

Hopwood, Jeffrey

2009-11-01

40

Atmospheric-pressure plasma jet  

DOEpatents

Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

Selwyn, Gary S. (Los Alamos, NM)

1999-01-01

41

Atmospheric-pressure guided streamers for liposomal membrane disruption  

SciTech Connect

The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

2012-12-24

42

Sterilization effects of atmospheric cold plasma brush  

SciTech Connect

This study investigated the sterilization effects of a brush-shaped plasma created at one atmospheric pressure. A population of 1.0x10{sup 4}-1.0x10{sup 5} Escherichia coli or Micrococcus luteus bacteria was seeded in filter paper media and then subjected to Ar and/or Ar+O{sub 2} plasmas. A complete kill of the Micrococcus luteus required about 3 min argon plasma exposures. With oxygen addition into the argon plasma gas streams, a complete kill of the bacteria needed only less than 1 min plasma exposure for Micrococcus luteus and about 2 min exposure for Escherichia coli. The plasma treatment effects on the different bacteria cell structures were examined using scanning electron microscopy.

Yu, Q.S.; Huang, C.; Hsieh, F.-H.; Huff, H.; Duan Yixiang [Center for Surface Science and Plasma Technology, and Department of Chemical Engineering, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2006-01-02

43

Determining Atmospheric Pressure Using a Water Barometer  

ERIC Educational Resources Information Center

The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

Lohrengel, C. Frederick, II; Larson, Paul R.

2012-01-01

44

Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications  

NASA Astrophysics Data System (ADS)

Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

2011-11-01

45

[Pressure variability in the cold-pressure response test].  

PubMed

The effect of the immersion of the hand in ice water for 5 minutes on the short-term variability of blood pressure (BP) and heart rate (HR) was evaluated in 10 normal subjects. Indirect finger BP was measured by a non-invasive device (Finapres). Analogue-to-digital conversion of the BP was used to determine systolic, diastolic BP and HR every 0.5 second. The equidistant sampling allowed a direct spectral analysis using a fast Fourier transform algorithm on 256 point time series of a stationary period. BP was increased (+28 mmHg for systolic BP and +13 mmHg for diastolic BP) and an increased overall variability of BP and HR was observed during the cold pressor test. The increased areas under the curve of the systolic, diastolic BP and HR spectra were documented with the selective analysis of the two main components of the spectra: the increase in the oscillations of BP and HR during the test predominated in the 70-140 mHz region (+30% for systolic BP, +24% for DBP and +21% for HR), corresponding to Mayer waves. The high-frequency (respiratory) component of BP and HR variability was unchanged. The significant increase in the 10 second period oscillations of BP could reflect the cold-induced sympathetic vasoconstriction. PMID:8129520

Girard, A; Weise, F; Laude, D; Elghozi, J L

1993-08-01

46

Atmospheric pressure plasma jet applications  

SciTech Connect

The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

1998-12-31

47

ATMOSPHERIC-PRESSURE PLASMA PROCESS AND APPLICATIONS  

Microsoft Academic Search

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free

Peter Kong

48

The Dawn of Atmospheric-pressure Plasma  

NASA Astrophysics Data System (ADS)

As never before, atmospheric-pressure plasma technology is poised to transform the world of plasma processing. Many corporate and academic researchers are betting that the future holds tremendous opportunity for atmospheric-pressure plasma, which offers low cost and sometimes surprisingly high performance. A recent example of research is presented.

Ono, Shigeru

49

Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage.  

PubMed

Effects of controlled atmosphere storage (CAS) and modified atmosphere packaging (MAP) in comparison with conventional cold storage on qualitative properties of green-mature harvested tomato were evaluated. Qualitative properties included firmness, redness value (a*), hue angle, Total Soluble Solids (TSS) content, Titratable Acidity (TA) and TSS/TA. Under CAS and MAP conditions, gas composition was 5 kPa O2 and 3 kPa CO2. Results showed that the ability of CAS and MAP to retard the ripening process was more than cold storage. With regard to maintaining texture and colour, CAS treatment was the best and MAP was better than cold storage. Although amongst storage treatments, the maximum value of TSS was observed in cold storage, its decreasing trend in CAS was slower than that in cold storage. Additionally, MAP and especially CAS slowed down the diminishing trend of TA in tomatoes. PMID:25190877

Majidi, H; Minaei, S; Almassi, M; Mostofi, Y

2014-09-01

50

Pressure field study of the Tevatron cold compressors  

SciTech Connect

The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; /Fermilab

2003-01-01

51

Seasonal buffering of atmospheric pressure on Mars  

NASA Technical Reports Server (NTRS)

An isothermal reservoir of carbon dioxide in gaseous contact with the Martian atmosphere would reduce the amplitude and advance the phase of global atmospheric pressure fluctuations caused by seasonal growth and decline of polar CO2 frost caps. Adsorbed carbon dioxide in the upper roughly 10 m of Martian regolith is sufficient to buffer the present atmosphere on a seasonal basis. Available observations and related polar cap models do not confirm or refute the operation of such a mechanism. Implications for the amplitude and phase of seasonal pressure fluctuations are subject to direct test by the upcoming Viking mission to Mars.

Dzurisin, D.; Ingersoll, A. P.

1975-01-01

52

Atmospheric Pressure Plasma Process And Applications  

SciTech Connect

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

Peter C. Kong; Myrtle

2006-09-01

53

Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings  

NASA Astrophysics Data System (ADS)

Aluminum alloys are widely used as materials for engineering components of automobiles and airplanes because of their light weight and high corrosion resistance. However, cracks may develop sometimes in aluminum components, which have to be repaired by welding. It is difficult to weld aluminum components due to its high specific thermal conductivity and high coefficient of thermal expansion. The low-pressure cold-spray technique can be used instead of welding for repairing cracks. However, the effects of surface conditions on particle deposition and the mechanical properties of cold-sprayed coatings have not been investigated thus far. In this study, the effect of surface conditions focusing on active newly formed surface on aluminum particle deposition is studied and the mechanical properties of low-pressure cold-sprayed aluminum coatings are investigated by four-point bending tests. It is found that for efficient particle deposition it was necessary to obtain active newly formed surface of the substrate and particle surfaces by several impingements because the existence of inactive native oxide films has an adverse effect on the deposition. Furthermore, the strength of a cold-sprayed specimen is found to be higher than that of a cold-rolled specimen under compressive loading.

Ogawa, K.; Ito, K.; Ichimura, K.; Ichikawa, Y.; Ohno, S.; Onda, N.

2008-12-01

54

Atmospheric cold plasma jet for plant disease treatment  

NASA Astrophysics Data System (ADS)

This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of <2 mm can completely recover from the fungus-infected state. The plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

2014-01-01

55

GCM simulations of cold dry Snowball Earth atmospheres  

NASA Astrophysics Data System (ADS)

We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We find that enabling the diurnal cycle does not change tropical annual-mean surface temperatures but significantly strengthens the Hadley circulation, which increases by 33% for equinoctial and by 50% during solstitial insolation conditions compared to simulations without diurnal cycle. Including the seasonal cycle results in a ''reversed'' annual-mean Hadley circulation with subsiding motion at the equator and ascending motion around 15N/S, a manifestation of the extreme seasonality of Snowball Earth atmospheres due to the low thermal inertia of the sea-ice surface. The impact of the seasonal cycle on the tropical annual-mean surface is a straightforward consequence of changes in insolation distribution: as annual-mean incoming shortwave radiation at the equator reduces by 18 Wm-2 for enabled seasonal cycle, tropical annual-mean surface temperatures decrease from 221 K to 217 K.

Voigt, A.; Held, I.; Marotzke, J.

2009-12-01

56

Air circulation under reduced atmospheric pressures  

NASA Astrophysics Data System (ADS)

The control of heat exchange is vital for plant life in off-world, low pressure, greenhouses. The ability to control this process was limited by methodology and technology. Mathematical models, based on classical mechanics are created to enhance our control capabilities. Data is collected using various sensors placed inside the Low Pressure Test Bed (LPTB) Chamber at Kennedy Space Center. Data from those sensors became non-linear at various pressures below 25 kPa. We introduced mathematical calibration corrections and found that sensor data linearity could be extended to a greater range of pressures. These calibration corrections allow for sensor calibration corrections in operational environments that differ from the environment of calibration (normal Earth atmospheric pressure).

Hillhouse, Lendell E.

57

Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses  

NASA Astrophysics Data System (ADS)

Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same experimental conditions. CAP is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. It was shown that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. It was also shown that the expression of ?H2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle together with significant decrease in EdU-signal of DNA-replicating cells. Thus, newly developed CAP technology was proven to be of a great interest for practical applications in the areas of wound healing and cancer treatment. The identification and explanation of the mechanisms by which CAP affects the cells was presented.

Volotskova, Olga

58

Pressure Field Study of the Tevatron Cold Compressors  

Microsoft Academic Search

The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g\\/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g\\/sec. Operating speeds are between 40,000 and 95,000 rpm, with a

A. L. Klebaner; A. Martinez; W. M. Soyars; J. C. Theilacker

2004-01-01

59

Pressure field study of the Tevatron cold compressors  

Microsoft Academic Search

The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g\\/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g\\/sec. Operating speeds are between 40 and 95 krpm, with

A. L. Klebaner; A. Martinez; W. M. Soyars; J. C. Theilacker

2003-01-01

60

Large area atmospheric-pressure plasma jet  

DOEpatents

Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

2001-01-01

61

Protein destruction by atmospheric pressure glow discharges  

SciTech Connect

It is well established that atmospheric pressure glow discharges are capable of bacterial inactivation. Much less known is their ability to destruct infectious proteins, even though surgical instruments are often contaminated by both bacteria and proteinaceous matters. In this letter, the authors present a study of protein destruction using a low-temperature atmospheric dielectric-barrier discharge jet. Clear evidences of protein removal are presented with data of several complimentary experiments using scanning electron microscopy, electron dispersive x-ray analysis, electrophoresis, laser-induced fluorescence microscopy, and protein reduction kinetics. Considerable degradation is observed of protein fragments that remain on their substrate surface after plasma treatment.

Deng, X. T.; Shi, J. J.; Chen, H. L.; Kong, M. G. [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); MRC Toxicology Unit, University of Leicester, Leicester, Leicestershire LE1 9HN (United Kingdom); Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

2007-01-01

62

Atmospheric Cold Fronts Affecting Cold-Water Corals in the Deep Straits of Florida  

NASA Astrophysics Data System (ADS)

The Straits of Florida (SoF) are considered an ideal habitat for cold-water corals with the north flowing Florida Current (FC) providing a continuous supply of food. The FC does, however, not fill the entire Straits and deep, opposing undercurrents and coastal countercurrents occur off Florida and the Bahamas. New observational and model data document that, in addition to the well-known perturbation of upper ocean currents by atmospheric cold front passages, the near-bottom current field in the SoF is also repeatedly perturbed by atmospheric cold fronts none of which is reflected in the cold-water mound morphology. Measurements of the near-bottom flow field by an Autonomous Underwater Vehicle (AUV), cruising 40 m above sea floor at five coral mound fields ranging from 14-48 km2 in 590-875 m water in December 2005, record a complicated current pattern in space and time. Near-bottom currents are bi-directional, dominated by semi- diurnal tides, on the lower slopes of the Bahamas where mounds form kilometer long ridges as high as 120 m. Near-bottom currents flow north in the middle of Straits but generally south along the Miami Terrace. The mound morphology varies widely between sites and no obvious (i.e., direct, linear) correlation exists between current strength and mound height. The 12 to 48 h AUV observational data at each site compare well with results of the quasi-operational 3D ocean circulation model EFSIS (East Florida Shelf Information System). The Model enables the analysis of the bottom currents over extended periods and confirms that the near-bottom flow field in the SoF is highly variable on time scales ranging from 6 hours to several days, with magnitudes of +/- 0.2 to 0.6 m/s, depending upon location. During the observation period of December 2005, a recurring current variability is due to a sequence of deep cyclonic eddies that originate approximately every ten days near Cay Sal Bank and move northward on the eastern side of the FC. Offshore Bimini, where the SoF narrows and shoals, and the FC accelerates, the near-bottom eddies intensify and start to move westward. When reaching the Miami Terrace the eddies occupy the entire water column. The timing of the eddies correlate remarkably well with the passage of atmospheric cold fronts. During cold front passages the FC axis is displaced offshore the Florida Keys. A probable mechanism for the generation of the near bottom cyclones is the interaction of FC meanders with Cay Sal Bank. The impact of these "cold-front" perturbations on the deep-water coral communities remains to be quantitatively assessed.

Eberli, G. P.; Grasmueck, M.; Bang, I.; Mooers, C. N.; Viggiano, D.

2007-12-01

63

Atmospheric pressure loading displacement of SLR stations  

NASA Astrophysics Data System (ADS)

This paper addresses the local displacement at ground stations of the world-wide Satellite Laser Ranging (SLR) network induced by atmospheric pressure variations. Since currently available modelling options do not satisfy the requirements for the target application (real-time availability, complete coverage of SLR network), a new representation is developed. In a first step, the 3-dimensional displacements are computed from a 6-hourly grid of 1°×1° global pressure data obtained from the ECMWF, for the period 1997-2002. After having been converted into pressure anomalies, this pressure grid is propagated into horizontal and vertical station displacements using Green's functions and integrating contributions covering the entire globe; oceans are assumed to follow the inverted barometer (IB) approximation. In the next step, a linear regression model is developed for each station that approximates the time-series of the predicted vertical displacements as well as possible; this regression model relates the vertical displacement of a particular station to the local (and instantaneous) pressure anomaly. It is shown that such a simple model may represent the actual vertical displacements with an accuracy of better than 1 mm; horizontal displacements are shown to be negligible. Finally, the regression model is tested on actual SLR data on the satellites LAGEOS-1 and LAGEOS-2, covering the period January 2002 until April 2003 (inclusive). Also, two model elements are shown to be potential risk factors: the global pressure field representation (for the convolution method) and the local reference pressure (for the regression method). The inclusion of the atmospheric pressure displacement model gives improvements on most of the elements of the computations, although the effects are smaller than expected since the nominal effect is absorbed by solved-for satellite parameters.

Bock, D.; Noomen, R.; Scherneck, H.-G.

2005-04-01

64

Atmospheric pressure plasma jet for decontamination purposes  

NASA Astrophysics Data System (ADS)

Advanced oxidation processes, especially induced by non-thermal plasmas, are widely known for their high sanitation efficiency. The paper presents general overview of atmospheric pressure plasma jet (APPJ) reactors for bactericidal decontamination purposes. In the conclusion part, the basic requirements for APPJ as a tool for biomedical applications including the treatment of living tissues are highlighted. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

Paw?at, Joanna

2013-02-01

65

A microwave pressure sounder. [for remote measurement of atmospheric pressure  

NASA Technical Reports Server (NTRS)

A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

Peckham, G. E.; Flower, D. A.

1981-01-01

66

Research on atmospheric pressure plasma processing sewage  

NASA Astrophysics Data System (ADS)

The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

2013-08-01

67

Martian Atmospheric Pressure Static Charge Elimination Tool  

NASA Technical Reports Server (NTRS)

A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

Johansen, Michael R.

2014-01-01

68

[Spectral investigation of atmospheric pressure plasma column].  

PubMed

Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft. PMID:23016319

Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

2012-07-01

69

Special issue: diagnostics of atmospheric pressure microplasmas  

NASA Astrophysics Data System (ADS)

In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of, e.g. Werner von Siemens [9], who studied a dielectric barrier discharge (DBD) in the context of ozone generation. DBD discharges often consist of numerous filamentary discharges which are inherently transient in nature and with a characteristic size similar to the dimensions of microplasmas. Several groups are investigating the stabilization of such plasma filaments to perform temporal and spatial resolved diagnostics. To this end and due to the many similar challenges for diagnostics, this type of discharge is also included in this special issue. Research on microplasmas is performed in many groups spread all over the world, and a biannual workshop is devoted to the topic. The 7th edition of this International Workshop on Microplasmas was held in Beijing in May 2013. Large research programs consisting of clusters of research labs such as in Japan, Germany, France and the USA have been producing a wealth of information available in the literature. As the editors of this special issue, we are very pleased to have attracted a collection of excellent papers from leading experts in the field covering most of the current diagnostics performed in microplasmas. As an introduction to the regular special issue papers, a review paper is included [10]. It describes the key characteristics of atmospheric pressure plasmas and microplasmas in particular, and reviews the state of the art in plasma diagnostics. Special attention has been given in this review to highlighting the issues and challenges to probe microplasmas. The regular papers cover a large range of different diagnostics including coherent anti-Stokes Raman scattering (CARS) [11], (two-photon) laser induced fluorescence ((Ta)LIF) [12, 13, 18, 24], absorption spectroscopy [13-18], optical emission spectroscopy [12, 16-21, 24], imaging [22, 23], surface diagnostics [24, 25] and mass spectrometry [26, 27]. Different aspects of microplasmas are broadly investigated from a perspective of diagnostics, modelling and applications. Diagnostics are pivotal to both the development of models and the optimization and explorat

Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

2013-11-01

70

Targeting the cancer cell cycle by cold atmospheric plasma  

NASA Astrophysics Data System (ADS)

Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of ?H2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

2012-09-01

71

Targeting the cancer cell cycle by cold atmospheric plasma  

PubMed Central

Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of ?H2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment. PMID:22957140

Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

2012-01-01

72

Applications of Gliding ARC as a Source of Atmospheric Pressure Transitional Plasma  

Microsoft Academic Search

Summary form only given. Drexel Plasma Institute has several projects that exploit gliding arc as a source of atmospheric pressure transitional plasma. Transitional plasma or transplasma has parameters in the range between cold and thermal plasmas. Transplasma offers distinct advantages in some processes. We are using transplasma generated by gliding arc (GA) in different systems for the following processes: surface

S. Gangoli; A. Gutsol; A. Fridman

2005-01-01

73

The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air  

Microsoft Academic Search

We studied the acidifying efficiency of a cold atmospheric pressure plasma treatment and ambient air as a working gas on lipid films. Acidification of a thin water film could be observed on plasma-treated surfaces of wool wax, pork sebum and human lipids. This pH shift was partly attributable to NOx species and to the formation of nitric acid in the

A. Helmke; D. Hoffmeister; N. Mertens; S. Emmert; J. Schuette; W. Vioel

2009-01-01

74

Characteristics of atmospheric pressure microwave plasma torch  

NASA Astrophysics Data System (ADS)

Atmospheric pressure microwave (2.45 GHz) plasma torch has been designed and built. The plasma optical and electrical characteristic have been investigated. The data has been compared with the kHz frequency rf torch. Electron temperature, density and gas temperatures are measured for different flow rates and for different gases. Optical emission spectrometer and ICCD camera are used to measure the argon and helium plasma characteristics and the results are compared for both designs. This Work has been supported by TUBITAK TEYDEB project no:9100036

Bozduman, Ferhat; Teke, Erdogan; Gulec, Ali; Oksuz, Lutfi

2012-10-01

75

Healing burns using atmospheric pressure plasma irradiation  

NASA Astrophysics Data System (ADS)

An experiment testing the effects of plasma irradiation with an atmospheric-pressure plasma (APP) reactor on rats given burns showed no evidence of electric shock injuries upon pathology inspection of the irradiated skin surface. In fact, the observed evidence of healing and improvement of the burns suggested healing effects from plasma irradiation. The quantities of neovascular vessels in the living tissues at 7 days were 9.2 ± 0.77 mm-2 without treatment and 18.4 ± 2.9 mm-2 after plasma irradiation.

Hirata, Takamichi; Kishimoto, Takumi; Tsutsui, Chihiro; Kanai, Takao; Mori, Akira

2014-01-01

76

Fluctuating Pressure Data from 2-D Nozzle Cold Flow Tests (Dual Bell)  

NASA Technical Reports Server (NTRS)

Rocket engines nozzle performance changes as a vehicle climbs through the atmosphere. An altitude compensating nozzle, ACN, is intended to improve on a fixed geometry bell nozzle that performs at optimum at only one trajectory point. In addition to nozzle performance, nozzle transient loads are an important consideration. Any nozzle experiences large transient toads when shocks pass through the nozzle at start and shutdown. Additional transient toads will occur at transitional flow conditions. The objectives of cold flow nozzle testing at MSFC are CFD benchmark / calibration and Unsteady flow / sideloads. Initial testing performed with 2-D inserts to 14" transonic wind tunnel. Recent review of 2-D data in preparation for nozzle test facility 3-D testing. This presentation shows fluctuating pressure data and some observations from 2-D dual-bell nozzle cold flow tests.

Nesman, Tomas E.

2001-01-01

77

Surface modification of polymeric materials by cold atmospheric plasma jet  

NASA Astrophysics Data System (ADS)

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

2014-09-01

78

Chaos in atmospheric-pressure plasma jets  

NASA Astrophysics Data System (ADS)

We report detailed characterization of a low-temperature atmospheric-pressure plasma jet that exhibits regimes of periodic, quasi-periodic and chaotic behaviors. Power spectra, phase portraits, stroboscopic section and bifurcation diagram of the discharge current combine to comprehensively demonstrate the existence of chaos, and this evidence is strengthened with a nonlinear dynamics analysis using two control parameters that maps out periodic, period-multiplication, and chaotic regimes over a wide range of the input voltage and gas flow rate. In addition, optical emission signatures of excited plasma species are used as the second and independent observable to demonstrate the presence of chaos and period-doubling in both the concentrations and composition of plasma species, suggesting a similar array of periodic, quasi-periodic and chaotic regimes in plasma chemistry. The presence of quasi-periodic and chaotic regimes in structurally unbounded low-temperature atmospheric plasmas not only is important as a fundamental scientific topic but also has interesting implications for their numerous applications. Chaos may be undesirable for industrial applications where cycle-to-cycle reproducibility is important, yet for treatment of cell-containing materials including living tissues it may offer a novel route to combat some of the major challenges in medicine such as drug resistance. Chaos in low-temperature atmospheric plasmas and its effective control are likely to open up new vistas for medical technologies.

Walsh, J. L.; Iza, F.; Janson, N. B.; Kong, M. G.

2012-06-01

79

A global mechanism creating low atmospheric luminous cold plasmas  

NASA Astrophysics Data System (ADS)

Red, white/yellow and blue balls of light have been observed in the low atmosphere over the Hessdalen valley , Norway, standing still and moving horizontally with random speed. Characteristics of these transient luminous phenomena in Hessdalen, and data from America, suggest that the process which creates these low atmospheric plasmas is a global mechanism, not only localized to the remote and desolated Hessdalen valley in Norway (62Deg.N - 11Deg.E). Transient luminous phenomena's has been observed in the low atmosphere over the Hessdalen valley for over 200 years. The first written documentation goes back to 1811 when the priest Jakob Tode Krogh wrote about it in his diary. Since 1982, inhabitants, tourists, journalists and scientists have done recurrent observations. E.P.Strand conducted the first scientific campaign in 1984, documenting over 50 observations in one month. 15 years later, Norwegian and Italian scientists installed the first permanent automated research base here. In 2010 French researchers joined this collaboration and installed two additional research bases. This transient luminous phenomenon, TLP, has been detected simultaneously on optical and radar devices, but electromagnetic radiation from this phenomenon has until now eluded detection. Smirnov (1994) and Zou(1994) was among the first scientist who used plasma physics trying to explain this phenomenon. Work done by Pavia & Taft (2010 and 2012) suggests that the TLP in Hessdalen probably is dusty or cold plasma, arranged as a cluster of Coulomb crystals. Optical spectrum data obtained by Strand (1984), Teodorani (2004) and Hauge (2007) showing a continuous optical spectrum support this hypothesis. Pictures of spiraling light rays obtained by Strand in 1984, and Hauge in 2004 and 2010 suggests that this plasma is moving in a strong magnetic field, and might be created by it. Radar reflections from the TLP in Hessdalen obtained by Strand in 1984 and Montebugnoli and Monari in 2007 points towards that the TLP acts as an reflecting surface for electromagnetic waves in the frequencies ranging from 0,4 - 10GHz, which ionized matter, plasma, will do. The non-explained TLP in Hessdalen may therefor be related to the generation of low atmospheric plasma, created by an undetected energy /excitation source. Data obtained from Mexico and USA seems to correlate with the characteristics of the Hessdalen phenomena, suggesting that the mechanism creating the Hessdalen phenomena is global and not only localized to the Hessdalen valley. These data will be shown and analyzed. Hessdalen is known for having a very high frequency of TLP observations yearly, compared to other places in the world. This very active process creating TLPs in Hessdalen may be connected to magnetic pulsations/storms since several optical observations done the last 6 years are coupled to Aurora Borealis outbreaks in the Hessdalen atmosphere. Aurora borealis is often seen on these latitudes, and this may be one of the explanations for the high observation frequency. The Hessdalen region is an old mining district with deep mining-shafts, going down to 1000m of depth, and huge layers of zinc and copper ore. This creates conducting channels for current in the ground and reflecting surfaces for electromagnetic radiation. Examining these physical facts coupled to outbreaks of Aurora borealis may contribute to an better understanding of the mechanisms creating atmospheric plasma in Hessdalen valley and other places in the world.

Gitle Hauge, Bjørn; Petter Strand, Erling

2014-05-01

80

Bactericidal action of cold atmospheric plasma in solution  

NASA Astrophysics Data System (ADS)

In this study different influences on the bactericidal effect of cold atmospheric plasma (CAP) were investigated intensively. In detail, different initial densities of Escherichia coli cells and different treatment times of up to 8 min were studied. The results show that up to densities of 105 cells per 20 ?l high reduction rates of up to 5 log can be achieved in less than 3 min of CAP application. In contrast, for higher cell densities almost no reduction was measured for CAP treatment times of up to 8 min. To understand this data in detail, a theoretical model was developed. This model starts from the premise that bacteria are able to some degree to neutralize reactive species and that accordingly the bactericidal effect depends on the bacterial concentration. A further purpose of this study was to analyze the contribution of reactive oxygen and also reactive nitrogen species—produced by the CAP—to the bactericidal effect. We therefore measured nitrites, nitrates and hydrogen peroxide—products of chemical reactions between the species produced by the CAP and the liquid. The evidence of nitric oxide (NO) uptake in bacteria and the corresponding reference experiments with hydrogen peroxide and a chemical NO donor clearly show that the bactericidal effect of CAP is related to a combination of oxidative and nitrosative effects.

Boxhammer, V.; Morfill, G. E.; Jokipii, J. R.; Shimizu, T.; Klämpfl, T.; Li, Y.-F.; Köritzer, J.; Schlegel, J.; Zimmermann, J. L.

2012-11-01

81

Cold Atmospheric Plasma as an alternative therapy for cancer therapies  

NASA Astrophysics Data System (ADS)

CAP (cold atmospheric plasma) is a technology, which is based on quasi-neutral ionized gas (plasma at low temperatures), which is being evaluated as an alternative or addition to existing cancer therapies. A recent study shows that CAP treatment can cause a significant reduction in tumor size in vivo. Thus the purpose of this study is to begin to identify the mechanism by which cancer cells are killed by CAP, i.e. to identify the mechanism of CAP action. CAP induced a robust ˜2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of ?H2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle together with significant decrease in EdU-signal of DNA-replicating cells. Our data suggest that more tumorigenic cancer cells are better susceptible to CAP treatment.

Volotskova, Olga; Hawley, Teresa; Stepp, Mary Ann; Keidar, Michael

2012-10-01

82

THE REMARKABLE HIGH PRESSURE OF THE LOCAL LEO COLD CLOUD  

SciTech Connect

Using the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope, we have obtained high-resolution ultraviolet spectra of the C I absorption toward two stars behind the Local Leo Cold Cloud (LLCC). At a distance ( Almost-Equal-To 20 pc) that places it well inside the Local Bubble, the LLCC is the nearest example of the coldest known (T Almost-Equal-To 20 K) diffuse interstellar clouds. The STIS measurements of the C I fine-structure excitation toward HD 85259 and HD 83023 indicate that the thermal gas pressure of the LLCC is much greater than that of the warm clouds in the Local Bubble. The mean LLCC pressure measured toward these two stars (60,000 cm{sup -3} K) implies an H I density of Almost-Equal-To 3000 cm{sup -3} and a cloud thickness of Almost-Equal-To 200 AU at the 20 K cloud temperature. Such a thin, cold, dense structure could arise at the collision interface between converging flows of warm gas. However, the measured LLCC pressure is appreciably higher than that expected in the colliding-cloud interpretation given the velocity and column density constraints on warm clouds in the HD 85259 and HD 83023 sightlines. Additional STIS measurements of the Zn II, Ni II, and Cr II column densities toward HD 85259 indicate that the LLCC has a modest 'warm cloud' dust depletion pattern consistent with its low dust-to-gas ratio determined from H I 21 cm and 100 {mu}m observations. In support of the inferred sheet-like geometry for the LLCC, a multi-epoch comparison of the Na I absorption toward a high-proper-motion background star reveals a 40% column density variation indicative of LLCC Na I structure on a scale of Almost-Equal-To 50 AU.

Meyer, David M. [Center for Interdisciplinary Exploration and Research in Astrophysics, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Lauroesch, J. T. [Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292 (United States); Peek, J. E. G. [Department of Astronomy, Columbia University, Pupin Physics Laboratories, 550 West 120th Street, New York, NY 10027 (United States); Heiles, Carl, E-mail: davemeyer@northwestern.edu, E-mail: jtlaur01@louisville.edu, E-mail: goldston@gmail.com, E-mail: heiles@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

2012-06-20

83

BLOOD PRESSURE AND HEART RATE RESPONSES IN MEN EXPOSED TO ARM AND LEG COLD PRESSOR TESTS AND WHOLE-BODY COLD EXPOSURE  

Microsoft Academic Search

Objectives. Comparison of the effects of different types of cold exposure on blood pressure and heart rate. Study design. Controlled laboratory study. Methods. Twenty healthy men were exposed to three different types of cold exposure: cold pressor tests for hands and feet, and a 2-h cold air exposure at an ambient temperature of +10 °C. Results. All types of cold

Ilkka Korhonen

84

Atmospheric pressure variation and the climate of Mars  

NASA Technical Reports Server (NTRS)

If Mars has permanent CO2 polar caps, atmospheric heat transport may cause the atmospheric pressure to be extremely sensitive to variations of solar heating at the poles. This could happen because atmospheric heating depends on density, which depends strongly on the polar temperature through the vapor pressure relation. A simple climatological model is used to study the question.

Gierasch, P. J.; Toon, O. B.

1973-01-01

85

Ocean-Atmosphere Interaction in the Making of the Walker Circulation and Equatorial Cold Tongue  

Microsoft Academic Search

The climate over the equatorial Pacific displays a pronounced asymmetry in the zonal direction that is characterized by the Walker circulation in the atmosphere and the cold tongue in the ocean. An intermediate coupled ocean-atmosphere model is used to investigate the driving force and the ocean-atmosphere interaction mechanism for the generation of the zonal asymmetry. In the far eastern Pacific,

Shang-Ping Xie

1998-01-01

86

Atmospheric pressure loading effects on Global Positioning System coordinate determinations  

Microsoft Academic Search

Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is

Tonie M. vanDam; Geoffrey Blewitt; Michael B. Heflin

1994-01-01

87

Corrosion Protection of Light Alloys Using Low Pressure Cold Spray  

NASA Astrophysics Data System (ADS)

Corrosion attack of aluminum- and magnesium-based alloys is a major issue worldwide. This study provides a report on the electrochemical behavior of several types of protective metal coatings obtained by low pressure cold spray (LPCS) and describes the performance of the latter's corrosion resistance properties. In this manner several metal feedstock compositions were cold sprayed on AA2024-T3 Alclad substrate. Electrochemical methods, such as open circuit potential and potentiodynamic polarization, were used in combination with materials characterization techniques to assess the performance of LPCS protective coating layers. All sprayed samples were tested in the accelerated corrosion salt spray chamber for a time period of up to 500 h to obtain corrosion kinetics data, and with specific attention being focused on the characterization of the coating's microstructural and mechanical properties. The overall conclusion of this study is that the LPCS process could be utilized to deposit corrosion protection coatings of light alloys as well as to repair aluminum and aluminum cladding structures during overhaul maintenance schedule in industry.

Dzhurinskiy, D.; Maeva, E.; Leshchinsky, Ev.; Maev, R. Gr.

2012-03-01

88

[Disorders caused by heat, cold, and abnormal pressure].  

PubMed

Exposure to heat disturbs the homeostasis of body water, serum osmosis, and core temperature, resulting in the development of heat cramp, heat syncope, heat exhaustion, and heat stroke. Commonly coexisting risks are humidity, windlessness, infrared radiation, physical exertion, continuous work, chemical protective clothing, and lack of acclimatization. Exposure to cold constricts peripheral arteries and reduces metabolism, resulting in the development of chilblains, frostbite, immersion foot, and hypothermia. Wind, water immersion, and alcohol drinking will aggravate the symptoms. Exposure to abnormal pressure underwater or inside caissons or air cabins compresses or distends closed cavities inside the body, resulting in squeeze, nitrogen narcosis, oxygen intoxication, decompression sickness, reverse block, lung edema, and arterial gas embolism. Multifaceted preventive measures and on-site emergency care should be undertaken. PMID:24605519

Horie, Seichi

2014-02-01

89

Atmospheric control in purged positive pressure gloveboxes  

SciTech Connect

The gloveboxes in this discussion are used for machining material that must be handled in an inert atmosphere at the Oak Ridge Y-12 Plant. The enclosures are approximately 300 cubic feet in volume and house two precision cutting machines. The machine's shafts penetrate a flexible rubber boot so that the machining area is within the glovebox. Air bearings around the machine shafts are supplied with nitrogen and exhaust into the glovebox. The glovebox is equipped with an air lock for loading and unloading parts, and a centrally located carriage for manipulating parts from the air lock to both machining and inspection areas. The glovebox control system (which is independent of the precision machine controls) handles various interlocks and alarms associated with the air lock and part handling carriage, and maintains required pressure and atmospheric quality. The important functions provided by the glovebox and its control system are preservation material integrity, elimination of fire and explosion hazards, containment of machine dust that is released during machining, relief of control system attention by machinists, and cost savings in nitrogen. 2 figs.

Stone, W.C. Jr.

1988-01-01

90

Effects of cold atmospheric plasma on mucosal tissue culture  

NASA Astrophysics Data System (ADS)

Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level. To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

Welz, Christian; Becker, Sven; Li, Yang-Fang; Shimizu, Tetsuji; Jeon, Jin; Schwenk-Zieger, Sabina; Thomas, Hubertus M.; Isbary, Georg; Morfill, Gregor E.; Harréus, Ulrich; Zimmermann, Julia L.

2013-01-01

91

Cold atmospheric plasma - A new technology for spacecraft component decontamination  

NASA Astrophysics Data System (ADS)

Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

2014-01-01

92

Preparation of Cold Brew Tea by Explosion Puffing Drying at Variable Temperature and Pressure  

Microsoft Academic Search

Cold brew tea was prepared using explosion puffing drying at variable temperature and pressure. The influences of moisture content of predried tea leaves, freezing pretreatment times at ?18°C, and puffing temperature on water extracts content of cold brew tea were studied according to the orthogonal experiments of processing of cold brew tea based on single factors. The biochemistry ingredients of

Xin-Yi He; Jin-Fu Liu; Zong-Hai Huang

2011-01-01

93

Cold atmospheric plasma sterilization: from bacteria to biomolecules  

NASA Astrophysics Data System (ADS)

Although ionized gases have been known to have biological effects for more than 100 years, their impact on the practice in healthcare service became very significant only recently. Today, plasma-based surgical tools are used for tissue reduction and blood coagulation as surgical procedures. Most significant however is the speed at which low-temperature gas plasmas are finding new applications in medicine and biology, including plasma sterilization, wound healing, and cancer therapies just to name a few. In the terminology of biotechnology, the ``pipeline'' is long and exciting. This presentation reviews the current status of the field with a particular emphasis on plasma inactivation of microorganisms and biomolecules, for which comprehensive scientific evidence has been obtained. Some of the early speculations of biocidal plasma species are now being confirmed through a combination of optical emission spectroscopy, laser-induced fluorescence, mass spectrometry, fluid simulation and biological sensing with mutated bacteria. Similarly, fundamental studies are being performed to examine cell components targeted by gas plasmas, from membrane, through lipid and membrane proteins, to DNA. Scientific challenge is significant, as the usual complexity of plasma dynamics and plasma chemistry is compounded by the added complication that cells are live and constantly evolving. Nevertheless, the current understanding of plasma inactivation currently provides strong momentum for plasma decontamination technologies to be realized in healthcare. We will discuss the issue of protein and tissue contaminations of surgical instruments and how cold atmospheric plasmas may be used to degrade and reduce their surface load. In the context of plasma interaction with biomolecules, we will consider recent data of plasma degradation of adhesion proteins of melanoma cells. These adhesion proteins are important for cancer cell migration and spread. If low-temperature plasmas could be used to degrade them, it could form a control strategy for cancer spread. This adds to the option of plasma-triggered programmed cell death (apoptosis). Whilst opportunities thus highlighted are significant and exciting, the underpinning science poses many open questions. The presentation will then discuss main requirements for plasma sources appropriate for their biomedical applications, in terms of the scope of up-scaling, the ability to treat uneven surfaces of varying materials, the range of plasma chemistry, and the control of plasma instabilities. Finally a perspective will be offered, in terms of both opportunities and challenges.

Kong, Michael

2009-10-01

94

Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts  

NASA Technical Reports Server (NTRS)

The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

Ingersoll, Andrew P.

1989-01-01

95

Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA  

SciTech Connect

The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao [Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074 (China); Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan [College of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2009-08-24

96

Driven Motion and Instability of an Atmospheric Pressure Arc  

E-print Network

Driven Motion and Instability of an Atmospheric Pressure Arc Max Karasik A Dissertation Presented. All rights reserved. #12; Abstract Atmospheric pressure arcs are used extensively in applications to my parents, Isak and Natalie, and to my grandparents, Stashek and Nina. #12; vi #12; Acknowledgments

97

Driven Motion and Instability of an Atmospheric Pressure Arc  

E-print Network

Driven Motion and Instability of an Atmospheric Pressure Arc Max Karasik A Dissertation Presented rights reserved. #12;Abstract Atmospheric pressure arcs are used extensively in applications to my parents, Isak and Natalie, and to my grandparents, Stashek and Nina. #12;vi #12;Acknowledgments I

98

Atmospheric pressure helium afterglow discharge detector for gas chromatography  

Microsoft Academic Search

An electrodeless discharge apparatus is described for use in producing atmospheric pressure afterglows from helium as an element specific, multielemental gas chromatography detector comprising: a discharge tube having an upper open end, and a lower end means for supplying helium at atmospheric pressure to the discharge tube, a first electrode concentrically encircling at least a portion of the tube near

G. Rice; A. DSilva; V. A. Fassel

1986-01-01

99

Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets.  

PubMed

Plasma is ionized gas, which is found in various forms in nature and can also be generated artificially. A variety of cold atmospheric-pressure plasmas are currently being investigated for their clinical utility, and first studies reporting on the treatment of patients showed that plasma treatment may support the wound healing process. One of the benefits of plasma treatment is the effective inactivation of bacteria including tenacious pathogens such as Pseudomonas aeruginosa or multiresistant Staphylococcus aureus (MRSA). Neither the molecular mechanisms promoting wound healing nor those underlying bacterial inactivation are fully understood yet. The review has a focus on plasma jets, a particular type of cold atmospheric-pressure plasma sources featuring an indirect treatment whereby the treated substrates do not come into contact with the plasma directly but are exposed to the plasma-emitted reactive species and photons. Such plasma jets are being employed as tools in basic research regarding the effects of plasmas on biological samples. This review provides a brief overview on the recent clinical investigations into the benefits of cold atmospheric-pressure plasmas. It then describes our current understanding of the mechanisms leading to bacterial inactivation and inactivation of biomacromolecules gained by employing plasma jets. PMID:24841116

Lackmann, Jan-Wilm; Bandow, Julia Elisabeth

2014-07-01

100

Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying  

Microsoft Academic Search

The thermal fatigue behavior of thermal barrier coatings (TBCs) with the NiCoCrAlTaY bond coats deposited by cold spraying and low-pressure plasma spraying (LPPS) was examined through thermal cyclic test. The TBCs were subjected to the pre-oxidation before the test in an Ar atmosphere. The results show that a more uniform TGO in both thickness and composition forms on the cold-sprayed

Yong Li; Chang-Jiu Li; Guan-Jun Yang; Lu-Kuo Xing

2010-01-01

101

Cold Dark Soft Matter Research and Atmosphere in the Theatre  

Microsoft Academic Search

Recent research has experimentally confirmed the existence of cold, dark, soft matter (which I abbreviate CDSM). The paper provides a brief survey of the characteristics of CDSM and proposes how CDSM may explain specific experiences and phenomena of the theatre. Clear experiences, vague concepts There are a number of phenomena of theatre that we can most probably all relate to,

Daniel Meyer-Dinkgräfe

102

Low and atmospheric pressure plasma treatment of natural textile fibers  

Microsoft Academic Search

In this contribution we report on plasma modification of natural textile fibres, like raw wool and wool yarn and cotton wool and cotton yarn. Radiofrequency plasmas (13.56 MHz) generated in parallel plate configuration at low pressure and in dielectric barrier discharge (DBD) configuration at atmospheric pressure have been used. At low pressure the samples were treated at different times (1-30

I. Luciu; B. Mitu; V. Satulu; A. Matei; G. Dinescu

2008-01-01

103

Visualization of a Copper Wire Explosion in Atmospheric Pressure Air  

E-print Network

Experimental and computational images of a 90-?m thick copper wire explosion in atmospheric pressure air are presented. A Marx generator is used to produce a pulsed current density into the wire with a maximum rate of rise ...

Jadidian, Jouya

104

Investigating Atmospheric Pressure with a Cup, Straw and Water  

NSDL National Science Digital Library

This activity is a reinforcement lab activity where students experiment with ways to get water to flow out of a cup and up a straw causing an imbalance in the atmospheric pressure surrounding the water.

105

Atmospheric pressure non-thermal plasma: Sources and applications  

Microsoft Academic Search

Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by

A. P. Napartovich

2008-01-01

106

Large-Scale Characteristics of the Atmospheric Boundary Layer in the Eastern Pacific Cold Tongue ITCZ Region(.  

NASA Astrophysics Data System (ADS)

Observations from the Eastern Pacific Investigation of Climate 2001 (EPIC2001) field campaign and a simple mixed-layer model are used to study the large-scale structure and dynamics of the atmospheric boundary layer (ABL) in the eastern Pacific. Vertical and latitudinal distributions of the meridional pressure gradient, winds, and other variables are examined and the momentum balance of the mixed layer is explored for a latitudinal range from 0° to 10°N along 95°W including the equatorial cold tongue, sea surface temperature (SST) front, and convective region at the latitude of the intertropical convergence zone (ITCZ). The surface meridional pressure gradient is partitioned into contributions from the ABL, largely controlled by the gradient in SST, and from the troposphere above the boundary layer, mainly controlled by elevated heating and atmospheric wave activity. The mean meridional gradient in surface pressure is dominated (90%) by the ABL contribution; however, its temporal variability primarily comes from the free troposphere. Outside the convective region, thermal variables (e.g., pressure, temperature, and humidity) are well mixed from the surface to 800 1000 m. Winds are well mixed from the surface to approximately 500 m, except over the cold tongue where strong vertical shear exists near the surface. Considerable wind shear is also found in the upper part of the ABL, owing to the rapid decrease with height in the meridional pressure gradient and its reversal in sign above the ABL. The pressure gradient reversal results in a northerly flow atop the ABL. Relatively large entrainment velocities (1 2 cm s-1) are estimated, partially because of this strong wind shear. Both observations and simulations from the mixed-layer model demonstrate the indispensable roles of entrainment and vertical mixing in general in the momentum balance of the mixed layer in the region.


McGauley, Michael; Zhang, Chidong; Bond, Nicholas A.

2004-10-01

107

Atmospheric control in purged positive pressure gloveboxes  

Microsoft Academic Search

The gloveboxes in this discussion are used for machining material that must be handled in an inert atmosphere at the Oak Ridge Y-12 Plant. The enclosures are approximately 300 cubic feet in volume and house two precision cutting machines. The machine's shafts penetrate a flexible rubber boot so that the machining area is within the glovebox. Air bearings around the

W. C. Jr

1988-01-01

108

Einstein's Tea Leaves and Pressure Systems in the Atmosphere  

ERIC Educational Resources Information Center

Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure

Tandon, Amit; Marshall, John

2010-01-01

109

Tantalum Etching with an Atmospheric Pressure Plasma Jet  

NASA Astrophysics Data System (ADS)

The APPJ is a non-thermal, atmospheric-pressure, glow discharge. A feedgas, composed of an inert carrier gas (e.g., He) and small concentrations of additives (e.g., O2, or CF4), flows between closely spaced electrodes powered at 13.56 MHz rf in a coaxial or parallel plate arrangement. The plasma has Te ˜ 2 eV and ne ˜ 10^11 cm-3. Electrons are not in thermal equilibrium with ions and neutrals: the electrons are ``hot", while the overall gas temperature is quite ``cold", typically 50-300 C. In the plasma, the gas is excited, dissociated or ionized by energetic electron impact. As the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, leaving metastables (e.g. O2*, He*) and radicals (e.g. O, F, OF, O2F, CFO). These reactive species are then directed onto a surface to be processed. The APPJ has been developed for decontaminating nuclear, chemical, and biological agents. Atomic fluorine, and possibly other reactive species, can be used to convert actinides (e.g., U and Pu), into volatile fluorides (e.g., UF6, PuF6) that can be trapped, resulting in significant volume reduction of radioactive waste. In this talk, we will present results on using Ta as a surrogate for Pu in He/O2/CF4 etching plasmas. Results of experimental measurements of Ta etch rates for various gas mixtures and plasma jet standoff distance will be compared with plasma chemistry modeling of the concentrations of several active species produced in the plasma.

Teslow, Hilary; Herrmann, Hans; Rosocha, Louis

2002-10-01

110

On the mechanisms of sensible heat transfer between snow and a cold atmosphere  

Microsoft Academic Search

The mechanisms of heat exchange between the atmosphere and the snowpack during cold, stable periods are imperfectly understood. Air flow over smooth snow surfaces under weak synoptic forcing creates weak or intermittently turbulent mixing conditions, strong thermal stratification, interaction of non-turbulent motions, and the possible decoupling of the boundary layer from the surface. These conditions pose serious challenges for modeling

W. Helgason; J. W. Pomeroy

2009-01-01

111

A Spectacular Experiment Exhibiting Atmospheric Pressure  

ERIC Educational Resources Information Center

The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

Le Noxaïc, Armand

2014-01-01

112

Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells  

NASA Astrophysics Data System (ADS)

The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

2013-05-01

113

Eradication of Bacterial Biofilms Using Atmospheric Pressure Non-Thermal Plasmas  

NASA Astrophysics Data System (ADS)

Bacterial biofilms are ubiquitous in natural and clinical settings and form a major health risk. Biofilms are recognised to be the predominant mode of bacterial growth, and are an immunological challenge compared to planktonic bacteria of the same species. Eradication of biofilms with atmospheric pressure plasma jets is investigated. Cold non-equilibrium plasmas, operated at ambient atmospheric pressure and temperature, are efficient sources for controlled energy transport through highly reactive neutrals (e.g. ROS, RNS), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. A focused panel of clinically significant biofilms, including Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus, are exposed to various plasma jet configurations operated in helium and oxygen mixtures. Viability of surviving cells was determined using both standard plate counting method and XTT viability assay. These are correlated with measurements and simulations of relevant reactive plasma species.

Yousef Alkawareek, Mahmoud; Gilmore, Brendan; Gorman, Sean; Algwari, Qais; Graham, William; O'Connell, Deborah

2011-11-01

114

Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells  

SciTech Connect

The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)] [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China) [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China) [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)] [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

2013-05-15

115

Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure  

SciTech Connect

The experimental study of microwave-plasma interaction has been performed to demonstrate the transmission and attenuation of microwaves in atmospheric pressure glow discharge plasma. The cold-collisional plasma produced at atmospheric pressure can absorb the microwave energy because of its complex dielectric constant. The microwave of 10 GHz frequency was launched into the plasma and attenuation was measured as a function of electron plasma density, plasma thickness, electron-neutral collision frequency, etc. It was observed that the attenuation significantly depends on electron plasma density and thickness. The microwave attenuation measurement was also used as a diagnostic to estimate electron plasma density. It was validated by optical emission spectroscopic measurements with helium line intensity ratio method. Both the methods show good agreement.

Srivastava, A. K.; Prasad, G.; Atrey, P. K.; Kumar, Vinay [Institute for Plasma Research, Bhat, Near Indira Bridge, Gandhinagar, Gujarat 382428 (India)

2008-02-01

116

Effect of Phase Pressure on Casting Properties in Cold Chamber Die Casting Process  

NASA Astrophysics Data System (ADS)

This paper focuses on the parametric optimization of process parameter in cold chamber die casting for an industrial component (crank case). Three controllable factors of the cold chamber die casting process (namely: 1st phase pressure, 2nd phase pressure and limit switch position) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factor controlling surface hardness, weight of casting and dimensional accuracy (?d). Castings were produced using aluminium alloy at recommended parameters through cold chamber die casting process. Analysis shows that in cold chamber die casting process the percentage contribution of 1st phase pressure, limit switch position and 2nd phase pressure for surface hardness is 84.17, 11.43 and 1.93 % respectively. While in the case of weight of cast component, the contribution of limit switch position is 52.26 %, followed by 1st phase pressure and 2nd phase pressure 34.77 and 9.65 % respectively. Further for ?d, contribution of 1st phase pressure is 64.55 %, limit switch position 27.71 % and 2nd phase pressure contributes 4.87 %.

Singh, R.; Kapoor, R.

2013-04-01

117

The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air  

NASA Astrophysics Data System (ADS)

We studied the acidifying efficiency of a cold atmospheric pressure plasma treatment and ambient air as a working gas on lipid films. Acidification of a thin water film could be observed on plasma-treated surfaces of wool wax, pork sebum and human lipids. This pH shift was partly attributable to NOx species and to the formation of nitric acid in the upper layers of the substrates. The acidic compounds on the lipid surfaces resulted in pH shifts for up to 2 h after plasma exposure, which might be beneficial for pH-targeted therapies in dermatology.

Helmke, A.; Hoffmeister, D.; Mertens, N.; Emmert, S.; Schuette, J.; Vioel, W.

2009-11-01

118

PPI/HASI Pressure Measurements in the Atmosphere of Titan  

NASA Astrophysics Data System (ADS)

The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.

M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.

2005-08-01

119

Cold acclimation-induced increase of systolic blood pressure in rats is associated with volume expansion  

Microsoft Academic Search

To investigate the mechanisms of cold-induced hypertension, the systolic blood pressure (SBP) and average daily water consumption were measured weekly in 6-month-old male Wistar rats; they were subsequently acclimated to thermoneutrality (26°C for 7 weeks), to cold temperature (6°C for 9 weeks), and then again reacclimated to 26°C for 5 weeks. Circulating plasma volume and whole blood viscosity were measured

Natalia I. Roukoyatkina; Svetlana I. Chefer; Joseph Rifkind; Ranjeet Ajmani; Mark I. Talan

1999-01-01

120

3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b  

NASA Astrophysics Data System (ADS)

Context. Hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvin. Because of their large day-night temperature differences, condensable species that are stable in the gas phase on the dayside - such as TiO and silicates - may condense and gravitationally settle on the nightside. Atmospheric circulation may counterbalance this tendency to gravitationally settle. This three-dimensional (3D) mixing of condensable species has not previously been studied for hot Jupiters, yet it is crucial to assess the existence and distribution of TiO and silicates in the atmospheres of these planets. Aims: We investigate the strength of the nightside cold trap in hot Jupiters atmospheres by investigating the mechanisms and strength of the vertical mixing in these stably stratified atmospheres. We apply our model to the particular case of TiO to address the question of whether TiO can exist at low pressure in sufficient abundances to produce stratospheric thermal inversions despite the nightside cold trap. Methods: We modeled the 3D circulation of HD 209458b including passive (i.e. radiatively inactive) tracers that advect with the 3D flow, with a source and sink term on the nightside to represent their condensation into haze particles and their gravitational settling. Results: We show that global advection patterns produce strong vertical mixing that can keep condensable species aloft as long as they are trapped in particles of sizes of a few microns or less on the nightside. We show that vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the effective vertical eddy diffusivities in these atmospheres. The parametrization Kzz=5 × 104/ Pbar m2s-1, valid from ~1 bar to a few ?bar, can be used in 1D models of HD 209458b. Moreover, our models exhibit strong spatial and temporal variability in the tracer concentration that could result in observable variations during either transit or secondary eclipse measurements. Finally, we apply our model to the case of TiO in HD 209458b and show that the day-night cold trap would deplete TiO if it condenses into particles bigger than a few microns on the planet's nightside, keeping it from creating the observed stratosphere of the planet. Appendix A is available in electronic form at http://www.aanda.org

Parmentier, Vivien; Showman, Adam P.; Lian, Yuan

2013-10-01

121

Engineering a laser remote sensor for atmospheric pressure and temperature  

NASA Technical Reports Server (NTRS)

A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

Kalshoven, J. E., Jr.; Korb, C. L.

1978-01-01

122

Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure.  

PubMed

As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916

Paul, Anna-Lisa; Schuerger, Andrew C; Popp, Michael P; Richards, Jeffrey T; Manak, Michael S; Ferl, Robert J

2004-01-01

123

Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition  

NASA Astrophysics Data System (ADS)

An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

2012-07-01

124

Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition  

SciTech Connect

An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Du Ning; Liu Xiaodi; Guo Lihong [Department of Oral Biology, Peking University School and Hospital of Stomatology, 100080 Beijing (China); Yang Size [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China)

2012-07-01

125

Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres  

NASA Technical Reports Server (NTRS)

In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

Corey, Kenneth A.

2001-01-01

126

Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres  

NASA Technical Reports Server (NTRS)

In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

Corey, Kenneth A.

2002-01-01

127

ANNUAL REPORT. ATMOSPHERIC-PRESSURE PLASMA CLEANING OF CONTAMINATED SURFACES  

EPA Science Inventory

The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of nuclear waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly unde...

128

Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for  

E-print Network

, composite materials and metals need a pretreatment step before adhesive bonding or painting.[1 analysis and adhesive bonding experiments. The plasma is characterized by optical emission spectroscopy) samples were activated by an atmospheric pressure plasma jet. The improvement in adhesive bond strength

Greifswald, Ernst-Moritz-Arndt-Universität

129

Atmospheric pressure helium afterglow discharge detector for gas chromatography  

Microsoft Academic Search

An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

Gary Rice; Arthur P. DSilva; Velmer A. Fassel

1986-01-01

130

Atmospheric pressure helium afterglow discharge detector for gas chromatography  

Microsoft Academic Search

An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

G. Rice; A. P. DSilva; V. A. Fassel

1985-01-01

131

Atmospheric pressure and suicide attempts in Helsinki, Finland  

NASA Astrophysics Data System (ADS)

The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P < 0.001), and may explain the clustering of suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

2012-11-01

132

Global Atmospheric Pressure Effects of the October 30, 1961, Explosion  

Microsoft Academic Search

The atmospheric pressure waves set off by the explosion of October 30, 1961, were traced over a large portion of the world, including the antipodes in the Antarctic, by means of analyses of available ordinary microbarograph records. The observed geographic variations in propagation speed and maximum amplitude are examined with the aid of air density and wind analyses. Comparison is

H. Wexler; W. A. Hass

1962-01-01

133

Atmospheric Pressure Molecular Imaging by Infrared MALDI Mass Spectrometry  

E-print Network

was developed for an orthogonal acceleration time-of-flight mass spectrometer and utilized to analyze peptides to the ultraviolet laser shots, spatially correlated mass spectra are acquired. Application of MALDI imaging to largeAtmospheric Pressure Molecular Imaging by Infrared MALDI Mass Spectrometry Yue Li, Bindesh Shrestha

Vertes, Akos

134

Variations in atmospheric pressure and height of maximal electron concentration  

NASA Astrophysics Data System (ADS)

The latitude distribution of atmospheric pressure is compared with that of the height of the maximal electron concentration of the ionospheric F 2 region. Use is made of the atmospheric pressure data of Shkodrov and Ivanova (1980) and of data obtained by Watanabe (1967) based on solar-activity-averaged observations of day and night variations of the proportion of radio waves reaching distances of 3000 km at 40 ionospheric stations. A well-defined similarity between the two parameters is observed at the equatorial regions which decreases at high northern latitudes and disappears at high southern latitudes. It is also found that relative variations in the northern and southern hemisphere atmospheric pressure maxima are accompanied by analogous relative variations in maximal electron concentration height, while the values of the minima of the two parameters remain constant throughout the year. It is concluded that variations in meridional plane atmospheric pressure and maximal electron density height in the F 2 region are probably due to a common cause acting in the equatorial region, possibly the geomagnetic field.

Shkodrov, V. G.; Ivanova, V. G.

135

Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma  

NASA Technical Reports Server (NTRS)

As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

2007-01-01

136

Novel applications of atmospheric pressure plasma on textile materials  

Microsoft Academic Search

Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation

Carrie Elizabeth Cornelius

2009-01-01

137

Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush  

NASA Astrophysics Data System (ADS)

An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed and used to treat enterococcus faecalis bacteria. The results show that the efficiency of the inactivation process by helium plasma is dependent on applied power and exposure time. After plasma treatments, the cell structure and morphology changes can be observed by scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Lv, Guo-Hua; Wang, Xing-Quan; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

2012-07-01

138

Cold fusion experiments using Maxwellian plasmas and sub-atmospheric deuterium gas  

Microsoft Academic Search

Experiments are being performed to initiate the cold fusion process in Maxwellian plasmas and sub-atmospheric deuterium gas. Thus far, apparent neutron counts have been observed using a BF3 probe and Ludlum model 2200 digital counter, and a broad 8.1 MeV peak has been observed using a 3-inch sodium iodide crystal and a Nucleus PCA II multichannel analyzer. The results appear

Mark Prelas; Frederick Boody; Warren Gallaher; Edbertho Leal-Quiros; David Mencin; Scott Taylor

1990-01-01

139

Model of a stationary microwave argon discharge at atmospheric pressure  

SciTech Connect

The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

Zhelyazkov, I. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Pencheva, M.; Benova, E. [Department for Language Teaching and International Students, Sofia University, BG-1111 Sofia (Bulgaria)

2008-03-19

140

Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells.  

PubMed

The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines. PMID:25050490

Guerrero-Preston, Rafael; Ogawa, Takenori; Uemura, Mamoru; Shumulinsky, Gary; Valle, Blanca L; Pirini, Francesca; Ravi, Rajani; Sidransky, David; Keidar, Michael; Trink, Barry

2014-10-01

141

A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure  

PubMed Central

A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of ?20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

Ren, Sen; Yuan, Weizheng; Qiao, Dayong; Deng, Jinjun; Sun, Xiaodong

2013-01-01

142

Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro  

NASA Astrophysics Data System (ADS)

Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofilm under different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P < 0.05). The diameter was increased with prolongation of the treatment duration. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P < 0.01). The transmission electron microscopy revealed that the ultrastructural changes cytoderm of E. faecalis were observed after treatment for 2 min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontic microbial treatment.

Cao, Yingguang; Yang, Ping; Lu, Xinpei; Xiong, Zilan; Ye, Tao; Xiong, Qing; Sun, Ziyong

2011-02-01

143

Atmospheric pressure loading parameters from very long baseline interferometry observations  

NASA Technical Reports Server (NTRS)

Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

Macmillan, D. S.; Gipson, John M.

1994-01-01

144

High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin.  

PubMed

Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal ?-hairpin and ?-helix and a nonnative C-terminal ?-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner. PMID:23284170

Vajpai, Navratna; Nisius, Lydia; Wiktor, Maciej; Grzesiek, Stephan

2013-01-29

145

Absorption spectrum of very low pressure, relatively cold atomic hydrogen: Lyman forest  

E-print Network

Absorption spectrum of very low pressure, relatively cold atomic hydrogen: Lyman forest alpha frequency. As long as fall of radiance resulting from Planck's law does not reach Lyman beta and gamma lines to Lyman alpha frequency. Lyman forest and Karlsson's formula are obtained. Keywords: 290

Paris-Sud XI, Université de

146

Retinal Artery Response to Acute Systemic Blood Pressure Increase during Cold Pressor Test in Humans  

Microsoft Academic Search

PURPOSE. The purpose of this study was to investigate the response of the retinal arteriole to an acute increase in sys- temic blood pressure (BP). METHODS. Sixteen healthy volunteers underwent a 5-minute cold pressor test (CPT) on the left hand. Retinal blood flow (RBF) was determined using a laser Doppler velocimetry sys- tem that enables simultaneous measurements of blood velocity

Taiji Nagaoka; Fumihiko Mori; Akitoshi Yoshida

2002-01-01

147

Cold-pressure-welded joints in large multifilamentary Nb--Ti superconductors  

Microsoft Academic Search

A number of mechanical and electrical measurements were made on joints in typical conductors for the proposed mirror fusion test facility (MFTF) and high field test facility (HFTF). For such measurements, a commercially available cold-pressure-welding machine was used. For joints in the MFTF conductor, which has a large proportion of superconductor, joint strength approached conductor strength. For the HFTF conductor,

D. N. Cornish; D. W. Deis; J. P. Zbasnik

1977-01-01

148

Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition  

NASA Technical Reports Server (NTRS)

The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

2005-01-01

149

Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films.  

PubMed

A facile atmospheric pressure cold plasma process is presented to deposit a novel organic-inorganic hydrocarbon polymer/ZnO nanoparticles nanocomposite coating. Specifically, this method involves the utilization of an atmospheric pressure dielectric barrier discharge (DBD) fed with helium and the aerosol of a dispersion of oleate-capped ZnO nanoparticles (NPs) in n-octane. As assessed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, the deposited nanocomposite coating combines the chemical features of both the oleate-capped ZnO NPs and the polyethylene-like organic component originated from the plasma polymerization of n-octane. Additionally, scanning electron microscopy (SEM) and transmission scanning electron microscopy (TSEM) confirm the synthesis of hierarchical micro/nanostructured coatings containing quasi-spherical NPs agglomerates. The polyethylene-like polymer covers the NPs agglomerates to different extents and contributes to their immobilization in the three-dimensional network of the coating. The increase of both the deposition time (1-10 min) and the NPs concentration in the dispersion (0.5-5 wt %) has a significant effect on the chemical and morphological structure of the thin films and, in fact, results in the increase the ZnO NPs content, which ultimately leads to superhydrophobic surfaces (advancing and receding water contact angles higher than 160°) with low hysteresis due to the hierarchical multiscale roughness of the coating. PMID:24393041

Fanelli, Fiorenza; Mastrangelo, Anna M; Fracassi, Francesco

2014-01-28

150

Radiative and Dynamical Feedbacks Over the Equatorial Cold-Tongue: Results from Seven Atmospheric GCMs  

SciTech Connect

The equatorial Pacific is a region with strong negative feedbacks. Yet coupled GCMs have exhibited a propensity to develop a significant SST bias in that region, suggesting an unrealistic sensitivity in the coupled models to small energy flux errors that inevitably occur in the individual model components. Could this 'hypersensitivity' exhibited in a coupled model be due to an underestimate of the strength of the negative feedbacks in this region? With this suspicion, the feedbacks in the equatorial Pacific in seven atmospheric GCMs (AGCMs) have been quantified using the interannual variations in that region and compared with the corresponding calculations from the observations. The seven AGCMs are: the NCAR CAM1, the NCAR CAM2,the NCAR CAM3, the NASA/NSIPP Atmospheric Model, the Hadley Center Model, the GFDL AM2p10, and the GFDL AM2p12. All the corresponding coupled runs of these seven AGCMs have an excessive cold-tongue in the equatorial Pacific. The net atmospheric feedback over the equatorial Pacific in the two GFDL models is found to be comparable to the observed value. All other models are found to have a weaker negative net feedback from the atmosphere--a weaker regulating effect on the underlying SST than the real atmosphere. A weaker negative feedback from the cloud albedo and a weaker negative feedback from the atmospheric transport are the two leading contributors to the weaker regulating effect from the model atmosphere. All models overestimate somewhat the positive feedback from water vapor. These results confirm the suspicion that an underestimate of negative feedbacks from the atmosphere over the equatorial Pacific region is a prevalent problem. The results also suggest, however, that a weaker regulatory effect from the atmosphere is unlikely solely responsible for the 'hypersensitivity' in all models. The need to validate the feedbacks from the ocean transport is therefore highlighted.

Sun, D; Zhang, T; Covey, C; Klein, S; Collins, W; Kiehl, J; Meehl, J; Held, I; Suarez, M

2005-01-04

151

Atmospheric pressure loading effects on Global Positioning System coordinate determinations  

SciTech Connect

Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged.

Vandam, T.M.; Blewitt, G.; Heflin, M.B. [NOAA, Silver Spring, MD (United States)]|[Univ. of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)]|[Jet Propulsion Laboratory, Pasadena, CA (United States)

1994-12-01

152

The combined effect of the cold pressor test and isometric exercise on heart rate and blood pressure  

Microsoft Academic Search

Summary  The purpose of this study was to determine if the cold pressor test during isometric knee extension [15% of maximal voluntary contraction (MVC)] could have an additive effect on cardiovascular responses. Systolic and diastolic blood pressures, heart rate and pressure rate product were measured in eight healthy male subjects. The subjects performed the cold pressor tests and isometric leg extensions

D. Peikert; J. Smolander

1991-01-01

153

Atmospheric-pressure plasma sources for biomedical applications  

NASA Astrophysics Data System (ADS)

Atmospheric-pressure plasmas (APPs) have attracted great interest and have been widely applied in biomedical applications, as due to their non-thermal and reactive properties, they interact with living tissues, cells and bacteria. Various types of plasma sources generated at atmospheric pressure have been developed to achieve better performance in specific applications. This article presents an overview of the general characteristics of APPs and a brief summary of their biomedical applications, and reviews a wide range of these sources developed for biomedical applications. The plasma sources are classified according to their power sources and cover a wide frequency spectrum from dc to microwaves. The configurations and characteristics of plasma sources are outlined and their biomedical applications are presented.

Park, G. Y.; Park, S. J.; Choi, M. Y.; Koo, I. G.; Byun, J. H.; Hong, J. W.; Sim, J. Y.; Collins, G. J.; Lee, J. K.

2012-08-01

154

Cellular membrane collapse by atmospheric-pressure plasma jet  

NASA Astrophysics Data System (ADS)

Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

2014-01-01

155

Diagnostic methods used for atmospheric pressure thermal arc plasma  

NASA Astrophysics Data System (ADS)

Diagnostic methods used for atmospheric pressure thermal arc plasmas are presented in this paper. An experimental direct current arc plasma torch was used as a source for plasma generation at atmospheric pressure. Overheated water vapor was employed as a plasma-forming gas with an admixture of argon as a shielding gas. A couple of plasma diagnostic methods were invoked to perform the analysis of the generated plasma jet at the nozzle exhaust of the torch. Firstly, an optical emission spectroscopy method was used to determine the chemical composition of the water vapor plasma, and from the obtained spectra, the rotational and excitation temperatures were calculated roughly. Secondly, an enthalpy probe measurement was performed in order to measure the mean temperature and the velocity lengthwise and crosswise in the plasma stream.

Tamoši?nas, A.; Valatkevi?ius, P.; Valin?ius, V.; Grigaitien?, V.; Kavaliauskas, Ž.

2014-05-01

156

Thermally induced atmospheric pressure gas discharges using pyroelectric crystals  

NASA Astrophysics Data System (ADS)

Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

Johnson, Michael J.; Linczer, John; Go, David B.

2014-12-01

157

Flame spread over electric wire in sub-atmospheric pressure  

Microsoft Academic Search

Flame spread along the single wire harness (thin-metal wire with coating of polyethylene film) in sub-atmospheric pressure has been examined experimentally to gain better understandings of the electric fire in the aircraft and space habitats. Two kinds of sample wires, made by nickel-chrome (NiCr) and iron (Fe) as core metal, are used in this study. Ambient gas is fixed as

Yuji Nakamura; Nobuko Yoshimura; Hiroyuki Ito; Keisuke Azumaya; Osamu Fujita

2009-01-01

158

Spinel lithium manganese oxide synthesized under a pressurized oxygen atmosphere  

Microsoft Academic Search

Spinel lithium manganese oxide was synthesized via co-precipitation. The prepared lithium manganese oxide powder was further heated at 700°C for 15h under pressurized (3bar) oxygen atmosphere. The resultant exhibited a highly crystalline cubic spinel phase with space group Fd3m, as confirmed by X-ray diffraction. The spinel compound exhibited a slightly smaller lattice constant than a conventional spinel compound, even though

Ki-Soo Lee; Seung-Taek Myung; Hun-Gi Jung; Jung Kyoo Lee; Yang-Kook Sun

2010-01-01

159

Spectroscopic investigations of atmospheric pressure microwave torch nitrogen plasma jet  

Microsoft Academic Search

Microwave (MW) torches are typically used to produce equilibrium plasmas for various industrial applications. We present spectroscopic\\u000a investigations of atmospheric pressure afterglow plasmas generated by a Litmas Red MW torch (2.45 GHz, 3 kW) in nitrogen.We\\u000a employ optical diagnostics: emission spectroscopy and digital photography to characterise the plasma jet. Contrary to standard\\u000a MW torch geometries (where the gas flows upstream

V. Foltin; L. Lestinská; Z. Machala

2006-01-01

160

Modification of wool fibers by atmospheric pressure plasma treatment  

Microsoft Academic Search

Shrink?proofing processing of wool fabrics by vacuum plasma treatment has been studied for many years. However, as a wool shrink?proofing processing method, discharge treatment under atmospheric pressure, such as corona and low?temperature electric plasma treatment, has been studied recently. In this study, an attempt was made to improve shrink?proofing and other properties of a wool fabric by low?temperature plasma treatment.

Masukuni Mori; Volkmar von Arnim; Albrecht Dinkelmann; Mitsuo Matsudaira; Tomiji Wakida

2011-01-01

161

Beta-type Stirling engine operating at atmospheric pressure  

Microsoft Academic Search

In this study, a beta-type Stirling engine, with a 192 cc total swept-volume, was manufactured and its performance tested at atmospheric pressure. The hot-source temperature is chosen as a fundamental parameter of the experimental study. Experiments were performed with an electrical heater at 800, 900 and 1000 °C temperatures. Torque and output-power variations were obtained for different engine speeds. The

Serdar Yucesu; Tolga Topgul; Melih Okur

2005-01-01

162

Infrared laser ablation atmospheric pressure photoionization mass spectrometry.  

PubMed

In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 ?m wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 ?m lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. PMID:22242626

Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

2012-02-01

163

Atmospheric pressure loading effects on Global Positioning System coordinate determinations  

NASA Technical Reports Server (NTRS)

Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

1994-01-01

164

Influence of internal cold gas flow and of nozzle contour on spray properties of an atmospheric plasma spray torch  

SciTech Connect

With an automated Laser Doppler Anemometry (LDA) equipment trajectories, distributions and velocities of spray particles were measured operating a plasma spray torch under atmospheric pressure conditions. For this purpose a standard APS torch (PT F4) was used, applying different gas distribution rings and nozzle modifications to study the influence of internal plasma gas flow and of plasma jet formation. The main results are: (1) An inclined injection of the plasma cold gas results in a considerable spin of the plasma jet and a significant deviation of the particle trajectories around the plasma jet center. (2) With a plasma cold gas injection parallel to the torch axis no spin is observable, but torch voltage and the plasma jet enthalpy show considerably diminished values. (3) The flow of injected powder may be split up, if it is injected too fast. (4) In comparison with cylindrical nozzles, specially developed nozzles with a controlled expanding contour, lead to broader temperature profiles across the plasma jet and hence to better melting conditions for the particles.

Henne, R.H.; Borck, V. [DLR Inst. of Technical Thermodynamics, Stuttgart (Germany); Mayr, W. [Fachhochschule Muenchen, Munich (Germany); Landes, K.; Reusch, A. [Univ. of the German Armed Forces, Munich (Germany)

1995-12-31

165

Vortex Threshold: Experimental Results at Martian Atmospheric Pressures  

NASA Astrophysics Data System (ADS)

Many examples of Martian dust devils and tracks left by their passage have been identified in Viking and Mars Orbital Camera images and inferred from lander data (Viking and Mars Pathfinder). Recent surveys suggest that dust devils may be common phenomena on Mars and, unlike Earth, could contribute significantly to the global dust budget. Previous studies have noted the apparent paradox that Martian airborne dust is abundant and only a few microns in diameter yet experiments at Mars pressures suggest current Martian ambient wind speeds are insufficient to lift such fine particles from the surface; speeds of the order of 10s or even 100s of m/s are required. Local wind speeds within terrestrial dust devils are typically much greater than ambient wind speeds, but we have no in-situ measurements of the velocity structure of Mars dust devils and so cannot directly quantify their ability to entrain material. However, by using laboratory simulations we can directly measure the ability of a vortex to lift material of known size and density under a variety of atmospheric pressures. We have constructed a vortex generator consisting of a large vertical cylinder containing a rotor comprising four vertical blades and capable of speeds up to 4500 RPM. Beneath the cylinder is a 2.4 by 2.4 m tabletop which can be covered in particles for threshold tests or instrumented with pressure transducers to measure the pressure structure of the vortex. The distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied to generate a wide range of geometries and intensities of vortices. Recently, the apparatus has been operated at the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. We have measured vortex `saltation' threshold using many types of particles ranging in density from walnut shells (1.1 kg/m-3) to steel grit (7.6 kg/m-3) with particle sizes from 2 to 2000 microns and using atmospheric pressures ranging from 10 mbar (representing current Mars atmospheric conditions) to ambient. As expected, vortex threshold was more difficult to achieve with lower pressure conditions. Only the `optimum' particles (those with low densities and particle sizes ranging from 70 to 350 micron) reached full `saltation' at 10 mbar pressure before the apparatus speed limit was reached. Our results suggest that vortex threshold is directly analogous to boundary layer shear threshold for sand-sized particles at pressure from 65 mbar to ambient. We have used this result to equate vortex and boundary layer results in the sand-sized particle regime and hence to compare vortex threshold data with boundary layer results for smaller particles and lower pressures. We used empirical boundary layer expressions for threshold (corrected for particle size and particle Reynold's number). In all cases, vortex action appears more efficient than boundary layer winds at lifting small dust-sized particles and at lifting all particles at very low pressure. We conclude that Martian dust devils are more efficient mechanisms for particle entrainment than boundary layer winds, not merely because they have enhanced local wind speeds but also through another intrinsic mechanism. We suggest that a lift force caused by the passage of the low-pressure core of the dust devil over the particles would have such an effect and present examples of experimental `pressure-well' measurements at low pressures to support this.

Balme, M.; Greeley, R.; Phoreman, J.; Iversen, J.; Mickelson, B.; Beardmore, G.; Metzger, S.

2002-12-01

166

Effects of atmospheric river landfalls on the cold season precipitation in California  

NASA Astrophysics Data System (ADS)

Effects of atmospheric river (AR) landfalls in the California coast on the cold-season precipitation in California are examined for the cold seasons of 10 water years (WYs) 2001-2010 using observed data and regional modeling in conjunction with AR-landfall inventory based on visual inspections of precipitable water vapor (PWV) from remote sensing and reanalysis. The PWV in the SSM/I and SSMIS retrievals and the ERA-Interim reanalysis shows 95 AR-landfall days in the California coast that are almost evenly split between the northern and southern coasts across 37.5N. The CPC/NCEP gridded daily precipitation analysis shows that 10-30% of the cold-season precipitation totals in California have occurred during these AR landfalls. The analysis also reveals that the percentage of precipitation and the precipitation intensity during AR landfalls in California are characterized by strong north-to-south gradient. This north-south contrast in the AR precipitation is reversed for the non-AR precipitation in the coastal range. The frequency of AR landfalls and the cold-season precipitation totals in the Sierra Nevada region are only marginally correlated. Instead, AR landfalls are closely related with the occurrence of heavy precipitation events. The freezing-level altitudes are systematically higher for AR wet days than non-AR wet days indicating warmer low-troposphere during AR storms. Cold season simulations for the 10 WYs 2001-2010 show that the Weather Research and Forecast (WRF) model can reasonably simulate important features in both the seasonal and AR precipitation totals. The daily pattern correlation coefficients between the simulated and ERA-Interim upper-air fields exceed 0.9 for most of the period. This suggests that the simulated temporal variations in the atmospheric circulation agree reasonably with the reanalysis over seasonal time scales, characteristics critical for reliable simulations of regional scale hydrologic cycle. The simulated seasonal and AR precipitation totals also agree reasonably with the CPC/NCEP precipitation analysis. The most notable model errors include the overestimation (underestimation) of the season-total and AR precipitation in the northern (southern) California region. The differences in the freezing-level altitudes during the AR- and non-AR wet days in the simulation agree with those from the ERA-Interim reanalysis. The freezing level altitudes are systematically overestimated in the simulations, suggesting warm biases in the low troposphere. Overall, WRF appears to perform reasonably in simulating the key features in the cold season precipitation related with AR landfalls, an important capability for assessing the impact of global climate variations and change on future hydrology in California.

Kim, Jinwon; Waliser, Duane E.; Neiman, Paul J.; Guan, Bin; Ryoo, Ju-Mee; Wick, Gary A.

2013-01-01

167

Atmospheric continuous cold plasma treatment: Thermal and hydrodynamical diagnostics of a plasma jet pilot unit  

Microsoft Academic Search

An atmospheric pressure plasma jet (APPJ) for continuous treatment of polymeric films and textile materials was investigated to characterize its thermal, hydrodynamic and chemical features. The operative variables of the plasma jet equipment are: gas flow rate and composition, electrical power to the plasma generator and fabric velocity. A diagnostic evaluation of the equipment was carried out to improve the

A. Ceria; G. Rovero; S. Sicardi; F. Ferrero

2010-01-01

168

Computational study of the interaction of cold atmospheric helium plasma jets with surfaces  

NASA Astrophysics Data System (ADS)

We describe a computational modeling study of a cold atmospheric pressure plasma jet interacting with a dielectric surface placed normal to the jet axis. The plasma jet is generated by the application of a nanosecond pulse voltage applied to a dielectric tube through which the jet issues into ambient air. A base fluid flow field is pre-computed using a Navier–Stokes model for the helium jet impinging on the dielectric target surface with a two-species description for laminar diffusional mixing of the helium and ambient air streams. A self-consistent, multiple species, two-temperature model is used to describe the non-equilibrium plasma discharge dynamics in the presence of the base jet flow field. A single nanosecond pulse discharge event starting from initial breakdown in the dielectric tube, to propagation into the open gap, and finally the interaction with the dielectric surface is simulated. Initially, the plasma forms within the dielectric tube and propagates along the tube surface as a surface discharge driven by large induced electric fields produced by trapped charge on the dielectric surface. When the discharge reaches the end of the dielectric tube, the discharge transitions to a constricted fast ionization wave that propagates along the helium–air interface. The fast ionization wave eventually reaches the dielectric target surface where charged species are deposited as the discharge propagates parallel to the wall as a surface driven discharge. The surface driven discharge ceases to propagate once the quantity of air to helium is sufficient enough to quench the hot electrons and prevent further ionization. Due to the low speed of the flow discharge and the short life times of the radical species such as O, most of the radical species delivered to the surface are a result of the surface discharge that forms after the plasma bullet impinges against the surface. It is found that factors such as the thickness of the target dielectric and the profile of the stagnation helium–air jet significantly impact the net quantity of reactive particles delivered to the surface.

Breden, Douglas; Raja, Laxminarayan L.

2014-12-01

169

Time and space variability of spectral estimates of atmospheric pressure  

NASA Technical Reports Server (NTRS)

The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

Canavero, Flavio G.; Einaudi, Franco

1987-01-01

170

Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology  

NASA Technical Reports Server (NTRS)

An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

Button, Amy B.; Sweterlitsch, Jeffrey J.

2013-01-01

171

Separation of VUV\\/UV photons and reactive particles in the effluent of a He\\/O2 atmospheric pressure plasma jet  

Microsoft Academic Search

Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult.

S. Schneider; J.-W. Lackmann; F. Narberhaus; J. E. Bandow; B. Denis; J. Benedikt

2011-01-01

172

Beam heat load and pressure rise in a cold vacuum chamber  

NASA Astrophysics Data System (ADS)

The beam heat load and the pressure in the vacuum chamber of the cold bore superconducting undulator installed at ANKA (ANgstrom source KArlsruhe) have been monitored for almost two years. Possible sources of the observed heat load could be synchrotron radiation from upstream magnets, image currents, electron and ion bombardment. In this paper, the various possible contributions to the heat load are discussed and compared with experimental results. The dynamic pressure increases nonlinearly with the average beam current. The current where it assumes a maximum varies both with the bunch intensity and with the initial vacuum pressure. A correlation between the heat load and the dynamic pressure has been observed. This study suggests that electron bombardment could explain the beam heat load and pressure rise observed for a bunch length of 10 mm.

Casalbuoni, S.; Grau, A.; Hagelstein, M.; Rossmanith, R.; Zimmermann, F.; Kostka, B.; Mashkina, E.; Steffens, E.; Bernhard, A.; Wollmann, D.; Baumbach, T.

2007-09-01

173

Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization  

NASA Astrophysics Data System (ADS)

We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

1998-11-01

174

Oral L-Citrulline Supplementation Attenuates Blood Pressure Response to Cold Pressor Test in Young Men  

Microsoft Academic Search

BackgroundOral L-citrulline is efficiently converted to L-arginine, which has been shown to decrease brachial blood pressure (BP) at rest and during the cold pressor test (CPT). However, aortic BP may better reflect cardiovascular risk than brachial BP. The purpose of this study was to test the hypothesis that oral L-citrulline supplementation attenuates brachial BP and aortic hemodynamic responses to CPT.MethodsBrachial

Arturo Figueroa; Julian A. Trivino; Marcos A. Sanchez-Gonzalez; Florence Vicil

2010-01-01

175

Influence of Atmospheric Pressure Torch Plasma Irradiation on Plant Growth  

NASA Astrophysics Data System (ADS)

Growth stimulation characteristics of plants seeds are investigated by an atmospheric discharge irradiation into plasma seeds. Atmospheric pressure plasma torch is consisted of alumina ceramics tube and the steel mesh electrodes wind inside and outside of the tube. When AC high voltage (8 kHz) is applied to the electrode gap, the barrier discharge plasma is produced inside the alumina ceramics tube. The barrier discharge plasma is blown outside with the gas flow in ceramics tube. Radish sprouts seeds locate at 1 cm from the torch edge. The growth stimulation was observed in the length of a stem and a root after the plasma irradiation. The stem length increases approximately 2.8 times at the cultivation time of 24 h. And the growth stimulation effect is found to be maintained for 40 h, after sowing seeds. The mechanism of the growth stimulation would be the redox reaction inside plant cells induced by oxygen radicals.

Akiyoshi, Yusuke; Hayashi, Nobuya; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

2011-11-01

176

Development of an Atmospheric Pressure Ionization Mass Spectrometer  

NASA Technical Reports Server (NTRS)

A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

1998-01-01

177

How do anions grow in the cold upper atmosphere of Titan? Insights from the laboratory  

NASA Astrophysics Data System (ADS)

The Cassini-Huygens probe has revealed the existence of a profusion of negatively charged molecular species in the cold upper atmosphere of Titan (˜950 km). The presence of large amounts of negative ions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan's upper atmosphere. According to a recent study, the formation of aerosols in Titan's upper atmosphere could also be directly related to ion processes [1]. Here, we present the first low temperature experimental kinetic studies involving CN-and C3N-. These negative ions were proposed by Vuitton et al. [2] to be responsible for the low mass peaks emerging from the mass spectrum measured by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the CN-+ HC3N reaction was explored over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. Cyanoacetylene, HC3N, represents one of the most abundant nitrogen containing constituents of the atmosphere of Titan, with a strong acidity that could promote the charge transfer. Our measurements show that the kinetics of this reaction is fast (k˜5×10-9cm3 molec-1 s-1) and presents a slightly negative temperature dependence well reproduced by long-range based capture theory. C3N-+ HCN represents the dominant exit channel demonstrating that this reaction could participate efficiently to the growth of negative ions in the atmosphere of Titan. In order to understand how the ions grow further, the study has been then extended to C3N-+ HC3N using an isotopically labeled nitrogen 15N precursor for the negative ion. Preliminary results have allowed to identify proton exchange as the major channel. The temperature dependence of the reaction will be examined. Our research illustrates that the accurate determi- nation of reaction rate coefficients over relevant cold temperatures and of the branching into different exit channels is essential to get a clear picture of the macroscopic evolution of Titan's atmosphere.

Biennier, L.; Carles, S.; Codier, S.; Guillemin, J.-C.; Bourgalais, J.; Le Picard, S.; Faure, A.

2013-09-01

178

Seasonal Variations in Global Sea Level Pressure and the Total Mass of the Atmosphere  

Microsoft Academic Search

The annual cycles of sea level and surface pressures and the atmospheric pressure owing to water va- por have been analyzed in detail. Global sea level pressures undergo an annual cycle of 0.5 mbar range with a maximum in the northern winter. Global surface pressures, which represent the total mass of the atmosphere, also undergo an annual cycle of 0.5

Kevin E. Trenberth

1981-01-01

179

Experimental Investigation Of Atmospheric Pressure Surface Wave Discharges  

SciTech Connect

Microwave atmospheric pressure discharge in neon sustained by surface waves in a dielectric tube is considered. The plasma column length was measured versus absorbed microwave power for different discharge conditions. This gives a view on the wave propagation characteristics. The predicted dependence of discharge length on the total flux of wave power based on the modified model of non-equilibrium plasma is compared with experimental values. Moreover, we present results of spectroscopic investigations of the electron density. The electron density was determined using the method based on the Stark broadening of H{beta} spectral line. The spectroscopic results we shall use developing of a model of propagation of surface wave.

Czylkowski, D.; Jasinski, M.; Nowakowska, H.; Zakrzewski, Z. [The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk (Poland)

2006-01-15

180

Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure  

NASA Astrophysics Data System (ADS)

Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point becomes more equatorial (lessening the midnight sun effect) and the planet continues to recede toward aphelion. This work was supported in part by the NASA New Horizons mission to Pluto under SwRI Subcontract 299433Q.

Earle, Alissa M.; Binzel, Richard P.

2014-11-01

181

Driven Motion and Instability of an Atmospheric Pressure Arc  

SciTech Connect

Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

Max Karasik

1999-12-01

182

Electrode erosion in arc discharges at atmospheric pressure  

NASA Technical Reports Server (NTRS)

An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

Hardy, T. L.

1985-01-01

183

A lidar system for measuring atmospheric pressure and temperature profiles  

NASA Technical Reports Server (NTRS)

The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

1987-01-01

184

Heat transport of nitrogen in helium atmospheric pressure microplasma  

E-print Network

Stable DC atmospheric pressure normal glow discharges in ambient air were produced between the water surface and the metallic capillary coupled with influx of helium gas. Multiple independent repeated trials indicated that vibrational temperature of nitrogen rises from 3200 to 4622 K, and rotational temperature of nitrogen decreases from 1270 to 570 K as gas flux increasing from 20 to 80 sccm and discharge current decreasing from 11 to 3 mA. Furthermore, it was found that the vibrational degree of the nitrogen molecule has priority to gain energy than the rotational degree of nitrogen molecule in nonequilibrium helium microplasma.

Xu, Shaofeng

2013-01-01

185

Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen  

NASA Astrophysics Data System (ADS)

Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 ?m thick molybdenum electrodes separated by a 200 ?m thick alumina layer, is 150 to 450 ?m in diameter in the cathode and has an opening of 100 to 300 ?m in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

2010-12-01

186

Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators among Cardiovascular and Cerebrovascular Patients  

PubMed Central

The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27–28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients’ heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury. PMID:24583830

Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

2014-01-01

187

Characterization of a steam plasma jet at atmospheric pressure  

NASA Astrophysics Data System (ADS)

An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H? Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

Ni, Guohua; Zhao, Peng; Cheng, Cheng; Song, Ye; Toyoda, Hirotaka; Meng, Yuedong

2012-02-01

188

Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces  

SciTech Connect

The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

Robert F. Hicks; Hans W. Herrmann

2003-12-15

189

Atmospheric-pressure plasma decontamination/sterilization chamber  

DOEpatents

An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

Herrmann, Hans W. (Los Alamos, NM); Selwyn, Gary S. (Los Alamos, NM)

2001-01-01

190

A Water-Explicit Lattice Model of Heat-, Cold-, and Pressure-Induced Protein Unfolding  

PubMed Central

We investigate the effect of temperature and pressure on polypeptide conformational stability using a two-dimensional square lattice model in which water is represented explicitly. The model captures many aspects of water thermodynamics, including the existence of density anomalies, and we consider here the simplest representation of a protein: a hydrophobic homopolymer. We show that an explicit treatment of hydrophobic hydration is sufficient to produce cold, pressure, and thermal denaturation. We investigate the effects of the enthalpic and entropic components of the water-protein interactions on the overall folding phase diagram, and show that even a schematic model such as the one we consider yields reasonable values for the temperature and pressure ranges within which highly compact homopolymer configurations are thermodynamically stable. PMID:17766342

Patel, Bryan A.; Debenedetti, Pablo G.; Stillinger, Frank H.; Rossky, Peter J.

2007-01-01

191

Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges  

SciTech Connect

In this paper, we present results of the spectroscopic measurements of the electron density in a microwave surface wave sustained discharges in Ar and Ne at atmospheric pressure. The discharge in the form of a plasma column was generated inside a quartz tube cooled with a dielectric liquid. The microwave power delivered to the discharge via rectangular waveguide was applied in the range of 200-1500 W. In all investigations presented in this paper, the gas flow rate was relatively low (0.5 l/min), so the plasma column was generated in the form of a single filament, and the lengths of the upstream and downstream plasma columns were almost the same. The electron density in the plasma columns was determined using the method based on the Stark broadening of H{sub {beta}} spectral line, including plasma region inside the waveguide which was not investigated earlier.

Jasinski, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Morska 83, 81-225 Gdynia (Poland)

2008-03-19

192

Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma  

NASA Astrophysics Data System (ADS)

In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

Setareh, Salarieh; Davoud, Dorranian

2013-11-01

193

Development of ac corona discharge modes at atmospheric pressure  

SciTech Connect

Corona discharges in gases exist under several distinctive forms. In this paper, a survey study has been made of ac corona discharge modes generated in some different gases fed in a wire-duct reactor with a constant rate of flowing at atmospheric pressure. The properties of different corona modes are analyzed under some condition transitions from Trichel pulses to a steady glow. In the course of the presented experimental work, numerous apparent contradictions with earlier observations necessitated further study and are given to provide more information on the physical mechanisms of the ac corona discharges. Furthermore, we have gained insight into some new technologies and applications of the environmentally friendly corona and plasma discharges.

El-Koramy, Reda Ahmed; Yehia, Ashraf; Omer, Mohamed [Department of Physics, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

2011-02-15

194

Radio jet refraction in galactic atmospheres with static pressure gradients  

NASA Technical Reports Server (NTRS)

A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

1981-01-01

195

Phenomena of oscillations in atmospheric pressure direct current glow discharges  

SciTech Connect

Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

Liu, Fu-cheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)] [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wen; Wang, De-zhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2013-12-15

196

Atmospheric pressure vapour phase decomposition: a proof of principle.  

PubMed

In the present work we demonstrated that the digestion of difficult matrices (high boiling petrochemical fractions and distillation bottoms) can be achieved by oxidation with nitric acid vapours at atmospheric pressure employing simple laboratory glassware. The application of this procedure as a digestion method prior to Total Reflection X-Ray Fluorescence (TXRF) is presented, although the employment of other detection techniques may be foreseen. The method ensured a fast, less than half an hour, treatment time and detection limits in the range 20-100 ?g/kg for As, Bi, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Zn, whereas higher values were obtained for Ba, Ca, K, P, Rh, Ti and V (0.3-3 mg/kg). The potentialities and limitations of this procedure were discussed: the application to a broad range of matrices may be foreseen. PMID:23158304

Cinosi, Amedeo; Andriollo, Nunzio; Tibaldi, Francesca; Monticelli, Damiano

2012-11-15

197

Generation of reactive species by an atmospheric pressure plasma jet  

NASA Astrophysics Data System (ADS)

The role of gas mixing in reactive species delivery to treatment surfaces for an atmospheric pressure capacitively coupled plasma helium jet is investigated by numerical modelling. Atomic oxygen in the jet effluent is shown to quickly convert to ozone for increasing device to surface separation due to the molecular oxygen present in the gas mixture. Surface profiles of reactive oxygen species show narrow peaks for atomic oxygen and broader surface distributions for ozone and metastable species. Production efficiency of atomic oxygen to the helium plasma jet by molecular oxygen admixture is shown to be dependent on electro-negativity. Excessive molecular oxygen admixture results in negative ion dominance over electrons which eventually quenches the plasma. Interaction of the plasma jet with an aqueous surface showed hydrogen peroxide as the dominant species at this interface. Gas heating by the plasma is found to be dominated by elastic electron collisions and positive ion heating. Comparison with experimental measurements for atomic oxygen shows good agreement.

Kelly, S.; Turner, M. M.

2014-12-01

198

Determination of hexabromocyclododecane by flowing atmospheric pressure afterglow mass spectrometry.  

PubMed

The first application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the chemical characterization and determination of hexabromocyclododecane (HBCD) is presented. The samples of technical HBCD and expanded polystyrene foam (EPS) containing HBCD as a flame retardant were prepared by dissolving the appropriate solids in dichloromethane. The ionization of HBCD was achieved with a prototype FAPA source. The ions were detected in the negative-ion mode. The ions corresponding to a deprotonated HBCD species (m/z 640.7) as well as chlorine (m/z 676.8), nitrite (m/z 687.8) and nitric (m/z 703.8) adducts were observed in the spectra. The observed isotope pattern is characteristic for a compound containing six bromine atoms. This technique is an effective approach to detect HBCD, which is efficiently ionized in a liquid phase, resulting in high detection efficiency and sensitivity. PMID:25059130

Smoluch, Marek; Silberring, Jerzy; Reszke, Edward; Kuc, Joanna; Grochowalski, Adam

2014-10-01

199

Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench  

PubMed Central

The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.2 MPa. Samples without methane amendment stored at in situ pressure retained higher levels of sulfate reducing activity than samples stored at 0.1 MPa. Piezophilic SR showed distinct substrate specificity after hydrogen and acetate addition. SR activity in samples stored under methanic conditions was one order of magnitude higher than in non-amended samples. Methanic samples stored under low hydrostatic pressure exhibited no increased SR activity at high pressure even with the amendment of methane. These new insights into the effects of pressure on substrate specific sulfate reducing activity in anaerobic environmental samples indicate that hydrostatic pressure must be considered to be a relevant parameter in ecological studies of anaerobic deep-sea microbial processes and long-term storage of environmental samples. PMID:22822404

Vossmeyer, Antje; Deusner, Christian; Kato, Chiaki; Inagaki, Fumio; Ferdelman, Timothy G.

2012-01-01

200

Cold Atmospheric Plasma for Clinical Purposes: Promising Results in Patients and Future Applications  

NASA Astrophysics Data System (ADS)

Infected chronic wounds are both socioeconomic and medical problem. Cold atmospheric plasma (CAP) has already proven its efficacy in killing bacteria on agar plates but also the first prospective randomized controlled trial in patients. As an add-on therapy CAPs proved a highly significant decrease in bacterial load in 5 min plasma-treated wounds (34%, p < 10-6, n = 291, 36 patients) in comparison with wounds that received only standard wound care. This reduction is found in all kinds of germs, even multiresistant ones. Two minutes of plasma treatment led to a significant reduction in bacterial load as well (40%, p < 0.016, n = 70, 14 patients). The treatment is very well tolerated and no side effects occurred until now (in total more than 2,000 treatments in over 220 patients). The results of this study revealed the potential of atmospheric argon plasma treatment as a new approach to kill bacteria in terms of mutiresistancy. With the same CAP device other dermatologic diseases were treated successfully, e.g. Hailey-Hailey disease. New plasma devices using surrounding ambient air have not only greater bactericidal but also virucidal properties. These devices may herald a new era in public, personal, pet, and food hygiene, same as in decontamination. Investigations of human compatibility are promising.

Isbary, Georg

201

The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications  

NASA Astrophysics Data System (ADS)

A cold atmospheric pressure plasma source, called hairline plasma, for biological and medical applications has been developed. Using the physical effect of the negative dc corona discharge, a nanosecond pulsed microplasma has been created. The device produces a very thin (d˜30 ?m) plasma filament with a length of up to 1.5 cm. Due to this geometrical parameters this plasma is particularly suitable for the treatment of microscopic cavities. The low plasma temperature allows to treat the human skin without any heating or painful irritation.

Bussiahn, R.; Brandenburg, R.; Gerling, T.; Kindel, E.; Lange, H.; Lembke, N.; Weltmann, K.-D.; von Woedtke, Th.; Kocher, T.

2010-04-01

202

The Effect of Cold Climate upon North Atlantic Deep Water Formation in a Simple Ocean-Atmosphere Model  

Microsoft Academic Search

The sensitivity of North Atlantic Deep Water formation to variations in mean surface temperature is explored with a meridional-vertical plane ocean model coupled to an energy balance atmosphere. It is found that North Atlantic Deep Water formation is favored by a warm climate, while cold climates are more likely to produce Southern Ocean deep water or deep-decoupling oscillations (when the

Michael Winton

1997-01-01

203

Static Water Contact Angle Analysis of Cyclonic Atmospheric Pressure Plasma-Activated Polycarbonate  

NASA Astrophysics Data System (ADS)

Polycarbonate (PC) films were activated using cyclonic atmospheric pressure plasma. The experimentally measured gas phase temperature was from 30 to 95 °C, demonstrating that this cyclonic atmospheric pressure plasma can treat heat-sensitive polymeric materials at the low temperatures. The surface hydrophilicity changes of cyclonic atmospheric pressure plasma-treated PC films were determined by water contact angle analysis. The activation effects of plasma operational parameters including treatment time, plasma power, and distance of nozzle to substrate on the PC surface features were investigated. The glow feature and luminous plasma species in the cyclonic atmospheric pressure plasma were identified by optical emission spectroscopy (OES). Cyclonic atmospheric pressure plasma-activated PC films showed a significant decrease in water contact angle. In this investigation, we developed an innovative technique for chamberless polymeric surface activation by this atmospheric pressure plasma processing.

Huang, Chun; Wu, Shin-Yi; Liu, Yu-Chia; Chang, Ya-Chi; Tsai, Ching-Yuan

2011-01-01

204

Ab initio Calculation of Cold Curves for FCC, BCC and HCP Nickel to Ultrahigh Pressures  

NASA Astrophysics Data System (ADS)

The paper presents cold curves for a magnetic fcc and three nonmagnetic (fcc, bcc and hcp) structures of Ni up to ˜ 800 Mbar, obtained from ab initio calculations done with the full-potential scalar-relativistic method of electronic structure calculation FPLMTO with gradient corrections to the exchange-correlation functional. Our calculations confirm the results that were earlier obtained and suggest that nickel dielectrizes at very high pressures. A gap in the energy spectrum of electrons is formed for all the above Ni structures that is also in agreement with the results presented earlier. Our research suggests that fcc Ni dielectrizes in the pressure interval 300-720 Mbar, and other Ni structures dielectrize in roughly the same interval.

Sin'ko, G. V.; Smirnov, N. A.

2006-08-01

205

Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro  

PubMed Central

In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue. PMID:22558091

Maisch, Tim; Shimizu, Tetsuji; Li, Yang-Fang; Heinlin, Julia; Karrer, Sigrid; Morfill, Gregor; Zimmermann, Julia L.

2012-01-01

206

The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.  

PubMed

A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M?+?77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI. PMID:25248413

Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

2014-11-01

207

Surface Modification by Atmospheric Pressure Plasma for Improved Bonding  

NASA Astrophysics Data System (ADS)

An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the silicon wafers in the presence of activated carbon or in a freezer at -22°C. The enhancement of adhesive bond strength and durability for carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal surface and an increase in the concentration of hydroxyl groups in the oxide film. Following plasma activation, the total hydroxyl species concentration on stainless steel increased from 31% to 57%, while aluminum exhibited an increase from 4% to 16% hydroxyl species. Plasma activation of the surface led to an increase in bond strength of the different surfaces by up to 150% when using Cytec FM300 and FM300-2 epoxy adhesives. Wedge crack extension tests following plasma activation revealed cohesive failure percentages of 97% for carbon-fiber/epoxy composite bonded to stainless steel, and 96% for aluminum bonded to itself. The bond strength and durability of the substrates correlated with changes in the specific surface chemistry, not the wetting angle or the morphological properties of the material. This suggests that enhanced chemical bonding at the interface was responsible for the improvement in mechanical properties following plasma activation. The surface preparation of polymers and composites using atmospheric pressure plasmas is a promising technique for replacing traditional methods of surface preparation by sanding, grit blasting or peel ply. After oxygen plasma activation and joining the materials together with epoxy, one observes 100% cohesive failure within the c

Williams, Thomas Scott

208

How a dusty cold pool can change the diurnal evolution of the Saharan Atmospheric Boundary Layer  

NASA Astrophysics Data System (ADS)

The Saharan Atmospheric Boundary Layer (SABL) structure, dynamics, thermodynamics and composition over the Central Sahara, associated with several concomittant dust lifting processes observed/modelled on 21 June 2011, in the framework of the FENNEC 2011 Special Observing period, are analysed. The aerosol optical depth on that day was in excess of 3. On the morning of June 21, dust lifting occurred at the passing of the African Easterly Waves over Mauritania with dust being raised by cold-pools issued from convective systems having developped the previous day. Behind this wave, the harmattan flow was channeled between the Hoggar and the Atlas and also generated dust. The dust production was amplified when this flow experienced further constriction between dusty density currents flowing down the Atlas slopes and an intense monsoon pulse from the west of the Hoggar also generating much dust. Two aircraft (the SAFIRE Falcon and the FAAM BAe 146)operated over Mauritania and Mali on that day enabled to document the complex interactions between the monsoon flow, the intertropical front, the density currents from the Atlas, in the SABL. AROME operational simulations werealso used to analyse how the different air masses have interacted to form the observed complex multi-layer dust structure in the SABL. Afternoon Falcon 20 and BAe 146 flights sampled the growth of the SABL. A clear influence of the cold pool and the dusty layers above can be observed on the developpement of the boundary layer. Finally, two AROME simulations (one with and one without prognostic dust) were used to investigate the influence of the complex dust layers on the dynamics/thermodynamics of the developping convective boundary layer over the Central Sahara.

Kocha, C.; Flamant, C.; Marnas, F.; Chaboureau, J. P.; Parker, D.; Marsham, J.; Knippertz, P.; Garcia-Carreras, L.

2012-04-01

209

The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs  

NASA Technical Reports Server (NTRS)

The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

1993-01-01

210

Heat stress attenuates the increase in arterial blood pressure during the cold pressor test  

PubMed Central

The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ?0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: ?14.0 ± 2.6; heat stress: ?19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: ?25.6 ± 2.3, heat stress: ?13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus. PMID:20798269

Cui, Jian; Shibasaki, Manabu; Low, David A.; Keller, David M.; Davis, Scott L.

2010-01-01

211

A simplified system of pressure surfaces for atmospheric analysis  

E-print Network

in Certain Pressure Layers APPENDIX A. Pressure Surfaces, Set 1 B. Pressure Surfacesp Set 2 C. Pressure Surfaces, Set 3 D. Pressure Surfaces, Set 4 E. Pressure Surfaces, Set 5 F. Pressure Surfaces, Set 6 G. Pressure Surfaces, Set 7 H. Pressure... Surfaces, Set 8 I. Thickness Table 1 J. Thickness Table 2 K. Thickneas Table 3 L. Thickness Table 4 M. Thickness Table 5 N. Thickness Table 6 0. Thickness Table 7 P. Thickness Table 8 35 36 37 38 39 40 41 42 43 44 45 46 48 49 50...

Shay, Francis Schofield

2012-06-07

212

High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties  

NASA Astrophysics Data System (ADS)

Cold spraying enables high quality Cu coatings to be deposited for applications where high electrical and/or thermal conductivity is needed. Fully dense Cu coatings can provide an effective corrosion barrier in specific environments. The structure of cold-sprayed Cu coatings is characterized by high deformation which imparts excellent properties. Coating properties depend on powder, the cold spray process and post treatments. First of all, powder characteristics have a strong influence on the formation of pure coatings. Secondly, cold spraying provides dense, adherent, and conductive coatings by using HPCS and LPCS. Furthermore, an addition of Al2O3 particles to the Cu powder in LPCS process significantly improves coating properties. Also, heat treatments improve electrical conductivity. This study summarizes optimal characteristics of Cu powder optimized for cold spraying, achieving high coating quality and compares properties of HPCS Cu, LPCS Cu and Cu+Al2O3 coatings prepared from the same batch of OFHC Cu powder.

Koivuluoto, Heli; Coleman, Andrew; Murray, Keith; Kearns, Martin; Vuoristo, Petri

2012-09-01

213

Ion chemistry in gaseous discharges at atmospheric pressure  

NASA Astrophysics Data System (ADS)

The role of ions in plasma chemistry is briefly reviewed on the basis of recent literature reports. In addition, different chemical processes induced by gaseous discharges at atmospheric pressure are discussed here, with particular emphasis on the elucidation of some aspects of the ion chemistry occurring in benzene/air dielectric barrier and corona discharges. Through a multi-technique approach relying on gas chromatographic, mass spectrometric, spectroscopic and computational analyses, we have been able to reveal subtle mechanistic aspects involved in the ionic processes leading to the synthesis of covalent adducts. In particular, we report here the experimental conditions and the thermochemical reasons whereby we can access the synthesis (i) of benzenediazonium ion {\\rmC}_6H_{5}N_2^+ from the reaction of phenylium ion C_6H_5^+ with N2, (ii) of protonated biphenyl ions C_12H_{11}^+ from electrophilic aromatic attack of phenylium ion on C6H6, (iii) of phenol radical cations C6H5OH+. via O radical addition on the benzene ring followed by ionization of the neutral product and finally (iv) of biphenyl-oxonium ions C12H11O+ and hydroxylbiphenyl-oxonium ions C_12H_{11}O_2^+ as end-products of the electrophilic attack of phenol ions on benzene and phenol, respectively. Finally, intriguing chemical paths involved in the corona discharge ionization of acetonitrile are also discussed.

Tosi, Paolo; Ascenzi, Daniela; Franceschi, Pietro; Guella, Graziano

2009-08-01

214

Filamentation in argon microwave plasma at atmospheric pressure  

SciTech Connect

Filamentation in an argon plasma is studied using a microwave cavity at atmospheric pressure. We show that the size and gas temperature of the filaments increase with the power absorbed by the plasma. The appearance of an additional filament occurs at specific values of the absorbed power. Each new filament appears with a smaller diameter than that of its parent filament but the sum of the diameters of all filaments evolves linearly with the absorbed power. A secondary filament emerges from a set of microfilaments created by a perturbation of the electric field (a slight increase in the incident power above a threshold value). This perturbation occurs over a larger radius than that of the parent filament. By resorting to modeling, we found that the filamentation process involves either a decrease in the effective frequency for momentum-transfer collisions, i.e., a lower electron temperature, or an increase in the electron density. We could show that a small change in the relative positions occupied by two filaments in the microwave cavity requires a strong variation in the electron temperature.

Cardoso, R. P.; Belmonte, T.; Noeel, C.; Kosior, F.; Henrion, G. [Departement CP2S, CNRS, Institut Jean Lamour, Nancy-Universite, UPV-Metz, Parc de Saurupt, CS 14234, 54042 Nancy Cedex (France)

2009-05-01

215

Atmospheric Pressure Plasma Jet for Chem/Bio Warfare Decontamination  

NASA Astrophysics Data System (ADS)

Atmospheric Pressure Plasma Jet (APPJ) technology may provide a much needed method of CBW decontamination which, unlike traditional decon methods, is dry and nondestructive to sensitive equipment and materials. The APPJ discharge uses a high-flow feedgas consisting primarily of an inert carrier gas, such as He, and a small amount of a reactive additive, such as O2, which flows between capacitively-coupled electrodes powered at 13.56 MHz. The plasma generates highly reactive metastable and atomic species of oxygen which are then directed onto a contaminated surface. The reactive effluent of the APPJ has been shown to effectively neutralize VX nerve agent as well as simulants for anthrax and mustard blister agent. Research efforts are now being directed towards reducing He consumption and increasing the allowable stand-off distance. Recent results demonstrate that by replacing the O2 reactive additive with CO2, ozone formation is greatly reduced. This has the result of extending the lifetime of atomic oxygen by an order of magnitude or more. A recirculating APP Decon Chamber which combines heat, vacuum, forced convection and reactivity is currently being developed for enhanced decontamination of sensitive equipment. Several techniques are also being evaluated for use in an APP Decon Jet for decontamination of items which cannot be placed inside a chamber.

Herrmann, Hans W.; Henins, Ivars; Park, Jaeyoung; Selwyn, Gary S.

1999-11-01

216

Power modulation in an atmospheric pressure plasma jet  

NASA Astrophysics Data System (ADS)

Power modulation in an atmospheric pressure capacitively coupled radio frequency plasma jet is investigated by numerical modelling. The dynamics of successively pulsing the applied power on and off for a helium-oxygen (˜0.6%) plasma is investigated. The impact of power pulsing on reactive species generation and gas heating is discussed with control opportunities emphasized. Power modulation shows linear control for reactive species and heat flux delivery to a treatment surface above an initial phase of power growth. Power is found to be coupled primarily to the electrons with electron loss rates determining the interference between successive power modulation phases. Plasma decay in the power off phase is characterized by a large initial electron loss in the first 0.5 µs followed by ambipolar decay dominated by ions of opposite charge. Power modulation effects on gas heating show a larger range of temperature control when compared with convection cooling. Reactive oxygen species reaching a treatment surface are shown to typically vary over an order of magnitude for variation in the duty cycle.

Kelly, S.; Turner, M. M.

2014-12-01

217

Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest  

PubMed Central

Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jurgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

2012-01-01

218

Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet  

NASA Astrophysics Data System (ADS)

Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

2009-11-01

219

Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma.  

PubMed

The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72 h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases. PMID:23574038

Idlibi, Ahmad Nour; Al-Marrawi, Fuad; Hannig, Matthias; Lehmann, Antje; Rueppell, Andre; Schindler, Axel; Jentsch, Holger; Rupf, Stefan

2013-01-01

220

Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.  

PubMed

Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

2012-08-01

221

Generation of DC-Driven Non-Thermal Plasma in Atmospheric Pressure Air  

Microsoft Academic Search

The main advantage of atmospheric pressure plasma processing is that it requires much lower investment costs, because no vacuum devices are needed, in the case of ambient air, not even a housing. From these points of view, a dc-driven atmospheric pressure air plasma generator, which is pen-type, has been developed in this paper. The main experimental results are as follows.

J. Choi; T. Namihira; S. Katsuki; H. Akiyama

222

Inactivation of Salmonella Enteritidis PT 30 on Almonds with a Fluidized Bed Atmospheric Pressure Plasma  

E-print Network

Inactivation of Salmonella Enteritidis PT 30 on Almonds with a Fluidized Bed Atmospheric Pressure investigated the use of a fluidized bed atmospheric pressure plasma (APP) as a possible pasteurization method of inoculum. Almonds were placed in a fluidized bed APP treatment chamber fixed to an Enercon Dyne

Heller, Barbara

223

Measurement of sound pressure via temperature fluctuations by a cold-wire microprobe at high temperatures  

NASA Astrophysics Data System (ADS)

A miniature microphone, suitable for measuring periodical pressure variations in gases at frequencies between 0.1 and 6000 Hz and temperatures up to 1200 K, has been developed in order to characterize the frequency response of gas sensors. The temperature variations in the gas due to the heat of compression are measured by a platinum cold-wire probe, from which the pressure variations are calculated. An optimized probe design makes it possible to calculate the transfer function of the microphone by a consideration of thermal boundary layers of the wire holders and surrounding walls. Both a simple approximative formula for the present setup and a more generalized finite-element calculation are presented. Thus, absolute measurements of sinusoidal pressure variations in phase and amplitude with max. 0.2 Pa resolution are possible. Comparison with a fast chemical gas sensor and internal heating measurements demonstrate the proper operation of this device. Possible disturbing effects and operation limits are discussed with respect to modified design or operating conditions in other applications for frequency response studies in physical chemistry.

Dubbe, Andreas; Göpel, Wolfgang

1993-11-01

224

Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines  

NASA Technical Reports Server (NTRS)

A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

1994-01-01

225

Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations  

NASA Astrophysics Data System (ADS)

The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.

1993-02-01

226

Common 0.1 bar Tropopause in Thick Atmospheres Set by Pressure-Dependent Infrared Transparency  

E-print Network

A minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0.1 bar in the atmospheres of Earth, Titan, Jupiter, Saturn, Uranus and Neptune, despite great differences in atmospheric composition, gravity, internal heat and sunlight. In all these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of shortwave solar radiation, from a region below characterised by convection, weather, and clouds. However, it is not obvious why the tropopause occurs at the specific pressure near 0.1 bar. Here we use a physically-based model to demonstrate that, at atmospheric pressures lower than 0.1 bar, transparency to thermal radiation allows shortwave heating to dominate, creating a stratosphere. At higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. A common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets t...

Robinson, Tyler D

2014-01-01

227

A Double Resonance Approach to Submillimeter\\/Terahertz Remote Sensing at Atmospheric Pressure  

Microsoft Academic Search

The remote sensing of gases in complex mixtures at atmospheric pressure is a\\u000achallenging problem and much attention has been paid to it. The most\\u000afundamental difference between this application and highly successful\\u000aastrophysical and upper atmospheric remote sensing is the line width associated\\u000awith atmospheric pressure broadening, ~ 5 GHz in all spectral regions. In this\\u000apaper, we discuss

Frank C. De Lucia; Douglas T. Petkie; Henry O. Everitt

2009-01-01

228

The impact of upstream blocking, drainage flow and the geostrophic pressure gradient on the persistence of cold-air pools  

NASA Astrophysics Data System (ADS)

Idealized numerical simulations are performed to investigate dynamical mechanisms affecting the persistence of cold-air pools in basins and valleys. The first orography type considered is a shallow elongated basin located upstream of a mountain ridge. For sensitivity tests, the mountain ridge is removed. The second type is a basin embedded in a plateau-like mountain ridge. In part of the simulations, this basin has an outflow towards the lee-side plain so as to assess the impact of the drainage flow.The large-scale flow is taken to be in geostrophic balance. In the standard setting, it is perpendicular to the basin and the ridge. The main effect of a large-scale pressure gradient is to induce a circulation within a cold-air pool until the upper boundary of the cold pool is inclined such as to compensate for the ambient pressure gradient. The cold air accumulates where the ambient pressure is lowest. For a shallow basin, this means that part of the cold air may be lost due to advection out of the basin. The upstream influence of a mountain ridge in the lee of a shallow basin is found to be twofold. It tends to deflect the low-level flow towards the lower pressure, leading to an additional ridge-parallel force on the cold-air pool. On the other hand, the absolute wind speed is reduced, diminishing the turbulent mixing near the top of the cold pool. The simulations show that the first effect prevails for ridge-normal flow while second effect may dominate for other flow directions. Drainage flow out of a valley is found to be very important as it promotes the penetration of warm air into valleys very effectively. It may cause a cold pool in a deep valley to disappear more quickly than a cold pool in a shallow basin. Sensitivity tests show that the persistence of a cold pool depends on its depth, on its vertically integrated heat deficit, and on the maximum heat deficit at the bottom of the cold pool.

Zängl, G.

2003-01-01

229

Cold Reversal on Kodiak Island, Alaska, Correlated with the European Younger Dryas by Using Variations of Atmospheric C-14 Content  

NASA Technical Reports Server (NTRS)

High-resolution AMS (accelerator-mass-spectrometer) radiocarbon dating was performed on late-glacial macrofossils in lake sediments from Kodiak Island, Alaska, and on shells in marine sediments from southwest Sweden. In both records, a dramatic drop in radiocarbon ages equivalent to a rise in the atmospheric C-14 by approximately 70%. coincides with the beginning of the cold period at 11000 yr B.P. (C-14 age). Thus our results show that a close correlation between climatic records around the globe is possible by using a global signature of changes in atmospheric C-14 content.

Hajdas, Irka; Bonani, Georges; Boden, Per; Peteet, Dorothy M.; Mann, Daniel H.

1999-01-01

230

Ocean-atmosphere interaction and the tropical climatology. Part II. Why the Pacific cold tongue is in the east  

SciTech Connect

The influence of coupled processes on the climatology of the tropical Pacific is studied in a model for the interaction of equatorial SST, the associated component of the Walker circulation, and upper-ocean dynamics. In this part, the authors show how different physical mechanisms affect the spatial pattern of the Pacific warm pool and cold tongue in this coupled climatology. When model parameters give a suitable balance between effects of upwelling and thermocline depth on sea surface temperature and for suitable atmospheric parameters, a good prototype for the observed cold-tongue configuration is produced. This is largely determined by coupled ocean-atmosphere processes within the basin, Presence of an easterly wind stress component produced by factors external to the Pacific basin can be important in setting up a cooling tendency, but this is magnified and modified by a chain of nonlinear feedbacks between trade winds and ocean dynamics affecting the SST gradient within the basin. These feedbacks determine a preferred spatial pattern that does not strongly depend on the form of the external wind stress and that tends to place the cold tongue in the east-central basin. Although robust to external influences, this pattern is sensitive to the balance of coupled processes. Parameter changes can produce warm-pool-cold-tongue patterns significantly different from observed but resembling some noted in coupled GCMs. 27 refs., 17 refs.

Dijkstra, H.A. [Univ. of Utrecht (Netherlands)] [Univ. of Utrecht (Netherlands); Neelin, J.D. [Univ. of California, Los Angeles, CA (United States)] [Univ. of California, Los Angeles, CA (United States)

1995-05-01

231

Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies  

NASA Astrophysics Data System (ADS)

Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

Gans, Timo

2012-10-01

232

Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue  

NASA Astrophysics Data System (ADS)

The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50-400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O_{2aq}^{-} , ONOO_{aq}^{-} , NO_{3aq}^{-} and hydronium (H_{3} O_{aq}^{+} ) dominate the water ions with H_{3} O_{aq}^{+} determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer.

Tian, Wei; Kushner, Mark J.

2014-04-01

233

Dynamics and pattern formation during microwave breakdown at atmospheric pressure  

NASA Astrophysics Data System (ADS)

A self-organized array of plasma filaments moving towards the source has been recently observed in microwave breakdown experiments in the millimeter range at MIT (Y. Hidaka et al., Phys. Rev. Lett. 100, 035003 (2008)). These filaments are qualitatively different from the well-known filaments observed in laser breakdown, and develop transverse to the propagation direction, along the direction of the electric field polarization. A model coupling Maxwell's equations with a simple description of the plasma dynamics has been developed and has been shown to reproduce very well the experimental observations (J.P. Boeuf et al., Phys. Rev. Lett. 104, 015002 (2010)). The propagation of the plasma toward the source is due to an ionisation-diffusion mechanism and the self-organized filamentary structure is associated with the scattered field pattern. The filaments develop in the direction of the incident field due to field enhancement by polarization at their tip and form an array with a spatial period on the order of one quarter wave length. The physics and dynamics of the filamentary plasma array will be discussed in a first part, on the basis of comparisons between model and experimental results. In a second part other aspects of microwave breakdown at atmospheric pressure will be presented, such as the development of microwave streamers (that can absorb very efficiently the microwave energy under specific, resonant conditions), the formation of complex nets of plasma filaments during breakdown in an under-critical field (breakdown is initiated next to a metallic initiator and propagates, due to thermal instabilities, in a region where the microwave field is below the critical field). The context of applications of this study (plasma aided combustion and flow control, breakdown next to an antenna) will be presented briefly.

Boeuf, Jean-Pierre

2011-11-01

234

Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry  

NASA Technical Reports Server (NTRS)

The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

1986-01-01

235

Modeling the barotropic response of the Mediterranean sea level to atmospheric pressure forcing  

NASA Astrophysics Data System (ADS)

An important characteristic of the Earth's atmosphere with direct impact on the marine environmental and Earth's gravity field are the variations of atmospheric pressure as it often determines wind and weather patterns across the globe. Variations in atmospheric pressure and especially low atmospheric systems affect the values of radar altimeter sea level anomalies (SLA). This response of sea level is closed to the Inverse Barometer (IB) correction given by the altimeters within their geophysical data records. In this work, altimetric data sets from the satellite remote sensing mission of Jason-2, along with their total IB corrections acquired by the on-board altimeters, have been used for a period of forty days between October and November 2013. This period was characterized by extreme low-pressure fields over the Mediterranean Sea and especially in the area of the Ionian and Adriatic Seas and over the island of Rhodes, Greece. The Jason-2 along-track records of the SLA have been used to study both the sea level response to atmospheric pressure change over short time scales (such as ten days) and examine if the barometer correction (local and global) given by the altimeter is close to the expected response (-1 cm/mbar) of sea level to atmospheric pressure change. For the latter, atmospheric pressure data for the period under study were available from the Live Access Server (LAS) of NOAA, as well, provided at four times per day intervals in a grid format. From the LAS atmospheric pressure data, the IB effect was computed and compared with the one provided by the altimeter for its external evaluation. Finally, a regional multiple regression analysis between sea level anomalies, the LAS atmospheric pressure and wind speed components is carried out to model the barotropic response of the Mediterranean to atmospheric wind and pressure forcing.

Natsiopoulos, Dimitrios A.; Vergos, Georgios S.; Tziavos, Ilias N.

2014-05-01

236

The application of Cold Atmospheric Plasma (CAP) for the sterilisation of spacecraft materials  

NASA Astrophysics Data System (ADS)

Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. Ionization can be induced by different means, such as a strong electromagnetic field applied with a microwave generator. The concentration and composition of reactive atoms and molecules produced in Cold Atmospheric Plasma (CAP) depends on the gases used, the gas flow, the power applied, the humidity level etc.. In medicine, low-temperature plasma is already used for the sterilization of surgical instruments, implants and packaging materials as plasma works at the atomic level and is able to reach all surfaces, even the interior of small hollow items like needles. Its ability to sterilise is due to the generation of biologically active bactericidal agents, such as free radicals and UV radiation. In the project PLASMA-DECON (DLR/BMWi support code 50JR1005) a prototype of a device for sterilising spacecraft material and components was built based on the surface micro-discharge (SMD) plasma technology. The produced plasma species are directed into a closed chamber which contains the parts that need to be sterilised. To test the inactivation efficiency of this new device bacterial spores were used as model organisms because in the COSPAR Planetary Protection Policy all bioburden constraints are defined with respect to the number of spores (and other heat-tolerant aerobic microorganisms). Spores from different Bacillus species and strains, i.e. wildtype strains from culture collections and isolates from spacecraft assembly cleanrooms, were dried on three different spacecraft relevant materials and exposed to CAP. The specificity, linearity, precision, and effective range of the device was investigated. From the results obtained it can be concluded that the application of CAP proved to be a suitable method for bioburden reduction / sterilisation in the frame of planetary protection measures and the design of a larger plasma device is planned in the future.

Rettberg, Petra; Barczyk, Simon; Morfill, Gregor; Thomas, Hubertus; Satoshi Shimizu, .; Shimizu, Tetsuji; Klaempfl, Tobias

2012-07-01

237

Influence of processing gases on the properties of cold atmospheric plasma SiOxCy coatings  

NASA Astrophysics Data System (ADS)

Thin layers of SiOxCy (y = 4-x and 3 ? x ? 4) were applied using a cold atmospheric plasma torch on glass substrates. The aim was to investigate using Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (Tof-Sims) the influence of the gases used on the morphology and composition of the deposits. A hexamethyldisilane (HMDS) precursor was injected in post-discharge in an air or nitrogen plasma using a carrier gas (air or nitrogen) and was applied on the substrate previously pre-treated by an air or nitrogen plasma. The carrier gas and plasma gas flows and the distance between the substrate and the plasma torch, the scanning speed, and the precursor flows were kept constant during the study. The gas used during activation pre-treatment showed no particular influence on the characteristics of the deposit. When air is used both as plasma and carrier gas, the coating layer is thicker (96 nm) than when nitrogen is used (64 nm). It was also evidenced that the gas carrying the precursor has little influence on the hydrophobicity of the coating, contrary to the plasma gas. The latter significantly influences the surface characteristics of the coatings. When air is used as plasma gas, a compact coating layer is obtained and the surface has a water contact angle (WCA) of 82°. When nitrogen is used, the deposit is more hydrophobic (WCA of 100°) and the deposit morphology is different. This increase in hydrophobicity could be correlated to the increase of Sisbnd Osbnd C bonds in the upper surface layers evidenced by XPS analyzes. This observation was then confirmed by Tof-Sims analyzes carried out on these thin layers. A uniform distribution of Carbons in the siloxane coating could also be observed using Tof-Sims 2D reconstruction images of cross sections of the deposited layers.

Hamze, H.; Jimenez, M.; Deresmes, D.; Beaurain, A.; Nuns, N.; Traisnel, M.

2014-10-01

238

Atmosphere  

NSDL National Science Digital Library

What is this atmosphere that surrounds the Earth? This instructional tutorial, part of an interactive laboratory series for grades 8-12, introduces students to the structure, effects, and components of the atmosphere. Here students investigate the composition of the atmosphere; effects of temperature, pressure, and ozone; the greenhouse effect; and how Earth compares with other planets. Interactive activities present students with opportunities to explore ideas and answer questions about the atmosphere, including its structure, the making of ozone, rocket launching, and measuring the atmosphere. Pop-up boxes provide additional information on topics such as dust, rain, and atmospheric composition. Students complete a final written review of six questions about the atmosphere. Copyright 2005 Eisenhower National Clearinghouse

University of Utah. Astrophysics Science Project Integrating Research and Education (ASPIRE)

2003-01-01

239

Final Report: "Improved Optical Diagnostic and Microwave Power Supply," an ARRA Supplement to "Instabilities in Nonthermal Atmospheric Pressure Plasma”  

SciTech Connect

This is the final report for the supplemental program “Improved Optical Diagnostic and Microwave Power Supply” which has funded the purchase of laboratory instrumentation to enhance the main DOE project, “Instabilities in Nonthermal Atmospheric Pressure Plasma.” The main program’s goals include a scientific study of the plasma physics causing large-area plasmas to become unstable at atmospheric pressure. These fundamental scientific discoveries will then allow for the design of controllable cold plasma sources capable of materials processing, including photovoltaic devices, at one atmosphere. This leads to lower costs of energy production. This final report describes only the completion of the supplement. A high-speed spectroscopic camera capable of diagnosing plasma fluctuations and instabilities on time-scales of 2 ns was specified, purchased, installed and tested at the Tufts University Plasma Laboratory. In addition, a 30 watt microwave power system capable of producing short pulses of power in the 0.8 – 4.2 GHz bands was specified, purchased, installed and tested. Scientific experiments are continuing under the funding of the main grant, but a few preliminary examples of scientific discoveries made using these items are included in this report.

Jeffrey Hopwood

2011-05-31

240

Plasma Decomposition of Clathrate Hydrates by 2.45 GHz Microwave Irradiation at Atmospheric Pressure  

NASA Astrophysics Data System (ADS)

The purpose of this research is to develop a process to use the plasma decomposition of clathrate hydrates to produce fuel gas. An ordinary microwave (MW) oven is used as the source of 2.45 GHz MW radiation under atmospheric-pressure. The plasma decomposition of the hydrates could pave the way for a new utilization of atmospheric pressure plasma. Cyclopentane (CP) hydrate formed at atmospheric pressure was decomposed by plasma in a MW oven generating gas with a content of 65% hydrogen, 12% CO, and 8% CO2. About 7% of the MW input power was consumed to decompose the hydrates.

Nomura, Shinfuku; Eka Putra, Andi Erwin; Mukasa, Shinobu; Yamashita, Hiroshi; Toyota, Hiromichi

2011-06-01

241

Gas transport in a confined unsaturated zone during atmospheric pressure cycles  

NASA Astrophysics Data System (ADS)

Gas transport induced by temporal pressure fluctuations in the atmosphere can be an important mechanism for transport of atmospheric oxygen within the unsaturated zone. Moreover, the presence of oxygen in the unsaturated zone may be a factor controlling oxidation of sulphide minerals and other redox processes. A field study was carried out in a glacial aquifer with a 10-12 m thick sandy unsaturated zone to explore gas exchange between the atmosphere and the unsaturated zone. The exchange occurs through a "geological window" in a till layer which covers the sandy unsaturated zone. Observed pressure distribution and oxygen concentrations within the unsaturated zone were compared to numerical simulations with SUTRA, a finite element and fluid density dependent groundwater flow model. The simulations were carried out by modeling the gas pressure distribution within the unsaturated zone based on atmospheric pressure time series. The spatial variation in permeability observed from borehole logging was implemented in the model. The analysis demonstrated a good match between the field observations and the numerical simulations. During an atmospheric pressure cycle, atmospheric oxygen migrated more than 10 md-1 horizontally in the capped unsaturated zone. The analysis shows that both the amplitude and the length of the period of pressure variations are important for the transport of oxygen, and it shows that the combined effects determine the extent of a subsurface zone where atmospheric oxygen can reach.

Elberling, Bo; Larsen, Flemming; Christensen, Steen; Postma, Dieke

1998-11-01

242

Freezing and ice crystals formed in a cylindrical food model: part II. Comparison between freezing at atmospheric pressure and pressure-shift freezing  

Microsoft Academic Search

Cylindrical gelatin gels were pressure-shift frozen at different pressure levels (100, 150 and 200 MPa). Temperature and pressure profiles were compared and the maximum supercooling obtained after pressure release was evaluated. A comparison between the freezing steps at atmospheric pressure and those of pressure-shift freezing was carried out to compare the time steps during the processes. The degree of supercooling

D. Chevalier; A. Le Bail; M. Ghoul

2000-01-01

243

Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure  

E-print Network

in air at atmospheric pressure David Z. Pai,a Deanna A. Lacoste, and Christophe O. Laux Laboratoire EM2C January 2010; published online 6 May 2010 In atmospheric pressure air preheated from 300 to 1000 K.1063/1.3309758 I. INTRODUCTION Atmospheric pressure air plasmas have potential appli- cations in biomedical

Boyer, Edmond

244

Changes in blood pressure and dipsogenic responsiveness to angiotensin II during chronic exposure of rats to cold  

SciTech Connect

To assess the role of the renin-angiotensin (RA) system in the development of cold-induced hypertension in rats, systolic blood pressure (SBP), plasma renin activity (PRA), and the dipsogenic responsiveness to s.c. administration of angiotensin II (AII) were measured weekly for 4 weeks. SBP increased significantly during the third week of exposure to cold (5C), compared to warm-adapted controls. A significant increase in SBP occurred during the third week of cold. In contrast, (PRA) increased within the first week of cold, and declined thereafter to reach the level of the control by the third week. By the fourth week, PRA decreased to a level significantly below that of control. The dipsogenic responsiveness to acute administration of AII increased significantly by the third week of cold and remained significantly elevated during the fourth week. There was a significant direct relationship between dipsogenic responsiveness to AII and SBP in the cold-treated but not the control group. There was also a significant indirect linear relationship between PRA and dipsogenic responsiveness to AII. Cold-treated rats had significant increases in urinary norepinephrine output and weights of heart, kidneys, adrenals, and brown adipose tissue. Thus, the results suggest, but do not prove, either that the elevation of blood pressure under these conditions may be induced by changes in the RA system. The results suggest further that the reduction in the drinking response to AII accompanying increases in PRA may be related to changes in the regulation of central receptors for AII.

Fregly, M.J.; Shechtman, O.; van Bergen, P.; Reeber, C.; Papanek, P.E. (Univ. of Florida, Gainesville (United States))

1991-03-11

245

Using weather data from the internet to study how atmospheric pressure varies with altitude  

NASA Astrophysics Data System (ADS)

This article presents a simple and motivating activity for schools and colleges that is based on active learning and the use of new technologies to study the variation in atmospheric pressure with height at the lowest altitudes. Students can learn how barometric pressure decreases with height by plotting the atmospheric pressure versus altitude using data obtained from the internet. Using similar methods to those of scientific researchers, the students can learn a practical rule to correct barometric pressure data with altitude, something that is usually expressed at sea level in weather maps.

Moya, A. A.

2014-11-01

246

Detection of Nonvolatile Species by Laser Desorption Atmospheric Pressure Mass Spectrometry.  

National Technical Information Service (NTIS)

This work examines the use of laser desorption as a means of volatilizing thermally labile compounds for detection in atmospheric pressure mass spectrometry. A number of different classes of compounds have been examined including amino acids, purine and p...

L. Kolaitis, D. M. Lubman

1986-01-01

247

Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas  

NASA Astrophysics Data System (ADS)

Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

Ishikawa, Kenji; Hori, Masaru

2014-08-01

248

Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications  

NASA Astrophysics Data System (ADS)

Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron-level aerosol chemical and biological threats. Polymer solution concentration, electrospinning voltage, and deposition areal density were varied to establish the relationship of processing-structure-filtration efficiency for electrospun fiber mats. A high barrier efficiency of greater than 99.5% was achieved on electrospun fiber mats without sacrificing air permeability and pressure drop. ii) Fabrication and Characterization of Multifunctional ZnO/Nylon 6 nanofibers ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning-electrospraying hybrid process, The electrospinning of polymer solution and electrospraying of ZnO particles were carried out simultaneously such that the ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers. The prepared ZnO/Nylon 6 nanofiber mats were tested for detoxifying characteristics against simulants of C-B agents. The results showed that ZnO/Nylon 6 functional nanofiber mats exhibited good detoxification action against paraoxon and have antibacterial efficiency over 99.99% against both the gram-negative E. coli and gram positive B. cereus bacteria. iii) Improving adhesion of electrospun nanofiber mat onto woven fabric by plasma pretreatment of substrate fabric and plasma-electrospinning hybrid process Electrospun nanofibers were deposited onto plasma-pretreated woven fabric to improve the adhesion. In addition, the plasma-electrospinning hybrid process was developed and used in which the nanofibers were subjected to in-situ plasma treatment during electrospinning. The effects of plasma treatement on substrate fabric and electrospun fibers were characterized by water contact angle test, XPS analyses. The improvement of nanofiber adhesive properties on fabric substrate was evaluated by peel test, flex resistance test and abrasion resistance test. The test results showed that the plasma treatment caused introduction of active chemical groups on substrate fabric and electrospun nanofibers. These active chemical assisted in possible cross-linking formation between nanofiber mat and substrate fabric, and this hypothesi

Vitchuli Gangadharan, Narendiran

249

Mars - The role of the regolith in determining atmospheric pressure and the atmosphere's response to insolation changes  

NASA Technical Reports Server (NTRS)

A quantitative model for atmosphere-regolith exchange of CO2 on Mars is presented. The model, based on new laboratory measurements of CO2 adsorption on ground rock at 158, 175, 196, and 231 K for CO2 pressures from 1.0 to 80 mbar, is consistent with Viking observations, while models involving a massive residual CO2 cap and no long-term atmosphere-regolith CO2 exchange are not consistent. The model indicates: (1) the atmosphere-plus-cap system is buffered on a long-term basis by exchangeable CO2 adsorbed in the regolith; (2) if the atmosphere-plus-cap system suddenly disappeared, the system would eventually be almost completely restored by reequilibration with the regolith; (3) exchange with the adsorbed phase in the regolith has greatly restricted O-18 enrichment of the atmosphere; (4) the layered terrain primarily represents current periodic pressure increases; and (5) pressures of 100-300 nbar might have existed during the early history of the planet.

Fanale, F. P.; Cannon, W. A.

1978-01-01

250

Characteristics of negative corona discharge in the working media of atmospheric-pressure nitrogen lasers  

Microsoft Academic Search

We present the results of investigations of the electrical and optical characteristics of a negative-polarity corona discharge\\u000a excited in systems of “pins-mesh” and “pins-plane” electrodes in a He\\/N2 mixture at atmospheric pressure. In order that such a corona discharge could be applied in systems of electric pumping of\\u000a the working medium of atmospheric-pressure N2-lasers, the optimum conditions should be: the

A. K. Shuaibov; L. L. Shimon; A. I. Minya; A. I. Dashchenko

1997-01-01

251

Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure  

Microsoft Academic Search

Highly sensitive palladium (Pd) decorated carbon nanotube (CNT) embedding gas sensors working at atmospheric pressure were fabricated. Two types of gas sensors of bare CNTs and Pd nanoparticle decorated CNTs were synthesized by dielectrophoresis. The CNT-containing solution was dropped onto the patterned-platinum electrodes with ac bias. The CNT-embedding sensors sensitively detected 100 ppb level of NO2 in an atmospheric pressure

Ju-Hyung Yun; Joondong Kim; Yun Chang Park; Jin-Won Song; Dong-Hun Shin; Chang-Soo Han

2009-01-01

252

Short Rise Time High Power Microwave Induced Surface Flashover at Atmospheric Pressures  

Microsoft Academic Search

High power microwave transmission is ultimately limited by window flashover at the vacuum-air dielectric boundary. While surface flashover in the presence of a vacuum has been studied in some detail, the mechanisms associated with flashover in an atmospheric environment need further investigation. For an aircraft based high power microwave system, atmospheric pressures ranging from 760 torr (sea level) to 90

Jonathan Foster; Greg Edmiston; John Krile; Herman Krompholz; Andreas Neuber

2008-01-01

253

Modification of terylene fabric by homogeneous discharge in air at atmospheric pressure  

Microsoft Academic Search

Homogeneous discharge with no filaments is capable of operating at atmospheric pressure when the dielectric barriers were polyethylene terephthalate (PET) films with mesh wires. The nonthermal plasma produced by the homogeneous discharge has many applications in the textile or polymer surface modification. In this paper, the terylene fabric is treated by the atmospheric plasma and the surface hydrophilicity is studied.

Ting Mao; Zhicheng Guan; Haiyun Luo; Zhuo Liang; Xinxin Wang; Zhidong Jia; Liming Wang

2007-01-01

254

Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition  

NASA Astrophysics Data System (ADS)

Gas-atomized 6061 aluminum powder was used as feedstock for deposition using a high pressure cold-spraying process. The microstructures of the as-received powder and cold spray processed (CSP) ultrafine-grained (UFG) 6061 depositions were characterized by different electron microscopy techniques. It was found that there is segregation of solute elements at the particle grain boundaries, which is increased after cold spraying (CS). Various microstructural features were observed in both directions (parallel and perpendicular) of the CSP layer, including low-angle grain boundaries, clustered-small-cell walls, and dislocation tangle zones. The results also indicated that a combination of different recrystallization mechanisms (i.e., continuous and geometrical) may contribute to the formation of nano and UFG structures during CS.

Rokni, M. R.; Widener, C. A.; Champagne, V. R.

2014-02-01

255

Development of propulsion for high atmospheric pressure or dense environments  

NASA Technical Reports Server (NTRS)

The development of a propulsion system that employs a detonating propellant is described, and the need for such a system and its use in certain planetary atmospheres are demonstrated. A theoretical formulation of the relevant gas-dynamic processes was developed, and a related series of experimental tests were pursued.

Varsi, G.; Back, L. H.; Dowler, W. L.

1973-01-01

256

Field-based determination of air diffusivity using soil air and atmospheric pressure time series  

Microsoft Academic Search

Air diffusivity in two zones over a 4.6-m interval of the unsaturated zone was determined through analysis of atmospheric pressure and soil air pressure time series. Regression analysis was used to calculate the ratio of amplitudes (admittance) and phase lag between these series at diurnal and semidiurnal frequencies. The admittance for each of the monitoring zones was close to unity

Stuart Rojstaczer; John P. Tunks

1995-01-01

257

Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report  

Microsoft Academic Search

'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste

G. S. Selwyn; R. Hicks

1997-01-01

258

Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets  

E-print Network

Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets Zhaoyang pressure. It incorporates the nonlinear absorption of water and the phase explosion due to superheating explosion on laser ablation dynamics, and it is relevant for the preparative, analytical, and medical

Vertes, Akos

259

Blast field of microexplosives at atmospheric and reduced pressures  

NASA Astrophysics Data System (ADS)

We present the results of a study aimed at characterizing the impulse produced by the detonation of milligram charges of lead styphnate explosive at pressures ranging from 1 to 1000 mBar. A combined analytical/numerical approach based on either the vacuum expansion or the classical strong blast models is used to compute the impulse imparted by the explosion on a solid hemispherical surface. It is found that the vacuum expansion model agrees reasonably well with experiments performed at the lowest pressures, and that the predicted trends are indeed observed in practice. Poor agreement is observed with a strong blast model and this underscores the fact that its applicability depends on both the length scale of problem and the ambient pressure.

Martel, E.; Brouillette, M.

260

Verification by Viking landers of earlier radio occultation measurements of surface atmospheric pressure on Mars  

NASA Technical Reports Server (NTRS)

The landing of Viking 1 in Chryse Planitia on July 20, 1976 provided the first opportunity to obtain measurements of atmospheric pressure directly from the surface of Mars. A computation was conducted to predict the atmospheric pressure at the landing site before the landing itself. The relative altitude between occultation points and the Viking 1 site was obtained with the aid of earth-based planetary radar data taken in 1967. The data cover Martian latitudes from 19 deg N to 24 deg N. The investigation indicates that the radio occultation results from Mariner 9 closely correspond to the actual surface pressure on Mars.

Kliore, A. J.

1977-01-01

261

Atmospheric pressure and temperature profiling using near IR differential absorption lidar  

NASA Technical Reports Server (NTRS)

The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

1983-01-01

262

Blast field of microexplosives at atmospheric and reduced pressures  

Microsoft Academic Search

We present the results of a study aimed at characterizing the impulse produced by the detonation of milligram charges of lead styphnate explosive at pressures ranging from 1 to 1000 mBar. A combined analytical\\/numerical approach based on either the vacuum expansion or the classical strong blast models is used to compute the impulse imparted by the explosion on a solid

E. Martel; M. Brouillette

2005-01-01

263

The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.  

ERIC Educational Resources Information Center

The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

Leitner, Alfred

1982-01-01

264

Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure  

NASA Technical Reports Server (NTRS)

The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

Spanarkel, Robert; Drew, Malcolm C.

2002-01-01

265

ntermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges  

SciTech Connect

In this study, an atmospheric river (AR) detection algorithm is developed to investigate the downstream modulation of the eastern North Pacific ARs by another weather extreme, known as the East Asian cold surge (EACS), in both reanalysis data and high-resolution global model simulations. It is shown that following the peak of an EACS, atmospheric disturbances of intermediate frequency (IF; 10 30 day period) are excited downstream. This leads to the formation of a persistent cyclonic circulation anomaly over the eastern North Pacific that dramatically enhances the AR occurrence probability and the surface precipitation over the western U.S. between 30 N and 50 N. A diagnosis of the local geopotential height tendency further confirms the essential role of IF disturbances in establishing the observed persistent anomaly. This downstream modulation effect is then examined in the two simulations of the National Center for Atmospheric Research Community Climate System Model version 4 with different horizontal resolutions (T85 and T341) for the same period (1979 2005). The connection between EACS and AR is much better captured by the T341 version of the model, mainly due to a better representation of the scale interaction and the characteristics of IF atmospheric disturbances in the higher-resolution model. The findings here suggest that faithful representations of scale interaction in a global model are critical for modeling and predicting the occurrences of hydrological extremes in the western U.S. and for understanding their potential future changes.

Jiang, Tianyu NMI [ORNL] [ORNL; Evans, Katherine J [ORNL] [ORNL; Deng, Yi [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Dong, Xiquan [University of North Dakota, Grand Forks] [University of North Dakota, Grand Forks

2014-01-01

266

Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments.  

PubMed

We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors. PMID:25173251

Dugrain, Vincent; Rosenbusch, Peter; Reichel, Jakob

2014-08-01

267

Alkali vapor pressure modulation on the 100ms scale in a single-cell vacuum system for cold atom experiments  

E-print Network

We describe and characterize a device for alkali vapor pressure modulation on the 100ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

Dugrain, Vincent; Reichel, Jakob

2014-01-01

268

Alkali vapor pressure modulation on the 100ms scale in a single-cell vacuum system for cold atom experiments  

E-print Network

We describe and characterize a device for alkali vapor pressure modulation on the 100ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

Vincent Dugrain; Peter Rosenbusch; Jakob Reichel

2014-06-19

269

Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments  

NASA Astrophysics Data System (ADS)

We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

Dugrain, Vincent; Rosenbusch, Peter; Reichel, Jakob

2014-08-01

270

Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars  

PubMed Central

The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097

Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C.

2013-01-01

271

Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars.  

PubMed

The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO(2)-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097

Nicholson, Wayne L; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C

2013-01-01

272

Generation of Atmospheric-Pressure Glow Discharge and Its Applications 3.Applications of Atmospheric-Pressure Glow Plasma 3.1 Surface Treatment of Organic Materials  

Microsoft Academic Search

Surface treatments of organic materials such as wool fabric and polymer films were done by glow plasma in two types of discharge systems at atmospheric pressure using He and Ar as carrier gases.Wool fabric was treated by C3F6\\/He plasma using a parallel plate-type reactor. On the fabric surface, fluorinated polymer was deposited. The surface has a high value of oil

Masuhiro Kogoma

2003-01-01

273

The emissions of gases from abandoned mines: role of atmospheric pressure changes and air temperature on the surface  

E-print Network

1 The emissions of gases from abandoned mines: role of atmospheric pressure changes and air . Atmospheric pressure . Air temperature on the surface . Exits . Open or closed old mining voids Introduction pressure were monitored. Gas flow can be influenced mainly by the temperature difference between external

Boyer, Edmond

274

An analysis of the errors associated with the determination of atmospheric temperature from atmospheric pressure and density data  

NASA Technical Reports Server (NTRS)

A graph was developed for relating delta T/T, the relative uncertainty in atmospheric temperature T, to delta p/p, the relative uncertainty in the atmospheric pressure p, for situations, when T is derived from the slope of the pressure-height profile. A similar graph relates delta T/T to delta roh/rho, the relative uncertainty in the atmospheric density rho, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or rho, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of delta T/T is seen to depend not only upon delta p or delta rho, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of delta h, the height increment between successive observations of p or rho. In the case of pressure-height data, delta T/T is dominated by 1/delta h for all values of delta h; for density-height data, delta T/T is dominated by delta rho/rho for delta h smaller than about 5 km. In the case of T derived from density-height data, this inverse relationship between delta T/T and delta h applies only for large values of delta h, that is, for delta h 35 km. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperature with unacceptably large uncertainties.

Minzner, R. A.

1976-01-01

275

Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors  

Microsoft Academic Search

The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6.The sheets and forgings of

Erwin Gutsmiedl; Anton Scheuer

2002-01-01

276

Asteroid entry in Venusian atmosphere: Pressure and density fields effect on crater formation  

NASA Technical Reports Server (NTRS)

The objectives are to look at time scales of overpressure compared to cratering and to determine: what are the transient pressure and density due to atmospheric entry; do shock waves evacuate ambient gas; do transient atmospheric disturbances 'settle down' during cratering; can the pressure/density field be approximated as quasi-static; how does disturbance scale with impactor size; and what is the role of atmospheric thickness. The general approach is to perform inexpensive exploratory calculations, perform experiments to validate code and observe crater growth, and to follow up with more realistic coupling calculations. This viewgraph presentation presents progress made with the objective to obtain useful scaling relationships for crater formation when atmospheric effects are important.

Schmidt, Robert

1995-01-01

277

Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission  

NASA Technical Reports Server (NTRS)

We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

2010-01-01

278

Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission  

NASA Technical Reports Server (NTRS)

We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

2011-01-01

279

Characterization of CuInS 2 films prepared by atmospheric pressure spray chemical vapor deposition  

Microsoft Academic Search

Copper indium disulfide films were deposited by atmospheric pressure spray chemical vapor deposition (CVD). Films were deposited at 390°C using [(PPh3)2CuIn(SEt)4] as a single source precursor in an argon atmosphere. The films range in thickness from 0.75 to 1.0 ?m and exhibit a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a

Jerry D. Harris; Kulbinder K. Banger; David A. Scheiman; Mark A. Smith; Michael H.-C. Jin; Aloysius F. Hepp

2003-01-01

280

A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors  

NASA Technical Reports Server (NTRS)

The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

Larson, T. J.; Ehernberger, L. J.

1985-01-01

281

Isolation of Topex Sea-Level Variations Caused by Atmospheric Pressure Fluctuations Using Wiener Filtering  

NASA Astrophysics Data System (ADS)

More than a decade ago, a theoretical approach was developed (Dickman 1998 J. Geophys. Res.) for determining the dynamic response of the oceans to atmospheric pressure variations - a response nicknamed the 'dynamic barometer' (DB) - and the effects of that response on Earth's rotation. In this approach, the oceanic response to arbitrary pressure forcing was computed from a simple combination of pressure harmonics with Green's functions representing the oceanic response to unit-amplitude forcing by individual harmonics. Such Green's functions reflect the spectral and geographic sensitivity of the oceans to atmospheric pressure forcing (Dey & Dickman 2010 J. Geophys. Res.). DB work published to date incorporates Green's functions that were constructed theoretically from a generalized ocean tide model. We are now exploring the possibility of determining the Green's functions observationally, using Topex altimetry data. Topex sea-surface heights (SSH) for 1993 - 2004 have been corrected for seasonal, tidal and wind effects. The next step is to isolate that portion of SSH produced in response to pressure forcing. In this talk we will present the results of our attempt to isolate pressure-forced SSH using multi-channel Wiener filters. In the spherical harmonic domain, the SSH will be the input into the filter and atmospheric pressure will be treated as the 'desired' output; the 'actual' filter output should be that portion of the SSH due to atmospheric pressure variations only, and will yield approximate Green's functions when normalized by the pressure forcing. The use of multi-channel filters will allow cross-coupling between different harmonics of forcing versus SSH to be included. The resulting Green's functions - or rotational Green's functions, representing the corresponding rotational effects - will be evaluated intrinsically and by comparison with the theoretical Green's functions.

Dey, N.; Dickman, S. R.

2012-12-01

282

Hydrogen uptake by barium manganite at atmospheric pressure  

SciTech Connect

Investigation of the interaction of hydrogen with alkaline earth manganites (IV) AMnO{sub 3} (A = Ca, Sr, Ba), dispersed with 1 at.% Pt, has revealed an unprecedented uptake of hydrogen by BaMnO{sub 3}/Pt to the extent of {approx}1.25 mass% at moderate temperatures (190-260 deg. C) and ambient pressure. Gravimetric sorption isotherms and mass spectrometric analysis of the desorption products indicate that approximately three hydrogen atoms per mol of BaMnO{sub 3}/Pt is inserted reversibly. The nature of hydrogen in the insertion product, BaMnO{sub 3}H{sub 3}, is discussed. The work suggests the possibility of developing new hydrogen storage materials based on electropositive metal-transition metal-oxide systems.

Mandal, Tapas Kumar [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Sebastian, Litty [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Gopalakrishnan, J. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: gopal@sscu.iisc.ernet.in; Abrams, Lloyd [DuPont C R and D, Experimental Station, Wilmington, DE 19880 (United States); Goodenough, J.B. [Texas Materials Institute, ETC 9.102, University of Texas at Austin, 1 University Station, C2201, Austin, TX 78712 (United States)

2004-12-02

283

Acidification of reverse micellar nanodroplets by atmospheric pressure CO2.  

PubMed

Water absorption of atmospheric carbon dioxide lowers the solution pH due to carbonic acid formation. Bulk water acidification by CO(2) is well documented, but significantly less is known about its effect on water in confined spaces. Considering its prominence as a greenhouse gas, the importance of aerosols in acid rain, and CO(2)-buffering in cellular systems, surprisingly little information exists about the absorption of CO(2) by nanosized water droplets. The fundamental interactions of CO(2) with water, particularly in nanosized structures, may influence a wide range of processes in our technological society. Here results from experiments investigating the uptake of gaseous CO(2) by water pools in reverse micelles are presented. Despite the small number of water molecules in each droplet, changes in vanadium probes within the water pools, measured using vanadium-51 NMR spectroscopy, indicate a significant drop in pH after CO(2) introduction. Collectively, the pH-dependent vanadium probes show CO(2) dissolves in the nanowater droplets, causing the reverse micelle acidity to increase. PMID:21506532

Levinger, Nancy E; Rubenstrunk, Lauren C; Baruah, Bharat; Crans, Debbie C

2011-05-11

284

Ozone generation using atmospheric pressure glow discharge in air  

NASA Astrophysics Data System (ADS)

This paper presents results from a study into the generation of ozone by a stable atmospheric glow discharge, using dry air as the feeding gas for ozone generation. The power supply is 50 Hz ac, with the use of a perforated aluminium sheet for the electrodes and soda lime glass as a dielectric layer in a parallel-plate configuration, stabilizing the generation process and enabling ozone to be produced. The stable glow discharge spreads uniformly at a gas breakdown voltage below 4.8 kV and requires only 330 mW discharge power, with a limitation of 3 mm on the maximum gap spacing for the dry air. With the technique providing a high collision rate between the electrons and gas molecules during the discharge process, a high ozone yield is obtained. An analysis of the effect on the production rate of parameters such as the input voltage, gas flow rate and reaction chamber dimensions resulted in a highest efficiency of production of almost 350 g kWh-1 and confirms its potential as an important ozone generation technology.

Buntat, Z.; Smith, I. R.; Razali, N. A. M.

2009-12-01

285

Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching  

NASA Astrophysics Data System (ADS)

Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

2011-08-01

286

Protein patterning utilizing region-specific control of wettability by surface modification under atmospheric pressure  

NASA Astrophysics Data System (ADS)

Wettability control can be crucial in improving the uniformity of selective protein immobilization in high-density microarrays. In this study, we propose an atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD)-based method in conjunction with photolithography to implement region-specific control of wettability on Si substrate. The proposed PECVD method under atmospheric pressure condition would be a useful alternative of conventional reactive plasma-based treatments methods requiring vacuum condition for uniform protein patterning. Layers with dissimilar wettability and roughness prepared by AP-PECVD process using tetraethoxysilane (TEOS) or TEOS-O2 as precursors could realize uniform protein patterning in a micrometer-scale.

Lee, Donghee; Kwon, Min-Sung; Hyun, Ji-Chul; Jun, Chang-Duk; Chung, Euiheon; Yang, Sung

2013-09-01

287

Generation of Atmospheric-Pressure Glow Discharge and Its Applications 3.Applications of Atmospheric-Pressure Glow Plasma 3.3 Practical Uses of the Atmospheric-Pressure Plasma Processing Unit “Aiplasma”  

NASA Astrophysics Data System (ADS)

We have developed and marketed a unique plasma processing unit named Aiplasma. which operates under atmospheric pressure, allowing the configuration of continuous processing lines suitable for mass production. In this unit, high density plasma is generated inside a vessel and active plasma species are emitted outside the vessel to make downstream plasma treatment. It has various potentials for modifying material surface such as increasing wettability, removing of organic contaminants to enhance bondability, and improving the adhesion strength of organic materials. Aiplasma has been used in many actual processes such as the production of LCD modules, electric components, and printed circuit boards. This report describes the process technology and its practical applications.

Sawada, Yasushi

288

Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak  

NASA Technical Reports Server (NTRS)

The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

Chou, Shu-Hsien; Zimmerman, Jeffrey

1988-01-01

289

Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM.  

PubMed

An environmental cell for high-temperature, high-resolution transmission electron microscopy of nanomaterials in near atmospheric pressures is developed. The developed environmental cell is a side-entry type with built-in specimen-heating element and micropressure gauge. The relationship between the cell condition and the quality of the transmission electron microscopic (TEM) image and the diffraction pattern was examined experimentally and theoretically. By using the cell consisting of two electron-transparent silicon nitride thin films as the window material, the gas pressure inside the environmental cell is continuously controlled from 10(-5) Pa to the atmospheric pressure in a high-vacuum TEM specimen chamber. TEM image resolutions of 0.23 and 0.31 nm were obtained using 15-nm-thick silicon nitride film windows with the pressure inside the cell being around 5 × 10(-5) and 1 × 10(4) Pa, respectively. PMID:21427119

Yaguchi, Toshie; Suzuki, Makoto; Watabe, Akira; Nagakubo, Yasuhira; Ueda, Kota; Kamino, Takeo

2011-01-01

290

Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)  

Microsoft Academic Search

The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He\\/O2\\/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode

H. W. Herrmann; I. Henins; G. S. Selwyn

1999-01-01

291

Decontamination of Chemical\\/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)  

Microsoft Academic Search

The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He\\/O_2\\/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas

Hans W. Herrmann

1998-01-01

292

Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)  

Microsoft Academic Search

The atmospheric pressure plasma jet (APPJ) [A. Schu¨tze &etal;, IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He\\/O2\\/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered

H. W. Herrmann; I. Henins; G. S. Selwyn

1999-01-01

293

Surface modifications of vulcanized SBR rubber by treatment with atmospheric pressure plasma torch  

Microsoft Academic Search

Low-pressure plasma treatment has been demonstrated to be suitable to increase the surface energy and adhesion of synthetic sulfur-vulcanized styrene-butadiene (R2) rubber. Although effective, this treatment required vacuum and it is relatively expensive for some industrial applications, mainly in footwear and construction. In this study, the atmospheric pressure treatment of a difficult to bond sulfur-vulcanized R2 rubber by means of

María D. Romero-Sánchez; José Miguel Martín-Martínez

2006-01-01

294

Hydrolase-catalyzed reactions in membrane reactors at atmospheric and high pressure  

Microsoft Academic Search

Membrane reactors could serve as a tool for enzyme-catalyzed reactions and they enable the performance of catalytic reaction, enzyme recovery and product isolation as a one-step process. In the presented work, the use of continuous flat-shape and continuous tubular membrane enzymatic reactors for different enzymatic systems at atmospheric pressure and at supercritical conditions are described. In a high-pressure continuous enzymatic

Mateja Primoži?; Muzafera Paljevac; Željko Knez

2009-01-01

295

Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere  

NASA Technical Reports Server (NTRS)

The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

Rubashev, B. M.

1978-01-01

296

Feeling the cold: atmospheric CO 2 enrichment and the frost sensitivity of terrestrial plant foliage  

Microsoft Academic Search

Quantitative palaeoclimate reconstructions from plant fossils using the nearest living relative (NLR) approach axiomatically assume that the climatic limits of plant distributions have largely remained unchanged over at least the past 250 Myr. However, throughout much of the Mesozoic the atmospheric CO2 concentration is predicted to have been several times greater than the present day, and long-term (?5 yr) experimental

D. J Beerling; A. C Terry; C Hopwood; C. P Osborne

2002-01-01

297

Entrainment of cold gas into thermal plasma jets  

Microsoft Academic Search

There is increasing evidence that the entrainment of cold gas surrounding a turbulent plasma jet is more of an engulfment type process rather than simple diffusion. A variety of diagnostic techniques have been employed to determine the development of turbulence in a plasma jet and to measure concentration and temperatures of the cold gas entrained into atmospheric-pressure argon plasma jets

E. Pfender; J. Fincke; R. Spores

1991-01-01

298

The Changing Cold Regions Network: Atmospheric, Cryospheric, Ecological and Hydrological Change in the Saskatchewan and Mackenzie River Basins, Canada (Invited)  

NASA Astrophysics Data System (ADS)

The cold interior of Northwestern Canada has one of the world's most extreme and varied climates and, as with other regions across the Arctic, is experiencing rapid environmental change. The Changing Cold Regions Network (CCRN) is a new Canadian research network devoted to addressing key challenges and globally-important issues facing the Arctic by improving the understanding of past and ongoing changes in climate, land, vegetation, and water, and predicting their future integrated responses, with a geographic focus on the Saskatchewan and Mackenzie River Basins. The network is funded for 5 years (2013-18) by the Natural Sciences and Engineering Research Council of Canada, and combines the unique expertise of 36 Canadian scientists representing 8 universities and 4 Federal government agencies, as well as 15 international researchers from the United States, China, Australia, the UK, France, and Germany. The network will also involve the World Climate Research Programme, NASA, the Canadian Space Agency, and the National Center for Atmospheric Research. CCRN will integrate existing and new experimental data with modelling and remote sensing products to understand, diagnose and predict changing land, water and climate, and their interactions and feedbacks, for Northwestern Canada's cold interior. It will use a network of world class observatories to study the detailed connections among changing climate, ecosystems and water in the permafrost regions of the Sub-arctic, the Boreal Forest, the Western Cordillera, and the Prairies. Specifically, the network will: 1. Document and evaluate observed Earth system change, including hydrological, ecological, cryospheric and atmospheric components over a range of scales from local observatories to biome and regional scales; 2. Improve understanding and diagnosis of local-scale change by developing new and integrative knowledge of Earth system processes, incorporating these processes into a suite of process-based integrative models, and using the models to better understand Earth system change; 3. Improve large-scale atmospheric and hydrological models for river basin-scale modelling and prediction to better account for the changing Earth system and its atmospheric feedbacks; and 4. Analyze and predict regional and large-scale variability and change, focusing on the governing factors for the observed trends and variability in large-scale aspects of the Earth system and their representation in current models, and the projections of regional scale effects of Earth system change on climate, land and water resources. In addition, CCRN will work collaboratively to apply and transfer the improved knowledge, modelling tools and results to government and other stakeholders, to support land and water management in the context of changing climate and economic demands. It is expected that the knowledge and tools developed through this research will benefit not only Canada, but also many other countries in cold regions that face similar challenges in the face of such uncertainty, and in particular, CCRN welcomes the opportunity for broader collaboration with the international arctic research community.

Wheater, H. S.; DeBeer, C.

2013-12-01

299

Simulation of Rarefied Gas Flows in Atmospheric Pressure Interfaces for Mass Spectrometry Systems  

NASA Astrophysics Data System (ADS)

The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (<10-3 Torr) stages are relatively well understood and could be modeled using continuum and molecular flows, respectively, the theoretical modeling or numeric simulation of gas flow through the transition pressure stage (1 to 10-3 Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

2013-12-01

300

High-performance simulations for atmospheric pressure plasma reactor  

NASA Astrophysics Data System (ADS)

Plasma-assisted processing and deposition of materials is an important component of modern industrial applications, with plasma reactors sharing 30% to 40% of manufacturing steps in microelectronics production. Development of new flexible electronics increases demands for efficient high-throughput deposition methods and roll-to-roll processing of materials. The current work represents an attempt of practical design and numerical modeling of a plasma enhanced chemical vapor deposition system. The system utilizes plasma at standard pressure and temperature to activate a chemical precursor for protective coatings. A specially designed linear plasma head, that consists of two parallel plates with electrodes placed in the parallel arrangement, is used to resolve clogging issues of currently available commercial plasma heads, as well as to increase the flow-rate of the processed chemicals and to enhance the uniformity of the deposition. A test system is build and discussed in this work. In order to improve operating conditions of the setup and quality of the deposited material, we perform numerical modeling of the plasma system. The theoretical and numerical models presented in this work comprehensively describe plasma generation, recombination, and advection in a channel of arbitrary geometry. Number density of plasma species, their energy content, electric field, and rate parameters are accurately calculated and analyzed in this work. Some interesting engineering outcomes are discussed with a connection to the proposed setup. The numerical model is implemented with the help of high-performance parallel technique and evaluated at a cluster for parallel calculations. A typical performance increase, calculation speed-up, parallel fraction of the code and overall efficiency of the parallel implementation are discussed in details.

Chugunov, Svyatoslav

301

The oceanic response of the Turkish Straits System to an extreme drop in atmospheric pressure  

NASA Astrophysics Data System (ADS)

across all four entry/exit sections of the Dardanelles Strait and the Bosphorus Strait simultaneously measured the response of the Turkish Straits System to the passage of a severe cyclonic storm that included an atmospheric pressure drop of more than 30 mbar in less than 48 h. The bottom pressure response at the Aegean Sea side of the Dardanelles Strait was consistent with an inverted barometer response, but the response at the other sections did not follow an inverted barometer, leading to a large bottom pressure gradient through the Turkish Straits System. Upper-layer flow toward the Aegean Sea was reversed by the storm and flow toward the Black Sea was greatly enhanced. Bottom pressure across the Sea of Marmara peaked 6 h after the passage of the storm's minimum pressure. The response on the Dardanelles side was a combination of sea elevation and pycnocline depth rise, and the response on the Bosphorus side was an even greater sea elevation rise and a drop in pycnocline depth. The peak in bottom pressure in the Sea of Marmara was followed by another reverse in the flow through the Dardanelles Strait as flow was then directed away from the Sea of Marmara in both straits. A simple conceptual model without wind is able to explain fluctuations in bottom pressure in the Sea of Marmara to a 0.89-0.96 level of correlation. This stresses the importance of atmospheric pressure dynamics in driving the mass flux of the Turkish Strait System for extreme storms.

Book, Jeffrey W.; Jarosz, Ewa; Chiggiato, Jacopo; Be?iktepe, Å.?ükrü

2014-06-01

302

Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure1[w  

PubMed Central

As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916

Paul, Anna-Lisa; Schuerger, Andrew C.; Popp, Michael P.; Richards, Jeffrey T.; Manak, Michael S.; Ferl, Robert J.

2004-01-01

303

VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters  

NASA Astrophysics Data System (ADS)

Aims: The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars (? Oct, ? Peg, NU Pav, ? Peg, and ? Hya) and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. Methods: We conducted spectro-interferometric observations of ? Oct, ? Peg, NU Pav, and ? Peg in the near-infrared K band (2.13-2.47 ?m), and ? Hya (1.9-2.47 ?m) with the VLTI/AMBER instrument at medium spectral resolution (~1500). To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). Results: We estimated the Rosseland angular diameters of ? Oct, ? Peg, NU Pav, ? Peg, and ? Hya to be 11.66±1.50 mas, 16.87±1.00 mas, 13.03±1.75 mas, 6.31±0.35 mas, and 3.78±0.65 mas, respectively. Together with distances and bolometric fluxes (obtained from the literature), we estimated radii, effective temperatures, and luminosities of our targets. In the ? Peg visibility, we observed a molecular layer of CO with a size similar to that modeled with PHOENIX. However, there is an additional slope in absorption starting around 2.3 ?m. This slope is possibly due to a shell of H2O that is not modeled with PHOENIX (the size of the layer increases to about 5% with respect to the near-continuum level). The visibility of ? Peg shows a low increase in the CO bands, compatible with the modeling of the PHOENIX model. The visibility data of ? Oct, NU Pav, and ? Hya show no increase in molecular bands. Conclusions: The spectra and visibilities predicted by the PHOENIX atmospheres agree with the spectra and the visibilities observed in our stars (except for ? Peg). This indicates that the opacity of the molecular bands is adequately included in the model, and the atmospheres of our targets have an extension similar to the modeled atmospheres. The atmosphere of ? Peg is more extended than that predicted by the model. The role of pulsations, if relevant in other cases and unmodeled by PHOENIX, therefore seems negligible for the atmospheric structures of our sample. The targets are located close to the red limits of the evolutionary tracks of the STAREVOL model, corresponding to masses between 1 M? and 3 M?. The STAREVOL model fits the position of our stars in the Hertzsprung-Russell (HR) diagram better than the Ekström model does. STAREVOL includes thermohaline mixing, unlike the Ekström model, and complements the latter for intermediate-mass stars. Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under programme ID 089.D-0801.Figures 2-4 are available in electronic form at http://www.aanda.org

Arroyo-Torres, B.; Martí-Vidal, I.; Marcaide, J. M.; Wittkowski, M.; Guirado, J. C.; Hauschildt, P. H.; Quirrenbach, A.; Fabregat, J.

2014-06-01

304

New pool boiling data for water with copper-foam metal at sub-atmospheric pressures: Experiments and correlation  

Microsoft Academic Search

Over the past decades, pool boiling heat transfer of water has been investigated extensively by many scientists and researchers at system pressures varying from atmospheric to near critical pressure. However, at sub-atmospheric pressures conditions there is a dearth of data, particularly when the vapour pressures are less than 10kPa. The authors have conducted a detailed study of pool boiling of

Ng Kim Choon; Anutosh Chakraborty; Sai Maung Aye; Wang Xiaolin

2006-01-01

305

Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce  

NASA Astrophysics Data System (ADS)

The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

2010-09-01

306

Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime  

Microsoft Academic Search

A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the

Eef Temmerman; Yuri Akishev; Nikolay Trushkin; Christophe Leys; Jo Verschuren

2005-01-01

307

Atmospheric pressure chemical ionisation mass spectrometry for in vivo analysis of volatile flavour release  

Microsoft Academic Search

To follow volatile flavour release in the expired air of people during eating, several physiological and analytical constraints must be observed to obtain good quality data. An interface has been developed to sample air from the nose and ionise the volatile compounds contained therein by atmospheric pressure chemical ionisation. The ions formed are detected in a quadrupole mass spectrometer. The

A. J. Taylor; R. S. T. Linforth; B. A. Harvey; A. Blake

2000-01-01

308

Properties of an aqueous solution of ionic liquid [Emim][Cl] at standard atmospheric pressure  

NASA Astrophysics Data System (ADS)

The density, viscosity, electric conductivity, volumetric thermal expansion coefficient, melting point, and refractive index of an aqueous solution of the [Emim][Cl] ionic liquid are measured over wide ranges of temperature and concentrations at standard atmospheric pressure. Analytical dependences of the investigated properties on the concentration and temperature are suggested.

Klinov, A. V.; Fedorov, M. V.; Malygin, A. V.; Minibaeva, L. R.

2014-10-01

309

Non-thermal atmospheric pressure plasma for remediation of volatile organic compounds.  

E-print Network

??The University of ManchesterZaenab Abd AllahDoctor of PhilosophyNon-thermal atmospheric pressure plasma for remediation of volatile organic compounds29/02/2012Non-thermal plasma generated in a dielectric barrier packed-bed reactor… (more)

Abd Allah, Zaenab

2012-01-01

310

Characterization of a Dielectric Barrier Plasma Gun Discharging at Atmospheric Pressure  

Microsoft Academic Search

We develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, we find that the gun can be used as a source to generate a

Guang-Qiu Zhang; Yuan-Jing Ge; Yue-Fei Zhang; Guang-Liang Chen

2004-01-01

311

Effects of fluid flow on the characteristics of an atmospheric pressure low temperature plasma jet  

Microsoft Academic Search

Summary form only given. Recently interest in low temperature atmospheric pressure plasma jets has increased due to their unique capabilities and novel applications, such as biomedicine. Prior experimental results showed that low temperature plasma jets are in fact trains of plasma bullets\\/packets traveling at supersonic velocities. This is especially interesting because the plasma bullets travel in a region free of

E. Karakas; M. Koklu; A. Begum; M. Laroussi

2009-01-01

312

Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects  

Microsoft Academic Search

Although the use of an electrical discharge to disinfect water was suggested and applied more than a hundred years ago, basic and applied research on the interaction of plasmas with biological media was extensively carried out only relatively recently. In this context, a review of various works on the germicidal effects of atmospheric pressure, \\

Mounir Laroussi

2002-01-01

313

[Research on the atomic emission spectroscopy of atmospheric pressure plasma process].  

PubMed

In the reaction of the atmospheric pressure plasma process, the heat stable process of the atmospheric pressure plasma jet has a direct impact on the removal rate, CF4 is the provider of active F* atom, O2 is important auxiliary gas, and they play an important role in the process. In order to research the rule of the concentration of the 3 parameters upon the atmospheric pressure plasma processing, the atmospheric pressure plasma jet was used for processing and the spectrometer was used to monitor the changes in the process. The experiment indicates that: when the heat is stable, the concentration of the active F* atom essentially remains unchanged; with increasing the concentration of gas CF4, the spectrum of the active F* atom has self-absorption phenomena, so using the atomic emission spectroscopy method to monitor the changes in the concentration of active F* atom generated by CF4 is not completely exact; because O2 can easily react with the dissociation product of CF4, which inhibits the compound of the active F* atom, so in a certain range with increasing the concentration of gas O2, the concentration of the active F* atom becomes strong. PMID:23697149

Jin, Jiang; Li, Na; Xu, Lu; Wang, Bo; Jin, Hui-Liang

2013-02-01

314

Freezing and ice crystals formed in a cylindrical food model: part I. Freezing at atmospheric pressure  

Microsoft Academic Search

Cylindrical gelatin gels were frozen at atmospheric pressure with different operating conditions (air-blast freezing at different air temperatures and brine freezing). A method to calculate a local freezing rate was proposed to take into account the variation of freezing rate as a function of the radius. A linear evolution of the local freezing rate according to the radius was observed

D Chevalier; A Le Bail; M Ghoul

2000-01-01

315

Surface modification of paper on a continuous atmospheric-pressure-plasma system  

Microsoft Academic Search

Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from

Luis Emilio Cruz-Barba

2003-01-01

316

Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator  

Microsoft Academic Search

Dielectric barrier discharge (DBD) excitation by unipolar high voltage pulses is a promising approach for producing non-thermal plasma at atmospheric pressure. In this study, a magnetic compression solid-state pulsed power generator was used to produce repetitive nanosecond pulses for the excitation. The DBD is created using two liquid electrodes. The electrical characteristics of the discharge voltage and current are illustrated

Tao Shao; Yang Yu; Cheng Zhang; Dongdong Zhang; Zheng Niu; Jue Wang; Ping Yan; Yuanxiang Zhou

2010-01-01

317

Stable homogeneous microdischarge at atmospheric pressure between a flat cathode and point anode  

NASA Astrophysics Data System (ADS)

Conditions of stable operation of a homogeneous glow microdischarge in air at atmospheric pressure between a flat cathode and point anode are established and realized at interelectrode gap widths within ˜1-30 ?m and discharge currents within from ˜10-4 to 1 A.

Astaf'ev, A. M.; Kudryavtsev, A. A.

2014-09-01

318

Numerical modelling of atmospheric pressure gas discharges leading to plasma production  

Microsoft Academic Search

In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of

G E Georghiou; A P Papadakis; R Morrow; A C Metaxas

2005-01-01

319

Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure  

Microsoft Academic Search

An experimental plasma chemical reactor, equipped with a novel water plasma torch, was used for reforming methane and carbon dioxide mixture to produce synthesis gas (syngas). Water plasma is generated by the torch at atmospheric pressure, in the absence of carrier gases, water cooling system and special steam supply system. The influence of the ratio of CO2 to CH4 and

Guohua Ni; Yan Lan; Cheng Cheng; Yuedong Meng; Xiangke Wang

2011-01-01

320

Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet  

Microsoft Academic Search

A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to

Jaegu Choi; Keita Matsuo; Hidekazu Yoshida; Takao Namihira; Sunao Katsuki; Hidenori Akiyama

2008-01-01

321

Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion  

Microsoft Academic Search

The polymers PET, PA6, PVDF, HD-PE, and PP are activated by a commercially available plasma jet system at atmospheric pressure to improve adhesive bondability. The adhesion properties of the activated surfaces are evaluated by lap shear tests. The results are correlated with the surface properties that are investigated by XPS, AFM, and contact angle measurements. In addition the influence of

Michael Noeske; Jost Degenhardt; Silke Strudthoff; Uwe Lommatzsch

2004-01-01

322

Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure  

Microsoft Academic Search

A new method of wool plasma surface treatment at atmospheric pressure employing the stable gas flow excited in gliding electrical discharge (called GlidArc) has been developed. The plasma from a small space between electrodes is drifted by the gas flow into a conic space, towards the base of which, the treated combed top moves. The subjective handle of the treated

J. Jan?a; A. Czernichowski

1998-01-01

323

Influence of atmospheric pressure plasma treatment on various fibrous materials: Performance properties and surface adhesion analysis  

Microsoft Academic Search

Atmospheric pressure plasma treatment using oxygen gas was applied to wool fibrous materials. The plasma-treated fibrous materials were characterised using advanced instrumental techniques including scanning electron microscopy and X-ray photoelectron spectroscopy. They were also tested for performance properties including tensile and tearing strength as well as change in yellowness using international standard testing methods. Wettability analysis was conducted to study

S. Y. Cheng; C. W. M. Yuen; C. W. Kan; K. K. L. Cheuk; W. A. Daoud; P. L. Lam; W. Y. I. Tsoi

2010-01-01

324

Atmospheric pressure glow discharge deposition of thermo-sensitive poly (N-isopropylacrylamide)  

NASA Astrophysics Data System (ADS)

In this paper, a self-made atmospheric pressure dielectric barrier discharge reactor on intermediate frequency is brought forward and developed, which is equipped with power supply of 1-20 KHz, and the working gas is argon. The experimental results show that is a very stable and uniform atmospheric pressure glow discharge (APGD). Through a series of experiments, the waveforms of single pulse and multi-pulse glow discharge were both obtained. The voltage amplitude, discharge gap and dielectric material are studied, and the conditions of multi-pulse glow discharge are discussed as well. The novel methods of depositing poly (N-isopropylacrylamide) (PNIPAAm) coatings on the surface of glass slides and PS petri dish are provided by atmospheric pressure plasma polymerization. PNIPAAm can be obtained by plasma polymerization of N-isopropylacrylamide using the self-made equipment of atmospheric pressure plasma vapor treatment. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. SEM analysis has revealed that the PNIPAAm coatings were formed on the surface of the smooth glass slides. Further evaluation by using XPS, it has shown the presence of PNIPAAm. The wettability can be significantly modified by changing of the temperatures at above and below of the lower critical solution temperature (LCST) from the data of the contact angle test. These results have advantage for further application on the thermo-sensitive textile materials.

Shao, M.; Tang, X. L.; Wen, D.; Chen, Y.; Qiu, G.

2013-12-01

325

Destruction of simulated chemical warfare agents in non-thermal atmospheric-pressure air plasma  

Microsoft Academic Search

The decontamination of chemical warfare agents (CWA) using an atmospheric pressure dielectric barrier discharge in air was investigated. Stainles s steel samples inoculated with malathion (a surrogate for nerve agent VX) were placed on the ca thode, where they were treated by the chemical active species produced in the streamers. An effect ive decontamination (>99.7 %) was achieved after 10

J. Jarrige; P. Vervisch

326

Improvements in the dyeability of polyester fabrics by atmospheric pressure oxygen plasma treatment  

Microsoft Academic Search

Polyester has been widely used as an apparel and technical textile material in the form of fibers, films and plastics due to its excellent mechanical and physical properties. However, its poor surface properties have limited its end?use versatility. In this study, the surface of a polyester fabric was modified by atmospheric pressure plasma treatment with oxygen under different operating conditions

M. M. Kamel; M. M. El Zawahry; H. Helmy; M. A. Eid

2011-01-01

327

Video Article Atmospheric-pressure Molecular Imaging of Biological Tissues and Biofilms by  

E-print Network

Video Article Atmospheric-pressure Molecular Imaging of Biological Tissues and Biofilms by LAESI and Biofilms by LAESI Mass Spectrometry. JoVE. 43. http://www.jove.com/index/Details.stp?ID=2097, doi: 10 directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray

Vertes, Akos

328

A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure  

SciTech Connect

This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang [Research Center of Analytical Instrumentation, Analytical Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Tang Jie [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China)

2013-07-15

329

Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer  

NASA Technical Reports Server (NTRS)

Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

1992-01-01

330

Generation of Atmospheric-Pressure Glow Discharge and Its Applications 3.Applications of Atmospheric-Pressure Glow Plasma 3.1 Surface Treatment of Organic Materials  

NASA Astrophysics Data System (ADS)

Surface treatments of organic materials such as wool fabric and polymer films were done by glow plasma in two types of discharge systems at atmospheric pressure using He and Ar as carrier gases.Wool fabric was treated by C3F6/He plasma using a parallel plate-type reactor. On the fabric surface, fluorinated polymer was deposited. The surface has a high value of oil contact angle, so it retained anti-shrinking effect of wool fabrics even after repeated washing in water. Surface cleaning of organic contamination on a silicon wafer was done by after glow plasma in an atmospheric ambience using a new spray-type discharge reactor. Ashing (cleaning) rate was strongly dependent on the gas flow rate of O2/Ar gas and on the concentration of O2.

Kogoma, Masuhiro

331

An upper limit on Early Mars atmospheric pressure from small ancient craters  

NASA Astrophysics Data System (ADS)

Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.

Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

2012-12-01

332

An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment  

SciTech Connect

With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

Ma Ruonan; Zhang Qian [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Feng Hongqing; Liang Yongdong [College of Engineering, Peking University, Beijing 100871 (China); Li Fangting [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Physics, Peking University, Beijing 100871 (China); Zhu Weidong [Department of Applied Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Becker, Kurt H. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

2012-03-19

333

Atmospheric pressure cold plasma applied to steam reforming of small oxygenated molecules from bio-oil  

Microsoft Academic Search

Summary form only given. Fast pyrolysis converts up to 75 mass % of biomass into bio-oils of which 12 mass % are small molecules with less than five carbon atoms. These molecules cannot be converted by existing technologies into green gasoline or green diesel. However, this fraction could be an excellent source for the production of hydrogen. In conventional steam

E. Wemlinger; P. Pedrow; M. Garcia-Perez; Su Ha; O. Marin-Flores; M. Pitts

2009-01-01

334

An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment  

NASA Astrophysics Data System (ADS)

With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

Ma, Ruonan; Feng, Hongqing; Li, Fangting; Liang, Yongdong; Zhang, Qian; Zhu, Weidong; Zhang, Jue; Becker, Kurt H.; Fang, Jing

2012-03-01

335

Optimal eccentric annuli (Containing atmospheric-pressure air) for thermally insulating, horizontal, relatively cold pipes  

Microsoft Academic Search

The geometrical configurations of those air-filled, horizontal eccentric annuli, that provide maximum thermal insulation corresponding to various imposed temperature conditions have been identified. For the concentric system, a simple correlation is presented which will permit the calculation of the associated steady-state rates of convective\\/conductive heat leak through the air annulus to the horizontal pipe conveying a chilled fluid. The conclusions

S. Chakrabarti; S. D. Probert; M. J. Shilston

1983-01-01

336

Modeling of atmospheric-pressure plasma columns sustained by surface waves  

SciTech Connect

A self-consistent two-dimensional fluid-plasma model coupled to Maxwell's equations is presented for argon discharges sustained at atmospheric pressure by the propagation of an electromagnetic surface wave. The numerical simulation provides the full axial and radial structure of the surface-wave plasma column and the distribution of the electromagnetic fields for given discharge operating conditions. To describe the contraction phenomenon, a characteristic feature of high-pressure discharges, we consider the kinetics of argon molecular ions in the charged-particle balance. An original feature of the model is to take into account the gas flow by solving self-consistently the mass, momentum, and energy balance equations for neutral particles. Accounting for the gas flow explains reported discrepancies between measured and calculated plasma parameters when assuming the local axial uniformity approximation. In contrast to the low-pressure case, the latter approximation is shown to be of limited validity at atmospheric pressure. The gas temperature is found to be a key parameter in modeling surface-wave discharges sustained at atmospheric pressure. It determines the radial and the axial structure of the plasma column. The calculated plasma parameters and wave propagation characteristics using the present two-dimensional fluid model are in good agreement with our set of experimental data.

Kabouzi, Y.; Graves, D. B.; Castanos-Martinez, E.; Moisan, M. [Department of Chemical Engineering, University of California, Berkeley, California 94720 (United States); Groupe de Physique des Plasmas, Universite de Montreal, Montreal, H3C 3J7 (Canada)

2007-01-15

337

Modeling of atmospheric-pressure plasma columns sustained by surface waves.  

PubMed

A self-consistent two-dimensional fluid-plasma model coupled to Maxwell's equations is presented for argon discharges sustained at atmospheric pressure by the propagation of an electromagnetic surface wave. The numerical simulation provides the full axial and radial structure of the surface-wave plasma column and the distribution of the electromagnetic fields for given discharge operating conditions. To describe the contraction phenomenon, a characteristic feature of high-pressure discharges, we consider the kinetics of argon molecular ions in the charged-particle balance. An original feature of the model is to take into account the gas flow by solving self-consistently the mass, momentum, and energy balance equations for neutral particles. Accounting for the gas flow explains reported discrepancies between measured and calculated plasma parameters when assuming the local axial uniformity approximation. In contrast to the low-pressure case, the latter approximation is shown to be of limited validity at atmospheric pressure. The gas temperature is found to be a key parameter in modeling surface-wave discharges sustained at atmospheric pressure. It determines the radial and the axial structure of the plasma column. The calculated plasma parameters and wave propagation characteristics using the present two-dimensional fluid model are in good agreement with our set of experimental data. PMID:17358263

Kabouzi, Y; Graves, D B; Castaños-Martínez, E; Moisan, M

2007-01-01

338

Detection of atmospheric pressure loading using very long baseline interferometry measurements  

NASA Technical Reports Server (NTRS)

Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

Vandam, T. M.; Herring, T. A.

1994-01-01

339

Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection  

PubMed Central

Following surgery of cholesteatoma, a patient developed a chronic infection of the external auditory canal, including extended-spectrum ?-lactamase producing Escherichia coli, which caused severe pain. The application of cold atmospheric plasma resulted in a significant reduction in pain and clearance of bacterial carriage, allowing antibiotics and analgesics to be ceased. PMID:25356328

Isbary, G; Shimizu, T; Zimmermann, J L; Thomas, H M; Morfill, G E; Stolz, W

2013-01-01

340

Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure.  

PubMed

Materials emitting light in the deep ultraviolet region around 200 nanometers are essential in a wide-range of applications, such as information storage technology, environmental protection, and medical treatment. Hexagonal boron nitride (hBN), which was recently found to be a promising deep ultraviolet light emitter, has traditionally been synthesized under high pressure and at high temperature. We successfully synthesized high-purity hBN crystals at atmospheric pressure by using a nickel-molybdenum solvent. The obtained hBN crystals emitted intense 215-nanometer luminescence at room temperature. This study demonstrates an easier way to grow high-quality hBN crystals, through their liquid-phase deposition on a substrate at atmospheric pressure. PMID:17702939

Kubota, Yoichi; Watanabe, Kenji; Tsuda, Osamu; Taniguchi, Takashi

2007-08-17

341

Airborne and ground based lidar measurements of the atmospheric pressure profile  

NASA Technical Reports Server (NTRS)

The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

1989-01-01

342

Fluctuating Pressure Data from 2-D Nozzle Cold Flow Tests (Dual Bell).  

National Technical Information Service (NTIS)

Rocket engines nozzle performance changes as a vehicle climbs through the atmosphere. An altitude compensating nozzle, ACN, is intended to improve on a fixed geometry bell nozzle that performs at optimum at only one trajectory point. In addition to nozzle...

T. E. Nesman

2001-01-01

343

Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.  

PubMed

Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We postulate that the observed behavioral modifications, especially under decreasing barometric pressure would reduce the probability of injury or death under adverse weather conditions. PMID:24098362

Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

2013-01-01

344

Weather Forecasting by Insects: Modified Sexual Behaviour in Response to Atmospheric Pressure Changes  

PubMed Central

Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We postulate that the observed behavioral modifications, especially under decreasing barometric pressure would reduce the probability of injury or death under adverse weather conditions. PMID:24098362

Pellegrino, Ana Cristina; Penaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Bento, Jose Mauricio Simoes; McNeil, Jeremy N.

2013-01-01

345

Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet  

NASA Astrophysics Data System (ADS)

Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a microscale atmospheric pressure plasma jet (?-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown and discussed. A simple model of the He gas flow and reaction kinetics of oxygen atoms in the gas phase and at the surface is used to provide a better understanding of the processes in the plasma effluent. The new jet modification, called X-Jet for its appearance, will simplify the investigation of interaction mechanisms of atmospheric pressure plasmas with biological samples.

Schneider, S.; Lackmann, J.-W.; Narberhaus, F.; Bandow, J. E.; Denis, B.; Benedikt, J.

2011-07-01

346

Diamond and Related Materials, 2 (1993) 661 666 661 Degenerate four-wave mixing diagnostics of atmospheric pressure  

E-print Network

of atmospheric pressure diamond synthesis reactors are evaluated. Benefits and disadvantages of optical emission-3]. An r.f. inductively coupled plasma offers the benefits of an "electrodeless" discharge for minimum film such as growth rate. To explore further the nature of the atmospheric pressure diamond deposition environ- ment

Zare, Richard N.

347

Broadening, Asymmetry and Shift of Rubidium Resonance Lines under Different Pressures of Helium and Argon up to 100 Atmospheres  

Microsoft Academic Search

A new absorption tube was constructed which made feasible the study of the pressure effects of foreign gases on the absorption lines of alkali vapors of homogeneous density and temperature. In addition to helium and argon at pressures up to 100 atmospheres, hydrogen was used up to 20 atmospheres. Up to relative density 46 the broadening is proportional to the

Ch'en Shang-Yi

1940-01-01

348

Pressure-transient behavior during cold water injection into geothermal wells  

Microsoft Academic Search

During injection testing, the pressures in geothermal wells used for reinjection sometimes initially increase but then decline as injection continues. Injection tests carried out at the Yutsubo geothermal field in Kyushu, Japan, exhibit this peculiar behavior. During injection testing of Yutsubo well YT-2, the observed downhole pressures eventually began to decline despite sustained injection rates. We have carried out numerical

Shinsuke Nakao; Tsuneo Ishido

1998-01-01

349

Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere  

PubMed Central

Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO2) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO2 concentration will reach levels too low for C3 and C4 photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets. PMID:19487662

Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L.

2009-01-01

350

Pulmonary and heart diseases with inhalation of atmospheric pressure plasma flow  

NASA Astrophysics Data System (ADS)

We examined blood pressure in the abdominal aorta of mini pig under plasma inhalation of atmospheric pressure plasma flow. The coaxial atmospheric pressure plasma source has a tungsten wire inside a glass capillary, that is surrounded by a grounded tubular electrode. Plasma was generated under the following conditions; applied voltage: 8 kVpp, frequency: 3 kHz, and helium (He) gas flow rate: 1 L/min. On the other hand, sphygmomanometry of a blood vessel proceeded using a device comprising a disposable force transducer, and a bedside monitor for simultaneous electrocardiography and signal pressure measurements. We directly measured Nitric oxide (NO) using a catheter-type NO sensor placed in the coronary sinus through an angiography catheter from the abdomen. Blood pressure decreased from 110/65 to 90/40 mm Hg in the animals in vivo under plasma inhalation. The NO concentration in the abdominal aorta like the blood pressure, reached a maximum value at about 40 s and then gradually decreased.

Hirata, Takamichi; Murata, Shigeru; Kishimoto, Takumi; Tsutsui, Chihiro; Kondo, Akane; Mori, Akira

2012-10-01

351

The interplanetary magnetic field influences middle-latitude surface atmospheric pressure  

NASA Astrophysics Data System (ADS)

Results have been published over several decades that indicate a meteorological response in the polar regions to fluctuations in the east-west component of the interplanetary magnetic field (IMF), By. There is evidence that this Sun-weather coupling occurs via the global atmospheric electric field. It has been assumed that the effect maximises at high latitudes and is negligible at low and mid latitudes because the IMF-induced convection electric field is concentrated in the polar ionospheres. However, the spatial variation of the IMF-weather coupling has not previously been investigated in detail, neither have the global consequences of such forcing on the atmosphere. Here we demonstrate a previously unrecognised influence of IMF By on mid-latitude surface pressure. The difference between the mean surface pressure for high positive and high negative values of IMF By possesses a statistically-significant mid-latitude wave structure, similar in location and form to the cyclones and anti-cyclones produced by the action of atmospheric Rossby waves on the jet stream. Thus our results indicate that a mechanism that is known to produce atmospheric responses to the IMF in the polar regions is also able to modulate pre-existing weather patterns at mid-latitudes. A relatively localised and small amplitude solar influence on the upper atmosphere could therefore have an important effect, via the nonlinear evolution of storm tracks, on critical processes such as European climate and the breakup of Arctic sea ice.

Lam, Mai Mai; Chisham, Gareth; Freeman, Mervyn

2013-04-01

352

Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.  

PubMed

In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited. PMID:24493336

Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

2014-04-01

353

Modified-atmosphere storage under subatmospheric pressure and beef quality: I. Microbiological effects.  

PubMed

The microflora was studied in beef stored in stainless steel containers kept under reduced pressure (20 to 30 kPa) in a modified atmosphere (70% N2 + 30% CO2 or pure CO2) at 3 to 4 degrees C and 0 to 1 degrees C at a headspace:meat volume ratio of 2:1. Samples were obtained at weekly intervals, 1 to 3 times. Total colony counts (TCC) for Pseudomonas spp. and Brochothrix thermosphacta were generally 1 to 2 log10 cfu greater than in the control group of vacuum-packaged beef cuts stored at the same temperatures. In containers with the 70% N2 + 30% CO2 atmosphere at 20 to 30 kPa and 3 to 4 degrees C, substantial growth of Pseudomonas sp. was observed (median of 6 log10 cfu/cm2 at d 21 of storage compared with 3 log10 cfu/cm2 for vacuum-packaged beef). Pseudomonas counts were lower when the container system was held at 0 to 1 degrees C, especially when combined with the pure CO2 atmosphere. As expected for CO2-enriched atmospheres, B. thermosphacta was the dominant spoilage bacterium, in the same log10 order as the TCC. Lowering the storage temperature and changing the atmosphere to pure CO2 resulted in a reduction of 1 log10 for TCC (median values after 2 wk of storage). Although pathogenic bacteria such as Campylobacter, Salmonella, and Listeria monocytogenes were not detected in any sample, further studies are necessary to evaluate potential growth risks. The results demonstrate that CO2-enriched and O2-depleted atmospheres under low pressure have a limited effect on reducing bacterial growth, probably because the antibacterial activity of CO2 is proportional to the effective concentration of this gas in the headspace. At pressures of 20 to 30 kPa, a headspace with pure CO2 would still contain only approximately 20 to 30% CO2. PMID:16908649

Paulsen, P; Hiesberger, J; Giefing, S; Smulders, F J M

2006-09-01

354

Changing Cold Regions: Addressing Atmospheric, Cryospheric, Ecological and Hydrological Change in the Saskatchewan and Mackenzie River Basins, Canada  

NASA Astrophysics Data System (ADS)

The cold interior region of Western Canada east of the Continental Divide from the US border to the Arctic Ocean has one of the world's most extreme and variable climates and is experiencing rapid environmental change. Climate warming and precipitation change have resulted in altered patterns of snowfall and snowmelt, conversion of snowfall to rainfall, loss of glaciated area and thawing of permafrost. Effects of these changes on terrestrial ecosystems include changing alpine and arctic treelines, extreme variability in Prairie wetland extent and storage of subsurface water in soil and groundwater, "browning" of the boreal forest and prairie aspen woodlands, forest conversion to wetlands in areas of permafrost loss, increased tundra shrub height and coverage, with associated impacts on snow accumulation and melt and ground thaw regimes. These atmospheric, cryospheric and ecological changes have produced changes to water storage and cycling with lower, earlier and more variable streamflow from the Western Cordillera, earlier and more variable Prairie streamflow, more variable agricultural soil moisture, substantially earlier and sometimes higher streamflows with greater winter baseflows in the North, and indications of changes in extreme precipitation events and resulting flooding and drought. The recently formed Changing Cold Regions Network (CCRN) will investigate the integrated response of mountain, boreal forest, prairie and sub-arctic biomes to climate change at the scales of the Saskatchewan and Mackenzie River Basins and the regional climate system. The multi-prong approach will first inventory and evaluate observable recent change in the Earth system state, fluxes and variability, and then explore the complex interrelationships of changing Earth system processes through the development of improved models and their application in diagnosis and prediction at multiple scales, from small headwater basins to large river basins, major biomes and the regional climate system. CCRN will integrate data and analysis across scales and develop improved modelling tools to address environmental change and its policy implications. CCRN will contribute to the GEWEX and CliC projects of the World Climate Research Programme.

Pomeroy, J. W.; Wheater, H. S.; Quinton, W. L.; Stewart, R. E.

2013-05-01

355

Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions  

SciTech Connect

When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

1995-12-31

356

Precooling treatments induce resistance of Anastrepha ludens eggs to quarantine treatments of high-pressure processing combined with cold.  

PubMed

High-pressure processing (HPP) combined with heat or cold has been proposed as an alternative quarantine process for Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). HPP conditions at levels higher than 100 MPa applied to destroy eggs and larvae can also affect the postharvest physiology of the fruits. HPP at pressure levels in the range of 50-100 MPa is recommended. Eggs have been reported as being more resistant to HPP than larvae. Therefore, the objective of this study was to assess the effect of a precooling treatment on the biological viability of A. ludens eggs treated by HPP at 0 degrees C. The capability of nondestroyed eggs to develop and reproduce was also evaluated. One-, 2-, 3-, and 4-d-old eggs were precooled in ice water for 0 (control) 3, 6, 12, or 24 h and then pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min at 0 degrees C. The hatching capability of pressurized eggs was evaluated. The most lethal effect of HPP on nonprecooled eggs (0 h) was obtained at 90 MPa for 9 min, destroying all eggs except for the 3-d-old ones, which showed an 11.8% hatch rate. Precooling treatment improved the hatch rate of eggs ranging from 4 to 50% depending on precooling conditions. The main effect was observed after 6 h. These results suggest that precooling modified the biochemistry and physiology of eggs, improving their resistance to HPP treatments. PMID:24772540

Castañón-Rodríguez, J F; Velazquez, G; Montoya, P; Vázquez, M; Ramírez, J A

2014-04-01

357

Metal Matrix Composite Coatings Fabricated by Low-Pressure Cold Gas Dynamic Spraying  

NASA Astrophysics Data System (ADS)

Cold-gas dynamic spraying ("cold spraying") was used to deposit aluminum-alumina (Al-Al2O3) metal-matrix composite (MMC) coatings onto 6061 Al alloy. The powders consisted of -45 ?m commercially pure Al that was admixed with either 10 ?m or agglomerated 20 nm Al2O3 in weight fractions of 25, 50, 75, 90, and 95 wt.%. Scanning electron microscopy (SEM), Vickers microhardness testing, and image analysis were conducted to determine the microstructure, properties, and the volume fractions of reinforcing particles in the coatings, which was then converted to weight fractions. As the weight fraction of the Al2O3 in the coatings increased, the hardness values of the MMC coatings increased. A maximum hardness of 96 ± 10 HV0.2 was observed for the MMC coating that contained the agglomerated 20 nm Al2O3 particles, while a maximum hardness of 85 ± 24 HV0.2 was observed for the coatings with the 10 ?m Al2O3 particles. The slight increase in hardness of the coating containing the agglomerated 20 nm Al2O3 particles occurred in a coating of Al2O3 content that was lower than that in the coating that contained the 10 ?m reinforcing Al2O3 particles. The increased hardness of the MMC coatings that contained the agglomerated 20 nm Al2O3 particles and at lower reinforcing particle content was attributed to the increased spreading of the nanoagglomerated particles in the coating, which increased load-sharing and reinforcement capability of the particles. These results suggest that the use of nanoagglomerated, reinforcing hard-phase particles in cold-sprayed MMC coatings may be a more efficient alternative to the use of conventional micronsized reinforcing particles.

Hodder, K. J.; Nychka, J. A.; McDonald, A. G.

2014-06-01

358

Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers  

NASA Technical Reports Server (NTRS)

The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

1986-01-01

359

How can a dusty cold pool change the diurnal evolution of the Saharan Atmospheric Boundary Layer ?  

NASA Astrophysics Data System (ADS)

In the framework of the Fennec 2011 Special Observing period, a large and dusty density current (known as a haboob) was observed on the 21 June to cover half of the western part of the Sahara. Thanks to the AROME high resolution model used to forecast this event in real time, two research aircraft (the SAFIRE Falcon and the FAAM BAe 146) operated over Mauritania and Mali on that day, and we are able to document its characteristics in detail. Particularly large dust particles were observed in this haboob. These particles are known to absorb and scatter solar and thermal radiation. The comparison of AROME simulations with and without coupling with dust shows that the radiative impact of the dust induced a decrease of sensible heat fluxes by 200W/m²/AOD and an increase of the temperature in the atmospheric boundary layer by 1°C. Surface fluxes are one of the principal parameters controlling the growth of the boundary layer. However, during the day, the simulation coupled with dust shows a deeper boundary layer (reaching ~5km high) than the simulation without dust. Here, we explore the competition between surface heating and elevated heating in the boundary-layer development.

Kocha, Cécile; Flamant, Cyrille; Berckmans, Julie; Fink, Andreas; Garcia-Carreras, Luis; Knippertz, Peter; Lafore, Jean-Philippe; Marnas, Fabien; Marsham, John; Parker, Doug; Rosenberg, Philip; Ryder, Claire; Tulet, Pierre; Washington, Richard

2013-04-01

360

Glow Discharge Characteristics of Non-thermal Microplasmas at above Atmospheric Pressures and their Applications in Microscale Plasma Transistors  

E-print Network

......................................................... 28 Figure 6: Microfabricated device on CSZ substrate with Copper-Copper Oxide electrodes housed in machinable ceramic clamp .............................................. 31 Figure 7: Micrometer mounted cathode (top) with 50 k? resistor (top coil... [33]. Operation at atmospheric pressures and above atmospheric pressures has been achieved, yet is susceptible to transitioning to an arc due to cathode heating [20,33]. The effects of pressure on plasma discharge are governed by Paschen's scaling...

Wakim, Dani Ghassan

2013-07-25

361

Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report  

NASA Technical Reports Server (NTRS)

This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

Likhanskii, Alexandre

2012-01-01

362

The effects of cold water injection and two-phase flow on skin factor and permeability estimates from pressure falloff analysis  

E-print Network

THE EFFECTS OF COLD WATER INJECTION AND TWO-PHASE FLOW ON SKIN FACTOR AND PERMEABILITY ESTIMATES FROM PRESSURE FALLOFF ANALYSIS A Thesis by FRODE LINGE Submitted to the Graduate College of Texas ABM University in Partial fulfillment... Approved as to style and content by: H. Wu (Chairman of conanittee) ar zman (Member) an ee (Member ) W D, on Gonten (H d of Department) August 1984 ABSTRACT The Effects of Cold Water Injection and Two-Phase Flow on Skin Factor and Permeability...

Linge, Frode

2012-06-07

363

Proposal of the Atmospheric Pressure Turbine (APT) and High Temperature Fuel Cell Hybrid System  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cell (SOFC) has been extensively developed in many countries as an ultra-high efficient energy converter. Such high temperature fuel cell can be operated as a hybrid system of integrating of turbo machinery. A major decision is whether to place the cell stack in pressurized or unpressurized section. This paper discusses the exhaust energy recovery from fuel cells by use of turbo machines under unpressurized conditions, working with inverted Brayton cycle in which turbine expansion, cooling by heat exchanger and draft by compressor are made in an open cycle mode. It is denoted as “atmospheric pressure turbine (APT)”.

Tsujikawa, Yoshiharu; Kaneko, Ken-Ichi; Suzuki, Jun

364

Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen  

SciTech Connect

In this letter, atmospheric-pressure glow discharges in {gamma} mode with argon/nitrogen as the plasma-forming gas using water-cooled, bare copper electrodes driven by radio-frequency power supply at 13.56 MHz are achieved. The preliminary studies on the discharge characteristics show that, induced by the {alpha}-{gamma} coexisting mode or {gamma} mode discharge of argon, argon-nitrogen mixture with any mixing ratios, even pure nitrogen, can be employed to generate the stable {gamma} mode radio-frequency, atmospheric-pressure glow discharges and the discharge voltage rises with increasing the fraction of nitrogen in the argon-nitrogen mixture for a constant total gas flow rate.

Wang Huabo; Sun Wenting; Li Heping; Bao Chengyu; Gao Xing; Luo Huiying [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); School of Public Health and Family Medicine, Capital University of Medical Sciences, Beijing 100069 (China); Beijing Center for Diseases Control and Prevention, Beijing 100013 (China)

2006-10-16

365

Remote sensing of atmospheric pressure and sea state using laser altimeters  

NASA Technical Reports Server (NTRS)

Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

Gardner, C. S.

1985-01-01

366

Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films  

NASA Astrophysics Data System (ADS)

Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

2006-10-01

367

Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas  

SciTech Connect

A novel spectroscopic method is proposed for the measurement of electron density and temperature in atmospheric pressure dielectric barrier discharges using nitrogen gas. Simplified collisional-radiative models for the electronic and the vibrational states yield two separate continuity equations as a function of the electron density and the temperature with the coefficients expressed in terms of rotational temperature, vibrational temperature, and emission intensity ratio between the first positive system and the second positive system of nitrogen molecules. The electron density and the temperature in nonequilibrium atmospheric pressure plasmas can be determined by solving the continuity equations with the coefficients estimated from the spectroscopic measurements. It was confirmed by applying to a high power dielectric barrier discharge, where the measured plasma parameters were in good agreement with the estimation by using the electron conductivity of the discharge.

Kim, Ji Hun; Choi, Yoon Ho; Hwang, Y. S. [Department of Nuclear Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

2006-09-15

368

Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure  

NASA Astrophysics Data System (ADS)

Highly sensitive palladium (Pd) decorated carbon nanotube (CNT) embedding gas sensors working at atmospheric pressure were fabricated. Two types of gas sensors of bare CNTs and Pd nanoparticle decorated CNTs were synthesized by dielectrophoresis. The CNT-containing solution was dropped onto the patterned-platinum electrodes with ac bias. The CNT-embedding sensors sensitively detected 100 ppb level of NO2 in an atmospheric pressure condition. The Pd decoration on CNTs forming the depletion region was found to be an effective way to enhance the sensor response by the control of carrier mobility and density. Raman spectroscopy revealed a low defect ratio of D/G- by heat treatment at 450 °C. Moreover, it was investigated that there exists an optimum temperature to enhance the sensor response.

Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang; Song, Jin-Won; Shin, Dong-Hun; Han, Chang-Soo

2009-02-01

369

Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film.  

PubMed

In this work, the effect of atmospheric-pressure plasma treatments on surface properties of polyimide film are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angles, and atomic force microscopy (AFM). The adhesion characteristics of the film are also studied in the peel strengths of polyimide/copper film. As experimental results, the polyimide surfaces treated by plasma lead to an increase of oxygen-containing functional groups or the polar component of the surface free energy, resulting in improving the adhesion characteristics of the polyimide/copper foil. Also, the roughness of the film surfaces, confirmed by AFM observation, is largely increased. These results can be explained by the fact that the atmospheric-pressure plasma treatment of polyimide surface yields several oxygen complexes in hydrophobic surfaces, which can play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the polyimide/copper system. PMID:15797422

Park, Soo-Jin; Lee, Hwa-Young

2005-05-01

370

Interaction of a jet with a radiation pressure-dominated atmosphere - The case of SS 433  

NASA Technical Reports Server (NTRS)

A phenomenological model for the enigmatic object SS 433 is developed in which SS 433 is a neutron star (NS) surrounded by a dense accreted atmosphere. Jets are created close to the neutron star surface by the rapidly spinning NS, toward which matter flows at a super-Eddington rate. This supercritical accretion leads to a quasi-spherical atmosphere around the NS with very high pressure and density close to the surface. The interaction of the jet with the atmosphere as it propagates through it is discussed in detail. A boundary layer (BL) due to radiation viscosity forms between the jet and the surrounding medium. This BL can be visualized as a cocoon of low-density matter around the jet which prevents mass entrainment into the jet. A study of X-ray spectra shows how the radiation-viscous BL can explain the very small Delta v/v that is observed in the jets.

Arav, Nahum; Begelman, Mitchell C.

1993-01-01

371

Effect of H 2 ambient annealing on silicon nanowires prepared by atmospheric pressure chemical vapor deposition  

Microsoft Academic Search

We report the effect of H2 ambient annealing on the microstructure and vibrational properties of silicon nanowires (SiNWs) grown by atmospheric pressure chemical vapor depositions. The SiNWs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The HRTEM study revealed that the thickness of oxide sheath surrounded by core silicon

Bhabani S. Swain; Sung S. Lee; Sang H. Lee; Bibhu P. Swain; Nong M. Hwang

2010-01-01

372

Rotationally acceptable ocean tide models for determining the response of the oceans to atmospheric pressure fluctuations  

Microsoft Academic Search

Suitably generalized, ocean tide models can be used to determine the oceans' response to atmospheric pressure forcing; but the huge range of spatial and temporal scales of that forcing limits the relevance of state-of-the-art tide modeling techniques, like data assimilation, for such determinations. With an interest in its effects on Earth's rotation, in 1998 I employed a generalized but non-assimilating

S. R. Dickman

2010-01-01

373

Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air  

Microsoft Academic Search

A source of soft X-rays with an effective photon energy of 9 keV and a subnanosecond pulse width is built around a gas diode filled with atmospheric-pressure air and a UAEB-150 generator. A collector placed behind a grounded mesh electrode detects an electron beam and a pulse with positive polarity, the latter being due to an electric field surrounding the

I. D. Kostyrya; V. F. Tarasenko

2010-01-01

374

Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air  

Microsoft Academic Search

A source of soft X-rays with an effective photon energy of 9 keV and a subnanosecond pulse width is built around a gas diode\\u000a filled with atmospheric-pressure air and a UAEB-150 generator. A collector placed behind a grounded mesh electrode detects\\u000a an electron beam and a pulse with positive polarity, the latter being due to an electric field surrounding the

I. D. Kostyrya; V. F. Tarasenko

2010-01-01

375

PRELIMINARY INVESTIGATIONS OF A VERY LOW POWER ATMOSPHERIC PRESSURE HELIUM PLASMA  

Microsoft Academic Search

An atmospheric pressure helium plasma needle type is studied. The plasma is generated at 714 kHz (continuous wave) at very low power levels, ranging from 450 mW to 900 mW. It is in contact with a single electrode and is part of a resonant electric circuit. The emissive atomic and molecular plasma species were identified. Based on plasma optical emission,

S. D. ANGHEL; A. SIMON; M Kogalniceanu

2010-01-01

376

Effect of nozzle profile on gas mixing in an atmospheric and low pressure DC plasma jet  

SciTech Connect

The study combines enthalpy probe and mass spectrometer measurements in a DC-plasma jet under atmospheric and low pressure conditions. Both, standard cylindrical and laval nozzle were used as anode profiles. A detailed description of the experimental technique is given together with preliminary results. These confirm the role by which enthalpy probe measurements can be used to bridge the gap in temperature range between emission spectroscopic techniques and standard thermocouple probing.

Rahmane, M.; Soucy, G.; Boulos, M.I. [Univ. of Sherbrooke, Quebec (Canada); Henne, R. [Inst. for Technical Thermodynamics, Stuttgart (Germany)

1994-12-31

377

Analysis and characterization of sophorolipids by liquid chromatography with atmospheric pressure chemical ionization  

Microsoft Academic Search

Summary  A reversed phase high performance liquid chromatographic method combined with atmospheric pressure chemical ionization mass\\u000a detection (LC\\/APCI-MS) has been developed for the separation and analysis of sophorolipids produced byC. bombicola when grown on fatty acid mixtures. Using this method it was found that the incorporation of palmitic, linoleic, and linolenic\\u000a acids into the sophorolipid structure was dependent on the initial

A. Nuñez; R. Ashby; T. A. Foglia; D. K. Y. Solaiman

2001-01-01

378

Direct analysis of cannabis samples by desorption atmospheric pressure photoionization-mass spectrometry.  

PubMed

Fast analysis of cannabis samples without prior sample preparation or chromatography was performed using desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The MS(2) spectra of the molecular ions of tetrahydrocannabinol (THC) and cannabidiol (CBD) formed in DAPPI-MS showed distinct product ions, unlike the protonated molecules formed with other ambient mass spectrometry techniques, making possible the reliable identification of THC from cannabis samples. PMID:22977002

Kauppila, Tiina J; Flink, Anu; Laakkonen, Ulla-Maija; Aalberg, Laura; Ketola, Raimo A

2013-03-01

379

Influence of strong electric field on MDA and SOD of rice under atmosphere pressure  

NASA Astrophysics Data System (ADS)

The content of MDA is measured by TBA method in the experiment. The results show that the MDA content of rice seedlings after being radiated in a strong electric field under atmosphere pressure decreases compared to that of those not being radiated while the SOD activity decreases. It indicates that radiated seeds' resistance against oxidative stress can be greatly enhanced. The mechanism and relation between them are analyzed in this paper.

Xiong, Jianping; Hu, Shengyong; Li, Jikai; He, Songqing; Feng, Lixin

2013-03-01

380

High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers  

NASA Technical Reports Server (NTRS)

A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.

Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.

1985-01-01

381

Atomic Oxygen Cleaning Shown to Remove Organic Contaminants at Atmospheric Pressure  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center has developed and filed for a patent on a method to produce atomic oxygen at atmospheric pressure by using a direct current arc in a gas flow mixture of oxygen and helium. A prototype device has been tested for its ability to remove various soot residues from surfaces exposed to fire, and various varnishes such as acrylic and egg white.

Rutledge, Sharon K.

1998-01-01

382

A contribution to the knowledge of HMX decomposition and application of results. [at atmospheric pressure  

NASA Technical Reports Server (NTRS)

The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.

Kraeutle, K. J.

1980-01-01

383

The atmospheric-pressure plasma jet: a review and comparison to other plasma sources  

Microsoft Academic Search

Atmospheric-pressure plasmas are used in a variety of materials processes. Traditional sources include transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges. In arcs and torches, the electron and neutral temperatures exceed 3000°C and the densities of charge species range from 1016-1019 cm-3. Due to the high gas temperature, these plasmas are used primarily in metallurgy. Corona and dielectric

Andreas Schutze; James Y. Jeong; Steven E. Babayan; Jaeyoung Park; G. S. Selwyn; R. F. Hicks

1998-01-01

384

Fat Liquefaction of Adipose Tissue Using Atmospheric-Pressure Plasma Irradiation  

NASA Astrophysics Data System (ADS)

The liquefaction of fat in adipose tissue for potential medical applications was achieved by direct irradiation using an atmospheric-pressure plasma source and a catheter-type apparatus. When fat was irradiated with plasma generated from a catheter tip, it was liquefied through ozonolysis, although little production and diffusion of ozone originating from the collision/ionization of gas molecules was observed in preliminary experiments. Furthermore, surface damage to fat cells, such as thermal carbonization or electric shock injuries, was not observed.

Hirata, Takamichi; Tsutsui, Chihiro; Kishimoto, Takumi; Mori, Akira; Akiya, Masahiro; Yamamoto, Toshiaki; Taguchi, Akira

2011-08-01

385

Atmospheric-pressure Non-equilibrium Microplasmas using Liquids and Miniature Gas Flows  

NASA Astrophysics Data System (ADS)

We developed noble schemes to generate atmospheric-pressure microplasmas, in which the mass of initial materials such as gases or liquids is limited to a small amount. A miniature gas flow through a nozzle electrode was used to generate direct current glow or corona microdischarges with a metal or an electrolyte cathode. High-power microplasmas were operated by fast pulsed voltages. Pulsed microplasmas were created using a droplet or a filament of aqueous solution of ethanol.

Ishii, Shozo; Shirai, Naoki; Ibuka, Shinji; Kanemaru, Makoto; Kikuchi, Jun

386

Analysis of Ternary InGaN Layers Grown By Atmospheric Pressure Vertical MOVPE  

SciTech Connect

We present a study on the n-type ternary InGaN layers grown by atmospheric pressure vertical metal organic chemical vapor deposition on GaN template/(0001) sapphire substrate. An investigation in the different growth conditions on n-type of the InxGa1-xN, alloys was made for three series samples. Structural, electrical and optical properties were characterized by High X-Ray Diffraction, Hall effect and Photoluminescence respectively.

Yildiz, A.; Ozturk, M. K.; Kasap, M. [Department of Physics, Gazi University, Ankara (Turkey)

2007-04-23

387

Modelling of an inductively coupled plasma torch with argon at atmospheric pressure  

NASA Astrophysics Data System (ADS)

A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

2014-05-01

388

Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation  

SciTech Connect

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2013-02-15

389

Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce.  

PubMed

Atmospheric cold plasma (ACP) represents a potential alternative to traditional methods for non-thermal decontamination of foods. In this study, the antimicrobial efficacy of a novel dielectric barrier discharge ACP device against Escherichia coli, Salmonella enterica Typhimurium and Listeria monocytogenes inoculated on cherry tomatoes and strawberries, was examined. Bacteria were spot inoculated on the produce surface, air dried and sealed inside a rigid polypropylene container. Samples were indirectly exposed (i.e. placed outside plasma discharge) to a high voltage (70 kVRMS) air ACP and subsequently stored at room temperature for 24 h. ACP treatment for 10, 60 and 120 s resulted in reduction of Salmonella, E. coli and L. monocytogenes populations on tomato to undetectable levels from initial populations of 3.1, 6.3, and 6.7 log10 CFU/sample, respectively. However, an extended ACP treatment time was necessary to reduce bacterial populations attached on the more complex surface of strawberries. Treatment time for 300 s resulted in reduction of E. coli, Salmonella and L. monocytogenes populations by 3.5, 3.8 and 4.2 log10 CFU/sample, respectively, and also effectively reduced the background microflora of tomatoes. PMID:24929725

Ziuzina, D; Patil, S; Cullen, P J; Keener, K M; Bourke, P

2014-09-01

390

Effect of Modified Atmosphere Packaging and Vacuum Packaging on Quality Characteristics of Low Grade Beef during Cold Storage  

PubMed Central

Many studies have been carried out with respect to packaging methods and temperature conditions of beef. However, the effects of packaging methods and temperature conditions on the quality characteristics have not been extensively studied in low-grade beef. Low-grade beef samples were divided into 3 groups (C: ziplock bag packaging, T1: vacuum packaging, and T2: modified atmosphere packaging (MAP), CO2/N2 = 3:7) and samples were stored at 4°C for 21 days. The water-holding capacity (WHC) was significantly lower in T1 than in the other samples up to 14 days of storage. The thiobarbituric acid reactive substances and volatile basic nitrogen values were significantly lower in T1 and T2 than in C after 7 to 14 days of storage. The total bacterial counts were significantly lower in T1 and T2 than in C after 14 days of storage. In a sensory evaluation, tenderness and overall acceptability were significantly higher in T1 and T2 than in C at the end of the storage period (21 days). We propose that the MAP method can improve beef quality characteristics of low-grade beef during cold storage. However, the beneficial effects did not outweigh the cost increase to implement MAP. PMID:25049769

Hur, S. J.; Jin, S. K.; Park, J. H.; Jung, S. W.; Lyu, H. J.

2013-01-01

391

Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.  

PubMed

The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet. PMID:24880391

Babij, Micha?; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

2014-05-01

392

Analysis of atmospheric pressure and temperature effects on cosmic ray measurements  

NASA Astrophysics Data System (ADS)

In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31°S, 69°W, 2550 m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of -0.44 ± 0.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.

de MendonçA, R. R. S.; Raulin, J.-P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

2013-04-01

393

Multi-Response Optimization of Process Parameters for Low-Pressure Cold Spray Coating Process Using Taguchi and Utility Concept  

NASA Astrophysics Data System (ADS)

Most of the existing multi-response optimization approaches focus on the subjective and practical know-how of the process. As a result, some confusion and uncertainty are introduced in the overall decision-making process. In this work, an approach based on a Utility theory and Taguchi quality loss function has been applied to the process parameters for low-pressure cold spray process deposition of copper coatings, for simultaneous optimization of more than one response characteristics. In the present paper, two potential response parameters, i.e., coating thickness and coating density, have been selected. Utility values based on these response parameters have been analyzed for optimization using the Taguchi approach. The selected input parameters of powder feeding arrangement, substrate material, air stagnation pressure, air stagnation temperature, and stand-off distance significantly improve the Utility function (raw data) comprising quality characteristics (coating thickness and coating density). The percentage contribution of the parameters to achieve a higher value of Utility function is substrate material (50.03%), stand-off distance (28.87%), air stagnation pressure (6.41%), powder feeding arrangement (4.68%), and air stagnation temperature (2.64%).

Goyal, Tarun; Sidhu, T. S.; Walia, R. S.

2014-01-01

394

Department of Mechanical Engineering Spring 2012 Cold Box Pressure Relief Device  

E-print Network

to rupture. When this occurs, perlite uncontrollably spills out into the environment, and the plant must the necessity of draining the free flowing insulation, perlite, contained within the box. The design must prototype using a pressure gage and regulator Outcomes · The test method shows that perlite may become

Demirel, Melik C.

395

[Structural-functional characteristics of cervical vessels in hypertensive patients under changed atmospheric pressure].  

PubMed

The ultrasonic location technique was used to measure intima-media thickness (IMT), as well as internal systolic diameter of and linear blood velocity in the cervical arteries in people with initial hypertension. Correlation analysis elicited a temporal contingency between these parameters and daily average values of atmospheric pressure. Thus, common carotid artery IMT tended to increase on high-pressure days. Besides, diameters of the common and internal carotid arteries, and vertebral artery were narrowed and, consequently, linear blood velocity in these vessels increased. This relationship is more evident in men than women and in elderly subjects than young. These results are suggestive of a vasoconstrictive action of high atmospheric pressure on these arteries. The relationship is not universal, as it is nonlinear for diameter of the internal carotid artery and inverse for the external one. This implies different sensitivity of arteries to the factor under study and possible blood redistribution in the arterial basin depending on external pressure. The relationship was observed equally on the day of investigation and previous days, which points to its temporal stability. PMID:25163339

Mel'nikov, V N; Poliakov, V Ia; Krivoshchekov, S G; Baranov, V I; Rechkina, S Iu

2014-01-01

396

Analysis of `background' free oscillations and how to improve resolution by subtracting the atmospheric pressure signal  

NASA Astrophysics Data System (ADS)

It is well established that the Earth oscillates continuously with its fundamental modes excited even on seismically quiet days but the source of this 'background' excitation is unclear. The source could be internal (for example, tectonic motions) or external (for example, atmospheric turbulence). The GEOSCOPE broad-band seismic network provides a long-term, high quality, seismic data set to better observe these oscillations. Nine years of data from the quietest GEOSCOPE station (WUS) show background oscillations as well as evidence of a small annual variation with the most energy in June and July. We also use 4 years of simultaneous pressure/seismometer data from the TAM station to show how to improve the resolution of these oscillations by subtracting the pressure effect on the acceleration signal. Removing the pressure effect allows us to isolate some very low frequency spheroidal fundamental modes as low as angular order ?=2 after large earthquakes and down to ?=8 during quiet periods.

Roult, Geneviève; Crawford, Wayne

2000-10-01

397

An improved film evaporation correlation for saline water at sub-atmospheric pressures  

NASA Astrophysics Data System (ADS)

This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 - 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

2012-06-01

398

Multi-mode methanol flow boiling under atmospheric and subatmospheric pressures  

SciTech Connect

This is a continuation work of Lin and Lee (1996 National Heat Transfer Conference, Houston) while reporting the experimental results of multi-mode methanol flow boiling under atmospheric and subatmospheric pressures. An axial (discrete) heat flux distribution with neutral stability at which nucleate and film boiling can coexist steadily is identified under various system pressures and crossflow rates. Below this heat flux distribution, nucleate boiling mode is more stable. Above this distribution, film boiling becomes the more stable mode. An equal-area criterion based on the difference between bottom heat flux and surface boiling heat flux, and the wall superheat temperature relationship is employed for interpreting the experimental data. Effects of system pressure, mass flowrate, liquid subcooling and bottom heat flux on the relative stability of nucleate and film boiling modes are discussed.

Lin, W.W.; Liao, Y.C.; Lee, D.J. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Chemical Engineering

1996-12-31

399

Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data  

NASA Technical Reports Server (NTRS)

The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.

Fu, Lee-Lueng; Pihos, Greg

1994-01-01

400

Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling  

Microsoft Academic Search

We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen

A. Johnston; D. Senkovich

2007-01-01

401

Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band  

NASA Technical Reports Server (NTRS)

Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

2012-01-01

402

The thermal resistance of fine powders at atmospheric pressure and under vacuum  

SciTech Connect

Heat transport measurements are reported on candidate insulation systems with relatively high thermal resistances for use in appliances. The thermal resistances of small diameter silica powders at atmospheric pressure and under vacuum were measured from 295 to 340 K using unguarded radial heat flow techniques. The thermal resistances of rectangular panels containing perlite or silica powder at reduced pressure were determined using an unguarded linear heat flow technique. Values of 1.2m/sup 2//center dot/K/W for 0.0254 m (R-7 per inch) were obtained at atmospheric pressure for powders of pure, fumed, amorphous 0.01 ..mu..m dia silica particles compacted to about 10% of theoretical density. Values of 0.7 m/sup 2//center dot/K/W for 0.0254 m (R-4 per inch) were obtained at atmospheric pressure for powders of impure, amorphous (0.3 ..mu..m dia) silica particles. Under vacuum these particle systems yielded thermal resistances as high as 6 m/sup 2//center dot/K/W for 0.0254 m (R-34 per inch), and mixtures with the pure silica particles yielded over 9 m/sup 2//center dot/K/W for 0.0254 m (R- 50 per inch). Evacuated panels of pure silica particles yielded thermal resistance values over 3 m/sup 2//center dot/K/W for 0.0254 m (R-17 per inch) and decreased about 5% in resistance in 39 months. Evacuated panels of a perlite powder yielded similar values. 18 refs, 8 figs, 2 tabs.

McElroy, D.L.; Weaver, F.J.; Yarbrough, D.W.; Graves, R.S.

1987-01-01

403

Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials  

NASA Technical Reports Server (NTRS)

Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

Bishop, Janice L.; Pieters, Carle M.

1995-01-01

404

Computer Code Study of Asteroid Entry into Venusian Atmosphere: Pressure and Density Fields  

NASA Technical Reports Server (NTRS)

Analysis of the cratering records on the Moon, Mercury, and Mars have shown similar size-frequency distributions of craters produced during the late heavy bombardment of the inner solar system (Strom, 1988). Venus provides a valuable data base of information on the impacting population for more recent time. Because of resurfacing events, the Venusian cratering record has been estimated to be only about 500 million years old, and for the most part is in pristine condition, thereby producing an opportunity to discover the properties (size/velocity distribution) of the objects that recently impacted its surface. The Magellan IR mapping of the Venusian surface has produced an extremely high-quality set of crater topographies. The observed deficit of small craters is qualitatively explained by atmospheric effects on impactor breakup and the retardation effects of pressure on crater formation. Information about resurfacing history and impactor flux population can only be conjectured using arrant approximations for atmospheric effects on crater size scaling, such as assuming the absence of pressure effects or using other ad hoc approximations for this dependence. The recent work by Ivanov et al.(1986; 1992); Phillips et al.(199 1; 1992); Schaber et al. (1992) and others support the notion that atmospheric effects may have strongly influenced the Venusian cratering record. The work reported here looks at the potential synergism of aerodynamic entry and the gas dynamic flow fields that govern during the time scale and in the vicinity of crater formation.

Schmidt, Robert M.

1997-01-01

405

Inactivation of Escherichia coli Using the Atmospheric Pressure Plasma Jet of Ar gas  

NASA Astrophysics Data System (ADS)

Germicidal treatments of Escherichia coli on Langmuir-Blodget (LB) agar were performed using the atmospheric pressure plasma jet sources of Ar gas in the ambient air. Shorter distances from the nozzle of the plasma jet device were more effective in achieving higher bactericidal effects on E. coli grown on LB agar. The surface temperature of the agar was monitored and the spectroscopic analysis of the plasma jet was performed in order to evaluate the factors contributing to the bactericidal effect, such as heating, UV emission, and radical formation caused by the plasma jet. Although the plasma jet raised the surface temperature of LB agar up to about 40 °C, the bactericidal effect was not observed. Moreover, the bactericidal effect of UV (200-300 nm) emitted from the plasma jet was negligible compared with the effects of ions and radical species generated by the atmospheric plasma. The results suggest that the ions and radical species generated by the atmospheric pressure plasma jet are critical for high bactericidal effects on E. coli.

Homma, Takeshi; Furuta, Masakazu; Takemura, Yuichiro

2013-03-01

406

Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope.  

PubMed

We have developed a mass microscope (mass spectrometry imager with spatial resolution higher than the naked eye) equipped with an atmospheric pressure ion-source chamber for laser desorption/ionization (AP-LDI) and a quadrupole ion trap time-of-flight (QIT-TOF) analyzer. The optical microscope combined with the mass spectrometer permitted us to precisely determine the relevant tissue region prior to performing imaging mass spectrometry (IMS). An ultraviolet laser tightly focused with a triplet lens was used to achieve high spatial resolution. An atmospheric pressure ion-source chamber enables us to analyze fresh samples with minimal loss of intrinsic water or volatile compounds. Mass-microscopic AP-LDI imaging of freshly cut ginger rhizome sections revealed that 6-gingerol ([M + K](+)at m/z 333.15, positive mode; [M - H](-) at m/z 293.17, negative mode) and the monoterpene ([M + K](+) at m/z 191.09), which are the compounds related to pungency and flavor, respectively, were localized in oil drop-containing organelles. AP-LDI-tandem MS/MS analyses were applied to compare authentic signals from freshly cut ginger directly with the standard reagent. Thus, our atmosphere-imaging mass spectrometer enabled us to monitor a quality of plants at the organelle level. PMID:19788281

Harada, Takahiro; Yuba-Kubo, Akiko; Sugiura, Yuki; Zaima, Nobuhiro; Hayasaka, Takahiro; Goto-Inoue, Naoko; Wakui, Masatoshi; Suematsu, Makoto; Takeshita, Kengo; Ogawa, Kiyoshi; Yoshida, Yoshikazu; Setou, Mitsutoshi

2009-11-01

407

Atmospheric pressure creep experiments using highly dense fine-grained mineral aggregates  

NASA Astrophysics Data System (ADS)

Historically in mineral and rock physics, atmospheric pressure creep tests have been used extensively to study the rheological properties of minerals through deformation of single crystals. This technique has several advantages including minimal friction effects on the loading column, which allows excellent stress resolution on the sample, and stable temperature control, which allows long duration experiments at relatively slow strain rates. The downside of atmospheric pressure experiments on polycrystalline samples is that cavities and cracks are easily introduced during the test, resulting in brittle failure of the specimen. It is generally found that the confining pressure should be larger than the applied differential stress to avoid failure due to microcracking. Consequently very few creep experiments under atmospheric pressure have been conducted on polycrystalline samples. We revisit this classic method of atmospheric pressure creep experiments by developing a technique to synthesize very fine grained aggregates with essentially zero porosity. So far, we are able to reach even 200 micron grain size for certain type of mineral assemblies. During grain size sensitive creep, we expect that the differential stress applied to the samples can be reduced 100 to 1000 times the stress to deform coarser grained samples at the same strain rate condition by reducing grain size of one order of magnitude. Taking into account of ~10 micron grain size as a common value in conventional experiments, we should be able to reduce the applied stress of > 2500 times. Such lowering the applied stress will help to prevent cracking and/or cavitation in the samples. Using this technique, we have been able to demonstrate (i) superplasticity, (ii) microstructural development comparable to that in observed natural mylonites, (iii) flow strength as a function of stress, grain size and temperature, (iv) the effect of the fraction of second phase on flow strength in poly-phase materials, (v) fabric development as a function of strain, (vi) grain growth behavior during deformation, (vii) deformation during chemical reaction, and (viii) the effect of melt on deformation microstructures of synthetic geomaterials.

Hiraga, T.; Miyazaki, T.; Tasaka, M.; Sueyoshi, K.; Nakakoji, S.; Koizumi, S.; Yoshida, H.

2012-12-01

408

Improved transport properties and connectivity of in situ MgB 2 wires obtained by Cold High Pressure Densification (CHPD)  

NASA Astrophysics Data System (ADS)

The critical current density, Jc, of in situ MgB 2 wires with C 4H 6O 5 (malic acid) has been strongly enhanced by means of Cold High Pressure Densification (CHPD) at pressures up to 2.5 GPa prior to reaction. An increase in Jc by factors 2 and 8 was observed at 4.2 and 20 K, regardless of the applied field. Densified wires were found to exhibit a higher homogeneity due to enhanced connectivity. In addition, a higher C content was found, as shown by the lattice parameter change, the decrease of Tc, the shift of the calorimetric Tc distribution and a reduced anisotropy in tapes obtained from the same wires. The higher C content in densified wires is responsible for the observed enhancement of Birr by more than 1 T, up to 11 T at 20 K. Almost isotropic Jc values were obtained for C 4H 6O 5 added square wires of 1 × 0.6 mm 2 cross section, the values of Jc(4.2 K) = 1 × 10 4 A/cm 2 for fields // and ? to the wider surface being obtained at 13.8 and 13.1 T (1 ?V/cm criterion), the values for 20 K being 6.4 and 6.2 T, respectively. The method was successfully applied to mono- and multifilamentary wires with lengths up to several meters, suggesting applicability for industrial lengths.

Flükiger, R.; Hossain, M. S. A.; Senatore, C.; Rindfleisch, M.

2011-11-01

409

High number of Yersinia enterocolitica 4/O:3 in cold-stored modified atmosphere-packed pig cheek meat.  

PubMed

Yersinia enterocolitica is a psychrotrophic, facultative anaerobic zoonotic bacterium belonging to family Enterobacteriaceae and it can be transmitted from pigs to humans through pork. The growth of bacteria belonging to Enterobacteriaceae and aerobic spoilage bacteria is usually effectively restricted by 20% or more CO(2) enriched atmosphere at refrigerated temperatures. In this study, 40 samples of meat strips from pig cheek (musculus masseter) and 40 samples from hind leg (m. semimembranosus) muscles were packaged in modified atmosphere (MA) (30% CO(2)/70% O(2)) and stored at 6°C for 12d. Twenty naturally contaminated samples per muscle type were studied on days 1 and 13. Violet red bile glucose (VRBG) and de Man Rogosa Sharpe (MRS) agar plates were used for enumeration of Enterobacteriaceae including Y. enterocolitica and lactic acid bacteria, respectively. During the 12-d storage at 6°C in MA, the mean number of bacteria on pork strips of cheek meat was increasing from 1.6 to 4.5 log cfu/g and from 3.1 to 7.2 log cfu/g on VRBG and MRS agar plates, respectively. Most of the oxidase-negative isolates on VRBG plates, which were isolated from the cheek meat samples after 12-d cold storage in MA, were identified as Y. enterocolitica 4/O:3. The mean number of this pathogen was 4.1 log cfu/g varying between 2.3 and 5.4 log cfu/g. The pH of the cheek meat and leg meat was measured on days 1 and 13, and it remained high (pH>6) in most cheek meat samples during the storage. No Y. enterocolitica 4/O:3 was isolated from meat strips of hind leg. This study shows that cheek meat of slaughter pigs is contaminated with Y. enterocolitica 4/O:3 and that this pathogen can grow well on raw pork packaged in MA at 6°C even in the presence of high number of lactic acid bacteria. PMID:22336515

Fredriksson-Ahomaa, M; Murros-Kontiainen, A; Säde, E; Puolanne, E; Björkroth, J

2012-04-01

410

Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure  

NASA Astrophysics Data System (ADS)

Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

Kostov, K. G.; Hamia, Y. A. A.; Mota, R. P.; dos Santos, A. L. R.; Nascente, P. A. P.

2014-05-01

411

Falling atmospheric pressure as a trigger for methane ebullition from peatland  

NASA Astrophysics Data System (ADS)

Peatlands are widely regarded as a significant source of atmospheric CH4, a potent greenhouse gas. At present, most of the information on environmental emissions of CH4 comes from infrequent, temporally discontinuous ground-based flux measurements. Enormous efforts have been made to extrapolate measured emission rates to establish seasonal or annual averages using relevant biogeochemical factors, such as water table positions or peat temperatures, by assuming that the flux was stationary during a substantial nonsampling period. However, this assumption has not been explicitly verified, and little is known about the continuous variation of the CH4 flux in a timescale of individual flux measurement. In this study, we show an abrupt change in the CH4 emission rate associated with falling atmospheric pressure. We found that the CH4 flux can change by 2 orders of magnitude within a matter of tens of minutes owing to the release of free-phase CH4 triggered by a drop in air pressure. The contribution of the ebullition to the total CH4 flux during the measurements was significant (50-64%). These results clearly indicated that field campaigns must be designed to cover this rapid temporal variability caused by ebullition, which may be especially important in intemperate weather. Process-based CH4 emission models should also be modified to include air pressure as a key factor for the control of ebullient CH4 release from peatland.

Tokida, T.; Miyazaki, T.; Mizoguchi, M.; Nagata, O.; Takakai, F.; Kagemoto, A.; Hatano, R.

2007-06-01

412

A theoretical insight into low-temperature atmospheric-pressure He+H2 plasmas  

NASA Astrophysics Data System (ADS)

H2-containing low-temperature plasmas are used in a wide range of industrial applications. In recent decades, efforts have been made to understand and improve the performance of these plasmas, mainly when operated at low and medium pressures. Studies of hydrogen-containing plasmas at atmospheric pressure, however, are scarce despite the potential advantage of operation in a vacuum-free environment. Here the chemistry of low-temperature atmospheric-pressure He + H2 plasmas is studied by means of a global model that incorporates 20 species and 168 reactions. It is found that for a fixed average input power the plasma density decreases sharply when the H2 concentration is higher than ˜0.2%, whereas the atomic H density peaks at a H2 concentration of ˜2%. Operation at larger H2 concentrations leads to lower plasma densities and lower H concentrations because at high H2 concentrations significant power is dissipated via vibrational excitation of H2 and there is an increasing presence of negative ions (H-). Key plasma species and chemical processes are identified and reduced sets of reactions that capture the main physicochemical processes of the discharge are proposed for use in computationally demanding models. The actual waveform of the input power is found to affect the average density of electrons, ions and metastables but it has little influence on the density of species requiring low energy for their formation, such as atomic hydrogen and vibrational states of hydrogen.

Liu, Ding-Xin; Iza, Felipe; Wang, Xiao-Hua; Ma, Zhi-Zhen; Rong, Ming-Zhe; Kong, Michael G.

2013-10-01

413

Microplasma Discharge Vacuum Ultraviolet Photoionization Source for Atmospheric Pressure Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H2 gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

Symonds, Joshua M.; Gann, Reuben N.; Fernández, Facundo M.; Orlando, Thomas M.

2014-09-01

414

Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures  

SciTech Connect

Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements w