Science.gov

Sample records for cold forming tools

  1. The fracture toughness of borides formed on boronized cold work tool steels

    SciTech Connect

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compact and smooth.

  2. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  3. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  4. Spray-formed tooling

    SciTech Connect

    McHugh, K.M.; Key, J.F.

    1994-12-31

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be de signed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  5. Seal for fluid forming tools

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2012-03-20

    An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.

  6. Rib forming tool for tubing

    DOEpatents

    Rowley, James P.; Lewandowski, Edward F.; Groh, Edward F.

    1976-01-01

    Three cylindrical rollers are rotatably mounted equidistant from the center of a hollow tool head on radii spaced 120.degree. apart. Each roller has a thin flange; the three flanges lie in a single plane to form an internal circumferential rib in a rotating tubular workpiece. The tool head has two complementary parts with two rollers in one part of the head and one roller in the other part; the two parts are joined by a hinge. A second hinge, located so the rollers are between the two hinges, connects one of the parts to a tool bar mounted in a lathe tool holder. The axes of rotation of both hinges and all three rollers are parallel. A hole exposing equal portions of the three roller flanges is located in the center of the tool head. The two hinges permit the tool head to be opened and rotated slightly downward, taking the roller flanges out of the path of the workpiece which is supported on both ends and rotated by the lathe. The parts of the tool head are then closed on the workpiece so that the flanges are applied to the workpiece and form the rib. The tool is then relocated for forming of the next rib.

  7. Metal flowing of involute spline cold roll-beating forming

    NASA Astrophysics Data System (ADS)

    Cui, Fengkui; Wang, Xiaoqiang; Zhang, Fengshou; Xu, Hongyu; Quan, Jianhui; Li, Yan

    2013-09-01

    The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating, the theory of roller design, and the stress and strain field analysis of cold roll-beating, etc. However, the research on law of metal flow in the forming process of involute spline cold roll-beating is rare. According to the principle of involute spline cold roll-beating, the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established, and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded. A finite element model of the spline cold roll-beating process is established, the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied, and the node flow tracks of the deformation area are analyzed. The experimental research on the metal flow of cold roll-beating spline is conducted, and the metallographic structure variation, grain characteristics and metal flow line of the different tooth profile area are analyzed. The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance. There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming. The characteristics of involute spline cold roll-beating forming are given, and the forming mechanism of involute spline cold roll-beating is revealed. This paper researches the law of metal flow in the forming process of involute spline cold roll-beating, which provides theoretical supports for solving the tooth profile forming quality problem.

  8. Analytic Model For Estimation Of Cold Bulk Metal Forming Simulations

    SciTech Connect

    Skunca, Marko; Keran, Zdenka; Math, Miljenko

    2007-05-17

    Numerical simulation of bulk metal forming plays an important role in predicting a key parameters in cold forging. Comparison of numerical and experimental data is of great importance, but there is always a need of more universal analytical tools. Therefore, many papers besides experiment and simulation of a particular bulk metal forming technology, include an analytic model. In this paper an analytical model for evaluation of commercially available simulation program packages is proposed. Based on elementary theory of plasticity, being only geometry dependent, model represents a good analytical reference to estimate given modeling preferences like; element types, solver, remeshing influence and many others. Obtained, geometry dependent, stress fields compared with numerical data give a clear picture of numerical possibilities and limitations of particular modeling program package.

  9. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  10. Ultrasonic cold forming of aircraft sheet materials

    NASA Astrophysics Data System (ADS)

    Devine, J.; Krause, P. C.

    1981-01-01

    Ultrasonic forming was investigated as a means for shaping aircraft sheet materials, including titanium 6Al-4V alloy, nickel, and stainless steel AM355-CRT, into a helicopter rotor blade nosecap contour. Equipment for static forming of small coupons consisted of a modified 4000 watt ultrasonic spot welder provided with specially designed punch and die sets. The titanium alloy was successfully formed to a 60 degree angle in one step with ultrasonics, but invariably cracked under static force alone. Nickel had a low enough yield strength that it could be successfully formed either with or without ultrasonics. Insufficient ultrasonic power was available to produce beneficial effect with the high-strength steel. From analogy with commercially used ultrasonic tube drawing, it was postulated that dynamic forming of long lengths of the nosecap geometry could be achieved with an ultrasonic system mounted on a draw bench. It was recommended that the ultrasonic technique be considered for forming other aircraft sheet geometries, particularly involving titanium alloy.

  11. Dimpling Tools Would Form Fastener Neatly

    NASA Technical Reports Server (NTRS)

    Roberts, Michael D.; Hendrickson, Donald R.

    1988-01-01

    Proposed set of tools neatly dimple cup washer to prevent screw from turning in mounting hole. Two dimples required, one leaning outward to grip recess in mounting hole and one leaning inward to grip recess in screw-head. Tools do not cause cracks and tears. Substitute die-forming process for hammer-and-center-punch process. De-forming process requires less skill and gives results of greater quality and consistency.

  12. Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process

    NASA Astrophysics Data System (ADS)

    Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.

    2016-07-01

    For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.

  13. Forming the Cold Classical Kuiper Belt in a Light Disk

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew; Wu, Yanqin; Lithwick, Yoram

    2016-02-01

    Large Kuiper Belt objects are conventionally thought to have formed out of a massive planetesimal belt that is a few thousand times its current mass. Such a picture, however, is incompatible with multiple lines of evidence. Here, we present a new model for the conglomeration of Cold Classical Kuiper Belt objects, out of a solid belt only a few times its current mass, or a few per cent of the solid density in a Minimum Mass Solar Nebula. This is made possible by depositing most of the primordial mass in grains of centimeter size or smaller. These grains collide frequently and maintain a dynamically cold belt out of which large bodies grow efficiently: an order-unity fraction of the solid mass can be converted into large bodies, in contrast to the ∼ {10}-3 efficiency in conventional models. Such a light belt may represent the true outer edge of the solar system, and it may have effectively halted the outward migration of Neptune. In addition to the high efficiency, our model can also produce a mass spectrum that peaks at an intermediate size, similar to the observed Cold Classicals, if one includes the effect of cratering collisions. In particular, the observed power-law break observed at ∼ 30 {km} for Cold Classicals, one that has been interpreted as a result of collisional erosion, may be primordial in origin.

  14. A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-06-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ˜ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M ⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  15. An expert system for ensuring the reliability of the technological process of cold sheet metal forming

    NASA Astrophysics Data System (ADS)

    Kashapova, L. R.; Pankratov, D. L.; Utyaganov, P. P.

    2016-06-01

    In order to exclude periodic defects in the parts manufacturing obtained by cold sheet metal forming a method of automated estimation of technological process reliability was developed. The technique is based on the analysis of reliability factors: detail construction, material, mechanical and physical requirements; hardware settings, tool characteristics, etc. In the work the expert system is presented based on a statistical accumulation of the knowledge of the operator (technologist) and decisions of control algorithms.

  16. Validity assessment of ductile fracture criteria in cold forming

    SciTech Connect

    Shabara, M.A.; El-Domiaty, A.A.; Kandil, A.

    1996-08-01

    This paper describes the assessment of various empirical and semiempirical ductile fracture criteria to determine their ability to predict the occurrence of fracture in metalforming processes. The criteria assessed are reformulated such that each is expressed in terms of mostly nondimensional material-dependent quantities and constants. The constants in each criterion are determined using data from published experimental results on cold upsetting of aluminum and steel specimens. The limit strain or the forming limit corresponding to each criterion is then determined and compared with the experimental data. There is clearly good agreement between theory and experiment for several criteria, but the predictions of other criteria fall far from experimental results.

  17. Evolution of carbides in cold-work tool steels

    SciTech Connect

    Kim, Hoyoung; Kang, Jun-Yun; Son, Dongmin; Lee, Tae-Ho; Cho, Kyung-Mox

    2015-09-15

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C. In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.

  18. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  19. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of...

  20. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of...

  1. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    SciTech Connect

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  2. Cold-formed steel pallet rack connection: an experimental study

    NASA Astrophysics Data System (ADS)

    Mohan, Vimal; Prabha, P.; Rajasankar, J.; Iyer, Nagesh R.; Raviswaran, N.; Nagendiran, V.; Kamalakannan, S. S.

    2015-03-01

    Industrial pallet rack systems are made up of three-dimensional structural arrangement using cold-formed steel members. The rack columns (upright) have perforations at prescribed intervals to facilitate the assemblage of beams with end connections. The tabs are used as connections which are engaged into the perforations and are in particular, highly semi-rigid in nature. Due to the diversity of rack systems, connecting member's stiffness and strength, it is almost impossible to develop a generalised model for analytical predication of the connection stiffness. This paper describes the beam-column connection tests carried out on a commercially available pallet rack system by adopting single cantilever test set-up. Thirty-five sets of combinations are identified based on the variation in upright profile and thickness, depth of beam and the connector to study the connection stiffness. Three tests were performed for each set to bring in uniformity in the result taking the total number of tests to 105. A full range parametric study is carried out to understand the influence of above said parameters on moment-rotation behaviour and the joint stiffness. The experimental results showed that an improved performance of the joint connection is achieved using connectors with more number of tabs, greater thickness and improved profile of the upright and larger depth of the beam.

  3. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soluble oil or water solutions used in cold worked pipe and tube forming operations. Limitations for other... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold...

  4. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soluble oil or water solutions used in cold worked pipe and tube forming operations. Limitations for other... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold...

  5. Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure

    ERIC Educational Resources Information Center

    Mizelle, John Christopher; Tang, Teresa; Pirouz, Nikta; Wheaton, Lewis A.

    2011-01-01

    Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools.…

  6. Coating of High-Alloyed, Ledeburitic Cold Work Tool Steel Applied by HVOF Spraying

    NASA Astrophysics Data System (ADS)

    Rajasekaran, B.; Mauer, G.; Vassen, R.; Röttger, A.; Weber, S.; Theisen, W.

    2010-03-01

    This study demonstrates the processing of a cold work tool steel (X220CrVMo13-4) coating using HVOF spraying. The coating formation was analyzed based on microstructure, phase, hardness, porosity, oxidation, and adhesion characteristics. An online diagnostic tool was utilized to find out the in-flight characteristics of powder such as temperature and velocity during the coating process to identify the influencing parameters to achieve dense cold work tool steel coatings with low oxidation. The influence of powder size, process parameters, and in-flight characteristics on the formation of cold work tool steel coatings was demonstrated. The results indicated that thick and dense cold work tool steel coatings with low oxidation can be obtained by the selection of appropriate powder size and process parameters.

  7. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  8. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  9. Cold denaturation as a tool to measure protein stability.

    PubMed

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  10. Cold denaturation as a tool to measure protein stability

    PubMed Central

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  11. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the cold... soluble oil or water solutions used in cold worked pipe and tube forming operations. Limitations for other... controlled mechanical properties in the steel. (b) The limitations and standards set out below for...

  12. Numerical study of strain-rate effect in cold rolls forming of steel

    NASA Astrophysics Data System (ADS)

    Falsafi, J.; Demirci, E.; Silberschmidt, V. V.

    2013-07-01

    Cold roll forming (CRF) is a well-known continuous manufacturing process, in which a flat strip is deformed by successive rotating pairs of tools, without changing the material thickness. In the past decades, to lessen the process-development efforts, finite-element simulations have been increasingly employed to improve the process design and predict the manufacturing-induced defects. One of the important aspects in design of the CRF process is consideration of resulting strains in the final product as the material passes through several complex forming stands. Sufficient knowledge of longitudinal strain in the workpiece is required to set various process parameters. Increasing a process speed in a roll forming operation can bring cost advantages, but the influence of the forming speed on the strain distribution should be explored. This study is focussed on a strain-rate effect in the CRF process of steel sheets. The strain-rate dependency of a plastic behaviour observed in most metals can affect the finished product's quality as well as process parameters. This paper investigates the influence of the strain rate on longitudinal strains induced in the roll forming operation by incorporating a phenomenological Johnson-Cook constitutive model, which allows studying the impact of the process speed on the output product. Taking advantage of 3D finite element analysis, a roll forming process was simulated using MCS.Marc, comprising a complete set of forming stations. Through the changing of the process speed, the strain rate impact on longitudinal peak strains and forming length was investigated. The results highlight the effect of the strain rate on edge thinning and subsequent undesirable distortions in the product.

  13. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  14. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    SciTech Connect

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-04

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  15. FEM simulation for cold press forging forming of the round-fin heat sink

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  16. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  17. Tools made of ice facilitate forming of soft, sticky materials

    NASA Technical Reports Server (NTRS)

    Harris, J. E.; Ramsey, J. G., Jr.; Schinbeckler, K. D.

    1969-01-01

    Tools made of ice facilitate the forming or shaping of materials that are soft and sticky in the uncured state. The low-temperature of the ice slows the curing of the material, extending the working time available before setup. Handling problems are eliminated because the material does not adhere to the tool, and the melting ice serves as a lubricant.

  18. Tools and approaches to ensure quality of vaccines throughout the cold chain

    PubMed Central

    Kartoglu, Umit; Milstien, Julie

    2014-01-01

    The Expanded Program on Immunization was designed 40 years ago for two types of vaccines: those that are heat stable but freeze sensitive and those that are stable to freezing but heat labile. A cold chain was developed for transport and storage of such vaccines and established in all countries, despite limited access to resources and electricity in the poorest areas. However, cold chain problems occur in all countries. Recent changes to vaccines and vaccine handling include development and introduction of new vaccines with a wide range of characteristics, improvement of heat stability of several basic vaccines, observation of vaccine freezing as a real threat, development of regulatory pathways for both vaccine development and the supply chain, and emergence of new temperature monitoring devices that can pinpoint and avoid problems. With such tools, public health groups have now encouraged development of vaccines labeled for use in flexible cold chains and these tools should be considered for future systems. PMID:24865112

  19. Numerical Investigation on Cold-Formed Steel Lipped Channel Columns with Intermediate Web Stiffeners

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Arun, N.

    2016-03-01

    This work describes finite element simulation into the ultimate strength and buckling behaviour of cold-formed steel lipped channel columns with intermediate web stiffeners subjected to axial compression. Numerical simulation is performed by using finite element analysis software ANSYS. A reliable finite element model is used for the parametric study of effects of cross section geometries on the ultimate strength and buckling behaviour of cold-formed steel columns are investigated. All the section geometries in this study also satisfied the limitations given for pre-qualified sections in direct strength method. The cross sectional dimensions, section properties and length of the specimen are obtained by using CUFSM software. The ultimate strength predicted by the finite element analysis are compared with the strength calculated using the current direct strength method specifications for cold-formed steel structures, suitable design recommendations are proposed.

  20. Spray forming process for producing molds, dies and related tooling

    DOEpatents

    McHugh, Kevin M.; Key, James F.

    1998-01-01

    A method for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers.

  1. New integrated approach for repairing and redesigning heavy forming tools

    NASA Astrophysics Data System (ADS)

    Bichmann, Stephan, II; Zacher, Michael; Glaser, Ulf; Pfeifer, Tilo

    2003-05-01

    Forging and sheet metal forming tools are subject to strong, partial wear in use. On the one hand wear-protection layers are applied before use, and on the other hand worn tools are repaired by manual build-up welding after use. At present the repair of such tools is carried out in separate work processes with a small degree of automation and a high proportion of manual activity. This leads to long running times and potential sources of error. Our approach to solve these problems is to develop a repair cell which will facilitate automated repairs, beginning with measurement of the worn tool areas through to the repaired, fully operational tool. This paper will describe the overall concept of this repair cell with a special focus on optical metrology. Challenges of integration and demands for different sensor types are presented as well as the specified interfaces between different processing stages during manufacturing.

  2. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  3. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    NASA Astrophysics Data System (ADS)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  4. MODELING THE STAR-FORMING UNIVERSE AT z = 2: IMPACT OF COLD ACCRETION FLOWS

    SciTech Connect

    Khochfar, Sadegh; Silk, Joseph

    2009-07-20

    We present results of a semianalytic model (SAM) that includes cold accretion and a porosity-based prescription for star formation. We can recover the puzzling observational results of low V/{sigma} seen in various massive disk or disk-like galaxies, if we allow 18% of the accretion energy from cold flows to drive turbulence in gaseous disks at z = 2. The increase of gas mass through cold flows is by itself not sufficient to increase the star formation rate sufficiently to recover the number density of M-dot{sub *}>120 M{sub odot} yr{sup -1} galaxies in our model. In addition, it is necessary to increase the star formation efficiency. This can be achieved naturally in the porosity model, where star formation efficiency scales {proportional_to}{sigma}, which scales as cloud velocity dispersion. As cold accretion is the main driver for gas velocity dispersion in our model, star formation efficiency parallels cold accretion rates and allows fast conversion into stars. At z {approx} 2, we find a space density 10{sup -4} Mpc{sup -3} in star-forming galaxies with M-dot{sub *}>120 M{sub odot} yr{sup -1}, in better agreement than earlier estimates from SAMs. However, the fundamental relation between M-dot{sub *} and M {sub *} is still offset from the observed relation, indicating the need for possibly more efficient star formation at high-z perhaps associated with a role for active galactic nucleus (AGN) triggering.

  5. Spray forming system for producing molds, dies and related tooling

    DOEpatents

    McHugh, Kevin M.

    2000-01-01

    A system for the spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as powders, whiskers or fibers.

  6. Spray forming process for producing molds, dies and related tooling

    DOEpatents

    McHugh, K.M.; Key, J.F.

    1998-02-17

    A method is disclosed for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers. 17 figs.

  7. Nonaqueous composition for slip casting or cold forming refractory material into solid shapes

    SciTech Connect

    Montgomery, L.C.

    1993-08-24

    A composition is described for slip casting or cold forming non-oxide refractory material(s) into solid shape comprising finely divided solid refractory materials selected from the group consisting of metal boride, refractory carbide, nitride, silicide and a refractory metal of tungsten, molybdenum, tantalum and chromium suspended in a nonaqueous liquid slip composition consisting essentially of a deflocculent composed of a vinyl chloride-vinyl acetate resin dissolved in an organic solvent.

  8. Spray-Formed Tooling with Micro-Scale Features

    SciTech Connect

    Kevin McHugh

    2010-06-01

    Molds, dies, and related tooling are used to shape many of the plastic and metal components we use every day at home and work. Traditional mold-making practices are labor and capital equipment intensive, involving multiple machining, benching and heat treatment operations. Spray forming is an alternative method to manufacture molds and dies. The general concept is to atomize and deposit droplets of a tooling alloy onto a pattern to form a thick deposit while imaging the pattern’s shape, surface texture and details. Unlike conventional machining, this approach can be used to fabricate tooling with micro-scale surface features. This paper describes a research effort to spray form molds and dies that are used to image micro-scale surface textures into polymers. The goal of the study is to replicate textures that give rise to superhydrophobic behavior by mimicking the surface structure of highly water repellent biological materials such as the lotus leaf. Spray conditions leading to high transfer fidelity of features into the surface of molded polymers will be described. Improvements in water repellency of these materials was quantified by measuring the static contact angle of water droplets on flat and textured surfaces.

  9. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  10. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    SciTech Connect

    Rutledge, V.J.; Maio, V.

    2013-07-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases.

  11. Modified Steels for Cold-Forming U-Bolts Used In Leaf Springs Systems

    NASA Astrophysics Data System (ADS)

    Ventura, J. M.; Castro, D. B. V.; Ruckert, C. O. F. T.; Maluf, O.; Bose Filho, W. W. B.; Spinelli, D.

    2009-10-01

    In this work, a low alloy steel and a fabrication process were developed to produce U-Bolts for commercial vehicles. Thus, initially five types of no-heat treated steel were developed with different additions of chrome, nickel, and silicon to produce strain hardening effect during cold-forming processing of the U-Bolts, assuring the required mechanical properties. The new materials exhibited a fine perlite and ferrite microstructure due to aluminum and vanadium additions, well known as grain size refiners. The mechanical properties were evaluated in a servo-hydraulic test machine system—MTS 810 according to ASTM A370-03; E739 and E08m-00 standards. The microstructure and fractography analyses of the cold-formed steels were performed by using optical and scanning electronic microscope techniques. To evaluate the performance of the steels and the production process, fatigue tests were carried out under load control (tensile-tensile), R = 0.1 and f = 30 Hz. The Weibull statistic methodology was used for the analysis of the fatigue results. At the end of this work the 0.21% chrome content steel, Alloy 2, presented the best fatigue performance.

  12. Comparison of ceramic waste forms produced by hot uniaxial pressing and by cold pressing and sintering

    SciTech Connect

    Oversby, V.M.; Vance, E.R.

    1994-09-01

    Synroc C waste form specimens prepared using the Australian-developed technology are uniaxially pressed in stainless steel bellows at 1200{degrees}C and 20MPa. This produces a material with high chemical and physical durability and with the radioactivity enclosed inside both the waste form and the bellows. An alternative method of producing the ceramic product is to use cold pressing of pellets followed by reactive sintering to provide densification and mineralization. Depending on the scale of waste form preparation required and on the activity level and nature of the waste streams, the cold press and sinter method may have advantages. To evaluate the effects of production method on waste form characteristics, especially resistance to dissolution or leaching of waste elements, we have prepared two simulated waste samples for evaluation. Both samples were prepared from liquid precursor materials (alkoxides, nitrates, and colloidal silica) and then doped with waste elements. The precursor material in each case corresponded to a basic phase assemblage of 60% zirconolite, 15% nepheline, 10% spinel, 10% perovskite, and 5% rutile. One sample was doped with 25% by weight of U; the other with 10% by weight each of U and Gd. Each sample was calcined at 750{degrees}C for 1 hr. in a 3.5% H{sub 2} in N{sub 2} atmosphere. Then one portion of each sample was hot pressed at temperatures ranging from 1120 to 1250{degrees}C and 20MPa pressure in steel bellows. A separate portion of each sample was formed into pellets, cold pressed, and sintered in various atmospheres at 1200{degrees}C to produce final products about 2/3 cm in diameter. Samples were then examined to determine density of the product, grain sizes of the phases, phase assemblage, and the location of the U and Gd in the final phases. Density data indicate that sintering gives good results provided that the samples are held at 200{degrees}C for long enough to allow trapped gases to escape.

  13. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    SciTech Connect

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  14. Why the Milky Way's bulge is not only a bar formed from a cold thin disk

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Gómez, A.; Haywood, M.; Combes, F.; Lehnert, M. D.; Ness, M.; Snaith, O. N.; Katz, D.; Semelin, B.

    2015-05-01

    By analyzing an N-body simulation of a bulge formed simply via a bar instability mechanism operating on a kinematically cold stellar disk, and by comparing the results of this analysis with the structural and kinematic properties of the main stellar populations of the Milky Way bulge, we conclude that the bulge of our Galaxy is not a pure stellar bar formed from a pre-existing thin stellar disk, as some studies have recently suggested. On the basis of several arguments emphasized in this paper, we propose that the bulge population that, in the Milky Way, is observed to not be part of the peanut structure corresponds to the old Galactic thick disk, thus implying that the Milky Way is a pure thin+thick disk galaxy, with only a possible limited contribution by a classical bulge.

  15. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Sinha, Satyabrata; Whited, A M; Park, Paul S-H

    2015-01-01

    Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates. PMID:26492040

  16. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    NASA Astrophysics Data System (ADS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  17. Milling Of Shaped Grooves - Profile Of Form Tools

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Sajgalik, Michal; Stancekova, Dana; Janota, Miroslav; Pitela, David

    2015-12-01

    This paper deals with design of milling tool for milling of shaped groove. Actual industry production requires the large amount of tools and notably the special tools used for example when shaped milling. The requirements on the quality of tools are increasingly demanding. The quality of tools is given by construction, production process, selected material and also heat treatment. Shaped milling requires special tools made for given shape. Main request on the construction of tool is making of shape of cutting edge, which can produce the required shape of workpiece.

  18. Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki

    Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.

  19. Modeling The Interaction Effects Between Tools And The Work Piece For Metal Forming Processes

    SciTech Connect

    Franzke, Martin; Puchhala, Sreedhar; Dackweiler, Harald

    2007-05-17

    In metal forming processes especially in cold forming, elastic deformation of the tools has a big impact on the final shape of the work-piece. Computation of such processes considering the plastic effects of the work-piece and elastic deformations of the tools at a time in a single FE model complicates to manage the convergence criteria. This situation is even aggravated if the contact situations (between working and support rolls) have to be considered in the simulation, which requires a very fine discretization of the contact zones of both the tool and work piece. This paper presents recently developed concept which meets the above mentioned demands very effectively. Within this concept, the computation of the elastic effects of the tools is separated from the process simulation (which considers elastic-plastic effects of the work-piece). Both simulations are coupled via automatic data interchange, which is bi-directional, because both simulations influence each other. The advantages of this concept include a quite easy to handle contact situations in process simulation, smaller stiffness matrix compared to single model approach and good convergence of the computation. This concept is highly generalized and successfully applied to simulate rolling, drawing, extrusion and forging processes. The above mentioned concept is being implemented into the FE package PEP and LARSTRAN/SHAPE. Rolling experiments are conducted in duo and quarto configuration. Optical three-dimensional digitalizing system was used to measure the deformations within the machine and work-piece profile. These results are used for the validation of FE simulations. This work is being sponsored by the German Research Foundation (DFG) through the project ''Interaction effects between processes and structures-SPP1180''.

  20. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  1. Complexity in the MATISSE cold optics: a risk or a tool?

    NASA Astrophysics Data System (ADS)

    Tromp, Niels; Bettonvil, Felix; Aitink-Kroes, Gabby; Agócs, Tibor; Navarro, Ramón

    2014-08-01

    MATISSE (Multi AperTure mid-Infrared SpectroScopic Experiment) will be a mid-infrared spectro-interferometer combining the beams of up to four telescopes of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI), providing phase closure and image reconstruction. MATISSE will produce interferometric spectra in the LM and N band (2.8 to 13 micron). Building the cryogenic interferometer section of an instrument like MATISSE is inherently complex. During the preliminary design phase it became clear that this inherent complexity should not be seen as a hurdle but rather a tool; to keep project risks low it is vital to first comprehend the complexity and second to distribute these complexities to areas of expertise, i.e. fields of low risk. With this approach one prevents the typical reaction of either steering away from complexity or digging narrow and deep to find only a local solution. Complexity can be used to achieve the project goals with a reduced overall project risk. For example two alternative options: either a complex single structure with limited interfaces or an assembly of many simpler parts with, in total, much more interfaces. Although simpler in approach, the latter would be a burden on the overall tolerance chain, assembly procedures, logistics & overall cost, culminating in a higher overall risk to the project; the unintended shift of complexity and risk to a later project phase. In addition, this fragmentation would reduce the overall grip on the project and would make it more difficult to identify showstoppers early on. And solving these becomes exponentially more difficult in later project stages. The integral multidisciplinary approach, earlier discussed in "MATISSE cold optics opto-mechanical design" Proc. SPIE 7734, 77341S (2010), enables optimal distribution of complexity and lowering of overall project risk. This current proceeding presents the way in which the high level of opto-mechanical complexity and risks were

  2. Laser formed intentional firearm microstamping technology: counterinsurgency intelligence gathering tool

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest P.

    2009-09-01

    Warfare relies on effective, accurate and timely intelligence an especially critical task when conducting a counterinsurgency operation [1]. Simply stated counterinsurgency is an intelligence war. Both insurgents and counterinsurgents need effective intelligence capabilities to be successful. Insurgents and counterinsurgents therefore attempt to create and maintain intelligence networks and fight continuously to neutralize each other's intelligence capabilities [1][2]. In such an environment it is obviously an advantage to target or proactively create opportunities to track and map an insurgent movement. Quickly identifying insurgency intelligence assets (Infiltrators) within a host government's infrastructure is the goal. Infiltrators can occupy various areas of government such as security personnel, national police force, government offices or military units. Intentional Firearm Microstamping offers such opportunities when implemented into firearms. Outfitted within firearms purchased and distributed to the host nation's security forces (civilian and military), Intentional Firearm Microstamping (IFM) marks bullet cartridge casings with codes as they are fired from the firearm. IFM is incorporated onto optimum surfaces with the firearm mechanism. The intentional microstamp tooling marks can take the form of alphanumeric codes or encoded geometric codes that identify the firearm. As the firearm is discharged the intentional tooling marks transfer a code to the cartridge casing which is ejected out of the firearm. When recovered at the scene of a firefight or engagement, the technology will provide forensic intelligence allowing the mapping and tracking of small arms traffic patterns within the host nation or identify insurgency force strength and pinpoint firearm sources, such as corrupt/rogue military units or police force. Intentional Firearm Microstamping is a passive mechanical trace technology that can be outfitted or retrofitted to semiautomatic handguns and

  3. Global habitat suitability for framework-forming cold-water corals.

    PubMed

    Davies, Andrew J; Guinotte, John M

    2011-01-01

    Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2)) global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine ecosystems for

  4. Global Habitat Suitability for Framework-Forming Cold-Water Corals

    PubMed Central

    Davies, Andrew J.; Guinotte, John M.

    2011-01-01

    Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km2) global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine ecosystems for

  5. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    SciTech Connect

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could crack

  6. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  7. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves

    SciTech Connect

    Uemura, Matsuo; Steponkus, P.L. )

    1989-11-01

    The freezing tolerance and incidence of two forms of freezing injury (expansion-induced lysis and loss of osmotic responsiveness) were determined for protoplasts isolated from rye leaves (Secale cereale L. cv Puma) at various times during cold acclimation. During the first 4 weeks of the cold acclimation period, the LT{sub 50} (i.e. the minimum temperature at which 50% of the protoplasts survived) decreased from {minus}5{degree}C to {minus}25{degree}C. In protoplasts isolated from nonacclimated leaves (NA protoplasts), expansion-induced lysis (EIL) was the predominant form of injury at the LT{sub 50}. However, after only 1 week of cold acclimation, the incidence of EIL was reduced to less than 10% at any subzero temperature; and loss of osmotic responsiveness was the predominant form of injury, regardless of the freezing temperature. Fusion of either NA protoplasts or protoplasts isolated from leaves of seedlings cold acclimated for 1 week (1-week ACC protoplasts) with liposomes of dilinoleoylphosphatidylcholine also decreased the incidence of EIL to less than 10%. Fusion of protoplasts with dilinoleoylphosphatidylcholine diminished the incidence of loss of osmotic responsiveness, but only in NA protoplasts or 1-week ACC protoplasts that were frozen to temperatures over the range of {minus}5 to {minus}10{degree}C. These results suggest that the cold acclimation process, which results in a quantitative increase in freezing resistance, involves several different qualitative changes in the cryobehavior of the plasma membrane.

  8. Local Thickening of Stainless Tube Considering Dimension Variation of the Cold Roll Formed Tube Billet

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Jong; Yu, Cheng-Hsien

    2011-01-01

    A stud end consists of tube body and a flange in order to connect two tubes to form a long straight or angled pipe line. The flange is thicker than the tube body to strengthen the pipe connection. A thicker round hollow disk is usually welded to a straight tube to get the flange of the tube end and then machined to the specified dimension of the two-piece type stud end. A one-piece type stud end of tube proposed here is produced via the local thickening of tube end, flaring, and flange forging processes. The roundness of raw tube is not promised in the cold roll forming (CRF) process, which causes the inaccuracy of dimensions, wrinkling, and folding defects during the local thickening process of tube end. In this paper, a preform process was proposed to correct the dimension of the tube to be thickened. The CRF tube billets were measured and preformed to the required dimensions before thickening. The proposed preforming process was able to resize and control the dimensions and roundness of the tube billet to prevent irregular movement of billet. A three-staged punch profile was designed to prevent the folding defect during the thickening process. Experiments of resizing and thickening were carried out to verify the simulation results and the proposed punch profile design. The CAE simulations demonstrated the defects of folding are very sensitive to the dimension variation of tube billet. The experimental results of thickening process were in good agreement with the simulation predictions using the perfect (with preforming process) and the imperfect (original CRF) tube billets. The proposed pre-forming process and the punch profile designs were able to minimize the surface defects of tube local thickening.

  9. Untangling the nature of spatial variations of cold dust properties in star forming galaxies

    SciTech Connect

    Kirkpatrick, Allison; Calzetti, Daniela; Kennicutt, Robert; Galametz, Maud; Gordon, Karl; Groves, Brent; Tabatabaei, Fatemeh; Hunt, Leslie; Dale, Daniel; Hinz, Joannah

    2014-07-10

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T{sub c} ) and emissivity (β) on a pixel by pixel basis (where each pixel ranges from 0.1 to 3 kpc{sup 2}) using a two-temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ∼15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T{sub c} and β simultaneously, (2) hold β constant and fit T{sub c} . We compare T{sub c} and β with star formation rates (calculated from L{sub Hα} and L{sub 24μm}), the luminosity of the old stellar population (traced through L{sub 3.6μm}), and the dust mass surface density (traced by 500 μm luminosity, L{sub 500}). We find a significant trend between SFR/L{sub 500} and T{sub c} , implying that the flux of hard UV photons relative to the amount of dust is significantly contributing to the heating of the cold, or diffuse, dust component. We also see a trend between L{sub 3.6}/L{sub 500} and β, indicating that the old stellar population contributes to the heating at far-IR/submillimeter wavelengths. Finally, we find that when β is held constant, T{sub c} exhibits a strongly decreasing radial trend, illustrating that the shape of the far-IR SED is changing radially through a galaxy, thus confirming on a sample almost double in size the trends observed in Galametz et al.

  10. 32 CFR 806b.54 - Information collections, records, and forms or information management tools (IMT).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information management tools (IMT). 806b.54 Section 806b.54 National Defense Department of Defense (Continued..., records, and forms or information management tools (IMT). (a) Information Collections. No information.../pubfiles/af/37/afman37-139/afman37-139.pdf. (c) Forms or Information Management Tools (Adopted...

  11. 32 CFR 806b.54 - Information collections, records, and forms or information management tools (IMT).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information management tools (IMT). 806b.54 Section 806b.54 National Defense Department of Defense (Continued..., records, and forms or information management tools (IMT). (a) Information Collections. No information.../pubfiles/af/37/afman37-139/afman37-139.pdf. (c) Forms or Information Management Tools (Adopted...

  12. 32 CFR 806b.54 - Information collections, records, and forms or information management tools (IMT).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information management tools (IMT). 806b.54 Section 806b.54 National Defense Department of Defense (Continued..., records, and forms or information management tools (IMT). (a) Information Collections. No information.../pubfiles/af/37/afman37-139/afman37-139.pdf. (c) Forms or Information Management Tools (Adopted...

  13. 32 CFR 806b.54 - Information collections, records, and forms or information management tools (IMT).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information management tools (IMT). 806b.54 Section 806b.54 National Defense Department of Defense (Continued..., records, and forms or information management tools (IMT). (a) Information Collections. No information.../pubfiles/af/37/afman37-139/afman37-139.pdf. (c) Forms or Information Management Tools (Adopted...

  14. 32 CFR 806b.54 - Information collections, records, and forms or information management tools (IMT).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information management tools (IMT). 806b.54 Section 806b.54 National Defense Department of Defense (Continued..., records, and forms or information management tools (IMT). (a) Information Collections. No information.../pubfiles/af/37/afman37-139/afman37-139.pdf. (c) Forms or Information Management Tools (Adopted...

  15. Multiscale Analysis of Surface Topography from Single Point Incremental Forming using an Acetal Tool

    NASA Astrophysics Data System (ADS)

    Ham, M.; Powers, B. M.; Loiselle, J.

    2014-03-01

    Single point incremental forming (SPIF) is a sheet metal manufacturing process that forms a part by incrementally applying point loads to the material to achieve the desired deformations and final part geometry. This paper investigates the differences in surface topography between a carbide tool and an acetal-tipped tool. Area-scale analysis is performed on the confocal areal surface measurements per ASME B46. The objective of this paper is to determine at which scales surfaces formed by two different tool materials can be differentiated. It is found that the surfaces in contact with the acetal forming tool have greater relative areas at all scales greater than 5 × 104 μm2 than the surfaces in contact with the carbide tools. The surfaces not in contact with the tools during forming, also referred to as the free surface, are unaffected by the tool material.

  16. [A case with apraxia of tool use: selective inability to form a hand posture for a tool].

    PubMed

    Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko

    2015-03-01

    Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia. PMID:25846446

  17. 32 CFR 903.10 - Information collections, records, and forms or information management tools (IMTS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Information collections, records, and forms or information management tools (IMTS). 903.10 Section 903.10 National Defense Department of Defense (Continued... Information collections, records, and forms or information management tools (IMTS). (a)...

  18. 32 CFR 903.10 - Information collections, records, and forms or information management tools (IMTS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Information collections, records, and forms or information management tools (IMTS). 903.10 Section 903.10 National Defense Department of Defense (Continued... Information collections, records, and forms or information management tools (IMTS). (a)...

  19. 32 CFR 903.10 - Information collections, records, and forms or information management tools (IMTS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Information collections, records, and forms or information management tools (IMTS). 903.10 Section 903.10 National Defense Department of Defense (Continued... Information collections, records, and forms or information management tools (IMTS). (a)...

  20. 32 CFR 903.10 - Information collections, records, and forms or information management tools (IMTS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Information collections, records, and forms or information management tools (IMTS). 903.10 Section 903.10 National Defense Department of Defense (Continued... Information collections, records, and forms or information management tools (IMTS). (a)...

  1. Real-time compensation for tool form errors in turning using computer vision

    SciTech Connect

    Nobel, G.; Donmez, M.A.; Burton, R.

    1990-01-01

    Deviations from the circular shape of the cutting edge of a single-point turning tool cause form errors in the workpiece during contour cutting. One can compensate for these tool-form errors by determining the size of the effective deviation at a particular instant during cutting, and then adjusting the position of the cutting tool accordingly. An algorithm for the compensation of tool-nose-radius errors in real time has been developed and implemented on a CNC fuming center. A previously developed computer-vision-based tool- inspection system is used to determine the size of the deviations. Information from this system is fed to the error compensation computer which modifies the tool path in real time. Workpieces were cut utilizing the compensation system and were inspected on a coordinate measuring machine. Significant improvements in workpiece form were obtained.

  2. Real-time compensation for tool form errors in turning using computer vision

    SciTech Connect

    Nobel, G.; Donmez, M.A.; Burton, R.

    1990-12-31

    Deviations from the circular shape of the cutting edge of a single-point turning tool cause form errors in the workpiece during contour cutting. One can compensate for these tool-form errors by determining the size of the effective deviation at a particular instant during cutting, and then adjusting the position of the cutting tool accordingly. An algorithm for the compensation of tool-nose-radius errors in real time has been developed and implemented on a CNC fuming center. A previously developed computer-vision-based tool- inspection system is used to determine the size of the deviations. Information from this system is fed to the error compensation computer which modifies the tool path in real time. Workpieces were cut utilizing the compensation system and were inspected on a coordinate measuring machine. Significant improvements in workpiece form were obtained.

  3. Real-time compensation for tool form errors in turning using computer vision

    NASA Astrophysics Data System (ADS)

    Nobel, Gary; Donmez, M. Alkan; Burton, Richard

    1990-11-01

    Deviations from the circular shape of the cutting edge of a single-point turning tool cause form errors in the workpiece during contour cutting. One can compensate for these tool-form errors by determining the size of the effective deviation at a particular instant during cutting and then adjusting the position of the cutting tool accordingly. An algorithm for the compensation of tool-nose-radius errors in real time has been developed and implemented on a CNC turning center. A previously developed computer-vision-based tool- inspection system is used to determine the size of the deviations. 1 Information from this system is fed to the error compensation computer which modifies the tool path in real time. Workpieces were cut utilizing the compensation system and were inspected on a coordinate measuring machine. Significant improvements in workpiece form were obtained. 1.

  4. Spray-formed tooling for injection molding and die casting applications

    SciTech Connect

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  5. Spray-formed Tooling for Injection Molding and Die Casting Applications

    SciTech Connect

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  6. Insert facing tool. [manually operated cutting tool for forming studs in honeycomb material

    NASA Technical Reports Server (NTRS)

    Abernathy, W. J.; Snoddy, L. G. (Inventor)

    1974-01-01

    A manually actuated tool for facing the exposed end of an insert installed in a honeycomb panel is described. Several cutting bits are held in a round body portion that is rotated around the end of a stud to provide the cutting action. Pressure is adjusted through a spring against the body portion and the surface of the stud by a pressure nut threaded on the stud. A diagram of the components of the device is provided.

  7. Increase of Acting Pressure by Adjusted Tool Geometry in Laser Shock Forming

    SciTech Connect

    Wielage, Hanna; Vollertsen, Frank

    2011-01-17

    In laser shock forming TEA-CO2{sub 2}-laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. Several pulses can be applied at one point in order to achieve a high forming degree without increasing the energy density beyond the ablation limit. During the process, pressure peaks in the range of several MPa can be achieved. In this article, it will be demonstrated that the acting shock wave pressure can be increased and the forming behavior can be modified by an adjustment of tool geometry, which limits the non-directional propagation of the shock wave. Shock wave pressure measurements as well as forming results with different tool geometries show that the acting pressure, and therefore the forming behavior, can be modified by an adjustment of the tool.

  8. Microstructure and Mechanical Properties of Spray-Formed H13 Steel Tooling

    SciTech Connect

    Yaojun Lin; Kevin M. McHugh; Young-Soo Park; Yizhang Zhou; Enrique J. Lavernia

    2005-02-01

    This paper presents results on the microstructure and hardness of spray-formed H13 (Fe-0.40C-5.00Cr-1.10V-1.30Mo (wt%)) tooling. There is very low porosity in both as-spray formed samples and aged samples. The microstructure in the as-spray-formed sample is characterized by primary carbides, acicular lower bainite, and a small amount of martensite and of retained austenite. Spray formed and aged tooling H13 has higher hardness values than those of H13 in conventional tooling. The experimental results of microstructures and hardness are rationalized on the basis of numerical analysis of cooling during processing of spray-formed tooling.

  9. 32 CFR 903.10 - Information collections, records, and forms or information management tools (IMTS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information management tools (IMTS). 903.10 Section 903.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE MILITARY TRAINING AND SCHOOLS AIR FORCE ACADEMY PREPARATORY SCHOOL § 903.10 Information collections, records, and forms or information management tools (IMTS). (a)...

  10. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  11. [Effect of warm and cold honey solutions on acid-forming function of the stomach].

    PubMed

    Kas'ianenko, V I; Selezneva, E Ia; Markarova, N V

    2002-01-01

    Apitherapy is treatment of diseases with biologically active products of bee-keeping (BAPB), which is developing in an intensive way all over the world. The interest in apitherapy is explained, on the one hand, by a great number of natural compounds produced by bees as a result of their vital functions and having high physiological activity, and on the other hand, by the universal nature of bees occurrence and comparative simplicity of getting the bee-keeping products. In apitherapy literature many authors point to the fact that honey has an impact on gastric secretion: a cold honey solution stimulates, and a warm one inhibits acid excretion. Yet there are no results of studies confirming this action in all publications. PMID:12619593

  12. Do hybrid morphology radio sources form in a lopsided distribution of cold gas?

    NASA Astrophysics Data System (ADS)

    Miller, Brendan

    2010-10-01

    We test the hypothesis that hybrid morphology radio sources (HYMORS; Gopal-Krishna & Wiita 2000) feature one-sided jet disruption caused by propagation into a large-scale overdensity of cold gas, through XMM-Newton observations of B2 1404+25A and B2 1345+28 (33 and 16 ks, respectively). These HYMORS are intrinsic low-inclination RLQs for which the X-ray spectra would ordinarily be unabsorbed. VLBA mapping places the FRI jet on the near side in B2 1404+25A, and so the putative disrupting medium can be directly detected as absorption against the core; in contrast, the FRII lobe is closer in B2 1345+28, and so a simple power-law X-ray spectrum is anticipated. Distinct results are predicted for alternative scenarios of HYMORS formation.

  13. Process Modeling In Cold Forging Considering The Process-Tool-Machine Interactions

    NASA Astrophysics Data System (ADS)

    Kroiss, Thomas; Engel, Ulf; Merklein, Marion

    2010-06-01

    In this paper, a methodic approach is presented for the determination and modeling of the axial deflection characteristic for the whole system of stroke-controlled press and tooling system. This is realized by a combination of experiment and FE simulation. The press characteristic is uniquely measured in experiment. The tooling system characteristic is determined in FE simulation to avoid experimental investigations on various tooling systems. The stiffnesses of press and tooling system are combined to a substitute stiffness that is integrated into the FE process simulation as a spring element. Non-linear initial effects of the press are modeled with a constant shift factor. The approach was applied to a full forward extrusion process on a press with C-frame. A comparison between experiments and results of the integrated FE simulation model showed a high accuracy of the FE model. The simulation model with integrated deflection characteristic represents the entire process behavior and can be used for the calculation of a mathematical process model based on variant simulations and response surfaces. In a subsequent optimization step, an adjusted process and tool design can be determined, that compensates the influence of the deflections on the workpiece dimensions leading to high workpiece accuracy. Using knowledge on the process behavior, the required number of variant simulations was reduced.

  14. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  15. Forming a perfect cubic texture in thin copper-yttrium alloy strips during cold rolling and annealing

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Khlebnikova, Yu. V.; Akshentsev, Yu. N.; Egorova, L. Yu.; Suaridze, T. R.

    2016-03-01

    The structure of strips produced from the Cu-1 wt % Y binary alloy using cold deformation by rolling to the degree of deformation of 99%, followed by recrystallization annealing, as well as the process of texture formation in these strips, is studied. The possibility of forming a perfect cubic texture in a thin strip made of a binary yttrium-modified copper-based alloy has been shown in principle, which opens the prospect of the use of this alloy to produce substrates for strip high-temperature superconductors of the second generation. The optimum conditions of annealing have been determined, which make it possible to form a perfect biaxial texture in the Cu-1 wt % Y alloy with a content of cubic grains {001}<100> ± 10° on the surface of the textured strip of over 95%.

  16. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    NASA Astrophysics Data System (ADS)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  17. Method and tool for expanding tubular members by electro-hydraulic forming

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2013-10-29

    An electro-hydraulic forming tool having one or more electrodes for forming parts with sharp corners. The electrodes may be moved and sequentially discharged several times to form various areas of the tube. Alternatively, a plurality of electrodes may be provided that are provided within an insulating tube that defines a charge area opening. The insulating tube is moved to locate the charge area opening adjacent one of the electrodes to form spaced locations on a preform. In other embodiments, a filament wire is provided in a cartridge or supported by an insulative support.

  18. Channels and valleys on Mars: Cold climate features formed as a result of a thickening cryosphere

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks, and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment around 3.8Gyr ago, with an inventory of water at the surface equivalent to at least a few hundred meters spread over the whole planet, as compared with 3 km for the Earth. The surface water resided primarily in a porous, kilometers thick, megaregolith created by the high impact rates. At the end of heavy bombardment a rapid decline in erosion rates by a factor of 1000 suggests a major change in the global climate. It is proposed that at this time the climate became similar to today's and that this climate has been maintained throughout the rest of Mars' history. The various drainage features represent an adjustment of the distribution of water to the surface relief inherited from the period of heavy bombardment and to a thickening of the cryosphere as the heat flow declined. The valley networks formed mostly at the end of heavy bombardment when erosion rates were high and climatic conditions permitted an active water cycle. They continued to form after heavy bombardment when the cryosphere started to form by a combination of episodic flooding and mass-wasting aided by the presence of liquid water at shallow depths. As the cryosphere thickened with declining heat flow, water could no longer easily access the surface and the rate of valley formation declined. Hydrostatic pressures built below the cryosphere. Eruptions of groundwater became more catastrophic and massive floods resulted, mainly in upper Hesperian time. Flood sources were preferentially located in low-lying, low-latitude areas where the cryosphere was thin, or near volcanoes where a thinner than typical cryosphere is also expected. Floods caused a drawdown in the global water table so that few formed in the second half of Mars' history. The floodwaters pooled in low-lying areas, mostly in the northern plains. Some of the water may still be present as

  19. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    SciTech Connect

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  20. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    NASA Astrophysics Data System (ADS)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  1. Simulation of Forming Process as an Educational Tool Using Physical Modeling

    ERIC Educational Resources Information Center

    Abdullah, A. B.; Muda, M. R.; Samad, Z.

    2008-01-01

    Metal forming process simulation requires a very high cost including the cost for dies, machine and material and tight process control since the process involve very huge pressure. A physical modeling technique is developed and initiates a new era of educational tool of simulating the process effectively. Several publications and findings have…

  2. Finite Element Simulation of Sheet Metal Forming Process Using Local Interpolation for Tool Surfaces

    SciTech Connect

    Hama, Takayuki; Takuda, Hirohiko; Takamura, Masato; Makinouchi, Akitake; Teodosiu, Cristian

    2005-08-05

    Treatment of contact between a sheet and tools is one of the most difficult problems to deal with in finite-element simulations of sheet forming processes. In order to obtain more accurate tool models without increasing the number of elements, this paper describes a new formulation for contact problems using interpolation proposed by Nagata for tool surfaces. A contact search algorithm between sheet nodes and the interpolated tool surfaces was developed and was introduced into the static-explicit elastoplastic finite-element method code STAMP3D. Simulations of a square cup deep drawing process with a very coarsely discretized punch model were carried out. The simulated results showed that the proposed algorithm gave the proper drawn shape, demonstrating the validity of the proposed algorithm.

  3. A tool for the design of clinical forms supporting end-user integration.

    PubMed

    Duftschmid, Georg; Wrba, Thomas

    2004-03-01

    Computer-based forms are a common input medium for recording medical data by the electronic mode. Efficient documentation requires that the forms satisfy the specific needs and habits of clinical end-users in the collection of data. This can be effectively achieved by integrating the clinician in the process of designing the forms. However, most development environments used for the implementation of clinical forms are customized for computer specialists and are too technical in nature to be used by clinicians. We present a tool for the development of clinical forms, which supports the integration of end-users in the design process of the forms. The tool is customized for users from the medical domain, allowing interactive and intuitive development of forms based on the configuration of predefined components instead of programming. Clinicians may even design highly functional, complex forms autonomously without having to involve computer specialists at all. All collected data are stored on the basis of a generic data model favouring data retrieval. The described application has been successfully used at the University of Vienna and Graz medical schools since 1997 and 1999, respectively. PMID:15204608

  4. Tool path influence on electric pulse aided deformation during incremental sheet metal forming

    SciTech Connect

    Asgar, J.; Lingam, R. Reddy, V. N.

    2013-12-16

    Titanium and its alloys are difficult to form at room temperature due to their high flow stress. Super plastic deformation of Ti alloys involves low strain rate forming at very high temperatures which need special tooling which can withstand high temperatures. It was observed that when high current density electric pulse is applied during deformation it reduces the flow stress through electron-dislocation interaction. This phenomenon is known as electro-plasticity. In the present work, importance of tool configuration to enhance the formability without much resistive heating is demonstrated for Incremental Sheet Metal Forming (ISMF). Tool configuration is selected to minimize the current carrying zone in DC pulse aided incremental forming to enhance the formability due to electro plasticity and the same is demonstrated by forming two pyramid shaped components of 30° and 45° wall angles using a Titanium alloy sheet of 0.6 mm thickness. Load measurement indicated that a critical current density is essential for the electro-plasticity to be effective and the same is realized with the load and temperature measurements.

  5. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  6. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  7. Springback compensation algorithm for tool design in creep age forming of large aluminum alloy plate

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolong; Zhan, Lihua; Huang, Minghui

    2013-12-01

    The creep unified constitutive equations, which was built based on the age forming mechanism of aluminum alloy, was integrated with the commercial finite element analysis software MSC.MARC via the user defined subroutine, CREEP, and the creep age forming process simulations for7055 aluminum alloy plate parts were conducted. Then the springback of the workpiece after forming was calculated by ATOS Professional Software. Based on the combination between simulation results and calculation of springback by ATOS for the formed plate, a new weighted springback compensation algorithm for tool surface modification was developed. The compensate effects between the new algorithm and other overall compensation algorithms on the tool surface are compared. The results show that, the maximal forming error of the workpiece was reduced to below 0.2mm after 5 times compensations with the new weighted algorithm, while error rebound phenomenon occurred and the maximal forming error cannot be reduced to 0.3mm even after 6 times compensations with fixed or variable compensation coefficient, which are based on the overall compensation algorithm.

  8. The Normalized Reduced Form and Cell Mathematical Tools for Lattice Analysis—Symmetry and Similarity

    PubMed Central

    Mighell, Alan D.

    2003-01-01

    To intelligently and effectively use crystallographic databases, mathematical and computer tools are required that can elucidate diverse types of intra- and interlattice relationships. Two such tools are the normalized reduced form and normalized reduced cell. Practical experience has revealed that the first tool—the normalized reduced form—is very helpful in establishing lattice metric symmetry as it enables one to readily deduce significant relationships between the elements of the reduced form. Likewise research with crystallographic databases has demonstrated that the second tool—the normalized reduced cell—plays a vital role in determining metrically similar lattices. Knowledge of similar lattices has practical value in solving structures, in assignment of structure types, in materials design, and in nano-technology. In addition to using the reduced cell, it is recommended that lattice-matching strategies based on the normalized reduced cell be routinely carried out in database searching, in data evaluation, and in experimental work.

  9. Influence of process and tool design parameters in press forming of a thermoplastic composite sheet

    SciTech Connect

    Shaffer, T.M.; Mallick, P.K.

    1994-12-31

    The goal of this work is to investigate the effects of several process and tool design parameters (preheat and mold temperature, forming depth and speed, bend radius, cooling time, blank holder force, ironing, and presence of mold bottom) in the press forming of a glass fiber reinforced polypropylene sheet. Rectangular strips are formed into hat section shapes in a process similar to deep drawing. Part spring back and several qualitative factors are used to evaluate the formed parts. It is concluded that a key factor for successful solid state forming of this material is the precise control of the blank temperature. High forming speeds and elevated molding fixture temperatures improve part quality and reduce cycle times. Bend radius was found to have little to no effect on part spring back, but larger radii improve qualitative characteristics. Compression of the part at the end of the forming stroke can remove surface irregularities and delaminations from the finished parts if larger part depths are required. Stretching the material is undesirable because it causes large amounts of delamination, fiber breakage and matrix fracture.

  10. Constitutive Description of Tensile Flow Behavior of Cold Flow-Formed AFNOR 15CDV6 Steel at Different Deformation Levels

    NASA Astrophysics Data System (ADS)

    Mondal, Chandan; Podder, Bikramjit; Ramesh Kumar, K.; Yadav, D. R.

    2014-10-01

    The influences of cold deformation on the room temperature tensile stress-strain behavior of a flow-formed AFNOR 15CDV6 steel have been evaluated in the deformation range of 74-86% at a nominal strain rate of 6.67 × 10-4 s-1. Constitutive description of the tensile plastic flow has been illustrated through a comparative description of widely used empirical relationships proposed by Hollomon, Ludwigson, Pickering and Voce. Both the Voce and Pickering relations adequately describe the tensile flow behavior of all the specimens. Although the standard Ludwigson relation does not fit the experimental data satisfactorily, the fitting ability improves dramatically when a modified relation with the negative deviation compensating parameter has been employed. Physical interpretation of the fitting parameters based on observed microstructural features of the materials is further attempted. The variations in Ludwigson ( n 2) and Voce ( K v) parameters match well with the trend in the development of delamination cracks due to internal stress fields. Such behavior is directly linked to the uniform elongation of the materials. The tensile work hardening behavior has been elucidated by the differential and modified Crussard-Jaoul methods. Such analyses in corroboration with microstructural characterization indicate the development of internal stress field during highly constrained material flow in a banded structure. The consequence of this phenomenon is manifested in the formation of severe delamination cracks that significantly affect the uniform elongation of the specimens. Furthermore, the Estrin-Mecking analysis of microstructural attributes to the work hardening behavior points out the dynamic recovery controlled deformation mechanism in 86% deformed specimen.

  11. SQTTEXT: A tool for editing Structured Query Language (SQL) text within ORACLE SQL*Forms applications

    SciTech Connect

    Daugherty, P.F.; Singley, P.T.

    1990-08-01

    SQTTEXT is an ORACLE SQL*Forms application that allows a programmer to view and edit all the Structured Query Language (SQL) text for a given application on one screen. This application is an outgrowth of the prototyping of an on-line system dictionary for the Worldwide Household Goods Information System for Transportation-Modernization decision support system being prototyped by the Oak Ridge National Laboratory, but it can be applied to all SQL*Forms software development, debugging, and maintenance. The system dictionary and SQTTEXT were written in version 2.3 of ORACLE's application generator, SQL*Forms. SQL*Forms greatly simplifies users' access to ORACLE databases, but the design of the tool should be friendlier to those programming, debugging, and maintaining SQL*Forms applications. Because SQL*Forms version 2.3 forces the programmer to view each component of a program through a window specific to that component, it is impossible to get an overview of the whole application at one time. The SQTTEXT application allows experienced ORACLE programmers to increase their productivity by allowing access to all Structured Query Language (SQL) text within a SQL*Forms application via one screen. The SQTTEXT application is based on the eight ORACLE Integrated Application Processor (IAP) tables that store information about SQL*Forms applications. The SQTTEXT application displays the trigger level, trigger name, and SQL text associated with triggers, and also displays block names, base table names, and the SQL text for WHERE/ORDER BY clauses. This report provides a step-by-step explanation of how to use SQTTEXT, descriptions of the IAP tables, and a listing of the SQTTEXT code.

  12. Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools.

    PubMed

    Koo, Hyunmin; Hakim, Joseph A; Fisher, Phillip R E; Grueneberg, Alexander; Andersen, Dale T; Bej, Asim K

    2016-01-01

    In this study, we report the distribution and abundance of cold-adaptation proteins in microbial mat communities in the perennially ice-covered Lake Joyce, located in the McMurdo Dry Valleys, Antarctica. We have used MG-RAST and R code bioinformatics tools on Illumina HiSeq2000 shotgun metagenomic data and compared the filtering efficacy of these two methods on cold-adaptation proteins. Overall, the abundance of cold-shock DEAD-box protein A (CSDA), antifreeze proteins (AFPs), fatty acid desaturase (FAD), trehalose synthase (TS), and cold-shock family of proteins (CSPs) were present in all mat samples at high, moderate, or low levels, whereas the ice nucleation protein (INP) was present only in the ice and bulbous mat samples at insignificant levels. Considering the near homogeneous temperature profile of Lake Joyce (0.08-0.29 °C), the distribution and abundance of these proteins across various mat samples predictively correlated with known functional attributes necessary for microbial communities to thrive in this ecosystem. The comparison of the MG-RAST and the R code methods showed dissimilar occurrences of the cold-adaptation protein sequences, though with insignificant ANOSIM (R = 0.357; p-value = 0.012), ADONIS (R(2) = 0.274; p-value = 0.03) and STAMP (p-values = 0.521-0.984) statistical analyses. Furthermore, filtering targeted sequences using the R code accounted for taxonomic groups by avoiding sequence redundancies, whereas the MG-RAST provided total counts resulting in a higher sequence output. The results from this study revealed for the first time the distribution of cold-adaptation proteins in six different types of microbial mats in Lake Joyce, while suggesting a simpler and more manageable user-defined method of R code, as compared to a web-based MG-RAST pipeline. PMID:26578243

  13. Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.

    1994-01-01

    Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.

  14. Forecasting of operational indicators of grinding tools with the controlled form and orientation of abrasive grains

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.; Minkin, E. M.

    2015-09-01

    The interconnection of the abrasive grain front angle parameter with the form, orientation and wear out parameters is investigated. The form of the abrasive grains was estimated by means of form coefficient which represents the relation of diameters of the spheres described around contours of grains, to diameters of the spheres entered in them. The spatial orientation angle of the abrasive grains was defined between main (i.e. the biggest) axis of the grains and the cutting plane. It is established that, depending on an orientation angle at increase in a form coefficient of the abrasive grains can be either an increase or a decrease in the values of their front angles. In most cases, with an increase in a form coefficient of the oriented grinding grains (at orientation angles Θ=10°÷125°) the growth of their front angles is fixed. At tangential orientation of grains (Θ=0°) and at the close directions of orientation (Θ=135°÷80°) the return picture is observed. Also established that the longer the abrasive grain wears along the main axis and located in the tool body, the larger is its front angle. Besides that, the front angles of the abrasive grains reach the maximum positive values at orientation angles Θ=22.5°÷45°.Dependence of tension in grains during the work with parameters of their form, orientation and depth of embedment in the bundle is investigated. It was found that for all orientation angles of grains their tension significantly increases with an increase in their form coefficient. Besides that it is confirmed that the deeper the grain is in the bundle, the lower the tension is there. Also found that tension is minimal when the grains are tangential orientated. Further on increase the option of the grains in the direction of action of the cutting force follows. Such option of orientation is the most rational both from the point of view of minimization of tension, and for ensuring rational sizes of front angles of the abrasive grains. The

  15. Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine.

    PubMed

    Yamaji-Hasegawa, Akiko; Hullin-Matsuda, Françoise; Greimel, Peter; Kobayashi, Toshihide

    2016-03-01

    Pore-forming toxins (PFTs) represent a unique class of highly specific lipid-binding proteins. The cytotoxicity of these compounds has been overcome through crystallographic structure and mutation studies, facilitating the development of non-toxic lipid probes. As a consequence, non-toxic PFTs have been utilized as highly specific probes to visualize the diversity and dynamics of lipid nanostructures in living and fixed cells. This review is focused on the application of PFTs and their non-toxic analogs as tools to visualize sphingomyelin and ceramide phosphoethanolamine, two major phosphosphingolipids in mammalian and insect cells, respectively. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26498396

  16. Evolution of Carbides during Aging of a Spray-Formed Chromium-Containing Tool Steel

    NASA Astrophysics Data System (ADS)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2008-02-01

    The evolution of carbides during aging of a spray-formed chromium-containing tool steel was studied. In the as-spray-formed steel, there are two prominent types of carbides: the V-rich proeutectoid MC and the Fe-rich M3C in lower bainite. Evolution of the carbides during aging can be described as follows. While the proeutectoid MC remains unchanged, a portion of the M3C dissolves into the bainitic ferrite matrix, and another portion of it is transformed into Cr-rich M7C3. In addition, fine alloyed carbides, such as M7C3, MC, Cr-rich M23C6, and Mo-rich M6C, precipitate from the matrix consisting of bainitic ferrite, martensite, and retained austenite.

  17. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  18. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  19. Laser forming cutting once quenched high-speed tool steel (HSTS) disk-shaped milling cutter

    NASA Astrophysics Data System (ADS)

    Ding, Zhihong; Liu, Yongzhen; Weng, Shiping

    1998-08-01

    Laser cutting technology has been applied to ordinary alloy steel circular sawblade, but it is very rarely used in quenched HSTS disk-shape milling-cutters due to the material particularity. In this paper, the authors systematically explain the advantages of this new technique, respecting the optimum design of HSTS disk-shape milling-cutter, the specific characteristics of laser forming cutting once for all, the technology testing, the analysis of structural performance of tooth and the small batch production for verifying. The article displays its advantages completely as follows: The design for a perfect tooth profile is not bound to the ordinary machining methods; The special laser technique does not lower the hardness on the tooth nose so that this process and needs no follow-up operational sequences, ensures the excellent dynamic-balance performance and operation properties, and prolongs the tools' service time; The new technique also has advantages of high efficiency and good economics. Therefore, this special laser cutting method, an integration of intensified heat-treatment and laser forming cutting once for all technology, will be regarded as a reform in HSTS tools Manufacturing field.

  20. An audit cycle of consent form completion: A useful tool to improve junior doctor training

    PubMed Central

    Leng, Catherine; Sharma, Kavita

    2016-01-01

    Background: Consent for surgical procedures is an essential part of the patient's pathway. Junior doctors are often expected to do this, especially in the emergency setting. As a result, the aim of our audit was to assess our practice in consenting and institute changes within our department to maintain best medical practice. Methods: An audit of consent form completion was conducted in March 2013. Standards were taken from Good Surgical Practice (2008) and General Medical Council guidelines. Inclusion of consent teaching at a formal consultant delivered orientation programme was then instituted. A re-audit was completed to reassess compliance. Results: Thirty-seven consent forms were analysed. The re-audit demonstrated an improvement in documentation of benefits (91–100%) and additional procedures (0–7.5%). Additional areas for improvement such as offering a copy of the consent form to the patient and confirmation of consent if a delay occurred between consenting and the procedure were identified. Conclusion: The re-audit demonstrated an improvement in the consent process. It also identified new areas of emphasis that were addressed in formal teaching sessions. The audit cycle can be a useful tool in monitoring, assessing and improving clinical practice to ensure the provision of best patient care. PMID:27274125

  1. Xenobiology: a new form of life as the ultimate biosafety tool.

    PubMed

    Schmidt, Markus

    2010-04-01

    Synthetic biologists try to engineer useful biological systems that do not exist in nature. One of their goals is to design an orthogonal chromosome different from DNA and RNA, termed XNA for xeno nucleic acids. XNA exhibits a variety of structural chemical changes relative to its natural counterparts. These changes make this novel information-storing biopolymer "invisible" to natural biological systems. The lack of cognition to the natural world, however, is seen as an opportunity to implement a genetic firewall that impedes exchange of genetic information with the natural world, which means it could be the ultimate biosafety tool. Here I discuss, why it is necessary to go ahead designing xenobiological systems like XNA and its XNA binding proteins; what the biosafety specifications should look like for this genetic enclave; which steps should be carried out to boot up the first XNA life form; and what it means for the society at large. PMID:20217844

  2. Xenobiology: A new form of life as the ultimate biosafety tool

    PubMed Central

    Schmidt, Markus

    2010-01-01

    Synthetic biologists try to engineer useful biological systems that do not exist in nature. One of their goals is to design an orthogonal chromosome different from DNA and RNA, termed XNA for xeno nucleic acids. XNA exhibits a variety of structural chemical changes relative to its natural counterparts. These changes make this novel information-storing biopolymer “invisible” to natural biological systems. The lack of cognition to the natural world, however, is seen as an opportunity to implement a genetic firewall that impedes exchange of genetic information with the natural world, which means it could be the ultimate biosafety tool. Here I discuss, why it is necessary to go ahead designing xenobiological systems like XNA and its XNA binding proteins; what the biosafety specifications should look like for this genetic enclave; which steps should be carried out to boot up the first XNA life form; and what it means for the society at large. PMID:20217844

  3. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  4. Rheology as a tool for evaluation of melt processability of innovative dosage forms.

    PubMed

    Aho, Johanna; Boetker, Johan P; Baldursdottir, Stefania; Rantanen, Jukka

    2015-10-30

    Future manufacturing of pharmaceuticals will involve innovative use of polymeric excipients. Hot melt extrusion (HME) is an already established manufacturing technique and several products based on HME are on the market. Additionally, processing based on, e.g., HME or three dimensional (3D) printing, will have an increasingly important role when designing products for flexible dosing, since dosage forms based on compacting of a given powder mixture do not enable manufacturing of optimal pharmaceutical products for personalized treatments. The melt processability of polymers and API-polymer mixtures is highly dependent on the rheological properties of these systems, and rheological measurements should be considered as a more central part of the material characterization tool box when selecting suitable candidates for melt processing by, e.g., HME or 3D printing. The polymer processing industry offers established platforms, methods, and models for rheological characterization, and they can often be readily applied in the field of pharmaceutical manufacturing. Thoroughly measured and calculated rheological parameters together with thermal and mechanical material data are needed for the process simulations which are also becoming increasingly important. The authors aim to give an overview to the basics of rheology and summarize examples of the studies where rheology has been utilized in setting up or evaluating extrusion processes. Furthermore, examples of different experimental set-ups available for rheological measurements are presented, discussing each of their typical application area, advantages and limitations. PMID:25666026

  5. A novel form of spontaneous tool use displayed by several captive greater vasa parrots (Coracopsis vasa).

    PubMed

    Lambert, Megan L; Seed, Amanda M; Slocombe, Katie E

    2015-12-01

    Parrots are frequently cited for their sophisticated problem-solving abilities, but cases of habitual tool use among psittacines are scarce. We report the first evidence, to our knowledge, of tool use by greater vasa parrots (Coracopsis vasa). Several members of a captive population spontaneously adopted a novel tool-using technique by using pebbles and date pits either (i) to scrape on the inner surface of seashells, subsequently licking the resulting calcium powder from the tool, or (ii) as a wedge to break off smaller pieces of the shell for ingestion. Tool use occurred most frequently just prior to the breeding season, during which time numerous instances of tool transfer were also documented. These observations provide new insights into the tool-using capabilities of parrots and highlight the greater vasa parrot as a species of interest for studies of physical cognition. PMID:26673936

  6. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  7. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.

    PubMed

    Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie

    2014-07-01

    In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. PMID:24768703

  8. How we developed eForms: an electronic form and data capture tool to support assessment in mobile medical education.

    PubMed

    Mooney, Jane S; Cappelli, Tim; Byrne-Davis, Lucie; Lumsden, Colin J

    2014-12-01

    Mobile learning technologies are being introduced and adopted by an increasing number of medical schools. Following the implementation of these devices, institutions are tasked with the challenge of their integration into curriculum delivery and presented with the opportunity to facilitate data collection from large student cohorts. Since 2011, Manchester Medical School (MMS) has undertaken the largest deployment of iPads within UK Higher Education. Working towards the more efficient collation of students' compulsory workplace-based assessment data led us to evaluate how existing information management software could replace previously paper-based systems. Following an evaluation of six, and a trial of one, commercially available packages, the existing software solutions were found to be inflexible and unfit for purpose. This resulted in the development of a new digital solution that addressed the limitations of the previous system. "University of Manchester (UoM) eForms" consists of an app and a web-based administration system that respectively permit high volume data collection and management. UoM eForms has now replaced the preceding paper-based and electronic systems within MMS for workplace-based assessment administration, due to the improved usability and dynamicity built into its interface and infrastructure. This new system has found many further useful applications, including research data collection, feedback, placement evaluations, quality assurance and interview marking. PMID:24787527

  9. A Systematic Investigation of Cold Gas and Dust in "Normal" Star-Forming Galaxies and Starbursts at Redshifts 5-6

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Chris Luke; Capak, Peter L.; COSMOS, HerMES

    2016-01-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We present some of the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations of the cold gas and dust with the most powerful facilities, i.e., the Karl G. Jansky Very Large Array (VLA), the NOrthern Extended Millimeter Array (NOEMA) and the Atacama Large (sub-) Millimeter Array (ALMA). Facilitating the impressive sensitivity of ALMA, this investigation encompasses a systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in massive dusty starbursts and (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  10. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  11. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sudhakara, Dara; Prasanthi, Guvvala

    2016-08-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  12. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  13. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  14. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  15. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  16. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  17. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    NASA Astrophysics Data System (ADS)

    Šturm, Roman; Štefanikova, Maria; Steiner Petrovič, Darja

    2015-01-01

    In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  18. Full-scale experimental and numerical study about structural behaviour of a thin-walled cold-formed steel building affected by ground settlements due to land subsidence

    NASA Astrophysics Data System (ADS)

    Ortiz, J. A.; Hernández, L. A.; Hernández, M.; Pacheco, J.; Zermeño, M. E.; Salinas, R.

    2015-11-01

    Land subsidence due to ground water withdrawal is a problem in many places around the world (Poland, 1984). This causes differential ground settlements that affect masonry structures, because these structural materials do not exhibit an adequate performance beyond a certain level of angular distortion. This work presents the experimental and numerical results about a study regarding the performance of a full-scale thin-walled cold-formed steel building affected by ground differential settlements due to land subsidence. The experimental stage consisted in the construction of a test-building to be subjected to differential settlements in laboratory. The numerical stage consisted in performing a numerical non-linear static pull-down analysis simulating the differential ground settlements of the test-building. The results show that the structural performance of the tested building was very suitable in terms of ductility.

  19. Power Tools: 100+ Essential Forms and Presentations for Your School Library Information Program.

    ERIC Educational Resources Information Center

    Valenza, Joyce Kasman

    This package of materials presents ready-to-use forms that will help school library information specialists manage, promote, and assess their programs; increase the effectiveness of their program while reducing their workload; and help students develop information skills. The document consists of 117 reproducible loose-leaf forms, CD-ROM (for…

  20. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    DOE PAGESBeta

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced themore » grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.« less

  1. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    SciTech Connect

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  2. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of > 50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at > 973 K (700 A degrees C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (similar to 100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 A degrees C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting. (C) The Minerals, Metals & Materials Society and ASM International 2015

  3. Leaf-Mining and Gall-Forming Insects: Tools for Teaching Population Ecology.

    ERIC Educational Resources Information Center

    Brown, Valerie K.

    1984-01-01

    Discusses the use of leaf mines (formed by larvae of small moths or flies) and galls (wasps' larvae) in various insect population studies. Also considers the advantages of using these structures for instructional purposes. (DH)

  4. Tool For Editing Structured Query Language Text Within ORACLE Forms Applications

    Energy Science and Technology Software Center (ESTSC)

    1991-02-01

    SQTTEXT is an ORACLE SQL*Forms application that allows a programmer to view and edit all the Structured Query Language (SQL) text for a given application on one screen. This application is an outgrowth of the prototyping of an on-line system dictionary for the Worldwide Household Goods Information system for Transportation-Modernization decision support system being prototyped by the Oak Ridge National Laboratory, but it can be applied to all SQL*Forms software development, debugging, and maintenance.

  5. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z > 2

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Spilker, J. S.; Bethermin, M.; Bothwell, M.; Chapman, S. C.; de Breuck, C.; Furstenau, R. M.; Gónzalez-López, J.; Greve, T. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Stark, A.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.; Wong, G. F.; Collier, J. D.

    2016-04-01

    Using the Australia Telescope Compact Array, we conducted a survey of CO J = 1 - 0 and J = 2 - 1 line emission towards strongly lensed high-redshift dusty star-forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sample comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array and the Atacama Pathfinder Experiment. We detect all sources with known redshifts in either CO J = 1 - 0 or J = 2 - 1. 12 sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11) × 1010 M⊙ and gas depletion time-scales tdep < 200 Myr, using a CO to gas mass conversion factor αCO = 0.8 M⊙ (K km s-1 pc2)-1. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive αCO factors in the range 0.4-1.8 M⊙ (K km s-1 pc2)-1, similar to what is found in other starbursting systems. We find small scatter in αCO values within the sample, even though inherent variations in the spatial distribution of dust and gas in individual cases could bias the dust-based αCO estimates. We find that lensing magnification factors based on the CO linewidth to luminosity relation (μCO) are highly unreliable, but particularly when μ < 5. Finally, comparison of the gas and dynamical masses suggest that the average molecular gas fraction stays relatively constant at z = 2-5 in the SPT DSFG sample.

  6. MSITE: a new computational tool for comparison of homological proteins in holo form.

    PubMed

    Sicinska, Wanda; Kurcinski, Mateusz

    2010-07-01

    The mechanism by which nuclear receptors respond differentially to structurally distinct agonists is not a well understood process. However, it is now obvious that transcriptional activity of nuclear receptors is a function of their interactions with co-activators. Recently, we released a new computational tool, CCOMP, for comparing side chain conformations in crystal structures of homologous protein complexes. Application of the CCOMP program revealed that 20-epi-1alpha,25-(OH)2D3 changes the side chain conformation of vitamin D receptor amino acids residing mostly far away from the ligand-receptor contacts. This strongly suggests that the ligand-co-activator signaling pathway involves indirect interactions between amino acids lining the binding pocket and outer surface residues that could attract co-activators. To facilitate identification of amino acids transmitting the subtle receptor changes upon ligand/modulator binding we developed another simple tool, MSITE. The program automatically lists the nearest neighbors of a given amino acid (for example neighbors of residues that are in contact with a ligand or reorient their side chains in the presence of a co-factor) in an arbitrary number of compared complexes. Comparison of seven binary vitamin D receptor complexes holding as ligands the analogs of 1alpha,25-(OH)2D3 with inverted configuration at carbon 14 or 20, or with incorporated oxolane ring bridging carbons 20 and 23, is reported. PMID:20399855

  7. Effect of Tool Rotation Speed on Microstructure and Microhardness of Friction-Stir-Processed Cold-Sprayed SiCp/Al5056 Composite Coating

    NASA Astrophysics Data System (ADS)

    Huang, Chunjie; Li, Wenya; Zhang, Zhihan; Planche, Marie-pierre; Liao, Hanlin; Montavon, Ghislain

    2016-08-01

    SiC-particle-reinforced Al5056-matrix composite coatings were deposited onto Al2024 substrates by cold spraying using a powder mixture having 15 vol.% SiC. To investigate the effects of friction stir processing (FSP) parameters on the microstructure and microhardness of the as-sprayed coating, the as-sprayed composite coating was then subjected to FSP using a stir tool having a threaded pin with rotation speed of 600 rpm and 1400 rpm. Results showed that the coatings presented Al and SiC phases before and after FSP treatment, and no other diffraction peaks were detected. Fine grains were produced in the Al5056 matrix due to severe plastic deformation during FSP, and the refined SiC particles exhibited a homogeneous distribution in the FSPed coating. In addition, an evident reduction of porosity (from 0.36% to 0.08% at 600 rpm or 0.09% at 1400 rpm) occurred, and a dramatic size reduction of the reinforcement from 12.5 µm to 6.5 µm at 600 rpm or 7.0 µm at 1400 rpm was achieved. Nevertheless, the microhardness profile presented general softening and a decrease from 143.9 HV to about 110 HV.

  8. Terahertz time-domain spectroscopy as a new tool for the characterization of dust forming plasmas

    NASA Astrophysics Data System (ADS)

    Ebbinghaus, S.; Schröck, K.; Schauer, J. C.; Bründermann, E.; Heyden, M.; Schwaab, G.; Böke, M.; Winter, J.; Tani, M.; Havenith, M.

    2006-02-01

    We report the application of terahertz time-domain spectroscopy as a new tool for plasma diagnostics. The short broadband THz pulses were radiated from a low temperature grown GaAs emitter by free charge carriers which were generated by focusing a 20 femtosecond TiSa-laser pulse onto the emitter. For sensitive signal recording a coherent detection scheme was applied. This allowed the measurement of the amplitude and sign of the electromagnetic field of the THz pulse after passing the plasma chamber. Fourier transformation allowed us to obtain the full spectrum in the frequency domain. We compared the transmitted THz intensities of a pure argon (Ar) and an acetylene (C2H2)/argon plasma. The presence of the ethynyl-radical (CCH) and cyclopropenylidene (c-C3H2) in the (C2H2)/argon plasma could be confirmed by the observations of rotational transitions in the region from 8 to 16 cm-1 corresponding to 0.3-0.5 THz.

  9. The urine specific gravity dipstick: a useful tool to increase fluid intake in stone forming patients.

    PubMed

    McCormack, M; Dessureault, J; Guitard, M

    1991-12-01

    High fluid intake is the only preventive dietary measure that can be recommended to all patients with stones. However, the efficacy of dietary advice given to patients is unknown. We compared the impact of dietary advice to increase hydration (group 1, 57 patients) and of no dietary advice (group 2, 83 patients) on 24-hour urine volume. No significant difference was noted between groups 1 (1,624 ml.) and 2 (1,732 ml.). We then determined if urine specific gravity dipsticks could help patients increase the 24-hour urine volume. A correlation between 24-hour urine volume and mean urine specific gravity was performed on 263 randomly chosen patients. There was an inverse relationship between urine specific gravity and 24-hour urine volume with a correlation coefficient of 0.522 (y = 1.0207 - 0.00374x). Most patients (81.6%) with 24-hour urine volumes of less than 2.1 had a urine specific gravity of more than 1.010. The use of specific gravity dipsticks was evaluated as a tool to help 24 patients increase the 24-hour urine volume. The 24-hour urine volume increased significantly (p less than 0.05, paired Student's t test) in patients after feedback from specific gravity dipsticks when they were instructed to keep the urine specific gravity at or less than 1.010 (average 24-hour urine volume increased 192%). We conclude that dietary advice may be insufficient to modify fluid intake habits in stone patients. However, modifications of fluid intake habits may be improved by feedback from specific gravity dipsticks. PMID:1942321

  10. Implementation of a Reuse Process for Liquid Crystal Displays Using an Eccentric-Form Tool

    PubMed Central

    Pa, Pai-Shan

    2009-01-01

    This study presents a new nanotechnology application involving an ITO thin-film removal reuse process using an eccentric-form negative electrode, offering a fast removal rate from the surface of liquid crystal displays (LCDs). For the precision removal process, a small amount of eccentricity of the negative electrode or a higher rotational speed of the negative electrode corresponds to a higher etching rate for the ITO. A higher flow velocity of the electrolyte and a higher working temperature also correspond to a higher removal rate. The average effect of the eccentricity is better than the effects of a pulsed current, while the current rating need not be prolonged by the off-time. PMID:19865539

  11. A unique tool to selectively detect the chondrogenic IIB form of human type II procollagen protein.

    PubMed

    Aubert-Foucher, Elisabeth; Mayer, Nathalie; Pasdeloup, Marielle; Pagnon, Aurélie; Hartmann, Daniel; Mallein-Gerin, Frédéric

    2014-02-01

    Type II collagen, the major fibrillar collagen of cartilage, is synthesized as precursor forms (procollagens) containing N- and C-terminal propeptides. Three splice variants are thought to be translated to produce procollagen II isoforms (IIA/D and IIB) which differ in their amino propeptide parts. The IIA and IID are transient embryonic isoforms that include an additional cysteine-rich domain encoded by exon 2. The IIA and IID transcripts are co-expressed during chondrogenesis then decline and the IIB isoform is the only one expressed and synthesized in fully differentiated chondrocytes. Additionally, procollagens IIA/D can be re-expressed by dedifferentiating chondrocytes and in osteoarthritic cartilage. Therefore, it is an important point to determine which isoform(s) is (are) synthesized in vivo in normal and pathological situations and in vitro, to fully assess the phenotype of cells producing type II collagen protein. Antibodies directed against the cysteine-rich extra domain found in procollagens IIA and IID are already available but antibodies detecting only the chondrogenic IIB form of type II procollagen were missing so far. A synthetic peptide encompassing the junction between exon 1 and exon 3 of the human sequence was used as immunogen to produce rabbit polyclonal antibodies to procollagen IIB. After affinity purification on immobilized peptide their absence of crossreaction with procollagens IIA/D and with the fibrillar procollagens I, III and V was demonstrated by Western blotting. These antibodies were used to reveal at the protein level that the treatment of dedifferentiated human chondrocytes by bone morphogenic protein (BMP)-2 induces the synthesis of the IIB (chondrocytic) isoform of procollagen II. In addition, immunohistochemical staining of bovine cartilage demonstrates the potential of these antibodies in the analysis of the differential spatiotemporal distribution of N-propeptides of procollagens IIA/D and IIB during normal development and

  12. Quality management tools: facilitating clinical research data integrity by utilizing specialized reports with electronic case report forms.

    PubMed

    Trocky, N M; Fontinha, M

    2005-01-01

    Data collected throughout the course of a clinical research trial must be reviewed for accuracy and completeness continually. The Oracle Clinical (OC) data management application utilized to capture clinical data facilitates data integrity through pre-programmed validations, edit and range checks, and discrepancy management modules. These functions were not enough. Coupled with the use of specially created reports in Oracle Discoverer and Integrated Review, both ad-hoc query and reporting tools, research staff have enhanced their ability to clean, analyze and report more accurate data captured within and among Case Report Forms (eCRFs) by individual study or across multiple studies. PMID:16779428

  13. Tools for quantitative form description; an evaluation of different software packages for semi-landmark analysis

    PubMed Central

    Houssaye, Alexandra; Herrel, Anthony; Fabre, Anne-Claire; Cornette, Raphael

    2015-01-01

    The challenging complexity of biological structures has led to the development of several methods for quantitative analyses of form. Bones are shaped by the interaction of historical (phylogenetic), structural, and functional constrains. Consequently, bone shape has been investigated intensively in an evolutionary context. Geometric morphometric approaches allow the description of the shape of an object in all of its biological complexity. However, when biological objects present only few anatomical landmarks, sliding semi-landmarks may provide good descriptors of shape. The sliding procedure, mandatory for sliding semi-landmarks, requires several steps that may be time-consuming. We here compare the time required by two different software packages (‘Edgewarp’ and ‘Morpho’) for the same sliding task, and investigate potential differences in the results and biological interpretation. ‘Morpho’ is much faster than ‘Edgewarp,’ notably as a result of the greater computational power of the ‘Morpho’ software routines and the complexity of the ‘Edgewarp’ workflow. Morphospaces obtained using both software packages are similar and provide a consistent description of the biological variability. The principal differences between the two software packages are observed in areas characterized by abrupt changes in the bone topography. In summary, both software packages perform equally well in terms of the description of biological structures, yet differ in the simplicity of the workflow and time needed to perform the analyses. PMID:26618086

  14. Tools for quantitative form description; an evaluation of different software packages for semi-landmark analysis.

    PubMed

    Botton-Divet, Léo; Houssaye, Alexandra; Herrel, Anthony; Fabre, Anne-Claire; Cornette, Raphael

    2015-01-01

    The challenging complexity of biological structures has led to the development of several methods for quantitative analyses of form. Bones are shaped by the interaction of historical (phylogenetic), structural, and functional constrains. Consequently, bone shape has been investigated intensively in an evolutionary context. Geometric morphometric approaches allow the description of the shape of an object in all of its biological complexity. However, when biological objects present only few anatomical landmarks, sliding semi-landmarks may provide good descriptors of shape. The sliding procedure, mandatory for sliding semi-landmarks, requires several steps that may be time-consuming. We here compare the time required by two different software packages ('Edgewarp' and 'Morpho') for the same sliding task, and investigate potential differences in the results and biological interpretation. 'Morpho' is much faster than 'Edgewarp,' notably as a result of the greater computational power of the 'Morpho' software routines and the complexity of the 'Edgewarp' workflow. Morphospaces obtained using both software packages are similar and provide a consistent description of the biological variability. The principal differences between the two software packages are observed in areas characterized by abrupt changes in the bone topography. In summary, both software packages perform equally well in terms of the description of biological structures, yet differ in the simplicity of the workflow and time needed to perform the analyses. PMID:26618086

  15. Heat Treatment of Thixo-Formed Hypereutectic X210CrW12 Tool Steel

    NASA Astrophysics Data System (ADS)

    Rogal, Łukasz; Dutkiewicz, Jan

    2012-12-01

    Steel is a particularly challenging material to semisolid process because of the high temperatures involved and the potential for surface oxidation. Hot-rolled X210CrW12 tool steel was applied as a feedstock for thixoforming. The samples were heated up to 1525 K (1250 °C) to obtain 30 pct of the liquid phase. They were pressed in the semisolid state into a die preheated up to 473 K (200 °C) using a device based on a high-pressure die casting machine. As a result, a series of main bucket tooth thixo-casts for a mining combine was obtained. The microstructure of the thixo-cast consisted of austenite globular grains (average grain size 46 μm) surrounded by a eutectic mixture (ferrite, austenite, and M7C3 carbides). The average hardness of primary austenite grains was 470 HV0.02 and that of eutectic 551 HV0.02. The X-ray analysis confirmed the presence of 11.8 pct α-Fe, 82.4 pct γ-Fe, and 5.8 pct M7C3 carbides in the thixo-cast samples. Thermal and dilatometric effects were registered in the solid state, and the analysis of curves enabled the determination of characteristic temperatures of heat treatment: 503 K, 598 K, 693 K, 798 K, 828 K, 903 K, and 953 K (230 °C, 325 °C, 420 °C, 525 °C, 555 °C, 630 °C, 680 °C). The thixo-casts were annealed at these temperatures for 2 hours. During annealing in the temperature range 503 K to 693 K (230 °C to 420 °C), the hardness of primary globular grains continuously decreased down to 385HV0.02. The X-ray diffraction showed a slight shift of peaks responsible for the tension release. Moreover, after the treatment at 693 K (420 °C), an additional peak from precipitated carbides was observed in the X-ray diffraction. Thin plates of perlite (average hardness 820 HV0.02) with carbide precipitates appeared at the boundaries of globular grains at 798 K (525 °C). They occupied 17 pct of the grain area. Plates of martensite were found in the center of grains, while the retained austenite was observed among them (average

  16. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes--Influence of the Tool Parameters on the Forming Limit

    SciTech Connect

    Linardon, Camille; Affagard, Jean-Sebastien; Chagnon, Gregory; Favier, Denis; Gruez, Benoit

    2011-05-04

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes.The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  17. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes—Influence of the Tool Parameters on the Forming Limit

    NASA Astrophysics Data System (ADS)

    Linardon, Camille; Affagard, Jean-Sébastien; Chagnon, Grégory; Favier, Denis; Gruez, Benoit

    2011-05-01

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes. The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  18. A spatially-dense regression study of facial form and tissue depth: towards an interactive tool for craniofacial reconstruction.

    PubMed

    Shrimpton, Sarah; Daniels, Katleen; de Greef, Sven; Tilotta, Francoise; Willems, Guy; Vandermeulen, Dirk; Suetens, Paul; Claes, Peter

    2014-01-01

    Forensic Craniofacial Reconstruction (CFR) is an investigative technique used to illicit recognition of a deceased person by reconstructing the most likely face starting from the skull. A key component in most CFR methods are estimates of facial soft tissue depths (TD) at particular points (landmarks) on the skull based on averages from databases of TD recordings. These databases vary in their method of extraction, number and position of landmarks (usually sparse <100), condition of the body, population studied, and sub-categorization of the data. In this work a new dataset is presented in a novel manner based on 156 CT scans using a spatially-dense set (∼7500) of TD recordings to allow for a complete understanding of TD variation interpolating between typical landmarks. Furthermore, to unravel the interplay between soft-tissue layers, skull and facial morphology, TD and Facial Form (FF) are investigated both separately and combined. Using a partial least squares regression (PLSR) analysis, which allows for working with multivariate and spatially-dense data, on metadata of Sex, Age and BMI, different significant patterns on TD and FF variation were found. A similar, but with TD and FF combined, PLSR generated a model useful to report on both, in function of Sex, Age and BMI. In contrast to other datasets and due to the continuous nature of the regression there is no need for data sub-categorization. In further contrast, previous datasets have been presented in tabulated form, which is impractical for spatially-dense data. Instead an interactive tool was built to visualize the regression model in an accessible way for CFR practitioners as well as anatomists. The tool is free to the community and forms a base for data contributions to augment the model and its future use in practice. PMID:24378309

  19. Experimental Testing of Innovative Cold-Formed "GEB" Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  20. Experimental Testing of Innovative Cold-Formed 'GEB' Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  1. Characteristics of radiation porosity formed upon irradiation in a BN-600 reactor in the fuel-element cans of cold-deformed steel EK-164 (06Kh16N20M2G2BTFR)-ID c.d.

    NASA Astrophysics Data System (ADS)

    Portnykh, I. A.; Kozlov, A. V.; Panchenko, V. L.; Mitrofanova, N. M.

    2012-05-01

    At present, it is the austenitic cold-deformed steel EK164 (06Kh16N20M2G2BTFR)-ID that is considered as a promising material for the achievement of a maximum damage (no less than 110 dpa) and maximum burnup (≥15%). In this work, we have determined the characteristics of porosity formed upon irradiation in a BN-600 reactor to the maximum damaging dose of 77 dpa in the materials of fuel-element cans made of cold-deformed steel EK164-ID c.d. A comparison has been made with analogous characteristics obtained earlier using the standard material, i.e., the cold-deformed steel ChS68 (06Kh16N 15M2G2TFR)-ID c.d.

  2. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    SciTech Connect

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  3. Inspection and metrology tools benefit from free-form refractive micro-lens and micro-lens arrays

    NASA Astrophysics Data System (ADS)

    Bizjak, Tanja; Mitra, Thomas; Aschke, Lutz

    2009-03-01

    LIMO's unique production technology based on computer-aided design enables the manufacture of high precision asphere single lenses and arrays, where every single lens can be individually shaped. These free form micro-optical cylindrical lens and lens arrays find their application in various types of metrology systems. Due to the high precise manufacturing of specially designed surface, single lenses can be bond directly onto sensor or sensor arrays, performing efficient projection of signal onto detector. Optical modules based on micro-lenses arrays enable special intensity distribution, as well as highly homogeneous illumination with inhomogeneity less then 1% (peak to valley) used in illumination parts of inspection tools. Due to the special free form profile, a special case of asymmetric lens arrays can offer extreme uniformity illumination at the target non orthogonal to the illumination path. The feature under inspection can be uniformly illuminated even if it lies at a specific angle to the illumination. This allows better conditions for measurement devices arranged orthogonal to the mask or wafer. Furthermore the use of micro-optics enables more sufficient inspection of laser beam parameters for excimer or CO2 lasers. Additionally very accurate metal patterns can be applied on the optics and used as alignment marks, apertures or bonding features.

  4. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  5. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  6. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  7. Common cold

    MedlinePlus

    ... often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, cough, ... symptoms are: Nasal congestion Runny nose Scratchy throat Sneezing Adults and older children with colds generally have ...

  8. Cold Intolerance

    MedlinePlus

    ... from the Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Cold Intolerance Many polio ... index of Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Back to top Contact ...

  9. Coatings for metal cutting and forming tools. January 1970-March 1989 (Citations from the COMPENDEX data base). Report for January 1970-March 1989

    SciTech Connect

    Not Available

    1989-04-01

    This bibliography contains citations concerning the bond and wear characteristics of hard, antifriction, and thermal-insulating coatings on metal cutting and forming tools and dies. The metal carbides and oxides, ceramic coatings and their deposition techniques, CVD, ion nitriding, and sputtering are included. The effects of coatings on tool wear, and performance comparisons of various substrate/coating combinations are discussed. (This updated bibliography contains 258 citations, 94 of which are new entries to the previous edition.)

  10. How 24-Month-Olds Form and Transfer Knowledge about Tools: The Role of Perceptual, Functional, Causal, and Feedback Information

    ERIC Educational Resources Information Center

    Bechtel, Sabrina; Jeschonek, Susanna; Pauen, Sabina

    2013-01-01

    This study investigated cognitive processes underlying tool use and knowledge transfer in 24-month-olds (N = 123). Following a demonstration, participants chose a tool to reach a reward in a training transfer paradigm. Differing from previous research, various aspects considered to be relevant for children's performance were integrated within the…

  11. Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates

    SciTech Connect

    Kaya, M.H.

    1996-10-01

    Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

  12. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  13. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  14. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  15. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    SciTech Connect

    Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander

    2013-12-16

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.

  16. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  17. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  18. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  19. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  20. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  1. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  2. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  3. My Class Inventory-Short Form as an Accountability Tool for Elementary School Counselors to Measure Classroom Climate

    ERIC Educational Resources Information Center

    Sink, Christopher A.; Spencer, Lisa R.

    2005-01-01

    A psychometric study with more than 2,800 upper-elementary-age students examined the reliability and factorial validity of the My Class Inventory-Short Form (MCI-SF). Factor analytic and structural equation modeling results suggested that the original measure is a less than satisfactory approach to appraise various dimensions of classroom climate.…

  4. Paroxysmal cold hemoglobinuria.

    PubMed

    Shanbhag, Satish; Spivak, Jerry

    2015-06-01

    Paroxysmal cold hemoglobinuria is a rare cause of autoimmune hemolytic anemia predominantly seen as an acute form in young children after viral illnesses and in a chronic form in some hematological malignancies and tertiary syphilis. It is a complement mediated intravascular hemolytic anemia associated with a biphasic antibody against the P antigen on red cells. The antibody attaches to red cells at colder temperatures and causes red cell lysis when blood recirculates to warmer parts of the body. Treatment is mainly supportive and with red cell transfusion, but immunosuppressive therapy may be effective in severe cases. PMID:26043386

  5. The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools.

    PubMed

    Figueroa, Maximiliano; Sleutel, Mike; Vandevenne, Marylene; Parvizi, Gregory; Attout, Sophie; Jacquin, Olivier; Vandenameele, Julie; Fischer, Axel W; Damblon, Christian; Goormaghtigh, Erik; Valerio-Lepiniec, Marie; Urvoas, Agathe; Durand, Dominique; Pardon, Els; Steyaert, Jan; Minard, Philippe; Maes, Dominique; Meiler, Jens; Matagne, André; Martial, Joseph A; Van de Weerdt, Cécile

    2016-07-01

    Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features. PMID:27181418

  6. Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.

    2011-01-01

    In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.

  7. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  8. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  9. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  10. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  11. Form and Function of Early Neolithic Bifacial Stone Tools Reflects Changes in Land Use Practices during the Neolithization Process in the Levant

    PubMed Central

    Yerkes, Richard W.; Khalaily, Hamudi; Barkai, Ran

    2012-01-01

    For many, climate change is no longer recognized as the primary cause of cultural changes in the Near East. Instead, human landscape degradation, population growth, socioeconomic adjustments, and conflict have been proposed as the mechanisms that shaped the Neolithic Revolution. However, as Bar-Yosef noted, even if there is chronological correlation between climate changes and cultural developments, what is important is to understand how Neolithic societies dealt with these improving or deteriorating environments. Changes in bifacial stone tools provide a framework for examining some of these interactions by focusing on changing land use practices during the Neolithization process. The results of microwear analysis of 40 bifacial artifacts from early Pre-Pottery Neolithic (EPPNB) levels at Motza in the Judean hills document changes during the PPNA–PPNB transition at the onset of the Levantine Moist Period (ca. 8000 cal B.C.) when conditions for agriculture improved. EPPNB villagers added heavy-duty axes to a toolkit they had used for carpentry and began to clear forests for fields and grazing lands. Sustainable forest management continued for the duration of the PPN until the cumulative effects of tree-felling and overgrazing seem to have led to landscape degradation at end of the Pre-Pottery Neolithic C (PPNC), when a cold, dry climatic anomaly (6600–6000 cal B.C.) may have accelerated the reduction of woodlands. Early PPNB components at sites like Motza, with data from nearly five millennia of Neolithic occupations, show how complex hunter–gatherers and early food producers were able to establish sustainable resource management systems even as climate changed, population increased, and social relations were redefined. PMID:22905133

  12. Form and function of early neolithic bifacial stone tools reflects changes in land use practices during the neolithization process in the levant.

    PubMed

    Yerkes, Richard W; Khalaily, Hamudi; Barkai, Ran

    2012-01-01

    For many, climate change is no longer recognized as the primary cause of cultural changes in the Near East. Instead, human landscape degradation, population growth, socioeconomic adjustments, and conflict have been proposed as the mechanisms that shaped the Neolithic Revolution. However, as Bar-Yosef noted, even if there is chronological correlation between climate changes and cultural developments, what is important is to understand how Neolithic societies dealt with these improving or deteriorating environments. Changes in bifacial stone tools provide a framework for examining some of these interactions by focusing on changing land use practices during the Neolithization process. The results of microwear analysis of 40 bifacial artifacts from early Pre-Pottery Neolithic (EPPNB) levels at Motza in the Judean hills document changes during the PPNA-PPNB transition at the onset of the Levantine Moist Period (ca. 8000 cal B.C.) when conditions for agriculture improved. EPPNB villagers added heavy-duty axes to a toolkit they had used for carpentry and began to clear forests for fields and grazing lands. Sustainable forest management continued for the duration of the PPN until the cumulative effects of tree-felling and overgrazing seem to have led to landscape degradation at end of the Pre-Pottery Neolithic C (PPNC), when a cold, dry climatic anomaly (6600-6000 cal B.C.) may have accelerated the reduction of woodlands. Early PPNB components at sites like Motza, with data from nearly five millennia of Neolithic occupations, show how complex hunter-gatherers and early food producers were able to establish sustainable resource management systems even as climate changed, population increased, and social relations were redefined. PMID:22905133

  13. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  14. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  15. Mathematical modeling of cold cap

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  16. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  17. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance. PMID:23125372

  18. Tight Binding Models in Cold Atoms Physics

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  19. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  20. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  1. Cold knife cone biopsy

    MedlinePlus

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  2. Cold wave lotion poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...

  3. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  4. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  5. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  6. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  7. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  8. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  9. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  10. The power tool

    SciTech Connect

    HAYFIELD, J.P.

    1999-02-01

    POWER Tool--Planning, Optimization, Waste Estimating and Resourcing tool, a hand-held field estimating unit and relational database software tool for optimizing disassembly and final waste form of contaminated systems and equipment.

  11. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  12. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... These cells produce essential immune system proteins called interferons that respond to a cold virus. The cells ... several degrees below core body temperature, virus-fighting interferons were less able to do their job. The ...

  13. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  14. The neural and cognitive correlates of aimed throwing in chimpanzees: a magnetic resonance image and behavioural study on a unique form of social tool use.

    PubMed

    Hopkins, William D; Russell, Jamie L; Schaeffer, Jennifer A

    2012-01-12

    It has been hypothesized that neurological adaptations associated with evolutionary selection for throwing may have served as a precursor for the emergence of language and speech in early hominins. Although there are reports of individual differences in aimed throwing in wild and captive apes, to date there has not been a single study that has examined the potential neuroanatomical correlates of this very unique tool-use behaviour in non-human primates. In this study, we examined whether differences in the ratio of white (WM) to grey matter (GM) were evident in the homologue to Broca's area as well as the motor-hand area of the precentral gyrus (termed the KNOB) in chimpanzees that reliably throw compared with those that do not. We found that the proportion of WM in Broca's homologue and the KNOB was significantly higher in subjects that reliably throw compared with those that do not. We further found that asymmetries in WM within both brain regions were larger in the hemisphere contralateral to the chimpanzee's preferred throwing hand. We also found that chimpanzees that reliably throw show significantly better communication abilities than chimpanzees that do not. These results suggest that chimpanzees that have learned to throw have developed greater cortical connectivity between primary motor cortex and the Broca's area homologue. It is suggested that during hominin evolution, after the split between the lines leading to chimpanzees and humans, there was intense selection on increased motor skills associated with throwing and that this potentially formed the foundation for left hemisphere specialization associated with language and speech found in modern humans. PMID:22106425

  15. Epidermal Micrografts Produced via an Automated and Minimally Invasive Tool Form at the Dermal/Epidermal Junction and Contain Proliferative Cells That Secrete Wound Healing Growth Factors

    PubMed Central

    Osborne, Sandra N.; Schmidt, Marisa A.; Derrick, Kathleen; Harper, John R.

    2015-01-01

    ABSTRACT OBJECTIVE: The aim of this scientific study was to assess epidermal micrografts for formation at the dermal-epidermal (DE) junction, cellular outgrowth, and growth factor secretion. Epidermal harvesting is an autologous option that removes only the superficial epidermal layer of the skin, considerably limiting donor site damage and scarring. Use of epidermal grafting in wound healing has been limited because of tedious, time-consuming, and inconsistent methodologies. Recently, a simplified, automated epidermal harvesting tool (CelluTome Epidermal Harvesting System; Kinetic Concepts Inc, San Antonio, Texas) that applies heat and suction concurrently to produce epidermal micrografts has become commercially available. The new technique of epidermal harvesting was shown to create viable micrografts with minimal patient discomfort and no donor-site scarring. DESIGN: This study was a prospective institutional review board–approved healthy human study. SETTING: This study was conducted at the multispecialty research facility, Clinical Trials of Texas, Inc, in San Antonio, Texas. PATIENTS: The participants were 15 healthy human volunteers. RESULTS: Epidermal micrografts formed at the DE junction, and migratory basal layer keratinocytes and melanocytes were proliferative in culture. Basement membrane–specific collagen type IV was also found to be present in the grafts, suggesting that the combination of heat and vacuum might cause partial delamination of the basement membrane. Viable basal cells actively secreted key growth factors important for modulating wound healing responses, including vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, platelet-derived growth factor, and transforming growth factor α. CONCLUSIONS: Harvested epidermal micrografts retained their original keratinocyte structure, which is critical for potential re-epithelialization and repigmentation of a wound environment. PMID:26258460

  16. Quarkonia as a multi-purpose tool

    SciTech Connect

    Vogt, R

    2010-12-21

    Quarkonia can be a very useful tool for understanding the medium in which they are produced and pass through. However, their usefulness as a tool depends on how well certain aspects of their behavior in cold matter are understood.

  17. Human responses to cold.

    PubMed

    Rintamäki, Hannu

    2007-01-01

    The thermoneutral ambient temperature for naked and resting humans is ca. 27 degrees C. Exposure to cold stimulates cold receptors of the skin which causes cold thermal sensations and stimulation of the sympathetic nervous system. Sympathetic stimulation causes vasoconstriction in skin, arms and legs. Diminished skin and extremity blood flow increases the thermal insulation of superficial tissues more than 300% corresponding to 0.9 clo (0.13 degrees C x m(-2) x W(-1)). With thermoregulatory vasoconstriction/ vasodilatation the body heat balance can be maintained within a range of ca. 4 degrees C, the middle of the range being at ca. 21 degrees C when light clothing is used. Below the thermoneutral zone metabolic heat production (shivering) is stimulated and above the zone starts heat loss by evaporation (sweating). Cold induced vasoconstriction increases blood pressure and viscosity and decreases plasma volume consequently increasing cardiac work. Cold induced hypertensive response can be counteracted by light exercise, while starting heavy work in cold markedly increases blood pressure. Under very cold conditions the sympathetic stimulation opens the anastomoses between arterioles and venules which increases skin temperatures markedly but temporarily, especially in finger tips. Adaptation to cold takes ca. 2 weeks, whereafter the physiological responses to cold are attenuated and cold exposure is subjectively considered less stressful. PMID:17929604

  18. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  19. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  20. The chemistry of cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1987-01-01

    In recent years the nearby cold, dark clouds have been shown to possess a rich chemistry, with interesting differences with respect to warmer massive-star-forming regions and also among the cold clouds themselves. Thirty-nine molecular species are now known in these regions. Recent molecular detections and upper limits in dark clouds are discussed, with particular emphasis on the tricarbon species C3O, C3H, and C3H2.

  1. Dry lubricant films for aluminum forming.

    SciTech Connect

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  2. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  3. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  4. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis. PMID:23471256

  5. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  6. Ultra-cold molecule production.

    SciTech Connect

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  7. Primary cold agglutinin disease.

    PubMed

    Mondal, Prabodh Chandra; Chakraborty, Partha Pratim; Bera, Mitali

    2011-07-01

    A 4-year-old girl presented with severe pallor and intermittent passage of cola-coloured urine. Routine investigations were suggestive of auto-immune haemolytic anaemia. Red cell agglutination was observed in peripheral smear and patient's serum was positive for cold agglutinins. Thorough work-up ruled out secondary cold agglutinin disease. Patient was treated successfully with corticosteroids. PMID:22315851

  8. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  9. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  10. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  11. Lunar Cold Trap Contamination by Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  12. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  13. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  14. Developing a Change-Sensitive Brief Behavior Rating Scale as a Progress Monitoring Tool for Social Behavior: An Example Using the Social Skills Rating System--Teacher Form

    ERIC Educational Resources Information Center

    Gresham, Frank M.; Cook, Clayton R.; Collins, Tai; Dart, Evan; Rasetshwane, Kutlo; Truelson, Erica; Grant, Stephanie

    2010-01-01

    Research has been unsuccessful at revealing an analogue to curriculum-based measurement in the area of progress monitoring for social behavior. As a result, there is a need to develop change-sensitive, technically adequate, feasible progress monitoring tools for social behavior that represent general outcome measures of performance. The purpose of…

  15. High-resolution distributed temperature sensing: a new tool to study the space-time dynamics of transient cold-air pools in the weak-wind stable boundary layer

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.; Selker, J. S.; Zeeman, M. J.

    2011-12-01

    We present a novel approach to observing the two-dimensional thermal structure of atmospheric near-surface turbulent and non-turbulent flows by measuring air temperatures in a vertical plane at a high resolution (0.25 m, every approximately 2 s) using distributed temperature sensing (DTS). Air temperature observations obtained from a fiber optics array of approximate dimensions 8 by 8 m and sonic anemometer data from two levels were collected for a period of 23 days over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. In addition to evaluating the DTS technique to resolve the rapidly changing gradients and small-scale perturbations associated with turbulence in the atmosphere for convective and stable boundary layers, the objective was to analyze the space-time dynamics of transient cold-air pools in the stable boundary layer. The time response and precision of the fiber temperatures were adequate to resolve individual sub-meter sized turbulent and non-turbulent structures of time scales >= 3 s and enabled calculation of meaningful sensible heat fluxes when combined with vertical wind observations. The small turbulence scales associated with strong vertical shear and low measurement heights pose limitations to the technique. The top of the transient cold-air pool was highly non-stationary. The thermal structure of the near-surface air is generally a superposition of various perturbations of different time and length scales, whereas no preferred scales were identified. Vertical length scales for turbulence in the strongly stratified transient cold-air pool directly derived from the DTS data agreed well with buoyancy length scales parameterized using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange with a broad

  16. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  17. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  18. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  19. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  20. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  1. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  2. Febrile/cold agglutinins

    MedlinePlus

    ... diagnose certain infections and find the cause of hemolytic anemia (a type of anemia that occurs when red ... or cold agglutinins can help explain why the hemolytic anemia is occurring and direct treatment.

  3. Radio frequency field assisted cold collisions

    NASA Astrophysics Data System (ADS)

    Ding, Yijue; D'Incao, Jose; Greene, Chris

    2016-05-01

    The radio frequency (RF) field is a promising but less developed tool to control cold collisions. From the few-body perspective, we study cold atom collisions in an external magnetic field and a single-color RF field. We employ the multi-channel quantum defect theory and the hyperspherical toolkit to solve the two-body and three-body Schrödinger equations. Our results show that RF fields can effectively control the two-body scattering length through Feshbach resonances. Such RF induced Feshbach resonances can be applied to quenching experiments or spinor condensates. Analogous to photo association, RF fields can also associate cold atoms into molecules with a reasonable rate. Moreover, we will discuss the feasibility of using RF fields to control three-body recombination, which may improve the experimental timescale by suppressing three-body losses. This work is supported by the US National Science Foundation.

  4. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  5. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  6. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  7. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  8. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    NASA Astrophysics Data System (ADS)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus

  9. Pasteurization as a tool to control the bio-burden in solid herbal dosage forms: A pilot study of formulating Ashoka tablets with an industrial perspective

    PubMed Central

    Pushpalatha, Hulikal Basavarajaiah; Pramod, Kumar; Sundaram, Ramachandran; Shyam, Ramakrishnan

    2014-01-01

    Irradiation and use of preservatives are routine procedures to control bio-burden in solid herbal dosage forms. Use of steam or pasteurization is even though reported in the literature, not many studies are available with respect to its application in reducing the bio-burden in herbal drug formulations. Hence, we undertook a series of studies to explore the suitability of pasteurization as a method to reduce bio-burden during formulation and development of herbal dosage forms, which will pave the way for preparing preservative-free formulations. Optimized Ashoka (Saraca indica) tablets were formulated and developed. The optimized formula was then subjected to pasteurization during formulation, with an aim to keep the microbial count well within the limits of pharmacopoeial standards. Then, three variants of the optimized Ashoka formulation - with preservative, without preservative and formulation without preservative and subjected to pasteurization, were compared by routine in-process parameters and stability studies. The results obtained indicate that Ashoka tablets manufactured by inclusion of the pasteurization technique not only showed the bio-burden to be within the limits of pharmacopoeial standards, but also exhibited the compliance with other parameters, such as stability and quality. The outcome of this pilot study shows that pasteurization can be employed as a distinctive method for reducing bio-burden during the formulation and development of herbal dosage forms, such as tablets. PMID:25364698

  10. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  11. Cold exposure reveals two populations of microtubules in pulmonary endothelia.

    PubMed

    Ochoa, Cristhiaan D; Stevens, Troy; Balczon, Ron

    2011-01-01

    Microtubules are composed of α-tubulin and β-tubulin dimers. Microtubules yield tubulin dimers when exposed to cold, which reassemble spontaneously to form microtubule fibers at 37°C. However, mammalian neurons, glial cells, and fibroblasts have cold-stable microtubules. While studying the microtubule toxicity mechanisms of the exotoxin Y from Pseudomonas aeruginosa in pulmonary microvascular endothelial cells, we observed that some endothelial microtubules were very difficult to disassemble in the cold. As a consequence, we designed studies to test the hypothesis that microvascular endothelium has a population of cold-stable microtubules. Pulmonary microvascular endothelial cells and HeLa cells (control) were grown under regular cell culture conditions, followed by exposure to an ice-cold water bath and a microtubule extraction protocol. Polymerized microtubules were detected by immunofluorescence confocal microscopy and Western blot analyses. After cold exposure, immunofluorescence revealed that the majority of HeLa cell microtubules disassembled, whereas a smaller population of endothelial cell microtubules disassembled. Immunoblot analyses showed that microvascular endothelial cells express the microtubule cold-stabilizing protein N-STOP (neuronal stable tubule-only polypeptides), and that N-STOP binds to endothelial microtubules after cold exposure, but not if microtubules are disassembled with nocodazole before cold exposure. Hence, pulmonary endothelia have a population of cold-stable microtubules. PMID:20971804

  12. Massive cold cloud clusters

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Marton, Gabor; Zahorecz, Sarolta

    2015-08-01

    The all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy. Several thousand of the clumps have also distance estimates allowing a mass, and density determination. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds with masses ranging from one to several tens of thousands solar masses. Some of the clumps are embedded in GMCs, others are isolated. Some are close or even very close to OB associations, while others lay far from any UV luminous objects.The small scale clustering of these objects was studied with the improved Minimum Spanning Tree method of Cartwright & Whitworth identifying groups in 3D space. As a result also massive cold cloud clusters were identified. We analyse the MST structures, and discuss their relation to ongoing and future massive star formation.

  13. Cold-responsive gene regulation during cold acclimation in plants.

    PubMed

    Lissarre, Mickael; Ohta, Masaru; Sato, Aiko; Miura, Kenji

    2010-08-01

    Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed. PMID:20699657

  14. Spatial distribution of cold antihydrogen formation.

    PubMed

    Madsen, N; Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2005-01-28

    Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen. PMID:15698264

  15. Chemical abundances in cold, dark interstellar clouds.

    PubMed

    Irvine, W M; Ohishi, M; Kaifu, N

    1991-05-01

    The Sun may well have formed in the type of interstellar cloud currently referred to as a cold, dark cloud. We present current tabulations of the totality of known interstellar molecules and of the subset which have been identified in cold clouds. Molecular abundances are given for two such clouds which show interesting chemical differences in spite of strong physical similarities, Taurus Molecular Cloud 1 (TMC-1) and Lynd's 134N (L134N, also referred to as L183). These regions may be at different evolutionary stages. PMID:11542208

  16. Horse metabolism and the photocatalytic process as a tool to identify metabolic products formed from dopant substances: the case of sildenafil.

    PubMed

    Medana, Claudio; Calza, Paola; Giancotti, Valeria; Dal Bello, Federica; Pasello, Emanuela; Montana, Marco; Baiocchi, Claudio

    2011-10-01

    Two horses were treated with sildenafil, and its metabolic products were sought in both urine and plasma samples. Prior to this, a simulative laboratory study had been done using a photocatalytic process, to identify all possible main and secondary transformation products, in a clean matrix; these were then sought in the biological samples. The transformation of sildenafil and the formation of intermediate products were evaluated adopting titanium dioxide as photocatalyst. Several products were formed and characterized using the HPLC/HRMS(n) technique. The main intermediates identified in these experimental conditions were the same as the major sildenafil metabolites found in in vivo studies on rats and horses. Concerning horse metabolism, sildenafil and the demethylated product (UK 103,320) were quantified in blood samples. Sildenafil propyloxide, de-ethyl, and demethyl sildenafil, were the main metabolites quantified in urine. Some more oxidized species, already formed in the photocatalytic process, were also found in urine and plasma samples of treated animals. Their formation involved hydroxylation on the aromatic ring, combined oxidation and dihydroxylation, N-demethylation on the pyrazole ring, and hydroxylation. These new findings could be of interest in further metabolism studies. PMID:21964727

  17. The dynamics of Persistent Cold-Air Pool breakup

    NASA Astrophysics Data System (ADS)

    Lareau, Neil P.

    The wind-induced disruption and breakup of multiday cold-air pools are investigated using observational analyses and idealized numerical simulations. The observations are from the Persistent Cold-Air Pool (CAP) Study, which provides modern measurement of the meteorological processes affecting the duration of cold-air pools in the Salt Lake Valley of Utah. In general, the observations indicate that synoptic-scale processes control cold-air pool duration while local processes affect near-surface stratification and mixing. The most common form of CAP breakup is due to cold-air advection aloft. However, analyses reveal that some cold-air pools are destroyed or disrupted by strong winds penetrating into the valley. The resulting wind-CAP interactions are complex, involving sequential CAP displacements, internal oscillations, dynamic instabilities, and terrain-flow interactions. Large Eddy Simulations of multiday cold-air pools in idealized valley topography further demonstrate that cold-air pool removal is affected by the interplay of Kelvin-Helmholtz instability and warm air advection. This dynamic instability generates breaking waves in the stratified shear flow that mix cold-air into the warmer flow aloft. Variations in the initial cold pool stratification and valley terrain affect the timescale for cold-air pool removal. Despite these variations, a basic relationship between the magnitude of the flow aloft and the strength of the underlying cold-air pool can be expressed in terms of the "CAP Froude number." This dimensionless quantity is useful for diagnosing the onset and amplification of turbulent mixing, as well as the complete removal of cold-air pools.

  18. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes.

    PubMed

    Quintyn, Royston S; Zhou, Mowei; Yan, Jing; Wysocki, Vicki H

    2015-12-01

    One attractive feature of ion mobility mass spectrometry (IM-MS) lies in its ability to provide experimental collision cross section (CCS) measurements, which can be used to distinguish different conformations that a protein complex may adopt during its gas-phase unfolding. However, CCS values alone give no detailed information on subunit structure within the complex. Consequently, structural characterization typically requires molecular modeling, which can have uncertainties without experimental support. One method of obtaining direct experimental evidence on the structures of these intermediates is utilizing gas-phase activation techniques that can effectively dissociate the complexes into substructures while preserving the native topological information. The most commonly used activation method, collision-induced dissociation (CID) with low-mass target gases, typically leads to unfolding of monomers of a protein complex. Here, we describe a method that couples IM-MS and surface-induced dissociation (SID) to dissociate the source-activated precursors of three model protein complexes: C-reactive protein (CRP), transthyretin (TTR), and concanavalin A (Con A). The results of this study confirm that CID involves the unfolding of the protein complex via several intermediates. More importantly, our experiments also indicate that retention of similar CCS between different intermediates does not guarantee retention of structure. Although CID spectra (at a given collision energy) of source-activated, mass-selected precursors do not distinguish between native-like, collapsed, and expanded forms of a protein complex, dissociation patterns and/or average charge states of monomer products in SID of each of these forms are unique. PMID:26499904

  19. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  20. Heating up cold agglutinins.

    PubMed

    Stone, Marvin J

    2010-10-28

    In this issue of Blood, Berentsen and coworkers describe a high response rate which is durable in some patients who receive combination fludarabine and rituximab for chronic cold agglutinin disease (CAD). If confirmed, this is a significant advance in therapy for a frequently difficult clinical problem. PMID:21030565

  1. Cold agglutinin disease.

    PubMed

    Swiecicki, Paul L; Hegerova, Livia T; Gertz, Morie A

    2013-08-15

    Cold agglutinin disease is a rare and poorly understood disorder affecting 15% of patients with autoimmune hemolytic anemia. We reviewed the clinical and pathologic features, prognosis, and management in the literature and describe our institutional experience to improve strategies for accurate diagnosis and treatment. Retrospective analysis identified 89 patients from our institution with cold agglutinin disease from 1970 through 2012. Median age at symptom onset was 65 years (range, 41 to 83 years), whereas the median age at diagnosis was 72 years (range, 43 to 91 years). Median survival of all patients was 10.6 years, and 68 patients (76%) were alive 5 years after the diagnosis. The most common symptom was acrocyanosis (n = 39 [44%]), and many had symptoms triggered by cold (n = 35 [39%]) or other factors (n = 20 [22%]). An underlying hematologic disorder was detected in 69 patients (78%). Thirty-six patients (40%) received transfusions during their disease course, and 82% received drug therapy. Rituximab was associated with the longest response duration (median, 24 months) and the lowest proportion of patients needing further treatment (55%). Our institution's experience and review of the literature confirms that early diagnostic evaluation and treatment improves outcomes in cold agglutinin disease. PMID:23757733

  2. Out in the cold.

    PubMed

    Bates, Jane

    2016-05-01

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet. PMID:27154099

  3. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  4. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  5. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  6. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  7. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  8. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  9. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  10. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  11. Careers (A Course of Study). Unit V: Forms, Forms, Forms.

    ERIC Educational Resources Information Center

    Turley, Kay

    Designed to enable special needs students to understand and complete various job-related forms, this set of activities devoted to forms encountered before and after one obtains a job is the fifth in a nine-unit secondary level careers course intended to provide handicapped students with the knowledge and tools necessary to succeed in the world of…

  12. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  13. Laboratory studies of carbon kinetic isotope effects on the production mechanism of particulate phenolic compounds formed by toluene photooxidation: a tool to constrain reaction pathways.

    PubMed

    Irei, Satoshi; Rudolph, Jochen; Huang, Lin; Auld, Janeen; Collin, Fabrice; Hastie, Donald

    2015-01-01

    In this study, we examined compound-specific stable carbon isotope ratios for phenolic compounds in secondary organic aerosol (SOA) formed by photooxidation of isotope-label-free toluene. SOA generated by photooxidation of toluene using a continuous-flow reactor and an 8 m(3) indoor smog chamber was collected on filters, which were extracted with acetonitrile for compound-specific analysis. Eight phenolic compounds were identified in the extracts using a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined using a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5-6‰ compared to the initial isotope ratio of toluene, whereas the isotope ratio for 4-nitrophenol remained identical to that of toluene. On the basis of the reaction mechanisms proposed in previous reports, stable carbon isotope ratios of these products were calculated. By comparing the observed isotope ratios with the predicted isotope ratios, we explored possible production pathways for the particulate phenolic compounds. PMID:25490235

  14. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  15. Prescription Drugs and Cold Medicines

    MedlinePlus

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  16. Image Tool

    SciTech Connect

    Baker, S.A.; Gardner, S.D.; Rogers, M.L.; Sanders, F.; Tunnell, T.W.

    2001-01-01

    ImageTool is a software package developed at Bechtel Nevada, Los Alamos Operations. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data. Performance measures are used to identify capabilities and limitations of a camera system, while establishing a means for comparing systems. The camera evaluations are designed to provide system performance, camera comparison and system modeling information. This program is used to evaluate digital camera images. ImageTool provides basic image restoration and analysis features along with a special set of camera evaluation tools which are used to standardize camera system characterizations. This process is started with the acquisition of a well-defined set of calibration images. Image processing algorithms provide a consistent means of evaluating the camera calibration data. Performance measures in the areas of sensitivity, noise, and resolution are used as a basis for comparing camera systems and evaluating experimental system performance. Camera systems begin with a charge-coupled device (CCD) camera and optical relay system and may incorporate image intensifiers, electro-static image tubes, or electron bombarded charge-coupled devices (EBCCDs). Electro-optical components provide fast shuttering and/or optical gain to camera systems. Camera types evaluated include gated intensified cameras and multi-frame cameras used in applications ranging from X-ray radiography to visible and infrared imaging. It is valuable to evaluate the performance of a camera system in order to determine if a particular system meets experimental requirements. In this paper we highlight the processing features of ImageTool.

  17. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  18. Health problems in cold work.

    PubMed

    Mäkinen, Tiina M; Hassi, Juhani

    2009-07-01

    Cold in- and outdoor work can result in different adverse effects on human health. Health problems decrease performance and work productivity and increase the occurrence of accidents and injuries. Serious health problems can also result in absence from work due to sick leave or hospitalization. At its worst, work in cold conditions could be associated with deaths due to cold-related accidents or a sudden health event. Musculoskeletal complaints, like pain, aches etc. are common in indoor cold work. Breathing cold air while working may lead to respiratory symptoms, which can decrease performance in cold. The symptoms are usually worsened by exercise and ageing, being more common in persons having a respiratory disease. Cardiovascular complaints and related performance decrements could be especially pronounced during work in cold weather and involving physical exercise, especially among those with an underlying cardiovascular disease. The article also reviews the current information related to diabetes, skin disorders and diseases, as well as cold injuries and accidents occurring in cold work. Increasing awareness and identifying workplace- and individual-related cold risks is the first step in proper cold risk management. Following this, the susceptible population groups need customized advice on proper prevention and protection in cold work. PMID:19531906

  19. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  20. When blood runs cold: cold agglutinins and cardiac surgery.

    PubMed

    Findlater, Rhonda R; Schnell-Hoehn, Karen N

    2011-01-01

    Cold agglutinins are particular cold-reactive antibodies that react with red blood cells when the blood temperature drops below normal body temperature causing increased blood viscosity and red blood cell clumping. Most individuals with cold agglutinins are not aware of their presence, as these antibodies have little effect on daily living, often necessitating no treatment. However, when those with cold agglutinins are exposed to hypothermic situations or undergo procedures such as cardiopulmonary bypass with hypothermia during cardiac surgery, lethal complications of hemolysis, microvascular occlusion and organ failure can occur. By identifying those suspected of possessing cold agglutinins through a comprehensive nursing assessment and patient history, cold agglutinin screening can be performed prior to surgery to determine a diagnosis of cold agglutinin disease. With a confirmed diagnosis of cold agglutinin disease, the plan of care can be focused on measures to maintain the patient's blood temperature above the thermal amplitude throughout their hospitalization including the use of normothermic cardiopulmonary bypass with warm myocardial preservation techniques to prevent these fatal complications. Using a case report approach, the authors review the mechanism, clinical manifestations, detection and nursing management of a patient with cold agglutinins undergoing scheduled cardiac surgery. Cold agglutinin disease is rare. However, the risk to patients warrants an increased awareness of cold agglutinins and screening for those who are suspected of carrying these antibodies. PMID:21630629

  1. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  2. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  3. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  4. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  5. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  6. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  7. Laser-assisted micro sheet forming

    NASA Astrophysics Data System (ADS)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  8. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  9. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  10. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  11. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  12. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  13. combined cold compressor ejector helium refrigerator

    SciTech Connect

    Brown, D. P.

    1985-10-22

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  14. Forming tool improves quality of tubing flares

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Punch and die set improves the quality of tubing flares for use with standard flared-tube fittings in high-pressure systems. It forges a dimensionally accurate flare in the tubing and forces more tubing material into the high-stress areas to improve the strength and tightness of the tubing connection.

  15. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  16. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function.

    PubMed

    Berry, Daniel C; Jiang, Yuwei; Graff, Jonathan M

    2016-01-01

    Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and 'beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-Cre(ERT2) and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601

  17. "This war for men's minds": the birth of a human science in Cold War America.

    PubMed

    Martin-Nielsen, Janet

    2010-01-01

    The past decade has seen an explosion of work on the history of the human sciences during the Cold War. This work, however, does not engage with one of the leading human sciences of the period: linguistics. This article begins to rectify this knowledge gap by investigating the influence of linguistics and its concept of study, language, on American public, political and intellectual life during the postwar and early Cold War years. I show that language emerged in three frameworks in this period: language as tool, language as weapon, and language as knowledge. As America stepped onto the international stage, language and linguistics were at the forefront: the military poured millions of dollars into machine translation, American diplomats were required to master scores of foreign languages, and schoolchildren were exposed to language-learning on a scale never before seen in the United States. Together, I argue, language and linguistics formed a critical part of the rise of American leadership in the new world order - one that provided communities as dispersed as the military, the diplomatic corps, scientists and language teachers with a powerful way of tackling the problems they faced. To date, linguistics has not been integrated into the broader framework of Cold War human sciences. In this article, I aim to bring both language, as concept, and linguistics, as discipline, into this framework. In doing so, I pave the way for future work on the history of linguistics as a human science. PMID:21322972

  18. Cold Dust in Hot Regions

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Dunlop, James S.; Gibb, Andy; Greaves, Jane S.; Halpern, Mark; Holland, Wayne S.; Ivison, Rob; Jenness, Tim; Robson, Ian; Scott, Douglas

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 1023 cm-2, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ~10 to 103 M ⊙. The outer regions of the clumps follow an r -2.36 ± 0.35 density distribution, and this power-law structure is observed outside of typically 104 AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  19. Cold dust in hot regions

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Jenness, Tim; Dunlop, James S.; Holland, Wayne S.; Ivison, Rob; Gibb, Andy; Halpern, Mark; Scott, Douglas; Greaves, Jane S.; Robson, Ian

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 10{sup 23} cm{sup –2}, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ∼10 to 10{sup 3} M {sub ☉}. The outer regions of the clumps follow an r {sup –2.36±0.35} density distribution, and this power-law structure is observed outside of typically 10{sup 4} AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  20. Cold-impregnated aluminium. A new source of nickel exposure.

    PubMed

    Lidén, C

    1994-07-01

    A new technique for finishing anodized aluminium was introduced during the 1980s--cold impregnation with nickel. Nickel is available on the surface of cold-impregnated aluminium, as shown by the dimethylglyoxime test. Chemical analysis with EDXA showed that nickel was in the form of NiSO4. A case of work-related allergic contact dermatitis in an engraver with nickel allergy is reported. It transpired that the patient was exposed to nickel in connection with aluminium. It is concluded that cold-impregnated aluminium is a new source of nickel exposure, probably previously unknown to dermatologists. PMID:7924288

  1. Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  2. Cold Atmosphere Plasma in Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2012-10-01

    Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration

  3. Cold plasma technologies for the inactivation of human pathogens on fresh and fresh-cut produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in cold plasma processing at the USDA’s Eastern Regional Research Center is focused on developing this technology into an effective tool to improve the safety of a variety of foods. Cold plasma applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley inoculated on the ...

  4. Cold Plasma: A Novel Intervention for Fresh Fruits and Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in cold plasma processing at the USDA’s Eastern Regional Research Center is focused on developing this technology into an effective tool to improve the safety of a variety of foods. This presentation will provide an introduction to the technology that will explain the engineering and microb...

  5. Quantum Optics of Ultra-Cold Molecules

    NASA Astrophysics Data System (ADS)

    Meiser, D.; Miyakawa, T.; Uys, H.; Meystre, P.

    Quantum optics has been a major driving force behind the rapid experimental developments that have led from the first laser cooling schemes to the Bose-Einstein condensation (BEC) of dilute atomic and molecular gases. Not only has it provided experimentalists with the necessary tools to create ultra-cold atomic systems, but it has also provided theorists with a formalism and framework to describe them: many effects now being studied in quantum-degenerate atomic and molecular systems find a very natural explanation in a quantum optics picture. This article briefly reviews three such examples that find their direct inspiration in the trailblazing work carried out over the years by Herbert Walther, one of the true giants of that field. Specifically, we use an analogy with the micromaser to analyze ultra-cold molecules in a double-well potential; study the formation and dissociation dynamics of molecules using the passage time statistics familiar from superradiance and superfluorescence studies; and show how molecules can be used to probe higher-order correlations in ultra-cold atomic gases, in particular bunching and antibunching.

  6. Method for forming materials

    DOEpatents

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  7. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  8. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  9. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  10. Shocks and cold fronts in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim; Vikhlinin, Alexey

    2007-05-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z<0.05, the Chandra's 1 angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated “cold fronts,” or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in “relaxed” clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron proton

  11. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  12. Cold condensation of dust in the ISM.

    PubMed

    Rouillé, Gaël; Jäger, Cornelia; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2014-01-01

    The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 microm band of the interstellar silicates and the 10 microm band of the low-temperature siliceous condensates can be noted. PMID:25302393

  13. Cold atom reflection from curved magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Hughes, Ifan G.; Barton, P. A.; Boshier, M. G.; Hinds, Edward A.

    1997-05-01

    Multiple bounces of cold rubidium atoms have been observed for times up to one second in a trap formed by gravity and a 2 cm-diameter spherical mirror made from a sinusoidally magnetized floppy disk. We have studied the dynamics of the atoms bouncing in this trap from several different heights up to 40.5 mm and we conclude that the atoms are reflected specularly and with reflectivity 1.01(3). Slight roughness of the mirror is caused by harmonics in the magnetization of the surface and by discontinuities at the boundaries between recorded tracks. As the next step in this atom optics program we propose using a magnetic mirror to create a 2D atomic gas. We discuss how cold atoms can be loaded into the ground state of a static magnetic potential well that exists above the surface of the mirror as a consequence of the intermediate-field Zeeman effect.

  14. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  15. USGS cold-water coral geographic database-Gulf of Mexico and western North Atlantic Ocean, version 1.0

    USGS Publications Warehouse

    Scanlon, K.M.; Waller, R.G.; Sirotek, A.R.; Knisel, J.M.; O'Malley, J.J.; Alesandrini, Stian

    2010-01-01

    The USGS Cold-Water Coral Geographic Database (CoWCoG) provides a tool for researchers and managers interested in studying, protecting, and/or utilizing cold-water coral habitats in the Gulf of Mexico and western North Atlantic Ocean. The database makes information about the locations and taxonomy of cold-water corals available to the public in an easy-to-access form while preserving the scientific integrity of the data. The database includes over 1700 entries, mostly from published scientific literature, museum collections, and other databases. The CoWCoG database is easy to search in a variety of ways, and data can be quickly displayed in table form and on a map by using only the software included with this publication. Subsets of the database can be selected on the basis of geographic location, taxonomy, or other criteria and exported to one of several available file formats. Future versions of the database are being planned to cover a larger geographic area and additional taxa.

  16. Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs

    PubMed Central

    Wang, Xiaohui; Che, Honglei; Zhang, Wenbin; Wang, Jiye; Ke, Tao; Cao, Rui; Meng, Shanshan; Li, Dan; Weiming, Ouyang; Chen, Jingyuan; Luo, Wenjing

    2015-01-01

    Cold adaptation is a body's protective response to cold stress. Mild chronic intermittent cold (CIC) exposure has been used to generate animal models for cold adaptation studies. However, the effects of mild CIC exposure on vital organs are not completely characterized. In the present study, we exposed rats to mild CIC for two weeks, and then measured the body weights, the weights of brown adipose tissue (BAT), the levels of ATP and reactive oxygen species (ROS) in the brains, livers, hearts, muscles and BATs. Rats formed cold adaptation after exposure to CIC for two weeks. Compared to rats of the control group that were hosted under ambient temperature, rats exposed to mild CIC showed a lower average body weight, but a higher weight of brown adipose tissue (BAT). Rats exposed to CIC for two weeks also exhibited higher levels of ATP and ROS in all examined organs as compared to those of the control group. In addition, we determined the expression levels of cold-inducible RNA binding protein (Cirbp) and thioredoxin (TRX) in rat tissues after 2 weeks of CIC exposure. Both Cirbp and TRX were increased, suggesting a role of these two proteins for establishment of cold adaptation. Together, this study reveals the effects of mild CIC exposure on vital organs of rats during CIC exposure. PMID:26327811

  17. Benthic foraminifera as bioindicator for cold-water coral reef ecosystems along the Irish margin

    NASA Astrophysics Data System (ADS)

    Margreth, Stephan; Rüggeberg, Andres; Spezzaferri, Silvia

    2009-12-01

    Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0-1 cm, >63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray-Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species ( Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and

  18. Shifting tools

    SciTech Connect

    Fisher, E.P.; Welch, W.R.

    1984-03-13

    An improved shifting tool connectable in a well tool string and useful to engage and position a slidable sleeve in a sliding sleeve device in a well flow conductor. The selectively profiled shifting tool keys provide better fit with and more contact area between keys and slidable sleeves. When the engaged slidable sleeve cannot be moved up and the shifting tool is not automatically disengaged, emergency disengagement means may be utilized by applying upward force to the shifting tool sufficient to shear pins and cause all keys to be cammed inwardly at both ends to completely disengage for removal of the shifting tool from the sliding sleeve device.

  19. Common cold - how to treat at home

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000466.htm Common cold - how to treat at home To use the ... green snot, and sneezing Sore throat Treating your Cold Treating your symptoms will not make your cold ...

  20. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  1. Testing THEMIS wave measurements against the cold plasma theory

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John

    2016-04-01

    The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.

  2. Leo Szilard Award Lecture: Unwinding the Cold War

    NASA Astrophysics Data System (ADS)

    Neff, Thomas

    1997-04-01

    Two generations of scientists in the US and the Soviet Union spent their lives in the shadow of the cold war, building the scientific and technical infrastructure and shaping the institutional and policy structures that maintained a stable "balance of terror." The cold war is now over, but the lethal products of it, and the decaying institutions and policies that perpetuated it, are probably more dangerous than ever. At the same time, the loss of cold war imperatives means fewer government resources and less policy attention to the problems of reversing the cold war. Moreover, solving these problems will require that the forces and talents of economics and business be integrated with the technical skill and imagination of physical scientists. Science fundamentally involves skills of problem definition and problem-solving. Both American and Russian scientists and engineers must expand their tool kits and the scope of their imaginations if they are to undo the dangerous legacy of the cold war and find productive new roles in a post-cold war world. This address is intended to illustrate how this can be done, using the past five years' experience in developing and implementing the agreement between the U.S. and Russia to motivate, finance, and institutionalize the destruction of approximately 20,000 Russian nuclear weapons through the commercially-driven recovery and destruction of 500 tonnes of highly enriched uranium from those weapons. Such approaches can have benefits much broader than the destruction of weapons, if we can recognize the opportunities and pursue them wisely. Unfortunately, there is a basic lack of imagination and will, one that is further frustrated by bureaucratic inertia and the parochial interests of cold war institutions. The irony is that Russia is more ready to change than the US, but it is the US that is, in principle but perhaps not in practice, most able to help lead the world out of the cold war era.

  3. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  4. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  5. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  6. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  7. FORTRAN tools

    NASA Technical Reports Server (NTRS)

    Presser, L.

    1978-01-01

    An integrated set of FORTRAN tools that are commercially available is described. The basic purpose of various tools is summarized and their economic impact highlighted. The areas addressed by these tools include: code auditing, error detection, program portability, program instrumentation, documentation, clerical aids, and quality assurance.

  8. Percussion tool

    SciTech Connect

    Reed, Teddy R.

    2006-11-28

    A percussion tool is described and which includes a housing mounting a tool bit; a reciprocally moveable hammer borne by the housing and which is operable to repeatedly strike the tool bit; and a reciprocally moveable piston enclosed within the hammer and which imparts reciprocal movement to the reciprocally moveable hammer.

  9. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  10. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  11. Nonfreezing cold-induced injuries.

    PubMed

    Imray, C H E; Richards, P; Greeves, J; Castellani, J W

    2011-03-01

    Non-freezing cold injury (NFCI) is the Cinderella of thermal injuries and is a clinical syndrome that occurs when tissues are exposed to cold temperatures close to freezing point for sustained periods. NFCI is insidious in onset, often difficult to recognize and problematic to treat, and yet the condition accounts for significant morbidity in both military and civilians who work in cold conditions. Consequently recognition of those at risk, limiting their exposure and the appropriate and timely use of suitable protective equipment are essential steps in trying to reduce the impact of the condition. This review addresses the issues surrounding NFCI. PMID:21465916

  12. Molecular gas of Planck cold dust clumps

    NASA Astrophysics Data System (ADS)

    Wu, Yuefang

    2015-08-01

    To probe dynamical processes and physical properties of Planck Cold Clumps, survey and mapping of 674 most reliable Planck cold dust clumps with J=1-0 of CO,13CO and C18O were made at PMO 13.7 m telescope. More than 600 molecular cores were obtained, which are mainly located in seven molecular complexes divided by Dame (1987). Parameters of cores in different regions are with some difference, showing different evolutional status and environment of the cores. As a whole they are quiescent. Some are with star forming activities. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed at PMO, of which 24 were mapped with IRAM 30 m telescope. Several cores were also observed with J=2-1 of CO and 13CO using CSO. Core splits were detected. Combining with infrared data more than 70% of CO cores are identified as starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.

  13. Inner caustics of cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-01

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a “tricusp ring” when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  14. Inner caustics of cold dark matter halos

    SciTech Connect

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-15

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a 'tricusp ring' when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  15. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans.

    PubMed

    Hanssen, Mark J W; van der Lans, Anouk A J J; Brans, Boudewijn; Hoeks, Joris; Jardon, Kelly M C; Schaart, Gert; Mottaghy, Felix M; Schrauwen, Patrick; van Marken Lichtenbelt, Wouter D

    2016-05-01

    Recruitment of brown adipose tissue (BAT) has emerged as a potential tool to combat obesity and associated metabolic complications. Short-term cold acclimation has been shown not only to enhance the presence and activity of BAT in lean humans but also to improve the metabolic profile of skeletal muscle to benefit glucose uptake in patients with type 2 diabetes. Here we examined whether short-term cold acclimation also induced such adaptations in 10 metabolically healthy obese male subjects. A 10-day cold acclimation period resulted in increased cold-induced glucose uptake in BAT, as assessed by [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. BAT activity was negatively related to age, with a similar trend for body fat percentage. In addition, cold-induced glucose uptake in BAT was positively related to glucose uptake in visceral white adipose tissue, although glucose uptake in visceral and subcutaneous white adipose tissue depots was unchanged upon cold acclimation. Cold-induced skeletal muscle glucose uptake tended to increase upon cold acclimation, which was paralleled by increased basal GLUT4 localization in the sarcolemma, as assessed through muscle biopsies. Proximal skin temperature was increased and subjective responses to cold were slightly improved at the end of the acclimation period. These metabolic adaptations to prolonged exposure to mild cold may lead to improved glucose metabolism or prevent the development of obesity-associated insulin resistance and hyperglycemia. PMID:26718499

  16. Cold atoms in videotape micro-traps

    NASA Astrophysics Data System (ADS)

    Sinclair, C. D. J.; Retter, J. A.; Curtis, E. A.; Hall, B. V.; Llorente Garcia, I.; Eriksson, S.; Sauer, B. E.; Hinds, E. A.

    2005-08-01

    We describe an array of microscopic atom traps formed by a pattern of magnetisation on a piece of videotape. We describe the way in which cold atoms are loaded into one of these micro-traps and how the trapped atom cloud is used to explore the properties of the trap. Evaporative cooling in the micro-trap down to a temperature of 1~μK allows us to probe the smoothness of the trapping potential and reveals some inhomogeneity produced by the magnetic film. We discuss future prospects for atom chips based on microscopic permanent-magnet structures.

  17. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  18. Chemical abundances in cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Kaifu, Norio; Ohishi, Masatoshi

    1991-01-01

    Current tabulations are presented of the entire range of known interstellar molecules, giving attention to that subset which has been identified in the cold, dark interstellar clouds out of which the sun has been suggested to have formed. The molecular abundances of two such clouds, Taurus Molecular Cloud 1 and Lynd's 134N, exhibit prepossessing chemical differences despite considerable physical similarities. This discrepancy may be accounted for by the two clouds' differing evolutionary stages. Two novel classes of interstellar molecules are noted: sulfur-terminated carbon chains and silicon-terminated ones.

  19. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  20. Texture development in dual-phase cold-rolled 18 pct Ni maraging steel

    SciTech Connect

    Ahmad, Z.; Farooque, M.; Ul Haq, A.; Khan, A.Q.

    1997-12-01

    Austenite and martensite textures were studied in 18 pct Ni 350-maraging steel as a function of various degrees of cold rolling. The austenite phase in the samples was produced by repeated thermal cycling between ambient and 800 C. The austenite phase thus formed was mechanically unstable and transformed to the martensite phase after 30 pct cold rolling. The texture developed as a result of cold rolling, and its effect upon microstructure and hardness has been studied.

  1. Flu and Colds: In Depth

    MedlinePlus

    ... Allergy and Infectious Diseases Web site . What the Science Says About Complementary Health Approaches for the Flu ... tea Oscillococcinum Vitamin C Vitamin D What the Science Says About Complementary Health Approaches for Colds The ...

  2. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    SciTech Connect

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L.

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  3. Cold plasma: A new technology to modify wheat flour functionality.

    PubMed

    Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D

    2016-07-01

    Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15V and 20V) for 60 or 120s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality. PMID:26920291

  4. Optical Devices for Cold Atoms and Bose-Einstein Condensates

    SciTech Connect

    Gaaloul, Naceur; Jaouadi, Amine; Telmini, Mourad; Pruvost, Laurence; Charron, Eric

    2007-09-19

    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold {sup 87}Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.

  5. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate. PMID:24111230

  6. Time Ordered Astrophysics Scalable Tools

    Energy Science and Technology Software Center (ESTSC)

    2011-12-14

    This software package provides tools for astrophysical experiments which record data in the form of individual time streams from discrete detectors. TOAST provides tools from meta-data manipulation and job set up, I/O operation, telescope pointing reconstruction, and map-making. It also provides tools for constructing simulated observations.

  7. Spin forming development

    SciTech Connect

    Gates, W.G.

    1982-05-01

    Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equiment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.

  8. Double diameter boring tool

    DOEpatents

    Ashbaugh, F.A.; Murry, K.R.

    1986-02-10

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting flutes formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first flute tip to the axis of rotation plus the distance from the second flute tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second flute tip to the axis of rotation minus one-half the distance from the first flute tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  9. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  10. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-01-01

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  11. Tool Using

    PubMed Central

    Kahrs, Björn A.; Lockman, Jeffrey J.

    2014-01-01

    Research on the development of tool use in children has often emphasized the cognitive bases of this achievement, focusing on the choice of an artifact, but has largely neglected its motor foundations. However, research across diverse fields, from evolutionary anthropology to cognitive neuroscience, converges on the idea that the actions that embody tool use are also critical for understanding its ontogenesis and phylogenesis. In this article, we highlight findings across these fields to show how a deeper examination of the act of tool using can inform developmental accounts and illuminate what makes human tool use unique. PMID:25400691

  12. Plutonium Immobilization Program cold pour tests

    SciTech Connect

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-07-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  13. Production and storage of ultra cold neutrons in superfluid helium

    SciTech Connect

    Greene, G.L.; Lamoreaux, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) concerning the investigation of a new method for the experimental exploitation of ultra-cold neutrons. The production and storage of ultra cold neutrons in superfluid helium has been suggested as a tool for the production of high densities of ultra cold neutrons for fundamental nuclear physics as well as for sensitive measurements for condensed matter. A particular application of this technique has been suggested by Doyle and Lamoreaux that involves the trapping of neutrons in a magnetic field within the superfluid helium volume. Neutron decays within the trap volume are detected by the scintillation light produced in the liquid helium. A cryostat and magnetic trap have been constructed as well as a prototype light detection system. This system was installed on a cold neutron beam line at the NIST Cold Neutron Research Facility in the summer of 1997. Preliminary results indicate the detection of helium scintillation light from the detection vessel.

  14. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-02-25

    High level waste melter feed is converted into glass in a joule heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the cold cap. The bubbles coalesce into cavities that escape around the edges of the cold cap. The foam layer insulates the cold cap from the heat transferred from the molten glass below. More information is needed about the formation and behavior of the foam layer to control, limit and possibly avoid foaming, thus allowing for a higher rate of melting. The cold cap behavior was investigated in a laboratory scale assembly with a sealed silica-glass crucible. A high alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min-1. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap and foam during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the cold cap increased as the cold cap expanded. Under the cold cap, the bubbles coalesced into oblong cavities. These cavities allowed the evolved gases to escape around the edges of the cold cap through the molten glass into the melter plenum.

  15. Wafer handling and placement tool

    DOEpatents

    Witherspoon, Linda L.

    1988-01-05

    A spring arm tool is provided for clamp engaging and supporting wafers while the tool is hand held. The tool includes a pair of relatively swingable jaw element supporting support arms and the jaw elements are notched to enjoy multiple point contact with a wafer peripheral portion. Also, one disclosed form of the tool includes remotely operable workpiece ejecting structure carried by the jaw elements thereof.

  16. Well bore tools

    SciTech Connect

    Burge, E.V.

    1984-08-28

    Well bore tools configured as centralizers/stabilizers, well bore reamers, and keyseat wipers each of which includes an elongate tubular body having a generally cylindrical outer surface and a diameter approximately equal to the diameter of the borehole being drilled are disclosed. Each tool affords an improved mode of drilling a borehole by increasing downhole directional control and stability, increasing tool wear reliability, and reducing return mud flow resistance. The outer surface of each tool has a plurality of longitudinal passages formed in pairs of upright intersecting right and left hand helicies or spirals about the exterior of said tool and extending from one end to the other end thereof. The intersecting right and left hand helical or spiral channels form raised pad areas therebetween to provide 360/sup 0/ contiguous well bore contact by each tool for enhanced stability and efficiency. In addition, the intersecting right and left hand helical channels afford greater surficial engagement area while providing unobstructed return mud flow paths between each tool and the wall of the borehole. The raised pad areas may have wear resistant surfaces which are arranged in a configuration for affording constant 360/sup 0/ contiguous contact with the wall of the borehole. Preferably, the wear resistance surfaces are provided by replaceable inserts mounted in recesses in the pad areas.

  17. Formation and Recovery of Cold Wake during Typhoon Fanapi (2010)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jin, H.; Black, P. G.; Chen, S.; Doyle, J.; O'Neill, L. W.

    2012-12-01

    Cold anomaly of sea surface temperature (SST) is often created after the passage of a moving hurricane or typhoon. The SST reduction within these cold anomalies or cold wakes may reach 2C to 4C. The cold wakes may have important impact on the development of a tropical cyclone due to their control on the surface energy fluxes. This work is aimed at understanding the evolution of cold wake and its impacts on the boundary layers on both sides of the air-sea interface. During 2010 typhoon season, coupled Naval Research Laboratory COAMPS-Tropical Cyclone was used to provide real-time forecasts for ITOP (Impact of Typhoons on the Ocean in the Pacific) field experiment. Typhoon Fanapi started as a tropical depression on September 14, and turned into a Category 4 typhoon on September 18. Along its passage, Typhoon Fanapi produced a large area of cold wake, leading to about 2 degree C reductions in SST. The coupled COAMPS-TC realistically predicted the cold wake formation and recovery as well as the typhoon's track and intensity in general. We use combined coupled COAMPS-TC prediction and observation data collected during the ITOP IOP to investigate the characteristics of the cold wake evolution, evolution of atmospheric as well as oceanic boundary layers. The cold wake was predicted by the model on the right hand side of the storm track; it is driven by the strong shear mixing in the ocean mixed layer. The predicted maximum SST reduction within the wake is 2.5 C, a value very close to the AXBT and satellite observations. Because of this decrease in SST, a stable atmospheric boundary layer is formed, leading to decreases in the surface wind speed, sensible and latent heat fluxes. The predicted warming rate in the cold wake recovery process is comparable with the satellite observation, even though diurnal signal is much more significant in the model prediction. An important question is what determines the recovery time scale. Given the similar solar warming rate between the

  18. Engineering Floquet Hamiltonians in Cold Atom Systems

    NASA Astrophysics Data System (ADS)

    Polkovnikov, Anatoli

    2016-05-01

    In this talk I will first give a brief overview of the Floquet theory, describing periodically driven systems. Then I will introduce the concept of the high-frequency expansion and will show how it generalizes the celebrated Schrieffer-Wolff transformation to driven systems. Using these tools I will illustrate how one can engineer non-trivial interacting Hamiltonians mostly in the context of cold atom systems and discuss some experimental examples. In the end I will talk about issues of heating and adiabaticity and show that there are very strong parallels between Floquet systems and disordered systems. In particular, I will argue that the heating transition is closely analogous to the many-body localization transition. AFOSR, ARO, NSF.

  19. Cold Work Embrittlement of Interstitial-Free Steels

    SciTech Connect

    2005-09-01

    Interstitial-free (IF) steels are defined by their low amounts of solute interstitial elements, such as carbon and nitrogen. During secondary forming, strain can be localized at the grain boundaries of these steels, resulting in secondary cold work embrittlement (CWE).

  20. Photosynthetic microorganisms in cold environments

    NASA Astrophysics Data System (ADS)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    The polar regions are considered as a model of extraterrestrial ecosystems. Depending on the average temperature, temperature variation and water availability, these conditions could be used as a model of Mars or Europa (e.g. (Elster and Benson, 2004). Two cases are presented: 1) Stable temperature and water availability The environment of cryosestic communities, i.e. organisms living in snow, is characterized by very stable temperature; the diurnal variations do not exceed 1 -2 ° C (Kváderová, 2010) and a are not usually exposed to freeze/thaw. Water is not usually limiting since the water content could reach up to 54 % (Nedbalová et al., 2008). The windblown sediments are important a source of nutrient and could provide protection against the excess of radiation. The nutrient concentrations in the snow are low are depleted rapidly when massive algal blooms forms. Such environment could be found near Mars polar caps or in Europa ice cover. The snow algae are the most important primary producers in snow. Their adaptation strategy is dependent on the developmental stages; the motile stages avoid the harsh conditions (e.g. high light) and sessile stages acclimatize to actual conditions. The main genera Chlamydomonas and Chloromonas (both Chlorophyta) are psychrophilic. Their growth optimum temperature is lower than 15 ° C and their growth is inhibited at temperatures above 20 ° C. 2) Unstable temperature and water availability The deglaciated surfaces, inhabited by lichen communities, are typical by variation in temper-ature and moisture. The temperature could range several tens ° C within a short time and the water availability is usually very limited. Due to temperature variation, the lichens are subjected to many freeze/thaw cycles. Such environments could be found in Martian deserts. The lichens are symbotic organisms composed of a mycobiont (heterotrophic fungi) and photo-bionts (algae and/or cyanobacteria). Majority of lichens are dehydrated in the field

  1. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  2. Caffeine and the common cold.

    PubMed

    Smith, A; Thomas, M; Perry, K; Whitney, H

    1997-01-01

    An experiment was carried out to determine whether caffeinated and decaffeinated coffee removed the malaise (reduced alertness, slower psychomotor performance) associated with having a common cold. One hundred volunteers were tested when healthy and 46 returned to the laboratory when they developed colds. Those subjects who remained healthy were then recalled as a control group. On the second visit subjects carried out two sessions, one pre-drink and another an hour after the drink. Subjects were randomly assigned to one of the following three conditions, caffeinated coffee (1.5 mg/kg caffeine/body weight), decaffeinated coffee or fruit juice. Subjects with colds reported decreased alertness and were slower at performing psychomotor tasks. Caffeine increased the alertness and performance of the colds subjects to the same level as the healthy group and decaffeinated coffee also led to an improvement. These results suggest that drugs which increase alertness can remove the malaise associated with the common cold, and that increased stimulation of the sensory afferent nerves may also be beneficial. PMID:9443519

  3. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  4. GRIPPING TOOL

    DOEpatents

    Sandrock, R.J.

    1961-12-12

    A self-actuated gripping tool is described for transferring fuel elements and the like into reactors and other inaccessible locations. The tool will grasp or release the load only when properly positioned for this purpose. In addition, the load cannot be released except when unsupported by the tool, so that jarring or contact will not bring about accidental release of the load. The gripping members or jaws of the device are cam-actuated by an axially slidable shaft which has two lockable positions. A spring urges the shaft into one position and a solenoid is provided to overcome the spring and move it into the other position. The weight of the tool operates a sleeve to lock the shaft in its existing position. Only when the cable supporting the tool is slack is the device capable of being actuated either to grasp or release its load. (AEC)

  5. Omics Tools

    SciTech Connect

    Schaumberg, Andrew

    2012-12-21

    The Omics Tools package provides several small trivial tools for work in genomics. This single portable package, the “omics.jar” file, is a toolbox that works in any Java-based environment, including PCs, Macs, and supercomputers. The number of tools is expected to grow. One tool (called cmsearch.hadoop or cmsearch.local), calls the external cmsearch program to predict non-coding RNA in a genome. The cmsearch program is part of the third-party Infernal package. Omics Tools does not contain Infernal. Infernal may be installed separately. The cmsearch.hadoop subtool requires Apache Hadoop and runs on a supercomputer, though cmsearch.local does not and runs on a server. Omics Tools does not contain Hadoop. Hadoop mat be installed separartely The other tools (cmgbk, cmgff, fastats, pal, randgrp, randgrpr, randsub) do not interface with third-party tools. Omics Tools is written in Java and Scala programming languages. Invoking the “help” command shows currently available tools, as shown below: schaumbe@gpint06:~/proj/omics$ java -jar omics.jar help Known commands are: cmgbk : compare cmsearch and GenBank Infernal hits cmgff : compare hits among two GFF (version 3) files cmsearch.hadoop : find Infernal hits in a genome, on your supercomputer cmsearch.local : find Infernal hits in a genome, on your workstation fastats : FASTA stats, e.g. # bases, GC content pal : stem-loop motif detection by palindromic sequence search (code stub) randgrp : random subsample without replacement, of groups randgrpr : random subsample with replacement, of groups (fast) randsub : random subsample without replacement, of file lines For more help regarding a particular command, use: java -jar omics.jar command help Usage: java -jar omics.jar command args

  6. Omics Tools

    Energy Science and Technology Software Center (ESTSC)

    2012-12-21

    The Omics Tools package provides several small trivial tools for work in genomics. This single portable package, the “omics.jar” file, is a toolbox that works in any Java-based environment, including PCs, Macs, and supercomputers. The number of tools is expected to grow. One tool (called cmsearch.hadoop or cmsearch.local), calls the external cmsearch program to predict non-coding RNA in a genome. The cmsearch program is part of the third-party Infernal package. Omics Tools does not containmore » Infernal. Infernal may be installed separately. The cmsearch.hadoop subtool requires Apache Hadoop and runs on a supercomputer, though cmsearch.local does not and runs on a server. Omics Tools does not contain Hadoop. Hadoop mat be installed separartely The other tools (cmgbk, cmgff, fastats, pal, randgrp, randgrpr, randsub) do not interface with third-party tools. Omics Tools is written in Java and Scala programming languages. Invoking the “help” command shows currently available tools, as shown below: schaumbe@gpint06:~/proj/omics$ java -jar omics.jar help Known commands are: cmgbk : compare cmsearch and GenBank Infernal hits cmgff : compare hits among two GFF (version 3) files cmsearch.hadoop : find Infernal hits in a genome, on your supercomputer cmsearch.local : find Infernal hits in a genome, on your workstation fastats : FASTA stats, e.g. # bases, GC content pal : stem-loop motif detection by palindromic sequence search (code stub) randgrp : random subsample without replacement, of groups randgrpr : random subsample with replacement, of groups (fast) randsub : random subsample without replacement, of file lines For more help regarding a particular command, use: java -jar omics.jar command help Usage: java -jar omics.jar command args« less

  7. A massive cloud of cold atomic hydrogen in the outer Galaxy.

    PubMed

    Knee, L B; Brunt, C M

    2001-07-19

    A large fraction of the mass of the interstellar medium in our Galaxy is in the form of warm (103-104 K) and cool (50-100 K) atomic hydrogen (H i) gas. Cold (10-30 K) regions are thought to be dominated by dense clouds of molecular hydrogen. Cold H i is difficult to observe, and therefore our knowledge of its abundance and distribution in the interstellar medium is poor. The few known clouds of cold H i are much smaller in size and mass than typical molecular clouds. Here we report the discovery that the H i supershell GSH139-03-69 is very cold (10 K). It is about 2 kiloparsecs in size and as massive as the largest molecular complexes. The existence of such an immense structure composed of cold atomic hydrogen in the interstellar medium runs counter to the prevailing view that cold gas resides almost exclusively in clouds dominated by molecular hydrogen. PMID:11460155

  8. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.

    PubMed

    Gay-Mimbrera, Jesús; García, Maria Carmen; Isla-Tejera, Beatriz; Rodero-Serrano, Antonio; García-Nieto, Antonio Vélez; Ruano, Juan

    2016-06-01

    Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer. PMID:27142848

  9. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  10. The Merits of Cold Gas Micropropulsion in State-of-the-Art Space Missions

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Köhler, J.; Stenmark, L.

    2002-01-01

    Cold gas micropropulsion is a sound choice for space missions that require extreme stabilisation, pointing precision or contamination-free operation. The use of forces in the micronewton range for spacecraft operations have been identified as a mission-critical item in several demanding space systems currently under development. The required micropropulsion systems are emerging, using various principles, e.g. field emission, colloid acceleration, solid combustion, and cold gas expulsion. Cold gas micropropulsion systems share merits with traditional cold gas systems in being of simple design, clean, safe, and robust. They do not generate net charge to the spacecraft, and typically operate on low-power. The necessary extreme miniaturisation of system parts furthermore works well to increasing other merits of these systems, making them truly competitive for state-of-the-art spacecraft: e.g. DARWIN, LISA, or high-performance nanosatellites. Silicon microsystems technology can be used for the cold gas micropropulsion system manufacture. Here, the decrease of dimensions is not restricted to fit standard components or tools. This allows for an astonishing mass reduction, e.g. 80 g for a unit comprising four independent nozzles, proportional valves, particle filters, control electronics, and housing. The minute size is also suitable for inclusion on nanosatellites. The dynamic range of a cold gas micropropulsion system can be quite wide (e.g. 1 μN - 10 mN) by using differently sized nozzles in parallel systems. Again, the microsystems technology makes this scheme possible without compromising the mass budget. The micropropulsion system benefits greatly from using a continuously proportional control on the thrust. In this system, the impulse is obtained as the difference of two opposite thrusters in the same unit. Here, the minimum impulse bit is reduced to virtually zero, while simultaneously avoiding any troubles emerging from extremely low flows at near-zero thrust

  11. COLD-SAT dynamic model

    NASA Astrophysics Data System (ADS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-12-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  12. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  13. Psychological and psychophysiological factors in prevention and treatment of cold injuries.

    PubMed

    Kappes, B; Mills, W; O'Malley, J

    1993-01-01

    Cold injured patients in Alaska come from many sources. Although sport and work continues to provide large numbers of cold injured, most severe repeat injuries tend to reflect other biopsychosocial consequences. Certain behaviors can increase the probability of injury, however all persons living in cold climates are potential candidates. One can decrease risk by education, knowledge and intelligent behavior. Proper respect for adequate protection and hydration seem to be critical factors. Understanding the psychological, physiological and psychophysiological aspects of the cold environment performer helps refine the prevention and treatment strategies for cold injury. Skill training with bio-behavioral methods, such as thermal biofeedback, and the value of medical psychotherapy appear to offer continued promise by facilitating physiologic recovery from injury, as well as assisting in long term rehabilitation. Both approaches increase the likelihood of a favorable healing response by soliciting active patient participation. Medical Psychotherapy for traumatic injuries can also help identify and manage cognitive emotional issues for families and patients faced with the permanent consequences of severe thermal injuries. Thermal biofeedback therapy has the potential benefit of encouraging greater self-reliance and responsibility for self-regulating overall health by integrating self-management skills regarding physiology, diet and lifestyle. Inpatient and outpatient biofeedback training offers specific influence over vascular responses for healing, as well as providing an effective tool for pain management. Interest in cold region habitation has continued to expand our study of human tolerance to harsh, extreme environments. Biological, psychological, sociological, and anthropological views on adaptation, habituation, acclimatization, and injury in cold environments acknowledges the role of development, learning and educated responses to cold environments. The study of

  14. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect

    Patterson, T.; O'Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  15. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  16. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    SciTech Connect

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  17. Form classification

    NASA Astrophysics Data System (ADS)

    Reddy, K. V. Umamaheswara; Govindaraju, Venu

    2008-01-01

    The problem of form classification is to assign a single-page form image to one of a set of predefined form types or classes. We classify the form images using low level pixel density information from the binary images of the documents. In this paper, we solve the form classification problem with a classifier based on the k-means algorithm, supported by adaptive boosting. Our classification method is tested on the NIST scanned tax forms data bases (special forms databases 2 and 6) which include machine-typed and handwritten documents. Our method improves the performance over published results on the same databases, while still using a simple set of image features.

  18. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  19. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  20. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter - 13362

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel

    2013-07-01

    High-level-waste melter feed is converted into glass in a joule-heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the feed. The bubbles coalesce into cavities, from which most of the gases are released around the edges of the cold cap while gases also escape through small shafts in the reacting feed. The foam layer insulates the cold cap from the heat transferred from the molten glass below. The cold cap behavior was investigated in a laboratory-scale assembly with a fused silica crucible. A high-alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min{sup -1}. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the feed increased as the cold cap expanded and the relationship between these bubbles and temperature will be determined for input into a mathematical model. (authors)

  1. Drilling tool

    SciTech Connect

    Baumann, O.; Dohse, H.P.; Reibetanz, W.; Wanner, K.

    1983-09-27

    A drilling tool is disclosed which has a drilling shaft member, a crown drilling member with an annular wall provided with a plurality of cutting edges and detachably mounted on the shaft member, a center drilling member detachably mounted on the shaft member inside the crown drilling member and having a further cutting edge, and elements for limiting a drilling depth of the tool when the center drilling member is mounted on the shaft member. Thereby, the operator of the drilling tool, after drilling a guiding groove in a rock, is forced to remove the center drilling member from the drilling tool and drill further without the center drilling member, which increases the drilling efficiency.

  2. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  3. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at /- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by 15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  4. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  5. TrustRank: a Cold-Start tolerant recommender system

    NASA Astrophysics Data System (ADS)

    Zou, Haitao; Gong, Zhiguo; Zhang, Nan; Zhao, Wei; Guo, Jingzhi

    2015-02-01

    The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. User- and item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are known to have Cold-Start problems, i.e., they are unable to effectively handle Cold-Start users who have an extremely limited number of purchase records. In this paper, we develop TrustRank, a novel recommender system which handles the Cold-Start problem by leveraging the user-trust networks which are commonly available for e-commerce applications. A user-trust network is formed by friendships or trust relationships that users specify among them. While it is straightforward to conjecture that a user-trust network is helpful for improving the accuracy of recommendations, a key challenge for using user-trust network to facilitate Cold-Start users is that these users also tend to have a very limited number of trust relationships. To address this challenge, we propose a pre-processing propagation of the Cold-Start users' trust network. In particular, by applying the personalised PageRank algorithm, we expand the friends of a given user to include others with similar purchase records to his/her original friends. To make this propagation algorithm scalable to a large amount of users, as required by real-world recommender systems, we devise an iterative computation algorithm of the original personalised TrustRank which can incrementally compute trust vectors for Cold-Start users. We conduct extensive experiments to demonstrate the consistently improvement provided by our proposed algorithm over the existing recommender algorithms on the accuracy of recommendations for Cold-Start users.

  6. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  7. Compound chondrules fused cold

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2015-07-01

    About 4-5% of chondrules are compound: two separate chondrules stuck together. This is commonly believed to be the result of the two component chondrules having collided shortly after forming, while still molten. This allows high velocity impacts to result in sticking. However, at T ∼ 1100 K, the temperature below which chondrules collide as solids (and hence usually bounce), coalescence times for droplets of appropriate composition are measured in tens of seconds. Even at 1025 K, at which temperature theory predicts that the chondrules must have collided extremely slowly to have stuck together, the coalescence time scale is still less than an hour. These coalescence time scales are too short for the collision of molten chondrules to explain the observed frequency of compound chondrules. We suggest instead a scenario where chondrules stuck together in slow collisions while fully solid; and the resulting chondrule pair was subsequently briefly heated to a temperature in the range of 900-1025 K. In that temperature window the coalescence time is finite but long, covering a span of hours to a decade. This is particularly interesting because those temperatures are precisely the critical window for thermally ionized MRI activity, so compound chondrules provide a possible probe into that vital regime.

  8. Cold plasma decontamination of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...

  9. Images of the Cold War.

    ERIC Educational Resources Information Center

    Chomsky, Noam

    1989-01-01

    The conventional U.S. picture traces the Cold War to Soviet violation of wartime agreements, while the U.S.S.R. defends its actions as responses to American violations and foreign adventurism. An understanding of how ideology is shaped by national self-interest will help students see beyond propaganda and myth in interpreting past and current…

  10. Cold War Geopolitics: Embassy Locations.

    ERIC Educational Resources Information Center

    Vogeler, Ingolf

    1995-01-01

    Asserts that the geopolitics of the Cold War can be illustrated by the diplomatic ties among countries, particularly the superpowers and their respective allies. Describes a classroom project in which global patterns of embassy locations are examined and compared. Includes five maps and a chart indicating types of embassy locations. (CFR)

  11. "Stone Cold": Worthy of Study?

    ERIC Educational Resources Information Center

    Douthwaite, Alison

    2015-01-01

    This article draws on my experiences of teaching "Stone Cold" to respond to a blog post suggesting that the novel holds little educational value. I argue that the novel's narrative style helps to foster criticality while its subject matter can help students see the relevance of literature to the world around them. Relating this to…

  12. Advances in cold plasma technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens continue to be an issue on a variety of commodities, prompting research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. The prim...

  13. The Cold Blooded Killer: Hypothermia.

    ERIC Educational Resources Information Center

    Keller, Rosanne

    Part of a series of home literacy readers with conversational text and sketches, this booklet depicts the subarctic Alaskan environment where cold makes extreme demands on body metabolism. Body temperature must be maintained above 80F (26.7C). A condition of too little body-heat is termed hypo- ('deficit') thermia ('heat'). Hypothermia is the…

  14. Lupus - the cold, hard facts.

    PubMed

    Wong, N W K; Ng, Vt-Y; Ibrahim, S; Slessarev, M; Chandran, V

    2014-07-01

    Systemic lupus erythematosus (SLE) is a multisystem chronic disease with a multitude of clinical presentations. We review and synthesize how an environmental insult (exposure to extreme cold for a short duration) and endogenous (antiphospholipid antibody syndrome, SLE vasculitis) insults in a susceptible young female with lupus (peripheral arterial disease, smoking, SLE) led to a perfect storm resulting in catastrophic injuries (frostbite). PMID:24699313

  15. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by

  16. Spectral discrimination between healthy people and cold patients using spontaneous photon emission

    PubMed Central

    Yang, Meina; Pang, Jiangxiang; Liu, Junyan; Liu, Yanli; Fan, Hua; Han, Jinxiang

    2015-01-01

    In this paper, ultra-weak photon emission (UPE) was used to distinguish cold patients from healthy subjects. The UPE intensity of fingertips of two hands from healthy subjects and cold patients was measured using a two-hand UPE detecting system and a group of cut-off filters. We found a significant difference in the maximum spectral peak and photon emission ratio between the filter of 550nm and 495nm, which can be used in distinguish cold patients from healthy people. Methods and results in this work could be useful for developing a new optical diagnostic tool for early disease diagnosis in the future. PMID:25909016

  17. One-dimensional cold cap model for melters with bubblers

    DOE PAGESBeta

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; Schweiger, Michael J.; Guillen, Donna P.; Kruger, Albert A.; Hrma, Pavel

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  18. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  19. One-dimensional cold cap model for melters with bubblers

    SciTech Connect

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; Schweiger, Michael J.; Guillen, Donna P.; Kruger, Albert A.; Hrma, Pavel

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for the dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.

  20. Constraining the Properties of Cold Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Spraggs, Mary Elizabeth; Gibson, Steven J.

    2016-01-01

    Since the interstellar medium (ISM) plays an integral role in star formation and galactic structure, it is important to understand the evolution of clouds over time, including the processes of cooling and condensation that lead to the formation of new stars. This work aims to constrain and better understand the physical properties of the cold ISM by utilizing large surveys of neutral atomic hydrogen (HI) 21cm spectral line emission and absorption, carbon monoxide (CO) 2.6mm line emission, and multi-band infrared dust thermal continuum emission. We identify areas where the gas may be cooling and forming molecules using HI self-absorption (HISA), in which cold foreground HI absorbs radiation from warmer background HI emission.We are developing an algorithm that uses total gas column densities inferred from Planck and other FIR/sub-mm data in parallel with CO and HISA spectral line data to determine the gas temperature, density, molecular abundance, and other properties as functions of position. We can then map these properties to study their variation throughout an individual cloud as well as any dependencies on location or environment within the Galaxy.Funding for this work was provided by the National Science Foundation, the NASA Kentucky Space Grant Consortium, the WKU Ogden College of Science and Engineering, and the Carol Martin Gatton Academy for Mathematics and Science in Kentucky.

  1. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  2. Combustion heated cold sealed TEC

    SciTech Connect

    Yarygin, V.I.; Klepikov, V.V.; Meleta, Y.A.; Mikheyev, A.S.; Yarygin, D.V.; Wolff, L.R.

    1997-12-31

    The development of a thermionic domestic boiler system using natural gas, which as performed under an ECS-project in 1992 to 1994 by a Russian-Dutch team of researchers, will be continued again. Thanks to financial support on the part of the Netherlands Organization for Scientific Research (NWO), the major effort in 1997 to 1999 will be focused on the development, manufacture and testing of an improved, easier to fabricate, more repairable and less expensive combustion heated TEC with a longer life-time. The achievement of the aim of this project will make it possible to expand the field of the terrestrial thermionics application and to embark on the commercialization stage. This report discusses the concept of the combustion heated Cold Seal TEC. A Cold Seal TEC will be developed and tested, in which the rubber O-ring seal will electrically insulate the hot shell from the collector heat pipe. The Cold Seal TEC will use a noble gas + cesium as the working medium (the idea of such a TEC was first proposed in 1973 by Professor Musa from Romania). In its cold state, the cesium will short circuit the emitter and the collector. During operation, the interelectrode space will be filled with cesium vapor. The upper part of a Cold Seal TEC will be filled with a noble gas. This noble gas will prevent the O-ring seal from being attacked by the cesium. The TEC output characteristics will be considerably improved by using electrode materials that were developed earlier in the course of an ECS-project for the development of low temperature TEC electrodes.

  3. The physical state of selected cold clumps

    NASA Astrophysics Data System (ADS)

    Parikka, A.; Juvela, M.; Pelkonen, V.-M.; Malinen, J.; Harju, J.

    2015-05-01

    Context. The study of prestellar cores is essential to understanding the initial stages of star formation. With Herschel more cold clumps have been detected than ever before. For this study we have selected 21 cold clumps from 20 Herschel fields observed as a follow-up on original Planck detections. We have observed these clumps in 13CO (1-0), C18O (1-0), and N2H+ (1-0) lines. Aims: Our aim is to find out if these cold clumps are prestellar. We have examined to what extent independent analysis of the dust and the molecular lines lead to similar conclusions about the masses of these objects. Methods: We calculate the clump masses and densities from the dust continuum and molecular line observations and compare these to each other and to the virial and Bonnor-Ebert masses calculated for each clump. Finally we examine two of the fields with radiative transfer models to estimate CO abundances. Results: When excitation temperatures could be estimated, the column densities derived from molecular line observations were comparable to those from dust continuum data. The median column density estimates are 4.2 × 1021 cm-2 and 5.5 × 1021 cm-2 for the line and dust emission data, respectively. The calculated abundances, column densities, volume densities, and masses all have large uncertainties and one must be careful when drawing conclusions. Abundance of 13CO was found in modeling the two clumps in the field G131.65+9.75 to be close to the usual value of 10-6. The abundance ratio of 13CO and C18O was ~10. Molecular abundances could only be estimated with modeling, relying on dust column density data. Conclusions: The results indicate that most cold clumps, even those with dust color temperatures close to 11 K, are not necessarily prestellar. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  4. Authoring Tools

    NASA Astrophysics Data System (ADS)

    Treviranus, Jutta

    Authoring tools that are accessible and that enable authors to produce accessible Web content play a critical role in web accessibility. Widespread use of authoring tools that comply to the W3C Authoring Tool Accessibility Guidelines (ATAG) would ensure that even authors who are neither knowledgeable about nor particularly motivated to produce accessible content do so by default. The principles and techniques of ATAG are discussed. Some examples of accessible authoring tools are described including authoring tool content management components such as TinyMCE. Considerations for creating an accessible collaborative environment are also covered. As part of providing accessible content, the debate between system-based personal optimization and one universally accessible site configuration is presented. The issues and potential solutions to address the accessibility crisis presented by the advent of rich internet applications are outlined. This challenge must be met to ensure that a large segment of the population is able to participate in the move toward the web as a two-way communication mechanism.

  5. Permission Forms

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2005-01-01

    The prevailing practice in public schools is to routinely require permission or release forms for field trips and other activities that pose potential for liability. The legal status of such forms varies, but they are generally considered to be neither rock-solid protection nor legally valueless in terms of immunity. The following case and the…

  6. Gut Microbiota Orchestrates Energy Homeostasis during Cold.

    PubMed

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Suarez-Zamorano, Nicolas; Tarallo, Valentina; Veyrat-Durebex, Christelle; Rigo, Dorothée; Fabbiano, Salvatore; Stevanović, Ana; Hagemann, Stefanie; Montet, Xavier; Seimbille, Yann; Zamboni, Nicola; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. PMID:26638070

  7. Vitamin C and the Common Cold Revisited.

    ERIC Educational Resources Information Center

    Travis, H. Richard

    1984-01-01

    Various studies indicate that Vitamin C does not prevent or cure a cold, but it may ameliorate symptoms in some individuals. The development of a balanced life-style is more effective towards cold prevention. (DF)

  8. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  9. Herpes Simplex (Cold Sores and Genital Herpes)

    MedlinePlus

    ... Select a Language: Fact Sheet 508 Herpes Simplex (Cold Sores and Genital Herpes) WHAT IS HERPES? HSV ... virus 1 (HSV1) is the common cause of cold sores (oral herpes) around the mouth. HSV2 normally ...

  10. Tips to Protect Workers in Cold Environments

    MedlinePlus

    ... Anti-Retaliation Tips To Protect Workers In Cold Environments Prolonged exposure to freezing or cold temperatures may ... 321-OSHA. Freedom of Information Act | Privacy & Security Statement | Disclaimers | Important Web Site Notices | International | Contact Us ...

  11. An invitation to measure insect cold tolerance: Methods, approaches, and workflow.

    PubMed

    Sinclair, Brent J; Coello Alvarado, Litza E; Ferguson, Laura V

    2015-10-01

    Insect performance is limited by the temperature of the environment, and in temperate, polar, and alpine regions, the majority of insects must face the challenge of exposure to low temperatures. The physiological response to cold exposure shapes the ability of insects to survive and thrive in these environments, and can be measured, without great technical difficulty, for both basic and applied research. For example, understanding insect cold tolerance allows us to predict the establishment and spread of insect pests and biological control agents. Additionally, the discipline provides the tools for drawing physiological comparisons among groups in wider studies that may not be focused primarily on the ability of insects to survive the cold. Thus, the study of insect cold tolerance is of a broad interest, and several reviews have addressed the theories and advances in the field. Here, however, we aim to clarify and provide rationale for common practices used to study cold tolerance, as a guide for newcomers to the field, students, and those wishing to incorporate cold tolerance into a broader study. We cover the 'tried and true' measures of insect cold tolerance, the equipment necessary for these measurement, and summarize the ecological and biological significance of each. Finally, we suggest a framework and workflow for measuring cold tolerance and low temperature performance in insects. PMID:26590471

  12. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  13. Dual-Phase Warming of the Cold Wake of Typhoon Fanapi, 2010

    NASA Astrophysics Data System (ADS)

    Mrvaljevic, R.

    2012-12-01

    Tens of thousands of temperature profiles were taken in and around the cold wake of category 3 Typhoon Fanapi between September and November 2010 as part of the Impact of Typhoons on the Ocean in the Pacific (ITOP) research program. This unprecedented data set presents outstanding opportunities for model verification as well as comparisons with remote sensing products. Fanapi's SST cold wake took under two weeks to disappear, however a subsurface cold wake signature was observed to persist for more than three weeks. Fanapi was a late-season typhoon, therefore the ocean affected by the cold wake never fully recovered to the pre-storm thermal structure. The cold wake warmed in two distinct phases; a rapid warming phase where the wake was capped by a shallow, warm mixed layer in 4-5 days, followed by a slower warming phase that gradually brought the cold wake to equilibrium with the surrounding ocean. One dimensional air-sea interaction modeling reveals that preferential warming took place over the cold wake, forming the warm cap, thereby isolating the subsurface cold wake from the atmosphere. After this, the warm cap slowly deepened and warmed as it interacted with the subsurface cold wake layer below and the atmosphere above.

  14. Experimental Investigation and Mathematical Modeling of Cold Cap Behavior in High-Level-Waste Glass Melter

    SciTech Connect

    Hrma, Pavel R.

    2014-03-03

    The cold cap is a layer of reacting melter feed floating on the surface of molten glass in a glass-melting furnace. The cold cap consists of two distinct portions, of which the upper allows the reaction gases to escape through open pores, whereas the lower portion traps the gases within the continuous glass-forming melt, creating foam. The temperature span over the cold cap is ~1000 K. Data needed to simulate the cold cap mathematically include the kinetics of multiple reactions, reaction enthalpies, heat capacity, density, porosity, and heat conductivity as functions of both the temperature and the rate of heating. These data were produced via crucible experiments. The mathematical model has been completed. It relates the cold cap thickness, the rate of melting, the temperature field, and cold cap structure (foaming, dissolution of quartz particles, and formation and subsequent dissolution of crystalline phases, such as spinel) to the cold cap bottom temperature, the fraction of heat flow to the upper cold cap surface, the melt foaminess, and the chemical and physical nature of melter feed materials. To verify the model, cold caps were produced in a laboratory-scale melter and their structure is currently investigated.

  15. Management Tools

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Manugistics, Inc. (formerly AVYX, Inc.) has introduced a new programming language for IBM and IBM compatible computers called TREES-pls. It is a resource management tool originating from the space shuttle, that can be used in such applications as scheduling, resource allocation project control, information management, and artificial intelligence. Manugistics, Inc. was looking for a flexible tool that can be applied to many problems with minimal adaptation. Among the non-government markets are aerospace, other manufacturing, transportation, health care, food and beverage and professional services.

  16. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  17. Cold Gas in Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Carilli, Christopher; Walter, Fabian

    2015-08-01

    Over the past decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts. Molecular gas has been observed in about 200 galaxies at z > 1 to z ~ 7, including AGN host-galaxies, highly star-forming submillimeter galaxies, and increasing samples of main-sequence color-selected star-forming galaxies. Studies have moved well beyond simple detections to dynamical imaging at kpc resolution and multiline, multispecies studies that determine the physical conditions in the ISM in early galaxies. Observations of the cool gas are the required complement to studies of the stellar density and star-formation history of the Universe as they reveal the phase of the ISM that immediately precedes star formation in galaxies.Current observations suggest that the order of magnitude increase in the cosmic star-formation rate density from z ~ 0 to 2 is commensurate with a similar increase in the gas-to-stellar mass ratio in star-forming disk galaxies. Progress has been made in determining the CO luminosity to H2 mass conversion factor at high z. The dichotomy between high versus low values for the conversion factor for main-sequence versus starburst galaxies, respectively, appears to persist with increasing redshift, with a likely dependence on metalicity and other local physical conditions. There may also be two sequences in the relationship between star-formation rate and gas mass: one for starbursts, in which the gas consumption timescale is short (~ few e7 years), and one for main sequence galaxies, with an order of magnitude longer gas consumption timescale.With the advent of ALMA, studies of atomic FSL emission are rapidly progressing, with ~ 50 galaxies detected in the exceptionally bright [CII] 158 um line to date, 50% in the last year or so. The [CII] line is

  18. Is It a Cold or an Allergy?

    MedlinePlus

    ... C AT I O N S IS IT A Cold OR AN Allergy  ? COLD Common Slight Sometimes Rare or never Usual Common Common Common Rare 3 to 14 days Cold ■■ Antihistamines ■■ Decongestants ■■ Nonsteroidal anti-inflammatory medicines ■■ Wash your ...

  19. Cold tolerance encoded in one SNP.

    PubMed

    Manishankar, Prabha; Kudla, Jörg

    2015-03-12

    Cold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice. This study reveals important insights into agronomical traits that are essential for human nutrition. PMID:25768901

  20. Catching a Cold When It's Warm

    MedlinePlus

    ... our exit disclaimer . Subscribe Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? Most ... be more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s ...

  1. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  2. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... National Park Service Meeting of the Cold War Advisory Committee for the Cold War Theme Study AGENCY... with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will conduct a teleconference meeting on August 3, 2012. Members of...

  3. Galactic cold cores. IV. Cold submillimetre sources: catalogue and statistical analysis

    NASA Astrophysics Data System (ADS)

    Montillaud, J.; Juvela, M.; Rivera-Ingraham, A.; Malinen, J.; Pelkonen, V.-M.; Ristorcelli, I.; Montier, L.; Marshall, D. J.; Marton, G.; Pagani, L.; Toth, L. V.; Zahorecz, S.; Ysard, N.; McGehee, P.; Paladini, R.; Falgarone, E.; Bernard, J.-P.; Motte, F.; Zavagno, A.; Doi, Y.

    2015-12-01

    Context. For the project Galactic cold cores, Herschel photometric observations were carried out as a follow-up of cold regions of interstellar clouds previously identified with the Planck satellite. The aim of the project is to derive the physical properties of the population of cold sources and to study its connection to ongoing and future star formation. Aims: We build a catalogue of cold sources within the clouds in 116 fields observed with the Herschel PACS and SPIRE instruments. We wish to determine the general physical characteristics of the cold sources and to examine the correlations with their host cloud properties. Methods: From Herschel data, we computed colour temperature and column density maps of the fields. We estimated the distance to the target clouds and provide both uncertainties and reliability flags for the distances. The getsources multiwavelength source extraction algorithm was employed to build a catalogue of several thousand cold sources. Mid-infrared data were used, along with colour and position criteria, to separate starless and protostellar sources. We also propose another classification method based on submillimetre temperature profiles. We analysed the statistical distributions of the physical properties of the source samples. Results: We provide a catalogue of ~4000 cold sources within or near star forming clouds, most of which are located either in nearby molecular complexes (≲1 kpc) or in star forming regions of the nearby galactic arms (~2 kpc). About 70% of the sources have a size compatible with an individual core, and 35% of those sources are likely to be gravitationally bound. Significant statistical differences in physical properties are found between starless and protostellar sources, in column density versus dust temperature, mass versus size, and mass versus dust temperature diagrams. The core mass functions are very similar to those previously reported for other regions. On statistical grounds we find that

  4. Dipole effects in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing

    2009-12-01

    This dissertation is a continuing study of the dipole effects between cold Rydberg atoms in a MOT (Magneto Optical Trap). The dipole-dipole interaction is commonly used to explain the plasma forming process and dipole blockade effects. However, no direct measurements have been made for such interaction. This dissertation is designed to directly measure this interaction and study the effects induced by the dipole interaction. To achieve this, a few experiments were carried out. First, a millimeter wave spectroscopy experiment was performed to determine quantum defects of higher angular momentum f and g states, which then allows us to accurately identify these states. Moreover, the higher angular momentum states play an important role in the plasma forming process. The next experiment examined the oscilloscope trace collected through field ionization pulses on which all our experiments are based, which leads to the conclusion that the side peaks other than the main peak can be due to the field ionization pulse sweeping through the resonances. Based on the knowledge of identifying states obtained from these two experiments, a third experiment was carried out to understand the interactions between cold Rydberg atoms. It was found that the second order dipole-dipole interaction, the van der Waals interaction, commonly exists between the atoms in our atomic sample, and when we excite the atoms from the ns to (n + 1)s states using a narrow band microwave pulse, an asymmetric broadening, which is attributed to the nsns to ns(n + 1) s molecular state transition, was observed. Furthermore, the van der Waals long range molecule is studied, which provides another way to study the two-body to multi-body transition.

  5. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  6. Equestrian cold panniculitis in women.

    PubMed

    Beacham, B E; Cooper, P H; Buchanan, C S; Weary, P E

    1980-09-01

    We describe four patients with panniculitis attributable to a combination of cold exposure and equestrian activities. All were young, healthy women who rode horses for at least two consecutive hours per day throughout the winter. Initially, several small, erythematosus, pruritic papules appeared on the superior-lateral portions of one or both thighs. During one week, the lesions progressed to indurated, red-to-violaceous,tender plaques and nodules. Studies for cryofibrinogens and cryoglobulins were negative. The histologic picture was that of a panniculitis with prominent inflammation of veins most notable at the dermal-subcutaneus fat junction. Cold panniculitis is not limited to infancy and childhood. The distribution of lesions in our patients may have been caused, in part, by the use of tight-fitting, uninsulated riding pants. Such attire may have slowed blood flow through the skin, thereby further reducing tissue temperature. PMID:7191239

  7. Cold Spots in Protein Binding.

    PubMed

    Shirian, Jason; Sharabi, Oz; Shifman, Julia M

    2016-09-01

    Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design. PMID:27477052

  8. Acclimatization to cold in humans

    NASA Technical Reports Server (NTRS)

    Kaciuba-Uscilko, Hanna; Greenleaf, John E.

    1989-01-01

    This review focuses on the responses and mechanisms of both natural and artificial acclimatization to a cold environment in mammals, with specific reference to human beings. The purpose is to provide basic information for designers of thermal protection systems for astronauts during intra- and extravehicular activities. Hibernation, heat production, heat loss, vascular responses, body insulation, shivering thermogenesis, water immersion, exercise responses, and clinical symptoms and hypothermia in the elderly are discussed.

  9. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  10. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  11. Cold Atoms and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Steck, Daniel A.

    2013-12-01

    Recent experiments have focused on realizing and studying asymmetric potential barriers for ultracold atoms. Practically speaking, asymmetric barriers, or "atomtronic diodes", open up newmethods for controlling cold atoms, and possibly methods for laser cooling atoms and molecules that are not amenable to present laser-cooling techniques. More fundamentally, asymmetric barriers are interesting as realizations of the textbook statistical-mechanics scenario of Maxwell's demon. This chapter reviews experimental progress in this area, as well as some related practical and theoretical issues.

  12. Failure Environment Analysis Tool (FEAT)

    NASA Technical Reports Server (NTRS)

    Lawler, D. G.

    1991-01-01

    Information is given in viewgraph form on the Failure Environment Analysis Tool (FEAT), a tool designed to demonstrate advanced modeling and analysis techniques to better understand and capture the flow of failures within and between elements of the Space Station Freedom (SSF) and other large complex systems. Topics covered include objectives, development background, the technical approach, SSF baseline integration, and FEAT growth and evolution.

  13. Micro-Kelvin cold molecules.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  14. The COLD-SAT program

    NASA Technical Reports Server (NTRS)

    Bailey, William J.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer (COLD-SAT) satellite is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient and reliable management of cryogenic fluid in the reduced-gravity space environment. Future applications such as Space Station, Space Transportation Vehicle (STV), external tank (ET), aft cargo carrier (ACC) propellant scavenging, storage depots, and lunar and interplanetary missions, among others, have provided the impetus to pursue this technology in a timely manner to support the design efforts. A refined conceptual approach has been developed and an overview of the COLD-SAT program is described which includes the following: (1) a definition of the technology needs and the accompanying experimental six-month baseline mission; (2) a description of the experiment subsystem, major features, and rationale for satisfaction of primary and secondary experiment requirements using LH2 as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on those areas which posed the greatest technical challenge.

  15. Mars: Always Cold, Sometimes Wet?

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; McKay, Christoper P.

    2003-01-01

    A synthesis of a diverse suite of observations of H2O-related landforms that are possible Mars analogs from terrestrial polar regions (Devon Island in the Arctic; the Dry Valleys of Antarctica) put into question any requirement for extended episode(s) of warm and wet climate in Mars past. Geologically transient episodes of localized H2O cycling, forced by exogenic impacts, enhanced endogenic heat flow, and/or orbit-driven short-term local environmental change under an otherwise cold, low pressure (=10(exp 2) mbar) global climate, may be sufficient to account for the martian surface's exposed record of aqueous activity. A Mars that was only sometimes locally warm and wet while remaining climatically cold throughout its history is consistent with results (difficulties) encountered in modeling efforts attempting to support warm martian climate hypotheses. Possible analogs from terrestrial cold climate regions for the recent gully features on Mars also illustrate how transient localized aqueous activity might, under specific circumstances, also occur on Mars under the present frigid global climatic regime.

  16. Physiological characteristics of cold acclimatization in man

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Nayar, H. S.

    1981-09-01

    Studies were conducted on 15 healthy young soldiers to evaluate the effect of a cold acclimatization schedule on the thermoregulatory and metabolic activity on exposure to acute cold stress. These men were exposed to cold (10‡C) for 4 h daily wearing only shorts for 21 days, in a cold chamber. They were subjected to a standard cold test at 10 ± 1‡C the day 1, 6, 11 and 21. The subjects were made to relax in a thermoneutral room (26 28‡C) for 1 h and their heart rate, blood pressure, oxygen consumption, oral temperature, mean skin temperature, mean body temperature, peripheral temperatures, and shivering activity were recorded. Then they were exposed to 10‡C and measurements were repeated at 30 min intervals, for 2 h. The cold induced vasodilatation (CIVD), cold pressor response and thermoregulatory efficiency tests were measured initially and at the end of acclimatization schedule. The data show that the procedure resulted in elevated resting metabolism, less fall in body temperature during acute cold stress, reduction in shivering, improvement in CIVD and thermoregulatory efficiency and less rise in BP and HR during cold pressor response. The data suggest the possibility of cold acclimatization in man by repeated exposure to moderately severe cold stress.

  17. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    SciTech Connect

    Ulaganathan, Jaganathan Newman, Roger C.

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.

  18. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  19. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  20. Chandra, Cold Fronts, and ICM Physics: The Importance of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    ZuHone, John

    2014-11-01

    One of the most prominent features that the superb spatial resolution of Chandra has revealed in the galaxy cluster plasma is cold fronts: sharp surface brightness and temperature discontinuities formed by the motion of cold, dense gas. Cold fronts should be susceptible to disruption by fluid instabilites and smoothing out by thermal conduction, but many appear to be resilient to these effects, indicating suppression by microphysical processes. I will summarize a series of MHD simulations of sloshing cold fronts in galaxy clusters with anisotropic viscosity and thermal conduction. I will show that the power of cold front studies to provide constraints on the plasma conductivity is potentially strong, whereas the outlook for constraining the plasma viscosity is more uncertain.

  1. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  2. Design and analysis of cold-recycled mixtures

    NASA Astrophysics Data System (ADS)

    Bienvenu, Michael Eric

    The purpose of this research was to utilize state of the art technology to develop a design and analysis method for cold-recycled mixtures. There is no current universally accepted design method for cold recycling of asphalt pavements. The objective of this research was to devise a simplified method of determining the optimum asphalt content using the maximum allowable amount of reclaimed asphalt pavement (RAP) in the cold-recycled mix based on material properties. The maximum allowable RAP content of the recycled mix in this study was determined to be 75%. This study introduces adaptations of SUPERPAVEsp{TM} technology for binder characterization and develops a binder blending chart for use in cold-recycled mix design. The binder blending chart is valuable in determination of maximum allowable RAP content of the recycled mix, the acceptable ranges of recycling agent residue in the binder blend, and in selection of the most desirable recycling agent for the RAP being recycled. The study also recommends mix and curing procedures for the production of test specimens and the incorporation of mechanical tests (resilient modulus and indirect tensile strength) and pavement prediction models in the determination of the optimum recycled mix. As a means of supporting the results of the mixture testing methodology, SUPERPAVEsp{TM} volumetric and intermediate mix testing are utilized for comparison of results, though the SUPERPAVEsp{TM} mix tests are not components of the recommended design methodology. The procedure which results from this research provides a more reliable means of cold-recycled mix design and analysis by the incorporation of better analysis tools for material characterization, especially in selection and proportioning of the most appropriate recycling agent for a particular project.

  3. Plutonium Immobilization Project - Cold Pour Phase 2 Test Results

    SciTech Connect

    Hamilton, L.

    2001-02-15

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River site (SRS) as part of a two-track approach for dispositioning weapons-usable plutonium. The Department of Energy is funding the development and testing effort for the PIP being conducted by Lawrence Livermore National Laboratory and Argonne National Laboratory. PIP is developing the ''Can-in Canister'' (CIC) technology that immobilizes plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding the forms with high-level waste glass to provide a deterrent to recovery. A cold (non-radioactive) test program was conducted to develop and verify the baseline design for the canister and internal hardware. Tests were conducted in two phases. Phase 1 Cold Pour Tests, conducted in 1999, were scoping tests. This paper describes the Phase 2 tests conducted in 2000 that verified the adequacy of the baseline and demonstrated compliance with repository requirements.

  4. Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings.

    PubMed

    Zhang, Wei; Zhang, Huilin; Ning, Luyun; Li, Bei; Bao, Manzhu

    2016-01-01

    Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5 days. Of the 2430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO) enrichment analyses, seven common GO terms were found of which "oxidation-reduction process" was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation. The data have been deposited to the ProteomeXchange with identifier PXD002189. PMID:26941746

  5. Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings

    PubMed Central

    Zhang, Wei; Zhang, Huilin; Ning, Luyun; Li, Bei; Bao, Manzhu

    2016-01-01

    Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5 days. Of the 2430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO) enrichment analyses, seven common GO terms were found of which “oxidation-reduction process” was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation. The data have been deposited to the ProteomeXchange with identifier PXD002189. PMID:26941746

  6. Cold Fusion Has Now Come Out of the Cold

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  7. RSP Tooling Technology

    SciTech Connect

    2001-11-20

    RSP Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica (Figure 1). This is followed by spray forming a thick deposit of a tooling alloy on the pattern to capture the desired shape, surface texture, and detail. The resultant metal block is cooled to room temperature and separated from the pattern. The deposit's exterior walls are machined square, allowing it to be used as an insert in a standard mold base. The overall turnaround time for tooling is about 3 to 5 days, starting with a master. Molds and dies produced in this way have been used in high volume production runs in plastic injection molding and die casting. A Cooperative Research and Development Agreement (CRADA) between the Idaho National Engineering and Environmental Laboratory (INEEL) and Grupo Vitro has been established to evaluate the feasibility of using RSP Tooling technology for producing molds and dies of interest to Vitro. This report summarizes results from Phase I of this agreement, and describes work scope and budget for Phase I1 activities. The main objective in Phase I was to demonstrate the feasibility of applying the Rapid Solidification Process (RSP) Tooling method to produce molds for the manufacture of glass and other components of interest to Vitro. This objective was successfully achieved.

  8. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  9. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Balliet, Ryan James

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as "cold start.'' However, at low temperatures the cell's product water freezes, and if the temperature does not rise fast enough, the accumulation of ice in the cathode catalyst layer (cCL) can reduce cell performance significantly, extending the time required to heat up. In addition to reducing performance during cold start, under some conditions the accumulation of ice can lead to irreversible structural degradation of the cCL. The objective of this dissertation is to construct and verify a cold-start model for a single PEFC, use it to improve understanding of cold-start behavior, and to demonstrate how this understanding can lead to better start protocols and material properties. The macrohomogeneous model that has been developed to meet the objective is two-dimensional, transient, and nonisothermal. A key differentiating feature is the inclusion of water in all four of the possible phases: ice, liquid, gas, and membrane. In order to predict water content in the ice, liquid, and gas phases that are present in the porous media, the thermodynamics of phase equilibrium are revisited, and a method for relating phase pressures to water content in each of these phases is developed. Verification of the model is performed by comparing model predictions for cell behavior during parametric studies to measured values taken from various sources. In most cases, good agreement is observed between the model and the experiments. Results from the simulations are used to explain the trends that are observed. The verified cold-start model is deployed to determine a cold

  10. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  11. An effective tool for identifying HIV-1 subtypes B, C, CRF01_AE, their recombinant forms, and dual infections in Southeast Asia by the multi-region subtype specific PCR (MSSP) assay.

    PubMed

    Sakkhachornphop, Supachai; Kijak, Gustavo H; Beyrer, Chris; Razak, Myat Htoo; Sanders-Buell, Eric; Jittiwutikarn, Jaroon; Suriyanon, Vinai; Robb, Merlin L; Kim, Jerome H; Celentano, David D; McCutchan, Francine E; Tovanabutra, Sodsai

    2015-06-01

    The RV144 Thai vaccine trial has been the only vaccine study to show efficacy in preventing HIV infection. Ongoing molecular surveillance of HIV-1 in Southeast Asia is vital for vaccine development and evaluation. In this study a novel tool, the multi-region subtype specific PCR (MSSP) assay, that was able to identify subtypes B, C, CRF01_AE for Thailand, other Southeast Asian countries, India and China is described. The MSSP assay is based on a nested PCR strategy and amplifies eight short regions distributed along the HIV-1 genome using subtype-specific primers. A panel of 41 clinical DNA samples obtained primarily from opiate users in northern Thailand was used to test the assay performance. The MSSP assay provided 73-100% sensitivity and 100% specificity for the three subtypes in each genome region. The assay was then field-tested on 337 sera from HIV infected northern Thai drug users collected between 1999 and 2002. Subtype distribution was CRF01_AE 77.4% (n=261), subtype B 3.3% (n=11), CRF01_AE/B recombinant 12.2% (n=41), CRF01_AE/C recombinant 0.6% (n=2), and non-typeable 6.5% (n=22). The MSSP assay is a simple, cost-effective, and accurate genotyping tool for laboratory settings with limited resources and is sensitive enough to capture the recombinant genomes and dual infections. PMID:25725414

  12. Physics analysis tools

    SciTech Connect

    Kunz, P.F.

    1991-04-01

    There are many tools used in analysis in High Energy Physics (HEP). They range from low level tools such as a programming language to high level such as a detector simulation package. This paper will discuss some aspects of these tools that are directly associated with the process of analyzing HEP data. Physics analysis tools cover the whole range from the simulation of the interactions of particles to the display and fitting of statistical data. For purposes of this paper, the stages of analysis is broken down to five main stages. The categories are also classified as areas of generation, reconstruction, and analysis. Different detector groups use different terms for these stages thus it is useful to define what is meant by them in this paper. The particle generation stage is a simulation of the initial interaction, the production of particles, and the decay of the short lived particles. The detector simulation stage simulates the behavior of an event in a detector. The track reconstruction stage does pattern recognition on the measured or simulated space points, calorimeter information, etc., and reconstructs track segments of the original event. The event reconstruction stage takes the reconstructed tracks, along with particle identification information and assigns masses to produce 4-vectors. Finally the display and fit stage displays statistical data accumulated in the preceding stages in the form of histograms, scatter plots, etc. The remainder of this paper will consider what analysis tools are available today, and what one might expect in the future. In each stage, the integration of the tools with other stages and the portability of the tool will be analyzed.

  13. Canoeists' disorientation following cold immersion

    PubMed Central

    Baker, S.; Atha, J.

    1981-01-01

    As an initial step to a broader study of the disorientating effects of cold water immersions on top class competitive canoeists a survey was made of the incidence of hazardous immersions amongst a majority sample of the better canoeists in the country. Virtually the entire entry to one of the most important national competitive meets was canvassed. A total of 288 canoeists in the 1st and 2nd divisions were identified and asked to participate. Replies were received from 247 (86%). All those responding had had extensive experience of canoeing in winter spate and were capable of fast and efficient first-time canoe rolls in cases of capsize. Particular interest was focussed on the 85 (34%) who had experienced at least one capsize in cold water during training or competition in mid-winter. Respondents viewed the winter capsize seriously. Despite their familiarity with the conditions in which they trained all 85, recalling their capsize experiences, reported being concerned, most (79%) only modestly so, but a significant proportion (21%) confessed to feelings of extreme alarm. A number of marked physical symptoms that regularly attend on a capsize were widely reported, the most usual of which was severe pain in the forehead (89%) and breathing and speaking difficulties when afloat (64%). Additionally 62% reported sensory problems including visual difficulties, dizziness and disorientation. Five canoeists admitted fainting. Despite these hazards few preventive measures were taken and clothing with negligible thermal insulation properties was commonly worn. It is concluded that transient cold immersions can be disturbing, and can disorientate the canoeist, but that although conscious of this and to his own potentially high cost, he takes little notice of it in his desire to compete successfully. Imagesp111-ap111-bp112-ap113-ap114-a PMID:7272652

  14. Cold plasma brush generated at atmospheric pressure

    SciTech Connect

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-15

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds.

  15. Titan's Cold Accretion and its Internal Structure

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Mosqueira, I.

    2010-10-01

    Recent Cassini radio tracking data has provided a normalized moment of inertia for Titan of 0.34 (Iess et al. 2010). Given that the quadrupole field is consistent with hydrostatic equilibrium, a two-layer interior model implies incomplete differentiation with a 700 km water-ice shell and an undifferentiated ice and rock-metal interior. We investigate the accretional history of Titan in connection with its internal structure. Our formation model allows for a size distribution of impactors with upper size cut-off constrained by Hyperion's size and a variable power-law exponent (Mosqueira et al. 2010). The burial of impact energy takes place in a lengthscale of order of the impactor radius, as indicated by numerical simulations (e.g., Pierazzo et al. 1997) applied to our energy regime of interest. Our thermal model includes radiogenic heating due to short and long-lived radionuclides, latent heat of melting, gravitational energy release due to sinking rock, heat of accretion and radiative cooling. We find that melting in the interior takes place well before the satellite reaches its final size. As a result, we expect the formation of an ocean overlying a silicate carapace, which may spend a considerable amount of time in contact with the liquid layer. Such a framework not only facilitates the transport of heat from the interior, but also can help both in leaching Ar40 into the ocean and then releasing into the atmosphere. We consider a range of parameters such as the degree of hydration of the rock component, the fraction of the impact energy that is deposited at the surface of the satellite, and accretion times. But we do not yet consider the effects of small admixtures of contaminants. We argue that models that form Titan in a cold environment may have allowed for the interior to remain cold enough as to preclude complete differentiation.

  16. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  17. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  18. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    , exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  19. Study on the cold working process for FM steel cladding tubes

    NASA Astrophysics Data System (ADS)

    Kim, Tae Kyu; Kim, Sung Ho

    2011-04-01

    A cold working process for FM steel cladding tubes of the sodium-cooled fast reactor was studied. Hot-rolled 9Cr-2W steel plates were heat-treated to dissolve the M 23C 6 and V-rich MX precipitates into the matrix, followed by several cold rollings and intermediate/final heat treatments with the purpose of nucleating the dissolved precipitates on the dislocations formed through the cold rolling. As a result, it was possible to obtain the FM steels with very fine and uniform precipitates which were more promising for superior tensile properties.

  20. Tool Gear: Infrastructure for Parallel Tools

    SciTech Connect

    May, J; Gyllenhaal, J

    2003-04-17

    Tool Gear is a software infrastructure for developing performance analysis and other tools. Unlike existing integrated toolkits, which focus on providing a suite of capabilities, Tool Gear is designed to help tool developers create new tools quickly. It combines dynamic instrumentation capabilities with an efficient database and a sophisticated and extensible graphical user interface. This paper describes the design of Tool Gear and presents examples of tools that have been built with it.

  1. International workshop on cold neutron sources

    SciTech Connect

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  2. TRPA1 Contributes to Cold Hypersensitivity

    PubMed Central

    Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.

    2010-01-01

    TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322

  3. Rational elicitation of cold-sensitive phenotypes.

    PubMed

    Baliga, Chetana; Majhi, Sandipan; Mondal, Kajari; Bhattacharjee, Antara; VijayRaghavan, K; Varadarajan, Raghavan

    2016-05-01

    Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes. PMID:27091994

  4. Arbitrary Lagrangian Eulerian simulations of stationary and non-stationary metal forming processes

    NASA Astrophysics Data System (ADS)

    Boman, R.; Ponthot, J.-P.

    2013-12-01

    Accurate modelling of sheet metal forming processes, such as cold roll forming, by the finite element method using the classical Lagrangian formulation usually requires a very large mesh leading to huge CPU times. In order to model industrial roll forming lines including many tools in a reasonable time, the sheet has to be shortened or the element size has to be increased leading to inaccurate results. An alternative method is given by the Arbitrary Lagrangian Eulerian (ALE) formalism which consists in decoupling the motion of the material and the mesh, the nodes of which are fixed in the rolling direction but are free to move on perpendicular plane, following the geometrical boundary of the sheet. The whole forming line can then be modelled using a limited number of brick and contact elements because the mesh is only refined near the tools where bending and contact occur. In this paper, ALE results are compared to previous Lagrangian simulations and experimental measurement on a U-channel, including springback. Advantages of the ALE method are finally demonstrated by the simulation of a tubular rocker panel on a 16-stands forming mill.

  5. Atmospheric cold plasma jet for plant disease treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of <2 mm can completely recover from the fungus-infected state. The plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  6. Cold as a therapeutic agent.

    PubMed

    Wang, H; Olivero, W; Wang, D; Lanzino, G

    2006-05-01

    The use of cold as a therapeutic agent has a long and colorful history. The Edwin Smith Papyrus, the most ancient medical text known, dated 3500 B.C., made numerous references to the use of cold as therapy. Baron de Larrey, a French army surgeon during Napoleon's Russian campaign, packed the limbs in ice prior to amputations to render the procedures painless. In the early twentieth century, a neurosurgeon, Temple Fay, pioneered "human refrigeration" as a treatment for malignancies and head injuries. In 1961, Irving Cooper developed the first closed cryoprobe system and ushered in the modern era of cryogenic surgery with his imperturbable convictions. Fay's early work fell victim to the disruptive sequel of the World War II. The Nazis confiscated his data (presented before the Third International Cancer Congress in 1939) forwarded to Belgium for publication and brutally applied his refrigeration techniques experimentally without any benefit of anesthesia in the concentration camps, especially Dachau. Hypothermia became associated in the public mind with the atrocities exposed at the war trials in Nürnberg. After lying dormant for decades, the interest was rekindled in the late 80s when mild hypothermia was shown to confer dramatic neuroprotection in a number of experimental models of brain injury. With several large multi-center clinical studies currently under way, hypothermia is receiving unprecedented attention from the medical and scientific communities. PMID:16489500

  7. The North Atlantic Cold Bias

    NASA Astrophysics Data System (ADS)

    Greatbatch, Richard; Drews, Annika; Ding, Hui; Latif, Mojib; Park, Wonsun

    2016-04-01

    The North Atlantic cold bias, associated with a too zonal path of the North Atlantic Current and a missing "northwest corner", is a common problem in coupled climate and forecast models. The bias affects the North Atlantic and European climate mean state, variability and predictability. We investigate the use of a flow field correction to adjust the path of the North Atlantic Current as well as additional corrections to the surface heat and freshwater fluxes. Results using the Kiel Climate Model show that the flow field correction allows a northward flow into the northwest corner, largely eliminating the bias below the surface layer. A surface cold bias remains but can be eliminated by additionally correcting the surface freshwater flux, without adjusting the surface heat flux seen by the ocean model. A model version in which only the surface fluxes of heat and freshwater are corrected continues to exhibit the incorrect path of the North Atlantic Current and a strong subsurface bias. Removing the bias impacts the multi-decadal time scale variability in the model and leads to a better representation of the SST pattern associated with the Atlantic Multidecadal Variability than the uncorrected model.

  8. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  9. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  10. 3-D stamp forming of thermoplastic matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, M.; Friedrich, K.

    1994-03-01

    In this investigation a mould with hemispherical cavity and 80 kN hydraulic press, allowing variable stamping speeds, are employed for experimentally studying of the 3-D stamp forming process of continuous fiber reinforced thermoplastic laminates. In particular, glass fiber (GF) reinforced polyetherimide (PEI) woven fabric made of sheath surrounded, polymer powder impregnated fiber bundles manufactured by Enichem, Italy, is used. Pre-consolidated laminates are heated by contact heating in an external heater up to about 120°C above the glass transition temperature ( T g) of the polymer matrix; they are then stamp formed in a cold matched metal tool. Typical cycle times (including preheating time of the preconsolidated laminates) are in the range of 3 min. Useful processing conditions, such as stamping temperature, stamping velocity and hold-down pressure required for stamp forming of this composite are determined. In addition the effect of die geometries (deformation radian) and original laminate dimensions are studied. The results describe the correlations between processing parameters and fiber buckling. Finally the thickness distribution in stamped parts are investigated in relation to different directions of fiber orientation.

  11. Primary cold agglutinin disease: a case report.

    PubMed

    Das, Susanta Kumar; Ghosh, Amritava; Banerjee, Niloy; Khaskil, Sudarshan; Mukherjee, Sabya Sachi

    2012-10-01

    Chronic cold agglutinin disease is a subgroup of auto-immune haemolytic anaemia. Primary cold agglutinin disease has traditionally been defined by the absence of any underlying or associated disease. It usually affects elderly. The term cold refers to the fact that the auto-antibody involved reacts with red cells poorly or not at all at 37 degrees C, whereas it reacts strongly at lower temperature. Here a case of severe pallor, jaundice and red colour urine in winter season for last 10 years diagnosed as a case of primary cold agglutinin disease is reported.The patient was managed conservatively. PMID:23738411

  12. Cold H I in faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  13. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  14. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  15. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  16. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization.

    PubMed

    Bao, Rui-Ying; Yang, Wei; Jiang, Wen-Rou; Liu, Zheng-Ying; Xie, Bang-Hu; Yang, Ming-Bo

    2013-04-01

    The crystallization and melting behaviors and crystalline structure of melt and cold crystallized poly(L-lactide)/poly(D-lactide) (PLLA/PDLA) blend were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), respectively. The isothermal crystallization kinetics during the melt and cold crystallization process were analyzed using the Avrami equation. The overall crystallization rate constant (k) of cold crystallization is much higher than that of melt crystallization. Moreover, k as a function of crystallization temperature shows different trends in melt and cold crystallization, indicating different crystallization mechanisms in the melt and cold crystallization. The polymorphic crystallization of homocrystallites (the transition crystallization temperature from δ to α form) is not altered by either the equimolar blending of PLLA and PDLA or the type of crystallization procedures, while the crystallization window for exclusive stereocomplex crystallites is widened from 170 °C for melt crystallization to 170-200 °C for cold crystallization. The stereocomplex crystallites are hard to form in both melt and cold crystallization at crystallization temperatures of 90 and 100 °C, and the crystallinity of stereocomplex crystallites for cold crystallization is higher than that of melt crystallization at temperatures above 110 °C. Especially, a pure and significantly higher crystallinity of stereocomplex crystallites can be achieved at 170-200 °C by cold crystallization. The results provide a huge possibility to control stereocomplex crystallization to enlarge its applications. PMID:23477609

  17. Green tools

    NASA Astrophysics Data System (ADS)

    With an eye toward forging tools that the nonscientist can use to make environmentally prudent policy, the National Science Foundation has provided the seed funding to establish a new National Center for Environmental Decision-Making Research. NSF has awarded $5 million over the next five years to the Joint Institute for Energy and the Environment at the University of Tennessee for creation of the center. The organizing principle of the effort, according to NSF, is to "make scientific environmental research more relevant and useful to decision makers." Interdisciplinary teams of sociologists, economists, geologists, ecologists, computer scientists, psychologists, urban planners, and others will be asked to interpret existing research and to conduct new studies of environmental problems and how they were resolved.

  18. Acute nonhypothermic exposure to cold impedes motor skill performance in video gaming compared to thermo-neutral and hot conditions.

    PubMed

    Edwards, Andrew M; Crowther, Robert G; Morton, R Hugh; Polman, Remco C

    2011-02-01

    The study examined whether or not acute exposure to unfamiliar hot or cold conditions impairs performance of highly skilled coordinative activities and whether prior physical self-efficacy beliefs were associated with task completion. Nineteen volunteers completed both Guitar Hero and Archery activities as a test battery using the Nintendo Wii console in cold (2 degrees C), neutral (20 degrees C), and hot (38 degrees C) conditions. Participants all completed physical self-efficacy questionnaires following experimental familiarization. Performances of both Guitar Hero and Archery significantly decreased in the cold compared with the neutral condition. The cold trial was also perceived as the condition requiring both greater concentration and effort. There was no association between performance and physical self-efficacy. Performance of these coordinative tasks was compromised by acute (nonhypothermic) exposure to cold; the most likely explanation is that the cold condition presented a greater challenge to attentional processes as a form of environmental distraction. PMID:21466095

  19. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls—Application to TiN-Coated Rolls

    NASA Astrophysics Data System (ADS)

    Ould, Choumad; Gachon, Yves; Montmitonnet, Pierre; Badiche, Xavier

    2011-05-01

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer ("roll coating", "pick up") may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  20. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls--Application to TiN-Coated Rolls

    SciTech Connect

    Ould, Choumad; Montmitonnet, Pierre; Gachon, Yves; Badiche, Xavier

    2011-05-04

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer (''roll coating'', ''pick up'') may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  1. Short pulse cold plasma treatment reduces Salmonella and E. coli O157:H7 on almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of dry nuts, including almonds is a food safety concern. A nonthermal method for reducing or eliminating is a desirable tool for producers and processors. Cold plasma is a novel antimicrobial intervention that can eliminate foodborne pathogens on produce. A key consideration for any tr...

  2. International Education during the Cold War: Soviet Social Transformation and American Social Reproduction

    ERIC Educational Resources Information Center

    Tsvetkova, Natalia

    2008-01-01

    During the Cold War, the United States and Soviet Union employed various cultural and informational and educational tools to establish and maintain friendly political regimes in foreign states. In this context international education programs became a major part of their strategy to win the "minds" and "allegiance" and to reproduce or transform…

  3. Cold plasma: A new technology to modify wheat flour functionality

    PubMed Central

    Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D.

    2016-01-01

    Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15 V and 20 V) for 60 or 120 s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality. PMID:26920291

  4. High flux isotope reactor cold source preconceptual design study report

    SciTech Connect

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

  5. Analgesic treatment of ciguatoxin-induced cold allodynia.

    PubMed

    Zimmermann, Katharina; Deuis, Jennifer R; Inserra, Marco C; Collins, Lindon S; Namer, Barbara; Cabot, Peter J; Reeh, Peter W; Lewis, Richard J; Vetter, Irina

    2013-10-01

    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Nav responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Nav1.2 and Nav1.3, but not Nav1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the Kv7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Nav1.6, Nav1.7, or Nav1.8, indicating cold allodynia might be more complex than simple activation of Nav channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. PMID:23778293

  6. Cold Metal-Enhanced Fusion, Geo-Fusion and Cold Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ellsworth, J. E.

    2005-12-01

    In our 1986 and 1989 papers, we discussed the hypothesis of cold nuclear fusion in condensed matter (which we also call metal-enhanced fusion), particularly in the planets.1,2 The purpose of this paper is to provide an update on geo-fusion research, then to consider an important extension of the cold-fusion idea: cold nucleosynthesis in condensed matter. Cold nucleosynthesis experiments are underway at Brigham Young University.

  7. Microstructure, Texture, and Deep Drawability Under Two Different Cold-Rolling Processes in Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Yu, Fu-xiao; Misra, R. D. K.; Zhang, Xiang-jun; Zhang, Shu-min; Liu, Zhen-yu

    2015-10-01

    In the present study, the through-thickness texture evolution and grain colony distribution in ferritic stainless steel under two different cold-rolling processes have been investigated with the aim to enhance deep drawability. It was shown that in the case of conventional cold-rolling process, at the surface, mid-thickness between the surface and the center, and center layers, all the textures consisted of very sharp α-fiber and weak γ-fiber with a peak at {111}<110> after cold rolling, and non-uniform γ-fiber recrystallization textures were formed after final annealing. In case of two-step cold-rolling process, by contrast, all the textures were dominated by sharp α-fiber and weak γ-fiber after cold rolling to 50% reduction, and {111}<112> became the prominent component after subsequent annealing. The α-fiber and γ-fiber with a peak at {111}<112> were intensified after cold rolling to 60% reduction, resulting in the formation of uniform γ-fiber recrystallization textures after final annealing. Furthermore, after two-step cold-rolling process, the final sheet exhibited a more homogeneous distribution of grain colonies. Therefore, the deep drawability of final sheet was significantly improved after two-step cold-rolling process. It was elucidated that the selective growth mechanism was responsible for the characteristics of γ-fiber recrystallization texture under conventional cold-rolling process, whereas γ-fiber recrystallization texture development was controlled by the oriented nucleation mechanism in the two-step cold-rolling process.

  8. How do atmospheric rivers form?

    NASA Astrophysics Data System (ADS)

    Dacre, Helen

    2015-04-01

    The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this study we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.

  9. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia)

    NASA Astrophysics Data System (ADS)

    Davies, Andrew J.; Wisshak, Max; Orr, James C.; Murray Roberts, J.

    2008-08-01

    Ecological-niche factor analysis (ENFA) was applied to the reef framework-forming cold-water coral Lophelia pertusa. The environmental tolerances of this species were assessed using readily available oceanographic data, including physical, chemical, and biological variables. L. pertusa was found at mean depths of 468 and 480 m on the regional and global scales and occupied a niche that included higher than average current speed and productivity, supporting the theory that their limited food supply is locally enhanced by currents. Most records occurred in areas with a salinity of 35, mean temperatures of 6.2-6.7 °C and dissolved oxygen levels of 6.0-6.2 ml l -1. The majority of records were found in areas that were saturated with aragonite but had low concentration of nutrients (silicate, phosphate, and nitrate). Suitable habitat for L. pertusa was predicted using ENFA on a global and a regional scale that incorporated the north-east Atlantic Ocean. Regional prediction was reliable due to numerous presence points throughout the area, whereas global prediction was less reliable due to the paucity of presence data outside of the north-east Atlantic. However, the species niche was supported at each spatial scale. Predicted maps at the global scale reinforced the general consensus that the North Atlantic Ocean is a key region in the worldwide distribution of L. pertusa. Predictive modelling is an approach that can be applied to cold-water coral species to locate areas of suitable habitat for further study. It may also prove a useful tool to assist spatial planning of offshore marine protected areas. However, issues with eco-geographical datasets, including their coarse resolution and limited geographical coverage, currently restrict the scope of this approach.

  10. Search for pseudoscalar cold dark matter

    SciTech Connect

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  11. Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2012-01-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…

  12. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  13. Cold warriors target arms control

    SciTech Connect

    Isaacs, J.

    1995-09-01

    While disagreements over the conflict in Bosnia have strained US relations with Western Europe and Russia, these divisions will pale in comparison to the tensions that will arise if recent congressional arms control decisions become law. If the Republicans who dominate Congress are successful, a series of arms control agreements painstakingly negotiated by Republican and Democratic presidents could be consigned to the ash heap. This list includes the Start I and Start II nuclear reduction agreements, the 1972 Anti-Ballistic Missile (ABM) Treaty and the ongoing negotiations to achieve a comprehensive test ban (CTB) by 1996. US leadership in the post-Cold War era will undermined as the international community, already skeptical about this country`s direction, will question the ability of the executive branch to surmount isolantionist impulses.

  14. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined. PMID:20838756

  15. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  16. Compensating for cold war cancers.

    PubMed Central

    Parascandola, Mark J

    2002-01-01

    Although the Cold War has ended, thousands of workers involved in nuclear weapons production are still living with the adverse health effects of working with radioactive materials, beryllium, and silica. After a series of court battles, the U.S. government passed the Energy Employees Occupational Illness Act in October 2000 to financially assist workers whose health has been compromised by these occupational exposures. Now work is underway to set out guidelines for determining which workers will be compensated. The National Institute for Occupational Safety and Health has been assigned the task of developing a model that can scientifically make these determinations, a heavy task considering the controversies that lie in estimating low-level radiation risks and the inadequate worker exposure records kept at many of the plants. PMID:12117658

  17. The cold-fog test

    SciTech Connect

    Chisholm, W.A.; Ringler, K.G.; Erven, C.C.

    1996-10-01

    The electrical performance of outdoor insulation degrades severely during combinations of factors that include surface contamination (C), ice (I), fog (F) and an ambient temperature that rises through 0 C (T{sub 0{degree}}). Failures at operating voltage on 115-kV, 230-kV and 500-kV systems occur with increasing probability under these conditions. A new CFT{sub 0{degree}} or cold-fog test method has been developed to reproduce the flashovers at all three voltage levels. Three options are identified for improving CFT{sub 0{degree}} performance: use of semi-conductive glazes, substitution of silicone for porcelain and use of silicone coatings on existing porcelain insulators.

  18. Modeling Production Plant Forming Processes

    SciTech Connect

    Rhee, M; Becker, R; Couch, R; Li, M

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaboration with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.

  19. Tidal Forms

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, M.; Seminara, G.; Tambroni, N.

    2003-04-01

    We give an overview of some recent investigations on the mechanics of the processes whereby forms develop in tidal environments. The viewpoint taken here is mechanistic. Some of the questions which deserve an answer may be summarised as follows: i) do tidal channels tend to some altimetric long term equilibrium? ii) why are they typically convergent and weakly meandering? iii) how is such equilibrium affected by the hydrodynamics and morphodynamics of tidal inlets? iv) what is the hydrodynamic and morphodynamic role played by tidal flats adjacent to the channels? Some of the above questions have received a considerable attention in the last few years. Schuttelaars and de Swart (1996), Lanzoni and Seminara (2002) and, more recently, Bolla Pittaluga (2003) have investigated the first problem. In particular, the latter two contributions have shown that a straight tidal channel connected to a tidal sea at one end and closed at the other end tends to reach a long term equilibrium profile, which is slightly concave seaward and convex landward where a beach forms. The equilibrium profile is strongly sensitive to the harmonic content of the tidal forcing as well as to the value of sediment concentration established by the coastal hydrodynamics in the far field of the inlet region. Less important are the effect of channel convergence and the role of settling lag in the transport of suspended load. Insufficient attention has been devoted to the understanding of what mechanisms control channel convergence and meandering, though some similarities and differences between tidal and fluvial channels have emerged from some recent works. In particular, free bars form in tidal channels due to an instability mechanism essentially similar to that occurring under steady conditions though the oscillatory character of the flow field makes the bar pattern non migrating (Seminara and Tubino, 2001). Similarly, forced bars in curved tidal channels are driven by the development of

  20. Stable Higgs Bosons - new candidate for cold dark matter

    SciTech Connect

    Hosotani, Yutaka

    2010-08-12

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.